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ABSTRACT

Small Sample Feature Selection. (May 2006)

Chao Sima, B.Eng., Xi’an Jiaotong University

Chair of Advisory Committee: Dr. Edward R. Dougherty

High-throughput technologies for rapid measurement of vast numbers of biolog-

ical variables offer the potential for highly discriminatory diagnosis and prognosis;

however, high dimensionality together with small samples creates the need for fea-

ture selection, while at the same time making feature-selection algorithms less reliable.

Feature selection is required to avoid overfitting, and the combinatorial nature of the

problem demands a suboptimal feature-selection algorithm.

In this dissertation, we have found that feature selection is problematic in small-

sample settings via three different approaches. First we examined the feature-ranking

performance of several kinds of error estimators for different classification rules, by

considering all feature subsets and using 2 measures of performance. The results

show that their ranking is strongly affected by inaccurate error estimation. Secondly,

since enumerating all feature subsets is computationally impossible in practice, a

suboptimal feature-selection algorithm is often employed to find from a large set of

potential features a small subset with which to classify the samples. If error estimation

is required for a feature-selection algorithm, then the impact of error estimation can

be greater than the choice of algorithm. Lastly, we took a regression approach by

comparing the classification errors for the optimal feature sets and the errors for

the feature sets found by feature-selection algorithms. Our study shows that it is

unlikely that feature selection will yield a feature set whose error is close to that of

the optimal feature set, and the inability to find a good feature set should not lead
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to the conclusion that good feature sets do not exist.
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CHAPTER I

INTRODUCTION

cDNA microarray technology has made it possible for researchers to investigate be-

haviors of thousands of features (genes) all at once [1][2][3]; on the other hand, the

number of samples (tissues) is relatively very small, especially when dealing with hu-

man subjects, in which cases the number can be in the range from 20 to 50. The

following sample sizes for cancer studies are indicative of the commonplace paucity

of data points: cutaneous melanoma, 31 [4]; leukemia, 37 [5]; acute leukemia, 38 [6];

breast cancer, 38 [7], follicular lymphoma, 24 [8]; uveal melanoma, 20 [9], glioma,

50 (but only 21 classic tumors used for class prediction) [10]; ovarian carcinoma, 44

[11]; lymphoma, 47 [12]; and glioma, 25 [13]. More than often, we are interested in

finding a gene set with which we can classify the samples into, for example, normal

and cancer tissues, or tissues with different stages of cancers, with minimum errors.

The imbalance between the number of potential features and sample size poses a

problem for this classification, known as small sample issue [14]. For instance, with

small-sample classifier design, one is limited to small feature sets to avoid overfitting

[15][16][17]. Therefore, classification in small sample setting consists of three major

parts: feature selection, classifier design and error estimation.

It is important to notice that the three stages are not independent of each other:

for example, feature selection is part of the classification rule, and error estimation

is inside feature selection algorithms for evaluating criterion functions. As a result,

even our main interest is in feature selection, we will have to study these interacting

factors to gain a thorough understanding of the problem in small sample settings.

The journal model is IEEE Transactions on Automatic Control.



2

The dissertation is organized as following: we first devote Chapter II to reviewing

some of the classical and recently proposed error estimation methods; then we will

study the impact of error estimation on feature ranking (Chapter III) and feature

selection (Chpater IV). Next in Chapter V we study the general problem of feature

selection via a regression approach. Lastly in Chapter VI we draw some concluding

remarks.
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CHAPTER II

CLASSIFIER ERROR ESTIMATION

Error estimation plays an important role in feature selection, the details of which will

be studied in later chapters. In this chapter, we will introduce some classical and

recently proposed error estimation techniques.

A. Classical Error Estimation Problem

In two-group statistical pattern recognition, there is a feature vector X ∈ IRp and a

label Y ∈ {0, 1}. The pair (X,Y ) has a joint probability distribution F, which is un-

known in practice. Hence, one has to resort to designing classifiers from training data,

which consists of a set of n independent observations, Sn = {(X1, Y1), . . . , (Xn, Yn)},

drawn from F. A classification rule is a mapping g : {IRp × {0, 1}}n × IRp → {0, 1}.

It maps Sn into the designed classifier g(Sn, ·) : IRp → {0, 1}. In fact, a classification

rule is actually a collection of mappings, one for each n; however, we follow the usual

practice of using a single operator notation g to represent all of the individual map-

pings. The true error of a designed classifier is its error rate given the training data

set:

ǫn[g|Sn] = P (g(Sn, X) 6= Y ) = EF(|Y − g(Sn, X)|), (2.1)

where EF denotes expectation with respect to F. The expected error rate over the

data is given by ǫn[g] = E
Fn

EF(|Y − g(Sn, X)|), where Fn is the joint distribution

of the training data Sn. Were the underlying feature-label distribution F known, the

true error could be computed exactly via (2.1). In practice, one must use an error

estimator. Ideally, this estimate should be be fast to compute and as close as possible

to the true error, for the given training data.
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B. Classical Error Estimation

The simplest way to estimate the error of a designed classifier in the absence of

independent test data is to compute its error directly on the sample data itself. This

resubstitution estimator, ǫ̂resub, is very fast, but is usually optimistic (i.e., biased low)

as an estimator of ǫn[g]. For some classification rules, resubstitution can be severely

low-biased, an extreme case being one-nearest-neighbor classification, in which the

resubstitution estimator is identically zero. Typically, the more complex the classifier

is, the more optimistic resubstitution is, since complex classifiers tend to overfit the

data, especially with small samples [18].

Cross-validation removes the optimism from resubstitution by employing test

points not used in the design of the classifier. In k-fold cross-validation, the data set

Sn is partitioned into k folds S(i), for i = 1, . . . , k (for simplicity, we assume that k

divides n). Each fold is left out of the design process and used as a test set, and

the estimate, ǫ̂cvk, is the overall proportion of error on all folds. The process may be

repeated: several cross-validation estimates are computed using different partitions of

the data into folds, and the results are averaged. A k-fold cross-validation estimator

is unbiased as an estimator of ǫn−n/k[g]. The leave-one-out estimator, ǫ̂loo, in which

a single observation is left out each time, corresponds to n-fold cross-validation. It is

unbiased as an estimator of ǫn−1[g]. Cross-validation estimators are often pessimistic,

since they use smaller training sets to design the classifier. Their main drawback is

their variance [19][17]. They can also be quite slow to compute when the number of

folds or samples is large.

The bootstrap error estimation technique [20][21] is based on the notion of an

“empirical distribution” F∗, which serves as a replacement to the original unknown

distribution F. The empirical distribution puts mass 1
n

on each of the n available data
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points. A “bootstrap sample” S∗
n from F∗ consists of n equally-likely draws with re-

placement from the original data Sn. The basic bootstrap zero estimator [21] is written

in terms of the empirical distribution as ǫ̂0 = EF∗ ( |Y − g(S∗
n, X)| : (X,Y ) ∈ Sn \ S∗

n ).

In practice, the expectation EF∗ has to be approximated by a Monte-Carlo estimate

based on independent replicates S∗b
n , for b = 1, . . . , B. The bootstrap zero estimator

works like cross-validation: the classifier is designed on the bootstrap sample and

tested on the original data points that are left out. It tends to be high-biased as

an estimator of ǫn[g], since the amount of samples available for designing the clas-

sifier is on average only (1 − e−1)n ≈ 0.632n. The .632 bootstrap estimator [21],

ǫ̂b632 = (1 − 0.632) ǫ̂resub + 0.632 ǫ̂0, tries to correct this bias by doing a weighted

average of the bootstrap zero and resubstitution estimators. It has low variance, but

can be extremely slow to compute. In addition, it can fail when resubstitution is too

low-biased [19].

C. Bolstered Error Estimation

A relatively new error estimation technique is introduced in [22], which is proved

especially effective in small sample classification problems. We shall briefly explain

it as following.

The resubstitution estimator is defined in terms of the empirical feature-label

distribution F ∗ by ε̂R
n = EF ∗ [|Y − g(Sn,X)|]. Relative to F ∗, no distinction is made

between points near or far from the decision boundary. If one spreads the probability

mass at each point of the empirical distribution, then variation is reduced because

points near the decision boundary will have more mass on the other side of the

boundary than will points far from the decision boundary. To take advantage of this

observation, consider a probability density function f♦
i , for i = 1, . . . , n, called a
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bolstering kernel, and define the bolstered empirical distribution F♦, with probability

density function given by f♦(x) = 1
n

∑n
i=1 f♦

i (x − xi). The bolstered resubstitution

estimator [22] is obtained by replacing F ∗ by F♦ in the definition of ε̂R
n to obtain

ε̂ ♦R
n = EF♦ [|Y − g(Sn,X)|]. (2.2)

A computational expression for the bolstered resubstitution estimator is given

by

ε̂ ♦R
n =

1

n

n∑

i=1

(
Iyi=0

∫

A1

f♦
i (x − xi) dx + Iyi=1

∫

A0

f♦
i (x − xi) dx

)
, (2.3)

where Aj = {x | g(Sn, x) = j}. The integrals are the error contributions made by

the data points, according to whether yi = 0 or yi = 1. The bolstered resubstitution

error estimate is equal to the sum of all error contributions divided by the number of

points. If the classifier is linear, then the decision boundary is a hyperplane and it

is usually possible to find analytical expressions for the integrals; otherwise, Monte-

Carlo integration can be employed:

ε̂ ♦R
n ≈

1

n

n∑

i=1

(
M∑

j=1

Ixij∈A1
Iyi=0 +

M∑

j=1

Ixij∈A0
Iyi=1

)
, (2.4)

where {xij}j=1,...,M are samples drawn from the distribution f♦
i . The experiments

in [22] indicate that a small number M of Monte-Carlo samples is needed (in our

simulations, a value M = 10 was adequate, and increasing M beyond that did not

substantially reduce the variance of the estimator). Fig. 1 illustrates the situation

where the bolstering kernels are given by uniform circular distributions and the clas-

sifier is linear. In this case, no Monte-Carlo computation is needed; the bolstered

resubstitution error estimate is given in terms of the areas of the shaded regions.

When resubstitution is strongly low-biased, it may not be good to spread incor-



7

Fig. 1. Bolstered resubstitution for a linear classifier, assuming uniform circular bol-

stering kernels. The area of each shaded region divided by the area of the

associated circle is the error contribution made by a point. The bolstered re-

substitution error is the sum of all contributions divided by the number of

points.
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rectly classified data points, as that increases optimism of the error estimator. Bias

is reduced by using no bolstering for incorrectly classified points. The result is the

semi-bolstered resubstitution estimator [22].

Bolstering can be applied to any error-counting error estimation method. For the

leave-one-out estimation, let S i
n−1 denote the data set resulting from deleting data

point i from the original data set Sn and Ai
j = {x | g(S i

n−1, x) = j}, for j = 0, 1, be the

the decision region for the classifier designed from S i
n−1. The bolstered leave-one-out

estimator [22] can be computed via

ǫ̂⋄loo =
1

n

n∑

i=1

(
Iyi=0

∫

Ai
1

f ⋄
i (x − xi) dx + Iyi=1

∫

Ai
0

f ⋄
i (x − xi) dx

)
. (2.5)

When the integrals cannot be computed exactly, a Monte-Carlo expression like (2.4)

can be used.

1. Choosing Bolstering Kernel

Although more general bolstering kernels may be considered, in keeping with the

principle of not making complicated inferences from a limited amount of data, we

only consider zero-mean, spherical bolstering kernels f ⋄
i , with covariance matrices of

the form σ2
i Ip. In each case there is a family of bolstered estimators, corresponding

to the choices of the standard deviations σ1, . . . , σn. The choice of these parameters

determines the variance and bias properties of the corresponding bolstered estimator.

If σi = 0, for i = 1, . . . , n, then there is no bolstering and the bolstered estimator

reduces to the original estimator. As a general rule, larger σi’s, i.e., “wider” bolstering

kernels, lead to lower-variance estimators, but after a certain point this advantage

becomes offset by increasing bias.

The choice of the standard deviations is a critical issue. A non-parametric

sample-based method to choose these parameters that is applicable in small-sample



9

settings has been proposed [22]. The method, together with details about bolstering

using Gaussian kernels (the kind used in this paper), is described below.

2. Choosing the Amount of Bolstering

When bolstering resubstitution, the aim is to select the parameters so that the bol-

stered resubstitution estimator is nearly unbiased. One can think of (X,Y ) in (2.1)

as a random test point. Given that Y = y, this test point is at a “true mean dis-

tance” δ(y) from the data points belonging to class y. This distance is determined

by the underlying class-conditional distribution F (X|Y = y). One reason why plain

resubstitution is optimistically biased is that the test points are all at distance zero

from the training data. Since bolstered estimators spread the test points, the task is

to find the amount of spreading that makes the test points to be as close as possible

to the true mean distance to the training data points. The true mean distance can

be estimated by its sample-based estimate:

d̂(y) =

∑n
i=1 minj 6=i{||xi − xj||} : Iyi=y∑n

i=1 Iyi=y

. (2.6)

The estimate d̂(y) is the mean minimum distance between points belonging to class

y.

Let f ⋄,1
i be a unit-variance bolstering kernel, and let Di be the random variable

equal to the distance of a point randomly selected from f ⋄,1
i to the origin. Let FDi

(x)

be the cdf of Di. In the case of the bolstering kernel f ⋄
i with variance σ2

i Ip, all distances

get multiplied by σi. We find the value of σy for class y such that the median distance

of a test point to the origin is equal to the estimated true mean distance d̂(y), so that

half of the test points will be farther from the center than d̂(y), and the other half

will be nearer. Hence, σy is the solution of the equation σy F−1
Di

(1/2) = d̂(y). Note
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that

αp,i = F−1
Di

(1/2) (2.7)

can be viewed as a constant “correction” factor, which can be computed and stored

off-line. The subscript p indicates explicitly that the correction factor is a function of

the dimensionality. The estimated standard deviations for the bolstering kernels are

thus given by:

σi =
d̂(yi)

αp,i

, for i = 1, . . . , n. (2.8)

Clearly, as the number of samples in the training data increases, the standard de-

viations σi decrease, and there is less bias correction introduced by the bolstered

resubstitution. This is in accordance with the fact that resubstitution tends to be

less optimistically-biased as the sample size increases.

Let us consider now the leave-one-out estimator. In this case, no bias-correction

is necessary or desired; the aim is solely reducing the variance of the estimator.

Considering the distance argument, we see that each point left out in the the design

of the classifier g is an independent sample and is already at the right distance to the

design data set (this is the reason for the unbiasedness of leave-one-out as as estimator

of ǫn−1[g]). Therefore, we propose to use the minimum distance d(xi, S
i
n−1) of each

point to the rest of the data set as the basis for selecting the standard deviation of the

corresponding bolstering kernel f ⋄
i . As before, we want half of the test points to be

farther from the center than d(xi, S
i
n−1), and the other half to be nearer. Therefore,

the standard deviations are distinct for each data point, and given by

σi =
d(xi, S

i
n−1)

αp,i

, for i = 1, . . . , n, (2.9)

where αp,i is the correction factor in (2.7).
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3. Gaussian-Bolstered Error Estimation

An important case of bolstering, which is the one assumed in this paper, is the choice

of Gaussian kernels:

f ⋄
i (x) =

1

(2π)p/2σ p
i

exp

(
−
||x||2

2σ2
i

)
. (2.10)

For a general classifier, the integrals in (2.3) and (2.5) have to be computed

by Monte-Carlo sampling. For a linear classifier, however, analytical expressions

are possible. For example, for LDA (Linear Discriminant Analysis), the Gaussian-

bolstered resubstitution error estimate is given by (see [22] for a proof):

ǫ̂⋄resub =
1

n

n∑

i=1

(Φσi
(Wa(xi))Iyi=0 + Φσi

(−Wa(xi))Iyi=1) , (2.11)

where Φσi
is the cumulative distribution function of a zero-mean Gaussian random

variable with variance σ2
i , and Wa is the normalized W statistic, given by Wa(x) =

(aT x + m)/||a||, with

a = Σ−1(µ1 − µ0)

m =
1

2
(µ0 + µ1)

T Σ−1(µ0 − µ1).

Here, Σ = 1
2
(Σ0 + Σ1) is the pooled covariance matrix, with µi and Σi denoting the

mean and covariance matrix for class i, respectively, which are obtained via their

usual maximum-likelihood estimates. The parameters a and m specify the separating

hyperplane produced by LDA: a is a vector normal to the hyperplane, and m/||a|| is

its distance to the origin.

A similar expression to (2.11) applies to the Gaussian-bolstered leave-one-out.

Note that Φσ(0) = 1/2, which corresponds to the error contribution of a point

on the decision boundary. As σi → 0, for i = 1, . . . , n, then all functions Φσi
collapse

to indicator step functions and the Gaussian-bolstered error estimator reduces to the
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original estimator. On the other hand, if σi → ∞, for i = 1, . . . , n, then the functions

Φσi
become constant and equal to 1

2
, so that the bolstered estimator is identically

equal to 1
2
, regardless of the data. This estimator has zero variance, but is of course

not useful.

The actual values of σi in a practical situation are computed according to the

distance-based scheme outlined in the previous subsection. In the present Gaussian

case, the distance variables Di are distributed as a chi random variable D with p

degrees of freedom. The density function of D is given by [23]:

fD(x) =
21−p/2xp−1e−x2/2

Γ(p
2
)

, (2.12)

where Γ is the gamma function. For p = 2, this becomes the well-known Rayleigh

density. The cdf FD can be computed by numerical integration of (2.12), and the

inverse at point 1/2 can be found by a simple binary search procedure (using the

fact that FD is monotonically increasing), which yields the correction factor αp. For

instance, the values of the correction factor up to five dimensions are: α1 = 0.674,

α2 = 1.177, α3 = 1.538, α4 = 1.832, α5 = 2.086.
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CHAPTER III

IMPACT OF ERROR ESTIMATION

ON THE PERFORMANCES OF FEATURE RANKING ∗

Ranking feature sets is a key issue for classification, for instance, phenotype classifica-

tion based on gene expression. Often we are interested in selecting a list of potential

genes with which to classify tissues, and the top ranked genes become a natural choice.

Since ranking is often based on error estimation, and error estimators suffer to

differing degrees of imprecision in small-sample settings, it is important to choose a

computationally feasible error estimator that yields good feature-set ranking.

This chapter examines the feature-ranking performance of several kinds of error

estimators: resubstitution, cross-validation, bootstrap, and bolstered error estima-

tion. It does so for three classification rules: linear discriminant analysis (LDA),

3-nearest-neighbor classification (3NN), and classification trees (CART). Two mea-

sures of performance are considered. One counts the number of the truly best feature

sets appearing among the best feature sets discovered by the error estimator and

the other computes the mean absolute error between the top ranks of the truly best

feature sets and their ranks as given by the error estimator. Our results indicate

that performances using different error estimation techniques vary and generally suf-

fer from lack of data; specifically, bolstering is superior to bootstrap, and bootstrap

is better than cross-validation, for discovering top-performing feature sets for classi-

fication when using small samples. A key issue is that bolstered error estimation is

tens of times faster than bootstrap, and faster than cross-validation, and is therefore

∗Reprinted with permission from “Superior Feature-Set Ranking For Small Sam-
ples Using Bolstered Error Estimation” by C. Sima, U. Braga-Neto and E.R.
Dougherty, 2005, Bioinformatics, Vol. 21, No. 7, pp1046-1054. Copyright 2005
by Oxford University Press.
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feasible for feature-set ranking when the number of feature sets is extremely large.

A. Introduction

When choosing among a collection of potential feature sets for classification, estimat-

ing the errors of designed classifiers is a key issue; indeed, it is natural to order the

potential feature sets according to the misclassification rates of their corresponding

classifiers. Hence, it is important to apply error estimators that provide rankings that

better correspond to rankings produced by the true errors. For phenotype classifica-

tion based on gene expression, feature selection can be viewed as gene selection: find

sets of genes whose expressions can be used for phenotypic discrimination. In recent

years, gene selection has been heavily investigated.

A critical issue for classification via microarray data is the frequent presence

of small samples and the consequences flowing therefrom [14]. For instance, with

small-sample classifier design, one is limited to small feature sets to avoid overfitting

[15][16][17]. While this may be an impediment, small gene sets are advantageous

relative to the very expensive and time-consuming analysis required to determine if

they could serve as useful targets for therapy. In any event, since all feature-selection

algorithms are subject to significant errors when samples are small, in the context of

microarray experiments, it is prudent to approach feature selection as finding a list of

potential feature sets, and not as trying to find a best feature set. Indeed, the entire

matter of feature selection and classification in the context of small samples can be

conservatively viewed as an exploratory methodology. This conservative position has

been articulated in the following manner: “Most likely, it will not be possible to design

a classifier from a single set of microarray experiments. Separation of the sample data

by designed classifiers will likely have to be taken as evidence that the corresponding
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gene sets are potential variable sets for classification. Their effectiveness will have

to be checked by large-replicate experiments designed to estimate their classification

error, perhaps in conjunction with biological input or phenotype evidence. There may,

in fact, be many gene sets that provide accurate classification of a given pathology. Of

these, some sets may provide mechanistic insights into the molecular etiology of the

disease, while other sets may be indecipherable”[14]. For instance, this approach has

been explicitly taken in the case of discovering markers for different types of glioma,

where the number of available tissue samples is severely limited [13]. That study

states, “We have identified robust classifier gene sets containing one to three genes

that distinguish each type of glioma from the other three. This provides guidance

for the development of pathological assays using a reasonable number of markers for

clinical use.”

The raw data associated with microarray experiments usually contain an ex-

traordinarily large number of gene expression measurements, in the order of tens

of thousands. On any given microarray, many of these measurements fall below an

acceptable quality level. In the case of the software provided with the Affymetrix plat-

form, an unacceptable signal-to-noise ratio is quantified by a bad “detection” p-value

[24]. For spotted cDNA microarrays, the DeArray software of the National Human

Genome Research Institute calculates a multi-faceted quality metric for each spot [25].

This quality problem is a result of imperfections in RNA preparation, hybridization

to the arrays, scanning, and also intrinsic factors, such as low expressed genes. Genes

whose expressions fail to be effectively detected on a large number of microarrays are

rejected from further consideration. Furthermore, many of the reliably-detected genes

possess expression values that do not change appreciably across the microarrays in the

experiment – for instance, “house-keeping” genes. These genes can also be removed

from consideration, by means of a simple variance filter, since they clearly cannot
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contribute to discrimination. This pre-filtering process usually reduces the number of

variables by an order of magnitude. One then proceeds to apply a feature selection

algorithm to obtain small feature sets (combinations of genes). Feature selection can

be either optimal, which requires that all possible feature sets of a given size are ex-

amined [26], or sub-optimal. If pre-filtering reduces the number of potential features

to around a thousand, it becomes computationally possible to employ optimal feature

selection and examine all possible two- and three-gene feature sets. Larger numbers of

potential features or larger feature sets are possible in an appropriate supercomputer

environment [27]. If the initial number of genes to be considered, after pre-filtering, is

too large, or if the size of the feature sets is large, then a sub-optimal method must be

employed (and here we include the branch-and-bound algorithm [28] as suboptimal

because monotonicity of the error measure can fail significantly for small samples).

It is not uncommon to apply a second filtering (say, by standard t-tests) to further

reduce the number of features, and then follow this by an optimal or sub-optimal

selection process.

A natural way to measure the performance of an error estimator relative to

feature-set ranking is to measure the degree to which application of the estimator

yields a ranking that reflects the ranking based on the true errors of the classifiers

designed for the feature sets. Here we will consider two performance measures. The

first counts the number of top feature sets based on the true error that are rated

as top feature sets based on the estimated error. For feature (gene) discovery, this

performance measure is critical because the features discovered based on the data

will be the ones listed best based on error estimation, and we would like that list to

contain a good supply of truly good feature sets. A second measure computes the

mean deviation between the rankings of the top feature sets (based on true error) and

their corresponding rankings based on error estimation.
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A perusal of the literature shows that cross-validation methods (especially leave-

one-out estimation) are often used for error estimation during feature selection; how-

ever, cross-validation estimators display high variance [17]. This variance results in a

widely dispersed deviation distribution (deviation between the true and estimated er-

rors of a classifier), thereby making cross-validation unreliable for small samples [19].

In a previous paper, it has been demonstrated that, for small samples, leave-one-

out cross-validation-based feature ranking does not outperform resubstitution-based

feature ranking on the best feature sets, these being the ones whose designed clas-

sifiers possess the smallest errors [29]. Owing to typical experimental methodology,

the conclusions of that paper are too narrow. While it is theoretically revealing to

know that a popular cross-validation procedure does not outperform resubstitution

on the best feature sets, in practice we do not know the best feature sets and must

draw our conclusions from feature sets ranked according to an error estimator. Thus,

we are presented with a list of feature sets whose errors are estimated, and further

investigation – for instance, laboratory analysis to determine the biological basis of

discrimination – will proceed based on the list. Owing to imprecision in error esti-

mation, an experimentally derived list is likely to contain among its best feature sets

some that are not truly the best. Hence, in evaluating error estimators we cannot

limit our view to the best feature sets; otherwise, we will not take into account the

confusion created by mediocre (or even poor) feature sets appearing at the top of an

experimentally derived list.

Going further, we do not want to limit ourselves to leave-one-out cross valida-

tion and resubstitution. Admittedly, these are computationally efficient compared

to replicated cross-validation and bootstrap, but as we will see, they are among the

worst performers relative to ranking. Indeed, .632 bootstrap generally outperforms

cross-validation methods (the performances of which vary widely), the exception be-
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ing for the best feature sets, where the performances of all the tested estimators do not

differ greatly. Owing to its high computational complexity, bootstrap is not feasible

for ranking very large collections of feature sets; nonetheless, owing to its generally

superior performance to cross-validation, it can serve as a benchmark. The recently

proposed bolstered error estimation [22] not only outperforms cross-validation for

feature-set ranking, but also outperforms .632 bootstrap, even though the bootstrap

takes tens of times longer to compute than the bolstered estimators.

We use simulation studies to analyze feature-set ranking for a number of cross-

validation, bootstrap, and bolstered error estimators. The use of simulation studies is

commonplace for feature-selection analysis [30][31]. We conduct two large studies, one

based on a Gaussian mixture model that allows us to vary a number of parameters,

and the other based on patient data from a large microarray breast cancer study.

In both studies we consider linear discriminant analysis (LDA), 3-nearest-neighbor

classification (3NN), and classification trees (CART). We will present detailed analysis

for one case from each study.

B. Ranking Feature Sets

We consider two performance measures concerning how well feature ranking using

the error estimators agrees with feature ranking based on the true errors. Since our

main interest is in finding good feature sets, say the best K feature sets, we wish to

compare the rankings of the K best estimate-based feature sets with those of the K

best based on the true errors. Moreover, in a similar vein to [29], we want to make

this comparison for feature sets whose true performances attain certain levels. For

t > 0, let GK
t be the collection of all feature sets of a given size whose true errors are

less than t, where GK
t is defined only if there exists at least K feature sets with true
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error less than t. Rank the best K feature sets according to their true errors and rank

all features sets in GK
t according to their estimated errors, with rank 1 corresponding

the lowest error. We then have two ranks for each of the K best feature sets: k (true)

and k∗ (estimated) for all feature sets in GK
t . In case of ties, the rank is equal to the

mean of the ranks. It should be noted that the selection of feature sets for inclusion in

GK
t is based on the true error and is therefore not subject to the kind of selection bias

discussed in [32]. Moreover, any selection bias that might occur in the ranking based

on error estimation is part of the estimation-based ranking process and its effect is

ipso facto incorporated into the ranking analysis.

If our interest is in feature discovery, then a key interest is whether truly impor-

tant features appear in the list of important feature sets based on error estimation.

This is the list we obtain from data analysis, and good classification depends on dis-

covering truly good classifying feature sets. Moreover, in gene discovery, the ultimate

analysis is not that based on the classification data, but is instead the laboratory

analysis of genes discovered via classification, and therefore we would like the clas-

sification methodology to produce key genes. The first performance statistic counts

the number of feature sets among the top K feature sets that also appear in the top

K using the error estimator,

RK
1 (t) =

K∑

k=1

Ik∗≤K . (3.1)

where IA denotes the indicator function. For this measure, higher scores are better.

Since k∗ is the estimate-based rank of the kth true-ranked feature set among the

feature sets in GK
t and since we only consider feature sets in GK

t , the larger t, the

larger the collection of ranks k∗ and the greater possibility that erroneous feature sets

appear among the top K, thereby resulting in a smaller value of RK
1 (t). As will be seen

in the experimental results, the curve of RK
1 (t) will flatten out for increasing t, which
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is reflective of the fact that, as we consider ever poorer feature sets, their effect on

the top ranks becomes negligible owing the fact that inaccuracy in the measurement

of their errors is not sufficient to make them confuse the ranking of the best feature

sets.

The second performance metric measures the mean absolute deviation in the

ranks for the K best features sets,

RK
2 (t) =

1

K

K∑

k=1

|k − k∗|. (3.2)

For this measure, lower scores are better. In analogy to RK
1 (t), the larger t, the larger

the collection of ranks k∗ and the greater possible deviation between k and k∗. When t

is small, rank comparison is only being made between (truly) good feature sets, which

was the interest in [29]. Our interest here is broader. Not only are we interested in

a wide variety of error estimators, but we are concerned with the pragmatic issue of

having to rank feature sets based on error estimates without necessarily having any

a priori restriction on the goodness of the feature sets being considered. Hence, we

are interested in large t, and in analogy to RK
1 (t) the curve for RK

2 (t) will flatten out

as t increases.

C. Experimental Results

We consider two basic sets of experiments, one using synthetic data generated from

a model based on Gaussian class conditional distributions, and another using mi-

croarray data categorizing a breast-cancer patient prognosis. In both cases we con-

sider three classification rules: linear discriminant analysis (LDA), 3-nearest neighbor

(3NN), and classification and regression trees (CART). In all cases we consider a sam-

ple size of 30, do the analysis for 2 and 3 features, and consider top lists of sizes K = 20
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and K = 40. We shall provide detailed analysis for one Gaussian case and one from

the breast-cancer data.

1. Synthetic Data

The synthetic data used in our experiments is based on a Gaussian model, under

which the classes are equally likely and the class-conditional densities are spherical

unit-variance Gaussians. The class means are located at δa and −δa, where δ > 0 is a

separation parameter and a = (a1, a2..., an) is a parameter vector with ||a|| = 1. The

Bayes classifier is a hyperplane perpendicular to the axis joining the means, with Bayes

error ǫ
BAY ES

= 1 − Φ(δ), where Φ is the standard normal cumulative distribution

function. Since δ = Φ−1 (1 − ǫ
BAY ES

), one can find δ for a prescribed Bayes error. If a

subset L of the original variables is selected, then again one has a standard Gaussian

model, but now the separation between the classes is a function of which variables

are selected. The Bayes error is a function of both the separation and the model

parameters, specifically, ǫL
BAY ES

= 1 − Φ
(
δ
√∑

k∈L a2
k

)
. To minimize ǫL

BAY ES
for a

given number of selected variables, one should pick the variables corresponding to the

largest parameters.

For the simulation, we let the total number of variables in the Gaussian model

be 20 and consider feature sets of sizes 2 and 3. The separation parameter δ is chosen

so that the Bayes error in the space of dimension corresponding to the feature-set

sizes of 2 and 3 is 0.05 or 0.10, respectively. We consider equal or unequal (1 and

1.5) class-conditional standard deviations. The parameter vector a = (a1, a2..., an) is

picked from a sigmoidal distribution in order to favor a few of the feature sets and

make the rest unimportant. We generate 200 independent samples of size 30. For

each, we apply the three classification rules, LDA, 3NN, and CART, with all possible

feature sets, and apply the different error estimators to compute the statistics RK
1 (t)
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and RK
2 (t). The number of feature sets for which each statistic is computed depends

on the maximum true error threshold t. For a given feature set size, classification

rule, and error estimator, we can average RK
1 (t) and RK

2 (t). There is a proviso here:

for small t there may not be K feature sets satisfying the threshold for all samples

of size 30, and therefore we only consider those samples for which there are K sets

satisfying the threshold.

Fig. 2 provides the R40
1 (t) and R40

2 (t) curves for the synthetic data, in the equal-

variance case and with feature sets of size 3 , for resubstitution (resub), leave-one-out

cross-validation (loo), 10-fold cross-validation with replications (cv10r), 0.632 boot-

strap (b632), bolstered resubstitution (bresub), semi-bolstered resubstitution (sre-

sub), and bolstered leave-one-out (bloo), for the three assumed classification rules.

Each plot in Fig. 2 assumes a range of maximum true error threshold t = 0.25 through

t = 0.50. Table I shows two statistics for a few values of t: s1 is the average error

for all feature sets having error less than t, which is the average error among those

feature sets for which the performance statistics have been computed, while s2 is the

average number of feature sets having error less than t.

For LDA, Fig. 2 shows that bolstered resubstitution performs best over the

entire range of t, with the other bolstered estimators also performing better than

the .632 bootstrap. Both cross-validation estimators, loo and cv10r, perform about

the same as resubstitution, with the latter three all performing much worse than

the .632 bootstrap. In our experiments it is seen that cv10 is by far the poorest

among all estimators considered. The quantitative interpretation of the difference

in performance is that, on average, bolstered resubstitution will correctly discover

two more feature sets among the top 40 than will .632 bootstrap, and the latter

will discover two more than loo or the heavily computational cv10r, neither of which

perform substantially better than resubstitution. Fig. 2 shows that the pattern shown
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Table I. Two statistics for a few values of the maximum true error threshold t in Fig.

2, for the synthetic data, in the equal-variance case and feature sets of size 3:

s1 is the average true error for all feature sets having error less than t, while

s2 is the average number of feature sets having true error less than t.

LDA 3NN CART

t s1 s2 s1 s2 s1 s2

0.25 0.227 102.65 0.223 63.05 0.226 57.71

0.27 0.245 155.19 0.244 81.60 0.248 73.53

0.30 0.265 304.30 0.273 125.40 0.277 100.78

0.32 0.278 433.89 0.288 190.41 0.293 135.08

0.35 0.293 623.28 0.308 322.71 0.314 241.22

0.37 0.300 706.18 0.320 430.29 0.326 335.76

0.40 0.311 804.06 0.334 573.68 0.343 480.03

0.42 0.321 883.44 0.342 648.93 0.352 566.84

0.45 0.337 1026.25 0.356 756.25 0.367 690.53

0.47 0.345 1098.47 0.369 858.75 0.380 798.94

0.50 0.350 1140.00 0.391 1056.07 0.404 1023.02
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by LDA with respect to R40
1 (t) also holds for the ranking-comparison statistic R40

2 (t).

We remark that not only does bolstered resubstitution outperform .632 bootstrap in

terms of feature discovery, it does so with much less computation time. Table II(a)

provides typical computation times for the error estimators in this experiment.

For 3NN, Fig. 2 shows the very bad performance of resubstitution as measured

by R40
1 (t). This results from the extreme low bias of resubstitution for the 3NN

classification rule (indeed, for the 1NN rule resubstitution always yields zero error).

Nonetheless, bolstered resubstitution still performs as well as .632 bootstrap, which

also suffers on account of the low bias of resubstitution, and outperforms all cross-

validation estimators. The best performance is exhibited by bolstered leave-one-out,

which is consistent with the comments of [29] regarding bolstering in the case of

3NN classification. Similar comments apply to R40
2 (t), the only difference being that

bolstered resubstitution slightly outperforms .632 bootstrap.

For CART, Fig. 2 shows that bolstered and semi-bolstered resubstitution signifi-

cantly outperform .632 bootstrap, with bolstered-leave-one-out slightly outperforming

.632 bootstrap, which itself outperforms the cross-validation estimators to about the

same extent. Compared to the commonly employed cross-validation estimators, bol-

stered resubstitution finds on average five more top-40 feature sets among the top 40

based on error estimation, which means the discovery of substantially more features.

Analogous relations among the estimators are found for R40
2 (t).

2. Patient Data

We have conducted experiments based on patient data from a microarray-based clas-

sification study [33] that analyzes microarrays prepared with RNA from breast tumor

samples from 295 patients. Using a previously established 70-gene prognosis profile

[34], a prognosis signature based on gene-expression is proposed in [33] that correlates
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Table II. Computation times for (a) the synthetic data, in the equal-variance case and

feature sets of size 3, and (b) the patient data, for feature sets of size 3. The

values are relative to the resubstitution timing.

loo cv10r b632 bresub sresub bloo

LDA 90.30 306.27 465.44 7.40 6.30 97.15

3NN 0.94 7 48.09 12.27 10.39 12.08

CART 1224.50 3895.47 1931.31 103.93 97.85 1527.95

(a)

loo cv10r b632 bresub sresub bloo

LDA 128.37 460.29 611.40 12.29 10.91 130.14

3NN 1 8.38 100.39 11.59 10.88 11.54

CART 1441.87 4584.47 4758.40 96.00 84.87 1512.67

(b)
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well with patient survival data and other clinical measures. Of the 295 microarrays,

115 belong to the “good-prognosis” class and 180 belong to the “poor-prognosis”

class.

Our experiments are set up in the following way. We use log-ratio gene expression

values associated with the top 20 genes ranked according to [34]. The true error for

each sample of size n = 30 is approximated by a holdout estimator, whereby the 265

sample points not drawn are used as the test set (a very good approximation to the

true error, given the large test sample). It should be noted that the samples are not

fully independent on account of overlap resulting from choosing the 30 samples from

among the same 295 sample points; however, as discussed in [19], the samples are

only weakly dependent.

The results corresponding to Fig. 2 are shown in Fig. 3 for the patient data

experiments, with feature sets of size 3. The associated sample information and

computation times are given in Tables III and II(b), respectively.

The trends regarding bolstering, bootstrap, and cross-validation observed in the

Gaussian model are closely reflected in the patient data. We note that the perfor-

mance measures are weaker in the patient data. This is because we are choosing

feature sets from among the best correlated 20 genes, so that there are many good

feature sets, and it is difficult to distinguish among them. Our goal was to see if bol-

stering would still prove superior to bootstrap and cross-validation in such a difficult

scenario, and our results indicate it does so.

D. Conclusion

The results demonstrate, for the three classification rules and the datasets consid-

ered, that bolstering is superior to bootstrap, and bootstrap is better than cross-
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Table III. Two statistics for a few values of the maximum true error threshold t in Fig.

3, for the patient data, for feature sets of size 3: s1 is the average true error

for all feature sets having error less than t, while s2 is the average number

of feature sets having true error less than t.

LDA 3NN CART

t s1 s2 s1 s2 s1 s2

0.25 0.224 445.20 0.228 256.35 0.231 171.27

0.27 0.234 617.20 0.240 401.78 0.244 290.15

0.30 0.247 830.74 0.257 642.42 0.262 502.55

0.32 0.253 921.19 0.266 768.61 0.272 629.30

0.35 0.260 1019.06 0.277 923.54 0.286 810.46

0.37 0.265 1064.17 0.283 1003.04 0.294 917.19

0.40 0.269 1100.21 0.290 1071.38 0.303 1020.35

0.42 0.270 1113.42 0.293 1097.96 0.307 1063.04

0.45 0.272 1126.73 0.296 1123.37 0.312 1105.74

0.47 0.273 1131.89 0.297 1131.44 0.314 1120.66

0.50 0.274 1136.39 0.298 1137.56 0.316 1132.37
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validation. Superior performance has been demonstrated with respect to two mea-

sures, one counting the number of the truly best feature sets appearing among the

best feature sets discovered by the error estimator and the other computing the mean

absolute error between the top ranks of the truly best feature sets and their ranks

as given by the error estimator. A key issue is that bolstered error estimation is

generally much faster than bootstrap and is therefore feasible for feature-set ranking

when the number of feature sets is extremely large.

It should be recognized that the ranking results presented herein apply directly

to only the specific classification rules and datasets presented and that more work

is needed to determine the extent of the superiority of bolstering with regard to

ranking. More importantly, it should be noticed that ranking performances using all

of these error estimation techniques suffer greatly from the lack of data points. We

shall further investigate the impact of error estimation on feature selection in next

chapter.
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CHAPTER IV

IMPACT OF ERROR ESTIMATION

ON FEATURE SELECTION ALGORITHMS ∗

Given a large set of potential features, it is usually necessary to find a small subset

with which to classify. The task of finding an optimal feature set is inherently com-

binatoric and therefore suboptimal algorithms are typically used to find feature sets.

If feature selection is based directly on classification error, then a feature-selection

algorithm must base its decision on error estimates. In this chapter we shall address

the impact of error estimation on feature selection using two performance measures:

comparison of the true error of the optimal feature set with the true error of the

feature set found by a feature-selection algorithm, and the number of features among

the truly optimal feature set that appear in the feature set found by the algorithm.

The study considers seven error estimators applied to three standard suboptimal

feature-selection algorithms and exhaustive search, and it considers three different

feature-label model distributions. It draws two conclusions for the cases considered:

(1) depending on the sample size and the classification rule, feature-selection algo-

rithms can produce feature sets whose corresponding classifiers possess errors far in

excess of the classifier corresponding to the optimal feature set; and (2) for small

samples, differences in performances among the feature-selection algorithms are less

significant than performance differences among the error estimators used to imple-

ment the algorithms. Moreover, keeping in mind that results depend on the particular

classifier-distribution pair, for the error estimators considered in this study, bootstrap

∗Reprinted with permission from “Impact of Error Estimation on Feature-selection
Algorithms” by C. Sima, S. Attoor, U. Braga-Neto, J. Lowey, E. Suh and E.R.
Dougherty, 2005, Pattern Recognition, Vol. 38, No. 12, pp2472-2482. Copyright
2005 by Elsevier.
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and bolstered resubstitution usually outperform cross-validation, and bolstered resub-

stitution usually performs as well as or better than bootstrap.

A. Introduction

Given a large set of potential features for classification, it is necessary to find a small

subset with which to classify. The problem is statistically inherent in classification

because typically (but not universally), the true error of a designed classifier will fall

with use of more features and, after some optimal number of features for a given

sample size, begin to rise. For small samples the optimal number can be very small.

The task of finding an optimal feature set is inherently combinatoric. According to a

classical theorem, to be assured of finding the optimal feature set of a given size, all

feature subsets of that size must be checked unless there is distributional knowledge

that mitigates the search requirement, a mitigating condition not occurring in practice

[26]. There are various methods of choosing feature sets, the intent being to choose

a set of features that provides good classification. When there is a large number

of potential features for classification, feature selection is problematic and the best

method to use depends on the circumstances. Evaluation of methods is generally

comparative and based on simulations [30][31].

If feature selection is based directly on classification error, and not on some

auxilliary measure such as correlation, then an algorithm searching for a good feature

set must base its decision on estimates of the error. If there is a large data set,

then one can obtain good error estimates; however, if the sample is small, then error

estimation is problematic and the performance of the feature-selection algorithm will

be impacted by the performance of the error estimator. As will be demonstrated

in this paper, the lack of optimality with feature selection can be impacted to a
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greater extent by error estimation than by the choice of feature-selection algorithm,

and performance of a particular feature-selection algorithm is affected by the choice

of error-estimation rule.

The role of error estimation in the choice of feature sets for small samples has

been addressed relative to the absolute ranking of feature sets in previous chapter and

in [29]. In these studies, based on an exhaustive search, the classifiers corresponding

to all feature sets of a given size were found, their true errors and their estimated

errors based on various estimation rules were calculated, and the feature sets were

ranked based on their true and estimated errors. The key issue was ranking order. It

was seen that certain error-estimation rules gave better feature-set ranking, depending

on the class-conditional distributions, classification rule, and sample size.

This chapter concerns the performance of feature-selection algorithms relative

to their purpose of finding good feature sets – in particular, the impact of error

estimation in this regard. Thus, we employ two measures of merit: (1) we will

compare the true error of the optimal feature set with the true error of the feature

set found by a feature-selection algorithm; and (2) we will see how many of the

features among the truly optimal feature set appear in the feature set found by the

algorithm. In all cases we will average the results over a large collection of samples,

and we will categorize the results by feature-selection algorithm, error-estimation

rule, classification rule, class-conditional distributions, and sample size. Owing to the

large number of simulations and computations, the project has been carried out on a

massively parallel Beowulf cluster.

To a great extent, this study has been motivated by the large number of papers

in recent years dealing with phenotype classification based on expression microarrays.

Perhaps the most salient characteristic of expression-based phenotype classification

using microarray data is the vast number of potential features (genes) in comparison
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to the small number of data points (microarrays), and the effect this disparity has

on classifier design, error estimation, and feature selection [14]. Whereas there are

typically thousands of genes on a microarray, laboratory costs and availability of

patient tissue stringently limits the number of microarrays. Even though sample

sizes are slowly growing as costs decline, availability of tissue will continue to limit

sample sizes. Our simulation analyses reflect this limitation by considering sample

sizes of 30, 50, 70, and 90.

B. Experimental Set-up

For simulation studies, we consider 3 models. Model 1 is the same as the syn-

thetic model in Chapter III, Section C.1: it is a 2-class Gaussian model, with the

classes equally likely and the class-conditional densities being spherical unit variance

Gaussians. The class means are located at δa and −δa, where δ > 0 is a separa-

tion parameter and a = (a1, a2, . . . , an) is a parameter vector with ||a|| = 1. It is

well-known that the Bayes classifier is a hyperplane perpendicular to the axis joining

the means, with Bayes error ǫBAY ES = 1 − Φ(δ), where Φ is the standard normal

cumulative distribution function. Since δ = Φ−1(1 − ǫBAY ES), one can find δ for a

prescribed Bayes error. In our experiments, we choose δ so that the Bayes error is

0.1. The parameter vector a = (a1, a2, . . . , an) is picked from a sigmoidal distribution

in order to favor a few of the feature sets.

Model 2 is similar to Model 1, but instead of both covariance matrices for the

class-conditional densities being I, where I is the identity matrix, we let them be

σ1I and σ2I for class 1 and class 2, respectively, with σ1 6= σ2. Since there is no

closed-form formula for Bayes error in this model, we resort to Monte Carlo methods

for computing the separation parameter δ for the desired Bayes errors. We let σ1 = 1
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and σ2 = 1.5 in our experiments, and choose δ so that Bayes error using all the

features equals 0.03 or 0.04.

Model 3 is also an equally likely 2-class Gaussian model, with means located

at (δ, δ, . . . , δ) and (−δ,−δ, . . . ,−δ). Here we employ a block-like covariance matrix

structure

Σ = σ2




1

1 ρ

·

ρ ·

1

0 · · · 0

0

1

1 ρ

·

ρ ·

1

· · · 0

· · · ·

· · · ·

· · · ·

0 0 · · ·

1

1 ρ

·

ρ ·

1




,

where all features are equally divided into G groups. The features from different

groups are uncorrelated, and the features from the same group possess the same

correlation ρ among each other. In our studies, we let both covariance matrices be Σ

with G = 5, σ = 1 and ρ = 0.5, and choose δ so that the Bayes error is 0.05 (again

by Monte Carlo methods). Notice if G equals the total number of features, then all

features are uncorrelated and this model is similar to Model 1.

The experiments are set up in the following manner: 200 independent samples of

size S with N features are generated, and we select the K features, using exhaustive

search (exhst), sequential forwarding search (SFS) [35], sequential forwarding floating

search (SFFS) [35], and the improved Branch-and-Bound search method (enhBB) [36].
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The criterion function is the correct recognition rate, defined as 1 minus the estimated

error. We consider three classification rules: linear discriminate analysis (LDA), 3-

nearest neighbor (3NN), and classification and regression trees (CART). We apply

7 error estimation methods: true error (true), resubstitution (resub), leave-one-out

(loo), 5-fold cross validation (cv5), .632 bootstrap (bstrap) , bolstered resubstitu-

tion (blstr) and semi-bolstered resubstitution (semib). By “true error” we mean the

computed error for the designed classifier using the known underlying distribution of

synthetic data, not the Bayes error, which the “true error” can achieve only when the

designed classifier is optimal.

K features are found at the end of the feature search for each sample, and two

performance measures, T1 and T2, are computed. T1 is the average true error over

the 200 samples. Except in the case of Model 3, T2 is defined as the average, over the

samples, of the number of common features when we compare the K features found

by the feature selection to the K features found by exhaustive search and true error

estimation using the same classifier.

The second measure for Model 3, denoted by T̂2, is computed differently. Here

features within the same group are equivalent in the sense that, with all other fea-

tures fixed, choosing any feature in the group should give the same classifying power.

Furthermore, the groups are equivalent between each other in the sense that, choos-

ing a feature from group i gives the same classifying power as choosing one from

another group j, given the other features are fixed and not coming from group i or

j. Thus, the key issue is the number of distinct groups represented by the K features

found by feature selection. T̂2 is the average, over the 200 samples, of the number of

represented groups.

We consider three (total features, selected features) pairs:(N,K) = (20, 4), (20, 5),

and (25, 4). For each pair, we repeat the experiment for S = 30, 50, 70 and 90, and
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Table IV. Experiments setup for impact of error estimation on feature selection study.

Exp 1 Exp 2 Exp 3 Exp 4

Model Model 1 Model 2 Model 2 Model 3

Bayes Error 0.10 0.03 0.04 0.05

Classification Rule LDA, 3NN and CART

Feature Selection Algorithm exhst, SFS, SFFS and enhBB

Error Estimation Method true, resub, loo, cv5, bstrap, blstr, and semib

Sample Size 30 , 50 , 70 and 90

(N,K) pair (20, 4), (20, 5) and (25, 4)

Performance Measure T1 and T2 T1 and T̂2

the performance measures T1 and T2 (or T̂2 , in the case of Model 3) are computed.

The experiments are summarized in Table IV .

C. Experimental Results

Selected results from the experiments are shown in Tables V, VI, VII, VIII, IX, and

X. To use the tables, suppose we are interested in the performance for the Branch-

and-Bound method for selecting 4 features out of 20, when the sample size is 30,

under the LDA rule, in Exp 2. Then we look at Table VII and VIII, under column

LDA/enhBB and row “size 30”. There we find the results for each of the seven error

estimation methods.



38

T
ab

le
V

.
S
el

ec
te

d
p
er

fo
rm

an
ce

m
ea

su
re

s
re

su
lt

s
fo

r
E
x
p

1
:

T
1

fo
r

N
=

20
,
K

=
4,

S
=

30
,5

0,
70

T
1

fo
r

N
=

2
0
,
K

=
4
,
S

=
3
0
,5

0
,7

0

L
D

A
3
N

N
C

A
R

T

ex
h
st

S
F
S

S
F
F
S

en
h
B

B
ex

h
st

S
F
S

S
F
F
S

en
h
B

B
ex

h
st

S
F
S

S
F
F
S

en
h
B

B

tr
u
e

0
.1

6
6
7

0
.1

7
5
7

0
.1

7
3
7

0
.2

2
7
2

0
.1

8
6
7

0
.1

8
8
9

0
.1

8
8
2

0
.2

0
1
4

0
.2

4
2
1

0
.2

5
1
5

0
.2

5
0
3

0
.2

9
2
2

re
su

b
0
.2

4
9
4

0
.2

5
9
4

0
.2

5
5
1

0
.2

4
9
2

0
.3

0
9
4

0
.3

0
1
5

0
.3

0
1
8

0
.2

9
9
3

0
.3

7
4
1

0
.3

6
5
8

0
.3

6
6
4

0
.3

4
6
8

s
iz

e
lo

o
0
.2

4
5
2

0
.2

6
7
0

0
.2

5
6
9

0
.2

7
9
4

0
.2

7
7
0

0
.2

7
5
3

0
.2

7
5
5

0
.2

7
6
8

0
.3

4
0
4

0
.3

3
5
3

0
.3

3
5
9

0
.3

3
8
4

3
0

cv
5

0
.2

4
9
0

0
.2

6
3
6

0
.2

5
5
8

0
.2

9
3
3

0
.2

6
8
2

0
.2

7
5
4

0
.2

8
5
1

0
.2

8
4
1

0
.3

2
7
5

0
.3

3
5
4

0
.3

2
8
9

0
.3

5
4
1

b
st

ra
p

0
.2

4
1
8

0
.2

5
1
7

0
.2

3
4
7

0
.2

9
3
5

0
.2

6
0
8

0
.2

5
9
9

0
.2

6
1
3

0
.2

5
8
6

0
.3

1
7
4

0
.3

2
1
8

0
.3

2
1
4

0
.3

1
9
5

b
ls

tr
0
.2

1
6
1

0
.2

3
2
5

0
.2

1
8
4

0
.2

4
8
8

0
.2

5
7
0

0
.2

5
9
5

0
.2

6
7
2

0
.2

6
9
6

0
.3

0
2
3

0
.3

0
4
2

0
.3

0
3
6

0
.3

4
0
8

se
m

ib
0
.2

2
1
4

0
.2

3
6
7

0
.2

2
4
3

0
.2

4
2
1

0
.2

6
3
5

0
.2

6
6
8

0
.2

6
5
4

0
.2

8
2
2

0
.2

9
5
8

0
.3

0
1
6

0
.3

0
1
3

0
.3

3
4
4

tr
u
e

0
.1

6
8
3

0
.1

7
0
6

0
.1

6
9
9

0
.1

8
2
6

0
.1

9
5
4

0
.1

9
8
1

0
.1

9
7
2

0
.2

0
9
1

0
.2

3
9
0

0
.2

4
8
5

0
.2

4
6
6

0
.2

8
2
8

re
su

b
0
.2

2
6
1

0
.2

4
4
0

0
.2

3
3
9

0
.2

2
1
1

0
.2

9
6
9

0
.2

9
5
1

0
.2

9
4
9

0
.2

8
7
7

0
.3

7
4
6

0
.3

6
7
4

0
.3

6
6
8

0
.3

2
4
5

s
iz

e
lo

o
0
.2

2
4
1

0
.2

4
3
1

0
.2

3
2
0

0
.2

3
9
7

0
.2

6
4
5

0
.2

6
1
4

0
.2

6
4
1

0
.2

6
6
9

0
.3

2
2
2

0
.3

3
2
0

0
.3

3
1
5

0
.3

2
8
6

5
0

cv
5

0
.2

2
4
0

0
.2

4
5
9

0
.2

3
6
5

0
.2

5
8
8

0
.2

5
8
5

0
.2

7
3
2

0
.2

6
5
2

0
.2

7
5
4

0
.3

1
6
0

0
.3

2
1
8

0
.3

1
8
6

0
.3

4
5
3

b
st

ra
p

0
.2

1
6
4

0
.2

2
9
2

0
.2

1
7
8

0
.2

2
6
7

0
.2

5
1
1

0
.2

5
3
2

0
.2

5
7
3

0
.2

5
2
7

0
.3

0
8
5

0
.3

0
5
9

0
.3

0
5
5

0
.3

1
0
8

b
ls

tr
0
.1

9
5
6

0
.2

1
7
2

0
.1

9
5
7

0
.1

9
8
1

0
.2

5
3
2

0
.2

5
3
1

0
.2

5
0
0

0
.2

5
3
3

0
.2

8
0
2

0
.2

8
9
3

0
.2

8
8
8

0
.3

3
2
9

se
m

ib
0
.2

0
1
9

0
.2

1
9
9

0
.2

0
3
8

0
.2

0
3
1

0
.2

5
2
2

0
.2

5
6
5

0
.2

5
8
7

0
.2

6
7
8

0
.2

8
3
6

0
.2

8
9
1

0
.2

8
9
0

0
.3

2
5
8

tr
u
e

0
.1

6
5
4

0
.1

6
6
7

0
.1

6
6
0

0
.1

7
0
4

0
.1

9
2
9

0
.1

9
5
5

0
.1

9
4
5

0
.2

0
3
9

0
.2

3
2
1

0
.2

4
0
7

0
.2

3
9
4

0
.2

7
0
5

re
su

b
0
.2

0
3
3

0
.2

2
5
1

0
.2

1
2
7

0
.1

9
7
5

0
.2

7
5
6

0
.2

7
4
3

0
.2

7
3
8

0
.2

7
6
4

0
.3

5
6
4

0
.3

4
8
1

0
.3

4
9
0

0
.3

1
2
2

s
iz

e
lo

o
0
.2

0
1
8

0
.2

2
6
3

0
.2

1
2
2

0
.2

1
0
3

0
.2

4
4
7

0
.2

4
8
7

0
.2

5
0
0

0
.2

5
5
2

0
.3

1
2
7

0
.3

2
6
1

0
.3

2
5
2

0
.3

1
2
0

7
0

cv
5

0
.2

0
4
0

0
.2

2
2
6

0
.2

0
9
9

0
.2

2
8
6

0
.2

4
6
7

0
.2

5
4
6

0
.2

5
1
9

0
.2

6
3
1

0
.3

0
3
7

0
.3

0
4
9

0
.3

0
8
7

0
.3

3
7
4

b
st

ra
p

0
.1

9
4
1

0
.2

1
4
9

0
.1

9
6
3

0
.1

9
9
8

0
.2

3
7
9

0
.2

4
1
6

0
.2

4
1
5

0
.2

3
9
4

0
.2

8
7
2

0
.2

8
8
9

0
.2

9
0
5

0
.2

9
5
6

b
ls

tr
0
.1

8
0
6

0
.2

0
8
1

0
.1

8
2
6

0
.1

7
9
5

0
.2

3
4
0

0
.2

3
2
6

0
.2

3
5
7

0
.2

4
0
3

0
.2

6
5
7

0
.2

7
2
4

0
.2

7
2
8

0
.3

2
3
2

se
m

ib
0
.1

8
6
8

0
.2

1
1
5

0
.1

9
0
0

0
.1

8
6
6

0
.2

3
4
2

0
.2

3
5
0

0
.2

4
0
0

0
.2

5
4
3

0
.2

6
6
9

0
.2

7
0
7

0
.2

7
3
6

0
.3

1
5
0



39

T
ab

le
V

I.
S
el

ec
te

d
p
er

fo
rm

an
ce

m
ea

su
re

s
re

su
lt

s
fo

r
E
x
p

1
:

T
2

fo
r

N
=

20
,
K

=
4,

S
=

30
,5

0,
70

.

T
2

fo
r

N
=

2
0
,
K

=
4
,
S

=
3
0
,5

0
,7

0

L
D

A
3
N

N
C

A
R

T

ex
h
st

S
F
S

S
F
F
S

en
h
B

B
ex

h
st

S
F
S

S
F
F
S

en
h
B

B
ex

h
st

S
F
S

S
F
F
S

en
h
B

B

tr
u
e

4
.0

0
0
0

3
.0

9
0
0

3
.2

9
0
0

1
.9

5
5
0

4
.0

0
0
0

3
.4

6
5
0

3
.5

3
0
0

3
.0

8
0
0

4
.0

0
0
0

1
.9

4
0
0

1
.9

1
0
0

1
.3

7
0
0

re
su

b
1
.5

7
0
0

1
.4

4
0
0

1
.4

8
5
0

1
.6

7
0
0

1
.4

7
0
0

1
.5

5
0
0

1
.5

3
5
0

1
.5

9
5
0

0
.9

1
0
0

0
.8

5
0
0

0
.8

2
5
0

1
.1

3
0
0

s
iz

e
lo

o
1
.6

6
5
0

1
.3

6
5
0

1
.4

9
0
0

1
.3

0
5
0

1
.8

3
0
0

1
.8

4
0
0

1
.8

2
5
0

1
.8

4
5
0

0
.9

8
5
0

1
.0

3
5
0

1
.0

3
0
0

1
.0

2
0
0

3
0

cv
5

1
.6

0
0
0

1
.3

4
5
0

1
.5

1
0
0

1
.0

8
0
0

1
.9

0
5
0

1
.8

2
0
0

1
.7

4
5
0

1
.7

1
5
0

1
.0

6
5
0

1
.1

4
5
0

1
.1

1
0
0

0
.8

8
0
0

b
st

ra
p

1
.7

8
5
0

1
.5

6
5
0

1
.8

6
5
0

1
.1

0
0
0

2
.0

7
0
0

2
.0

8
5
0

2
.0

5
0
0

2
.0

9
0
0

1
.1

5
5
0

1
.1

9
0
0

1
.1

4
5
0

1
.1

6
0
0

b
ls

tr
2
.1

0
0
0

1
.7

8
5
0

2
.0

9
0
0

1
.6

7
5
0

2
.1

0
0
0

2
.0

5
0
0

2
.0

2
0
0

1
.8

9
5
0

1
.2

0
5
0

1
.2

7
0
0

1
.2

0
5
0

1
.0

9
5
0

se
m

ib
2
.0

3
5
0

1
.7

2
5
0

1
.9

5
5
0

1
.7

4
0
0

2
.0

4
5
0

1
.9

6
0
0

1
.9

4
5
0

1
.7

7
0
0

1
.3

4
5
0

1
.2

5
0
0

1
.2

6
0
0

0
.9

6
0
0

tr
u
e

4
.0

0
0
0

3
.2

2
5
0

3
.3

5
0
0

2
.6

2
5
0

4
.0

0
0
0

3
.3

8
5
0

3
.4

8
5
0

3
.0

1
5
0

4
.0

0
0
0

2
.2

6
5
0

2
.2

8
0
0

1
.6

1
5
0

re
su

b
1
.7

7
5
0

1
.4

7
0
0

1
.6

3
0
0

1
.8

4
5
0

1
.6

6
0
0

1
.6

8
0
0

1
.6

5
5
0

1
.7

0
0
0

0
.9

3
0
0

0
.9

5
0
0

0
.9

6
0
0

1
.3

9
5
0

s
iz

e
lo

o
1
.7

8
5
0

1
.4

6
5
0

1
.6

8
0
0

1
.5

9
5
0

1
.9

8
0
0

2
.0

7
0
0

2
.0

3
5
0

1
.9

7
5
0

1
.2

6
5
0

1
.1

5
5
0

1
.1

4
5
0

1
.2

5
0
0

5
0

cv
5

1
.7

9
5
0

1
.3

8
5
0

1
.5

9
5
0

1
.2

7
0
0

2
.1

8
0
0

1
.9

3
5
0

2
.0

1
5
0

1
.9

4
0
0

1
.2

7
5
0

1
.1

6
5
0

1
.2

5
5
0

1
.0

2
5
0

b
st

ra
p

1
.9

2
0
0

1
.6

6
0
0

1
.8

9
0
0

1
.7

7
5
0

2
.2

9
0
0

2
.2

6
5
0

2
.1

4
0
0

2
.2

3
0
0

1
.3

8
0
0

1
.4

2
5
0

1
.4

1
0
0

1
.3

4
0
0

b
ls

tr
2
.3

0
0
0

1
.7

9
5
0

2
.2

8
5
0

2
.2

3
0
0

2
.2

6
5
0

2
.1

8
5
0

2
.2

9
0
0

2
.2

2
0
0

1
.6

3
5
0

1
.4

9
5
0

1
.4

1
5
0

1
.1

6
5
0

se
m

ib
2
.1

7
0
0

1
.7

7
0
0

2
.0

6
5
0

2
.1

8
5
0

2
.2

4
5
0

2
.2

0
0
0

2
.1

6
5
0

2
.0

4
5
0

1
.6

7
0
0

1
.4

7
5
0

1
.5

6
5
0

1
.1

5
0
0

tr
u
e

4
.0

0
0
0

3
.2

8
0
0

3
.4

4
0
0

2
.8

4
5
0

4
.0

0
0
0

3
.3

2
5
0

3
.3

3
5
0

3
.0

3
5
0

4
.0

0
0
0

2
.5

9
5
0

2
.6

1
5
0

1
.9

5
0
0

re
su

b
2
.0

5
5
0

1
.6

3
5
0

1
.8

5
0
0

2
.1

4
0
0

1
.8

5
5
0

1
.8

0
5
0

1
.8

1
0
0

1
.7

7
5
0

1
.1

2
0
0

1
.0

9
5
0

1
.1

0
0
0

1
.5

3
5
0

s
iz

e
lo

o
2
.0

1
0
0

1
.5

7
5
0

1
.8

3
0
0

1
.9

3
5
0

2
.2

8
5
0

2
.1

1
0
0

2
.1

1
0
0

2
.0

4
5
0

1
.4

9
0
0

1
.2

1
5
0

1
.2

1
5
0

1
.5

2
5
0

7
0

cv
5

1
.9

4
5
0

1
.5

8
5
0

1
.9

4
0
0

1
.6

2
5
0

2
.2

2
5
0

2
.0

0
0
0

2
.1

0
0
0

1
.9

6
0
0

1
.5

0
0
0

1
.5

2
0
0

1
.3

7
0
0

1
.2

0
5
0

b
st

ra
p

2
.1

7
5
0

1
.7

3
5
0

2
.1

4
0
0

2
.1

0
5
0

2
.3

9
0
0

2
.3

2
5
0

2
.3

4
5
0

2
.3

0
0
0

1
.8

6
5
0

1
.7

8
5
0

1
.7

2
0
0

1
.6

3
0
0

b
ls

tr
2
.4

8
0
0

1
.8

5
5
0

2
.4

4
5
0

2
.5

4
0
0

2
.4

3
0
0

2
.4

3
0
0

2
.3

5
5
0

2
.2

7
0
0

1
.9

9
5
0

1
.8

3
0
0

1
.8

4
0
0

1
.3

1
5
0

se
m

ib
2
.3

1
0
0

1
.7

8
0
0

2
.2

1
5
0

2
.4

2
0
0

2
.4

5
0
0

2
.4

1
0
0

2
.2

8
5
0

2
.0

5
0
0

2
.0

3
0
0

1
.9

2
0
0

1
.8

9
5
0

1
.3

8
5
0



40

T
ab

le
V

II
.
S
el

ec
te

d
p
er

fo
rm

an
ce

m
ea

su
re

s
re

su
lt

s
fo

r
E
x
p

2
:

T
1

fo
r

N
=

20
,
K

=
4,

S
=

30
,5

0,
70

.

T
1

fo
r

N
=

2
0
,
K

=
4
,
S

=
3
0
,5

0
,7

0

L
D

A
3
N

N
C

A
R

T

ex
h
st

S
F
S

S
F
F
S

en
h
B

B
ex

h
st

S
F
S

S
F
F
S

en
h
B

B
ex

h
st

S
F
S

S
F
F
S

en
h
B

B

tr
u
e

0
.1

4
4
0

0
.1

5
0
8

0
.1

4
9
4

0
.2

0
5
4

0
.1

5
2
5

0
.1

5
5
9

0
.1

5
4
9

0
.1

7
5
9

0
.1

8
4
8

0
.2

0
8
9

0
.2

0
4
6

0
.2

5
1
8

re
su

b
0
.2

2
5
6

0
.2

3
8
7

0
.2

3
4
5

0
.2

2
6
2

0
.2

6
2
0

0
.2

6
6
7

0
.2

6
7
8

0
.2

5
4
3

0
.3

1
1
0

0
.3

1
0
1

0
.3

1
0
0

0
.3

0
4
7

s
iz

e
lo

o
0
.2

2
2
4

0
.2

4
0
3

0
.2

2
9
4

0
.2

5
3
4

0
.2

3
0
1

0
.2

3
5
1

0
.2

3
6
4

0
.2

4
4
4

0
.2

9
2
3

0
.2

8
8
8

0
.2

8
9
8

0
.2

9
0
8

3
0

cv
5

0
.2

2
8
9

0
.2

3
6
7

0
.2

3
0
4

0
.2

7
5
5

0
.2

2
9
8

0
.2

3
1
4

0
.2

3
7
5

0
.2

5
2
4

0
.2

8
2
3

0
.2

8
7
5

0
.2

8
4
6

0
.2

9
6
7

b
st

ra
p

0
.2

1
9
0

0
.2

2
3
5

0
.2

1
2
9

0
.2

6
3
2

0
.2

2
1
6

0
.2

1
9
2

0
.2

2
0
1

0
.2

2
2
6

0
.2

7
3
1

0
.2

8
1
0

0
.2

7
7
9

0
.2

7
9
9

b
ls

tr
0
.1

9
2
3

0
.2

0
5
3

0
.1

9
1
8

0
.2

2
3
6

0
.2

1
4
0

0
.2

2
4
1

0
.2

2
7
0

0
.2

3
4
7

0
.2

4
8
6

0
.2

6
0
0

0
.2

6
2
6

0
.2

8
5
7

se
m

ib
0
.1

9
5
5

0
.2

1
5
1

0
.2

0
1
6

0
.2

2
1
0

0
.2

1
9
5

0
.2

2
2
8

0
.2

2
3
0

0
.2

4
5
1

0
.2

4
7
4

0
.2

6
5
8

0
.2

6
2
1

0
.2

9
2
0

tr
u
e

0
.1

4
0
7

0
.1

4
3
1

0
.1

4
2
5

0
.1

5
4
0

0
.1

4
8
4

0
.1

5
1
5

0
.1

5
0
4

0
.1

6
6
0

0
.1

7
4
9

0
.1

9
0
4

0
.1

8
7
8

0
.2

2
8
9

re
su

b
0
.1

8
9
6

0
.2

0
6
9

0
.1

9
8
1

0
.1

8
4
9

0
.2

3
5
3

0
.2

3
2
6

0
.2

3
0
7

0
.2

3
6
7

0
.3

0
8
0

0
.2

9
6
6

0
.2

9
6
3

0
.2

6
4
8

s
iz

e
lo

o
0
.1

8
6
5

0
.2

0
8
3

0
.1

9
7
2

0
.2

0
3
4

0
.2

0
6
3

0
.2

1
4
7

0
.2

1
5
2

0
.2

2
2
2

0
.2

6
2
7

0
.2

7
1
2

0
.2

7
1
9

0
.2

6
7
2

5
0

cv
5

0
.1

9
0
7

0
.2

1
2
6

0
.1

9
9
1

0
.2

2
6
9

0
.2

0
2
6

0
.2

1
0
6

0
.2

1
2
4

0
.2

3
1
4

0
.2

5
5
5

0
.2

5
9
5

0
.2

6
3
2

0
.2

7
9
2

b
st

ra
p

0
.1

8
0
2

0
.1

9
2
8

0
.1

8
2
5

0
.1

9
7
0

0
.1

9
5
6

0
.1

9
9
5

0
.2

0
2
6

0
.2

0
2
7

0
.2

4
3
4

0
.2

4
7
8

0
.2

5
0
0

0
.2

5
8
1

b
ls

tr
0
.1

6
2
5

0
.1

8
3
0

0
.1

6
3
8

0
.1

6
6
3

0
.1

9
2
9

0
.1

9
7
0

0
.1

9
9
0

0
.2

1
0
3

0
.2

2
2
3

0
.2

2
9
5

0
.2

3
0
8

0
.2

7
2
2

se
m

ib
0
.1

6
9
3

0
.1

8
9
3

0
.1

7
1
3

0
.1

7
0
7

0
.1

9
8
5

0
.2

0
2
4

0
.2

0
5
7

0
.2

1
9
3

0
.2

2
3
0

0
.2

2
9
6

0
.2

2
8
9

0
.2

6
9
9

tr
u
e

0
.1

3
8
8

0
.1

4
0
4

0
.1

3
9
7

0
.1

4
3
7

0
.1

4
5
7

0
.1

4
8
2

0
.1

4
7
1

0
.1

5
9
0

0
.1

7
1
0

0
.1

8
3
2

0
.1

8
1
5

0
.2

1
5
6

re
su

b
0
.1

7
5
4

0
.1

9
9
2

0
.1

8
9
2

0
.1

7
5
2

0
.2

1
5
2

0
.2

2
1
0

0
.2

2
2
2

0
.2

1
4
0

0
.2

8
4
9

0
.2

7
9
2

0
.2

8
0
2

0
.2

4
9
4

s
iz

e
lo

o
0
.1

7
5
6

0
.1

9
5
1

0
.1

8
2
4

0
.1

8
4
7

0
.1

9
6
0

0
.2

0
0
7

0
.2

0
1
7

0
.2

0
5
2

0
.2

4
1
3

0
.2

4
6
3

0
.2

4
7
6

0
.2

5
1
1

7
0

cv
5

0
.1

7
5
0

0
.1

9
7
0

0
.1

8
8
1

0
.1

9
9
4

0
.1

9
6
1

0
.1

9
6
4

0
.2

0
0
1

0
.2

1
3
0

0
.2

3
3
3

0
.2

4
2
7

0
.2

4
4
4

0
.2

7
3
6

b
st

ra
p

0
.1

6
8
0

0
.1

8
6
4

0
.1

6
9
2

0
.1

6
9
3

0
.1

8
4
7

0
.1

8
7
4

0
.1

8
9
1

0
.1

8
5
8

0
.2

2
7
1

0
.2

3
1
9

0
.2

3
1
0

0
.2

3
5
4

b
ls

tr
0
.1

5
3
6

0
.1

7
6
9

0
.1

5
3
1

0
.1

4
9
5

0
.1

8
3
5

0
.1

8
5
4

0
.1

9
0
3

0
.1

9
4
7

0
.2

0
6
0

0
.2

1
6
1

0
.2

1
3
6

0
.2

6
3
2

se
m

ib
0
.1

5
8
3

0
.1

8
1
2

0
.1

5
9
1

0
.1

5
4
9

0
.1

8
4
3

0
.1

8
8
0

0
.1

8
6
5

0
.1

9
9
9

0
.2

0
7
4

0
.2

1
5
1

0
.2

1
6
9

0
.2

5
7
3



41

T
ab

le
V

II
I.

S
el

ec
te

d
p
er

fo
rm

an
ce

m
ea

su
re

s
re

su
lt

s
fo

r
E
x
p

2
:

T
2

fo
r

N
=

20
,
K

=
4,

S
=

30
,5

0,
70

.

T
2

fo
r

N
=

2
0
,
K

=
4
,
S

=
3
0
,5

0
,7

0

L
D

A
3
N

N
C

A
R

T

ex
h
st

S
F
S

S
F
F
S

en
h
B

B
ex

h
st

S
F
S

S
F
F
S

en
h
B

B
ex

h
st

S
F
S

S
F
F
S

en
h
B

B

tr
u
e

4
.0

0
0
0

3
.1

5
0
0

3
.2

6
5
0

1
.9

5
5
0

4
.0

0
0
0

3
.3

3
0
0

3
.4

4
0
0

2
.7

8
0
0

4
.0

0
0
0

1
.7

0
5
0

1
.8

3
5
0

1
.1

7
5
0

re
su

b
1
.5

3
0
0

1
.3

6
0
0

1
.4

8
0
0

1
.5

6
5
0

1
.4

5
5
0

1
.3

4
0
0

1
.3

5
0
0

1
.5

4
5
0

0
.8

5
0
0

0
.8

8
0
0

0
.9

0
0
0

1
.0

0
5
0

s
iz

e
lo

o
1
.6

1
5
0

1
.3

0
0
0

1
.4

7
0
0

1
.2

4
0
0

1
.7

6
0
0

1
.7

0
0
0

1
.6

8
5
0

1
.6

2
0
0

0
.9

0
0
0

0
.8

7
5
0

0
.8

8
0
0

0
.9

6
5
0

3
0

cv
5

1
.5

1
0
0

1
.3

7
5
0

1
.5

1
0
0

0
.9

7
0
0

1
.7

7
0
0

1
.7

1
0
0

1
.6

6
0
0

1
.5

1
0
0

0
.9

3
5
0

0
.8

8
0
0

0
.8

9
5
0

0
.9

3
5
0

b
st

ra
p

1
.7

1
5
0

1
.5

5
0
0

1
.7

6
5
0

1
.1

5
0
0

1
.9

3
5
0

1
.9

1
0
0

1
.9

7
0
0

1
.9

8
0
0

1
.0

2
0
0

0
.8

8
5
0

0
.9

2
0
0

0
.9

0
0
0

b
ls

tr
2
.1

5
5
0

1
.7

9
0
0

2
.1

2
5
0

1
.7

3
0
0

1
.9

3
5
0

1
.7

9
5
0

1
.7

9
0
0

1
.7

1
5
0

1
.2

6
5
0

1
.0

2
0
0

1
.0

4
0
0

1
.0

3
0
0

se
m

ib
2
.0

5
5
0

1
.6

2
5
0

1
.9

6
5
0

1
.7

2
5
0

1
.9

3
0
0

1
.8

4
0
0

1
.8

5
5
0

1
.6

6
5
0

1
.2

4
0
0

0
.9

9
5
0

1
.0

3
5
0

0
.9

7
5
0

tr
u
e

4
.0

0
0
0

3
.2

3
5
0

3
.3

2
0
0

2
.7

3
0
0

4
.0

0
0
0

3
.3

0
0
0

3
.3

6
0
0

2
.8

6
0
0

4
.0

0
0
0

2
.1

9
5
0

2
.2

8
5
0

1
.6

0
5
0

re
su

b
1
.9

5
0
0

1
.6

1
0
0

1
.7

7
0
0

2
.0

2
5
0

1
.6

6
5
0

1
.6

5
5
0

1
.6

6
5
0

1
.6

0
5
0

1
.0

1
5
0

1
.0

0
0
0

1
.0

0
5
0

1
.3

4
5
0

s
iz

e
lo

o
1
.9

9
5
0

1
.5

5
0
0

1
.7

7
5
0

1
.7

7
0
0

1
.9

9
0
0

1
.7

7
5
0

1
.7

6
5
0

1
.7

0
0
0

1
.2

6
0
0

1
.0

8
0
0

1
.0

7
5
0

1
.2

3
0
0

5
0

cv
5

1
.9

3
5
0

1
.5

3
5
0

1
.7

4
5
0

1
.3

6
0
0

2
.0

7
0
0

1
.9

3
0
0

1
.8

8
5
0

1
.6

5
0
0

1
.3

1
0
0

1
.2

0
0
0

1
.2

1
5
0

1
.0

1
0
0

b
st

ra
p

2
.1

0
5
0

1
.7

7
5
0

1
.9

8
5
0

1
.8

9
0
0

2
.1

5
5
0

2
.1

1
5
0

2
.1

0
5
0

2
.0

5
0
0

1
.3

9
0
0

1
.3

7
5
0

1
.2

8
0
0

1
.2

4
0
0

b
ls

tr
2
.3

9
5
0

1
.9

6
5
0

2
.3

5
0
0

2
.4

3
5
0

2
.1

5
0
0

2
.2

1
5
0

2
.1

5
0
0

2
.0

0
0
0

1
.5

2
5
0

1
.5

2
5
0

1
.5

0
0
0

1
.2

3
0
0

se
m

ib
2
.2

7
0
0

1
.8

4
5
0

2
.2

5
0
0

2
.3

1
5
0

2
.1

7
0
0

2
.0

1
5
0

1
.9

1
5
0

1
.8

3
5
0

1
.5

3
0
0

1
.4

3
0
0

1
.4

1
0
0

1
.1

6
0
0

tr
u
e

4
.0

0
0
0

3
.3

1
5
0

3
.4

3
5
0

2
.9

4
5
0

4
.0

0
0
0

3
.2

5
0
0

3
.3

5
5
0

2
.8

1
5
0

4
.0

0
0
0

2
.3

8
5
0

2
.4

5
0
0

1
.7

3
5
0

re
su

b
2
.0

8
5
0

1
.6

9
0
0

1
.8

6
5
0

2
.0

6
5
0

1
.7

2
0
0

1
.7

0
5
0

1
.6

7
0
0

1
.8

3
5
0

1
.0

3
5
0

1
.1

4
5
0

1
.1

2
0
0

1
.4

0
0
0

s
iz

e
lo

o
2
.0

7
0
0

1
.7

7
5
0

1
.9

9
0
0

1
.9

6
5
0

2
.0

5
0
0

2
.0

4
0
0

2
.0

1
5
0

2
.0

2
5
0

1
.4

3
5
0

1
.3

7
0
0

1
.3

4
0
0

1
.4

2
0
0

7
0

cv
5

2
.0

8
0
0

1
.6

8
5
0

1
.8

8
0
0

1
.6

5
0
0

2
.0

6
5
0

2
.0

4
0
0

2
.0

2
0
0

1
.9

1
0
0

1
.4

7
0
0

1
.4

0
5
0

1
.3

8
5
0

1
.0

6
0
0

b
st

ra
p

2
.2

2
5
0

1
.8

7
0
0

2
.1

9
0
0

2
.2

4
0
0

2
.2

6
0
0

2
.2

5
5
0

2
.2

5
0
0

2
.2

8
0
0

1
.5

4
0
0

1
.5

6
5
0

1
.4

6
5
0

1
.5

6
5
0

b
ls

tr
2
.5

4
0
0

2
.0

3
0
0

2
.5

8
0
0

2
.7

0
0
0

2
.3

2
5
0

2
.2

9
0
0

2
.1

8
0
0

2
.1

8
0
0

1
.9

2
5
0

1
.7

3
0
0

1
.7

1
0
0

1
.2

7
0
0

se
m

ib
2
.4

3
5
0

2
.0

3
0
0

2
.4

6
0
0

2
.5

1
5
0

2
.3

4
0
0

2
.2

2
0
0

2
.2

4
0
0

2
.0

1
0
0

1
.8

0
5
0

1
.7

2
0
0

1
.7

3
0
0

1
.3

2
5
0



42

T
ab

le
IX

.
S
el

ec
te

d
p
er

fo
rm

an
ce

m
ea

su
re

s
re

su
lt

s
fo

r
E
x
p

4
:

T
1

fo
r

N
=

20
,
K

=
4,

S
=

30
,5

0,
70

.

T
1

fo
r

N
=

2
0
,
K

=
4
,
S

=
3
0
,5

0
,7

0

L
D

A
3
N

N
C

A
R

T

ex
h
st

S
F
S

S
F
F
S

en
h
B

B
ex

h
st

S
F
S

S
F
F
S

en
h
B

B
ex

h
st

S
F
S

S
F
F
S

en
h
B

B

tr
u
e

0
.1

2
1
1

0
.1

2
8
9

0
.1

2
6
6

0
.1

5
9
0

0
.1

3
2
2

0
.1

3
8
4

0
.1

3
7
6

0
.1

3
7
7

0
.1

9
8
7

0
.2

1
9
0

0
.2

1
6
0

0
.2

3
3
9

re
su

b
0
.1

7
4
0

0
.1

7
4
1

0
.1

7
2
9

0
.1

6
4
8

0
.2

0
0
9

0
.1

9
0
0

0
.1

8
9
7

0
.1

8
5
0

0
.2

6
3
8

0
.2

6
9
5

0
.2

6
9
2

0
.2

5
9
4

s
iz

e
lo

o
0
.1

6
1
1

0
.1

7
3
1

0
.1

7
2
2

0
.1

8
2
5

0
.1

7
1
9

0
.1

7
3
5

0
.1

7
2
8

0
.1

7
8
1

0
.2

4
7
3

0
.2

5
8
3

0
.2

5
8
3

0
.2

5
7
4

3
0

cv
5

0
.1

6
4
3

0
.1

7
0
8

0
.1

6
8
5

0
.1

7
1
7

0
.1

7
3
1

0
.1

7
4
2

0
.1

7
7
6

0
.1

7
8
2

0
.2

4
8
7

0
.2

5
5
1

0
.2

5
5
1

0
.2

5
4
2

b
st

ra
p

0
.1

5
1
3

0
.1

6
5
6

0
.1

5
0
8

0
.1

7
2
3

0
.1

6
2
1

0
.1

6
7
1

0
.1

6
8
5

0
.1

7
2
7

0
.2

4
7
0

0
.2

5
2
5

0
.2

5
1
6

0
.2

5
5
2

b
ls

tr
0
.1

4
5
8

0
.1

6
3
4

0
.1

4
8
3

0
.1

6
9
1

0
.1

6
6
9

0
.1

7
3
7

0
.1

7
2
1

0
.1

7
3
2

0
.2

3
9
0

0
.2

4
6
5

0
.2

4
6
1

0
.2

5
4
2

se
m

ib
0
.1

4
7
0

0
.1

6
2
8

0
.1

5
1
8

0
.1

6
5
6

0
.1

6
6
7

0
.1

7
3
7

0
.1

7
2
7

0
.1

7
1
2

0
.2

3
9
3

0
.2

4
7
0

0
.2

4
6
2

0
.2

5
1
5

tr
u
e

0
.1

2
0
5

0
.1

2
6
0

0
.1

2
4
9

0
.1

2
9
7

0
.1

3
3
5

0
.1

3
9
7

0
.1

3
8
1

0
.1

3
5
7

0
.1

8
7
2

0
.2

0
6
1

0
.2

0
4
4

0
.2

1
9
1

re
su

b
0
.1

4
3
0

0
.1

5
5
3

0
.1

5
1
4

0
.1

4
3
9

0
.1

7
6
4

0
.1

7
8
6

0
.1

7
7
8

0
.1

7
6
7

0
.2

5
2
8

0
.2

5
0
3

0
.2

5
1
1

0
.2

3
6
4

s
iz

e
lo

o
0
.1

4
0
4

0
.1

5
6
0

0
.1

5
2
2

0
.1

5
5
9

0
.1

6
3
2

0
.1

6
8
0

0
.1

6
7
4

0
.1

6
8
1

0
.2

3
1
4

0
.2

3
9
2

0
.2

3
9
4

0
.2

3
8
8

5
0

cv
5

0
.1

4
0
9

0
.1

5
4
9

0
.1

4
9
3

0
.1

6
0
4

0
.1

6
3
0

0
.1

6
8
0

0
.1

6
5
4

0
.1

7
0
9

0
.2

3
2
9

0
.2

3
5
2

0
.2

3
7
1

0
.2

4
3
3

b
st

ra
p

0
.1

3
3
9

0
.1

4
9
1

0
.1

3
9
9

0
.1

5
5
5

0
.1

5
7
4

0
.1

6
1
6

0
.1

6
1
8

0
.1

6
5
0

0
.2

2
9
2

0
.2

3
3
3

0
.2

3
4
0

0
.2

4
0
3

b
ls

tr
0
.1

3
9
1

0
.1

4
9
2

0
.1

4
0
4

0
.1

4
5
6

0
.1

6
1
1

0
.1

6
4
9

0
.1

6
3
6

0
.1

6
3
8

0
.2

2
2
7

0
.2

2
5
8

0
.2

2
7
1

0
.2

3
9
0

se
m

ib
0
.1

3
8
6

0
.1

5
2
1

0
.1

4
1
6

0
.1

4
5
3

0
.1

6
2
2

0
.1

6
4
7

0
.1

6
5
0

0
.1

6
8
7

0
.2

2
2
3

0
.2

2
8
1

0
.2

2
6
2

0
.2

3
8
2

tr
u
e

0
.1

1
9
9

0
.1

2
4
0

0
.1

2
3
6

0
.1

2
1
9

0
.1

3
4
0

0
.1

4
0
7

0
.1

3
9
5

0
.1

3
5
8

0
.1

8
0
9

0
.1

9
7
6

0
.1

9
6
6

0
.2

1
1
4

re
su

b
0
.1

3
7
0

0
.1

4
4
6

0
.1

4
4
0

0
.1

3
5
5

0
.1

6
9
1

0
.1

7
5
5

0
.1

7
5
2

0
.1

7
4
1

0
.2

4
1
5

0
.2

4
0
2

0
.2

4
0
8

0
.2

2
9
8

s
iz

e
lo

o
0
.1

3
4
7

0
.1

4
5
4

0
.1

4
1
3

0
.1

4
4
2

0
.1

5
8
9

0
.1

6
8
0

0
.1

6
6
8

0
.1

6
5
1

0
.2

2
2
8

0
.2

3
0
2

0
.2

3
0
1

0
.2

3
5
7

7
0

cv
5

0
.1

3
8
1

0
.1

4
5
4

0
.1

4
3
1

0
.1

4
7
6

0
.1

5
9
3

0
.1

6
8
0

0
.1

6
4
4

0
.1

6
5
5

0
.2

2
4
0

0
.2

3
1
2

0
.2

2
9
9

0
.2

3
7
6

b
st

ra
p

0
.1

3
4
6

0
.1

4
3
4

0
.1

3
5
3

0
.1

4
5
5

0
.1

5
5
2

0
.1

6
0
7

0
.1

6
1
0

0
.1

6
3
2

0
.2

1
9
2

0
.2

2
2
7

0
.2

2
2
9

0
.2

2
8
0

b
ls

tr
0
.1

3
2
5

0
.1

4
3
2

0
.1

3
5
4

0
.1

4
0
7

0
.1

5
6
3

0
.1

6
0
3

0
.1

6
0
9

0
.1

6
0
4

0
.2

1
1
5

0
.2

1
5
9

0
.2

1
6
0

0
.2

3
4
6

se
m

ib
0
.1

3
5
4

0
.1

4
3
1

0
.1

3
8
9

0
.1

4
1
4

0
.1

5
9
0

0
.1

6
1
9

0
.1

6
2
5

0
.1

6
5
2

0
.2

1
0
1

0
.2

1
7
9

0
.2

1
5
2

0
.2

3
5
5



43

T
ab

le
X

.
S
el

ec
te

d
p
er

fo
rm

an
ce

m
ea

su
re

s
re

su
lt

s
fo

r
E
x
p

4
:

T̂
2

fo
r

N
=

20
,
K

=
4,

S
=

30
,5

0,
70

.

T̂
2

fo
r

N
=

2
0
,
K

=
4
,
S

=
3
0
,5

0
,7

0

L
D

A
3
N

N
C

A
R

T

ex
h
st

S
F
S

S
F
F
S

en
h
B

B
ex

h
st

S
F
S

S
F
F
S

en
h
B

B
ex

h
st

S
F
S

S
F
F
S

en
h
B

B

tr
u
e

4
.0

0
0
0

3
.9

9
5
0

3
.9

9
0
0

3
.3

2
0
0

4
.0

0
0
0

3
.9

9
5
0

4
.0

0
0
0

3
.9

5
5
0

3
.7

3
5
0

3
.3

7
0
0

3
.4

3
0
0

3
.1

7
5
0

re
su

b
2
.9

5
0
0

3
.2

2
5
0

2
.9

9
5
0

3
.2

1
0
0

2
.7

0
0
0

2
.9

8
0
0

2
.9

9
0
0

3
.0

4
0
0

2
.1

1
0
0

2
.4

6
0
0

2
.4

4
0
0

2
.6

1
5
0

s
iz

e
lo

o
3
.3

5
0
0

3
.3

2
0
0

3
.1

6
0
0

2
.9

5
5
0

3
.2

8
5
0

3
.1

7
5
0

3
.1

7
5
0

3
.1

2
0
0

2
.8

7
0
0

2
.6

3
0
0

2
.6

2
5
0

2
.4

4
5
0

3
0

cv
5

3
.2

6
5
0

3
.3

3
5
0

3
.2

4
0
0

3
.1

6
5
0

3
.3

0
0
0

3
.2

0
5
0

3
.1

4
5
0

3
.1

6
5
0

3
.1

0
5
0

2
.9

9
5
0

3
.0

0
0
0

3
.1

3
0
0

b
st

ra
p

3
.6

6
0
0

3
.5

5
5
0

3
.6

2
0
0

3
.1

3
5
0

3
.4

7
0
0

3
.3

3
5
0

3
.3

0
5
0

3
.1

8
5
0

3
.1

1
0
0

3
.1

6
5
0

3
.1

1
5
0

3
.1

8
5
0

b
ls

tr
3
.4

2
5
0

3
.4

5
5
0

3
.3

9
5
0

3
.2

2
5
0

3
.3

3
5
0

3
.1

6
0
0

3
.2

4
5
0

3
.2

2
5
0

3
.1

3
0
0

3
.0

9
0
0

3
.0

5
0
0

3
.1

5
0
0

se
m

ib
3
.4

3
0
0

3
.4

3
0
0

3
.2

9
5
0

3
.2

8
5
0

3
.4

0
0
0

3
.1

5
0
0

3
.2

2
0
0

3
.2

7
5
0

3
.1

9
0
0

3
.0

2
5
0

3
.0

0
0
0

3
.0

9
0
0

tr
u
e

4
.0

0
0
0

4
.0

0
0
0

4
.0

0
0
0

3
.8

8
0
0

4
.0

0
0
0

4
.0

0
0
0

4
.0

0
0
0

3
.9

8
0
0

3
.9

1
5
0

3
.5

6
5
0

3
.6

3
5
0

3
.3

1
0
0

re
su

b
3
.5

9
5
0

3
.4

4
5
0

3
.4

2
0
0

3
.6

0
0
0

3
.3

2
5
0

3
.2

1
0
0

3
.2

3
0
0

3
.2

1
0
0

2
.5

8
5
0

2
.8

5
5
0

2
.8

3
0
0

3
.1

1
0
0

s
iz

e
lo

o
3
.6

7
5
0

3
.5

1
5
0

3
.4

3
0
0

3
.2

8
0
0

3
.5

1
0
0

3
.3

4
0
0

3
.3

3
5
0

3
.3

0
5
0

3
.3

0
0
0

3
.0

3
5
0

3
.0

2
5
0

2
.8

4
5
0

5
0

cv
5

3
.6

2
5
0

3
.5

1
0
0

3
.4

7
5
0

3
.2

0
0
0

3
.5

1
5
0

3
.3

5
0
0

3
.4

2
5
0

3
.2

9
5
0

3
.2

9
5
0

3
.1

9
0
0

3
.1

8
5
0

3
.1

3
0
0

b
st

ra
p

3
.8

3
5
0

3
.6

5
5
0

3
.7

0
0
0

3
.2

8
0
0

3
.6

4
5
0

3
.5

0
0
0

3
.4

9
0
0

3
.3

5
0
0

3
.3

3
5
0

3
.3

0
5
0

3
.2

7
0
0

3
.1

4
5
0

b
ls

tr
3
.5

7
0
0

3
.6

5
5
0

3
.5

5
5
0

3
.4

0
5
0

3
.4

7
0
0

3
.3

9
5
0

3
.4

6
5
0

3
.4

3
0
0

3
.1

9
0
0

3
.2

2
0
0

3
.2

0
0
0

3
.1

7
0
0

se
m

ib
3
.6

1
5
0

3
.5

3
5
0

3
.5

4
0
0

3
.4

4
5
0

3
.4

9
0
0

3
.4

3
0
0

3
.3

9
0
0

3
.2

7
0
0

3
.2

1
0
0

3
.1

0
5
0

3
.1

7
0
0

3
.1

7
0
0

tr
u
e

4
.0

0
0
0

4
.0

0
0
0

4
.0

0
0
0

3
.9

7
0
0

4
.0

0
0
0

4
.0

0
0
0

4
.0

0
0
0

3
.9

9
0
0

3
.9

6
5
0

3
.7

6
5
0

3
.7

2
5
0

3
.4

8
0
0

re
su

b
3
.7

2
5
0

3
.6

2
5
0

3
.5

0
0
0

3
.7

5
5
0

3
.5

6
5
0

3
.2

9
0
0

3
.3

1
5
0

3
.3

2
5
0

2
.8

9
0
0

3
.0

3
0
0

3
.0

3
0
0

3
.1

6
5
0

s
iz

e
lo

o
3
.7

8
0
0

3
.6

1
0
0

3
.6

1
0
0

3
.5

1
0
0

3
.6

1
5
0

3
.3

3
0
0

3
.3

8
5
0

3
.3

8
0
0

3
.3

5
0
0

3
.1

8
0
0

3
.1

8
0
0

3
.0

7
0
0

7
0

cv
5

3
.7

3
5
0

3
.5

8
0
0

3
.5

1
5
0

3
.4

0
5
0

3
.6

7
0
0

3
.3

8
5
0

3
.4

7
0
0

3
.4

0
0
0

3
.4

4
5
0

3
.2

9
0
0

3
.2

8
0
0

3
.1

4
0
0

b
st

ra
p

3
.8

4
5
0

3
.7

1
5
0

3
.7

7
0
0

3
.4

7
0
0

3
.7

5
0
0

3
.5

8
0
0

3
.6

1
5
0

3
.4

1
5
0

3
.4

5
0
0

3
.3

8
0
0

3
.3

6
0
0

3
.2

7
5
0

b
ls

tr
3
.7

3
5
0

3
.7

2
0
0

3
.6

8
5
0

3
.4

5
5
0

3
.6

8
0
0

3
.5

7
0
0

3
.6

0
5
0

3
.5

2
5
0

3
.3

6
5
0

3
.2

1
0
0

3
.2

6
0
0

3
.1

0
5
0

se
m

ib
3
.7

1
5
0

3
.6

8
0
0

3
.5

6
5
0

3
.4

3
5
0

3
.5

5
5
0

3
.5

2
0
0

3
.5

4
5
0

3
.3

8
5
0

3
.4

0
0
0

3
.2

5
0
0

3
.2

7
0
0

3
.1

7
5
0



44

1. Significance of Error Estimation Relative to Feature Selection

The most important conclusion we draw from the experiments is that, for small sam-

ples, differences in performances among the feature selection algorithms are much

less significant than the effects of error estimation. Except for several cases in which

branch and bound performs very badly (see Section C.4 in this chapter), perfor-

mances across different feature-selection algorithms are mostly comparable, including

exhaustive search. We note three points in this regard.

SFFS generally outperforms SFS, which outperforms enhBB when doing feature

selection using the true error, but this is not necessarily the case when using error

estimation. For instance, when using 3NN, SFFS outperforms enhBB when true

error is used; however, if resubstitution is used, enhBB outperforms SFFS, and if

cross-validation or bootstrap are used, the SFFS and enhBB perform essentially the

same.

For LDA, SFFS and SFS perform almost equivalently to exhaustive search when

the true error is used, but they degrade relative to exhaustive search when error

estimation is employed, SFS doing worse than SFFS, and the latter degrading little

in relation to exhaustive search when using bootstrap or bolstering.

The choice of error estimator for feature selection can make more of a difference

than choice of feature selection algorithm in terms of the true error of the designed

classifier. Consider the following observations. Referring to Table V and VI (Exp

1), for LDA and S = 50, if leave-one-out is used along with a full search, then

the error of the designed classifier is 0.2241, but if bolstered resubstitution is used,

then the worst result occurs with SFS, and this classifier has error 0.2172, better

than an exhaustive search with leave-one-out (and better than an exhaustive search

with 5-fold cross-validation). Similar phenomena occur throughout the results. In
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particular, there are many cases where bolstered resubstitution and bootstrap yield

better feature sets using SFFS than the feature sets obtained by cross-validation (both

loo and cv5) using an exhaustive search. For instance, for all cases in Tables V, VI,

VII and VIII, bolstered resubstitution and bootstrap yield better T1 values using

SFFS than cross-validation using an exhaustive search, with bolstered resubstitution

outperforming bootstrap for LDA and CART in all cases in both tables. Moreover,

bolstered resubstitution yields better T2 values using SFFS than cross-validation

using an exhaustive search for all cases in Tables V, VI, VII and VIII.

2. Some General Trends

Besides observations regarding the prominence of error-estimation choices relative to

feature-selection choices, some general trends can be discerned. As would be expected,

throughout the experimental results larger samples yield better performances of T1

and T2 (T̂2 in Exp 4). No matter which error estimation procedure is adopted, the

results are much worse than using the true error for all feature selection methods,

both for T1 and T2 (T̂2). The feature-selection algorithms perform better for the

blocked covariance structure of Model 3 (Exp 4) than for Models 1 and 2. All feature-

selection algorithms perform the worst for CART, and this is especially true fore small

sample size (S = 30), no matter the error estimation method, including using the

true underlying distribution. This suggests that one should avoid feature selection

for complicated classification rules when only small samples are available.

3. Comparison of Error Estimation Methods

Consistent with the results reported in straight feature ranking (in Chapter III), for

feature selection, bootstrap and bolstered resubstitution usually outperform cross-

validation, with bolstering usually performing as well as or better than bootstrap;
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however, we must take care and consider individual results, because, specific re-

sults, and sometimes even trends in the results, must be examined for each particular

classification-distribution combination. Considering Exp 1 in some detail, we note

several phenomena.

For LDA and S = 50, with exhaustive search, SFS, or SFFS, resubstitution

and cross-validation estimators perform about the same with respect to error. Boot-

strap does better and bolstering does even better. However, for branch and bound,

resubstitution and bootstrap both outperform cross-validation and are comparable.

Moreover, the advantage of bolstering over bootstrap is even greater. Most of these

observations are mirrored in the T2 statistic.

Now look at LDA and S = 30. The overall situation is different. For ex-

haustive search, resubstitution, cross-validation, and bootstrap all perform about the

same, with bolstering substantially better. For SFS, there is a slight ordering, cross-

validation being the worst, resubstitution being slightly better, bootstrap being still

slightly better, and bolstering having a more substantial advantage over bootstrap.

For SFFS, the results are similar to S = 50. For enhBB, there is generally worse

performance, especially for the computationally intensive cv5 and bootstrap, with

loo being slightly better. The striking difference is that resubstitution and bolstering

perform about the same, with both being much better than bootstrap.

For 3NN and all sample sizes, there appears to be a more consistent trend based

on both T1 and T2 than for LDA: bootstrap and bolstering perform about the same

and are better than cross-validation, and resubstitution is by far the worst.

For CART and all sample sizes, we again witness the main trend from best to

worst: bolstering, bootstrap, cross-validation, and finally resubstitution, which is far

worse than any of the others.
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4. Remarks on the Performance of Branch-and-Bound

We have seen that the branch-and-bound algorithm can perform much worse than

SFS and SFFS for LDA with very small samples. To appreciate the source of this

problem, we refer to a typical branch-and-bound search in Fig. 4. The N = 20

features are labeled 0, 1, ..., 19. Marked at each node explored is the label number of

the feature discarded at that point, along with the criterion function value evaluated

[28][36]. Notice that the criterion function value at node 17 is higher than that at

node 4. Thus, the search stops after merely one branch exploration. This gives us the

best features as 0, 1, 4, and 7, whereas the best features found by exhaustive search

are 0, 1, 3, and 15. The monotonicity assumption for branch and bound is severely

violated here. The poor performance of enhBB is largely due to designing a classifier

on a very small sample. At level 1 in Fig. 4, a 19-dimensional LDA classifier must be

designed with only 30 data points, and the designed LDA classifier is likely to possess

a large error.

D. Conclusion

Feature selection is unavoidable when there is a large number of features from which

to choose. Our experiments indicate SFS and SFFS (and even branch and bound)

can perform close to optimal (full search with true error) when the true error is em-

ployed in feature selection, but in practice knowledge of the true error is impossible.

With large samples, most error estimation procedures work quite well so that one has

good estimates of the true error; however, this is not the case with small samples,

as are common in situations where data are expensive or difficult to obtain owing

to a limitation on their availability, as is often the case with patient samples. De-

pending on the sample size and the classification rule, in particular its complexity,
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Level  16

Level  1470

17

1

0.66090.65720.6430 0.6707

3

0.6711

0.7180

Fig. 4. A typical Branch-and-Bound tree searching path for N = 20, K = 4, S = 30

using “true error” estimation for LDA rule. (Taken from a simulation from

Exp 1)
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feature-selection algorithms can produce feature sets whose corresponding classifiers

possess errors far in excess of the classifier corresponding to the optimal feature set.

Moreover, and most importantly in application since one may have no alternative to

a small sample, our experiments show that, for small samples, differences in perfor-

mances among the feature selection algorithms are less significant than performance

differences among the error estimators used to implement the feature-selection al-

gorithm. Keeping in mind that specific results, and sometimes even trends in the

results, depend on the particular classifier-distribution pair, for the error estimators

considered in this study, bootstrap and bolstered resubstitution usually outperform

cross-validation. Moreover, bolstered resubstitution usually performs as well as or

better than bootstrap, and with much less computation time.
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CHAPTER V

FEATURE SELECTION: A REGRESSION STUDY

High-throughput technologies for rapid measurement of vast numbers of biological

variables offer the potential for highly discriminatory diagnosis and prognosis; how-

ever, high dimensionality together with small samples creates the need for feature

selection, while at the same time making feature-selection algorithms less reliable. In

previous chapters, we have shown error estimation could be problematic for feature

ranking and feature selection in such small sample settings; combined with the sub-

optimality of the feature selection algorithm itself, one is naturally faced with the

following twin questions. (1) Is it likely that feature selection will yield a feature set

whose error is close to that of the optimal feature set? (2) If one cannot find a good

feature set, should it be concluded that good feature sets do not exist?

We take a regression approach to the two questions. The first question is ad-

dressed via regression of the selected-feature-set error on the optimal-feature-set error:

does the error of the optimal feature set predict the error of the selected feature set?

The second question is addressed via regression of the optimal-feature-set error on the

selected-feature-set error: does the error of the selected feature set predict the error

of the optimal feature set? Three classification rules (linear discriminant analysis,

linear support vector machine, and 3-nearest-neighbor classification) are considered

in conjunction with two feature-label models and patient data from a study concern-

ing survival prognosis for breast cancer. With respect to the two focus questions,

there is similarity across all experiments: (1) it is unlikely that feature selection will

yield a feature set whose error is close to that of the optimal feature set; and (2) the

inability to find a good feature set should not lead to the conclusion that good feature

sets do not exist. The lack of regression of the best-feature-set error with respect to
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the selected-feature-set error for the patient data is striking, with the regression line

being almost horizontal.

A. Introduction

High-throughput technologies for rapid measurement of vast numbers of biological

variables offer the potential to model complex biological processes. In translational

genomics, phenotype classification via gene expression portends highly discrimina-

tory molecular-based diagnosis and prognosis. Yet one must recognize the obstacles

inherent in dealing with extremely large numbers of interacting variables. So long as

sample sizes remain small, large data sets may have the perverse effect of limiting the

ability to design good classifiers and to obtain satisfactory error estimates [14]. In

particular, this dimensionality problem creates the need for feature selection, while

at the same time making feature-selection algorithms less reliable. One is faced with

twin questions. (1) Is it likely that feature selection will yield a feature set whose

error is close to that of the optimal feature set? (2) If one cannot find a good feature

set, should it be concluded that good feature sets do not exist?

Feature selection is required when the number of features is large with respect to

the sample size because the use of a large number of features can result in overfitting

the data: the designed classifier performs well on the sample data but not on the

feature-label distribution from which the data have been drawn. A feature-selection

algorithm is part of the classification rule. This is why feature selection must be

included when using cross-validation error estimation. Feature selection yields clas-

sifier constraint, not a reduction in the dimensionality of the feature space relative

to design. For instance, if there are D features available for linear discriminant anal-

ysis (LDA), when used directly, then the classifier family consists of all hyperplanes
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in D-dimensional space, but if a feature-selection algorithm reduces the number of

variables to d < D prior to application of LDA, then the classifier family consists

of all hyperplanes in D-dimensional space confined to d-dimensional subspaces. The

dimensionality of the classification rule has not been reduced, but the new classifi-

cation rule (feature selection plus LDA) is constrained. The issue is whether it is

sufficiently constrained. Given 20,000 gene-expression levels as features, the new rule

has significant potential for overfitting.

B. Systems and Methods

We take a regression approach to the two questions posed at the outset. The ques-

tion of whether feature selection yields a close-to-optimal feature set is addressed by

regressing the error of the selected feature set on the error of the optimal feature set –

does the error of the optimal feature set predict the error of the selected feature set?

The question of whether the inability to find a good feature set implies that good

feature sets do not exist is addressed by regressing the error of the optimal feature

set on the error of the selected feature set – does the error of the selected feature set

predict the error of the optimal feature set?

The regression analysis, and therefore the answers to the questions posed, will

depend on the population from which the data are drawn, the classification rule,

and the feature selection algorithm employed. We consider three classification rules:

linear discriminant analysis (LDA), linear support vector machine (SVM), and 3-

nearest-neighbor classification (3NN). We employ the sequential floating forward

search (SFFS) feature-selection algorithm [35], whose performance has been exten-

sively studied and shown to provide good results in relation to competing algorithms

[31, 30]. Error estimation is critical within the SFFS algorithm and since, depending
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on the classification rule, bolstered and semi-bolstered resubstitution [22] have been

shown to perform well within the algorithm [37], we employ these with SFFS. Finally,

there is the issue of modelling the feature-label distribution. Here we are motivated

by two factors. First, since in general one must consider all feature sets of a given

size to determine the best feature set of that size, we choose models in which the

optimal feature sets are known from the model. Second, since in applications we do

not know the feature-label distribution, we will assume a random feature-label distri-

bution governed by a random parameter. The exact way in which we carry out the

experiments with synthetic data, as well as how we utilize real patient data, will be

discussed subsequently.

Before describing the details of our experiments, we explain how, given the

feature-label distribution, we rank feature sets for a classification rule. Given a set G

of features corresponding to the feature-label distribution FG, and the desire to select

the best feature set of size d, then an obvious choice is that subset H ⊂ G such that

H possesses d features and the Bayes classifier for the distribution FH , the marginal

distribution of FG corresponding to H, has minimal error among all Bayes classifiers

corresponding to subsets of G possessing d features. In this case we say that H has

minimal Bayes error. This approach is reasonable because we are interested in finding

good feature sets, regardless of the classification rule employed.

One might argue that there is a problem with this approach if the classification

rule is not consistent, meaning that, given a feature set H and a sample of size n, the

expected error of the designed classifier does not converge in mean to the Bayes error

for the feature set as n → ∞ . To illustrate the issue, suppose the class conditional

distributions are Gaussian with equal covariance matrices. Then the Bayes classifier

is a hyperplane and LDA provides a consistent rule. If a feature set has an error not

close to the Bayes error, then this difference is clearly a consequence of the feature-
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selection algorithm (and its application to a sample of the given size). But what of the

situation when there are two class conditional Gaussian distributions with unequal

covariance matrices and the Bayes classifier is determined by a quadratic surface?

In this case, if LDA is the classification rule, then there is an inherent lower bound

for the difference between the error of a designed classifier and that of the Bayes

classifier, this bound determining the cost, where in the present case it arises from

the fact that the LDA rule cannot achieve a better result than the optimal-hyperplane

decision boundary. Rather than compare the error of the selected feature set using

LDA to the Bayes error, would it not be better to compare it to the error of the

optimal hyperplane decision boundary, which in this case exceeds the Bayes error?

Certainly this is an option, but this would require that we know a classifier to whose

error the errors of the designed classifiers converge in mean. Although there are some

situations in which such a classifier is known, such cases are not common.

Aside from this practical reason for comparing the classifier error for a selected

feature set to the minimal Bayes error among feature sets is that, were the size of the

sample not restricted, one would not be using a constrained classification rule like LDA

but would instead be estimating the Bayes classifier from an estimate of the feature-

label distribution. Indeed, were it known that the class conditional distributions were

Gaussian with unequal covariance matrices, were it not for insufficient data, we would

be using quadratic discriminant analysis (QDA) as the classification rule. Using LDA

instead of QDA is a form of regularization to offset the effects of too little data, so

that, ipso facto, LDA is being used as the way to better design an approximation to

the Bayes classifier. Hence, like the choice of feature-selection algorithm, the choice

of LDA represents our effort to discover good features.

While taking as optimal the feature set with the minimal Bayes error is a suitable

approach for model-based analysis in which a feature-label distribution is assumed, it
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is not appropriate when considering patient data because we lack the Bayes classifier.

For the patient data, the best feature sets are taken from a feature-selection test bed

that utilizes the classification rule being applied [38].

C. Implementation

We employ two models in the model-based analysis. The optimal feature sets are

known for both of these models. Some typical results will be displayed in here. The

real-data results will use patient data from a study of survivability of cancer patients.

1. Model-based Study

The first model we use to generate synthetic sample points is called the linear model

and is a two-class Gaussian model with the classes equally likely and the class-

conditional densities being spherical Gaussians possessing common variance σ2, the

common covariance matrix being σ2I. One class mean is located at the origin ~0 and

the other at ~A, where ~A = [a1 a2 . . . a
D
]. The Bayes classifier is a hyperplane per-

pendicular to the axis joining the means. The second model is called the quadratic

model and is similar to the first model, but instead of there being equal covariance

matrices for the class-conditional densities, the covariance matrices are σ2
0I and σ2

1I,

for class 0 and class 1, respectively, with σ0 6= σ1.

With variances fixed, the Bayes error is solely determined by the distance, ‖ ~A‖,

between the means of the classes. Moreover, since all features are independent, the

set of the d best features is Abest = {a
k1

, a
k2

, . . . , a
kd
}, where a2

k1
+ a2

k2
+ · · · + a2

kd

is maximum for 1 6 k1, k2, · · · , kd 6 D. In the simulations, each ai composing ~A is

independently drawn from a beta distribution, F(α, β). We further let α be fixed and

let β follow a uniform distribution, U(β1, β2). To generate sample points, first we
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draw randomly from U(β1, β2) to get β, and then from F(α, β) to get ~A. A sample

set of size n is generated for each model. We repeat the procedure N times for a

total of N random samples. Aside from Abest, which is determined before the sample

points are generated, we find a feature set, Afs(R), using SFFS feature selection.

Overall, for the model-based study, the simulation utilizes the following protocol:

1. Choose a model by randomly selecting β from U(β1, β2) and then a1, a2, . . . , a
D

from F(α, β) to get ~A.

2. Obtain Abest = {a
k1

, a
k2

, . . . , a
kd
} from the model (Abest relative to the Bayes

classifier).

3. Generate an n-point sample S from the model.

4. Design a classifier ψbest for the feature set Abest according to the classification

rule R from S.

5. Compute the error εbest for ψbest using the underlying distribution of the model.

6. Apply SFFS using the classification rule R on S to find a feature set Afs(R).

7. Design a classifier ψfs(R) for the feature set Afs(R) according to the rule R from

S.

8. Compute the error εfs(R) for ψfs(R) using the underlying distribution of the

model.

9. Repeat steps 1 through 8 N times to form N error pairs (εi
best, ε

i
fs(R)), i =

1, 2, . . . , N .

Since we have the underlying distribution, in steps 4 and 7 we can find the Bayes

classifiers for Abest and Afs(R) instead of using the sample data, thereby leading to N

Bayes-error pairs (ξi
best, ξ

i
fs(R)), i = 1, 2, . . . , N .
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Fig. 5. Sample density plots for β-distribution F(α, β) with α = 0.75

A summary of the experiments with different parameters is provided in Table

XI. In all experiments, D = 500 and d = 5 or d = 10. Sample plots for F(α, β) are

shown in Fig. 5.

We have two interests. First, given the error for the best feature set Abest, what

error is expected for the SFFS feature set Afs(R)? Second, given the error for Afs(R),

what error is expected for Abest? We denote the results for the two scenarios by

Afs(R)|Abest and Abest|Afs(R), respectively. Three figures are plotted for each combi-

nation of R and d in every experiment. For the first scenario the three figures are: (1)
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a scatter plot for (εbest, εfs(R)), with the average errors marked with bold dots on their

respective axes; (2) a curve of the conditional expectation E[εfs(R)|εbest], estimated

by dividing all points into bins based on εbest, with each bin containing the same num-

ber of points, and averaging the corresponding values of εfs(R) in each bin; and (3)

the scatter plot superimposed with the expectation curve. For the second scenario,

the figures are the same but with the roles of εbest and εfs(R) reversed. In all three

figure types, the 45◦ line is shown, along with the number of bins, and maximum and

minimum values. Figs. 6 to 9 show examples of the scatter plots with superimposed

expectation curves for the quadratic model in experiment 1.

2. Patient Study

Similar experiments are conducted using the same patient data as in Chapter III,

Section C.2: the microarrays prepared with RNA from breast tumor samples from

295 patients [33], 115 of which belong to the “good-prognosis” class and 180 belong

to the “poor-prognosis” class.

Our experiment uses intensity gene-expression values associated with the D = 70

genes. The best feature sets of size d = 5, 6 and 7 are obtained from the test bed

developed in [38]. This test bed utilizes high-performance computing to find optimal

feature sets for empirical distributions via exhaustive searches. Because we lack the

Bayes classifier in this empirical study, the best feature sets are taken from the test

bed for the rule R being considered. The following protocol is utilized for the patient

data:

1. Obtain Abest = {a
k1

, a
k2

, . . . , a
kd
} from the genomic test bed for the rule R.

2. Generate a 50-point sample S from the 295-point empirical distribution.

3. Design a classifier ψbest for the feature set Abest according to the rule R from S.
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Fig. 6. Examples of the scatter plots with superimposed expectation curves for the

quadratic model in Exp 1 for d = 5 and LDA: (a)Afs(R)|Abest; (b) Abest|Afs(R).
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Fig. 7. Examples of the scatter plots with superimposed expectation curves for the

quadratic model in Exp 1 for d = 5 and 3NN: (a)Afs(R)|Abest; (b) Abest|Afs(R).
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Fig. 8. Examples of the scatter plots with superimposed expectation curves for the

quadratic model in Exp 1 for d = 10 and LDA: (a)Afs(R)|Abest; (b) Abest|Afs(R).
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Fig. 9. Examples of the scatter plots with superimposed expectation curves for the

quadratic model in Exp 1 for d = 10 and 3NN: (a)Afs(R)|Abest; (b) Abest|Afs(R).
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4. Compute the error εbest for ψbest using hold-out on the 245 points not in S.

5. Apply SFFS using the rule R on S to find a feature set Afs(R).

6. Design a classifier ψfs(R) for the feature set Afs(R) according to the rule R from

S.

7. Compute the error εfs(R) for ψfs(R) using hold-out on the 245 points not in S.

8. Repeat steps 1 through 8 N times to form N error pairs (εi
best, ε

i
fs(R)), i =

1, 2, . . . , N .

Once again it should be noted that the samples are not fully independent on

account of overlap resulting from choosing the 50 sample points from among the same

295 sample points, but they are only weakly dependent. Owing to the dependency,

we limit the total number of samples N to 200, which is sufficient for linear regression.

For the patient data, corresponding to Figs. 6 to 9, Fig. 10 shows: (a) Afs(R)|Abest

for LDA; (b) Abest|Afs(R) for LDA and Fig. 11 shows: (a) Afs(R)|Abest for 3NN;

(b)Abest|Afs(R) for 3NN.

D. Discussion and Conclusion

In discussing the regression for the model-based study, we focus on the quadratic

model of experiment 1. Similar observations apply to the other models. The regres-

sion Afs(R)|Abest concerns our first question, predicting the performance of a selected

feature set based on the performance of the best feature set. Parts (a) of Figs. 6

and 7 provide the scatter plots and conditional expectations for LDA and 3NN for

d = 5 (linear SVM being very similar to LDA). The regression for LDA is approx-

imately parallel to the 45-degree line, with E[εfs(R)|εbest] exceeding εbest by about
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Fig. 10. Scatter plot and least squares linear regression line (bold line) for patient

data, d = 5. Also marked are 45◦ line (dashed) and averages for εbest and ε
FS

(bold dots on axes). (a) Afs(R)|Abest for LDA; (b) Abest|Afs(R) for LDA.
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Fig. 11. Scatter plot and least squares linear regression line (bold line) for patient

data, d = 5. Also marked are 45◦ line (dashed) and averages for εbest and ε
FS

(bold dots on axes). (a) Afs(R)|Abest for 3NN; (b)Abest|Afs(R) for 3NN.
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0.05 for the bulk of the mass, including the mean of εbest. The situation improves

for εbest > 0.13, but there is little mass there. The situation is worse for 3NN, with

E[εfs(R)|εbest] exceeding εbest by about 0.07 for most of the mass, with improvement

only for εbest > 0.15 and the improvement being less pronounced. The corresponding

plots for d = 10 are in parts (a) of Figs. 8 and 9. For LDA, the regression curve is sim-

ilar to that in the case of d = 5, except that the errors are smaller and E[εfs(R)|εbest]

exceeds εbest by less. For 3NN, the regression curve is also similar and the errors are

smaller; however, the amount by which E[εfs(R)|εbest] exceeds εbest is substantially

more than for d = 5, indicating worse prediction. The salient point deduced from the

Afs(R)|Abest regression curves is that one can expect the error of a selected feature set

to be substantially worse than the error of the best feature set.

The regression Abest|Afs(R) concerns our second question, predicting the perfor-

mance of the best feature set based on the performance of the selected feature set.

Parts (b) of Figs. 6 and 7 provide the scatter plots and conditional expectations for

LDA and 3NN for d = 5. In some sense, these are inverse to the Afs(R)|Abest plots,

with E[εfs(R)] exceeding E[εbest] exceeding by about 0.05 for LDA and 0.07 for 3NN.

The difference is with the interpretation. Since the regression curves for E[εbest|εfs(R)]

are close to being horizontal, and especially so for large feature-set errors, there is

little relation between the errors of the classifiers designed from the selected and best

feature sets. In particular, if feature selection results in a poor result, one should

not conclude that there does not exist good feature sets. Indeed, if we look at Fig.

7(b) for 3NN, there is a substantial number of samples that yield εfs(R) > 0.25 and

εbest < 0.13, and many for which εfs(R) > 0.30 and εbest < 0.14.

For the patient data, we focus on 3NN, referring to Fig. 11 (the results for LDA

in Fig. 10 being very similar). In part (a), linear regression for the patient data

yields a straight line that has important similarities with the curve for Afs(R)|Abest



68

in the model-based study: (i) the line is increasing; (ii) the line lies almost entirely

above the 45-degree line; (iii) for the bulk of the mass, εfs(R) significantly exceeds

εbest, with E[εfs(R)] exceeding E[εbest] by 0.08; and (iv) only for large values of εbest

can we expect the two errors to be close, and there is little mass in this region. As

with the model-based analysis, one can expect the error of a selected feature set to be

substantially worse than the error of the best feature set. Note, however, that with

the patient data the regression line is more horizontal, indicating less predictability

than for the synthetic data. The situation with Abest|Afs(R) for 3NN with the patient

data is striking. The regression line is practically horizontal, and once again nothing

can be concluded from a poor result when using feature selection. We note that

using quadratic regression yields curves not significantly different than those for linear

regression.

Although our main interest is with designed classifiers, in the model-based studies

we have also considered the Bayes-error pairs (ξbest, ξfs(R)), with one of the results

shown in Fig. 12. While there are some differences in the curvatures of the regression

curves for the Bayes-error pairs, these are not significant. The main difference in

the Bayes-error scatter plots are that they are tighter and show smaller errors than

for the designed classifiers (as is expected). In the model-based studies we always

have ξbest < ξfs(R), indicating that Afs(R) is not optimal. On the other hand, while

εbest < εfs(R) for most points, there are points with εbest > εfs(R). This occurs

because the optimal feature set is defined over the whole distribution, whereas feature

selection is carried out over a particular sample, thereby making it is possible that

ψbest, designed according to the sample, may be outperformed by ψfs(R).

For some concluding observations, the lack of relation between the errors of

the best and selected feature sets is observed throughout our experiments, including

both models and patient data, different classification rules, and different feature-
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Fig. 12. Examples of the Bayes-error plots (scatter plots with superimposed expec-

tation curves) for the quadratic model in Exp 1 for d = 5 and LDA:

(a)Afs(R)|Abest; (b) Abest|Afs(R).
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set sizes. It is generally more evident for higher variance cases (experiments 3 and

4) than lower variance cases (experiments 1 and 2), and for smaller sample sizes

(experiments 1 and 3) than for larger sample sizes (experiments 2 and 4), reflecting

the comparative difficulty of feature selection. Regarding the focus questions for the

study, it is unlikely that feature selection will yield a feature set whose error is close

to that of the optimal feature set, and the inability to find a good feature set should

not lead to the conclusion that good feature sets do not exist.
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CHAPTER VI

CONCLUSION

High-throughput technologies for rapid measurement of vast numbers of biological

variables offer the potential for highly discriminatory diagnosis and prognosis; how-

ever, high dimensionality together with small samples creates the need for feature

selection, while at the same time making feature-selection algorithms less reliable.

Feature selection is required because the number of features is large with respect to

the sample size because the use of a large number of features can result in overfitting

the data: the designed classifier performs well on the sample data but not on the

feature-label distribution from which the data have been drawn. However, a major

impediment to feature selection is the combinatorial nature of the problem. To select

a subset of d features from a set of D potential features and be assured that it provides

an optimal classifier with minimum error among all optimal classifiers for subsets of

size d, all d-element subsets must be checked unless there is distributional knowledge

that mitigates the search requirement, a condition rarely satisfied in practice [26].

Thus a suboptimal feature-selection algorithm is required.

In this dissertation, we have studied that: for small-sample settings, feature

selection is problematic. We haven shown that even if we were able to consider all

feature subsets, in small-sample settings their ranking would be strongly affected by

inaccurate error estimation. Also, if error estimation (or other parameter estimation)

is required for a feature-selection algorithm, then the impact of error estimation can

be greater than the choice of algorithm. Since in practice only suboptimal feature-

selection algorithm could be used, the combined factors of inaccurate error estimation

and suboptimal feature-selection algorithm make feature selection process in small-

sample settings very unreliable and highly inaccurate. As in our regression study
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shows, it is unlikely that feature selection will yield a feature set whose error is close

to that of the optimal feature set, and the inability to find a good feature set should

not lead to the conclusion that good feature sets do not exist.
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