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ABSTRACT 

 

Identification of Novel Implantation-Related Genes in the Ovine Uterus. (May 2007) 

Gwon Hwa Song, B.S., Dankook University; 

M.S., Seoul National University 

Co-Chairs of Advisory Committee:     Dr. Fuller W. Bazer 
                                                                  Dr. Thomas E. Spencer 

 
 

The peri-implantation period in mammals is critical with respect to survival of 

the conceptus and establishment of pregnancy.  During this period of pregnancy, 

reciprocal communication between ovary, conceptus, and endometrium is required for 

successful implantation and placentation.  Therefore, studies were conducted to indentify 

and characterize novel endometrial genes important for implantation and conceptus 

development in the ovine uterus. 

The first and second studies defined the uterine expression of seven members of 

the cathepsin (CTS) family of lysosomal proteases, and a secreted inhibitor of CTSL 

called cystatin C (CST3) during the peri-implantation period.  In addition, regulation of 

CTS and CST3 by progesterone (P4) and interferon tau (IFNT) was evaluated.  CTSL 

was the most abundant CTS in the ovine ovine uterus and was also coordinately 

expressed with CST3 in the endometrial epithelia and conceptus trophectoderm.  CTSL 

and CST3 were found to be novel P4-induced and IFNT-stimulated genes in the luminal 

epithelial cells of the ovine endometrium.   

The third study identified radical S-adenosyl methionine domain containing 2 

(RSAD2) and interferon-induced with helicase C domain 1 (IFIH1) in the ovine uterus.  

Results of this study indicated that IFNT induces RSAD2 and IFIH1 in a P4-independent 

manner in the stroma, immune cells, and glands of the ovine endometrium.  These two 

genes are proposed to have biological roles in the establishment of uterine receptivity to 

the conceptus during implantation.  

The fourth study characterized endometrial expression of stanniocalcins (STC) 

during pregnancy.  STC1 appeared in the endometrial glands on Day 18 of pregnancy, 
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increased from Days 18 to 80, and remained abundant through Day 120 of gestation.  In 

addition, this study demonstrated that STC1 is induced by P4 and increased by placental 

hormones, such as placental lactogen (CSH1) and growth hormone (GH), in the ovine 

endometrial glands.  

Collectively, these studies identified genes that are expected to be critical to 

unraveling the mechanism(s) of reciprocal fetal-maternal interactions required for 

successful implantation and pregnancy.  A more complete understanding of these genes 

will be important for developing therapeutic strategies to prevent, treat and/or diagnose 

infertility in domestic animals and humans, because they are biomarkers of P4 and/or 

IFN effects. 
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CHAPTER I 

INTRODUCTION 

 

In eutherian mammals, including sheep, implantation of the blastocyst is the most 

important developmental event and an evolutionary advance associated with viviparity 

(1, 2).  During the peri-implantation period in the ovine uterus, the spherical blastocyst 

elongates to a tubular and then a filamentous form, and develops into a conceptus 

(embryo/fetus and associated extraembryonic membranes).  At this time, interferon tau 

(IFNT) is synthesized and secreted by the mononuclear trophectodermal cells of the 

conceptus between Days 10 and 21-25 (maximally on Days 14 to 16) (3-6).  In the ovine 

uterus, IFNT acts directly on the endometrial luminal epithelium (LE) and superficial 

ductal glandular epithelium (sGE) to suppress transcription of estrogen receptor alpha 

(ESR1) and oxytocin receptor (OXTR) genes (7, 8), thereby preventing production of 

luteolytic pulses of prostaglandin F2� (PGF).         

During the estrous cycle, ESR1 expression increases and progesterone receptor 

(PGR) expression decreases on Days 11 to 13, allowing estrogen (E2) to induce OXTR 

expression on Days 13 to 14 (9, 10).  Thus,  oxytocin from the posterior pituitary and/or 

corpus luteum (CL) can then induce release of luteolytic pulses of PGF on Days 15 and 

16 (11).  During early pregnancy, IFNT produced by the elongating ovine conceptus 

suppresses ESR1 expression which then prevents ESR1-induced OXTR expression (7, 

12-15).  Collectively, these results indicate that the antiluteolytic actions of IFNT are to 

prevent increases in epithelial ESR1, PGR, and OXTR gene expression, which are all E2 

responsive genes, by directly inhibiting transcription of the ESR1 gene and maintaining 

secretion of progesterone (P4) by the CL (8, 16-18).  

In the ovine uterus, establishment and maintenance of pregnancy requires 

reciprocal communication via endocrine and paracrine signals from the ovary, conceptus,  
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and endometrium during implantation and synepitheliochorial placentation (1).  

Progesterone, the hormone of pregnancy, plays an important role in the establishment 

and maintenance of a uterine environment that supports conceptus development.  

Endometrial gland secretions, including growth factors, cytokines, and ions, are 

predominantly regulated by P4 (19) and are required for peri-implantation conceptus 

survival, elongation, and development (20-24).  Progesterone acts via its cognate 

receptor, PGR. In the ovine endometrium, PGR are expressed in epithelia and stroma 

and allow P4 to directly regulate a variety of genes in the uterus.  However, PGR 

expression is down-regulated by continuous exposure to P4 in ovine endometrial LE and 

GE after Days 11 and 13 of pregnancy, respectively (10).  The paradigm of loss of PGR 

in endometrial epithelia immediately before implantation is common to sheep (1, 10), 

cattle (25), and pigs (26), as well as other mammals studied to date, including humans 

and mice (see (2)). 

During the peri-implantation period, uterine epithelial cell functions might be 

regulated by interactions between reprogrammed epithelial cells following down-

regulation of PGR and specific factors produced by PGR-positive stromal cells in 

response to P4, and/or products of the conceptus such as IFNT, placental lactogen 

(CSH1), and placental growth hormone (GH) (see (17)).  A large number of genes are 

induced by IFNT throughout the uterine wall.  These IFNT-stimulated genes (ISGs) are 

proposed to have biological roles in pregnancy recognition and uterine receptivity (1).  

In addition, induction of an antiviral state in the endometrium during early pregnancy 

may be beneficial by inhibiting sexually transmitted viruses as well as modulating local 

immune cells to promote tolerance of the allogeneic conceptus and stimulating 

production of cytokines beneficial for conceptus survival and growth (27-29).  

Collectively, knowledge of the complex, precisely orchestrated interaction 

between P4 and IFNT during the implantation period should provide new insights to 

improve fertility in humans and domestic animals, and provide key knowledge for 

interpreting cross-talk mechanisms between maternal endometrium and conceptus.  

Therefore, these studies were conducted to determine if selected implantation-related 



 3 

candidate genes are expressed in the ovine uterus and to determine effects of the estrous 

cycle, pregnancy, P4 and IFNT on expression of these genes in ovine endometria and 

conceptuses.   
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CHAPTER II 

LITERATURE REVIEW 

 

Early Pregnancy in Sheep 

Hormonal Aspects of the Estrous Cycle and Luteolytic Mechanism 

Sheep are spontaneous ovulators characterized by recurring estrous cycles with a 

mean length of 17 days and regulated by the hypothalamic/pituitary/ovarian axis.  They 

are known as short-day breeders because they begin to cycle as day length decreases in 

late summer or autumn.  The estrous cycle can be divided into four stages: (1) proestrus, 

(2) estrus, (3) metestrus, and (4) diestrus.  Estrus lasts about 30 h and at this time, 

peripheral blood levels of E2 are high and P4 levels are very low.  Between proestrus 

and estrus, follicle-stimulating hormone (FSH) from the anterior pituitary stimulates the 

growth of Graafian follicles in the ovary and then ovulation occurs in response to an E2-

induced surge of lutenizing hormone (LH) from the anterior pituitary.  At metestrus, E2 

declines and LH stimulates a process termed lutenization that results from differentiation 

and reorganization of theca and granulosa cells from the ruptured follicle into small and 

large luteal cells and culminates in formation of a corpus luterum (CL).  During diestrus, 

functional CLs secrete P4 that inhibits estrous behavior and formation of ovulatory 

follicles by attenuating release of LH and FSH from the anterior pituitary (30).  In 

contrast, the concentrations of E2 in serum remain low.  Diestrus lasts until the onset of 

luteolysis which is the functional and structural regression of the CL (31, 32).  However, 

during proestrus, P4 levels decline and E2 levels increase, as one or more ovulatory 

Graafian follicles become dominant on the ovary (see Fig. 2.1). 

 

Estrous Cycle and the Luteolytic Mechanism 

In sheep, the estrous cycle and luteolysis are dependent on the uterus because the 

endocrine luteolysin, PGF, from uterus causes the functional and structural regression of 

the CL (31).  Further, hysterectomy in ewes extends the life span of the CL to that 

characteristic of pregnancy (33).  During the estrous cycle, the ovine endometrium  
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Fig. 2.1.  Early pregnancy events in sheep.  The embryo enters the uterus on Day 4 after 
mating (Day 0 = estrus/mating) at the morula stage of development and then develops 
into a blastocyst on Day 6.  Between Days 8 and 9, the blastocyst sheds the zona 
pellucida by enzyme lysis such as uterine and/or embryonic proteases.  After Day 10, the 
blastocyst elongates into a tubular and then into a filamentous conceptus, and then 
appears to be immobilized in the uterine lumen becoming closely associated with the 
endometrial luminal epithelium (LE) followed by unstable adhesion.  Between Days 16 
and 22, the trophoblast begins to adhere firmly to the LE by interdigitation between 
uterine epithelial microvilli and projections of the trophectoderm cells, and/or 
penetration into the superficial duct of the uterine glands (sGE) by papillae of the 
trophoblast.  During this time, the trophoblast giant cells migrate, appose, and fuse to the 
apical surface of the endometrial LE to form syncytial plaques.  Eventually, as a part of 
synepitheliochorial placentation in sheep, the syncytial plaques cover the caruncular 
surface and aid in formation of the placentome which are structures formed by fusion of 
placental cotyledons and endometrial caruncles.  Adapted from Spencer et al., 2007 and 
originally drawn by Dr. Greg A. Johnson. 
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releases luteolytic pulses of PGF from endometrial LE and sGE (11, 21, 34, 35), in 

response to oxytocin that is synthesized and secreted by large luteal cells (9) as well as 

from the posterior pituitary (11).  In addition, these uterine epithelia express PTGS2 

(prostaglandin-endoperoxide synthase 2 (prostaglandin G/H synthase and cyclooxygen- 

nase); alias COX-2), the rate limiting enzyme in the synthesis of prostaglandins (35), as 

well as oxytocin receptor (OXTR) (34).  Development of the endometrial luteolytic 

mechanism in ovine endometrial epithelia requires sequential effects of P4, E2, and 

oxytocin, acting through their respective receptors (1, 7, 36).  In the ovine uterus, the 

spatio-temporal expression of OXTR is primarily regulated by estrogen receptor alpha 

(ESR1) and progesterone receptor (PGR) (7, 9, 10, 36).  

During estrus (Day 0 of the estrous cycle) and metestrus, E2 released from 

ovulatory Graafian follicles stimulates expression of uterine ESR1, PGR, and OXTR in 

the endometrial LE and sGE (9, 10).  During diestrus, increased circulating levels of P4 

act through PGR to “block” expression of ESR1 and OXTR in the endometrial LE and 

sGE between Days 3 and 11 of the estrous cycle (36).  Therefore, ESR1 and OXTR 

expression is not detected during most of diestrus.  The precise molecular mechanism 

whereby P4 suppresses ESR1 gene transcription is unknown.  However, after Days 11 to 

12 of the estrous cycle, the “P4 block” is removed, because continuous exposure of the 

uterus to progesterone for 8 to 10 days down-regulates expression of PGR in endometrial 

LE and sGE (9, 15), allowing for rapid increases in expression of ESR1 on Day 13 

followed by OXTR on Day 14 in LE and sGE (14, 37).  On Days 14 to 16 of the estrous 

cycle, oxytocin secreted from the posterior pituitary and/or CL binds OXTRs on the 

plasma membrane of endometrial epithelia and activates the protein kinase C (PKC) 

signaling pathway (38) that results in release of luteolytic PGF pulses from the 

endometrial LE and sGE (11, 34).  These 4 to 5 pulses of luteolytic PGF over a 25 h 

period cause the CL to undergo functional and structural regression that allows the ewe 

to return to estrus, completing the 17 day estrous cycle. 

During the estrous cycle, P4 plays a pivotal role in initiation of endometrial PGF 

synthesis as it increases phospholipid stores in LE to maximum levels on Days 14 and 15 
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of the estrous cycle (39), and augments activity of PTGS2, the rate limiting enzyme in 

the biosynthesis of prostaglandins which converts arachidonic acid to PGG2 (the 

precursor of various prostaglandins including PGF and PGE (40)).  Although PTGS1 is 

constitutively expressed, PTGS2 expression is increased in endometrial LE and sGE on 

Days 12 to 15 of the estrous cycle (35, 41).  Increased expression of PTGS2 is coincident 

with PGR down-regulation in LE and sGE; therefore PGR may be inhibitory to 

expression of PTGS2 in the ovine epithelia. 

 

Blastocyst Development and Implatation in Sheep 

In sheep, implantation takes place at the blastocyst stage.  The timing of 

implantation differs among species (42, 43) due to variations in the length of the 

different implantation phases and the degree of endometrial invasion by the trophoblast.  

In domestic ruminants (sheep, cattle, and goats) and pigs, the spherical blastocyst 

elongates to tubular and then filamentous forms, and develops into a free-floating 

conceptus (embryo/fetus and associated extraembryonic membranes) during the latter 

stages of implantation.  This unique developmental event does not occur in humans, 

primates, rodents, and horses (42, 44, 45).  The blastocysts of these species implant 

rapidly before expansion and the extraembryonic membranes are formed after 

implantation (42, 46, 47).  
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Fig. 2.2.  The phases of blastocyst implantation in sheep.  Shedding of the zona pellucida 
(Phase1): The embryo enters the uterus on Day 4. The blastocyst is formed on Day 6 and 
the zona pellucida is shed on Day 8 or 9 due to blastocyst growth and uterine and/or 
embryonic proteases. After Day 10, the blastocyst elongates and develops into a tubular 
and then into a filamentous conceptus. Precontact and blastocyst orientation (Phase 2): 
Between Days 9 and 14, there is no definitive cellular contact between the conceptus 
trophectoderm and the endometrial epithelium, but the blastocyst appears to be 
positioned and immobilized in the uterus. During this time, elongation of the blastocyst 
plays an important role in production of IFNT in sheep uterus. Apposition (Phase 3): The 
conceptus trophectoderm associates closely with the endometrial LE followed by 
unstable adhesion. In ruminants, the trophoblast develops finger-like villi or papillae and 
thereby penetrates into the superficial ducts of the uterine glands. This event has been 
hypothesized to anchor the peri-attachment conceptus and allow it to absorb histotroph 
from glands. Adhesion (Phase 4): On Day 16, the trophoblast begins to adhere firmly to 
the endometrial LE. The interdigitation of the trophectoderm and endometrial LE occurs 
in both the caruncular and intercaruncular areas of the endometrium. During this time, 
the mononuclear trophetoderm cells differentiate into trophoblast giant binucleate cells. 
Adapted from Spencer et al., 2007 and originally drawn by Dr. Greg A. Johnson. 

 



 9 

Collectively, as illustrated in Fig. 2.2, the phases of implantation in sheep 

include: (1) shedding of the zona pellucida; (2) precontact and blastocyst orientation; (3) 

apposition; (4) adhesion; and (5) endometrial fusion (2) based on a comparative 

implantation scheme proposed by Guillomot and colleagues (42-44).  The embryo enters 

the uterus on day 4 after mating (Day 0 = estrus/mating) at the morula stage of 

development and then develops into a blastocyst by Day 6.  Between Days 8 and 9, the 

blastocyst sheds the zona pellucida by enzyme lysis involving uterine and/or embryonic 

proteases (Fig. 2.1).  After Day 10, the blastocyst elongates into a tubular and then forms 

a filamentous conceptus (48), which appears to be immobilized in the uterine lumen 

becoming closely associated with the endometrial LE followed by unstable adhesion. 

Between Days 16 and 22, the trophoblast begins to adhere firmly to the LE by 

interdigitation between uterine epithelial microvilli and projections of the trophectoderm 

cells (42, 44) and penetrates into the superficial ducts of the uterine glands by using 

trophoblast papillae (44, 49-51).  Beginning on Days 14 to 16, the trophoblast giant 

binucleate cells begin to differentiate, and then migrate and fuse with the endometrial LE 

and each other form syncytial plaques (52, 53).  As part of synepitheliochorial 

placentation in sheep, the syncytial plaques cover the caruncular surface of the 

placentome formed by fusion of placental cotyledons with endometrial caruncles (54). 
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The Role of Progesterone During Pregnancy Recognition and  

Maintenance of Pregnancy 

In the ovine uterus, establishment and maintenance of pregnancy requires 

reciprocal communication via endocrine and paracrine signals from the ovary, conceptus, 

and endometrium during implantation and synepitheliochorial placentation (1).  

Progesterone, the hormone of pregnancy, plays an important role in the establishment 

and maintenance of a uterine environment that supports conceptus development.  

Endometrial gland secretions, including growth factors, cytokines, and ions, are 

predominantly regulated by P4 (19) and are required for pre-implantation conceptus 

survival, elongation, and development (20-24).  In the ovine endometrium, the PGR is 

expressed in epithelia and stroma and allows P4 to directly regulate a variety of genes.  

However, PGR expression is down-regulated by continuous exposure to P4 in ovine 

endometrial LE and GE after Days 11 and 13 of pregnancy, respectively (10).  The 

paradigm of loss of PGR in endometrial epithelia immediately before implantation is 

common to sheep (1, 10), cattle (25), and pigs (26), as well as other mammals studied to 

date, including humans (see (2)).  

Therefore, during the peri-implantation period, uterine epithelial cells become 

reprogrammed following down-regulation of PGR and are subject to regulation by 

specific factors produced by PGR-positive stromal cells in response to P4 and/or a 

product of the conceptus such as interferon tau (IFNT), placental lactogen (CSH1), and 

placental growth hormone (GH). 

 

Representative Progesterone-Regulated Genes 

Mucin Glycoprotein and Integrins.  Down-regulation of mucin glycoproteins 

(MUC) correlates with adhesion and implantation of blastocysts in rodents and sheep, 

and the decrease of MUC expression in endometrial LE is coincidental with PGR loss 

(55).  In uterine LE, MUC1 is believed to interfere with binding and accessibility 

between integrins and their cognate receptors on conceptus trophectoderm (47, 56).  In 

addition, ovariectomized gilts treated with P4 decrease MUC1 expression in the apical 
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surface of endometrial epithelia (57).  Integrins are also essential for interactions with 

ECM to allow communication between uterine epithelia and trophectoderm (56).  In the 

ovine uterus, integrin alpha subunits (v, 4, 5) and beta subunits (1, 3, 5) are expressed on 

the apical surface of endometrial LE and GE and trophetoderm (58).  However, spatio-

temporal expression of these integrins is not regulated by pregnancy.  Thus, the uterus 

must secrete ligands that bridge integrin receptors on the conceptus trophectoderm and 

endometrial LE.  In contrast, in the porcine uterus, expression of integrin alpha 4, alpha 

5, and beta 1 subunits is regulated by P4 (57).   

Uterine Milk Proteins and Osteopontin.  In the ovine uterus, continuous 

exposure to P4 induces production of secretory proteins by endometrial GE that are 

secreted into the uterine lumen (59-61).  Progesterone acts via its cognate receptor, PGR, 

and the PGR is expressed in epithelia and stroma and allows P4 to directly and/or 

indirectly regulate a variety of P4-regulated genes.  However, PGR expression is down-

regulated by continuous exposure to P4 in ovine endometrial LE and GE after Days 11 

and 13 of pregnancy, respectively (9, 10).  The loss of PGR in GE appears to be required 

for GE remodeling and differentiation (1, 62, 63).  Ovine uterine milk proteins, also 

known as ovine uterine serpins (SERPIN; serine protease inhibitors), are members of the 

serpin family (64).  SERPIN is an excellent marker for endometrial secretory capacity 

during pregnancy in sheep, that is expressed only in GE and dramatically increases 

during gestation (60, 65).  Similarly, secreted phosphoprotein-1 (SPP1, also known as 

osteopontin) is synthesized exclusively in uterine GE in response to P4.  However, SPP1 

protein is detected at the apical surface of LE, GE, trophectoderm, and at the maternal-

fetal interface (66-69), strongly suggesting secretion into the uterine lumen and binding 

to integrin receptors on LE and trophectoderm.  SPP1 is an acidic phosphorylated 

glycoprotein that binds to integrin heterodimers via its Arg-Gly-Asp sequence and to 

promote cell adhesion and migration (70).  It has been hypothesized that SPP1 binding to 

integrins stimulates changes in morphology of conceptus extraembryonic membranes 

and promotes adhesion between LE and trophectoderm for implantation (58).  Results 

strongly support the hypothesis that loss of PGR in GE is required for P4-induced 
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expression of SERPIN and SPP1 in the ovine uterus (65, 69).  Administration of P4 with 

E2 or ZK136,317 (PGR antagonist) ablated effects of P4 alone to induce expression of 

SPP1 mRNAs in GE (69).  

 

Maternal Recognition of Pregnancy 

History of IFNT in Sheep 

The developing conceptus must signal its presence to the mother in order to 

ensure successful establishment and maintenance of pregnancy, a process termed 

maternal recognition of pregnancy (71).  In the 1960s, Moor and Rowson reported 

extension of the interestrous interval due to the transfer of Day 13 sheep blastocysts into 

recipient ewes on Day 12 of the estrous cycle (72), and that removal of blastocysts after 

Day 13 significantly extended CL life-span (73).  In addition, infusion of sheep 

conceptus homogenates collected between Days 14 and 15 into the uterine lumen of 

recipient ewes (on or before Day 12 of their cycle) extend CL life-span and the inter-

estrous interval of cyclic ewes.  However, infusion of pig conceptus homogenates had no 

effects on estrous cycle length in ewes (74).  The transfer of trophoblastic vesicles from 

blastocysts collected between Days 11 and 13, without the embryonic disc, to recipient 

ewes on Day 12 of the estrous cycles maintained CL function (75).  The first report of 

secretion of low molecular weight acidic proteins by Day 16 ovine conceptuses was by 

Wilson et al. (1979) (76).  Later, in 1982, Godkin and colleagues characterized secretion 

of the low molecular weight acid protein by cultured ovine conceptuses collected 

between Days 13 and 21 of pregnancy and term it Protein X (77).  In a later study, 

Protein X from ovine trophectoderm was termed ovine trophoblast protein 1 (oTP-1) 

(78).  Subsequently, native purified or recombinant oTP-1 was shown to extend the 

inter-estrous interval of ewes and to attenuate oxytocin-induced PGF release in sheep 

(79-81). 

The primary amino acid sequence of oTP-1 was highly homologous to bovine 

IFNA (82) and possessed antiviral and antiproliferative properties (83-85).  Therefore, 

oTP-1 was renamed IFNT and was designated as a member of the Type I IFN family 
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(86-88) by the International Interferon Society.  As the most abundant mRNA in the 

conceptus on Day 14, IFNT mRNA increases from Day 12 to 14 and then declines to 

Day 22 and is localized to mononuclear trophetodermal cells (4, 89).  Similar to other 

Type I IFN family members such as IFNs alpha (IFNA), beta (IFNB), delta (IFND), 

epsilon (IFNE), kappa (IFNK) and omega (IFNW), IFNT possesses potent antiviral (83-

85), antiproliferative (85, 90), and immunomodulatory biological activities and effects 

(90, 91).  IFNT is most closely related to IFNW encoding the 172 amino acid sequence 

except for six amino acids in the carboxyl terminus that are not responsible for 

biological activitiy (92).  Even though IFNT shares a high-degree of DNA and amino 

acid sequence identity in ruminants (sheep, cattle, goats) (82, 86, 87), the precise 

biochemical structure of IFNT is different among species because of different post-

translational modifications.  Ovine IFNT is not glycosylated, bovine IFNT is 

glycosylated, and caprine IFNT is found in both glycosylated and nonglycosylated forms 

(86, 93, 94).  

 

Antiluteolytic Mechanism of Action of Interferon Tau 

In ruminants, maternal recognition of pregnancy requires elongation of the 

blastocyst which produces IFNT (4, 95), a Type I IFN that prevents development of the 

endometrial luteolytic mechanism through paracrine action on uterine epithelia (1, 5, 96).  

Thus, the antiluteolytic effect of IFNT maintains a functional CL and production of P4 

required for successful pregnancy and development of the conceptus. 

During the peri-implantation period, IFNT is synthesized and secreted by the 

mononuclear trophectodermal cells between Days 10 and 21-25 (maximally on Days 14-

16) (3-6).  In the ovine uterus, IFNT acts directly on the endometrial LE and sGE to 

suppress transcription of ESR1 and OXTR genes (7, 8), thereby preventing production of 

luteolytic pulses of PGF (Fig. 2.3).  During the estrous cycle, ESR1 expression increases 

and PGR expression decreases on Days 11 to 13 and then E2 induces OXTR expression 

on Days 13 to 14 (9, 10), thereby allowing oxytocin from the posterior pituitary and/or 

CL to induce release of luteolytic pulses of PGF on Days 15 to 16 (11).   
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Fig. 2.3.  Schematic illustrating the current working hypothesis on hormonal regulation 
of the endometrial antiluteolytic mechanism and cross-talk between the conceptus and 
the maternal endometrium.  During the peri-implantation period, ovine IFNT 
synthesized and secreted by the mononuclear trophectodermal cells between Days 10 
and 21-25 (maximally on Days 14-16), acts directly on endometrial LE and sGE to 
suppress transcription of ESR1 and OXTR genes, thereby preventing production of 
luteolytic pulses of PGF.  During the estrous cycle, ESR1 expression increases and PGR 
expression decreases on Days 11 to 13 and then E2 induces OXTR expression on Days 
13 to 14, thereby allowing oxytocin from the posterior pituitary and/or CL to induce 
release of luteolytic pulses of PGF on Days 15 to 16.  In contrast, during early 
pregnancy, secreted IFNT from fully elongated conceptus silences ESR1 expression 
which prevents E2-induced OXTR expression.  However, IFNT does not stabilize PGR 
expression in endometrial epithelia during pregnancy.  Adapted from Spencer et al., 
2007. 
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In contrast, during early pregnancy, elongating ovine conceptuses secret IFNT to 

suppress ESR1 expression which prevents E2-induced OXTR expression (7, 12-15).  

Collectively, these results indicate that the antiluteolytic actions of IFNT are to prevent 

increases in epithelial ESR1, PGR, and OXTR gene expression, which are all E2 

responsive, by directly inhibiting transcription of the ESR1 gene and maintaining 

secretion of P4 by the CL (8, 17, 18). 

 

        Type I IFN Signal Transduction Pathway 

The actions of IFNT to signal pregnancy recognition and induce or increase 

expression of IFNT-stimulated genes (ISGs) are mediated by the Type I IFN signal 

transduction pathway.  Type I IFNs bind to a common Type I IFN receptor (IFNAR), a 

heterodimer consisting of two subunits, IFNAR1 and IFNAR2, containing tyrosine 

kinases such as janus kinase 1 (JAK1) and tyrosine kinase 2 (TYK2) (97, 98).  These 

receptors are present in all endometrial cell types, but are highest in endometrial LE (99).  

IFNAR classically activate the JAK/STAT (signal transducers and activators of 

transcription) signaling pathway (100-102).  Upon cognate ligand binding, IFNAR1 and 

IFNAR2 heterodimerize, change their conformation, and activate TYK2 and JAK1 by 

tyrosine phosphorylation (103, 104).  The activated TYK2 phosphorylates STAT2 

through the SH2 (src homologous 2) domain and then recruits signal transducers and 

activators of transcription-1 (STAT1) (105-107).  Phosphorylated STAT1 binds 

phosphorylated STAT2 to form a heterodimer that is released from the receptor complex 

and translocates to the nucleus after forming a heterotrimeric transcriptional complex by 

binding with ISGF3G (IFN-stimulated transcription factor 3, gamma 48 kDa), 

collectively termed ISGF3 (108, 109).  In addition to STAT1/2 heterodimerization, Type 

I IFN also induces formation of phosphorylated STAT1 homodimers, termed GAF 

(gamma IFN activation factor) (110).  In the nucleus, ISGF3 binds to an IFN-stimulated 

response element (ISRE) in promoter regions of ISGs to activate transcription in 

cooperation with several coactivators, such as the cAMP response element binding 

protein (CREB)-binding protein (CBP)/p300 (111).  Similarly, GAF enters the nucleus, 
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binds to GAS (GAF activation sequence) elements to stimulate transcription of ISGs 

(112).  

 

STATs and IRFs in the Type I IFN Signal Transduction Pathway 

The Type I IFN signaling pathway is mediated by two main transcription factor 

families, STATs and interferon regulatory factors (IRFs). 

STATs.  The STATs play an essential role in the IFN signaling pathway and 

seven have been identified (STAT1, -2,-3,-4,-5A, -5B, and 6) in a variety of mammalian 

species (113-115).  All STATs contain a DNA binding domain, except STAT2, a 

transactivation domain, and a SH2 domain.  Usually, STATs are latent in the cellular 

cytoplasm, but they are immediately activated by receptor-associated tyrosine kinase 

such as JAKs under cytokine (including IFN) stimulation and then mediate signaling 

events to downstream transcription factors or DNA sequences in the promoter region of 

target genes.  The function of phosphorylated STAT dimers as activators or repressors of 

transcription depends on the motif in the promoter of target genes and/or cell types.  The 

most common STAT-binding motif is GAS (TTCNmGAA) (116), and STAT1, -3, and -

4 dimers bind to the TTCC(C/G)GGAA motif and STAT5A and -5B bind to the 

TTC(C/T)N(G/A)GAA, whereas STAT6 binds to TTCN4GAA (117-119).  The STATs 

also interact with coactivators (such as CBP/p300), transcription factor SP1 or c-Jun, and 

nuclear steroid receptor (such as glucocorticoid receptor) (120-123).  This signaling 

cascade is rapidly down-regulated by dephosphorylation of JAKs and STATs.  In the 

ovine uterus, STAT1 and STAT2 mRNAs and proteins are expressed only in 

endometrial stroma and GE during early pregnancy (124, 125). 

IRFs.  The IRFs act as either transcriptional activators or repressors in response 

to viral infection or IFN and have been identified as IRF1, -2, -3, -4, -5, -6, -7, -8, and -9 

(126-128).  All IRFs are highly homologous due to their 115 amino acid containing 

conserved five tryptophan repeats in the amino-termius (129).  The IRFs recognize 

similar DNA sequences in the promoter region of a number of ISGs through their helix-

turn-helix motif, such as the IRF element (IRF-E: G/A G/C TTT C G/A G/C TTT (T)C) 
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and the interferon-stimulated response element (ISRE: AG TTT CNN TTT CN C/T) 

(101, 130). 

IRF1 is significantly induced in response to IFN or viral infection and acts as a 

transcriptional activator in IFN signaling (124, 131, 132).  In contrast, IRF2 acts as a 

strong transcriptional repressor competing with IRF1 for binding to the same site or by 

repulsion of coactivators (133, 134).  ISGF3G is a component of heterotrimeric ISGF3 

and acts as DNA-binding subunits to ISREs in response to both Type I and II IFNS 

(135-137).  In the ovine uterus, IRF1 expression is not detected during the estrous cycle, 

but is detected on Day 13 and is most abundant on Day 15 of early pregnancy (124, 125).  

Both IRF6 and ISGF3G are present in endometrial LE/GE or stroma/GE, respectively, in 

both cyclic and pregnant ewes.  IRF2 is detected only in LE and sGE from cyclic and 

pregnant ewes and proposed to have biological roles in preventing the induction of ISG 

expression in these cell types in response to IFNT (125).   

 

IFNT-Stimulated Genes (ISGs) 

Most ISGs are expressed by endometrial stroma and middle to deep GE of the 

ovine uterus (Fig. 2.4) (125, 138-141).  These ISGs include STAT1 and STAT2 (142, 

143), IRF1 (142-144), IRF9 (124), ISG15 (138, 140, 145), Mx (146), 2’,5’-

oligoadenylate synthetase (OAS) (147, 148), major histocompatibility complex (MHC) 

class I (139), and beta-2-microglobulin (B2M) (139, 149).  IFNT induces dimerization of 

Type I IFN receptors in the ovine uterus (150), and hence phosphorylation of receptor-

associated STATs (145, 151) that leads to formation of two transcription factor 

complexes: ISGF3 and GAF (145, 151).  For induction and activation of most ISGs, 

these complexes translocate to the nucleus and bind to specific DNA sequences to 

activate transcription of target genes (112, 151, 152).  For instance, GAF (STAT1 

homodimer) regulates transcription of genes containing a GAS element, such as IRF1 

(112).  ISGF3 is a heterotrimer consisting of STAT1, STAT2, and IRF9 (153) that 

regulates transcriptional activities of genes containing ISREs, such as STAT1, STAT2, 

IRF9, and OAS (154, 155).   
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Fig. 2.4.  Schematic illustrating the current working hypothesis on IFNT signaling in the 
ovine endometrial stroma and glandular epithelium.  Most IFNT-stimulated genes (ISGs) 
are expressed by endometrial stroma and middle to deep GE of the ovine uterus because 
IFNT binds to a common Type I IFN receptor, IFNAR1 and IFNAR2 containing 
tyrosine kinase such as JAK1 and TYK2, and activates the JAK/STAT signaling 
pathway.  Upon cognate ligand binding, IFNAR1 and IFNAR2 heterodimerize, change 
their conformation, and activate TYK2 and JAK1 by tyrosine phosphorylation, 
respectively.  The activated TYK2 phosphorylates STAT2 through its SH2 (src 
homologous 2) domain and then recruits STAT1.  Phosphorylated STAT1 binds the 
phosphorylated STAT2 to form a heterodimer that is released from the receptor complex 
and translocates to the nucleus after forming a heterotrimeric transcriptional complex by 
binding with ISGF3G, collectively termed ISGF3.  In addition to STAT1/2 
heterodimerization, Type I IFN also induces formation of phosphorylated STAT1 
homodimers, termed GAF.  In the nucleus, ISGF3 binds to the IFN-stimulated response 
element (ISRE) in promoter regions of ISGs and activates their transcription with the 
cooperation with several coactivators, such as the cAMP response element binding 
protein (CREB)-binding protein (CBP)/p300.  Similarly, GAF enters the nucleus, binds 
to GAS elements, and stimulates the transcription of ISGs.  Adapted from Spencer et al., 
2007. 
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Fig. 2.5.  Schematic illustrating the current working hypothesis on IFNT-signaling in the 
ovine luminal and superficial ductal glandular epithelium.  IRF-2, a known 
transcriptional repressor of Type I ISGs in the ovine uterus constitutively expressed in 
the endometrial LE and sGE, increases during early pregnancy, and is hypothesized to 
prevent induction or increases in transcription of ISGs by IFNT.  At present, LGALS15 
(also known as galectin-15) and WNT7A  are the only genes known to be induced in LE 
and sGE by IFNT utilizing an unknown non-classical signaling pathway that is 
independent of the classical STAT transcription factors.  Adapted from Spencer et al., 
2007. 
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IRF2, a known transcriptional repressor of Type I ISGs in the ovine uterus is 

constitutively expressed in the endometrial LE and sGE, increases during early 

pregnancy, and is hypothesized to prevent induction or increases in transcription of ISGs 

by IFNT (Fig. 2.5) (125, 156).  WNT7A (156) and LGALS15 (also known as galectin-15) 

(157) are the only genes known to be induced in LE and sGE by IFNT utilizing an 

unknown non-classical signaling pathway that is independent of the classical STAT 

transcription factors. 

 

Representative STAT1-Dependent ISGs 

Ubiquitin Cross-Reactive Protein/IFN-Stimulated Gene 15/17.  In humans, a 

15 kDa protein called IFN-stimulated gene 15 (ISG15) encoding a 15 kDa protein was 

identified in tumor and lymphoblastoid cells, and was induced by Type I IFNs (IFNA 

and –B) to greater extent than by Type II IFN (IFNG) (158, 159).  However, ISG15 was 

renamed ubiquitin cross-reactive protein (UCRP) because its sequence is highly 

homologous to a tandem diubiquitin repeat, and antibodies raised to ISG15 cross-react 

with ubiquitin (160).  In bovine endometrium, the 17 kDa precursor form of UCRP was 

detected as a 16 kDa form that might have undergone proteolytic cleavage in the 

endometrium, termed ISG17 (161, 162).  During early pregnancy, in sheep, ISG15 

mRNA increases only in stroma and GE from Days 11 to 15 and then declines thereafter 

(138).  This period is coincident with peak production of IFNT by the ovine conceptus 

and ISG15 expression increases in immortalized ovine LE, GE, and stromal cells treated 

with IFNT (138, 163).     

2’,5’-Oligoadenylate Synthetase.  2’,5’-oligoadenylate synthetase (OAS) is 

induced by Type I and –II IFNs and polymerizes ATP into 2’-5’ linked oligomers in 

order to bind and activate RNase L which can destroy intracellular viral RNAs.  Further, 

OAS is involved in antiviral activity, cell growth, differentiation, and apoptosis (164-

166).  In the ovine uterus, OAS is expressed only in the stroma and deep GE in response 

to IFNT and P4 during early pregnancy (141, 147) 
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RSAD2.  Radical S-adenosyl methionine domain containing 2 (RSAD2), also 

known as viperin, is a cytoplasmic antiviral protein that consists of 361 amino acids, and 

is encoded for by a gene which contains putative IRF binding sites in the promoter 

region (167, 168).  In humans, stable expression of RSAD2 in fibroblasts inhibits human 

cytomegalovirus infection (167), and it is also a potential antiviral effector expressed in 

patients with atherosclerosis (169) and chronic hepatitis C virus (170). Chin et al. 

reported that RSAD2 expression is greater in response to Type I than Type II IFN 

(IFNG) and that it may have an antiviral function (167). 

MDA5 (IFIH1).  Melanoma differentiation associated gene 5 (MDA5 also 

known as IFIH1) is a dsRNA-dependent ATPase that responds predominantly to Type I 

IFNs, similar to RSAD2, and is known to be induced during differentiation, cancer 

reversion, and programmed cell death (171, 172).  The IFIH1 gene contains both CARD 

and RNA helicase motifs and acts as a positive regulator to sense intracellular viral 

infection and stimulate innate antiviral responses including the production of Type I IFN 

(171, 173).  The V proteins of a wide variety of paramyxoviruses bind IFIH1 and inhibit 

its ability to activate the IFNB promoter (174).  Further, IFNB promoter stimulator 1, 

which can induce Type I IFN and IFN-inducible genes through activation of IRF3, IRF7 

and NF-�B transcription factors, is known as an adaptor during IFIH1-mediated antiviral 

immune response (175). 

 

Representative STAT1-Independent ISGs 

Wingless-Type Mouse Mammary Tumor Virus Integration Site Family, 

Member 7A (WNT7A).  Most members of the WNT family are involved in embryonic 

cell growth, development, and differentiation during pregnancy and also in maternal-

fetal interactions during implantation (176).  In the ovine uterus, Wingless-type mouse 

mammary tumor virus integration site family, member 7A (WNT7A) is the only gene 

induced by IFNT during early pregnancy and expressed only in LE and sGE (156).  

Ovine endometrial WNT7A may activate the canonical WNT signaling pathway to 

stimulate proliferation and differentiation of conceptus trophectoderm, and it may also 
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regulate important genes for uterine receptivity for implantation and conceptus survival 

(177). 

Galectin-15 (LGALS15).  Galectins are widely distributed in a variety 

mammalian species, as well as non-mammalian species including birds, fish, and 

amphibians (178).  They are members of a superfamily of �-galactoside binding lectins 

that bind �-galactoside via a CRD (carbohydrate recognition domain) (179).  In sheep, 

LGALS15 was identified as the novel 14 kDa form of a P4-modulated protein associated 

with crystalline inclusion bodies in endometrial LE and conceptus trophectoderm (180).  

In the ovine uterus, LGALS15 mRNA is expressed only in endometrial LE and sGE 

where it was induced by P4 and stimulated by IFNT.  In addition, LGALS15 protein had 

a nucleocytoplasmic distribution within the LE and sGE and was also concentrated near 

and on the apical surface (157).  Therefore, LGALS15 was secreted into the uterine 

lumen by the LE and sGE, where it may promote adhesion during implantation, as well 

as was phagocytosed by the trophectoderm and formed intracellular crystals (157, 181). 

 

Cathepsin L (CTSL) and Cystatin C (CST3) 

CTSL 

Cathepsins (CTS) are a family of lysosomal proteinases that are active in an 

acidic environment (182).  They can degrade extracellular matrix (ECM) molecules, 

including collagens, laminin, fibronectin and proteoglycans and are also involved in 

catabolism of intracellular proteins and processing of pro-hormones.  Available evidence 

supports the concept that a variety of proteases, as well as their specific inhibitors 

regulate trophoblast invasion in many species (e.g. mouse, rat, cat, pig, and human) 

during conceptus implantation (183-190).  CTSL is normally localized in lysosomes 

where it plays a major role in intracellular protein catabolism.  In rodents, interactions 

between Ctsb, Ctsl, and Cst3 (Ctsb and Ctsl inhibitors) are important for implantation 

and placentation, because inhibition of endometrial Ctsb and Ctsl results in abnormal 

embryonic development and uterine decidualization during the peri-implantation period 

(183).  In cats, CTSL is localized to the GE and can be detected in the uterine lumen 
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where it is implicated in blastocyst invasion (185).  In pigs, CTSL is expressed in the 

endometrial GE and is a P4-regulated component of the uterine lumen during 

implantation and placentation (188).   

 

CST3 

Cystatin C (CST3) is a secreted inhibitor of lysosomal cysteine proteases 

cathepsin B (CTSB) and cathepsin L (CTSL) (191-194).  In mice, Ctsb and Ctsl are 

necessary for normal embryonic development and uterine decidualization, and the 

decidua coordinately expresses Cst3 to control Ctsb and Ctsl actions within the 

implantation site (183).  A variety of proteases, as well as their inhibitors, regulate 

endometrial remodeling and trophoblast invasion in many species (e.g. mouse, rat, cat, 

sheep, pig, and human) during conceptus implantation and placentation.   

 

Stanniocalcin (STC) 

Stanniocalcin (STC) was originally described as a hormone with calcitonin-like 

actions in fish (195-198).  The hormone was discovered in the corpuscles of Stannius, 

unique endocrine glands on the kidneys of bony fish (199).  Removal of the organ or 

stanniectomy causes hypercalcemia (200, 201).  Fish STC1 was subsequently purified 

from the corpuscles of Stannius and found to be a homodimeric phosphoglycoprotein 

that regulates calcium and phosphate homeostasis (202).  In fish, STC synthesis and 

secretion are controlled primarily by serum calcium levels (199) and it acts to restore 

normocalcemia by acting on the gills to reduce further influx of calcium from the aquatic 

environment, on the kidneys to promote reabsorption of phosphate and chelate excess 

calcium, and on the gut to inhibit calcium uptake across the intestinal epithelium (196, 

197, 199, 202, 203) .   

STC1, a mammalian ortholog of fish STC1, has relatively high amino acid 

sequence identity (approximately 50%) with fish STC and is expressed in a variety of 

tissues including brain, kidney, lung, and heart (204).  STC2 has lower identity 

(approximately 35%) with STC1 and fish STC1 (205).  Similar to STC1, STC2 is 
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expressed in a variety of tissues.  Research into the functions of STCs in mammals is at 

an early stage; therefore, its physiological roles have not been established [see for review 

(195, 206-208)].  Similar to fish STC, mammalian STC1 regulates intracellular calcium 

and phosphate (Pi) levels in the kidney and intestine (199, 209), but the function of 

STC2 is unknown.  Mammalian STC1 regulates renal transport of phosphate through 

stimulation of NaPi-2 cotransport activity (196, 210-212).  In rodents, Stc1 expression 

increases in ovarian tissues during gestation and lactation (213), as well as in 

mesometrial decidua of the uterus during implantation (214).  In the rat ovary, STC1 and 

STC2 are expressed in ovarian theca/interstitial cells and in vitro studies suggest that 

they act in a paracrine manner to dampen gonadotropin stimulation of granulosa cell 

differentiation (205, 215).  In mice, Stc1 does not appear to be essential for reproduction 

or growth as null mutatnts have no overt phenotype (216); however, in that study, Stc2 

was found in all tissues that normally express Stc1 and may compensate for the lack of 

Stc1.         
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CHAPTER III 

CATHEPSINS IN THE OVINE UTERUS: REGULATION BY  

PREGNANCY, PROGESTERONE, AND INTERFERON TAU 

 

Introduction 

Cathepsins (CTS) are a family of lysosomal proteinases active in an acidic 

environment (182).  They have the ability to degrade extracellular matrix (ECM) 

molecules, including collagens, laminin, fibronectin and proteoglycans, and are also 

involved in the catabolism of intracellular proteins and pro-hormone processing.  A 

member of the cysteine proteinase family, CTSB, can activate matrix metalloproteinases 

(MMPs) and urokinase type plasminogen activator (uPA) (217) and the closely-related 

CTSL can cleave pro-uPA into the active form (217).  On the other hand, inactive 

precursors of these CTS can be activated by MMPs (182).  In humans, CTSB, CTSH, 

CTSK, CTSL and CTSS are expressed in the proliferative and secretory phase 

endometria and appear to be required for normal uterine development and function as 

well as menstruation (190).  Available evidence supports the concept that a variety of 

proteases as well as their specific inhibitors regulate trophoblast invasion in many 

species (e.g. mouse, rat, cat, pig, and human) during conceptus implantation (183-190).  

Specifically, these studies implicate CTS in regulation of uterine receptivity for 

implantation and trophoblast invasion in a number of mammals (see (218-220) for 

review).       

Regulation of CTS expression in the ovine uterus and conceptus has not been 

reported.  Trophoblast invasion in ruminants (sheep, cattle, goats) is limited to fusion of 

migrating binucleate cells with uterine epithelium, but considerable tissue remodeling 

and angiogenesis occurs within the endometrium at implantation which is associated 

with the cysteine and serine proteases and production of MMPs by the endometrium and 

conceptus (221, 222).  Endometrial function during this period of pregnancy appears to 

be primarily regulated by progesterone from the corpus luteum and hormones from the 

conceptus, including interferon tau (IFNT) (223, 224).  IFNT is the signal for maternal 
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recognition of pregnancy in ruminants and is produced between Days 10 and 21 to 25 of 

pregnancy in sheep by the mononuclear trophoblast cells of the conceptus (1, 225).  In 

sheep, IFNT acts in a paracrine manner on endometrial epithelia to inhibit transcription 

of the estrogen receptor alpha and oxytocin receptor genes (8, 225), thereby preventing 

endometrial release of luteolytic pulses of prostaglandin F2� (226).  The antiluteolytic 

actions of IFNT are required for maintenance of a functional corpus luteum and 

secretion of progesterone, the essential hormone of pregnancy (226).  IFNT also induces 

or stimulates expression of a number of genes in the endometrium that are hypothesized 

to play important biological roles in conceptus implantation (227).  This study 

determined effects of the estrous cycle, pregnancy, progesterone and IFNT on expression 

of selected CTS genes in the ovine endometrium.  Results indicated that a number of 

CTS genes are expressed in the endometrium and conceptus during early pregnancy and 

regulated by progesterone and/or IFNT.  In particular, CTSL was found to be novel gene 

stimulated by progesterone and IFNT only in endometrial luminal (LE) and superficial 

ductal glandular epithelia (sGE). 

   

Materials and Methods 

Animals 

Mature crossbred Suffolk ewes (Ovis aries) were observed daily for estrus in the 

presence of vasectomized rams and used in experiments only after they had exhibited at 

least two estrous cycles of normal duration (16-18 days).  All experimental and surgical 

procedures were in compliance with the Guide for the Care and Use of Agriculture 

Animals and approved by the University Laboratory Animal Care and Use Committee of 

Texas A&M University. 

 

Experimental Design 

Study One.  At estrus (Day 0), ewes were mated to either an intact or 

vasectomized ram as described previously (228) and then hysterectomized (n = 5 

ewes/day) on either Day 10, 12, 14 or 16 of the estrous cycle or Day 10, 12, 14, 16, 18 or 
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20 of pregnancy.  Pregnancy was confirmed on Days 10 to 16 post-mating by the 

presence of a morphologically normal conceptus(es) in the uterus.  At hysterectomy, 

several sections (~0.5 cm) from the mid-portion of each uterine horn ipsilateral to the 

corpus luteum were fixed in fresh 4% paraformaldehyde in PBS (pH 7.2). After 24 h, 

fixed tissues were changed to 70% ethanol for 24 h and then dehydrated and embedded 

in Paraplast-Plus (Oxford Labware, St. Louis, MO).  Several sections (1–1.5 cm) from 

the middle of each uterine horn were embedded in Tissue-Tek OCT compound (Miles, 

Oneonta, NY), frozen in liquid nitrogen vapor, and stored at -80°C.  The remaining 

endometrium was physically dissected from myometrium, frozen in liquid nitrogen, and 

stored at -80°C for subsequent RNA or protein extraction.  In monovulatory pregnant 

ewes, uterine tissue samples were marked as either contralateral or ipsilateral to the 

ovary bearing the corpus luteum.  No tissues from the contralateral uterine horn were 

used for study.  Uterine flushes were clarified by centrifugation (3,000 x g for 30 min at 

4°C) and frozen at -80°C for Western blot analysis. 

 Study Two.  Cyclic ewes (n=20) were checked daily for estrus and then 

ovariectomized and fitted with indwelling uterine catheters on Day 5 as described 

previously (229).  Ewes were then assigned randomly (n=5 per treatment) to receive 

daily intramuscular (i.m.) injections of progesterone and/or a progesterone receptor 

(PGR) antagonist (ZK 136,317; Schering AG, Germany) and intrauterine (i.u.) infusions 

of control serum proteins and/or recombinant ovine IFNT protein as follows: (1) 50 mg 

progesterone (P4, Days 5 to 16) and 200 �g control (CX) serum proteins (Days 11 to 16) 

[P4+CX]; (2) P4 and 75 mg ZK 136,317 (Days 11 to 16) and CX proteins [P4+ZK+CX]; 

(3) P4 and IFNT (2 x 107 antiviral units, Days 11 to 16) [P4+IFN]; or (4) P4 and ZK and 

IFNT [P4+ZK+IFN].  Steroids were administered daily in corn oil vehicle.  Both uterine 

horns of each ewe received twice daily injections of either CX proteins (50 

µg/horn/injection) or IFNT (5 x 106 antiviral units/horn/injection).  Recombinant ovine 

IFNT was produced in Pichia pastoris and purified as described previously (230).  

Proteins were prepared for intrauterine injection as described previously (229).  This 

regimen of progesterone and roIFNT mimics the effects of progesterone and the 
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conceptus on endometrial expression of hormone receptors and IFNT-stimulated genes 

during early pregnancy in ewes (148, 156, 231).  All ewes were hysterectomized on Day 

17, and the uteri and endometria processed as described in Study One. 

 

RNA Isolation  

Total cellular RNA was isolated from frozen ipsilateral endometrium (Study One 

and Two) using Trizol reagent (Gibco-BRL, Bethesda, MD) according to manufacturer’s 

recommendations.  The quantity and quality of total RNA was determined by 

spectrometry and denaturing agarose gel electrophoresis, respectively.   

 

Cloning of Partial cDNAs for Ovine CTSB, K, L, H, S, D and Z 

Partial cDNAs for ovine CTSB, CTSD, CTSK, CTSL, CTSH, CTSS, and CTSZ 

mRNAs were amplified by RT-PCR using total RNA from endometrial tissues from 

Days 16 to 18 of pregnancy using specific primers.  PCR amplification was conducted as 

follows for ovine CTSB, K, L, H, S, D and Z : a) 95°C for 5 min; b) 95°C for 45 sec, 

59.1°C (for CTSB and CTSH) or 56.5°C (for CTSD, CTSK, CTSL, and CTSZ) or 

64.5°C (for CTSS) for 1 min, and 72°C for 1 min for 35 cycles; and c) 72°C for 10 min.  

Partial cDNAs of the correct size were cloned into pCRII using a T/A Cloning Kit 

(Invitrogen) and their sequences verified by sequencing.  

 

Slot Blot Hybridization Analyses 

Steady-state levels of mRNA in ovine endometria were assessed by slot blot 

hybridization as described previously (125, 232).  Radiolabeled antisense and sense 

cRNA probes were generated by in vitro transcription using linearized plasmid template, 

RNA polymerases, and [α-32P]-UTP.  Denatured total endometrial RNA (20 µg) from 

each ewe in Studies One and Two was hybridized with radiolabeled cRNA probes.  To 

correct for variation in total RNA loading, a duplicate RNA slot membrane was 

hybridized with radiolabeled antisense 18S cRNA (pT718S; Ambion, Austin, TX).  

Following washing, the blots were digested with ribonuclease A and radioactivity 
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associated with slots quantified using a Typhoon 8600 MultiImager (Molecular 

Dynamics, Piscataway, NJ).  Data are expressed as relative units (RU). 

 

In Situ Hybridization Analyses 

Location of mRNA expression in sections (5 µm) of the ovine uterus was 

determined by radioactive in situ hybridization analysis as described previously (125, 

232).  Radiolabeled antisense and sense cRNA probes were generated by in vitro 

transcription using linearized plasmid template, RNA polymerases, and [α-35S]-UTP.  

Deparaffinized, rehydrated and deproteinated uterine tissue sections were hybridized 

with radiolabeled antisense or sense cRNA probes.  After hybridization, washing and 

ribonuclease A digestion, slides were dipped in NTB-2 liquid photographic emulsion 

(Kodak, Rochester, NY), and exposed at 4°C for two weeks.  Slides were developed in 

Kodak D-19 developer, counterstained with Gill’s hematoxylin (Fisher Scientific, 

Fairlawn, NJ), and then dehydrated through a graded series of alcohol to xylene.  

Coverslips were then affixed with Permount (Fisher).  Images of representative fields 

were recorded under brightfield or darkfield illumination using a Nikon Eclipse 1000 

photomicroscope (Nikon Instruments Inc., Lewisville, TX) fitted with a Nikon 

DXM1200 digital camera. 

 

Immunohistochemistry 

Immunocytochemical localization of immunoreactive CTSL protein in the ovine 

uterus was performed as described previously (229) in uterine tissue cross sections from 

Studies One and Two using rabbit anti-human CTSL polyclonal antibody (Catalog # 

3192-100; BioVision, Mountain View, CA) at a final concentration of 1 µg per ml.  

Antigen retrieval was performed by using boiling citrate buffer as described previously 

(233).  Negative controls included substitution of the primary antibody with non-

immune rabbit IgG (Sigma Chemical Co., St. Louis, MO) at the same final concentration. 
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Western Blot Analyses 

Protein concentrations of uterine flushes were determined using the Bradford 

protein assay (Bio-Rad, Hercules, CA) with bovine serum albumin (BSA) as the 

standard.  Proteins were denatured and separated by 12% SDS-PAGE, and Western blot 

analysis conducted as described previously (228) by using enhanced chemiluminescence 

(SuperSignal West Pico, Pierce, Rockford, IL) and X-OMAT AR X-ray film (Kodak, 

Rochester, NY) according to the manufacturer’s recommendations.  Immunoreactive 

CTSL protein was detected using rabbit anti-human CTSL polyclonal antibody (Catalog 

# 3192-100; BioVision, Mountain View, CA) at 0.5 µg per ml. 

 

Statistical Analyses 

Data from slot blot hybridization analyses were subjected to least-squares 

analysis of variance (LS-ANOVA) using the General Linear Models procedures of the 

Statistical Analysis System (Cary, NC).  Slot blot hybridization data were corrected for 

differences in sample loading using the 18S rRNA data as a covariate.  Data from Study 

One were analyzed for effects of day, pregnancy status (cyclic or pregnant), and their 

interaction.  Effects of day were determined by least squares regression analysis.  Data 

from Study Two were analyzed using preplanned orthogonal contrasts (P4+CX versus 

P4+IFN, P4+CX versus P4+ZK+CX, and P4+IFN versus P4+ZK+IFN).  Data are 

presented as least squares means (LSM) with overall standard errors (SE).   

 

Results 

Effects of Estrous Cycle and Pregnancy on Expression of CTS mRNAs in Ovine 

Endometrium (Study One) 

Steady-state levels of ovine CTSB, CTSD, CTSH, CTSK, CTSL, CTSS, and CTSZ 

mRNAs in endometria from cyclic (C) and pregnant (PX) ewes were determined by slot 

blot hybridization analyses (Fig. 3.1).  Expression of CTSB mRNA was lowest on Day 

10 and increased to Days 16 or 20 in C and PX ewes, respectively (linear effect of day, 

P<0.01).  Endometrial levels of CTSD mRNA did not change in C ewes, but increased  
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Fig. 3.1.  Steady-state levels of CTSB, CTSD, CTSH, CTSK, CTSL, CTSS, and CTSZ 
mRNAs in endometria from cyclic and pregnant ewes determined by slot blot analysis.  
See text for description of effects of day of the estrous cycle (C) or pregnancy (PX) on 
mRNA levels in the endometrium.   
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from Days 10 to 20 in PX ewes (linear effect of day, P<0.01).  CTSH mRNA levels 

increased from Days 10 to 14 in C ewes and from Days 10 to 20 in PX ewes (linear 

effect of day, P<0.01).  In contrast, CTSK mRNA did not change (P>0.10) in endometria 

of C and PX ewes.  CTSL mRNA was affected (P<0.05) by day, status, and their 

interaction.  In C ewes, CTSL mRNA increased from Days 10 to 14 and then decline to 

Day 16 (quadratic effect of day, P<0.05).  In PX ewes, CTSL mRNA increased about 8-

fold between Days 10 and 18 (linear effect of day, P<0.01).  Further, CTSL mRNA 

levels in the endometrium were greater on Days 14 and 16 in PX than C ewes (day x 

status, P<0.05).  Endometrial CTSS and CTSZ mRNA levels were not affected by 

pregnancy status or day or their interaction (P>0.10).     

 In situ hybridization analyses determined the location of CTS gene expression in 

endometria.  In C and PX ewes, CTSB mRNA was detected in the endometrial luminal 

epithelium (LE), superficial ductal glandular epithelium (sGE), stratum compactum 

stroma, and in cells distributed throughout the stroma that appeared to be immune cells 

based on their morphology (Fig. 3.2).  Abundant CTSB mRNA was detected in the 

trophectoderm of the conceptus.  CTSD mRNA was expressed at low levels in the 

endometrial LE and sGE, however abundant CTSD mRNA was detected in the 

trophectoderm of the conceptus.  CTSH mRNA was expressed at moderate levels in the 

endometrial LE and GE, particularly on Days 18 and 20 in PX ewes.  In C and PX ewes, 

CTSK mRNA was expressed at moderate levels in the endometrial LE and stroma as 

well as in cells within the stroma that appeared to be immune cells based on their 

morphology and location.   

CTSL mRNA was the most abundant CTS genes expressed in the endometrium 

and it was detected only in endometrial LE and sGE (Fig. 3.3).  Further, CTSL mRNA 

was expressed by conceptus trophectoderm on Days 18 and 20 of PX.  CTSS mRNA was 

detected at low levels in the endometrial LE and in cells within the stroma that appeared 

to be immune cells based on their morphology and distribution.  The number of CTSS 

mRNA-positive immune-like cells increased between Days 14 and 16 of pregnancy.  

CTSZ mRNA was detected at low levels specifically in the endometrial LE and sGE, as  
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Fig. 3.2.  In situ hybridization analyses of CTSB, CTSD, CTSH and CTSK mRNAs in 
uteri of cyclic and pregnant ewes.  Cross-sections of the uterine wall from cyclic (C) and 
pregnant (PX) ewes were hybridized with radiolabeled antisense or sense ovine CTS 
cRNA probes. Legend: C, conceptus; LE, luminal epithelium; GE, glandular epithelium; 
S, stroma.  Scale bar represents 10 µm. 
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Fig. 3.3.   In situ hybridization analyses of CTSL, CTSS, and CTSZ mRNAs in uteri of 
cyclic and pregnant ewes.  Cross-sections of the uterine wall from cyclic (C) and 
pregnant (PX) ewes were hybridized with radiolabeled antisense or sense ovine CTS 
cRNA probes. Legend: C, conceptus; LE, luminal epithelium; GE, glandular epithelium; 
S, stroma; sGE, superficial ductal GE.  Scale bar represents 10 µm.  
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well as conceptus trophectoderm on Days 18 and 20 of pregnancy.  No differences in 

expression of CTS mRNAs in the LE or stroma of the intercaruncular endometria were 

found when compared to the caruncular endometria in the uterus of either cyclic or 

pregnant ewes (data not shown). 

Collectively, results of slot blot and in situ hybridization analyses indicated that 

CTSL mRNA was the most abundant CTS gene expressed in the endometrium and the 

only CTS in the endometrium that appeared to be regulated by progesterone and a 

product of the conceptus.  Therefore, CTSL protein was studied in the uterus. 

 

CTSL Protein in the Endometrium and Uterine Lumen (Study One) 

Consistent with in situ hybridization analyses, immunoreactive CTSL protein 

was observed predominantly in the LE and sGE in the endometrium of C and PX ewes 

(Fig. 3.4A).  In pregnant ewes, the amount of immunoreactive CTSL protein increased 

from Days 10 to 16 and was observed predominantly near the apical surface of the LE.  

Less immunoreactive CTSL protein was detected in the stroma and conceptus 

trophectoderm. 

Western blot analyses detected abundant levels of the 38-40 kDa form of pro-

CTSL in the uterine flushings from pregnant, but not cyclic ewes (Fig. 3.4B).  Further, 

the cleaved and active forms of CTSL, made up of 21 and 5 kDa subunits, were also 

detected at very low abundance in uterine flushings from pregnant ewes.   

 

Effects of Progesterone and IFNT on Endometrial CTS Expression (Study Two) 

In order to determine if progesterone (P4) and IFNT regulated CTS gene 

expression in the endometrium, a study was conducted as described in the Materials and 

Methods (Fig. 3.5A).  As illustrated in Fig. 3.5B, treatment with P4 increased CTSL 

mRNA in the endometrium (P4+CX vs P4+ZK+CX, P<0.001) which was further 

stimulated by about 3-fold in ewes receiving intrauterine administration of roIFNT 

(P4+CX vs P4+IFN, P<0.01), but roIFNT did not stimulate CTSL mRNA in ewes 

receiving the ZK anti-progestin (P4+IFN vs P4+ZK+IFN, P>0.10).    
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Fig. 3.4. CTSL protein in endometria and uterine flushings from cyclic and pregnant 
ewes from Study One.  (A) Immunoreactive CTSL protein was localized in sections of 
the uterus using a rabbit anti-human CTSL polyclonal antibody.  For the IgG control, 
normal rabbit IgG was substituted for the primary antibody. Sections were not 
counterstained. Legend: C, conceptus; LE, luminal epithelium; GE, glandular 
epithelium; S, stroma.  Scale bar represents 10 µm.  (B) Representative Western blot 
analysis of CTSL in uterine flushings.  Proteins in uterine flushings were analyzed by 
12% SDS-PAGE (10 µg/lane), and immunoreactive protein was detected by Western 
blot analysis using rabbit anti-human CTSL polyclonal antibody that detects both the 
proenzyme and the mature forms of CTSL.    
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Fig. 3.5.  Effects of progesterone and IFNT on CTSL mRNA and protein in the uterus 
(Study Two).  (A) Experimental design.  See Materials and Methods for complete 
description.  Legend: CX, control serum proteins; Hystx, hysterectomy; Ovx/Cath, 
ovariectomy and uterine catheterization; P4, progesterone; roIFNT, recombinant ovine 
interferon tau; ZK, ZK137,316 anti-progestin.  (B) Steady-state levels of CTSL mRNA 
in the endometria were determined by slot blot hybridization analysis.  Treatment with 
P4 increased CTSL mRNA in the endometrium (P4+CX vs P4+ZK+CX, P<0.001) which 
was further stimulated by about 3-fold in ewes receiving intrauterine administration of 
roIFNT (P4+CX vs P4+IFN, P<0.01), but roIFNT did not stimulate CTSL mRNA in 
ewes receiving the ZK anti-progestin (P4+IFN vs P4+ZK+IFN, P>0.10).   (C) In situ 
hybridization analysis of CTSL mRNA expression. Cross-sections of the uterine wall 
from treated-ewes were hybridized with radiolabeled antisense or sense ovine CTSL 
cRNA probes. Legend: LE, luminal epithelium; GE, glandular epithelium; S, stroma; C, 
conceptus. Bar represents 10 µm. 
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In situ hybridization analyses revealed that CTSL mRNA was only expressed 

abundantly in the endometrial LE and sGE of ewes treated with P4 (P4+CX and 

P4+IFN) (Fig. 3.5C).   

Endometrial CTSB mRNA was stimulated by P4 (P4+CX vs P4+ZK+CX, 

P<0.02), but decreased by roIFNT in ewes receiving P4 (P4+CX vs P4+IFN, P<0.01), 

whereas roIFNT increased CTSB mRNA in ewes receiving P4 and ZK (P4+ZK+CX vs 

P4+ZK+IFN, P<0.04) (Fig. 3.6).  Expression of CTSD mRNA was not affected (P>0.10) 

by steroid or intrauterine roIFNT treatment.  Endometrial CTSH mRNA was increased 

by IFNT (P4+CX vs P4+IFN, P<0.001), but not affected by other treatments (P>0.10).  

CTSK mRNA was decreased by P4 (P4+CX vs P4+ZK+CX, P<0.02), but increased by 

roIFNT in ewes receiving P4 (P4+CX vs P4+IFN, P<0.01) or P4+ZK (P4+ZK+CX vs 

P4+ZK+IFN, P<0.001).  CTSS mRNA was also stimulated by P4 (P4+CX vs 

P4+ZK+CX, P<0.02).  In ewes receiving P4 only, roIFNT decreased CTSS mRNA in the 

endometrium (P4+CX vs P4+IFN, P=0.06).  CTSZ mRNA was slightly stimulated by P4 

(P4+CX vs P4+ZK+CX, P<0.05) and increased by roIFNT in ewes receiving P4 alone 

(P4+CX vs P4+IFN, P<0.01) or P4+ZK (P4+ZK+CX vs P4+ZK+IFN, P<0.01).   

 

Discussion 

         Similar to endometria of other mammals, expression of many CTS genes was 

detected in endometria of cyclic and early pregnant ewes.  The CTS family of cysteine 

and aspartyl proteases as well as other proteases, including MMPs and serine proteases, 

are implicated in the degradation of ECM required for uterine remodeling during 

decidualization, implantation and placentation (219, 221).  In rodents, for example, it has 

been hypothesized that CTS play a crucial role in digestion of matrix molecules and 

activation of other pro-enzymes responsible for intracellular breakdown of molecules 

that are phagocytosed by cells (183).  The dynamic and differential expression of CTS 

genes between cyclic and pregnant ewes suggests functional diversity in mechanisms 

responsible for expression of CTS genes that may be responsible for optimization of a 

uterine environment that supports conceptus implantation and placentation during  
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Fig. 3.6. Steady-state levels of CTSB, CTSD, CTSH, CTSK, CTSS, and CTSZ mRNA in 
endometria from ewes in Study Two.  Steady-state levels of mRNA in endometria from 
treated ewes were determined by slot blot analysis.  See text for description of effects of 
treatment on mRNA levels in the endometrium.  The asterisk (*) denotes an effect of 
treatment (P<0.10). 
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establishment and maintenance of pregnancy (222).  In the present study, cysteine 

proteases CTSB, CTSH, CTSK, CTSL, CTSS and CTSZ and aspartyl protease CTSD 

were found to be expressed in the ovine endometrium, and expression of CTSB, CTSD, 

CTSH, CTSL and CTSZ mRNA increased between Days 10 and 20 of early pregnancy.  

Consistent with above results, CTSL protein in the porcine uterus was observed in 

endometrial GE as well as in the uterine lumen and induced by progesterone during the 

periods of implantation and placentation (188).  Interestingly, the ovine placenta 

expresses large numbers of aspartic proteinase inhibitor genes, termed pregnancy-

associated glycoproteins (234), and the endometrial glands express large amounts of 

serine protease inhibitors, termed serpins or uterine milk proteins (64), that could 

regulate the activity of endometrial CTS identified in the present study.  Therefore, the 

molecular control of expression of CTS in the ovine endometrium may play an important 

role in establishing a regulatory network of multiple proteolytic enzymes responsible for 

ECM remodeling during implantation and placentation.  Although decidualization of the 

endometrial stroma does not occur in sheep, the endometrium undergoes dramatic 

remodeling after pregnancy recognition and establishment between Days 12 to 20 of 

early pregnancy.  In the intercaruncular endometrium, the endometrial epithelium is 

removed by the trophoblast giant binucleate cells during synepitheliochorial placentation, 

the stroma becomes very compact and begins to express new genes such as osteopontin, 

and the glands undergo hypertrophy followed by hyperplasia (235-238).  In the 

caruncular endometrium, the placental cotyledons attach to the maternal caruncles and 

develop into placentomes (237).  These morphogenetic and differentiation events 

undoubtedly involve regulation by CTS and extensive remodeling of the ECM. 

 The present studies found that CTSL mRNA was particularly abundant in the 

endometrial LE and sGE and up-regulated during early pregnancy in association with 

conceptus elongation and implantation (224).   CTSL is normally localized in lysosomes, 

where it plays a major role in intracellular protein catabolism.  In the present studies, the 

38-40 kDa latent pro-CTSL form of CTSL protein was abundant in uterine flushings 

from Day 12, 14 and 16 pregnant ewes.  This latent pro-CTSL must be cleaved by 
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proteases, such as MMPs, to generate the active two-chain form made up of 21 and 5 

kDa subunits (182).  The presence of the pro-CTSL in uterine flushings from pregnant 

ewes between Days 12 to 16 of pregnancy suggests that CTSL is secreted by the 

endometrial LE and/or conceptus.  Indeed, the synthesis and secretion of the 39 kDa pro-

CTSL has been demonstrated for many tumors, including cancers of the kidney, lung, 

colon, breast and ovary (239).  In rodents, interactions of CTSB, CTSL, and cystatin C, a 

CTSL inhibitor, are important for implantation and placentation, because inhibition of 

endometrial CTSL and CTSB results in abnormal embryonic development and uterine 

decidualization during the peri-implantation period (183).  Invasion by the ectoplacental 

cone of mouse trophoblast was prevented by cysteine proteinase inhibitors in vitro (240).  

Recently, Cheon and coworkers (241) found that cytotoxic T-lymphocyte antigen-2� 

(CTLA-2�), a cysteine protease inhibitor, was up-regulated by progesterone in the 

decidua and proposed to regulate blastocyst implantation by neutralizing the activities of 

one or more proteases, including CTSL, generated by the proliferating trophoblast.  

CTSL has been studied in uteri of cats (186, 187), pigs (188), and mice (183, 242).  In 

cats, CTSL is localized to the GE and can be detected in the uterine lumen, where it is 

implicated in blastocyst invasion (185).  In pigs, CTSL was also found to be expressed in 

the endometrial GE and as a progesterone-regulated component of the uterine lumen 

during implantation and placentation (188).  Thus, available results suggest that CTSL 

may be an essential regulator of endometrial remodeling and conceptus implantation 

during pregnancy in sheep as well as many other mammals.  CTSL is capable of 

degrading ECM proteins, suggesting a role in conceptus attachment by altering the 

composition of the ECM present on the apical surfaces of the endometrial LE and/or 

trophoblast.      

In the present study, temporal changes in expression of endometrial CTSL 

mRNA in cyclic and pregnant ewes supported the hypothesis that ovarian progesterone 

regulates transcription of the CTSL gene in the endometrial LE.  Similarly, an increase 

CTSB, CTSD, CTSH, and CTSZ was also observed in the endometrium during early 

pregnancy.  The increase in CTSL and CTSZ mRNAs in LE and sGE, between Days 10 
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and 12 post-estrus/mating, and CTSH mRNA in LE and GE, between Days 14 and 16 

post-mating, is coincident with the disappearance of PGR mRNA and protein in these 

epithelia (10).  Similarly, the decrease in CTSL and CTSZ mRNAs between Days 14 and 

16 of the cycle is coincident with the reappearance of PGR protein in endometrial LE.  

In Study Two, CTSL mRNA was detected in endometrial LE and sGE of ovariectomized 

ewes treated with progesterone for 12 days, but this expression was prevented by 

administration of the PGR antagonist ZK 136,317.  Continuous exposure of the sheep 

uterus to progesterone for 8 to 10 days down-regulates PGR expression in endometrial 

LE and sGE, but not stroma or myometrium (231).  PGR are present in the endometrial 

epithelia of P4+ZK-treated sheep (243), because PGR antagonists prevent the inhibitory 

effects of progesterone on the PGR gene expression.  Consequently, progesterone 

modulation of CTSL mRNA may be attributed, at least in part, to down-regulation of 

PGR by progesterone that occurs in LE and sGE between Days 10 and 12 of the cycle 

and pregnancy (223).  Thus, PGR loss in endometrial epithelia may reprogram these 

cells, allowing them to increase expression of genes associated with implantation (223, 

224).  Alternatively, progesterone may act on PGR-positive stromal cells to induce them 

to express growth factors or changes in the ECM that regulate expression of selected 

epithelial genes (223).   

In addition to regulation by progesterone, the present studies indicate that CTSH, 

CTSK, CTSL and CTSZ are regulated by IFNT.  IFNT is the pregnancy recognition 

hormone in sheep that acts on the endometrium to prevent development of the luteolytic 

mechanism, thereby maintaining the CL and production of progesterone (223).  Of 

particular note, CTSL is a novel gene stimulated by IFNT in endometrial LE and sGE as 

expression between Days 10 and 18 of early pregnancy parallels the increase in 

production of IFNT by the elongating conceptus, which is maximal on Day 16 (244).  In 

Study Two, intrauterine administration of roIFNT increased CTSL mRNA, but only in 

progesterone-treated ewes.  One hypothesis is that IFNT can only stimulate transcription 

of the CTSL gene in the absence of repression by liganded PGR.  Alternatively, the 

PGR-positive stroma may produce a ‘progestamedin’ that is also required for LE and 
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sGE to respond to IFNT (223).  The signaling pathway whereby IFNT regulates 

transcription of the CTSL gene is not known, but it clearly does not involve the classical 

JAK-STAT signaling pathway (1, 125, 156, 223).  To date, WNT7A and LGALS15 

(galectin-15) are the only other genes identified in endometrial LE and sGE that are 

induced or stimulated by IFNT, respectively (156, 245).  Thus, the diverse actions of 

IFNT on the endometrium include repression of genes, including ESR1, to abrogate 

activation of the luteolytic mechanism, as well as stimulation of genes that are critical to 

implantation, placentation and conceptus growth and development (223).  Knowledge of 

mechanisms whereby IFNT stimulates CTSL gene expression in the endometrial LE and 

sGE is expected to unravel a non-classical signaling pathway for Type I IFNs.  Future 

studies will focus on the role of CTSL, other CTS family members and their inhibitors in 

endometrial remodeling and conceptus implantation and placentation.   
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CHAPTER IV 

PROGESTERONE AND INTERFERON TAU REGULATE CYSTATIN C  

IN THE ENDOMETRIUM 

 

Introduction 

A variety of proteases, as well as their inhibitors, regulate endometrial 

remodeling and trophoblast invasion in many species (e.g. mouse, rat, cat, sheep, pig, 

and human) during conceptus (embryo/fetus and associated extraembryonic membranes) 

implantation and placentation (219, 220, 246-248).  Cathepsins are a family of lysosomal 

proteinases which can degrade extracellular matrix (ECM) molecules and influence 

catabolism of intracellular proteins and pro-hormone processing (249).  Cystatin C 

(CST3) is a low molecular weight secretory protein that functions as an inhibitor of 

lysosomal cysteine proteinases, including cathepsins B (CTSB) and L (CTSL) (191-194).  

In mice, CTSB and CTSL are necessary for normal embryo development and uterine 

decidualization, and the decidua coordinately expresses CST3 presumably to control 

cathepsin actions within the implantation site (183).  We recently reported expression of 

CTSB, CTSD, CTSH, CTSK, CTSL, CTSS, and CTSZ in the endometrium and/or 

conceptus of sheep during early pregnancy (250).  In that study, CTSL was the most 

abundant cathepsin expressed by the endometrial epithelia and conceptus trophectoderm 

during early pregnancy, and the CTSL gene was induced by progesterone and stimulated 

by interferon tau (IFNT).  However, expression of CST3 has not been investigated in the 

ovine uterus.         

Trophoblast invasion in ruminants (sheep, cattle, goats) is limited to fusion of 

migrating trophoblast giant binucleate cells with uterine luminal epithelium (54); 

however, considerable tissue remodeling and angiogenesis occurs within the 

endometrium at implantation which is associated with the cysteine and serine proteases 

and production of matrix metalloproteinases (MMPs) by the endometrium and conceptus 

(251, 252).  Endometrial functions during this period of pregnancy are primarily 

regulated by progesterone from the corpus luteum (CL) and hormones from the 
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conceptus, including IFNT, placental lactogen and placental growth hormone (2, 17).  

IFNT is the signal for maternal recognition of pregnancy in ruminants (5) and is 

produced between Days 10 and 21 to 25 of pregnancy in sheep by the mononuclear 

trophoblast cells of the conceptus (4).  In sheep, IFNT acts in a paracrine manner on 

endometrial luminal epithelium (LE) and superficial glandular epithelium (sGE) to 

inhibit transcription of the estrogen receptor alpha gene (8), thereby preventing induction 

of the oxytocin receptor gene and endometrial release of luteolytic pulses of 

prostaglandin F2� (5, 16).  The antiluteolytic actions of IFNT are required for 

maintenance of a functional CL and secretion of progesterone, the essential hormone of 

pregnancy.  IFNT also induces or stimulates expression of a number of genes, termed 

IFNT-stimulated genes or ISGs, in the endometrium that are hypothesized to play 

important biological roles in uterine receptivity and conceptus implantation (227).  In the 

ovine uterus, most ISGs are induced or increased in the endometrial stroma and middle 

to deep GE.  Indeed, LGALS15 (galectin-15) (157), WNT7A (wingless-type MMTV 

integration site family, member 7A) (156), and CTSL (250) are the only genes known to 

be induced or increased by IFNT in endometrial LE and sGE.   

Therefore, these studies were conducted to determine if the CST3 gene is 

expressed in the ovine uterus and to determine effects of the estrous cycle, pregnancy, 

progesterone and IFNT on CST3 gene expression in the endometrium and conceptus.  

The results indicate that CST3 is expressed coordinately with CTSL in the endometrial 

LE and GE and conceptus during the peri-implantation period of pregnancy.  Further, 

CST3 is a novel progesterone-induced and IFNT-stimulated gene in the endometrial LE 

and sGE. 

 

Materials and Methods 

Animals 

Mature crossbred Suffolk ewes (Ovis aries) were observed daily for estrus in the 

presence of vasectomized rams and used in experiments only after they had exhibited at 

least two estrous cycles of normal duration (16-18 days).  All experimental and surgical 
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procedures were in compliance with the Guide for the Care and Use of Agriculture 

Animals and approved by the Institutional Animal Care and Use Committee of Texas 

A&M University. 

 

Experimental Design 

Study One.  At estrus (Day 0), ewes were mated to either an intact or 

vasectomized ram  and then hysterectomized (n = 5 ewes/day) on either Day 10, 12, 14 

or 16 of the estrous cycle or Day 10, 12, 14, 16, 18 or 20 of pregnancy as described 

previously (253).  At hysterectomy, the uterus was flushed with 20 ml of sterile saline.  

Pregnancy was confirmed on Days 10 to 16 post-mating by the presence of a 

morphologically normal conceptus(es) in the uterine flush.  It was not possible to obtain 

uterine flushes on either Day 18 or Day 20 of pregnancy, because the conceptus is firmly 

adhered to the endometrial luminal epithelium (LE) and basal lamina.  At hysterectomy, 

several sections (~0.5 cm) from the mid-portion of each uterine horn ipsilateral to the CL 

were fixed in fresh 4% paraformaldehyde in PBS (pH 7.2). After 24 h, fixed tissues were 

changed to 70% ethanol for 24 h, dehydrated through a graded series of alcohol to xylene, 

and then embedded in Paraplast-Plus (Oxford Labware, St. Louis, MO).  Several sections 

(1–1.5 cm) from the middle of each uterine horn were embedded in Tissue-Tek OCT 

compound (Miles, Oneonta, NY), frozen in liquid nitrogen vapor, and stored at -80°C.  

The remaining endometrium was physically dissected from myometrium, frozen in 

liquid nitrogen, and stored at -80°C for subsequent RNA or protein extraction.  In 

monovulatory pregnant ewes, uterine tissue samples were marked as either contralateral 

or ipsilateral to the ovary bearing the CL and only tissues from the ipsilateral uterine 

horn were used in subsequent analyses.  Uterine flushes were clarified by centrifugation 

(3,000 x g for 30 min at 4°C) and frozen at -80°C for western blot analysis. 

 Study Two.  In Study Two, cyclic ewes (n=20) were checked daily for estrus and 

then ovariectomized and fitted with indwelling uterine catheters on Day 5 as described 

previously (19).  Ewes were then assigned randomly (n=5 per treatment) to receive daily 

intramuscular (i.m.) injections of progesterone (P4) and/or a progesterone receptor 
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(PGR) antagonist (ZK 136,317; Schering AG, Germany) and intrauterine (i.u.) infusions 

of control serum proteins and/or recombinant ovine IFNT protein as follows: (1) 50 mg 

progesterone (P4, Days 5 to 16) and 200 �g control (CX) serum proteins (Days 11 to 16) 

[P4+CX]; (2) P4 and 75 mg ZK 136,317 (Days 11 to 16) and CX proteins [P4+ZK+CX]; 

(3) P4 and IFNT (2 x 107 antiviral units, Days 11 to 16) [P4+IFN]; or (4) P4 and ZK and 

IFNT [P4+ZK+IFN].  Steroids were administered daily in corn oil vehicle.  Both uterine 

horns of each ewe received twice daily injections of either CX proteins (50 µg/ horn/ 

injection) or roIFNT (5x106 antiviral units/ horn/ injection).  The roIFNT was produced 

in Pichia pastoris and purified as described previously (253).  Proteins were prepared for 

intrauterine injection as described previously (19).  This regimen of progesterone and 

roIFNT mimics the effects of progesterone and the conceptus on endometrial expression 

of hormone receptors and IFNT-stimulated genes during early pregnancy in ewes (14, 

141, 156, 254).  All ewes were hysterectomized on Day 17, and uteri and endometria 

processed as described for Study One. 

   

RNA Isolation  

Total cellular RNA was isolated from frozen endometrium from the ipsilateral 

uterine horn (Studies One and Two) using Trizol reagent (Gibco-BRL, Bethesda, MD) 

according to manufacturer’s recommendations.  The quantity and quality of total RNA 

were determined by spectrometry and denaturing agarose gel electrophoresis, 

respectively.   

 

Cloning of Partial cDNA for Ovine CST3 

Partial cDNA for ovine CST3 mRNA was amplified by RT-PCR using total RNA 

from Day 18 pregnant ovine endometrial tissues by specific primers based on the bovine 

CST3 mRNA (Genbank accession no. NM_174029; forward, 5’-CTG TCC TTT GCG 

GTC AGC-3’; reverse, 5’-CCT GGC AGC TAA ACT TCA CC-3’).  PCR amplification 

was conducted as follows for ovine CST3: 1) 95°C for 5 min; 2) 95°C for 45 sec, 56.5°C 

for 1 min, and 72°C for 1 min for 35 cycles; and 3) 72°C for 10 min.  The partial cDNAs 
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for CST3 were cloned into pCRII using a T/A Cloning Kit (Invitrogen) and sequence 

verified using an ABI PRISM Dye Terminator Cycle Sequencing Kit and ABI PRISM 

automated DNA sequencer (Perkin-Elmer Applied Biosystems).  

 

Slot Blot Hybridization Analyses 

Steady-state levels of mRNA in ovine endometria were assessed by slot blot 

hybridization as described previously (255).  Antisense CST3 cRNA probes were 

generated by linearizing the pCR II-CST3 plasmid with BamHI and in vitro transcription 

with T7 RNA polymerase and sense cRNA probes were generated using XbaI and SP6 

RNA polymerase. And then, radiolabeled antisense and sense cRNA probes were 

generated by in vitro transcription with [α-32P]-UTP.  Denatured total endometrial RNA 

(20 µg) from each ewe was hybridized with radiolabeled cRNA probes.  To correct for 

variation in total RNA loading, a duplicate RNA slot membrane was hybridized with 

radiolabeled antisense 18S cRNA (pT718S; Ambion, Austin, TX).  Following washing, 

the blots were digested with ribonuclease A and radioactivity associated with slots 

quantified using a Typhoon 8600 MultiImager (Molecular Dynamics, Piscataway, NJ).  

 

In Situ Hybridization Analyses 

Location of mRNA expression in sections (5 µm) of the ovine uterine 

endometrium was determined by radioactive in situ hybridization analysis as described 

previously (255).  Briefly, deparaffinized, rehydrated and deproteinated uterine tissue 

sections were hybridized with radiolabeled antisense or sense cRNA probes generated 

from linearized ovine CST3 partial cDNA using in vitro transcription with [α-35S]-UTP.  

After hybridization, washing and ribonuclease A digestion, slides were then dipped in 

NTB-2 liquid photographic emulsion (Kodak, Rochester, NY), and exposed at 4°C for 

one week.  Slides were developed in Kodak D-19 developer, counterstained with Gill’s 

hematoxylin (Fisher Scientific, Fairlawn, NJ), dehydrated through a graded series of 

alcohol to xylene, and coverslips affixed with Permount (Fisher).  Images of 

representative fields were recorded under brightfield or darkfield illumination using a 
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Nikon Eclipse 1000 photomicroscope (Nikon Instruments Inc., Lewisville, TX) fitted 

with a Nikon DXM1200 digital camera. 

 

Immunohistochemistry 

Immunocytochemical localization of CST3 protein in the ovine uterus was 

performed as described previously (253) using anti-human CST3 polyclonal antibody 

(Catalog number 06-458; Upstate, Lake Placid, NY) at a 1:2,000 dilution (0.5µg/ml).  

Antigen retrieval was performed by using Pronase E digestion and negative controls 

included substitution of the primary antibody with purified rabbit IgG at the same final 

concentration. 

 

Western Blot Analyses 

Uterine flushes from Study One were concentrated using Centricon-3 columns 

(Amicon) and protein content was determined using the Bradford protein assay (Bio-Rad, 

Hercules, CA) with bovine serum albumin (BSA) as the standard.  Proteins were 

denatured and separated by 15% SDS-PAGE, and Western blot analyses conducted as 

described previously (253) using enhanced chemiluminescence detection (SuperSignal 

West Pico, Pierce, Rockford, IL) and X-OMAT AR X-ray film (Kodak, Rochester, NY) 

according to the manufacturer’s recommendations.  Immunoreactive CST3 protein was 

detected by using the rabbit anti-human CST3 polyclonal antibody (Upstate, Lake Placid, 

NY) at a 1:10,000 (0.1µg/ml) dilution.  Negative control blots were performed by 

replacing the primary antibody with rabbit IgG at the same concentration.  

 

Statistical Analyses 

All quantitative data were subjected to least squares analyses of variance 

(ANOVA) using the General Linear Models (GLM) procedures of the Statistical 

Analysis System (SAS Institute, Cary, NC).  Slot blot hybridization data were corrected 

for differences in sample loading using the 18S rRNA data as a covariate.  Data from 

Study One were analyzed for effects of day, pregnancy status (cyclic or pregnant), and 
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their interaction. Next, least squares regression ANOVA was conducted within 

pregnancy status.  Orthogonal contrasts were used to determine effects of treatment in 

Study Two.  All tests of significance were performed using the appropriate error terms 

according to the expectation of the mean squares for error.  A P-value of 0.10 or less was 

considered significant.  Data are presented as least-square means (LSM) with standard 

errors (SE). 

 

Results 

Effects of Estrous Cycle and Early Pregnancy on Expression of CST3 mRNAs in the 

Ovine Endometrium (Study One) 

Steady-state levels of ovine CST3 mRNAs in endometria from cyclic (C) and 

pregnant (P) ewes were determined by slot blot hybridization analyses (Fig. 4.1) and 

found to be affected (P<0.05) by day, status, and their interaction.  In cyclic ewes, 

endometrial CST3 mRNA was low to undetectable on Day 10, increased (quadratic 

effect of day, P<0.05) about 12-fold from Day 10 to Day 12, and then decline to Day 16.  

In pregnant ewes, CST3 mRNA levels were also low to undetectable on Day 10, but then 

increased (linear effect of day, P<0.01) about 130-fold between Days 10 and 20. 

In situ hybridization analyses to determine the location of CST3 mRNA in the 

uterus (Fig. 4.2) revealed that it present only in LE and GE of the endometrium.  No 

hybridization signal was detected in endometrial stroma, myometrium, blood vessels or 

immune cells.  In cyclic ewes, CST3 mRNA appeared in LE and sGE of the 

endometrium between Days 10 and 12, but decreased thereafter.  In pregnant ewes, 

CST3 mRNA was also detected in endometrial LE and sGE between Days 10 and 12.  

Between Days 12 and 20 of pregnancy, CST3 mRNA was abundant in the endometrial 

LE and sGE and also increased in the middle to deep GE by Day 20.  In addition, CST3 

mRNA was abundant in the conceptus trophectoderm on Days 18 and 20 of pregnancy. 

Consistent with results from in situ hybridization analyses, immunoreactive 

CST3 protein was detected in endometrial LE, sGE and conceptus trophectoderm (Fig. 

4.3A).  In pregnant ewes, CST3 protein increased after Day 10 and was concentrated  
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Fig. 4.1.  Steady-state levels of CST3 mRNAs in endometria from cyclic and early 
pregnant ewes determined by slot blot analysis.  In cyclic ewes, CST3 mRNA was low 
on Day 10, increased to Day 12 and decreased thereafter (quadratic effect of day, 
P<0.05).  In pregnant ewes, CST3 mRNA was lowest on Day 10 and increased 130-fold 
between Days 10 and 20 (linear effect of day, P<0.01).  Data are expressed as LSM 
relative units (RU) with standard error (SE). 
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Fig. 4.2.  In situ hybridization analyses of CST3 mRNAs in uteri of cyclic and early 
pregnant ewes.  Cross-sections of the uterine wall from cyclic (C) and pregnant (PX) 
ewes were hybridized with radiolabeled antisense or sense ovine CST3 cRNA probes.  
CST3 mRNA was detected only in endometrial LE and GE, as well as trophectoderm of 
the conceptus. Legend: LE, luminal epithelium; GE, glandular epithelium; S, stroma; Tr, 
trophectoderm.  Scale bar represents 10 µm.  
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Fig. 4.3. CST3 protein in endometria and uterine flushings from cyclic and pregnant 
ewes from Study One.  (A) Immunoreactive CST3 protein was localized using a rabbit 
anti-human CST3 polyclonal antibody.  For the IgG control, normal rabbit IgG was 
substituted for the primary antibody. Sections were not counterstained.  Legend: LE, 
luminal epithelium; GE, glandular epithelium; S, stroma; Tr, trophectoderm.  Scale bar 
represents 5 µm.  (B) Immunoreactive CST3 protein was localized predominantly near 
the apical surface of endometrial LE and sGE and was detected in secretions in the 
lumen of the upper endometrial glands.  Sections were not counterstained. Legend: LE, 
luminal epithelium; GE, glandular epithelium; S, stroma.  Scale bar represents 1.25 µm.  
(C) Representative Western blot analysis of CST3 in uterine flushings.  Proteins in 
uterine flushings were separated by 15% SDS-PAGE (10µg/lane), and immunoreactive 
CST3 protein detected using rabbit anti-human CST3 polyclonal antibody.  Positions of 
prestained molecular weight standards (x 10-3) are indicated. 
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near or on the apical surface of LE and sGE as well as in secretions of the uterine glands 

(Fig. 4.3B).  The rabbit anti-human CST3 polyclonal antibody used in these studies 

detected a single immunoreactive protein of approximately 14 kDa in Western blot 

analyses of proteins in uterine extracts from cyclic and pregnant ewes (Fig. 4.3C).  

Consistent with immunohistochemical studies, CST3 protein was detected 

predominantly in uterine flushes from Day 12 cyclic ewes.  In uterine flushes of 

pregnant ewes, CST3 protein was not detected on Day 10, but was abundant thereafter.  

Collectively, the temporal and spatial alterations in CST3 mRNA and protein expression 

during the estrous cycle and early pregnancy are consistent with its regulation by ovarian 

progesterone and the conceptus.   

 

Progesterone and IFNT Regulate Endometrial CST3 Expression (Study Two) 

In order to determine if progesterone (P4) and IFNT regulate endometrial CST3 

gene expression, cyclic ewes were ovariectomized and fitted with indwelling uterine 

catheters on Day 5 and then treated with progesterone (P4) or P4 and ZK 136,317 anti-

progestin (P4+ZK) and infused with control proteins (CX) or roIFNT (see Fig. 4.4A).  

Slot blot analyses of endometrium found that treatment of ewes with P4 induced a 14-

fold increase in CST3 mRNA (P4+CX vs P4+ZK+CX, P<0.001; Fig. 4B).  Moreover, 

intrauterine infusions of roIFNT stimulated a further 2-fold increase in CST3 mRNA 

(P4+CX vs P4+IFN, P<0.01).  However, roIFNT did not stimulate CST3 mRNA in 

endometria of ewes receiving the ZK anti-progestin (P4+IFN vs P4+ZK+IFN, P>0.10).  

In situ hybridization (Fig. 4C) and immunohistochemistical (Fig. 4D) analyses detected 

CST3 mRNA and protein only in endometrial LE and sGE of ewes treated with P4 

(P4+CX and P4+IFN). 
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Fig. 4.4.  Effects of progesterone and IFNT on CST3 mRNA and protein in the ovine 
uterus (Study Two).  (A) Experimental design.  See Materials and Methods for complete 
description.  Legend: CX, control serum proteins; Hystx, hysterectomy; Ovx/Cath, 
ovariectomy and uterine catheterization; P4, progesterone; IFNT, recombinant ovine 
interferon tau; ZK, ZK137,316 anti-progestin.  (B) Steady-state levels of CST3 mRNA in 
endometria as determined by slot blot hybridization analysis.  Treatment of ewes with P4 
increased CST3 mRNA in the endometrium (P4+CX vs P4+ZK+CX, P<0.001).  
Intrauterine infusion of IFNT stimulated CST3 mRNA in endometria of ewes treated 
with P4 (P4+CX vs P4+IFN, P<0.01), but not in ewes receiving P4 and the ZK anti-
progestin (P4+IFN vs P4+ZK+IFN, P>0.10).  (C) In situ hybridization analysis of CST3 
mRNA expression. Cross-sections of the uterine wall from treated-ewes were hybridized 
with radiolabeled antisense or sense ovine CST3 cRNA probes.   Scale bar represents 10 
µm. (D) Immunoreactive CST3 protein in the uterus. Sections were not counterstained.  
Legend: LE, luminal epithelium; GE, glandular epithelium; S, stroma.  Scale bar 
represents 5 µm.   
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Discussion 

In the present study, temporal changes in expression of endometrial CST3 mRNA 

in cyclic and pregnant ewes supported the hypothesis that ovarian progesterone is 

required to induce transcription of the CST3 gene in endometrial LE and sGE.  The 

increase in CST3 mRNA in LE and sGE, between Days 10 and 12 post-estrus/mating, is 

coincident with the disappearance of progesterone receptor (PGR) mRNA and protein in 

these epithelia (9, 15).  Similarly, the decrease in CST3 mRNA between Days 14 and 16 

of the cycle is coincident with the reappearance of PGR protein in endometrial LE due to 

regression of the CL and loss of progesterone.  In Study Two, CST3 mRNA was detected 

in endometrial LE and sGE of ovariectomized ewes treated with progesterone for 12 

days, but this expression was prevented by administration of the PGR antagonist ZK 

136,317.  Continuous exposure of the sheep uterus to progesterone for about 10 days 

down-regulates PGR expression in endometrial LE and sGE, but not in stroma or 

myometrium (69).  PGR are present in endometrial epithelia of P4+ZK-treated sheep 

(69), because PGR antagonists prevent the inhibitory effects of progesterone on 

expression of the PGR gene.  Consequently, progesterone modulation of CST3 mRNA 

may be attributed, at least in part, to down-regulation of PGR by progesterone that 

occurs in LE and sGE between Days 10 and 12 of the cycle and pregnancy (2, 17).  Thus, 

PGR loss in endometrial epithelia may reprogram these cells, allowing them to increase 

expression of genes associated with implantation 

(17).  Alternatively, progesterone may act on PGR-positive stromal cells to 

induce growth factors or changes in the ECM that regulate expression of selected 

epithelial genes (17).   

In addition to regulation by progesterone, results of the present studies indicate 

that CST3 expression is further regulated by IFNT.  IFNT is the pregnancy recognition 

hormone in sheep that acts on the endometrium to prevent development of the luteolytic 

mechanism, thereby maintaining the CL and its production of progesterone (5, 86).  Of 

particular note, CST3 is a novel gene stimulated by IFNT in endometrial LE and sGE as 

expression between Days 10 and 18 of early pregnancy parallels the increase in 
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production of IFNT by the elongating conceptus, which is maximal on Day 16 (256, 

257).  In Study Two, intrauterine administration of IFNT increased CST3 mRNA, but 

only in progesterone-treated ewes.  One hypothesis is that IFNT can only stimulate 

transcription of the CST3 gene in the absence of liganded PGR, i.e., after down-

regulation of PGR by progesterone.  Alternatively, the PGR-positive stroma may 

produce a ‘progestamedin’, e.g., fibroblast growth factor 7 (FGF7), FGF10 or hepatocyte 

growth factor (HGF) , that could be required for LE and sGE to respond to IFNT (1, 17, 

156).  The signaling pathway whereby IFNT regulates transcription of the CST3 gene is 

not known, but it clearly does not involve the classical JAK-STAT-IRF (IFN regulatory 

factor) signaling pathway (125).  The 5’ flanking promoter/enhancer region of the 

bovine CST3 gene (Genbank NW_928624) does not have any predicted transcription 

factor binding sites for classical ISGs, such as gamma activation sequence elements for 

STAT1 binding, IFN-stimulated response elements for ISGF3, or IRF response 

elements; however, the region does have several predicted PGR response elements (data 

not shown).  To date, CTSL, WNT7A and LGALS15 are the only other genes identified in 

endometrial LE and sGE that are induced or stimulated by IFNT (156, 157, 250).  Thus, 

the diverse actions of IFNT on the endometrium include repression of genes, including 

ESR1 (estrogen receptor alpha), to abrogate development of the endometrial luteolytic 

mechanism, as well as stimulation of genes that are potentially critical to implantation, 

placentation and conceptus growth and development (17).  Knowledge of mechanisms 

whereby IFNT stimulates CST3 gene expression in endometrial LE and sGE is expected 

to help unravel a non-classical signaling pathway for Type I IFNs.   

CST3 is an inhibitor of cysteine proteases, e.g. CTSB and CTSL, that have 

biological roles in the processing and catabolism of proteins (249).  Results of the 

present studies of CST3 in the ovine uterus are similar to those for mice (183), in which 

expression of CTSL and CTSB by invasive trophoblast giant cells was balanced by 

coordinated expression of CST3 in the decidualizing stroma at the implantation site.  

Coordinated increases in CTSL and CTSB with CST3 occur in endometrial LE and sGE 

as well as in conceptus trophectoderm during early pregnancy (250).  Thus, one 
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biological role of CST3 may be to inhibit the actions of cysteine proteases produced by 

the conceptus and endometrial epithelia in order to limit the invasive activity of the 

trophoblast.  These results support the general idea that proteases and their inhibitors 

expressed at the maternal-fetal interface are important for uterine receptivity, 

endometrial remodeling and conceptus implantation during pregnancy in mammals (219, 

220, 246-248).  Interestingly, cathepsins and cystatins have recently been implicated in 

recurrent miscarriage in women (258) who had higher than normal decidual levels of 

CTSB and CTSH and lower than normal levels of serum CST3.  Thus, increased 

knowledge of uterine proteases and their inhibitors is important for developing 

therapeutic strategies to prevent, treat and diagnose infertility in humans and domestic 

animals.    
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CHAPTER V 

PREGNANCY AND INTERFERON TAU REGULATE RSAD2 AND IFIH1 

EXPRESSION IN THE OVINE UTERUS  

 

Introduction 

Interferon tau (IFNT), the maternal recognition of pregnancy signal in ruminants 

(sheep, cattle, goats), is secreted by the elongating peri-implantation conceptus 

(embryo/fetus and associated membranes) and inhibits development of the endometrial 

luteolytic mechanism (1, 18).  IFNT is produced by sheep conceptuses between Days 10 

and 21 of gestation with maximal production on Days 14 to 16 (4, 95).  During 

pregnancy recognition, IFNT acts in a paracrine fashion on endometrial luminal 

epithelium (LE) and superficial ductal glandular epithelium (sGE) of the ovine uterus to 

repress transcription of the estrogen receptor alpha gene (8, 96), thereby preventing 

estrogen induction of expression of the oxytocin receptor gene (16) which precludes 

oxytocin-induced endometrial release of luteolytic pulses of prostaglandin F2 alpha (18).  

The antiluteolytic actions of IFNT allow maintenance of a functional corpus luteum and 

secretion of progesterone (P4), which is the hormone of pregnancy necessary for 

successful implantation and development of the conceptus to term (18).  In addition to 

antiluteolytic effects on the endometrium, IFNT induces a number of IFN-stimulated 

genes (ISGs) in a cell-specific manner within the endometrium, and ISGs are 

hypothesized to play important roles in uterine receptivity and conceptus implantation 

during establishment of pregnancy (18, 227, 259, 260).  Several ISGs are first induced 

by progesterone and stimulated by IFNT, whereas other genes are stimulated by IFNT 

from the conceptus in a progesterone-independent manner (259).            

Recent transcriptional profiling experiments identified RSAD2 and IFIH1 as 

genes induced by IFNT from the conceptus in ovine and bovine endometria during early 

pregnancy (259, 260).  Radical S-adenosyl methionine domain containing 2 (RSAD2; 

alias viperin) is a cytoplasmic antiviral protein induced by Type I IFNs  that can inhibit 

infection of cells with human cytomegalovirus (167).  Interferon-induced with helicase 
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C domain 1 (IFIH1; alias MDA5) is a RNA helicase that, through its ATP-dependent 

unwinding of RNA, promotes mRNA degradation by specific RNases and is involved in 

innate immune defense against viruses as well as cellular growth suppression (171, 172).  

IFIH1 senses intracellular viral infection and triggers innate antiviral responses including 

the production of Type I IFNs (173).  Both RSAD2 and IFIH1 are produced during a 

viral infection in response to IFNs to limit viral replication and modulate subsequent 

adaptive immunity (170, 261).  Similar to other Type I IFNs, IFNT elicits antiviral, 

antiproliferative, and immunomodulatory activities in homologous and heterologous 

cells (66, 68, 84, 138, 161, 163, 262, 263).  Induction of an antiviral state in the 

endometrium during early pregnancy may be beneficial by inhibiting sexually 

transmitted viruses as well as modulating local immune cells to promote tolerance of the 

allogeneic conceptus and stimulating production of cytokines beneficial for conceptus 

survival and growth (27-29).  

Although RSAD2 and IFIH1 have been identified as pregnancy- and IFNT-

stimulated genes in the ovine uterine endometrium, the temporal and spatial alterations 

in their expression in the endometrium during early pregnancy and in response to 

progesterone and IFNT have not been investigated.  Our working hypothesis that 

RSAD2 and IFIH1 are induced in the endometrium in a cell type-specific manner by 

IFNT from the conceptus during early pregnancy and have biological roles in 

establishing uterine receptivity to implantation by the conceptus.  As first step in testing 

this hypothesis, studies were conducted to determine effects of: (1) stage of the estrous 

cycle and early pregnancy on RSAD2 and IFIH1 expression in the ovine uterus; (2) 

progesterone and IFNT on RSAD2 and IFIH1 expression in the ovine uterus; and (3) 

IFNT on RSAD2 and IFIH1 expression in ruminant endometrial cell lines.   

 

Materials and Methods 

Animals 

Mature crossbred Suffolk sheep (Ovis aries) were observed daily for estrus in the 

presence of vasectomized rams and used in the experiment after they exhibited at least 
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two estrous cycles of normal duration (16-18 days).  At estrus, ewes were assigned 

randomly to cyclic or pregnant status.  All experimental and surgical procedures were in 

compliance with the Guide for the Care and Use of Agriculture Animals in Teaching and 

Research and were approved by the Institutional Animal Care and Use Committee of 

Texas A&M University. 

 

Experimental Design 

Study One. At estrus (Day 0), ewes were mated to either an intact or 

vasectomized ram as described previously (253) and then hysterectomized (n = 5 

ewes/day) on  Day 10, 12, 14 or 16 of the estrous cycle or Day 10, 12, 14, 16, 18 or 20 

of pregnancy.  To confirm pregnancy status, the uterine lumen was flushed with saline 

on Days 10 to 16 of pregnancy and examined for the presence of a morphologically 

normal conceptus(es).  At hysterectomy, several sections (~0.5 cm) from the mid-portion 

of each uterine horn ipsilateral to the corpus luteum were fixed in fresh 4% 

paraformaldehyde in PBS (pH 7.2).  After 24 h, fixed tissues were changed to 70% 

ethanol for 24 h and then dehydrated and embedded in Paraplast-Plus (Oxford Labware, 

St. Louis, MO).  Several sections (1–1.5 cm) from the middle of each uterine horn were 

embedded in Tissue-Tek OCT compound (Miles, Oneonta, NY), frozen in liquid 

nitrogen vapor, and stored at -80°C.  The remaining endometrium was physically 

dissected from myometrium, frozen in liquid nitrogen, and stored at -80°C for 

subsequent RNA extraction. In monovulatory pregnant ewes, uterine tissue samples were 

marked as either contralateral or ipsilateral to the ovary bearing the corpus luteum; no 

tissues from the contralateral uterine horn were used for this study.   

Study Two. Sixteen cyclic ewes were ovariectomized and fitted with intrauterine 

catheters on Day 5 post-estrus as described previously (259) and injected daily i.m. with 

75 mg progesterone (P4) between Days 5 and 16.  Ewes were then assigned randomly 

(n=5 ewes/treatment) to receive one of the following treatment regimens between Days 

11 and 16: (1) P4 and daily intrauterine (IU) infusions of control serum proteins 

[P4+CX]; (2) P4 and 75 mg of ZK136,317 (Schering), a progesterone receptor (PGR) 
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antagonist and CX proteins [P4+ZK+CX]; (3) P4 and IU IFNT (2x107 antiviral units) 

[P4+IFN]; or (4) P4 and ZK and IU IFNT [P4+ZK+IFN].  The P4 and ZK were 

administered daily in corn oil vehicle.  Both uterine horns of each ewe received twice 

daily injections of either CX proteins (50 µg/horn/injection) or recombinant ovine IFNT 

(5x106 antiviral units/horn/injection with CX proteins).  Recombinant ovine IFNT was 

produced in Pichia pastoris and purified as described previously (264).  Proteins were 

prepared for intrauterine injection as described previously .  This regimen of P4 and 

IFNT mimics the effects of P4 and the conceptus on endometrial expression of hormone 

receptors and IFNT-stimulated genes during early pregnancy in ewes (15, 141, 156).  All 

ewes were hysterectomized on Day 17.  The uterus was processed for histology and the 

endometrium obtained for RNA extraction as described in Study One. 

 

Cell Culture  

Immortalized ovine uterine endometrial LE cells were cultured as described 

previously (163).  Bovine endometrial (BEND) cells (161) were kindly provided by Dr. 

Thomas R. Hansen (Colorado State University, Fort Collins).  Ovine LE and BEND 

cells were maintained in 150 mm culture dishes containing DMEM with F-12 salts 

(DMEM-F12; Sigma-Aldrich Corp., St. Louis, MO) supplemented with 5% serum and 

antibiotics.  When cells reached 70-80% confluency, they were treated with either IFNT 

(2×107 AVU/ml) or left untreated as a control for 24h in serum-free medium.  The 

experiment was independently repeated three times in each cell type.  

 

RNA Isolation  

Total cellular RNA was isolated from frozen endometrium or cultured cells using 

the Trizol reagent (Gibco-BRL, Bethesda, MD) according to manufacturer’s 

recommendations.  The quantity and quality of total RNA was determined by 

spectrometry and denaturing agarose gel electrophoresis, respectively.   
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Cloning of Partial cDNAs for Ovine RSAD2 and IFIH1 

Partial cDNAs for ovine RSAD2 and IFIH1 mRNAs were amplified by RT-PCR 

using total RNA endometrial tissues from Days 18 of pregnancy using specific primers 

based on human RSAD2 mRNA (Genbank NM_080657; forward, 5’-GAG GCC AAG 

AAA GGT CTG C-3’; reverse, 5’-CCA AGA ACG CTT CAA ACT CC-3’) and human 

IFIH1 mRNA (Genbank AF095844; forward, 5’-TTC CGC AAA GAG TTC AAA CC-

3’; reverse, 5’-AAT GTG TTC TTC GGG TTT GG-3’).  The Reverse transcription of 

cellular total RNA into cDNA was performed as described previously(65).  The PCR 

amplification was conducted as follows for RSAD2 and IFIH1: 1) 95°C for 5 min; 2) 

95°C for 30 sec, 56.5°C for 40 sec (for RSAD2), 57°C for 40 sec (for IFIH1), and 72°C 

for 1 min for 35 cycles; and 3) 72°C for 10 min.  The partial cDNAs for ovine RSAD2 

and IFIH1 PCR products were cloned into pCRII using a T/A Cloning Kit (Invitrogen) 

and their sequences verified using an ABI PRISM Dye Terminator Cycle Sequencing 

Kit and ABI PRISM automated DNA sequencer (Perkin-Elmer Applied Biosystems). 

 

Slot Blot Hybridization Analyses 

Steady-state levels of mRNA in ovine endometrium were assessed by slot blot 

hybridization as described previously (125, 254).  For RSAD2 and IFIH1 antisense 

cRNA probes, the plasmids were linearized with XbaI and in vitro transcription was 

conducted with SP6 RNA polymerase.  Sense cRNA probes were generated using 

BamHI and T7 RNA polymerase.  Radiolabeled antisense and sense cRNA probes were 

then generated by in vitro transcription with [α-32P]-UTP.  Denatured total endometrial 

RNA (20 µg) from each ewe was hybridized with radiolabeled cRNA probes.  To correct 

for variation in total RNA loading, a duplicate RNA slot membrane was hybridized with 

radiolabeled antisense 18S cRNA (pT718S; Ambion, Austin, TX).  Following washing, 

the blots were digested with ribonuclease A and radioactivity associated with slots 

quantified using a Typhoon 8600 MultiImager (Molecular Dynamics, Piscataway, NJ).  
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Semiquantitative RT-PCR Analysis  

RSAD2 and IFIH1 mRNA levels in immortalized ovine endometrial LE and 

BEND cells were assessed using semi-quantitative RT-PCR as described previously (65).  

Briefly, isolated total cellular RNA was treated with RQ1 RNase Free-DNase1 (Promega, 

Madison, WI) and then ethanol-precipitated.  The cDNA was synthesized from total 

cellular RNA (5 µg) isolated from both cell-lines using random and oligo (dT) primers 

and SuperScript II Reverse Transcriptase (Life Technologies, Gaithersburg, MD).  

Newly synthesized cDNA was acid-ethanol precipitated, resuspended in 20 µl sterile 

water, and stored at -20°C.  The cDNAs were diluted (1:10) in sterile water before use in 

PCR.  The primers, PCR amplification and verification of their sequences were 

conducted as described in the section on cloning partial cDNAs.  Housekeeping beta-

actin (ACTB) primers were forward (5’-ATG AAG ATC CTC ACG GAA CG-3’) and 

reverse (5’-GAA GGT GGT CTC GTG AAT GC-3’), which amplified a 270-base pair 

product.  PCR amplification was conducted as follows for ACTB: 1) 95°C for 5 min; 2) 

95°C for 30 sec, 57°C for 30 sec, and 72°C for 1 min for 25 cycles; and 3) 72°C for 10 

min.  After PCR, equal amounts of reaction product were analyzed using a 1.5% agarose 

gel, and PCR products were visualized using ethidium bromide staining.  The amount of 

DNA present was quantified by measuring the intensity of light emitted from correctly 

sized bands under ultraviolet light using a ChemiDoc EQ system and Quantity One 

software (Bio-Rad, Hercules, CA).  

 

In Situ Hybridization Analyses 

Location of mRNA expression in uterine sections (5 µm) was determined by 

radioactive in situ hybridization analysis as described previously (125, 254).  Briefly, 

deparaffinized, rehydrated and deproteinated uterine tissue sections were hybridized 

with radiolabeled antisense or sense cRNA probes generated from linearized RSAD2 and 

IFIH1 partial cDNAs using in vitro transcription with [α-35S]-UTP.  After hybridization, 

washing and ribonuclease A digestion, slides were dipped in NTB-2 liquid photographic 

emulsion (Kodak, Rochester, NY), and exposed at 4°C for 1 to 2 weeks.  Slides were 
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developed in Kodak D-19 developer, counterstained with Gill’s hematoxylin (Fisher 

Scientific, Fairlawn, NJ), and then dehydrated through a graded series of alcohol to 

xylene.  Coverslips were then affixed with Permount (Fisher).  Images of representative 

fields were recorded under brightfield or darkfield illumination using a Nikon Eclipse 

1000 photomicroscope (Nikon Instruments Inc., Lewisville, TX) fitted with a Nikon 

DXM1200 digital camera.   

 

Statistical Analyses 

All quantitative data were subjected to least-squares analyses of variance 

(ANOVA) using the Statistical Analysis System (SAS Institute, Cary, NC).  Slot blot 

hybridization data were corrected for differences in sample loading using the 18S rRNA 

data as a covariate.  Data from Study One were analyzed for effects of day, pregnancy 

status (cyclic or pregnant), and their interaction.  Data from Study Two were analyzed 

using orthogonal contrasts (P4+CX vs P4+IFN; P4+ZK+CX vs P4+ZK+IFN; and 

P4+CX vs P4+ZK+CX) to elucidate effects of treatment.  Semi-quantitative RT-PCR 

data was analyzed using the ACTB data as a covariate.  All tests of significance were 

performed using the appropriate error terms according to the expectation of the mean 

squares for error.  A P-value of 0.05 or less was considered significant.  Data are 

presented as least-square means (LSM) with standard errors (SE). 

 

Results 

RSAD2 and IFIH1 Expression Increases in the Endometrium by a Cell Type-Specific 

Manner 

         Expression levels of RSAD2 and IFIH1 mRNAs in the endometrium of cyclic ewes 

were low and not affected (P>0.10) by day (Fig. 5.1).  In contrast, RSAD2 mRNA 

increased (P<0.01, quadratic) about 6-fold between Days 12 and 16 and was maintained 

through Day 20 in pregnant ewes.  Similarly, IFIH1 mRNA increased (P<0.01, 

quadratic) about 2.5-fold between Days 12 and 16.  The presence of a conceptus  
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Fig. 5.1.  Steady-state levels of RSAD2 and IFIH1 mRNAs in endometria from cyclic 
and early pregnant ewes determined by slot blot hybridization analysis.  In cyclic ewes, 
RSAD2 mRNA level was low between Days 10 and 16.  In contrast, RSAD2 mRNA 
increased (P<0.01) 6-fold between Days 12 and 16 and was maintained to Day 20.  
Similarly, IFIH1 mRNA was very low in the endometria of cyclic ewes and increased 
(P<0.01) about 2.5-fold between Days 12 and 16 of pregnancy.  Data are expressed as 
LSM relative units (RU) with standard error (SE). 
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increased endometrial RSAD2 and IFIH1 mRNA between Days 10 and 16 (P<0.01, day 

x status; Fig. 5.1). 

In situ hybridization analyses determined the location of RSAD2 (Fig 5.2) and 

IFIH1 (Fig 5.3) mRNAs in uteri of cyclic and pregnant ewes.  RSAD2 mRNA was low 

and not different between uteri from Day 10 cyclic and pregnant ewes (Fig. 5.2).  

Between Days 10 and 12 of pregnancy, RSAD2 mRNA increased in the middle glands 

and to a lower extent in the stratum compactum stroma.  Between Days 14 and 20 of 

pregnancy, RSAD2 mRNA was present predominantly in the endometrial glands, stroma 

and immune cells, but not in LE, sGE, myometrium or conceptus trophectoderm.  

Interestingly, RSAD2 mRNA declined in the endometrial glands after Day 16 of 

pregnancy.   Similar to RSAD2, IFIH1 mRNA was low and not different between uteri 

from Day 10 cyclic and pregnant ewes (Fig. 5.3).  Between Days 10 and 12 of pregnancy, 

IFIH1 mRNA increased slightly in the middle glands and stratum compactum stroma.  

Between Days 14 and 18 of pregnancy, IFIH1 mRNA was present predominantly in the 

stratum compactum stroma of the endometrium, middle glands and immune cells, and 

not observed in the endometrial LE, sGE, myometrium or conceptus trophectoderm.  

The melanocytes underneath the LE do not have IFIH1 mRNA, but rather appear white 

in darkfield photomicrographs.  Between Days 18 and 20, IFIH1 mRNA abundance 

declined in the endometrial stroma.  The presence of RSAD2 and IFIH1 mRNAs in 

immune cells within the endometrium was based on visual observations of cell 

morphology.   
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Fig. 5.2.  In situ hybridization analyses of RSAD2 mRNA in uteri of cyclic and pregnant 
ewes.  Cross-sections of the uterine wall from cyclic (C) and pregnant (P) ewes were 
hybridized with radiolabeled antisense or sense ovine RSAD2 cRNA probes.  RSAD2 
mRNA is expressed in endometrial stroma, glands and resident immune cells. Legend: 
LE, luminal epithelium; GE, glandular epithelium; M, myometrium; S, stroma; Tr, 
trophectoderm.  Scale bar represents 10 µm.  
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Fig. 5.3.  In situ hybridization analyses of IFIH1 mRNA in uteri of cyclic and pregnant 
ewes.  Cross-sections of the uterine wall from cyclic (C) and pregnant (P) ewes were 
hybridized with radiolabeled antisense or sense ovine IFIH1 cRNA probes.  IFIH1 
mRNA was detected only in endometrial stroma and glands.  Legend: LE, luminal 
epithelium; GE, glandular epithelium; S, stroma; Tr, trophectoderm.  Scale bar 
represents 10 µm.  
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Intrauterine Administration of Recombinant Ovine IFNT Induces RSAD2 and IFIH1 

mRNA in the Ovine Endometrium 

         In order to determine if differences in expression of the selected genes in 

endometrium of pregnant compared to cyclic ewes was due to IFNT from the conceptus, 

cyclic ewes were ovariectomized and fitted with intrauterine (i.u.) catheters on Day 5 

and hysterectomized on Day 17 (see Fig. 5.4A).  Treatment of ewes with the ZK 136,317 

PGR antagonist did not affect (P>0.10, P4+CX vs P4+ZK+CX) endometrial RSAD2 or 

IFIH1 mRNA abundance (Fig. 5.4B).  For ewes receiving P4 alone, intrauterine 

recombinant ovine IFNT increased (P<0.001) steady-state levels of RSAD2 and IFIH1 

mRNAs 10-fold and 8.3-fold, respectively, in the endometria (P<0.001, P4+CX vs 

P4+IFN) (Fig. 5.4B and 5.5A).  Similarly, for ewes receiving P4+ZK treatment, 

intrauterine recombinant ovine IFNT increased RSAD2 and IFIH1 mRNAs in the 

endometrium about 9.3-fold and 5.6-fold, respectively (P<0.001, P4+ZK+CX vs 

P4+ZK+IFN).   

In situ hybridization analyses verified that IFNT increased RSAD2 and IFIH1 

mRNA abundance in the endometrium (Figs. 5.4C and 5.5B).  Similar to Day 16 to 18 

pregnant ewes, RSAD2 and IFIH1 mRNA was increased by IFNT primarily in the 

endometrial stroma and immune cells and, to a lower extent, in the endometrial glands of 

uteri from ewes receiving P4+IFNT treatment.  In P4+ZK ewes, IFNT increased RSAD2 

and IFIH1 mRNA in the endometrial stroma and immune cells.  Further, IFNT increased 

IFIH1 mRNA in endometrial LE of ewes receiving P4+ZK treatment (Fig. 5.5B).  
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Fig. 5.4.  Effects of progesterone and IFNT on RSAD2 mRNA in the ovine uterus. (A) 
Experimental design.  See Materials and Methods for complete description.  Legend: CX, 
control serum proteins; Hystx, hysterectomy; Ovx/Cath, ovariectomy and uterine 
catheterization; P4, progesterone; IFNT, recombinant ovine interferon tau; ZK, 
ZK137,316 anti-progestin.  (B) Steady-state levels of RSAD2 mRNA in endometria as 
determined by slot blot hybridization analysis.  Intrauterine infusion of IFNT increased 
RSAD2 mRNA by 10-fold in the endometrium (P4+CX vs P4+IFN, P<0.001), but not in 
ewes receiving the ZK anti-progestin (P4+IFN vs P4+ZK+IFN, P>0.10).  Similarly, 
IFNT increased RSAD2 mRNA 9.3-fold in ewes receiving ZK anti-progestin 
(P4+ZK+CX vs P4+ZK+IFN, P<0.001), but not in ewes receiving the ZK anti-progestin 
(P4+IFN vs P4+ZK+IFN, P>0.10).  The asterisk (*) denotes an effect of treatment.  (C) 
In situ hybridization analysis of RSAD2 mRNA expression.  In situ hybridization 
analyses verified that roIFNT increased RSAD2 mRNA expression in a cell-type specific 
manner in P4-treated ewes consistent with increased expression in uteri from Day 16 and 
18 pregnant ewes.  Intrauterine injections of IFNT increased RSAD2 mRNAs in 
endometrial stroma and glands, but not LE, blood vessels or myometrium.  Further, 
IFNT increased RSAD2 mRNA in endometria of P4+ZK-treated ewes.  Scale bar 
represents 10 µm.  
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Fig. 5.5.  Effects of progesterone and IFNT on IFIH1 mRNA in the ovine uterus.  (A) 
Steady-state levels of IFIH1 mRNA in endometria were determined by slot blot 
hybridization analysis. Intrauterine infusion of IFNT increased IFIH1 mRNA about 8.3-
fold in endometria (P4+CX vs P4+IFN, P<0.001), but not in ewes receiving the ZK anti-
progestin (P4+IFN vs P4+ZK+IFN, P>0.10).  The asterisk (*) denotes an effect of 
treatment. (C) In situ hybridization analysis of IFIH1 mRNA expression.  Intrauterine 
injections of IFNT increased IFIH1 mRNA expression in a cell-type specific manner in 
P4-treated ewes consistent with the increased in expression in uteri from Day 16 and 
Day 18 pregnant ewes.  Infusion of roIFNT increased expression of IFIH1 mRNA in 
endometrial stroma and GE, but not LE, blood vessels or myometrium.  Further, IFNT 
increased IFIH1 mRNA in endometria from ewes treated with P4+ZK. Cross-sections of 
the uterine wall from treated-ewes were hybridized with radiolabeled antisense or sense 
ovine IFIH1 cRNA probes.   Scale bar represents 10 µm.  
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Effects of IFNT on RSAD2 and IFIH1 in Endometrial Cells 

In untreated ovine endometrial LE (oLE) and bovine endometrial (BEND) cells 

maintained in serum-free medium, IFIH1 but not RSAD2 mRNA was detected (Fig. 5.6).  

Treatment of both oLE and BEND cells with recombinant ovine IFNT increased 

(P<0.0001) RSAD2 and IFIH1 mRNA levels. 

 

Discussion 

During the peri-implantation period of pregnancy, gene expression in endometria 

of ruminants is programmed primarily by progesterone from the ovarian corpus luteum 

and IFNT from the conceptus (1, 17).  In the present study, we identified two antiviral-

related genes, RSAD2 and IFIH1, as being induced in the ovine endometrium in response 

to IFNT from the conceptus in a progesterone-independent manner.  These genes were 

selected for analysis based on transcriptional profiling studies of ruminant endometria 

(259, 260) as well as knowledge that both RSAD2 and IFIH1 are produced during a viral 

infection in response to IFNs to limit viral replication and modulate subsequent adaptive 

immunity (170, 261).  In the present study, the ontogeny of RSAD2 and IFIH1 in the 

ovine endometrium correlates directly with increasing amounts of IFNT produced by the 

rapidly elongating conceptus, which is maximum between Days 14 and 16 and declines 

thereafter as the trophectoderm begins implantation and trophoblast giant binucleate 

cells begin to differentiate (95).  Clearly, progesterone and IFNT have complex, 

independent and complementary effects on expression of a number of genes in the ovine 

endometrium during early pregnancy (see (259, 260)).  In the present study, 

progesterone was found to be not required for IFNT induction of RSAD2 and IFIH1 in 

the endometrium, which is similar to findings for other IFNT-stimulated genes in the 

ovine endometrium including CXCL10 (chemokine (C-X-C motif) ligand 10), IFITM3 

(interferon induced transmembrane protein 3 (1-8U)), B2M (beta-2-microglobin), MIC 

(MHC class I polypeptide-related alpha chain), and STAT1 (259).   
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Fig. 5.6.  Semi-quantitative RT-PCR analyses of RSAD2 and IFIH1 mRNAs in total 
cellular RNA isolated from immortalized ovine endometrial LE (oLE) and bovine 
endometrial (BEND) cells.  All PCR products were separated in a 1.5% agarose gel and 
stained with ethidium bromide.  Positions of the 100-base pair (bp) DNA marker (M) 
ladder are shown.  Total cellular RNA from endometria of a Day 18 pregnant ewe and 
sterile water (no template) were positive and negative controls, respectively.  A graph 
illustrating the effect of IFNT on relative mRNA levels for RSAD2 and IFIH1 is 
presented below each gel, and the asterisk (*) denotes a significant (P<0.001) effect of 
IFNT treatment.  
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Further, treatment of ovine endometrial LE and BEND cells with recombinant 

ovine IFNT induced RSAD2 and IFIH1 expression without a requirement for serum or 

progesterone in the medium.  In contrast, IFNT induction of several non-classical IFN-

stimulated genes, such as LGALS15 (galectin 15), CTSL (cathespin L), and CST3 

(cystatin C), in endometrial LE and sGE is dependent on progesterone (157, 250, 265), 

which is hypothesized to involve progesterone down-regulation of the PGR in those 

epithelia (17, 259).    

In the ovine uterus, induction of RSAD2 and IFIH1 mRNA by the presence of the 

conceptus during pregnancy and by IFNT was limited to endometrial stroma and middle 

to deep glands as well as resident immune cells based on visual observations of cell 

morphology.  The majority of ISGs induced by IFNT without a requirement for 

progesterone in the ovine uterus are restricted to endometrial stroma and middle to deep 

glands as well as immune cells (see (17, 18) for review).  A variety of ruminant and 

human cell lines have been used to determine that IFNT activates the classical JAK-

STAT-IRF signaling pathway utilized by other Type I IFNs that involves ISGF3 

(STAT1, STAT2, ISGF3G complex), GAF (STAT1 dimer), and IFN regulatory factor 

one (IRF1) (see (17, 102)) .  ISGF3 transactivates genes through binding an IFN-

stimulated response element (ISRE), whereas GAF binds to a gamma activation 

sequence (GAS) element in genes such as IRF1.  Further, IRF1 transactivates genes 

through an IRF element (IRFE).  Similar to findings for RSAD2 and IFIH1 in the present 

study, results of in vivo studies indicate that many classical IFN-stimulated genes 

(STAT1, STAT2, IRF1, ISGF3G, GBP2, IFI6, IFI56, ISG15, MIC, B2M, OAS) are not 

induced or increased by IFNT in LE and sGE of the sheep uterus (125, 138, 141, 156).  

This finding was initially surprising because all ovine endometrial cell types express 

IFNAR1 and IFNAR2 subunits of the common Type I IFN receptor (99).  However, 

available results also indicate that IRF2, a potent transcriptional repressor of IFN-

stimulated genes (127), is expressed specifically in endometrial LE and sGE and 

represses transcriptional activity of promoters containing ISRE or IRFE (125).  Thus, 

IRF2 in LE and sGE is proposed to restrict IFNT induction of many IFN-stimulated 
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genes to endometrial stroma and glandular epithelium.  In fact, all components of ISGF3 

(STAT1, STAT2, ISGF3G) and other studied IFN-stimulated genes (B2M, GBP2, G1P2, 

G1P3, IFI56, MIC) contain ISREs in their promoters.  Further, the promoter regions of 

the human and fish RSAD2 genes contain multiple IRFEs (167, 168).  Similarly, the 

promoter region of the human IFIH1 gene has predicted ISRE and IRFE (unpublished 

results).  Thus, the constitutive presence and pregnancy-specific increase in IRF2 in 

ovine endometrial LE/sGE in vivo is proposed to prevent IFNT induction of RSAD2 and 

IFIH1 in those epithelia.   Progesterone appears to be involved in this cell-type 

specification of IFNT actions, because IFNT induced IFIH1 mRNA in the LE of the 

endometrium in P+ZK-treated ewes in the present study.  Immortalized ovine 

endometrial LE and BEND cells lack or have very low levels of IRF2 mRNA (Song and 

Spencer, unpublished results); thus, they are fully responsive to IFNT in vitro (145, 163, 

266).  In human 2fTGH cells, Type I IFNB can induce IFIH1 expression, but this is not 

the case for STAT1 null U3A cells derived from 2fTGH cells (172).  Thus the classical 

JAK-STAT-IRF signaling pathway active in endometrial stroma and glands, and perhaps 

resident immune cells, is likely responsible for IFNT induction of IFIH1 via activation 

and formation of the ISGF3 complex (172).  One interesting finding of the present 

studies was the loss of RSAD2 mRNA in the middle to deep endometrial glands between 

Days 16 and 18 of pregnancy.  This loss correlates with a reduction in IFNT production 

by the conceptus as well as a decline in IRF1 abundance in those glands (125).   

Available evidence supports the concept that distinct cell-type specific differences exist 

in the ruminant endometrium with respect to responses to IFNT from the conceptus 

between the endometrial glands, stroma and resident immune cells.  

The IFNT-stimulated genes in endometria of ruminants are hypothesized to be 

important for conceptus implantation (2, 227, 260).  RSAD2 contains a radical S-

adenosylmethionine (SAM) domain that catalyzes diverse reactions, including unusual 

methylations, isomerization, sulphur insertion, ring formation, anaerobic oxidation and 

protein radical formation.  Radical SAM proteins function in DNA precursor, vitamin, 

cofactor, antibiotic and herbicide biosynthesis, and biodegradation pathways (267), 
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which could be important in endometrial cells during the peri-implantation period to 

support conceptus development and implantation.  IFIH1 (alias melanoma differentiation 

associated gene 5) is a RNA helicase induced during differentiation, cancer reversion, 

and programmed cell death (171, 172).  IFIH1 acts to sense intracellular viral infection 

and mediate a signal for innate antiviral responses including production of Type I IFNs 

(171, 173).  Other Type I IFNs (IFNA and IFNB) are not induced in the endometrium in 

response to IFNT (Spencer and Bazer, unpublished results).   

One biological role of RSAD2 and IFIH1 could be to prevent viral infection of 

the uterus during the critical peri-implantation period of pregnancy, particularly when 

the conceptus does not have a developed immune system or antiviral defenses.  RSAD2 

and IFIH1 are implicated in establishing an antiviral state by modulation of innate 

immune responses.  For example, stable expression of RSAD2 in fibroblasts inhibits 

human cytomegalovirus infection (167) .  Given that IFIH1 also has growth suppressive 

properties, IFNT induction may suppress the activation of cells within the endometrium, 

which could be beneficial for pregnancy.  In other species such as rodents and humans, 

resident and recruited immune cells within the endometrium play important roles in 

placentation and the success of pregnancy (29, 268).  Unfortunately, knowledge of 

which immune cells are present in the ovine uterus during pregnancy and their biological 

functions is sparse.  During the estrous cycle, the density of macrophages and T 

lymphocytes in the ovine and bovine uteri do not change (269). However, during early 

pregnancy, the number of CD45R+ lymphocytes increases in both endometrium (270) 

and uterine and jugular venous blood (271, 272).  It has been postulated that these are 

natural killer cells that produce factors to enhance establishment of pregnancy.  In the 

present study, the number of IFIH1- and, in particular, RSAD2-positive immune cells 

markedly increased in the endometria during pregnancy and in response to IFNT, but it 

is not clear whether these cells were recruited in response to IFNT or already present and 

stimulated by IFNT.  The IFNT stimulated resident immune cells in the endometrium 

may migrate from the uterus, because IFNT-stimulated genes are higher in the peripheral 

blood leukocytes isolated from pregnant as compared to non-pregnant ewes and cows 
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(273).   Eosinophils are also present in the endometrium of early pregnant ewes, and 

their numbers increase between Days 11 and 19 of early pregnancy, perhaps due to 

actions of both progesterone and perhaps IFNT (274).  In fact, IFNT possesses 

immunoregulatory activity and can inhibit mitogen-induced lymphocyte proliferation 

(275, 276) as well as modulate activity of natural killer cells (28, 277).  These effects of 

IFNT may prevent immune cell-mediated destruction of the conceptus (27).  Finally, 

some IFNT-stimulated genes, such as CXCL10, from immune cells may have direct 

effects on conceptus implantation (278, 279).  Collectively, available evidence supports 

the hypothesis that RSAD2 and IFIH1 modulate uterine receptivity to conceptus 

implantation by induction of an antiviral state and modulation of immune cell functions.   
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CHAPTER VI 

STANNIOCALCIN (STC) IN THE ENDOMETRIAL GLANDS OF THE OVINE 

UTERUS: REGULATION BY PROGESTERONE AND PLACENTAL 

HORMONES 

 

Introduction 

Stanniocalcin (STC) was originally described as a hormone with calcitonin-like 

actions in fish (195-198).  The hormone was discovered in the corpuscles of Stannius, 

unique endocrine glands on the kidneys of bony fish (199).  Removal of the organ or 

stanniectomy causes hypercalcemia (200, 201).  Fish STC1 was subsequently purified 

from the corpuscles of Stannius and found to be a homodimeric phosphoglycoprotein 

that regulates calcium and phosphate homeostasis (202).  In fish, STC synthesis and 

secretion are controlled primarily by serum calcium levels (199) and it acts to restore 

normocalcemia by acting on the gills to reduce further influx of calcium from the aquatic 

environment, on the kidneys to promote reabsorption of phosphate and chelate excess 

calcium, and on the gut to inhibit calcium uptake across the intestinal epithelium (196, 

197, 199, 202, 203) .   

STC1, a mammalian ortholog of fish STC1, has relatively high amino acid 

sequence identity (approximately 50%) with fish STC and is expressed in a variety of 

tissues including brain, kidney, lung, and heart (204).  STC2 has lower identity 

(approximately 35%) with STC1 and fish STC1 (205).  Similar to STC1, STC2 is 

expressed in a variety of tissues.  Research into the functions of STCs in mammals is at 

an early stage; therefore, its physiological roles have not been established [see for review 

(195, 206-208)].  Similar to fish STC, mammalian STC1 regulates intracellular calcium 

and phosphate (Pi) levels in the kidney and intestine (199, 209), but the function of 

STC2 is unknown.  Mammalian STC1 regulates renal transport of phosphate through 

stimulation of NaPi-2 cotransport activity (196, 210-212).  In rodents, Stc1 expression 

increases in ovarian tissues during gestation and lactation (213), as well as in 

mesometrial decidua of the uterus during implantation (214).  In the rat ovary, STC1 and 
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STC2 are expressed in ovarian theca/interstitial cells and in vitro studies suggest that 

they act in a paracrine manner to dampen gonadotropin stimulation of granulosa cell 

differentiation (205, 215).  In mice, Stc1 does not appear to be essential for reproduction 

or growth as null mutatnts have no overt phenotype (216); however, in that study, Stc2 

was found in all tissues that normally express Stc1 and may compensate for the lack of 

Stc1.         

The STCs have not been investigated in the reproductive tract of mammals other 

than mice; therefore, these studies were conducted to determine if the STC genes are 

expressed in the ovine uterus and to determine the effects of pregnancy, progesterone 

and placental hormones on STC1 and STC2 expression in the endometrium.  The results 

of these studies indicate that STC1 is expressed specifically by the endometrial glands of 

the pregnant uterus and suggest that it has a biological role(s) in regulating fetal and 

placental development and physiology.   

 

Materials and Methods 

Animals 

Crossbred Suffolk ewes (Ovis aries) were observed daily for estrus in the 

presence of vasectomized rams and used in the experiments after they exhibited at least 

two estrous cycles of normal duration (16-18 days).  All experimental and surgical 

procedures were in compliance with the Guide for the Care and Use of Agriculture 

Animals in Teaching and Research and approved by the Institutional Animal Care and 

Use Committee of Texas A&M University. 

 

Experimental Designs 

Experiment One. At estrus (Day 0), ewes were mated to either an intact or 

vasectomized ram as described previously (253) and then hysterectomized (n = 5 

ewes/day) on either Day 10, 12, 14 or 16 of the estrous cycle or Day 10, 12, 14, 16, 18 or 

20 of pregnancy.  On Days 10 to 16, the uterine lumen was flushed with 20 ml of sterile 

saline.  Presence of a morphologically normal conceptus(es) confirmed pregnancy in 
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mated ewes.  It was not possible to obtain uterine flushes on either Day 18 or Day 20 of 

pregnancy, because the conceptus had firmly adhered to the endometrial luminal 

epithelium (LE) and basal lamina.  At hysterectomy, several sections (~0.5 cm) from the 

mid-portion of each uterine horn ipsilateral to the corpus luteum (CL) were fixed in fresh 

4% paraformaldehyde in PBS (pH 7.2).  In monovulatory pregnant ewes, uterine tissue 

samples were marked as either contralateral or ipsilateral to the ovary bearing the CL. 

No tissues from the contralateral uterine horn were used for this study.   After 24 h, fixed 

tissues were changed to 70% ethanol for 24 h, dehydrated through a graded series of 

alcohol to xylene, and then embedded in Paraplast-Plus (Oxford Labware, St. Louis, 

MO).  Several sections (1–1.5 cm) from the middle of each uterine horn were embedded 

in Tissue-Tek OCT compound (Miles, Oneonta, NY), frozen in liquid nitrogen vapor, 

and stored at -80°C.  The remaining endometrium was physically dissected from 

myometrium, frozen in liquid nitrogen, and stored at -80°C for subsequent RNA 

extraction. Uterine flushes were clarified by centrifugation (3,000 x g for 30 min at 4°C) 

and frozen at -80°C for Western blot analysis. 

Experiment Two.  At estrus (Day 0), ewes were mated to an intact ram as 

described previously (280).  Ewes were then hysterectomized (n = 5 ewes/day) on either 

Day 40, 60, 80, 100, 120 or 140 of pregnancy (gestation period is 147 days).  Allantoic 

fluid samples were obtained and frozen at -80C.  At hysterectomy, the uterus was 

trimmed free of cervix and oviduct and opened along the mesometrial border.  Several 

sections (~0.5 cm) of both intercarunucular and placentomal uterine wall regions from 

the midportion of each uterine horn were fixed in fresh 4% paraformaldehyde in PBS 

(pH 7.2).  Placentomes were then removed by physical dissection, and remaining 

intercaruncular endometrium was dissected from the myometrium.  Endometrial samples 

were frozen in liquid nitrogen and stored at -80°C for RNA extraction.     

 Experiment Three.  Sixteen cyclic ewes were ovariectomized and fitted with 

intrauterine catheters on Day 5 post-estrus as described previously (69).  Ewes were then 

assigned randomly (n = 4 ewes/treatment) to receive daily i.m. injections of progesterone 

(Sigma Chemical Co., St. Louis, MO) or progesterone and a progesterone receptor 
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(PGR) antagonist (ZK 136,317; generously provided by Dr. Kristof Chwalisz, Schering 

AG, Berlin, Germany) and intrauterine infusions of either control serum proteins or 

recombinant ovine IFN tau (roIFNT) protein as follows: 1) 50 mg progesterone (P4, 

Days 5-24) and 200 �g control (CX) serum proteins (Days 11-24) [P4+CX]; 2) P4 and 

75 mg of ZK136,317 (Days 11-24) and CX proteins (200 µg) [P4+ZK+CX]; 3) P4 and 

IFNT (2X107 antiviral units, Days 11 to 24) [P4+IFN]; or 4) P4 and ZK and IFNT 

[P4+ZK+IFN].  All ewes were hysterectomized on Day 25 post-estrus.  Recombinant 

ovine IFNT was prepared in a yeast bacterial system and assayed for biological activity 

using an antiviral assay as described previously (264).  Control serum proteins and IFNT 

were prepared for intrauterine injections as described previously (281). 

 Experiment Four.  Fifteen cyclic ewes were ovariectomized and fitted with 

intrauterine catheters on Day 5 post-estrus as described previously (19).  All ewes 

received daily i.m. injections of 50 mg P4 (Days 5 to 25) and intrauterine injections of 

IFNT (2X107 antiviral units/day) from Days 11 to 20.  Ewes (n=5 per treatment group) 

also received daily intrauterine injections of either control (CX) serum proteins (200 µg) 

[CX], recombinant ovine placental lactogen (PL; 200 µg) [PL], or recombinant ovine 

Growth Hormone (GH, 200 µg) [GH] from Day 16 to Day 25 when all ewes were 

hysterectomized.  Recombinant ovine PL and ovine GH were prepared in bacteria and 

purified as described previously (282).  

For both Experiments Three and Four, portions (~0.5 cm) from the middle region 

of the uterine horn were fixed at hysterectomy in fresh 4% paraformaldehyde in PBS 

(pH 7.2) for 24 h, washed in 70% ethanol for 24 h, dehydrated through a graded series of 

alcohol to xylene, and then embedded in Paraplast-Plus (Oxford Labware, St. Louis, 

MO).   

 Experiment Five.  Ewes (n=4) were made unilaterally pregnant as described 

previously (283).  On Day 80 of pregnancy, uterine secretions, e.g. uterine milk, was 

collected from the nongravid uterine horn of unilaterally pregnant ewes (n = 4) on Day 

80 of pregnancy by flushing the uterine horn with 100 ml of saline.  In addition, samples 

of allantoic fluid and amniotic fluid (50 ml) were obtained using a syringe fitted with a 
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20-g needle from the gravid uterine horn.  Uterine milk and allantoic fluids were 

clarified by centrifugation and stored at –80°C.  

 

RNA Isolation  

Total cellular RNA was isolated from frozen endometrium from the uterine horn 

ipsilateral to the CL (Experiment One) and intercaruncular endometrium or placentomes 

(Experiment Two) using Trizol reagent (Gibco-BRL, Bethesda, MD) according to 

manufacturer’s recommendations.  The quantity and quality of total RNA was 

determined by spectrometry and denaturing agarose gel electrophoresis, respectively.   

 

Cloning of Partial cDNAs for Ovine STC1 and STC2 

Partial cDNAs for ovine STC1 and STC2 mRNAs were amplified by RT-PCR 

using total RNA from endometrium from ewes on Day 18 of pregnancy. For STC1, the 

sense primer (5'-TGA TCA GTG CTT CTG CAA CC-3') and antisense primer (5'-TCA 

CAG TCC AGT AGG CTT CG-3') were derived from the bovine STC1 mRNA coding 

sequence (GenBank accession no. NM_176669).  For STC2, the sense primer (5'- AAC 

GCT GGA AAA TTT GAT GC-3') and antisense primer (5'- CTC TTG CTA CCT CGC 

TCA CC -3') were derived from the human STC2 mRNA coding sequence (GenBank 

accession no. AF055460).  PCR amplification was as follows: 1) 95°C for 5 min; 2) 

95°C for 45 sec, 59.1°C for 1 min (for STC1), 61.8°C for 1 min (for STC2), and 72°C for 

1 min for 35 cycles; and 3) 72°C for 10 min.  Partial ovine STC1 and STC2 cDNAs were 

cloned into pCRII using a T/A Cloning Kit (Invitrogen) and their sequences were 

verified using an ABI PRISM Dye Terminator Cycle Sequencing Kit and ABI PRISM 

automated DNA sequencer (Perkin-Elmer Applied Biosystems).  

 

Slot Blot Hybridization Analyses 

Steady-state levels of mRNA in ovine endometria from Experiments One and 

Two were assessed by slot blot hybridization as described previously (125, 254).  

Antisense cRNA probes were generated by linearizing both pCRII-STC1 and pCRII-
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STC2 plasmids with XbaI and in vitro transcription with SP6 RNA polymerase, whereas 

sense cRNA probes were generated using BamHI and T7 RNA polymerase. 

Radiolabeled antisense and sense cRNA probes were then generated by in vitro 

transcription with [α-32P]-UTP.  Denatured total endometrial RNA (20 µg) from each 

ewe was hybridized with radiolabeled cRNA probes.  To correct for variation in total 

RNA loading, a duplicate RNA slot membrane was hybridized with radiolabeled 

antisense 18S cRNA (pT718S; Ambion, Austin, TX).  Following washing, the blots were 

digested with ribonuclease A and radioactivity associated with slots quantified using a 

Typhoon 8600 MultiImager (Molecular Dynamics, Piscataway, NJ).   

 

In Situ Hybridization Analyses 

Location of STC mRNA expression in sections (5 µm) of the ovine uterus was 

determined by radioactive in situ hybridization analysis as described previously (125, 

254).  Briefly, deparaffinized, rehydrated and deproteinated uterine tissue sections were 

hybridized with radiolabeled antisense or sense cRNA probes generated from linearized 

ovine STC1 and STC2 partial cDNAs using in vitro transcription with [α-35S]-UTP.  

After hybridization, washing and ribonuclease A digestion, slides were dipped in NTB-2 

liquid photographic emulsion (Kodak, Rochester, NY), and exposed at 4°C for one to 

two weeks.  Slides were developed in Kodak D-19 developer, counterstained with Gill’s 

hematoxylin (Fisher Scientific, Fairlawn, NJ), and then dehydrated through a graded 

series of alcohol to xylene.  Coverslips were then affixed with Permount (Fisher).  

Images of representative fields were recorded under brightfield and darkfield 

illumination using a Nikon Eclipse 1000 photomicroscope (Nikon Instruments Inc., 

Lewisville, TX) fitted with a Nikon DXM1200 digital camera.   

In Experiments 3 and 4, the relative abundance of STC1 mRNA in the 

endometrial glands was determined with the Scion Image software (Release beta 4.03, 

Scion Corporation, NIH, USA).  Briefly, photomicrographs of at least 10 regions of the 

uterus from each animal were acquired under darkfield illumination and converted to a 

TIFF file.  Using the Scion Image software, the optical intensity for the mRNA 
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hybridization signals in the endometrial glands was determined.  The inter- and intra-

section variation in optical intensity value measurements was less than 5%.   

 

Immunohistochemical Analyses 

Immunocytochemical localization of STC1 protein in the ovine uterus was 

performed as described previously (19) in tissue sections from Experiments One and 

Two with rabbit anti-human STC1 antiserum (214) at a 1:25,000 dilution.  Antigen 

retrieval was performed by using a boiling citrate buffer and negative controls included 

substitution of purified rabbit IgG for the primary antibody at the same final 

concentration. 

 

Western Blot Analyses 

Endometrial extracts of uteri from Days 12, 18 and 80 of pregnancy in 

Experiments One and Two were prepared by homogenizing the uterine tissues in 

extraction buffer (60 mM Tris pH 7.0, 1 mM Na3VO4, 10% glycerol, 2% SDS and 1X 

protease inhibitor cocktail (Roche, Indianapolis, IN)).  Uterine flushes from Day 16 

pregnant ewes in Experiment One were concentrated using Centricon-3 columns 

(Amicon, Beverly, MA).  Protein concentrations of uterine flushes, uterine milk and 

allantoic fluid were determined using the Bradford protein assay (Bio-Rad, Hercules, 

CA) with bovine serum albumin (BSA) as the standard.  Proteins were denatured and 

separated by 15% SDS-PAGE, and Western blot analysis was performed as described 

previously (145) using enhanced chemiluminescence detection (SuperSignal West Pico, 

Pierce, Rockford, IL) and X-OMAT AR X-ray film (Kodak, Rochester, NY).  

Immunoreactive STC1 protein was detected using the rabbit anti-human STC1 antiserum 

(214) at a 1:40,000 final dilution. 

 

Statistical Analyses 

All quantitative data were subjected to least-squares regression analyses 

(ANOVA) using the General Linear Models (GLM) procedures of the Statistical 
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Analysis System (SAS Institute, Cary, NC).  Slot blot hybridization data were corrected 

for differences in sample loading using the 18S rRNA data as a covariate.  Data from 

Experiments One and Two were analyzed for effects of day, pregnancy status (cyclic or 

pregnant), tissue (caruncular and intercaruncular endometrium), treatment and their 

interactions.  Within pregnancy status, least squares regression analyses were used to 

determine effects of day on endometrial mRNA levels.  Optical intensity measurements 

of mRNA abundance in the endometrial glands as determined by in situ hybridization 

analyses of uteri from Experiments Three and Four were analyzed for effects of 

treatment, animal, and slide.  Pre-planned orthogonal contrasts were used to determine 

main effects of treatment.  All tests of significance were performed using the appropriate 

error terms according to the expectation of the mean squares for error.  A P-value of 0.05 

or less was considered significant while a P-value of 0.05 to 0.10 was considered a trend 

toward significance.  Data are presented as least-square means (LSM) with standard 

errors (SE). 

 

Results 

Steady-State Levels of STC1 and STC2 mRNA in the Endometrium of the Ovine 

Uterus 

Steady-state levels of STC1 and STC2 mRNA in endometria of cyclic and 

pregnant ewes were determined by slot blot hybridization analysis (Figure 6.1).  STC1 

mRNA was detected in the endometrium of pregnant ewes, but not in the endometrium 

of cyclic ewes.  In addition, STC1 mRNA was not detected in the placentomal tissues of 

pregnant ewes (data not shown).  In pregnant ewes, STC1 mRNA first appeared on Day 

18 of pregnancy, increased (P<0.01) ~6-fold to Day 80, and remained abundant 

thereafter.  STC2 mRNA was found in the endometria of both cyclic and pregnant ewes 

as well as in the placentomes.  Overall, STC2 mRNA levels were low in the 

endometrium and not different (P>0.10) between cyclic and pregnant ewes on Days 10 

to 16.  STC2 mRNA levels increased (linear, P<0.05) ~3-fold in the endometrium of  
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Fig. 6.1. Steady-state levels of STC1 and STC2 mRNAs in ovine uterine and placental 
tissues.  (A) STC1 mRNA in the endometrium of cyclic (C) and early pregnant (P) ewes 
(Days 10 to 20) and in the intercaruncular (ICAR) endometria of later pregnant ewes 
(Days 40 to 120).  STC1 mRNA was detected in the endometrium of pregnant ewes, but 
not in the endometrium of cyclic ewes (ND = not detectable) or in the placentomal 
tissues of pregnant ewes (data not shown).  In pregnant ewes, STC1 mRNA was first 
detected on Day 18 of pregnancy, increased (P<0.01) ~6-fold to Day 80, and remained 
abundant thereafter in the intercaruncular (ICAR) endometrium.  (B) STC2 mRNA in the 
endometrium of cyclic (C) and early pregnant (P) ewes (Days 10 to 20) and in the 
intercaruncular (ICAR) endometria and placentomes (PLAC) of later pregnant ewes 
(Days 40 to 120).  STC2 mRNA was detected in the endometria of both cyclic and 
pregnant ewes as well as in the placentomes.  Overall, STC2 mRNA levels were low in 
the endometrium and not different (P>0.10) between cyclic and pregnant ewes on Days 
10 to 16.  STC2 mRNA levels increased (P<0.05) ~3-fold in the endometrium of 
pregnant ewes after Day 20.  Low levels of STC2 mRNA were observed throughout 
gestation in the placentomal tissues.  Data is expressed as LSM relative units (RU) with 
standard error (SE).  
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pregnant ewes after Day 20.  Low levels of STC2 mRNA were observed throughout 

gestation in the placentomal tissues. 

 

Localization of STC1 and STC2 mRNAs in the Ovine Uterus  

In situ hybridization analyses determined the location of STC1 and STC2 mRNAs 

in uteri of cyclic and pregnant ewes (Figures 6.2 and 6.3).  In cyclic ewes, STC1 mRNA 

was not detected between Days 10 and 16 of the estrous cycle or pregnancy (Figure 6.2).  

Similarly, STC1 mRNA was not detected in the endometrium of Days 10 to 16 pregnant 

ewes.  On Day 18 of pregnancy, STC1 mRNA was detected in the endometrial glandular 

epithelium (GE), but not in any other uterine or placental cell types, including the 

luminal epithelium (LE), stroma, myometrium, blood vessels, immune cells or conceptus 

trophectoderm.  Throughout pregnancy, STC1 mRNA was observed only in the 

endometrial GE.   The photomicrographs of Day 60, 80, 100 and 120 placentomes 

contain red blood cells at the placentome-myometrium interface which diffract light 

under dark-field, but are not positive for STC1 mRNA.  

In contrast to STC1, STC2 mRNA was detected at very low levels in the 

endometrial LE, GE and stroma of cyclic and early pregnant ewes (Fig. 6.3).  In later 

pregnant ewes, STC2 mRNA was detected predominantly in the endometrial LE and GE 

as well as conceptus trophectoderm (Tr) with lower levels in the stroma.  Given the 

temporal and spatial alterations in the two STC genes in ovine uteroplacental tissues, we 

focused on STC1 in the remainder of the studies. 

 

Localization of Immunoreactive STC 1 Protein in the Ovine Uterus 

Immunohistochemical analysis indicated that STC1 protein was localized 

predominantly on the apical surface of GE between Days 18 and 140 of gestation 

(Figure 6.4).  Consistent with results from in situ hybridization analyses, STC1 protein 

was predominantly detected in the endometrial glands near the apical surface.  In 

caruncular areas, immunoreactive STC1 was detected only in GE adjacent to the 

placentome.  Areolae are specialized areas of the intercotyledonary placenta that form  
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Fig. 6.2. In situ hybridization analysis of STC1 mRNA in the uterus of cyclic and 
pregnant ewes.  Cross-sections of the uterine wall from cyclic (C) and pregnant (P) ewes 
and placentomes of pregnant ewes were hybridized with radiolabeled antisense or sense 
ovine STC1 cRNAs.  Note that STC1 mRNA is expressed only in the glandular epithelia 
of the endometrium during pregnancy.  Legend: GE, glandular epithelium; LE, luminal 
epithelium; M, myometrium; S, stroma; Tr, trophectoderm.  Bar represents 10 µm.  
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Fig. 6.3. In situ hybridization analyisis of STC2 mRNA in endometria of cyclic and 
pregnant ewes and placentomal tissue of late pregnant ewes.  Cross-sections of the 
uterine wall from cyclic (C) and pregnant (P) ewes were hybridized with radiolabeled 
antisense or sense ovine STC2 cRNAs.  Very low levels of STC2 mRNA were detected 
in the endometrial stroma and glands of the cyclic and early pregnant uterus.  In later 
pregnant ewes, STC2 mRNA was observed predominantly in the endometrial lumina 
epithelium (LE), glandular epithelium (GE) and conceptus trophectoderm (Tr) as well as 
in the maternal caruncular stroma of the placentome.  Legend: GE, glandular epithelium; 
LE, luminal epithelium; S, stroma; Tr, trophectoderm.  Bar represents 10 µm.  
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Fig. 6.4. Immunohistochemical localization of STC1 protein in uteri from cyclic and 
pregnant ewes.  In the IgG control, normal rabbit IgG was substituted for rabbit 
polyclonal antibody to human STC1. Sections were not counterstained.  Note the 
immunoreactive STC1 protein in the endometrial glandular epithelia and accumulation 
in the placental areolae as shown on Day 100 of pregnancy.  Legend: LE, luminal 
epithelium; GE, glandular epithelium; M, myometrium; S, stroma; Tr, trophectoderm.  
Solid bar represents 10 µm, except for the bar represents 100 µm in the higher 
magnifications of the glands and areolae on Day 100 of pregnancy.  
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over the opening of a gland duct on the endometrial luminal surface (284).  STC1 

protein was consistently observed in the folded areolae of the intercotyledonary placenta.     

 

Progesterone Induces STC1 mRNA in the Endometrial Glands of the Ovine Uterus  

Osteopontin (secreted phosphoprotein one or SPP1 and uterine SERPIN, also 

known as uterine milk protein or UTMP) is also expressed only the endometrial GE and 

induced by progesterone (60, 61, 65, 69).  Therefore, Experiment Three was conducted 

to determine if the induction of STC1 mRNA in the endometrial glands of early pregnant 

ewes was due to progesterone and/or IFNT from the conceptus (Figure 6.5A).  

Continuous, long-term progesterone treatment for 20 days alone induced STC1 mRNA 

in the endometrium of the ovine uterus (Figure 6.5B).  As illustrated in Figure 6.5C, 

STC1 mRNA was 11.6-fold higher (P<0.01) in the endometrial glands of P4+CX-treated 

ewes as compared to P4+ZK+CX-treated ewes.  Indeed, STC1 mRNA was not observed 

in the endometrial glands of uteri from any of the ewes receiving progesterone and the 

ZK anti-progestin (Figure 6.5B).  Intrauterine infusion of IFNT had no effect (P>0.10) 

on STC1 mRNA abundance in the endometrial glands when P4+IFN-treated ewes were 

compared to P4+CX-treated ewes.  STC2 mRNA was not detected by in situ 

hybridization analysis in endometria of ewes in any treatment group (data not shown).  

 

Placental Lactogen (PL) and Growth Hormone (GH) Increase STC1 mRNA in the 

Endometrium  

In addition to being progesterone induced genes in the endometrial glands of the 

ovine uterus, SPP1 and SERPIN are also stimulated by intrauterine administration of 

ovine PL and ovine GH (19, 285).  Therefore, Experiment Four was conducted to 

determine if ovine PL and(or) ovine GH regulated STC expression in the endometrial 

glands of the ovine uterus (Figure 6.6A).  Intrauterine administration of recombinant 

ovine PL increased STC1 mRNA in the endometrial glands of the ovine uterus by 1.8-

fold (P<0.05, CX vs PL) (Figures 6.6B and 6.6C).  Similarly, intrauterine administration 

of recombinant ovine GH tended to increase STC1 mRNA in the endometrial glands by  
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Fig. 6.5.  Effects of progesterone and IFNT on endometrial STC1 mRNA.  (A) 
Experimental design (see Materials and Methods for complete description of 
experimental design). Legend: CX, control serum proteins; Hystx, hysterectomy; IFN, 
recombinant ovine interferon tau; Ovx/Cath, ovariectomy and uterine catheterization; P4, 
progesterone; ZK, ZK137,316; (B) In situ hybridization analysis of STC1 mRNA in the 
uterus.  Indeed, STC1 mRNA was not observed in the endometrial glands of uteri from 
any of the ewes receiving progesterone and the ZK anti-progestin.  Legend: LE, luminal 
epithelium; GE, glandular epithelium; S, stroma.  Bar represents 10 µm.  (C) 
Quantification of STC1 mRNA in the endometrial glands of uteri.  STC1 mRNA was 
11.6-fold higher (P<0.01) in the endometrial glands of P4+CX-treated ewes as compared 
to P4+ZK+CX-treated ewes.  However, intrauterine infusion of IFNT had no effect 
(P>0.10) on STC1 mRNA abundance in the endometrial glands when P4+IFN-treated 
ewes were compared to P4+CX-treated ewes.  Data is expressed as LSM optical 
intensity with SE.  
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Fig. 6.6.  Effects of intrauterine infusion of placental lactogen and growth hormone on 
endometrial STC1 mRNA.  (A) Experimental design (see Materials and Methods for 
complete description of experimental design). Legend: CX, control serum proteins; GH, 
growth hormone; Hystx, hysterectomy; IFN, recombinant ovine interferon tau; Ovx/Cath, 
ovariectomy and uterine catheterization; P4, progesterone; PL, placental lactogen.  (B) 
In situ hybridization analysis of STC1 mRNA in the uterus.  Legend: LE, luminal 
epithelium; GE, glandular epithelium; S, stroma.  Bar represents 10 µm.  (C) 
Quantification of STC1 mRNA in the endometrial glands of uteri.  Intrauterine 
administration of recombinant ovine PL increased STC1 mRNA in the endometrial 
glands of the ovine uterus by 1.8-fold (* = P<0.05, CX vs PL).  Intrauterine 
administration of recombinant ovine GH tended to increase STC1 mRNA in the 
endometrial glands by 1.4-fold (+ = P<0.10, CX vs GH).  Data is expressed as LSM 
optical intensity with SE. 
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1.4-fold (P<0.10, CX vs GH).  Similar to Experiment Three, STC2 mRNA was not 

detected by in situ hybridization analysis of the endometria from any of the ewes in the 

experiment (data not shown).    

 

Western Blot Analysis of STC1 Protein in the Endometrium, Uterine Secretions and 

Fetal Fluids  

Western blot analysis (under reducing conditions) of endometrial extracts, 

uterine secretions and allantoic fluid from pregnant ewes with rabbit anti-human STC1 

antibody detected a single protein of ~25 kDa in size.  Immunoreactive STC1 was 

observed in the uterine luminal fluid, e.g. uterine milk, and allantoic fluid of Day 80 

unilateral pregnant ewes, but not in the uterine luminal fluid obtained by flush of Day 16 

pregnant ewes (Figure 6.7).  In addition, STC1 was not detected in the amniotic fluid 

from Day 80 pregnant ewes (data not shown).  These results support the idea that STC1 

is synthesized in GE, secreted by glands into the uterine lumen, transported by the 

areolae across the placenta into the fetal circulation, cleared by the kidney into the 

urachus, and then stored in the allantoic fluid during gestation. 

 

Discussion 

The results of the present studies demonstrate that STC1 is exclusively expressed 

in the endometrial glands of the ovine uterus after Day 16 of pregnancy.  In sheep, the 

blastocyst enters the uterus by Day 6, but only begins implantation on Day 16 (2).  In 

rodents, STC1 gene expression was found to shift from the uterine LE to the 

mesometrial decidua during implantation (214).  In contrast, in the endometrium of the 

ovine uterus, the STC1 gene was uniquely expressed in glandular epithelial cells. 

Likewise, STC1 protein was present near the apical surface of gland cells and secreted 

into the uterine lumen, as evidenced by the presence of immunoreactive STC1 protein in 

uterine secretions, placental areolae, and allantoic fluid.  In this context, STC1 would 

appear to be secreted in an exocrine manner.  If STC1 is also secreted in an endocrine 

direction by the endometrial glands, it may play an additional role in regulating maternal  
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Fig. 6.7. Analysis of immunoreactive STC1 protein in uterine luminal fluid and allantoic 
fluid of pregnant ewes.  Proteins were separated by 15% SDS-PAGE under reducing 
conditions.  Western blot analysis found a single immunoreactive protein of ~25 kDa in 
uterine luminal fluid and allantoic fluid samples from Day 80 unilaterally pregnant ewes, 
but not in uterine luminal fluid of Day 16 pregnant ewes or amniotic fluid of Day 80 
ewes (data not shown).  Positions of prestained molecular weight standards (x 10-3) are 
indicated.  
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physiology, and perhaps be useful as an endocrine marker of pregnancy in sheep.  STC2, 

a paralog of STC1, has been identified (205, 286, 287) and detected in various tissues, 

but its biological roles are not known.  In the present study, low levels of STC2 mRNA 

were detected in the endometrial glands and placenta.  Results of the present studies 

indicate that STC1 is the predominant form of the hormone produced in the ovine uterus 

and present in uteroplacental tissues of the sheep.   

The gland-specific expression of the STC1 gene in the endometrium of the ovine 

uterus is similar to SPP1 and SERPIN, which also encode secreted proteins that are 

present in the uterine lumen and allantoic fluid during pregnancy (67, 68, 288).  All three 

genes are induced in the glands of the endometrium in response to progesterone.  

Available results indicate that continuous exposure of the uterus to progesterone 

specifically down-regulates progesterone receptor (PGR) in the endometrial epithelia (1, 

17).  The disappearance of the PGR from the endometrial GE after Day 13 of pregnancy 

is associated with subsequent induction of SPP1 after Day 13 followed by SERPIN and 

STC1 between Days 16 and 18 (10, 65, 66, 69).  Indeed, treatment of ewes with an anti-

progestin inhibited progesterone-dependent down-regulation of the PGR in the 

endometrial epithelia of the ovine uterus (69).  Furthermore, administration of estrogen 

with progesterone to ewes up-regulated PGR in the endometrial GE which, in turn, 

suppressed SPP1 and SERPIN (19).  Collectively, available evidence suggests that the 

STC1 gene is repressed by liganded PGR, and this repression is removed by 

progesterone down-regulation of the PGR gene that occurs after Day 13 of pregnancy.  

Thus, progesterone induction of STC1, as well as SPP1 and SERPIN, is not a classical 

mechanism of gene regulation by progesterone and PGR.  Indeed, down-regulation of 

PGR by progesterone may be requisite for GE remodeling and differentiated function 

[see (17)].  Given that STC1 gene expression was first observed in the endometrial 

glands on Day 18 of pregnancy, it is likely that another factor(s) besides progesterone 

regulates the STC1 gene, because PGR gene expression is lost between Days 13 and 15 

of pregnancy (10). 
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 In the present study, ovine PL and GH were found to stimulate STC1 in the 

endometrial glands.  During pregnancy, the uterus is sequentially exposed to 

progesterone from the ovary and then IFNT, PL and GH from the placenta.  IFNT is 

produced by the mononuclear trophectoderm between Days 11 to 20 of early pregnancy 

and is the signal for maternal recognition of pregnancy (18).  IFNT acts in a paracrine 

manner on the endometrium to inhibit development of the luteolytic mechanism in the 

endometrial LE, thereby promoting continued production of progesterone by the corpus 

luteum.  Although IFNT stimulates a large number of genes in the endometrial GE and 

stroma (18), STC1 expression in the endometrial glands was not affected by IFNT in the 

present studies.  PL is produced specifically by the trophoblast giant binucleate cells, 

which first differentiate between Days 14 and 15 in the conceptus (54).  Peak 

concentrations of PL in maternal serum closely parallel dynamic changes in total protein 

synthesized and secreted by the GE of the ovine endometrium during gestation (61, 289-

291).  In the current studies, STC1 mRNA and protein was first observed on Day 18 of 

pregnancy and increased to maximal levels by Day 80 of pregnancy, which is associated 

with the onset of and increases in PL production by the trophoblast giant binucleate cells.  

Indeed, SPP1 and SERPIN are also stimulated in the endometrium of ovariectomized 

ewes treated with progesterone and IFNT (19, 285).  Lacroix and coworkers  (292, 293) 

first described the expression of GH in the ovine placenta between Days 35 and 70.  

Similar to uterine SERPINs, STC1 tended to be stimulated in the endometrial glands by 

intrauterine infusions of ovine GH.  Thus, somatolactogenic hormones from the 

conceptus act in a paracrine manner on the endometrium to increase STC1 mRNA in the 

GE.  Future studies will need to focus on the molecular mechanism of PL and GH 

modulation of STC1 gene expression.  The mechanism likely involves both prolactin 

receptors (PRLR) and GH receptors (GHR), because ovine PL can signal through a 

homodimer of the PRLR as well as a heterodimer of the PRLR and GHR, whereas GH 

signals only via a homodimer of the GHR (294).  Indeed, PRLR are expressed 

exclusively in the endometrial glands of the ovine uterus, and PL binds to those 

receptors (65, 285, 295).  Furthermore, IFNT stimulates PRLR in the endometrial glands 
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of the ovine uterus (296).  Although likely more complicated, available evidence 

supports the idea that progesterone down-regulates PGR, which is permissive for the 

onset of STC1, and then IFNT stimulates PRLR that, in turn, respond to PL from the 

new BNC which further stimulate STC1 gene expression along with GH during later 

pregnancy. 

 Although mouse STC1 expression is highly up-regulated in the ovary during 

lactation (213) and changes dynamically in the uterus during the pre-implantation period 

(213, 214), its biological and molecular functions in the mammalian uterus during 

pregnancy are not known.  In the present study, we found that STC1 is induced by 

progesterone and stimulated by PL and GH.  The temporal alterations in endometrial 

STC1 mRNA and protein parallel fetal growth and development.  Indeed, our results 

indicate that STC1 is secreted by the endometrial glands into the uterine lumen, where it 

is transported into the fetal circulation by the areolae of the intercotyledonary placenta.  

After implantation, the chorioallantois develops unique structures, termed areloae, that 

develop over the mouth of each uterine gland as specialized areas for absorption and 

transport of uterine histotroph into the conceptus (59).  These results support the idea 

that STC1 protein is synthesized by the endometrial glands and then secreted into the 

uterine lumen, where it is absorbed by the placenta, transported into the fetal circulation, 

and cleared by the kidney into the allantois via the urachus (59, 247).  Although the 

allantois was initially considered a reservoir for waste products of the fetus, it serves to 

store most secreted proteins from the endometrium, including SERPINs (61, 297).  In 

contrast, amniotic fluid is not in the path for protein clearance by the fetal kidney and, 

therefore, does not function in this capacity.  Alternatively, STC1 may originate from the 

fetus itself, given that Stc1 is highly expressed by the mouse fetus, in particular by the 

kidneys, testes, bone and muscle (298). 

 Although the functions of uterine STC1 are not known, based on its biological 

properties in fish and mammals, it may be involved in the regulation of calcium and 

phosphate transport by placental membranes as well as their homeostasis in the fetus.  

All of the nutrients and minerals required to provide the anabolic requirements of the 
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developing ovine fetus must pass from the maternal circulation through either the uterine 

glands (interplacentomal) or feto-maternal syncytiotrophoblast (placentomal) and then 

cross the placental trophoblast epithelium (299).  Calcium is essential for cellular 

homeostasis and function.  During pregnancy, fetal calcium must cross the placenta and 

in exponentially increasing amounts during the second half of gestation to support fetal 

bone growth (300).  Calcium transport across the placenta is an active process, because 

serum calcium in the fetus is higher than the mother (301).  Indeed, S100 calcium 

binding protein G (S100G, also known calbindin-D9K) is present in the maternal 

endometrial glands and is higher in the trophoblasts of the interplacentomal placenta as 

compared to that of the placentomes (302, 303).  Given the importance of calcium in 

placental function and fetal growth, STC1 from the endometrial glands may regulate 

calcium and phosphate homeostasis in the placenta as well as perhaps the fetus.   
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CHAPTER VII 

SUMMARY AND CONCLUSIONS 

 

Summary 

Experiments described in this dissertation were conducted to identify and 

characterize novel implantation-related genes in the ovine uterus during the peri-

implantation period.  It has been hypothesized that a variety of proteases, as well as their 

inhibitors, regulate endometrial remodeling and trophoblast invasion in many species 

(e.g. mouse, rat, cat, sheep, pig, and human) during conceptus implantation and 

placentation (219).  Trophoblast invasion in ruminants is limited to fusion of migrating 

binucleate cells with uterine epithelium, but considerable tissue remodeling and 

angiogenesis occurs within the endometrium at implantation which is associated with the 

cysteine and serine proteases and production of matrix metalloproteinases (MMPs) by 

the endometrium and conceptus (221, 222).   

Results described in Chapters II and III indicate that similar to endometria of 

other mammals, expression of many cathepsins (CTS) and cystatin C (CST3; an inhibitor 

of CTS) were detected in endometria of cyclic and early pregnant ewes.  In the present 

study, cysteine proteases CTSB, CTSH, CTSK, CTSL, CTSS, CTSZ and aspartyl 

protease CTSD, and CST3 were found to be expressed in the ovine endometrium, and 

expression of CTSB, CTSD, CTSH, CTSL, CTSZ, and CST3 mRNA increased between 

Days 10 and 20 of early pregnancy.  Results of these studies of CTSL and CST3 in the 

ovine uterus are very similar to those for mice, in which expression of CTSL and CTSB 

by invasive trophoblast giant cells was balanced by coordinated expression of CST3 in 

the decidualizing stroma at the implantation site.  Therefore, the dynamic and 

differential expression of CTS and CST3 genes between cyclic and pregnant ewes 

suggests functional diversity in mechanisms responsible for expression of CTS and CST3 

genes that may be responsible for optimization of a uterine environment that supports 

conceptus implantation and placentation during establishment and maintenance of 

pregnancy (222).  In Study One, temporal changes in expression of endometrial CTSL 
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and CST3 mRNA in cyclic and pregnant ewes supported the hypothesis that ovarian P4 

regulates transcription of the CTSL and CST3 gene in the endometrial LE.  The increase 

in CTSL and CST3 mRNAs in LE and sGE, between Days 10 and 12 post-estrus/mating, 

is coincident with the disappearance of PGR mRNA and protein in these epithelia (10).  

Similarly, the decrease in CTSL and CST3 mRNAs between Days 14 and 16 of the cycle 

is coincident with the reappearance of PGR protein in endometrial LE due to regression 

of the CL and loss of P4.  In Study Two, CTSL and CST3 mRNA was detected in 

endometrial LE and sGE of ovariectomized ewes treated with P4 for 12 days, but this 

expression was prevented by administration of the PGR antagonist ZK 136,317.  

Continuous exposure of the sheep uterus to P4 for 8 to 10 days down-regulates PGR 

expression in endometrial LE and sGE, but not stroma or myometrium (231).  PGR are 

present in the endometrial epithelia of P4+ZK-treated sheep (243), because PGR 

antagonists prevent inhibitory effects of P4 on PGR gene expression.  Consequently, P4 

modulation of CTSL and CST3 mRNA may be attributed, at least in part, to down-

regulation of PGR by P4 that occurs in LE and sGE between Days 10 and 12 of the cycle 

and pregnancy (223).  Thus, PGR loss in endometrial epithelia may reprogram these 

cells, allowing them to increase expression of genes associated with implantation (223, 

224).  Alternatively, P4 may act on PGR-positive stromal cells to induce them to express 

growth factors or changes in the ECM that regulate expression of selected epithelial 

genes (223).   

In addition to regulation by P4, results of these studies indicate that CTSL and 

CST3 expression is further enhanced by IFNT.  In Study Two, intrauterine 

administration of IFNT increased CTSL and CST3 mRNA, but only in P4-treated ewes.  

One hypothesis is that IFNT can only stimulate transcription of the CTSL and CST3 gene 

in the absence of liganded PGR, i.e., after down-regulation of PGR by P4.  Alternatively, 

the PGR-positive stroma may produce a ‘progestamedin’, e.g., FGF7, FGF10 or HGF, 

that could be required for LE and sGE to respond to IFNT  (223).  The signaling 

pathway whereby IFNT regulates transcription of the CTSL and CST3 gene is not known, 

but it clearly does not involve the classical JAK-STAT-IRF (IFN regulatory factor) 
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signaling pathway as LE and sGE do not express STAT1, STAT2 or ISGF3G (1, 125, 

156, 223).   

What are the molecular mechanisms and signal transduction pathways activated 

by IFNT to regulate transcription of the novel epithelial genes, such as WNT7A, 

LGALS15, CTSL, and CST3, only in LE and sGE in the ovine uterus during the peri-

implantation period?  The current working hypothesis is that IFNT utilizes STAT1-

independent signaling pathway(s) to stimulate transcription of those genes in the LE and 

sGE (Fig. 7.1).  In the ovine endometrial LE and sGE, the essential components of the 

JAK/STAT signal transduction, such as STAT1, -2, and ISGF3G, are not expressed, but 

IRF2, a potent transcriptional repressor of ISGs, was identified specifically in those cells, 

where it could repress or suppress the transcriptional acitivity of the promoter regions of 

ISGs that contain ISREs and IRF-Es (see bottom panel) (124, 125, 145, 151).  Further, in 

our in silico study, the enhancer/promoter regions of bovine WNT7A, LGALS15, CTSL, 

and CST3 genes had conserved transcription factor(s) binding sites for AP-1, CEBPB, 

CREB, ELK1, GATA, and LEF1/TCF7, but not STATs or IRFs.  Are there unknown 

non-classical JAK/STAT signaling pathways that are independent of STAT1?  Recently, 

Platanias et al. reported that the generation of responses to Type I IFN requires the 

coordination and cooperation of multiple distinct signaling cascades including the 

mitogen-activated protein (MAP) kinase p38 pathway and the phosphatidylinositol 3-

kinase (PI3K) pathway (for review see Platanias 2005).  The p38 MAP kinase is 

phosphorylated and activated in several IFN-sensitive cell lines in response to Type I 

IFN such as IFNA and its inhibitor (SB203580) blocks IFN-inducible transcription (304, 

305).  Inhibition of p38 MAP kinase has no effects on the phosphorylation of STAT1 or 

-2, and formation of the ISGF3 transcriptional complex (304, 306).  In addition, Type II 

IFN (IFNG) did not activate p38 MAP kinase in several cell lines (305, 307).  Further, in 

the bovine uterus, IFNT activates the p38 MAP kinase pathway for induction of PTGS2 

in myometrial cells (308).  These results indicate that p38 MAP kinase may play a role 

in Type I IFN-mediated signal transduction that is independent of STATs.  Therefore, 

IFNT activation of p38 MAP kinase may be one signaling pathway whereby IFNT 
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stimulates transcription of certain genes independent of STAT1 in the ovine uterus.  

Meanwhile, PI3K is activated in response to Type I or II IFNs.  In the case of the Type I 

IFN signaling pathway, Type I IFNs activate the PI3K-signal pathway downstream of 

JAKs, in an insulin receptor substrate (IRS)-dependent but STAT-independent manner 

(306, 309).  The proposed model for the IFNT signal transduction cascade that is 

STAT1-independent in the ovine LE and sGE is illustrated in the upper panel of Fig 7.1 

(adapted from Platanias 2005). IFNT-activated JAK1/TYK2 may regulate the 

phosphorylation of PI3K, resulting in the downstream activation of phosphoinositide-

dependent protein kinase 1 (PDK1) and proto oncogenic protein kinase Akt (AKT).  The 

activated AKT translocates into the nucleus and then phosphorylates a variety of target 

proteins such as CREB (cAMP-response element binding protein)-binding protein 

(CBP)/p300 or NF-�B.  Also, IFNT may activate MAPK kinase kinase (MAPKKK) or 

Raf which is activated by activated Ras. Activated MAPKKK and/or Raf subsequently 

regulate activation of downstream effectors including MAPK kinase (MAPKK), p38 

MAPK, MEK, or extracellular signal-regulated kinase (ERK).  In addition, the 

mammalian target of rapamycin (mTOR)-p70 ribosomal protein S6 kinase (p70S6K) 

pathways which are activated by PI3K or AKT, may be involved in mRNA translation of 

ISGs by phosphorylated ribosomal protein S6 (RPS6) and translational respressor 

4EBP1 (eukaryotic translation-initiation factor 4 E (EIF4-E)-binding protein 1).  This 

hypothesis is supported by available results that IFNT and growth factors including 

insulin-like growth factor 2 (IGF2) stimulate PI3K-AKT and MAPK signal transduction 

cascades in ovine trophectodermal and LE cells (unpublished observation).  Meanwhile, 

another possible scenario in the ovine uterus during the peri-implantation period is that 

IFNT may induce WNT7A using the canonical WNT signaling pathway between Days 

12 and 16 of pregnancy and then WNT7A acts in an autocrine or paracrine manner to 

stimulate the LGALS15, CTSL, and CST3 genes in endometrial LE and sGE.  Because 

WNT7A is the only gene truly induced by IFNT, its expression is not detected on Day 12 

of pregnancy, but is induced by IFNT between Days 14 and 16 (156).  In fact, LGALS15, 

CTSL, and CST3 genes are stimulated by IFNT between Days 14 and 16 of pregnancy,  
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Fig. 7.1.  A proposed model of IFNT signal transduction cascades that is independent of 
STAT1 in the ovine LE and sGE.  IFNT-activated JAK1/TYK2 may regulate the 
phosphorylation of PI3K, resulting in the downstream activation of phosphoinositide-
dependent protein kinase 1 (PDK1) and proto oncogenic protein kinase Akt (AKT).  The 
activated AKT translocate into the nucleus and phosphorylate a variety of target proteins 
such as CREB (cAMP-response element binding protein) binding protein (CBP)/p300 or 
NF-�B.  Also, IFNT may activate MAPK kinase kinase (MAPKKK) or Raf which is 
activated by activated Ras. Activated MAPKKK and/or Raf subsequently regulate 
activation of downstream effectors including MAPK kinase (MAPKK), p38 MAPK, or 
MEK, extracellular signal-regulated kinase (ERK), respectively.  In addition, the 
mammalian target of rapamycin (mTOR)-p70 ribosomal protein S6 kinase (p70S6K) 
pathways which is activated by PI3K or AKT, may be involved in mRNA translation of 
ISGs by phosphorylated ribosomal protein S6 (RPS6) and translational respressor 
4EBP1 (eukaryotic translation-initiation factor 4 E (EIF4-E)-binding protein 1).   
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which correlates with WNT7A upregulation (157, 250, 265).  Therefore, future 

experiments will be directed toward determining the physiological role of the above 

epithelial genes and novel STAT1-independent signaling pathways in peri-implantation 

conceptus development as well as endometrial remodeling in response to IFNT.   

Interestingly, the ovine placenta expresses large numbers of aspartic proteinase 

inhibitor genes, termed pregnancy-associated glycoproteins (234), and the endometrial 

glands express large amounts of serine protease inhibitors, termed serpins or uterine milk 

proteins (64), that could regulate the activity of endometrial CTS identified in these 

studies.  Therefore, the molecular control of expression of CTS in the ovine 

endometrium may play an important role in establishing a regulatory network of 

multiple proteolytic enzymes responsible for ECM remodeling during implantation and 

placentation.  Futher, coordinated increases in CTSL and CTSB with CST3 occur in 

endometrial LE and sGE as well as in conceptus trophectoderm during early pregnancy.  

Thus, one biological role of CST3 may be to inhibit the actions of cysteine proteases 

produced by the conceptus and endometrial epithelia in order to limit the invasive 

activity of the trophoblast.  These results support the general idea that proteases and their 

inhibitors expressed at the maternal-fetal interface are important for uterine receptivity, 

endometrial remodeling and conceptus implantation during pregnancy in mammals.  

Experiments described in Chapter IV identified two antiviral-related genes, 

RSAD2 and IFIH1, as being induced in the ovine endometrium in response to IFNT from 

the conceptus in a P4-independent manner.  Clearly, P4 and IFNT have complex, 

independent and complementary effects on expression of a number of genes in the ovine 

endometrium during early pregnancy (259, 260).  In this study, P4 was not required for 

IFNT induction of RSAD2 and IFIH1 in the endometrium.  Further, treatment of ovine 

endometrial LE and BEND cells with recombinant ovine IFNT induced RSAD2 and 

IFIH1 expression without a requirement for serum or P4 in the medium.  In contrast, 

IFNT induction of several non-classical IFNT-stimulated genes (ISGs), such as 

LGALS15 and WNT7A in endometrial LE and sGE is dependent on P4 (156, 157, 250, 
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265), which is hypothesized to involve P4 down-regulation of the PGR in those epithelia 

(17, 259).    

 The majority of ISGs induced by IFNT without a requirement for P4 in the ovine 

uterus are restricted to endometrial stroma and middle to deep glands as well as immune 

cells (17, 18).  This finding was initially surprising because all ovine endometrial cell 

types express IFNAR1 and IFNAR2 subunits of the common Type I IFN receptor (99).  

However, available results also indicate that IRF2, a potent transcriptional repressor of 

ISGs (127), is expressed specifically in endometrial LE and sGE and that it represses 

transcriptional activity of promoters containing ISRE or IRFE (125).  Thus, IRF2 in LE 

and sGE is proposed to restrict IFNT induction of many ISGs to endometrial stroma and 

glandular epithelium.   

One biological role of RSAD2 and IFIH1 could be to prevent viral infection of 

the uterus during the critical peri-implantation period of pregnancy, particularly when 

the conceptus does not have a developed immune system or antiviral defenses.  RSAD2 

and IFIH1 are implicated in establishing an antiviral state by modulation of innate 

immune responses.  For example, stable expression of RSAD2 in fibroblasts inhibits 

human cytomegalovirus infection (167).  Given that IFIH1 also has growth suppressive 

properties, IFNT induction may suppress activation of cells within the endometrium, 

which could be beneficial for pregnancy.  In other species such as rodents and humans, 

resident and recruited immune cells within the endometrium play important roles in 

placentation and a successful pregnancy (29, 268).  Unfortunately, knowledge of which 

immune cells are present in the ovine uterus during pregnancy and their biological 

functions is limited.  In this study, the number of IFIH1- and, in particular, RSAD2-

positive immune cells markedly increased in the endometria during pregnancy and in 

response to IFNT, but it is not clear whether these cells were recruited in response to 

IFNT or were already present and stimulated to express RSAD2 by IFNT.  The IFNT 

stimulated resident immune cells in the endometrium may migrate from the uterus, 

because ISGs are higher in peripheral blood leukocytes isolated from pregnant as 

compared to non-pregnant ewes and cows (273).  In fact, IFNT possesses 
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immunoregulatory activity and can inhibit mitogen-induced lymphocyte proliferation 

(275, 276) as well as modulate activity of natural killer cells (28, 277).  These effects of 

IFNT may prevent immune cell-mediated destruction of the conceptus (27).  Finally, 

some ISGs, such as CXCL10, from immune cells may have direct effects on conceptus 

implantation (278, 279).   

Results described in Chapter V demonstrate that STC1 mRNA is exclusively 

expressed in the endometrial glands of the ovine uterus after Day 16 of pregnancy.  

Further, STC1 protein was present near the apical surface of gland cells and secreted into 

the uterine lumen, as evidenced by the presence of immunoreactive STC1 protein in 

uterine secretions, placental areolae, and allantoic fluid.  The gland-specific expression 

of the STC1 gene in the endometrium of the ovine uterus is similar to SPP1 and SERPIN, 

which are also secreted proteins that are present in the uterine lumen and allantoic fluid 

during pregnancy (67, 68, 288).  All three genes are induced in the glands of the 

endometrium in response to P4.  Available results indicate that continuous exposure of 

the uterus to P4 specifically down-regulates PGR in endometrial epithelia (1, 17) and 

this is associated with expression of SPP1 after Day 13 followed by SERPIN and STC1 

between Days 16 and 18 (10, 65, 66, 69).  Indeed, treatment of ewes with an anti-

progestin inhibited P4-dependent down-regulation of the PGR in the endometrial 

epithelia of the ovine uterus (69).  Furthermore, administration of E2 with P4 to ewes 

up-regulated PGR in the endometrial GE which, in turn, suppressed expression of SPP1 

and SERPIN (19).  Therefore, available evidence suggests that the STC1 gene is 

repressed by liganded PGR, and this repression is removed by P4 down-regulation of the 

PGR gene that occurs after Day 13 of pregnancy.  Thus, P4 induction of STC1, as well 

as SPP1 and SERPIN, is not a classical mechanism of gene regulation by P4 and PGR.  

Indeed, down-regulation of PGR by P4 may be required for GE remodeling and 

differentiated function (17).   

In this study, ovine placental lactogen (CSH1) and growth hormone (GH) were 

found to stimulate STC1 in the endometrial glands.  During pregnancy, the uterus is 

sequentially exposed to P4 from the ovary and then IFNT, GH and PL from the placenta.  
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PL is produced specifically by the trophoblast giant binucleate cells, which first 

differentiate between Days 14 and 15 in the conceptus (54).  Peak concentrations of PL 

in maternal serum closely parallel dynamic changes in total protein synthesized and 

secreted by GE of the ovine endometrium during gestation (61, 289-291).  In this study, 

STC1 mRNA and protein were first observed on Day 18 of pregnancy and increased to 

maximal levels by Day 80 of pregnancy, which is associated with the onset of and 

increases in PL production by the trophoblast giant binucleate cells.  Indeed, SPP1 and 

SERPIN are also stimulated in the endometrium of ovariectomized ewes treated with P4 

and IFNT (19, 285).  Lacroix and coworkers  (292, 293) first described the expression of 

GH in the ovine placenta between Days 35 and 70 of gestation.  Similar to uterine 

SERPINs, STC1 tended to be stimulated in the endometrial glands by intrauterine 

infusions of ovine GH.  Thus, somatolactogenic hormones from the conceptus act in a 

paracrine manner on the endometrium to increase STC1 mRNA in GE.   

 

Conclusions 

During the peri-implantation period in sheep, CTSL and CST3 are novel P4-

induced and IFNT-stimulated genes in endometrial LE and sGE.  The majority of ISGs 

such as RSAD2 and IFIH1 are expressed by endometrial stroma and middle to deep 

glands as well as immune cells in response to cell signaling involving the classical 

STAT1-dependent JAK/STAT signal transduction pathway without a requirement for P4 

in the ovine uterus.  It has been reported and hypothesized that Type I IFNs and many 

common ISGs are upregulated for the implanting conceptus in the endometrium during 

pregnancy in humans, rodents, and domestic animals.  Recent evidence that ISGs are 

among the most upregulated genes in human decidualized stromal cells by trophoblast 

conditioned medium, perhaps due to production of type I IFNs by the trophoblast 

supports the hypothesis that a lack of ISG expression would compromise pregnancy.  In 

contrast, IFNT induction of several non-classical ISGs, such as LGALS15, WNT7A, 

CTSL, and CST3 in endometrial LE and sGE is dependent on P4, which is hypothesized 

to involve P4-induced down-regulation of PGR in those epithelia, as well as induction of 
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an unknown STAT1-independent signaling pathway.  Thus, knowledge of mechanisms 

whereby IFNT stimulates CTSL and CST3 gene expression in endometrial LE and sGE is 

expected to elucidate a non-classical signaling pathway for Type I IFNs.  Further, 

increased knowledge of expression of uterine proteases and their inhibitors is important 

for developing therapeutic strategies to prevent, treat and diagnose infertility in humans 

and domestic animals.  Meanwhile, biological roles of RSAD2 and IFIH1 could be to 

prevent viral infection of the uterus during the critical peri-implantation period of 

pregnancy, particularly when the conceptus does not have a developed immune system 

or antiviral defenses.  In the ovine uterus, STC1 is induced by P4 and stimulated by PL 

and GH.  Indeed, results described in this dissertation support the idea that STC1 protein 

is synthesized by the endometrial glands, secreted into the uterine lumen, absorbed by 

placental areolae and transported into the fetal circulation, cleared by the kidney into the 

allantois via the urachus, and reabsorbed into the fetal circulation to influence 

conceptus/fetus growth and development.   
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