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ABSTRACT 

 

 

Design of Bioaerosol Sampling Inlets.  (May 2006) 

 

Rohit Ravindra Nene, B.Tech., Indian Institute of Technology, Madras, India 

 

Chair of Advisory Committee: Dr. Andrew R. McFarland 

 

 

 An experimental investigation involving the design, fabrication, and testing of an 

ambient sampling inlet and two additional Stokes-scaled inlets is presented here.  Testing 

of each inlet was conducted at wind speeds of 2, 8, and 24 km/h (0.55, 2.22, and 6.67 

m/s), and characterized for particle sizes between 5 and 20 µm AD.  The base-line 

ambient sampling inlet, which operates at 100 L/min, was developed to interface with a 

Circumferential Slot Virtual Impactor aerosol concentrator.  The inlet displays wind-

speed independent characteristics with a penetration above 90% for a nominal particle 

size of 10 µm AD for all wind speeds.  Particles up to 11.5 µm AD are sampled through 

this inlet with a penetration above 80% at all wind speeds.  In an effort to test the validity 

of Stokes scaling to assist in the design of inlets, two additional inlets were designed to 

accommodate design flow rates of 400 L/min and 800 L/min, with the 100 L/min unit as 

the base inlet.  Scaling was achieved by applying a Stokes scaling factor to selective 

parameters, such as inlet aspiration gap, annular gap, window height, and the rise which 

is the vertical distance extending from the lower flange to the base of the window.  The 

scaled inlets display wind independent penetration characteristics close to 95% for a 

nominal particle size of 10 µm AD.  The scaled inlets also have the ability to sample 

particles up to a size of 13 µm AD with a penetration in excess of 80% at all wind speeds. 
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Observations from the plots of penetration against the Stokes number based on the free 

stream velocity suggest that it is insufficient to use only Stokes-scaling for inlet design.  

A modified velocity ratio defined for omnidirectional inlets was incorporated into a 

summary of results obtained for all combinations of BSI units and wind speeds.  Also, a 

correlation equation based on the Stokes number and a modified velocity ratio was 

developed as a model for predicting performance among the BSI family of inlets.  This 

correlation used in unison with Stokes-scaling provides promise for predicting 

performance and improving the overall design process of inlets.     
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INTRODUCTION 

 

 

Background 

 

Biological weaponry may be thought to be in its infancy, but it has been used for 

centuries as a modality of war.  It is only in more recent times that domestic acts of 

bioterrorism such as the anthrax (Bacillus anthracis) attacks in 2001 and the ricin 

incidents of 2003 in Washington D.C. have caused a growing concern towards the issue 

of national security of the United States.  Improving response capabilities, both in the 

civilian and military sectors, through timely detection and identification of biological 

warfare agents, is seen as an imminent course of action. 

Effective and timely response to a situation depends on the type of biological 

agent detection system.  Near-real-time point detection technologies contain sensors that 

must be in the presence of the aerosol plume or have the suspect biological agent 

introduced to them for sensing.   Point detection systems traditionally have the following 

components: sampler, trigger or cue, and an identifier.   

In an effort to develop a near-real-time biological point detection system, the U.S. 

Military has effected several programs including the Joint Biological Point Detection 

System (JBPDS), to replace previously existing systems such as the Biological Integrated 

Detection System (BIDS) and the Interim Biological Agent Detector (IBAD).  These 

systems have been deployed by the U.S. Army and the U.S. Navy (Wolf and Hohe, 

2000).  In the presently deployed configuration, the JBPDS samples at 780 L/min.  The 

inlet sampler currently used for this system is shown in Figure 1.  In support of the U.S.  

_____________ 

This thesis follows the style and format of Aerosol Science and Technology. 
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Military bioaerosol detection effort, the Aerosol Technology Laboratory (ATL) of the 

Texas Engineering Experiment Station conducts research and development under 

contract from the U.S. Army Research and Development Engineering Command 

(RDECOM).  Work is currently underway at ATL to upgrade the sampling system 

capabilities of the JBPDS from an existing sampling flow rate of about 800 L/min to 

1250 L/min, which entails development of a new inlet. 

 

Aerosol Sampling 

 The sampling of aerosol particles ideally involves obtaining an accurate 

representation of the size distribution, concentration and composition that is present in 

the free stream or ambient environment, with the sample characteristics independent of 

sampling conditions for all particles of interest.  The sampling of aerosols can be broadly 

classified into four categories; a) ambient sampling, which is the sampling from the free 

atmosphere; b) source sampling, which involves sampling from ducts, stacks, pipes, and 

moving fluid streams; c) occupied environment sampling; and d) sampling from a 

moving platform such as an aircraft, land-based vehicle, or ship.  In this thesis, the focus 

is on ambient sampling systems.  It may be necessary to point out that the motivation for 

aerosol inlet design studies extends far beyond the problems related to biological agent 

detection.  Ambient monitoring of environmental pollutants, perimeter monitoring of 

industrial and nuclear facilities, and global monitoring of radionuclides are a few other 

applications where inlet design is critical.    

The increasing significance of ambient sampling has given rise to the 

establishment of various standards on permissible values of aerosol concentration.  In the 
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last few decades, many changes have been effected in the characterization of atmospheric 

particulate matter, which until 1972 was primarily accomplished through the use of 

samples acquired with high volume (“Hi-Vol”) devices.  These samplers measure total 

suspended particulate (TSP) while drawing in air at a flow rate of 1.41 m
3
/min (50 CFM).  

This approach was considered inadequate because the collected sample contained 

particles with sizes larger than those that would penetrate into the thoracic region of the 

human lung system.  The TSP standard was health-based, and the non-thoracic fraction of 

the aerosol was not considered to be an important factor in impacting human health 

(Wedding, 1982).  Also, the collection capability of samplers was found to be a strong 

function of particle size, wind speed, and sampler orientation.  These shortcomings 

prompted the U.S. Environmental Protection Agency (EPA) to examine fractionating the 

ambient aerosol sample prior to collection.  Initially, it was recommended that the 

fractionation curve should exhibit a cutpoint of 15 µm AD, however that was 

subsequently changed to 10 µm AD.  The cutpoint (D50) is the aerodynamic diameter 

(AD) that is associated with 50% inlet aerosol penetration.  The aerodynamic diameter 

(AD) of a particle is defined as the diameter of a spherical particle with a density of 1000 

kg/m
3
 (the density of a water droplet) that has the same settling velocity as the particle of 

interest (Hinds, 1999).  Particulate matter that penetrates through a fractionator with a 

cutpoint of 10 µm AD is called PM-10.  Because of the concern over the health effects of 

fine particles in air, the EPA adopted new standards for sampling fine particles, PM-2.5 

(Federal Reference Method, PM-2.5).  These standards are designed to provide the basis 

for controlling particles smaller than 2.5 µm in aerodynamic diameter, which pose a 
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significant risk to human health because of their ability to penetrate and deposit in the 

bronchial and alveolar regions of the respiratory duct. 

In addition to physical considerations, there are biological considerations inherent 

to bioaerosol sampling that need to be addressed to present a holistic approach to the 

research at hand.  For example, biological sampling may require aseptic handling to 

prevent contamination and special attention to the viability of the organisms during the 

process of sampling and analysis (Hinds, 1999).  This study deals with the ambient 

sampling of bioaerosols, and focuses on the physical aspect of bioaerosol sampling 

without considering the details of the biological aspects of the aerosol particles. 

 

Inlets for Aerosol Sampling 

The detection of biological agents is carried out by extracting a sample of air from 

the contaminated environment and passing it to other sampling system components such 

as a concentrator, collector, lysing device, etc. before presenting the sample to a detector 

or identifier.   

Ambient bioaerosol sampling at high volumetric flow rates, is generally an 

essential part and the first step towards proper agent detection, with current field systems 

operating at sample flow rates of the order of 1000 L/min.  The inlet of the bioaerosol 

sampling system, which aspirates the sample ambient atmosphere, ideally allows all 

particles of interest to enter and arrive at the detector or identifier without harming or 

altering the agent, yet excluding rain, snow, insects, plant matter, and other airborne 

debris.  Generally, an inlet will include a fractionator, such as an impactor or cyclone, 

and a screen to strip the unwanted debris from the size distribution.  An efficient inlet is 
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one in which particle losses due to impaction on external surfaces, turbulent deposition, 

and sedimentation are minimized (Liu and Pui, 1981).  The performance of the inlet 

should also remain unaffected by changes in wind speed and direction.  In this study the 

basic performance characteristics of the inlet will be investigated, independent of the 

presence of either a screen or fractionator.  The rationale for this approach is that if an 

inlet sans screen or fractionator can aspirate and transmit bioaerosol particles in the size 

range of interest at a high level of penetration, then a screen and fractionator can 

customize the size distribution to fit the needs of the user.  

 Depending on the type of application, different basic inlet design styles may be 

considered.  Unidirectional inlets such as shrouded probes are used predominantly in 

source sampling and mobile-platform applications, where the direction of the free stream 

is known.  In the case of ambient sampling, the free stream direction is highly variable 

and a properly designed inlet should be able to sample independent of wind direction.  A 

traditional omnidirectional inlet has a circumferential intake that allows particles to be 

aspirated regardless of the wind direction.  The present study encompasses the design of a 

family of omnidirectional inlets. 

 

 

 

 

 

 

 



 6 

 

THEORY 

 

 

There exist several parameters that can serve as metrics to capture the 

performance of an inlet.  The penetration of aerosol through an inlet is an extensively 

used parameter.  For a particle size interval that is represented by an aerodynamic 

diameter of Da,i the aerosol penetration is 

i

ie

i
C

C
P

,

,

∞

=  [1] 

where Ce,i is the aerosol concentration at the exit plane of the inlet, and C∞,i is the aerosol 

concentration in the free stream.  Because the present study is concerned with inlets 

devoid of fractionators, other parameters such as inlet effectiveness and collection 

efficiency will not be considered. 

As a general observation from fluid flow principles, particle aspiration from the 

ambient atmosphere into an inlet is governed by the streamlines which carry the particles.  

In sampling sources or sampling from moving platforms, the concept of isokinetic 

sampling can be used to determine if a representative sample of aerosol arrives at the 

inlet plane of a sampling nozzle.  Sampling is isokinetic when the inlet axis of the 

sampler, e.g., a thin-walled tube or probe, is aligned parallel to the gas streamlines and 

the gas velocity at the probe entrance plane equals the free stream velocity approaching 

the inlet.  However, due to the possibility of internal wall losses in the nozzle, the 

condition of isokineticity is no assurance that the penetration will be unity. 

Anisokinetic sampling may occur if the probe axis is not aligned with the gas flow 

streamlines or if the velocity in the probe is not equal to that of the free stream.  If the 

velocity at the nozzle entrance plane is higher than that of the free stream (Uin/Uo>1), the 
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sampling is referred to as being superisokinetic; and if the velocity at the probe entrance 

plane is lower than that of the free stream (Uin/Uo<1), the sampling is said to be 

subisokinetic.  Here, Uin is the spatial mean air velocity at the inlet plane of the nozzle 

and Uo is the free stream velocity. 

 As discussed earlier, ambient sampling introduces the challenge of sampling from 

an unknown direction, which is why omnidirectional inlets are usually suitable.  

Although isokinetic sampling and an associated velocity ratio exist for isoaxial sampling 

through a tube-like probe, it is proposed to extend this concept to the family of 

circumferential intake inlets.  Because the airflow and particle behavior in an inlet are 

very complex, an analytical theory to relate penetration to parameters such as the velocity 

ratio is not possible.  In this study, consideration will be given to experimentally 

examining the effect of such parameters upon aerosol penetration.    

A simple dimensional analysis has been performed below using Buckingham’s П-

theorem and establishing a set of dimensionless π-groups.  The aerosol penetration 

through an inlet, P, is known to be functionally dependent on the following variables: 

( )∗= UdUPP co ,,,,, µρτ   [2] 

where 

τ is the particle relaxation time; 

Uo is the free stream velocity; 

dc is a characteristic dimension of the inlet; 

ρ is the density of air; 

µ  is the dynamic viscosity of air; and 

U
*
 is a reference velocity (a reflection of the flow rate, Q) inside the inlet. 
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These variables can be expressed in terms of their fundamental units of mass, M, 

length, L, and time, T. 

[τ] = T;  

[Uo] = LT
-1

; 

[dc] = L; 

[ρ] = ML
-3

; 

[µ] = ML
-1

T
-1

; 

[U
*
] = LT

-1
. 

According to Buckingham’s П-theorem, the number of dimensionless π-groups is 

given by the difference in the number of independent variables, m and the number of 

fundamental dimensions used to express the variables, n.  Therefore, the number of π-

groups is (m – n), or (6 – 3) = 3 dimensionless π-groups. 

( ) 0,, 321 =πππφ   [3] 

If we choose the recurring variables to be Ui, dc, and ρ, where Ui is one reference velocity 

– either Uo or U
*
 (the other reference velocity denoted as Uj), the dimensionless π-groups 

can be obtained as follows. 

τρπ ⋅⋅⋅= 111

1

cb

c

a

i dU   [4] 

( ) ( ) ( ) TMLLLTTLM
cba

⋅⋅⋅= −− 111 31000   [5] 

Solving for the coefficients we get a1 = 1, b1 = -1, and c1 = 0. 

c

i

d

U⋅
=∴

τ
π1   [6] 

Similarly, 

 

µρπ ⋅⋅⋅= 222

2

cb

c

a

i dU   [7] 
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( ) ( ) ( ) 1131000 222 −−−− ⋅⋅⋅= TMLMLLLTTLM
cba

  [8] 

Solving for the coefficients we get a2 = -1, b2 = -1, and c2 = -1. 

µ

ρ
π

⋅⋅
=∴ ci dU

2   [9] 

Also, 

j

cb

c

a

i UdU ⋅⋅⋅= 333

3 ρπ    [10] 

( ) ( ) ( ) 131000 333 −−− ⋅⋅⋅= LTMLLLTTLM
cba

   [11] 

Solving for the coefficients we get a3 = -1, b3 = 0, and c3 = 0. 

j

i

U

U
=∴ 3π    [12] 

The dimensionless parameters, π1, π2, and π3, can be identified as the Stokes number, 

Reynolds number, and a velocity ratio, respectively. 









=

∗

oU

U
StkPP Re,,    [13] 

 In the case of inlets, the Stokes number represents particle motion as warranted by 

the free stream wind speed, Uo.  The Reynolds number can be used to describe the 

mechanics of internal flow within the inlet so the velocity in this case is U
*
, a reference 

velocity associated with flow inside the inlet.  The third π-group represents a ratio of the 

two reference velocities mentioned above; U
*
 and Uo.  The ratio U

*
/Uo is a velocity ratio 

which describes the interaction of the external flow field (free stream wind) and the 

internal flow field (sampling flow). 

 Fundamental theory on inertial impaction of aerosol particles suggests that the 

process is largely driven by the Stokes number rather than the Reynolds number (Hinds, 
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1999).  The dominance of the Stokes number on particle motion indicates that the 

Reynolds number exists as a second order variable.  If we extend the concept of inertial 

impaction to the particle behavior associated with inlets we can conclude that penetration 

may be represented as a function of the Stokes number and the velocity ratio. 









=∴

∗

oU

U
StkPP ,    [14] 

Two reference velocities are required to completely describe the inlet dynamic 

model.  One velocity is Uo, the velocity of the free stream; the other is U
*
, which is 

defined as the volumetric flow rate of the inlet, Q, divided by a reference flow area in the 

inlet, Aref.  For the present study Aref is the annular area between two concentric cylinders 

of the inlet.  Also, the actual velocity in the gap depends on the external wind speed, so if 

the external wind speed is zero, the actual gap velocity reduces to Q/Aref.  The two 

reference velocities can be used to define a modified velocity ratio, U
*
/Uo. 

 The employment of Stokes scaling is potentially an important tool to assist in the 

design of inlets used for sampling inertially-affected aerosol particles.  The Stokes 

number is defined as the ratio of the stopping distance of a particle to a characteristic 

dimension of the system in the region where the stopping distance is being considered.  In 

the case of flow perpendicular to a cylinder of diameter dc the Stokes number is defined 

as 

c

ref

d

U
Stk

⋅
=

τ
   [15] 

where τ is the relaxation time and Uref is the undisturbed air velocity.  As the Stokes 

number approaches zero, particles track the streamlines perfectly.  However, as the 
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Stokes number increases, particles resist changing their directions when there is curvature 

of the gas streamlines (Hinds 1999). 

 If the performance of a given inlet is known, it would be possible to infer the size 

or volumetric flow rate of a geometrically similar inlet if the Stokes number were solely 

responsible for characterizing particle penetration through the inlet.  As an example, if 

the performance of an inlet (denoted with subscript “1”) were known, then the 

performance of a second geometrically similar inlet (denoted with subscript “2”) would 

be identical if the Stokes numbers of the two inlets were the same, i.e.  

21

21 






 ⋅
=







 ⋅
⇒=

c

ref

c

ref

d

U

d

U
StkStk

ττ
   [16] 

If we choose to sample the same particle sizes with the two inlets, the relaxation times are 

the same for both inlets and can be cancelled on both sides.  Assume that the reference 

velocity can be represented by the volumetric flow rate Q divided by a reference area, 

Aref, in the zone where particle losses are taking place.  In turn, assume that this area is 

proportional to the square of the characteristic dimension, i.e. to dc
2
.  The above equation 

may be rewritten and subsequently rearranged to arrive at a scaling ratio. 

2

3

1

3 











=













cc d

Q

d

Q
   [17] 

3

1

2

1

2

Q

Q

d

d

c

c
=    [18] 

Thus, if the operating volumetric flow rates of both inlets are known, the size of the 

desired inlet can be calculated.  Alternatively, if the geometry of the desired inlet is 

scaled from a given inlet, the volumetric flow rate of the desired inlet may be determined, 

assuming the same performance holds. 
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 If the performance of a given inlet is known in terms of its cutpoint, D50, for a 

fixed volumetric flow rate, the cutpoint, D50 or the physical size of another inlet may also 

be determined from the Stokes scaling.  The particle relaxation time, τ is proportional to 

the square of the particle diameter, Dp.  Equating the Stokes number for two inlets 

assuming the volumetric flow rates to be equal gives 
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or, 
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For example, if a particular cutpoint, D50 is desired, an inlet can be dimensionally scaled 

from a given inlet with a known cutpoint.  Alternatively, if the size of an inlet is known 

(which is a geometric scaling from a given inlet) the cutpoint, D50 of that inlet can be 

determined.   
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LITERATURE REVIEW 

 

 

Overview 

 

Until a little over two decades ago, little attention had been given to examining 

the basic fluid and aerosol mechanics associated with the problem of collecting an 

unbiased sample of atmospheric particulate matter independent of the environmental 

conditions.  However, several investigators had studied the performance of simple 

collector geometries in wind tunnels. 

 Davies (1968) modeled the sampling efficiency of cylindrical inlets with the tube 

axis oriented parallel to the wind velocity.  Later he analyzed sampling in cross winds.  

Agarwal (1972) extended the analysis by solving the Navier-Stokes equation to observe 

the flow pattern of cylindrical inlets.   

Wedding et al. (1977) studied the performance of the standard Hi-Vol sampler 

followed by a broader study conducted by McFarland et al. (1979).  These efforts were in 

response to the need for a shift from a sampler that measures total suspended particulate 

(TSP) to one that sizes segregated samples, i.e., strips large unwanted particles from the 

distribution.  

 A dichotomous sampler is a low volume (1 m
3
/hr) device designed to provide fine 

and coarse aerosol separation and collection for subsequent elemental and chemical 

analysis and to provide reasonably simple manual or automatic operation (Stevens et al., 

1977).  Inlets for use with dichotomous samplers were developed by McFarland at Texas 

A&M University (TAMU) based on earlier work by McFarland et al. (1978).  These 

inlets typically exclude particles larger than 15 µm AD. 
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 Commercial versions of the TAMU inlet were manufactured by Sierra 

Instruments and Beckman Instruments.  Particles enter circumferentially and rise through 

a stilling chamber before making a U-turn and being pulled through a concentric outlet 

pipe.  Wind tunnel tests conducted at TAMU indicate that particle collection is not 

severely affected by wind speeds of 2, 8, and 24 km/h (McFarland et al., 1978). 

Liu and Pui (1981) later designed, constructed and tested an inlet for sampling 

particles less than 15 µm aerodynamic diameter at a flow rate of 16.7 L/min.  The 

external geometry of the inlet was selected to allow entry of large particles into the inlet, 

while an impactor was used to remove the coarse particles that could not enter the 

thoracic region of the human lung tree.  The inlet displayed characteristics independent of 

wind speed up to 9 km/h (2.5 m/s).  Later studies showed there to be problems with both 

the fractionator and with inadvertent ingestion of precipitation.  McFarland and Ortiz 

(1982, Sierra-Andersen 246B) designed an impactor for the inlet, and Tolocka et al. 

(2001) designed an all-weather roof for the device. 

 A large effort over the past few decades has been driven towards using various 

approaches to ambient aerosol sampling.  A turning point in the design thinking occurred 

when the design rationale for an inhalable particulate matter (IPM) inlet was established.  

According to Wedding (1982), as it is not practical or necessary to achieve isokinetic 

sampling in the field, the inlet must only effectively transport to the fractionating device 

the particle sizes of interest with consistent or predictable losses independent of the wind 

speed, direction, turbulent intensity and scale, and environmental conditions such as 

debris, insects, etc.. 
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 The need to develop an inlet that conforms to the sampling standards stated above 

is critical.  In addition to the development of an inlet for a specific application, a general 

design tool such as scaling should be implemented and validated in order to be able to 

take existing inlets and modify them to suit other applications. 

Seo (2004) worked with various scaled versions of the modified Liu and Pui type 

inlets including a unit that was designed for a 780 L/min flow rate system, which is called 

the 780 L/min All Weather Inlet (AWI-780).  The 780 L/min inlet was scaled according 

to its internal volume to two-thirds and one-third the original size.  The smaller units 

were highly sensitive to wind speed. 

 

Motivation and Objectives  

In bioaerosol sampling, there is generally need for a concentrator to increase the 

concentration of particulate matter that is delivered to the detector or identifier.  The 

replacement of concentration devices such as cyclones with virtual impactors has the 

potential to considerably reduce the overall power consumption of a biological detection 

system (Isaguirre, 2005).  The deployment of such a system in the field that utilizes a 

concentration device based on virtual impaction such as a Circumferential Slot Virtual 

Impactor, CSVI (Haglund, 2003) would deem favorable from a power consumption 

standpoint.   

To allow particles up to a certain size to enter the CSVI unit, an effective 

sampling device is necessary, which will not cause an underestimation of the 

concentration of particles in the size range of interest (e.g. 1 - 10 µm AD).  The principal 

focus of this experimental study is to design, fabricate, and test an ambient sampling inlet 
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to be used conjointly with the CSVI unit that operates at a nominal volumetric flow rate 

of 100 L/min.  The combined unit will allow particles to be sampled through the inlet, 

enter a fractionating plenum, and permit particles in a certain range of interest to gain 

entry to the CSVI.  The sampling inlet considered herein is devoid of an internal 

fractionator, however, a field-worthy unit will need an internal fractionator to prevent 

large particles (e.g. those with sizes > 15 µm AD from entering the CSVI and potentially 

fouling its internal surfaces).  This overall approach should provide reliable sampling to 

the detector or identifier that comprises particles in the range of < 15 µm AD.   

In addition to the development of a 100 L/min sampler, two larger inlets, which 

were designed by Stokes scaling for operation at roughly 400 L/min and 800 L/min, were 

tested to determine their performance characteristics.  The goal of this effort is to test the 

validity of using this approach to Stokes scaling as a concept for assisting in the design of 

future inlets. 

 The specific objectives of this study are: 

• Design and fabricate an inlet capable of handling a volumetric flow rate of 100 

L/min (0.00167 m
3
/s), and two additional Stokes scaled versions designed to 

operate at 400 and 800 L/min (0.00668 and 0.01336 m
3
/s).  The inlets should 

ideally display wind independent characteristics with an overall penetration above 

80% for a nominal particle size of 10 µm AD. 

• Experimentally characterize the penetration of particles in the nominal size range 

of 5 to 20 µm AD at wind speeds of 2, 8, and 24 km/h (0.55, 2.22, and 6.67 m/s) 

for all inlets.  Penetration characteristics will be obtained for at least four different 
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particle sizes for the 100 L/min inlet and three different particle sizes for the 400 

and 800 L/min scaled inlets. 

• Test the two larger inlets for operation at a flow rate of 1250 L/min, and conduct 

further aerosol tests with the unit deemed most desirable for use in a bioaerosol 

detection system currently fielded by the U.S. Military. 
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PROTOTYPE INLET DESIGNS 

 

 

The inlets of this study, which shall be referred to as Bell Shaped Inlets (BSIs), 

have a design similar to the circumferential side entrance inlet that was developed by 

Wedding et al. (1977) and McFarland et al. (1979).  In this type of inlet, aerosol enters 

the device through a circumferential intake and rises through a stilling chamber before 

making a U-turn and being discharged from the inlet through a concentric vertical outlet 

pipe.  Figure 2 shows a schematic representation of the BSI design flow configuration 

and nomenclature of various parameters.   

The vertical dimension at the intake is denoted as the intake or aspiration gap.  

The width of the annulus in the region between the inner and outer cylindrically shaped 

plena is denoted as the annular gap.  The height available between the top of the inner 

plenum and the top of the outer plenum is referred to as the window height.  The vertical 

distance extending from the lower flange of inner plenum to the top of the inner plenum 

is denoted as the rise. 

A primary objective for this study is to develop a 100 L/min (0.00167 m
3
/s) 

sampling inlet.  A preliminary design for the inlet was determined by scaling a similar 

existing inlet (Haglund et al., 2005) designed to operate at 1250 L/min (0.021 m
3
/s).  A 

0.305 m (12”) outer plenum diameter and a 0.254 m (8”) inner plenum diameter were 

scaled down to 0.123 m (5.2”) and 0.086 m (3.4”) respectively using the Stokes scaling 

analysis. 

Two preliminary prototype designs were fabricated based on this approach; one 

with a 0.102 m (4”) inner plenum diameter and the other with a 0.076 m (3”) inner 

plenum diameter.  These units are designated as BSI-100-4 and BSI-100-3 respectively 
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(Figures 3 and 4).  Both units have a 0.127 m (5”) outer plenum diameter.  For the current 

study, insensitivity to wind speed and a high degree of particle penetration for a wide 

range of particles needs to be addressed, so it was necessary to adjust critical parameters 

such as the intake gap and the window height in order to achieve the desired objectives. 

Following the fabrication and limited testing of the prototypes, an advanced 

prototype unit was fabricated by Spiral Fittings of South Carolina, Inc., a vendor that 

specializes in metal spinnings.  The latter unit consists of an outer and inner plenum 

assembly, with a provision for windows at the top of the inner plenum to allow the air to 

pass from the annular gap to the exit tube.  This unit closely resembles the BSI-100-4 and 

features outer and inner flange diameters of 0.222 m (8.75”) and 0.210 m (8.25”).  The 

smaller inner diameter prevents the entry of external precipitation such as rain droplets, 

snow or debris.  This unit is designated as the BSI-100.  Figures 5 and 6 show a 

schematic diagram and photographs of the advanced prototype inlet. 

Two additional inlets, designed to operate at flow conditions of 400 L/min and 

800 L/min were developed by subjecting the BSI-100 unit to a Stokes-scaling of selective 

parameters (Table 1).  The parameters that were chosen were namely the intake or 

aspiration gap, the annular gap, the window height and the rise.  Parameters such as the 

inner and outer plenum diameters and flange dimensions were not subjected to a Stokes-

scaling for two reasons; one being the fact that these parameters were assumed to not 

have much of an effect on the overall performance and the other due to prohibitively 

large dimensions that would have resulted.  Fabrication of these units was also provided 

by Spiral Fittings of South Carolina Inc.  Figures 7 and 8 provide the schematic diagrams 

and photographs of the scaled units together with the BSI-100. 
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EXPERIMENTAL PROTOCOL 

 

 

General 

 

The experimental methodology for determining penetration characteristics of a 

sampling inlet by wind tunnel testing involves the generation of monodisperse aerosol 

particles, followed by collection and analysis of the desired sample.  Liquid aerosol 

particles, generated with a vibrating orifice aerosol generator (VOAG, Model 3450, TSI 

Inc., St. Paul, MN) are for tests with particles larger than 3 µm AD.  A combination of 

9% oleic acid and 1% sodium fluorescein salt (v/m) is dissolved in 90% ethanol (v/v) to 

create a liquid particle master solution.  After droplets are formed by the aerosol 

generator, the volatile ethanol evaporates leaving a residual non-volatile particle 

consisting of oleic acid and green fluorescent tracer.  The residual droplet size is 

controlled by diluting the master solution while maintaining the operational parameters of 

the VOAG constant.  Table 2 shows the recipe for obtaining 500 mL of solution that will 

produce droplets with sizes from 3 and 20 µm AD for operation through a 20 µm orifice.  

The nominal operating parameters of the VOAG for the above specified particle range 

include a liquid feed rate of 0.139 cm
3
/min and a vibration frequency range of 40 to 80 

kHz.  The actual frequency is selected by trial and error in seeking to produce an aerosol 

with optimal monodispersity. 

An important consideration when generating test aerosol is to ensure consistency 

of aerosol concentration and monodispersity.  An Aerodynamic Particle Sizer (APS, 

Model 3321, TSI Inc., St. Paul, MN) is used to monitor the distribution of the generated 

aerosol, but it is used strictly as a tool for quality assurance.  To determine the mean 

droplet size, the particles are impacted onto a glass slide coated with an oil-phobic agent 
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(Nyebar, Type Q, 2.0%, NYE Lubricants Inc., New Bedford, MA).  The diameters of 

these impacted droplets are measured with an optical microscope.  The actual size of the 

particles is calculated from the density of the oleic acid and fluorescein mixture (0.934 

g/cm
3
) and a predetermined flattening factor of 1.29 (Olan-Figueroa et al., 1982).   

Once the desired size of the test aerosol is achieved, particles are sent through a 

10 mCi Kr-85 charge neutralizer, which sits above the orifice, to neutralize charge that 

may be present on the droplets.  The aerosol sample is subsequently drawn into a delivery 

conduit, which is a 0.86 m (34”) wind tunnel duct section.  Figures 9 and 10 show a 

schematic and photograph of the test setup.  A blender or mixing element is positioned 

within the delivery conduit to ensure that a uniform concentration of the test aerosol 

arrives at the test section. 

A fan and motor arrangement with a speed controller is used to force air through 

the wind tunnel.  The air is recirculated, HEPA filtered and sent back to the intake of the 

fan.  The centrifugal fan (Model No. 200 BSW CL 3 ARR 1, IAP, Inc., Phillips, WI) has 

a capacity of 4.72 m
3
/s (10,000 ft

3
/min) at 3 kPa (12 inches H2O) static pressure.  The 

motor is rated at 29.8 kW (40 hp) at 3600 rpm.  A variable frequency drive (Model VLT 

6042, Danfoss-Graham, Milwaukee, WI), which is used to control the motor, is rated at 

29.8 kW (40 hp) and 460 volts.  The three test wind speeds of 2, 8, and 24 km/h (0.55, 

2.22, and 6.67 m/s) are obtained by varying the controller frequency.  Wind speed at the 

test section is measured using a thermal anemometer (Model 8355, TSI Inc., Shoreview, 

MN).   
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Protocol for Inlet Testing 

The inlet is set up at the test section of the wind tunnel, and is positioned so that 

the intake lies close to the horizontal mid-plane of the wind tunnel (Figure 11).  It is 

ensured that sufficient space exists between the top of the inlet and the top of the wind 

tunnel to avoid excessive flow blockage.  The inlet is flanked by two isokinetic nozzles, 

one on either side of the inlet.  It is important to place the nozzles close to the intake of 

the inlet yet far enough to prevent flow disturbances due to the nozzles.  As a rule of 

thumb the isokinetic nozzles are placed between the extents of the inlet intake diameter 

and the wall of the wind tunnel, and slightly upstream of the inlet. 

During any given test, the inlet and the two isokinetic nozzles are run 

simultaneously for the same time duration.  The tests are run long enough to ensure that 

the fluorescein collected on the samples exceeds the background level by at least one 

order of magnitude.  Suggested test times vary for different wind speeds and particle 

sizes.  

Reference aerosol samples are collected by isokinetic sampling, which ensures 

that the concentration at the entrance plane of the isokinetic nozzles matches that of the 

free stream (Hinds, 1999).  Due to particle deposition occurring on the inside walls of the 

nozzles, the true reference concentration is calculated from the sum of the aerosol 

deposited on a filter placed at the exit plane of the nozzle and that deposited on the inside 

walls of the nozzle.  Isokinetic operation of the nozzles is achieved by controlling the 

flow rate through the nozzle. 

For the duration of each test, the aerosol particle number concentration is also 

monitored at the test section of the wind tunnel with an optical particle counter (Model 
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500, Climet Instruments, Redlands, CA).  The optical particle counter provides a particle 

count per unit sampled volume for various particle size intervals between 1 and 15 µm 

AD.  The optical counter, together with the aerodynamic particle sizer, provides 

verification of the constancy of aerosol concentration and the monodispersity of the 

aerosol particles. 

The aerosol that penetrates through the inlet and through the isokinetic nozzles is 

collected on glass fiber sampling filters (Type A/D Glass Fiber Discs, Pall Corporation, 

East Hills, NY).  For a volumetric sampling rate of 100 L/min (0.00167 m
3
/s), 47 mm 

diameter filters are used.  In the case of sampling at higher flow rates of 400, 800, and 

1250 L/min (0.0067, 0.0133, and 0.0208 m
3
/s), 8”x10” rectangular sheet filters are used.  

Samples from the isokinetic nozzles are collected on 47 mm filters.   

After exposure to the aerosol, the filters are soaked in a solution of distilled water 

and isopropyl alcohol and left for at least six hours to ensure complete elution of the 

fluorescent tag from the filters.  The ratio of distilled water to isopropyl is, by volume, 

either 1:1 or 1:2 (50%-50% or 66.7%-33.3%, v/v).  The total solution volume typically 

used to soak a 47 mm filter is 40 or 60 mL (1:1 or 1:2), and that for an 8”x10” filter sheet 

is 300 mL (1:2).  The inner walls of the isokinetic nozzles are also rinsed with the 

solution of distilled water and isopropyl alcohol (1:1 or 1:2, v/v).  The solution proportion 

used to soak the filters was the same for any given set of tests. 

The overall penetration of aerosol through an inlet can be determined from the 

relative concentrations of the fluorescent tracer that are measured with a fluorometer 

(Model 450, Sequoia-Turner, Mountain View, CA).  The relative concentration for each 

sample may be obtained as 
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where C is the relative concentration, R is the fluorometer reading adjusted for the 

background, V is the solution volume, Q is the air flow rate, and t is the elapsed time 

during which particle collection took place.  The overall penetration of an inlet is then 

determined from: 

isowisof

inletf

CC

C
P

,,

,

+
=    [22] 

where Cf,inlet represents the relative concentration obtained from the filter of the test inlet, 

Cf,iso represents the average relative concentration obtained from the filters of the two 

isokinetic nozzles, and Cw,iso represents the average relative concentration obtained from 

the washes of the walls of the isokinetic nozzles. 
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UNCERTAINTY ANALYSIS 

 

 

A degree of uncertainty is associated with experimental data.  To have an idea of 

how accurate and representative the data is, it is imperative to identify the sources of 

uncertainty and attempt to quantify the degree to which the uncertainty occurs.   

If we leave aside gross blunders in the experimental setup or instrumentation, 

uncertainty in experimental measurement can be classified into two categories; a) 

systematic or bias errors and b) precision or random errors.  Systematic errors tend to 

appear repeatedly and cause roughly the same degree of error in the data readings.  

Precision errors, however, are errors that manifest in the experimental data due to random 

fluctuations in the apparatus or instrumentation.    

One potential source of systematic error exists in any flow system used to monitor 

volumetric air flow rate.  The presence of a leak could cause repeated inaccuracies, so it 

is vital to regularly check flow systems.  Another type of systematic error could arise in 

the contamination of filters by residual fluorescein left in containers that are not properly 

washed, or by fluorescein transferred to the filters from contaminated objects such as 

tweezers, gloves, or bare hands.  Containers must be washed vigorously and left to air 

dry, and filters should be handled in a clean environment.  Systematic errors should be 

identified and minimized.   

Due to their nature, precision errors can be quantified.  These errors are generally 

associated with the precision of the instrumentation used to measure, for example, 

volumetric air flow rate, particle size, and relative fluorescence.  These errors tend to 

propagate and cause a level of uncertainty in the calculated results.   
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A commonly used method for estimating uncertainty is that of Kline and 

McClintock (Holman, 2000).  Two important parameters that require estimates of 

uncertainty are penetration and the Stokes number.  The Kline and McClintock method 

defines the uncertainty associated with the calculation of a parameter R as 
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where 

wR = the uncertainty in the result R 

xi = independent variable with an associated uncertainty 

wi = the uncertainty in the variable xi 

n = number of independent variables with an associated uncertainty in the parameter R 

 The calculated parameters, penetration, and Stokes number may be expressed in 

terms of their fundamental measured quantities as follows: 
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where: 

P = inlet penetration; 

R = raw fluorometer reading in arbitrary units; 

V = volume of total solvent used to soak filters; 

Q = volumetric air flow rate; 

t = test duration; 
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Stk = Stokes number; 

λ = mean free path of air; 

dp = diameter of the test particle; 

ρp = density of the test particle; 

Uo = the undisturbed wind speed; 

µ = viscosity of air; 

dc = characteristic dimension (half of the annular gap of the inlet) 

The total uncertainty in inlet penetration can be estimated by incorporating 

individual uncertainties in the measurable quantities R, V, and Q, which represent the raw 

fluorometer readings, solvent volume used for soaking filters, and the total volumetric 

flow rates, respectively.  Neglecting the error associated with the measured test time 

duration, the total uncertainty in inlet penetration is given as: 
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Here ai is the exponent of each variable xi.  If the uncertainties associated with R, 

V, and Q are assumed to be 5%, 1.25%, and 5%, respectively, the total uncertainty in the 

calculated value of inlet penetration is estimated to be 10.2%. 

 The uncertainty in the Stokes number is given in general form by 
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The measured variables which contribute to the total uncertainty are the particle diameter 

dp, wind speed Uo, and the characteristic dimension dc.  All other parameters are such as 

the mean free path of air λ, viscosity of air µ  take values that are present in existing text 

and the errors associated with these values are assumed to be negligible. 

If we rewrite the Stokes number as, 

c

oppp

d

Udd
Stk

⋅⋅

⋅⋅⋅⋅+
=

µ

ρλ

18

)34.2(
2

 [29] 

and partially differentiate with respect to the concerned variables, we arrive at the 

following results: 
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The uncertainty in calculating the Stokes number for a given particle size can then 

be expressed as 
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The uncertainty in measuring the particle size dp is estimated to be 4%, 2%, 1%, and 1% 

for nominal particle sizes of 5, 10, 15, and 20 µm AD, respectively, while the errors 

associated in measuring the velocity Uo, and the characteristic dimension (inlet annular 

gap) dc are 3% and 0.2%.  The total predicted uncertainty in the calculated value of the 
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Stokes number is 8.4%, 5%, 4% and 3.6% for the nominal particle sizes mentioned 

above. 
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QUALITY ASSURANCE 

 

 

Quality of Test Aerosol 

The quality of the test particles is given suitable consideration in terms of its 

sizing, monodispersity, and uniformity of concentration at the test section.  Particle sizing 

is carried out by impacting the test particles onto microscopic slides coated with an oil-

phobic fluorocarbon surfactant (Nyebar, Type Q, 2.0%, NYE Lubricants Inc., New 

Bedford, MA).  The particles are observed with the aid of an optical microscope that is 

calibrated by a stage micrometer.  It is ensured that particles chosen for measurement lie 

on the periphery of the impacted sample to avoid measurement of doublets.  Several 

particles are measured before taking an average size reading.     

 The aerodynamic particle sizer and optical particle counter assure that the test 

aerosol being released from the aerosol generator and arriving at the test section is 

monodisperse.  These instruments monitor the aerosol throughout the duration of each 

test.  A test is rejected if during the test, there appear an inordinate fraction of satellite 

particles (greater than 10% multiplets), and the VOAG may need adjustment before 

continuing. 

 A uniform concentration of aerosol in the wind tunnel near the test section is 

critical for acquiring accurate performance data.  Two isokinetic nozzles are run as 

references simultaneously with the sampling inlet.  An average reading from the two 

nozzles is used as the reference reading in order to eliminate any variation in particle 

concentration across the test plane.  Test durations are long enough to ensure that the 

fluorescein collected on the filters is at least one order of magnitude greater than the 
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background fluorescein level.  All data points presented in this study are represented as 

the average of at least three test runs for a given operating condition.  

 

Flow and Velocity Measurement 

 All rotameters and flow measuring equipment are calibrated and checked for 

leaks prior to testing.  A thermal anemometer (VelociCalc, Model No. 8355, TSI Inc., 

Shoreview, MN) is used for measuring velocity in the wind tunnel.  Rotameters (Dwyer 

Instruments, Michigan City, IN) are used for monitoring flow rates and are calibrated 

with a Roots Meter (Model 5M 125 TC, Dresser Measurement, Houston, TX) for 

assurance of accuracy.  The reading obtained from the rotameters is corrected for the 

pressure drop through the system, as follows. 

a

a

readactual
p

pp
QQ

∆−
×=  [34] 

Where Qactual  is the actual volumetric flow rate; Qread is the observed volumetric flow 

rate; pa is the atmospheric barometric pressure; and ∆p is the pressure drop in the system.  

While testing inlets, the filter media causes a significant pressure drop to occur in the 

system.  To overcome the pressure drop, compensation must be made to ensure that the 

flow rate upstream of the filter being pulled through the inlet is the true flow.  The system 

pressure drop is measured using Magnehelic differential pressure gauges (Dwyer 

Instruments, Michigan City, IN). 

 

Fluorometric Analysis  

 The fluorescein concentrations from the collected inlet and reference samples are 

quantified using a fluorometer (Model 450, Turner-Sequoia, Mountain View, CA).  Many 
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factors influence the fluorometric analysis including wavelength and intensity of primary 

light, and the transmission characteristic of the excitation and emission filters that are 

used in the instrument.  Kesavan et al. (2001) observed that the stability of the fluorescent 

material can be disturbed by small changes in physical and chemical parameters, such as 

the pH, ionic state of the molecule, nature of the solvent, viscosity, temperature, etc.  The 

optimum excitation and emission wavelengths are found to be 492 nm and 516 nm.  The 

fluorescent solution is also strongly pH dependent, but for values above 9, the intensity is 

both maximized and constant.  Use of the NB490 and SC515 filters and adding one drop 

of 1N NaOH for every 5 mL of liquid sample satisfies the quality issues for the 

fluorometric analysis. 
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RESULTS AND DISCUSSION 

 

 

 Wind tunnel tests with liquid particles serving as the test aerosol were conducted 

on the inlets described.  Tests were conducted with a focus on determining inlet aerosol 

penetration as a function of particle size for wind speeds of 2, 8, and 24 km/h. 

 

BSI-100-4 and BSI-100-3 Prototype Units 

 Tests were conducted with the BSI-100-4 and BSI-100-3 prototype units to 

provide a basis for speculating on the feasibility of meeting the essential inlet design 

objectives.  These inlets were tested without either a bug screen or an internal 

fractionator.  The performance of each of these units is plotted as a function of wind 

speed for a particle size of 10.6 µm AD in Figure 12.  The performance characteristics 

were then obtained for a range of intakes or aspiration gaps and the window height.  The 

variation of these parameters is found to influence inlet performance at 24 km/h.  Figures 

13 and 14 show the effect of different intake gaps on the performance of both inlets.   

Penetration improves (increases) as the intake gap is increased, probably as a result of 

reduced aerosol particle impaction on the inlet walls in the gap region.  The BSI-100-4 

and BSI-100-3 units with intake gaps of 0.023 m (0.9”) and 0.036 m (1.4”), respectively 

indicate acceptable performance levels in terms of insensitivity to wind speed for a 

particle size of 10.6 µm AD. 

 Once the geometries were fixed, each prototype was run for four different particle 

sizes ranging from 5 to 18 µm AD.  Penetration as a function of particle size for all three 

wind speeds is shown for the BSI-100-4 and BSI-100-3 in Figures 15 and 16.  Both units 

display particle penetration above 80% at all three wind speeds for a particle size of 11.2 
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µm AD.  Penetration decreases, particularly at a wind speed of 24 km/h, for particle sizes 

larger than 11.2 µm AD.  

 

BSI-100 Advanced Prototype Unit    

 Aerosol testing was carried out on an advanced prototype BSI-100 unit fabricated 

by Spiral Fittings Inc. of South Carolina.  This inlet closely resembles the BSI-100-4 unit 

and was extensively characterized for different wind speeds and particle sizes.  Figure 17 

shows penetration as a function of wind speed for a particle size of 10.1 µm AD.  As 

anticipated, results are similar to those presented in Figure 12 for the BSI-100-4 

prototype unit. 

 Initial testing on the BSI-100 unit was carried out without a bug screen.  Screens 

are critical components that need to be incorporated into an inlet to preclude the entry of 

insects, lint, and large debris into the aerosol sampling system.  Tests on the BSI-100 

were conducted with various screens placed horizontally at a location just below the 

windows of the inner plenum.  The two screens were tested, namely a coarse 8-mesh, 

0.432 mm (0.017”) wire diameter screen and a finer 16-mesh, 0.229 mm (0.009”) wire 

diameter screen.  Figure 18 shows the effect of different screens on the performance of 

the inlet over three wind speeds and for a particle size of 10.5 µm AD.  It is observed that 

the curves are parallel indicating that the screen losses are not greatly affected by changes 

in wind speed. 

 Penetration results were obtained for five different particle sizes between 5 and 16 

µm AD and plotted for three wind speeds (Figure 19).  The penetration curves for all 

three wind speeds are similar to the results obtained for the BSI-100-4 unit.  A particle 
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size of 6 µm AD displays 100% penetration for all wind speeds, whereas for the largest 

test particle of 15.5 µm AD, penetration is between 75% and 80% for 2 and 8 km/h, and 

25% for 24 km/h.  It is evident from these data that particle deposition via impaction onto 

the internal surfaces of the inlet is more prominent for particles with higher inertia. 

 Another performance metric that has been examined in this study is inlet 

penetration as a function of the operating flow rate.  This provides an insight into the 

range of application of the inlet or its performance at off-design conditions.  Figure 20 

shows inlet penetration varying with the operating flow rate for a wind speed of 8 km/h 

and a particle size of 10.4 to 10.7 µm AD.  Tests were conducted for five different flow 

rates between the design flow condition of 100 L/min and up to a maximum of 1250 

L/min.  Performance is stable and constant up to 800 L/min, but a reduction in 

penetration is observed for the flow rate of 1250 L/min. 

 

Stokes-Scaled Units 

 Tests were conducted to explore the validity of the Stokes-scaling approach in the 

design of inlets.  Two scaled units were fabricated to accommodate design flow rates of 

400 and 800 L/min.  These units are designated as BSI-400 and BSI-800, respectively. 

 Tests were run devoid of a screen and fractionator for the BSI-400 and BSI-800.  

Figures 21 and 22 show penetration plotted as a function of wind speed for the two scaled 

units operating at their design flow rates for a particle size of 10.5 µm AD.  Performance 

data is plotted at design conditions for the two scaled units along with the BSI-100 for 

comparison in Figure 23.  It is observed that the selected method of Stokes scaling 

collapses the data within a 90% to 100% penetration band for all three units. 
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 Penetration characteristics of the BSI-400 and BSI-800 were determined for five 

different particle sizes ranging from 5 to 22 µm AD and three wind speeds of 2, 8, and 24 

km/h (Figures 24 and 25).  Each unit was operated at its design flow rate.  Results 

indicate performance of the BSI-400 and BSI-800 similar to that of the BSI-100.  

Penetration for both scaled units exceeds 80% at all three wind speeds for a particle size 

of about 13 µm AD, compared to 11.5 µm AD for the BSI-100. 

 The effect of varying the flow rate was observed for the BSI-400 and BSI-800 

units.  Figures 26 and 27 show the effect of flow rate on the penetration of the BSI-400 

and BSI-800, respectively, at a wind speed of 8 km/h.  Flow rates were varied from a 

minimum flow of 50% of the design flow rate and up to a maximum of 1250 L/min.  It 

can be seen that maximum penetration tends to occur at the design flow rate.  Penetration 

is observed to decline above and below the design point. 

For a comparison of the BSI series inlets, their performances are plotted as a 

function of the Stokes number, which is based on the free stream velocity and the 

characteristic dimension, dc of half of the annular gap for each inlet.  The undisturbed 

velocity, Uo, is taken to be the ambient wind speed of 2, 8, or 24 km/h, which has an 

effect on inlet performance.  Penetration as a function of Stokes number for all three 

inlets is plotted separately at 2, 8, and 24 km/h wind speeds (Figures 28 to 30).  It is 

observed that although the performances for all three inlets follow a similar trend, wind 

speed has an effect on the Stokes number at which the curves break downwards, which 

raises a question on the utility of solely relying on Stokes-scaling to improve the inlet 

design process. 
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Application of the Modified Velocity Ratio 

A modified velocity ratio has been suggested for omnidirectional inlets.  The non-

dimensional velocity ratio U*/Uo is plotted as a function of wind speed for various inlets 

in Figure 31.  The inlets included in the plot are the BSI inlets, a currently field-deployed 

inlet that operates at 780 L/min, and the UCI-1250 which is essentially the BSI-400 unit 

operating at upgraded flow rate of 1250 L/min. 

The analysis presented above showed that simple Stokes-scaling fails to 

sufficiently capture the complexity of inlet performance.  This is likely because it misses 

the interaction of two independent flow fields (sampling flow and ambient wind speed).  

The use of a modified Stokes number for inlets – one based on the free stream – attempts 

to provide an alternative model, by drawing a relation between particle behavior and 

ambient wind speed.  Another equally vital aspect of this model is the interaction of the 

free stream with the internal inlet flow (an attribute of the sampling flow rate), which is 

accounted for by including the modified velocity ratio in the model.  Using the Stokes 

number based on the free stream, denoted as StkFS, and the modified velocity ratio, 

U*/Uo, we can present the performance data for all three BSI units for all three wind 

speeds on a single graph.   

Figure 32 shows a scatter of experimental values of penetration plotted as a 

function of StkFS using a grouping scheme that organizes inlets by series and wind speed 

where each group has a unique color and symbol.  Each BSI unit at a given wind speed, 

can be associated with a modified velocity ratio value, which has been incorporated into a 

correlation equation describing the functional relationship between penetration, the 

Stokes number based on the free stream, and the modified velocity ratio.  The correlation 
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equation representing the BSI series is presented below and plotted together with the 

experimental data scatter. 

FS

oo

Stk
U

U

U

U
P ⋅
















⋅+⋅








−+=

∗∗

2085311100    [35] 

It is observed that the results indicate a progressive trend in reduction of inlet 

penetration with increasing Stokes number and velocity ratio.  For a given value of 

Stokes number, inlet penetration increases for a decrease in the velocity ratio.  Also, for 

small values of Stokes number, the penetration curves approach unity independent of 

velocity ratio.   

The observations described above offer the possibility for prediction of inlet 

performance and an improved design procedure.  To elucidate on the usefulness of the 

result, let us assume a hypothetical BSI inlet for design to operate at say, 600 L/min.  The 

basic design approach and procedure to predict performance is outlined as follows.  The 

BSI-600 geometry can be obtained from the Stokes scaling factor, and modified velocity 

ratios for three wind speeds determined based on the geometry.  The inlet’s performance 

can finally be predicted by using each velocity ratio and plotting penetration over a 

Stokes number range according to Equation 35. 

 

Upgrade Effort 

 In its present configuration, the field sampling system deployed by the U.S. 

military operates at 780 L/min, but efforts are being devoted to increasing the flow rate to 

1250 L/min. 

 The BSI series of inlets were speculated as candidates for an inlet worthy of 

acceptable performance at 1250 L/min.  This would entail a high degree of aerosol 
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penetration and insensitivity to wind speed for a nominal particle size of 10 µm AD.  

Figure 33 shows how each of the BSI units perform at a flow rate of 1250 L/min, and 

how they compare to the presently deployed system inlet operating at 780 L/min.  Results 

are plotted for penetration as a function of wind speed for a particle size of 10.6 µm AD.  

It should also be noted that tests on the BSI units were conducted without any screens, 

whereas the data for the JBPDS inlet indicates the presence of a screen. 

 Results indicate that performance of the BSI-400 and BSI-800 has high 

penetration and wind-independent characteristics.  The BSI-400 has been selected over 

the BSI-800 as a candidate due to its considerably smaller size, and the BSI-400 

operating at 1250 L/min is denoted as the UCI-1250. 

 

Flow Visualization 

 A flow visualization study was conducted using smoke to gain qualitative insight 

into the flow fields within the BSI inlet.  A BSI-400 unit was modified using a clear outer 

plenum cover and a means to allow light to enter the inner plenum to enhance visibility.  

The BSI-400 unit was run for flow rates of 200, 400, 800, and 1250 L/min, while smoke 

was allowed to enter at a single circumferential location.  The visualization was 

conducted with smoke entering the inlet in a static condition, with no ambient wind 

speed. 

 Figures 34 to 37 depict flow patterns within the BSI-400 unit for flow rates of 200 

to 1250 L/min.  The region under observation is the space at the top of the inlet between 

the outer and inner plenum where the flow makes an 180
o
-turn through the windows.  It 

is seen that as the flow rate increases, the turn radius increases and the turbulence 
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becomes more intense.  At flow rates of 200 and 400 L/min, the smoke is seen to make a 

well-defined, sharp turn.  At higher flows of 800 and 1250 L/min, the turn radius is larger 

and the smoke is seen to be more dispersed effecting possible particle loss on surfaces of 

the inner plenum. 

 

Interfacing with a CSVI 

 The primary effort of the current study is to be able to develop an inlet that 

collects a sample to be presented to a Circumferential Slot Virtual Impactor (CSVI).  A 

CSVI plenum with a particle cup impactor, to separate the coarse particles from the fine, 

would be placed downstream of the inlet.   

 A compact design for the plenum was considered, which has a basic shell body 

dimension of 0.152 m (6”) (Figure 38).  This assembly also includes an annular piece that 

rests just below the receiver of the CSVI unit and smoothly guides the aerosol to the 

circumferential entry.  This design uses a bolt pattern on the CSVI base for external 

attachment. 

 Aerosol tests were conducted on the plenum assembly on a setup that consisted of 

a mixing plenum that simultaneously delivers aerosol to a sample tube and a reference 

tube.  A CSVI devoid of the receiver blades had spacers placed to represent the true 

CSVI entrance gap.  100 L/min was pulled through the minor flow tube while the major 

flow ports were blocked. 

The plenum was tested with three impaction jet nozzle diameters of 0.025 m (1”), 

0.032 m (1.25”), and 0.037 m (1.45”) over a particle size range of 7 to 18 µm AD.  The 

results depicted in Figure 39 suggest satisfactory penetration characteristics with no 
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significant loss of particles.  Test results for the plenum show the cutpoints of the jets to 

be 11.1, 13.6, and 16.3 µm for the 0.025, 0.032, and 0.037 m jets, respectively.   
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SUMMARY AND CONCLUSIONS 

 

 

 The current study is aimed at designing, fabricating, and testing an inlet suitable 

for operation at a volumetric flow rate of 100 L/min to be used in conjunction with a 

CSVI bioaerosol concentrator.  This task was motivated by the fact that the CSVI could 

considerably reduce overall power consumption and make it worthy for field deployment 

in a battery-operated mode.   

The BSI-100 inlet was the inlet of choice for development as it displayed wind 

independent penetration characteristics close to 90% at all three wind speeds 2, 8, and 24 

km/h for a nominal particle size of 10 µm AD.  The BSI-100 inlet is also capable of 

displaying penetration characteristics above 80% at all three wind speeds for aerosol 

particles up to 11.5 µm AD.  The ability to sample a high degree of particles up to that 

size range is favorable considering that the CSVI would be compatible with an inlet 

having a cutpoint close to 11 µm AD.  The BSI-100 is therefore observed to be an 

efficient sampler that improves the overall reliability of the sampling system by 

minimizing particle loss and sensitivity to external factors like wind velocity. 

The BSI-100 inlet is also seen to have a wide range of application in terms of its 

variation with the volumetric sampling rate.  The inlet was able to handle penetration 

above 90% at 8 km/h for flow rates up to 800 L/min.  This presents scope for the BSI-100 

to suit alternate system requirements while maintaining a high degree of penetration. 

A rigorous analytical design approach fails to exist which is the reason why inlet 

design has been a topic of uncertainty.  An attempt was made to implement and validate 

the use of Stokes-scaling to assist in the future design of inlets.  Two additional inlets, the 

BSI-400 and the BSI-800 operating at 400 and 800 L/min, respectively, were developed 
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and scaled from the BSI-100 configuration.  Results indicate that at the design flow rates, 

all three units performed similarly.  When penetration was plotted as a function of wind 

speed for a nominal particle size of 10 µm AD, the BSI inlets all performed within a 90% 

to 100% band.  Particle size characteristics were also similar in terms of the selection 

curves for three wind speeds.  The BSI-400 and BSI-800 units have the ability to sample 

with a penetration above 80% at all three wind speeds up to a particle size of 13 µm AD, 

compared to 11.5 µm AD for the BSI-100.   

It is observed from the study that the results obtained from the plots of penetration 

versus Stokes number for all BSI units suggests that we cannot solely rely on using only 

Stokes-scaling for designing inlets.  A likely reason is that it fails to capture the 

complexity of the dynamic model associated with inlets, which involves the interaction of 

two independent velocity fields.  The use of a modified Stokes number based on the free 

stream wind speed is only partly representative of the dynamics associated with inlets.  It 

is imperative to introduce a parameter that represents the interaction of the external flow 

field with the internal inlet flow, described by the modified velocity ratio.  When the 

results were summarized for all inlets at all wind speeds, a noticeable trend emerged with 

respect to the velocity ratio.  A model to predict inlet performance was developed, using 

a correlation equation to describe the BSI family of curves.  This provides promise for 

improving the overall design process not only for inlets of the BSI design style, but 

possibly for the design of other omnidirectional inlets. 

Although the designed operating points of the BSI inlets were fixed, it was 

profitable to determine their performance at a higher flow rate of 1250 L/min to suit the 

upgrade requirements of the point detection system specifications.  The BSI-400 and 
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BSI-800 clearly met the expected requirements and it was the smaller BSI-400 unit that 

was chosen for further development.  When operated at 1250 L/min, the BSI-400 showed 

wind independent penetration of close to 90% at three wind speeds of 2, 8, and 24 km/h 

and for a nominal particle size of 10 µm AD. 
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APPENDIX A 

TABLES 
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Table 1: Summary of characteristic dimensions for each Stokes-scaled inlet 

corresponding to selective critical BSI-100 parameters. 

 

 

 100 L/min 400 L/min 800 L/min 

Parameter 

BSI-100 
Characteristic 

Dimension 
(m) 

Scaled 
characteristic 

dimension 
(m) 

Scaled 
characteristic 

dimension 
(m) 

Aspiration gap 0.023 0.036 0.046 

Annular Gap 0.013 0.020 0.025 

Window Height 0.038 0.060 0.076 

Rise 0.125 0.199 0.251 

 

 

 

 

Table 2: Particle sizing approximation chart for VOAG solution used through a 20 µm 

orifice. Nominal VOAG operating parameters include a liquid feed rate of 0.139 cm
3
/min 

and a vibration frequency range of 40 to 80 kHz. 

 

 

Approximate 
Particle Size 

(µm) 

Oleic 
Acid/Fluorescein 

Master (mL) Ethanol (mL) 
Total Solution 

Vol (mL) 

3 1 499 500 

4 4 496 500 

5 7 493 500 

6 12 488 500 

7 19 481 500 

8 28 472 500 

9 40 460 500 

10 55 445 500 

11 74 426 500 

12 96 404 500 

13 122 378 500 

14 152 348 500 

15 187 313 500 

16 227 273 500 

17 272 228 500 

18 323 177 500 

19 380 120 500 

20 443 57 500 
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APPENDIX B 

 

FIGURES 
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Figure 1:  Example of an inlet used on a biological point detection system. 
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(a) 

 

 
(b) 

 

 

 

 

Figure 2: Schematic of the BSI design showing (a) flow configuration and (b) 

nomenclature of various parameters. 
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Figure 3: BSI-100-4 prototype schematic. 

 

 

 

 

 

 
 

Figure 4: BSI-100-3 prototype schematic. 
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Figure 5: Schematic of the BSI-100 advanced prototype unit. 

 

 

 

 

 

  
 

 

Figure 6: BSI-100 advanced prototype assembly. 
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Figure 7: Schematic of the BSI-100, BSI-400, and BSI-800 units (shown to scale). 

 

 

 

 

 

 
 

 
Figure 8: Photograph of the BSI-100, BSI-400, and BSI-800 units. 
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Figure 9: Schematic of the general test setup. 

 

 

 

 

 
 

 

Figure 10: Photograph of the wind tunnel facility. 
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Figure 11: Photograph showing placement of inlet and reference nozzles in wind tunnel 

test section. 

 

 

 
 

Figure 12: Penetration as a function of wind speed for the BSI-100-4 and BSI-100-3. 

Particle size: 10.6 µm AD. 
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Figure 13: BSI-100-4, penetration as a function of wind speed for various intake gaps at 

24 km/h.  Particle size: 10.6 µm AD.  

 

 

 

 
 

Figure 14: BSI-100-3, penetration as a function of wind speed for various intake gaps at 

24 km/h.  Particle size: 10.6 µm AD.  
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Figure 15: BSI-100-4, penetration as a function of particle size for three wind speeds. 

 

 

 
 

Figure 16: BSI-100-3, penetration as a function of particle size for three wind speeds. 
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Figure 17: BSI-100, penetration as a function of wind speed. Particle size: 10.1 µm AD. 

 

 

 

 
 

Figure 18: BSI-100, penetration as a function of wind speed for various screens. Particle 

size: 10.5 µm AD. 
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Figure 19: BSI-100, penetration as a function of particle size for three wind speeds. 

 

 

 

 
 

Figure 20: BSI-100, penetration as a function of operating flow rate at a wind speed of 8 

km/h. Particle size: 10.4 to 10.7 µm AD. 
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Figure 21: BSI-400, penetration as a function of wind speed. Particle size: 10.5 µm AD. 

 

 

 

 
 

Figure 22: BSI-800, penetration as a function of wind speed. Particle size: 10.5 µm AD. 
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Figure 23: Penetration as a function of wind speed shown for all three BSI Units. Particle 

size: 10.5 µm AD. 

 

 

 
 

Figure 24: BSI-400, penetration as a function of particle size for three wind speeds. 

 



 65 

 

 
 

Figure 25: BSI-800, penetration as a function of particle size for three wind speeds. 

 

 

 

 
 

Figure 26: BSI-400, penetration as a function of flow rate at a wind speed of 8 km/h. 

Particle size: 10.5 µm AD. 
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Figure 27: BSI-800, penetration as a function of flow rate at a wind speed of 8 km/h. 

Particle size: 10.5 µm AD. 

 

 

 
 

Figure 28: Penetration as a function of Stokes number at 2 km/h for all BSI inlets. 
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Figure 29: Penetration as a function of Stokes number at 8 km/h for all BSI inlets. 

 

 

 
 

Figure 30: Penetration as a function of Stokes number at 24 km/h for all BSI inlets. 

 

 

 

 



 68 

 

 
 

Figure 31: Modified velocity ratio as a function of wind speed for various 

omnidirectional inlets. 
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Figure 32: Penetration as a function of the Stokes number based on the free stream for various values of the modified velocity ratio.   

Scattered data points represent experimental results while the continuous curves are obtained from the correlation model representing 

the BSI inlet series. 
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Figure 33: Comparison of the BSI series inlets operating at 1250 L/min with a currently 

deployed field inlet operating at 780 L/min. Particle size: 10.6 µm AD. 
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Figure 34: Flow visualization using smoke on the BSI-400 operating at 200 L/min. 
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Figure 35: Flow visualization using smoke on the BSI-400 operating at 400 L/min. 
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Figure 36: Flow visualization using smoke on the BSI-400 operating at 800 L/min. 
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Figure 37: Flow visualization using smoke on the BSI-400 operating at 1250 L/min. 
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Figure 38: Schematic of the CSVI plenum and pre-separator assembly. 

 

 

 
 

Figure 39: Penetration through the CSVI plenum as a function of particle size for three jet 

diameters. 
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