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ABSTRACT 
 

Joint Involvement and Movement Amplitude in Two-Segment Movements (April 2007) 
 

Abby L. Dudensing 
Department of Health and Kinesiology 

Texas A&M University 
 

Research Advisor: Dr. Caroline J. Ketcham 
Department of Health and Kinesiology 

 

The purpose of this research is to identify the effect of varying constraints on the 

planning and organization of multijoint movements, specifically how amplitude and 

movement direction affect the planning and organization of a series of goal directed 

movements. Subjects were asked to move from one target to the next on cue as quickly 

and accurately as possible. Target sequences varied in distance between targets and 

direction. It was expected that the planning and organization of multijoint movements 

would be different depending on movement direction and movement amplitude 

requirements. Results show that movement durations were highest for long movements 

than for shorter and that peak velocity was higher in long movements. 
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CHAPTER I 

INTRODUCTION 

 

In various studies, it has been shown that target size, movement amplitude, and joint 

coordination affect the planning and organization of both simple and complex joint 

movements (Fitts 1954; Rand et al. 1997; Dounskaia et al. 2002a; Dounskaia et al. 

2002b; Ketcham et al. 2004). Target size and movement amplitude changes constitute 

changes in the accuracy demands of all movements. By changing the accuracy demands 

of a task, movement kinematics, are changed, suggesting a change in the motor planning 

features of that movement.  

 

A very well used task to assess planning of movements as a function of complexity is a 

Fitts’ task. In a Fitts’ task, index of difficulty (ID) was changed by manipulating target 

size and amplitude. Two target sizes were placed given distances apart and the subject 

was asked to move their finger from target to target as quickly and accurately as 

possible. It was found that as index of difficulty (relating to target size and/or amplitude 

changes) increased, movement time also increased, showing that the brain required more 

time to prepare for a more difficult task (Fitts 1954). 

 

In a related study, Smyrnis and colleagues (2000) looked at two dimensional pointing 

movements using a computer joystick. Subjects performed aiming movements on the 

_______________ 
This thesis follows the style of Experimental Brain Research. 
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computer screen from a center target to a peripheral target.  Target size, amplitude and 

direction were manipulated and found to affect movement parameters. As in Fitts’ study 

the longer amplitude movements affected movement time. Evidence that target size and 

direction affect different and separate parts of movement execution was found. Direction 

affects the initial part of movement execution while target size affects the final part 

suggesting that movements are segmented.  

 

To further Fitts’ study, Thompson and colleagues (2007), looked at the effects of the 

combination of target size, movement amplitude, and orientation of a movement in the 

workspace on the kinematics of pointing movements. A point to point target task was 

performed with a mouse cursor on a computer screen. Target size was found to affect the 

final part or corrective portion of movements. However, distance did not affect the shape 

of the velocity profile.  It was concluded that target size was a task constraint, movement 

amplitude was a task effector, but orientation showed characteristics of both (Thompson 

et al. 2007).  

 

In yet another study the accuracy demand of a task was shown to effect movement 

parameters. Pegboard experiments where hole size varied in order to manipulate task 

difficulty were also performed (Milner and Ijaz 1990, Fitts 1954). Velocity profiles 

shifted from a smooth bell shaped trajectory to a more asymmetric shape as the hole size 

was decreased therefore increasing accuracy demands. Decelerative phases contained 
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more submovements, demonstrating that the accuracy of that movement required a 

change in performance.  

 

Movements are broken down into two phases, an initial adjustment phase that brings the 

movement into the vicinity of the target and the control phase that adjusts for the specific 

demands of that task (Woodworth 1899). The ability to perform a task accurately is 

described by submovements. More difficult tasks are marked by prominent 

submovements in a velocity profile while velocity profiles of simple tasks contain few 

sub movements. Difficult movements affect accuracy demands (Meyer et al. 1988; 

Ketcham et al. 2002; Wisleder and Dounskaia 2007).  

 

Through studying of such factors as movement duration, velocity, and the deccelerative 

phases of movements, the speed accuracy trade off was confirmed although a wide 

variety of different tasks were performed. Movements with a longer distance were 

characterized by higher durations, higher peak velocities while more difficult 

movements with a short distance spent more time in the second decelerating phase.  

 

Application of these findings applies to the study of two segment aiming movements. 

Changing ID in one segment of a multisegment task affects kinematic variables as 

previously seen; however, it also has an effect on the planning and control of the 

subsequent segment. In a series of studies, Rand et al. (1997) examined two segment 

aiming movements to determine whether the difficulty of the second segment influenced 
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the characteristics of the first segment by manipulating target size. The conclusion to this 

study suggests that the planning of complex movements are based in part on the 

accuracy demands of multiple segments of the sequence (Rand et al. 1997). Furthermore, 

it was shown that planning and organization processes link the two segments together 

when the difficulty of the initial segment is low in relation to the second. This is shown 

by kinematic analysis; the constraints of the second segment affected the first. In 

contrast, when the accuracy constraints, and thus difficulty of the first segment were 

high, the segment interdependency disappeared. Two-segment movements were not 

linked together in this case (Rand and Stelmach 2000).  

 

The study of mulitsegment movements furthers the understanding of how movements 

are specifically controlled by central planning processes. By including direction 

manipulations, movement planning processes can be understood in still a more complex 

manner. Direction changes allow for the analysis of the interactive torques of joints 

involved in movements. Because movements are affected by biomechanical constraints 

as well as by brain planning processes, it is important to include this important aspect. 

Studying planning and organization of movements must be coupled by biomechanical 

analysis of movement to bring validity to results (Ketcham et al. 2004). Joints act 

together in the execution of the action, one joint has an effect on another. This is due to 

muscles spanning multiple joints. Constraints on movements can also occur based on the 

type of joint involved or the plane that the movement is being performed in.  
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Dounskaia and colleagues (2002a) studied the influence of biomechanical constraints, 

more specifically joint coordination, on horizontal arm movements. They found that 

joint control is dependent on the role of the joint in a movement. One joint may serve as 

a leading joint providing overall power for the movement, while the other joints 

involved in the movement control fine motor. It was also found that the coordination of 

movements between two joints affects the biomechanical constraints on movement 

patterns (Dounskaia et al. 2002a). The shoulder is controlled in much the same way 

during all movements; however, the elbow required more specific regulation. Interactive 

torque assists or resists a movement making control of some movements more difficult.  

 

Gribble and Ostry (1999) looked at the influence of interactive torques on single and 

multijoint movements of the shoulder and the elbow. When one joint’s kinematics was 

held constant, EMG data showed that there was still variation of muscle activity in the 

other joint. This evidences that joints interact while performing a movement and 

movements are adjusted to account for the influence of this interaction (Gribble and 

Ostry 1999). 

 

Based on the findings of the above research, Ketcham and colleagues (2006) studied the 

planning and organization of two segment arm movements when both target size and 

joint coordination were manipulated. They found that young adults functionally planned 

both segments for all target combinations for the simple but not complex joint 

movements.  
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The proposed experiment will be an extension to these studies and aims to understand 

how changing amplitude and complexity of joint coordination affect the planning and 

organization of two segment movements. This project will elucidate whether movement 

of different amplitudes influences control differently than changes in target size, when 

joint involvement is controlled. Aiming movements involved coordinated rotations of 

the shoulder an elbow on a tabletop. A ‘horizontal’ direction was oriented in medio-

lateral direction, at 180°. A ‘vertical’ direction was oriented in the anterior-posterior 

direction, at 90°. On either side of the 90° (vertical) direction were ‘right-diagonal’ 

direction at 45°, and a ‘left diagonal’ direction at 135°. The four different direction 

orientations (Horizontal, Vertical, Right-diagonal, Left-diagonal) resulted in four 

distinct coordination patterns of shoulder and elbow motion and therefore varied in 

terms of required IT regulations. For instance, movements in the right-diagonal (45°) 

direction are produced using predominately elbow motion, with minor shoulder 

involvement. Whereas the elbow is rotated by IT when producing movements in the left-

diagonal (135°) direction, predominately controlled by shoulder motion. The remaining 

two directions, vertical (90°) and horizontal (180°) require motion at both the shoulder 

and elbow joint with distinct patterns of required IT regulation. In the vertical direction 

the elbow acceleration is due in part to IT; however, MT is used to regulate the IT effect. 

In the horizontal direction, IT must be almost completely suppressed. Therefore, due to 

differences in IT regulation requirements, vertical and horizontal joint coordination 

patterns are considered ‘complex’. Right-diagonal and left-diagonal required joint 
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coordination patterns are considered to be relatively ‘simple’ (Dounskaia 2002a; 

Dounskaia 2002b; Ketcham 2006).  

 

It was thus hypothesized that movement difficulty as defined by movement amplitude 

would be planned as a functional unit under all conditions excluding conditions where 

the initial segment had a high index of difficulty. It is also expected that the complexity 

of joint involvement will further affect the ability of the planning processes to treat the 

movement as one integrated segment. 



  8 

CHAPTER II 

METHODS 

 

Participants 

This study involved 9 right-handed participants, all young adults (21.2yrs.+1.8). Prior to 

testing all participants read and signed a consent form approved by the local Institutional 

Review Board. Young adults were recruited from the Texas A&M University campus 

and given class credit for their participation. They completed a health-history 

questionnaire as a means of excluding history of movement impairments. 

 

Procedure and apparatus 

Participants were seated at a table with chair height adjusted such that when the arm 

rested on the table both the upper and lower arm was parallel to the table surface. 

Subjects performed two-segment aiming movements atop a tabletop in the horizontal 

plane. Both target amplitude and direction were manipulated to yield a total of 8 

different target sequences. Four target directions of right-diagonal (45°), left-diagonal 

(135°), vertical (90°), and horizontal  (180°) and two target amplitude combinations 

(short-long: SL, long-short: LS) were tested in this experiment (Figure 1). Targets were 1 

cm in diameter. Distance between targets was varied, 9 cm from starting position to (T1) 

and another 31cm from T1 to the second target (T2) in the SL case. In the LS case 

distance between targets was 31 cm from starting position to (T1) and 9 cm from T1 to 

the second target (T2). Short movements had an ID of 4.17 and long movements had an 



  9 

Fig. 1 Setup 

ID of 5.95. Thus, the entire movement was held constant at 40 cm in length.  At all four 

directions, 10 trials of each target amplitude combination were performed; thus, a total 

of 80 trials were collected. The two targets were displayed below a clear tabletop for 

each trial. The starting position for each subject was individually adjusted to the position 

of the index finger, when their shoulder was angled at 140° and elbow at 70° (Figure 1). 

 

 

 

  

 

 

180° 

45°

90°

135° 

Target Distance 
Short Distance (9 cm) 
Long Distance (41 cm)
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The trunk, wrist, and index finger were immobilized such that rotation could only occur 

at the shoulder and elbow joints. An auditory cue indicated the start of each trial. 

Subjects were instructed to slide their index finger as fast and accurately as possible, 

landing in the first target and moving on to the second target. The trial ended when 

participants stopped in the second target. Movements were recorded using a VICON 

camera system (120 Hz sampling frequency). Near infrared light emitting diodes were 

placed on the coracoid processes of shoulders, sternum, proximal upper arm, medial 

upper arm, elbow, medial lower arm, and index fingernail of the right arm.  

 

Analysis 

VICON data were filtered with a 4th order dual pass Butterworth filter and endpoint 

trajectory analyzed. Velocity was calculated using the first derivative of positional data. 

Movement onset for each segment was defined as the time at which velocity exceeded 

10 mm/s. Movement offset was when velocity at the last sampling point prior to falling 

below 10 mm/s.  

 

A 4 (Direction) x 2 (Target Amplitude Combination) x 2 (Group) ANOVA with repeated 

measures was used to analyze the relevant subset of data. Post hoc comparisons 

(Bonferroni adjusted, α = .05) were computed for relevant subsets of data. The 

Greenhouse-Geisser corrected degrees of freedom were used when sphericity violations 

occurred.   
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Measures 
 
For kinematic analysis of the two-segment movement: duration time, peak velocity, and 

relative time to peak velocity. Duration and kinematic variables were used to determine 

underlying movement characteristic differences in segment amplitude combinations. 

Duration is defined as the amount of time from beginning of a movement to ending. 

Peak velocity (PV) measures are defined as the max velocity acquired during a 

movement. PV gives important information about the influences of accuracy constraints 

or subsequent movements on the execution of a particular segment. Relative time to 

peak velocity is the percentage of the whole movement required to reach the highest 

velocity during a movement. Analyzing this can give information about how a 

movement is altered due to the performance requirement of the next segment.  
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CHAPTER III 

RESULTS 

Results for total duration are shown below, followed by individual segment results for:  

peak velocity, relative time to peak velocity. 

 

Duration  

Total duration showed that overall SL movements took longer than LS movements (F (1, 

8) = 9.5, p < 0.05) across all direction conditions (Figure 2). Total duration also revealed 

a significant Direction effect (F (3, 24) = 4.4, p < 0.05) with right-tilt movements having 

the longest duration and left tilt being overall the shortest. Long movements were 

characterized by a longer duration and shorter movements were characterized by shorter 

durations when performed as the initial segment (F (1.7, 13.6) = 5.9, p < 0.001) and as 

the second segment (F (1, 8) = 215.7, p < 0.001) (Figure 3 A&B). There was a main 

Direction effect in segments performed initially (F (1.7, 13.6) = 5.9, p < 0.05). There 

was a significant difference between the left tilt and horizontal directions in the duration 

of the initial segment (p < 0.05). This suggests some different control in the simple 

versus complex direction tasks.  There were no significant effects for Direction in 

Segment 2 (p > 0.05).  
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Fig. 2 Total Duration results show that SL movements had a longer 
Movement Time (MT) than LS movements. 



  14 

Right-Tilt Left-Tilt Vertical Horizontal
200

300

400

500

600

700

D
ur

at
io

n 
Se

gm
en

t 2
(m

s)

 

 

A 

B 

Fig. 3 Long movements had a longer duration time in both Segments 1(A)
and 2(B) 
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Peak velocity 

Peak velocity means for both segments are shown in Figure 4 A&B. Peak 

velocity was higher in long movements vs. short movements in both the initial segment 

(F (1, 8) = 166.4, p < 0.001) and the second segment (F (1, 9) = 187.4, p < 0.001). 

Direction effects are seen in initial segments (F (3, 24) = 6.8, p < 0.005). There was also 

a significant pairwise difference between vertical (complex movement) and right tilt 

(simple) movements in segments performed initially (p < 0.05). In the second segment 

there was an interaction between Direction and Distance (F (1.7, 13.3) = 4.1, p < 0.05). 

Post-hoc analysis failed to reveal any specific effect of one segment on the other.  

Relative Time to Peak Velocity 

Relative Time to Peak Velocity revealed a significant Distance effect for both 

segment 1 (F (1, 8) = 14.4, p < 0.005) and segment 2 (F (1, 8) = 55.3, p < 0.001). There 

were no Direction effects (p > 0.05). Post-hoc analysis indicates that subjects spent more 

time to peak velocity in short segments than for long segments (Figure 5 A&B). This 

indicates that for a more difficult long movement, subjects spent more time in the 

deceleration phase. 
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Fig. 4 Peak velocity was higher in long movements of the multisegment 
sequences 
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Fig. 5 Percentage of time to Peak Velocity was higher for short movements in 
both the LS and SL condition. Relatively less time to peak velocity was seen 
in the short segments when performed as the initial segment as compared to 
short segments performed as the second movement.  

Right-Tilt Left-Tilt Vertical Horizontal
35

40

45

50

55

60

65

R
el

 T
im

e 
to

 P
V

 S
eg

m
en

t 2
 (%

)



  18 

CHAPTER IV 

SUMMARY AND CONCLUSIONS 

 

The present study examined the planning of two-segment aiming movements as a 

function of amplitude changes and joint coordination requirements. Previous research 

expected that when the second segment movement was more difficult, evidenced by a 

higher ID, the movement of the first was affected. The planning of multisegment 

movements were planned as a whole movement when the first segment was a low level 

of difficulty. However, when the ID of the first segment was high, planning was altered. 

Central planning processes treat the two movements separately, concentrating on the 

first movement before taking the second into account. The movements were planned in a 

serial manner (Rand et. al. 1997; Rand et. al. 2000). This study did not find this to be 

true; showing that less time was spent to peak velocity when the second segment’s ID 

was high. Although joint coordination was found to affect movements based on 

complexity in previous experiments, in this experiment joint coordination did not 

specifically relate to planning of movements. In duration and peak velocity of the initial 

segment, however, differences in the control of simple versus complex movements were 

seen. 

 

Longer duration times were seen for SL movements than for LS movements. In addition, 

Long segments had longer duration times than short segments which support previous 

studies (Fitts 1954). 
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Peak velocity did not indicate the influence of second segment kinematics on the first 

segment. However, as was expected, higher peak velocities were seen for long segments 

compared to short segments. ID of the first movement is high; there are no effects on the 

second segment (Rand et. al. 1997). This is in part the reason for the differences between 

short segments and long segments. 

 

To further this, relative time to peak velocity showed that for low ID first movements 

and high ID second movements, relatively more time was spent to get to peak velocity. 

Less time was spent in the deceleration of the movement which was contrary to previous 

studies that show that varying of planning to accommodate a more complex task. This 

indicates that the movement was not adjusted in order to accommodate to the constraints 

imposed by the second segments. However, it should be noted that one limitation of our 

study was that the overall ID of both conditions were the same since we controlled 

overall distance. Differences might have been seen with two long segments chunked 

together for example.  

 

Our findings provided no support for the effect of interactive torques on the planning 

and control of multisegment aiming movements, nor of the influence of one segment on 

the control of another. Previous studies have found that elbow leading movements are 

less demanding in terms of IT regulation (Dounskia et al. 2002a). Additionally, direction 

effects influenced first segments movements. IT regulation was also found to cause two 
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segment movements to be planned as one functional unit, however for greater 

complexity movements, each segment is planned separately. Our findings do not support 

this.  

 

Past studies have shown that the slower a movement was performed, the more accuracy 

was required for that movement (Fitts 1954;  Milner and Ijaz 1990; Smyrnis et al. 2000; 

Thompson et al. 2007). In the current study, more difficult movements were 

characterized by longer duration times and higher peak velocities. In addition past 

research has lead to better understanding of mulitsegment aiming movements. When the 

initial segment has a high level of difficulty and the second a low, the movements seem 

to be planned separately. However, when the first segment has a low level of difficulty 

and the second a high, the movements are planned as a functional unit at the beginning 

of the task. Additionally the second segment ID has an effect on the planning of the 

initial (Rand et al. 1997; Rand and Stelmach 2000; Rand et al. 2002). This held true in 

the current study. Relative time spent to peak velocity and relative time in the primary 

submovement of the initial task was influenced by a longer distance second task.  

 

In conclusion, young adults plan and organize movements as a whole when the first 

segment was a low ID and the second was a high ID as evidenced by a relative time to 

peak velocity and relative time spent in the primary submovement. However, when the 

opposite was true the movement was no longer linked together. Biomechanical factors 

and IT did not influence the planning of movements differently. A speed accuracy 
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tradeoff was evidenced by longer duration times and higher peak velocities for more 

difficult movements. This data contributes to the idea that by changing distance in two 

segment aiming movements, the difficulty of one movement still affects the execution of 

that subsequent movement. It also supports the notion that the difficulty of the task 

(accuracy constraints) affects the planning and execution of movements.  
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