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Circumferential distension of the arterial wall during the cardiac cycle regulates 

endothelial cell (EC) morphology and function. We have previously shown that cyclic 

stretching of ECs leads to activation of signaling events relevant to atherosclerosis, but 

that this signaling subsides when the cells align perpendicular to stretch. We 

hypothesized that the purpose of this cellular response is to maintain a homeostatic stress 

level within the cell. Stresses within the cell are both born and created by cytoskeletal 

components. Stress fibers create tension that is transmitted to substratum via integrin 

connections. To test if this alignment response affects the forces applied to the 

substratum by stretching the ECs, we are developing a system to quantify substrate 
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deformation caused by stretching ECs. The technique uses a poly(ethylene glycol) 

diacrylate hydrogel having an elastic modulus appropriate for traction microscopy and 

embedded with fluorescent beads. The traction microscopy system was comprised of 

computer controlled actuators and a clamping mechanism used to stretch the fluorescent 

bead embedded hydrogels under a confocal microscope objective. Image analysis via 

cross-correlation of bead displacements was used to generate the displacement field of 

the hydrogel immediately below and surrounding the cell. The preliminary results 

obtained indicate a successful proof of concept and show the method to be sound in 

principle. The system provides for the development of unique experimental conditions 

including the ability to perform uniaxial and biaxial stretching. In conclusion, the 

development of a novel method for the characterization of endothelial cell mechanics 

appears to be possible. However, the technique must be further developed and refined in 

order to increase efficacy and repeatability.  
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I INTRODUCTION
1
 

 

 Endothelial cells (ECs), long thought to be mere barriers lining the lumen of 

blood vessels throughout the body to control the diffusion of nutrients, have now been 

shown to be a very dynamic system and a major participant in the formation of early 

stage atherosclerotic plaques. Atherosclerosis is a slow progressive disease characterized 

by the accumulation of lipids within the arterial wall and an uncontrolled inflammatory 

immune response. Atherosclerosis can lead to a variety of critical conditions, which 

constitute a large portion of the deaths in the United States, including angina, myocardial 

infarction, and stroke. It has been found that mechanical stimulation of ECs, via 

hemodynamic shear stress and cyclic stretching, may be a major contributor to the 

underlying cause of the topographical distribution of atherosclerosis in distinct regions 

within the body’s arteries. A better fundamental understanding of the mechanical nature 

of these ECs is needed in order to gain a complete understanding of atherosclerotic 

plaque formation. The purpose of this study is to develop a method to quantify the 

traction forces applied by ECs to their substrate under a variety of loading conditions. 

                                                 
1
 This thesis follows the style and format of The Journal of Cell Biology.  
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Atherosclerosis and Endothelial Cells 

Cardiovascular disease accounts for the majority of the deaths in United States, 

Europe and parts of Asia (Braunwald, 1997). The long held paradigm of atherosclerosis 

disease formation has been that of a slow accumulation of lipids within the arterial wall 

leading to eventual blockage of the vessel lumen and the subsequent cardiovascular 

conditions including angina, myocardial infarct, and stroke (Ross, 1999).  Since the early 

1990s, however, the paradigm has shifted to that of a set of highly specific cellular and 

molecular responses which more closely resemble an autoimmune or inflammatory 

response gone awry (Ross, 1999, Libby, 2002, Schoenfeld, 2001).  

It has become increasingly evident that injury to the vascular endothelium, a 

monolayer of cells lining the lumen of blood vessels, plays a critical role in the 

development of early stage atherosclerotic plaques. As shown in Figure 1, endothelial 

cells (ECs) are directly involved in the early stages of atherosclerosis through a variety 

of processes including increased endothelial permeability to low-density lipoprotein 

(LDL), and increased recruitment of monocytes (Ross, 1999). The localization of 
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atherosclerotic plaques near arterial branches has long been attributed to both the unique 

hemodynamic oscillatory shear stresses and the high-magnitude cyclic stretching which 

spatially correlate with areas having greater accumulation of LDL within the arterial 

intima (Kakis 2004, McMillan, 1985, Moore, 1994). As seen in Figure 2, the 

morphology of ECs observed at branched regions differs greatly from ECs found in long 

straight regions (Cornhill, 1974, Davies, 1995, Nerem, 1981, Silkworth, 1975). The 

difference in both the mechanical stretch and fluid shear stresses at arterial branches as 

compared to the straight regions affect many features of ECs, such that their 

morphology, growth, permeability, and gene expression, that may contribute to the 

preponderance of atherosclerotic lesion formation (Moore, 1994, Thubriker, 1995, Zhao 

1995). However, the mechanisms by which the particular mechanical environment 

affects EC function remain to be determined. 
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Figure 1: Stages of atherosclerotic plaque formation (Adapted from Ross, 1999. See Appendix A). 

Endothelial cells, being the only barrier between the blood and the underlying vessel wall, play a crucial 

role in early stage atherosclerotic plaque formation which includes LDL accumulation and monocyte 

adhesion and migration into the vessel wall.  
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Figure 2: Endothelial cell morphology abruptly changes near arterial branches (Adapted from Cornhill et 

al., 1974. See Appendix B). ECs display a distinctly rounded morphology in branched regions as 

compared to a more polarized elongated morphology in straight regions.  

 

Given the differences in the mechanical environment associated with straight 

versus branched regions of arteries, attempts have been made to determine the 

mechanism by which ECs adapt to these conditions. Studies have shown vascular ECs 

orient themselves and form stress fibers perpendicular to the direction of stretch 

(Kaunas, 2005).  A recent in vitro study has shown that attached ECs respond to stress, 

induced by uniaxial substrate stretch, by aligning perpendicular to the direction of stretch 
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in a manner that appears to reduce the induced increase in intracellular stress. However, 

ECs exposed to biaxial stretch, an approximation of the mechanical environment at 

arterial branches, cannot align as the stress is non-directional and thus display a non-

polarized morphology similar to static conditions as seen in Figure 3 (Kaunas, 2006). 

Elevated intracellular stress appears to activate c-jun N-terminal kinase (JNK), which 

regulates the AP-1 transcription factor, which in turn mediates several genes involved in 

the early stages of atherosclerosis including endothelin-1, intercellular adhesion 

molecule-1 (ICAM-1), and monocyte chemoattractant protein-1 (MCP-1) (Cheng, 1996, 

Clinton, 1992, Davies, 1993, Lerman, 1993, Wang, 1993, Wang, 1995). 
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Figure 3: Endothelial cell morphology in response to static conditions (A), uniaxial stretch (B), and biaxial 

stretch (C) (Adapted from Kaunas et al., 2006). Straight arterial regions are modeled via uniaxial stretch 

while branched regions are modeled via biaxial stretch.  

   

 

Cell Mechanics 

 Cell mechanics is a broad field in which the principles of physics and 

engineering are applied to study both the mechanical properties of cells and the effects 

of mechanical forces on a variety of cellular processes. Cellular mechanics is being 

recognized as equally important as cellular biochemistry in determining a cell's reaction 
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to stimuli and propensity to pathological development. For example, the notion that the 

endothelial cells lining blood vessels were just a passive anti-thrombogenic barrier was 

replaced with a mechanotransduction model. In this model, the endothelial cells respond 

to increased shear stress and decreased shear stress, by releasing nitric oxide (a 

vasodilator) or endothelin-1 (a vasoconstrictor), respectively, in order to normalize flow 

velocity, and hence stabilize shear stress on the arterial wall (Buga, 1991, Yoshizumi, 

1989). 

The complicated structure of the cell and its dynamic nature makes its 

mechanical properties difficult to elucidate and mechanical models difficult to 

conjecture and prove. Understanding the mechanical properties such as elasticity and 

viscoelasticity is crucial to developing constitutive equations to describe cellular 

deformations. Recent advances in bioimaging and force measurement tools with 

sufficient resolution for cellular study are helping advance the field. Methods like atomic 

force microscopy, magnetic twisting cytometry, optical trapping, micropipette 

aspiration, shear flow, and substrate stretching are allowing researchers to devise 

experiments that directly measure the cells response to applied stresses and strains (Bao, 

2003, Mow, 1994). Quantitative measurements of these mechanical properties can then 
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be used to formulate mathematical models of cell mechanics. Basic continuum models 

assume the cell to be an homogeneous elastic solid or a viscous liquid encased in an 

elastic cortical shell (Hochmuth, 2000).
 
A structure-based “tensegrity” model, developed 

by Donald E. Ingber, describes the cell in terms of load bearing struts (i.e. the 

cytoskeleton) counteracted by tension bearing cables (i.e. actomyosin filaments) which 

stabilize the cell; this model accounts for force transmission within the cell as well as 

mechanotransduction (Ingber, 1997). None of these models are capable of completely 

describing a cell’s mechanical behavior, however. As new models are created and 

refined, researchers must resolve problems relating to anisotropy, heterogeneity, cellular 

remodeling, and cellular interactions with other cells and the extracellular environment.  

  

Traction Force Microscopy 

Traction microscopy, unlike methods such as cell aspiration and magnetic bead 

cytometry, is a techniques used to elucidate the mechanical properties of cells indirectly 

and without external interference with the cell. The goal of traction force microscopy is 

to provide a method by which the forces a cell exerts on the substratum to which it is 
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adhered can be indirectly measured and quantified. The first such method used an elastic 

substrate that would wrinkle under the traction forces of the adhered cells (Harris, 1980). 

These wrinkles could then be analyzed to qualitatively determine the forces being 

produced by the cells, however wrinkling provides a qualitative technique with poor 

spatial and temporal resolutions (Dembo, 1999). A method combining a deformable 

substrate with embedded fluorescent bead markers allowed for increased accuracy and 

true quantification (Lee, 1994).  The fluorescent beads provide a point field that can be 

imaged before and after a cell is removed from the substrate. A comparison of these two 

images can then provide a displacement field which combined with the material 

properties of the particular substrate can be used to mathematically calculate the traction 

forces generated by the cell (Dembo, 1999).  

 

Digital Particle Image Velocimetry 

 Digital particle image velocimetry (DPIV) was originally developed to measure 

fluid flow fields based on time-resolved displacements of tracer particles (Adrian, 2005). 

In traction microscopy, DPIV has been used to automatically calculate the displacements 

of the fluorescent beads embedded in a hydrogel substrate by a signal processing method 
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known as cross-correlation. The DPIV method divides an image into interrogation areas 

(IAs) that vary in size depending on the users needs. These IAs are cross-correlated by 

comparing individual IAs frame by frame to determine the similarity between 

subsequent images. IAs that share similar or identical groups of particles, as measured 

by the degree of cross-correlation, are matched and the displacement of the IA is 

calculated, as shown in Figure 4. The calculated displacement of IAs between images is 

used to calculate the displacement field.  

 

 

Figure 4: A simplified example of cross correlation and DPIV.  

. 
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III METHODS AND MATERIALS 

Cell Culture 

Bovine aortic endothelial cells (BAECs) and bovine aortic smooth muscle cells 

(BASMCs) were isolated from the aorta and cultured in DMEM (Gibco) containing 10% 

FBS, 1% L-glutamine, 1% sodium pyruvate, and 1% penicillin-streptomycin. Cells were 

cultured at 37°C in a humidified incubator containing 5% carbon dioxide.    

 

Hydrogel Preparation 

Poly(ethylene glycol) diacrylate (PEGDA) hydrogel was used because it has 

been found to support cell growth with proper surface treatment and is stretchable 

(Hahn, 2006). PEGDA of 10,000 molecular weight is synthesized from PEG powder 

(Fluka), acryloyl chloride (Lancaster 10363), and triethyl amine (Sigma) through a 3 day 

process (Delong, 2005). A mixture consisting of 0.1g PEGDA powder, 10µL 

acetophenone, and 1.5µL of 0.2µm red fluorescent spheres (FluoSpheres, Molecular 

Probes) per milliliter of deionized water is prepared and sterilized through a syringe 

driven 0.22µm filter (Millipore). Approximately 3mL of mixture is needed per hydrogel 
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being produced. A mold, consisting of two 75x50mm glass slides (Corning), two 

10x50mm strips of 1/16″ porous hydrophilic polyethylene, and one 10x50mm strip of 

1/16″ polycarbonate is assembled and held together by binder clips as seen in Figure 5. 

The entire assembly creates a 30x50x1.6mm vessel which is filled with the PEGDA 

mixture which also fills the porous polyethylene strips. The hydrogel is photocrosslinked 

by placing the entire assembly on an ultraviolet transilluminator for 2 minutes per side. 

As a result a hydrogel is created with attached polyethylene strips. These strips provide a 

secure grip for the clamping mechanism in order to effectively stretch and secure the 

hydrogel. Finished hydrogels surfaces are photocrosslinked with a 50µmol/mL solution 

of (ACRL)-PEG-peptide where the cell adhesive peptide is arginine–glycine–aspartic 

acid–serine (RGDS). This surface treatment assures proper cell adhesion to the surface 

of the hydrogel.  
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Figure 5: Hydrogel assembly mold consisting of binder clips, large glass slides, and porous polyethylene 

strips. The dashed square represents the area to be filled with PEGDA mixture and subsequently 

photocrosslinked to form the hydrogel.  

 

 

Microscopy 

A Nikon Eclipse FN1, fixed stage microscope, with a NIR APO 60x/1.0W DIC 

N2 objective combined with a Nikon D-Eclipse C1 confocal microscopy system were 

used to image both cell and bead positions. A confocal system was used in order to focus 

on the plane of beads just below the hydrogel surface. These beads will have the largest 

displacements and better represent the traction forces exerted by the cell. 

Glass slides. 

Binder clips. 

Porous polyethylene. 



15 

 

 

Experimental Setup 

      As seen in Figure 6, the hydrogel with spread cells was submerged within media, 

the edges clamped either using 2 clamps for uniaxial stretching or 4 clamps for biaxial 

stretching. The clamping mechanisms are connected to computer controlled miniature 

positioners (Parker MX80S) which allow for the both accurate and precise stretching of 

the hydrogel substrate. Images are taken at each stage (a-d) of the experimental 

procedure described in Figure 7. An EC attaches to the hydrogel, produces traction 

forces and thus an initial hydrogel deformation and bead displacement (a). The gel is 

stretched and the EC responds with greater traction forces; a new bead displacement is 

produced (b). Trypsin (10x concentration) is used to remove the cell thus releasing all 

traction forces and images are taken in both stretched (c) and unstretched (d) positions. 

Experiments are conducted under both uniaxial and biaxial stretch conditions and under 

a variety of stretch lengths.   
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Figure 6: Experimental chamber with ECs, hydrogel, and clamping mechanism (a) nd a top view of the 

microscope stage for a uniaxial stretch experiment (b).  

.  

 

 

b) 

a) 
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Figure 7: Traction forces induce hydrogel deformation throughout various experimental stages (a-d). 

Unlike typical traction microscopy where only two images are needed, in order to test stretched cells four 

images must be taken.  
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IV RESULTS  

 

The majority of the work conducted thus far has focused on developing the 

experimental methods and building and testing the system. Therefore, only preliminary 

data has been gathered using the method described above and much work remains to be 

done in order to fully quantify the traction forces produced by ECs under loading 

conditions. Digital particle image velocimetry (DPIV) image analysis software (TSI 

Insight 6.0) was used to analyze the before and after images. An example of the 

preliminary data gathered can be seen in Figure 8. A merged fluorescent image 

illustrates the outline (white) of a cell extension, as well as beads before (red) and after 

(green) the cell was removed (Fig 8a). From this data, the displacement field was 

calculated using the DPIV software (Fig. 8b). This data demonstrates the efficacy of the 

experimental procedure and image analysis procedure. As can be seen, bead 

displacements are far greater near the cell pseudopodia indicating the cell is exerting a 

traction force on the underlying hydrogel. Beads farther from the cell pseudopodia 

appear to be yellow as a result of the red and green bead images coming together and 

forming the color yellow which indicates that these beads have not been displaced. The 
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displacement field is calibrated and displayed using a color gradient and exaggerated 

vectors to more clearly indicate magnitude.  

Several difficulties were encountered throughout the experimental process. It was 

discovered that bead positions drifted over time which is likely due to the buoyant nature 

of the submerged hydrogel, as seen in Figure 9. Beads drifted at a rate of approximately 

1µm per minute. This presents a problem since calculating accurate bead displacements 

is critical to determining the traction forces generated by the cell. This issue can be 

remedied relatively easily. The traction forces generated by the cell will cause the 

hydrogel to contract but these forces and the subsequent strains associated with them 

decay away from the cell, thus there is a point where these displacements are no longer 

relevant and the beads can be used as fixed markers to align the images before 

performing the DPIV analysis. 
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Figure 8: Example of preliminary data: bead displacement (a) and displacement field (b). Image (a) is 

generated by superimposing the before (red) and after (green) fluorescent bead images and an outline of 

the cell pseudopodia can be seen. Image (b) clearly indicates displacements near the cell to be greater and 

decay away from the cell.   
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Figure 9: Bead displacements caused by fluctuations of the PEGDA hydrogel. Three images have been 

superimposed and false color has been applied. Beads moved consistently from left (red) to right (green 

then blue) throughout a period of 7.5 minutes. The rate of motion was calculated to be approximately 1µm 

per minute. 
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V DISCUSSION AND CONCLUSIONS 

 

Discussion 

      A proof of concept for a novel technique for the characterization of endothelial 

cell mechanics has been demonstrated. The results indicate that traction microscopy 

utilizing a PEGDA hydrogel embedded with fluorescent beads does indeed work well 

and provides several unique benefits. PEGDA, when surface treated with a RGDS, 

provides an adequate surface for cell attachment. Unlike previous studies using traction 

microscopy, which have used a polyacrylamide gel attached to a glass slide, the PEGDA 

hydrogel can be stretched thus allowing cells to be subjected to both step and cyclic 

stretch. This advantage allows us to mimic the mechanical environment in the straight 

and branched regions of arteries using uniaxial or biaxial stretching respectively. Using 

the computer controlled actuators to control the rate and amplitude of stretch combined 

with the ability to stretch uniaxially or biaxially allows for a wide range of experimental 

conditions to be tested. The adaptation of ECs to these conditions as well as the traction 

force the ECs generate can then be studied and may further elucidate fundamental 

mechanical characteristics of ECs. 
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 The technique presented although conceptually simple to understand, essentially 

consisting of imaging fluorescent beads and determining their displacement, is 

technically challenging. Several components must work seamlessly in order for the 

system to function properly. For example, the PEGDA hydrogel must interface with the 

computer controlled actuators through an effective clamping mechanism, and confocal 

microscopy requires the hydrogel plane being imaged to remain stable throughout the 

experimental process. The issue of hydrogel fluctuations between consecutive images 

was addressed by using beads ~50µm away from the cell as stationary reference points 

in order to align the images.  

The continuation of this research will seek to further quantify the displacement 

fields produced by the ECs on their hydrogel substrate. In order for this to be 

accomplished several tasks must be completed. Firstly, the mechanical properties of the 

PEGDA hydrogel must be properly determined. The most important property is the 

elastic modulus (Young’s modulus) or stiffness. Knowing the elastic modulus, the 

traction forces exerted by the ECs under a variety of loading conditions can be 

calculated and a set of physiologically relevant data can be produced.  
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Conclusion 

 A proof of concept for the novel technique for the characterization of endothelial 

cell mechanics which has been described above has been presented. This technique can 

now serve as a platform technology from which a variety of experimental conditions 

including uniaxial and biaxial stretching, both cyclic and step, at various rates and 

amplitudes. These conditions would be used to effectively mimic the mechanical 

environment in the straight and branched regions of arteries. The data gathered will 

provide the basis for a fundamental understanding of the effects of stretch and EC 

adaptation on the traction forces ECs exert. Further work is still required to improve the 

efficacy and repeatability of the technique as well as gather sufficient data to make 

informed conclusions on the characterization of EC mechanics.  
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Dear Mr. Mohedas 

We hereby grant you permission to reprint the material detailed below at no charge in your thesis subject 

to the following conditions: 

1.         If any part of the material to be used (for example, figures) has appeared in our publication with 

credit or acknowledgement to another source, permission must also be sought from that source.  

If such permission is not obtained then that material may not be included in your 

publication/copies. 

2.         Suitable acknowledgment to the source must be made, either as a footnote or in a reference list at 

the end of your publication, as follows: 

“This article was published in Publication title, Vol number, Author(s), Title of article, Page Nos, 

Copyright Elsevier (or appropriate Society name) (Year).”  

3.         Your thesis may be submitted to your institution in either print or electronic form. 

4.         Reproduction of this material is confined to the purpose for which permission is hereby given. 

5.         This permission is granted for non-exclusive world English rights only.  For other languages 

please reapply separately for each one required.  Permission excludes use in an electronic form 

other than submission.  Should you have a specific electronic project in mind please reapply for 

permission. 

6.         Should your thesis be published commercially, please reapply for permission. 

This includes permission for the Library and Archives of Canada to supply single copies, on 

demand, of the complete thesis.  Should your thesis be published commercially, please reapply 

for permission. 
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