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ABSTRACT

Wire and Column Modeling. (May 2004)

Esan Mandal, B.Arch., Birla Institute of Technology

Chair of Advisory Committee: Dr. Ergun Akleman

The goal of this thesis is to introduce new methods to create intricate perforated shapes

in a computing environment. Modeling shapes with a large number of holes and handles,

while requiring minimal human interaction, is an unsolved research problem in computer

graphics. In this thesis, we have developed two methods for interactively modeling such

shapes. Both methods developed create perforated shapes by building a framework of

tube like elements, such that each edge of a given mesh is replaced by apipe. The first

method calledWire modelingreplaces each edge with apipethat has a square cross-section.

The result looks like a shape that is created by a framework of matchsticks. The second

method, calledColumn modelingallows more rounded cross-sections for thepipes. The

cross-sections can be any uniform polygon, and the users are able to control the number of

the segments in the cross-section. These methods are implemented as an extension to an

existing modeling system guaranteeing that thepipesare connected and the resulting shape

can be physically constructed. Our methods require an initial input mesh that can either

be imported from a commercially available software package, or created directly in this

modeling system. The system also allows the users to export the models inobj file format,

so that the models can be animated and rendered in other software packages.
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CHAPTER I

INTRODUCTION

I.1. Motivation

I.1.1. Architecture

Classical Architecture

Classical architecture in many parts of the world is ornate and tends to use a lot of

perforated stone, wood and metal elements in the interior as well as the exterior of a built

structure. Such elements are typically used in building fenestration, furniture, balustrades

etc. Usually they are built either by carving a single large piece of building material like

stone, or they are assembled from smaller pieces of building material such as wood or

metal. Such architectural elements have been prevalent in different styles, throughout ar-

chitectural history across the world.

Fig. 1. Examples of a typical stone screen fenestration in early classical Indian architecture

[25, 3].

Figure 1 shows examples of architectural motifs such as stone screens and decorative

The journal model isIEEE Transactions on Visualization and Computer Graphics.
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cladding that were extensively used in Indian Islamic as well as Hindu classical architecture

[25, 3].

Fig. 2. Classical Islamic architecture [18, 20, 28, 22].

Islamic civilizations in the middle-east have used such elements in their architecture

since ancient times [18, 20, 28, 22]. Figure 2 shows examples of the perforated form,

which is used at different scales in the built form. The perforated elements range in size

from small stone screens to larger forms which influence the whole built space.

Fig. 3. Classical Roman architecture [18].

This kind of porous architectural form was also used in European architectural styles.

In ancient Roman architecture, as shown in Figure 3, this kind of perforated feature is used

very effectively at a large scale, and dominates the whole built form [18].

In Christian architecture, religious buildings as well as many castles in ancient Eng-

land used these kind of perforated intricate form in their design, as shown in Figure 4,

[10]. The work of Antoni Gaudi, in the late 1800s and early 1900s [21], demonstrates an
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Fig. 4. Classical Christian architecture [10].

extensive use of such perforated and ornate architectural elements, as shown in Figure 5.

These kinds of complex, perforated shapes and forms are used even today in architec-

tural interiors as well as exteriors. Figure 6 shows examples of some such modern interior

elements [7, 4].

Fig. 5. Antoni Gaudi’s architecture [21].

Modern Architecture

Modern Hi-Tech architecture also incorporates the use of many such built elements

[16]. In this style of architecture the whole built form is typically made of only steel column

and beam elements. As shown in Figure 7, this approach creates a highly perforated built

envelope as opposed to a solid envelope common in other architectural styles. This style

can be seen as a modern interpretation of the classical perforated stone and wood elements,

and makes the classical concept prevalent even today.

The perforated feature of building elements, is incorporated in architectural styles at
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different levels of detail: some have it on the surface of the built envelope, some have it at

a finer level in windows, openings and interiors, and some have it incorporated in the built

volume itself. Thus it can be seen that this characteristic is an integral design feature of

many architectural philosophies.

I.1.2. Sculptures

(a) Wooden
screen

(b) Balustrade

Fig. 6. Interior architectural elements [7, 4].

Stylized sculptures, with a large number of perforations and holes has been a part of

modern and ancient art and architectural history. For instance, Indian and Chinese stone

sculptures as shown in the Figures 8a,b, display such characteristics. Even contemporary

sculptors like G.W.Hart make such highly perforated geometric sculptures [14], as shown

in Figure 8c. The beauty of these objects lies in the intricacy of the surface, which is

due to the large number of perforations. These perforations make even an extremely tough

material like stone look delicate.

In the present day, computer technology has touched almost every aspect of our lives.

Computer graphics has enthralled more people than ever due its realistic visual representa-

tion of imaginary as well as real worlds. Thus, at some point such beautiful objects need

to be represented in the computing environment; sometimes to depict reality as a part of an



5

architectural visualization; sometimes to realize imaginary worlds in computer art, or as a

visualizing tool to make sculptures, as done by George Hart. These objects are as hard to

construct in real life as they are to model in a computing environment.

Fig. 7. Modern Hi-Tech architecture [16].

As a part of computer modeling research, it becomes important to devise a method

for the easy and fast visualization of such objects in the computing environment. There

has been very limited amount of related research in computer graphics that addresses the

modeling of such objects, making this an intriguing problem.

(a) Indian Sculpture (b) Indian Sculpture (c) Hart Sculpture

Fig. 8. Sculptures.

Until now these objects were most successfully represented in the computing environ-

ment by using indirect methods like texture mapping and rendering-shading techniques.
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These methods do not model the objects with three-dimensional data, but just create the

look of such objects. Such representations consistently lack the depth and richness of an

actual three-dimensional model, and are typically useful only when viewed from a distance.

To represent such objects three-dimensionally one would have to use boolean operations re-

peatedly or tile the smallest tileable feature by copying several times and placing them next

to each other. Such available modeling methods tend to be very time consuming and inef-

ficient. There are some techniques available which facilitate efficient modeling of highly

perforated objects in computer graphics, but these are very specific to the fields of biol-

ogy and chemistry where they are used to model molecular structures for scientific study

purposes. These methods cannot be used to model more common objects, like perforated

architectural elements, sculptures and other interesting forms and shapes in nature.

Fig. 9. A clock visualization with perforated elements.

The goal of this thesis is to develop automated computational methods to create highly

perforated and intricately designed three-dimensional meshes, as seen in Figure 9, as

quickly and efficiently as possible.
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CHAPTER II

BACKGROUND AND PREVIOUS WORK

II.1. Modeling

Modeling can be considered as a representation of different types of: architectural, engi-

neering, economic, financial, organizational, scientific, mathematical, social and environ-

mental systems to simulate their behavior under various conditions. Amodelis any single

representation of the system. Graphical models are often referred to as geometric models,

because the component parts of the system are represented with geometric entities such as

lines, polygons, volumes etc [15]. Within the scope of this thesis, we are concerned with

only geometric models.

Geometric modeling deals with the representation and manipulation of geometric ob-

jects in a computer. Geometric Models are represented with geometric entities such as lines,

polygons, volumes etc [15]. The field comprises the core of the discipline of Geometric

Computation, which encompasses the theoretical and application areas of computer sci-

ence that deal with geometry and visualization. Among these areas are computer graphics,

computer animation, mechanical computer-aided design (MCAD), computer-aided manu-

facture (CAM), robotics, computer vision, discrete computational geometry and computer-

aided geometric design (CAGD) [23]. One of the aims of modeling is the representation of

objects by transferring information about reality into the computer. Depending on the type

of graphical information to be depicted there are a number of methods, as shown in Figure

10, for modeling a representation in the computer. These include Point Cloud, Wireframe,

Boundary and Volumetric Representations.

1. A Point cloud has low computational complexity and is useful to describe complex
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(a) point cloud (b) wireframe (c) boundary (d) volumetric

Fig. 10. Types of geometric modeling representations - point cloud, wireframe, boundary

and volumetric respectively.

objects, where their shape is not very important. An object can be represented by one

point or by a set of closely spaced points. Particle systems are also used to model

natural phenomena.

2. Wireframe models describe objects by vertices and edges [6]. Edges are usually

straight lines, but can also be curves, such as NURBS.

(a) Nurbs (b) Polygonal (c) CSG (d) Implicit

Fig. 11. Types of boundary representations.

3. Because a surface is usually the only visible part of an object, this representation

is one of the most common representations used to visualize objects. As shown in

Figure 11b, complex objects are represented using a polygonal mesh [6]. For better

approximations of a curved surface, bezier or NURBS patches are used instead of

flat polygons, as shown in Figure 11a. The boundary of some objects can also be
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represented using CSG modeling and Implicit surfaces, as seen in Figure 11c,d.

4. In contrast to previous representations, a volumetric representation also regards the

inner structure of an object. Simple objects can be represented analytically. Com-

plex ones are described using CSG or Voxel representations. A Voxel representation

is especially useful where an object has a heterogeneous inner structure. A big dis-

advantage of this method however, is that it is needs a huge amount of volume data

to represent very simple objects.

For the purpose of this thesis we are concerned with only the Boundary Representation

technique. We use the polygonal modeling method of boundary representation because it

is one of the most widely used techniques to represent complex objects and is compatible

with many commercially available software packages.

For a better understanding of this thesis work we would like to define a few terms

which are related to this work.

1. Topology

Topology is the study of how geometric objects are intrinsically connected to them-

selves. Since topologists are not concerned with the geometric measurements of

objects, people often say that they study objects up to continuous deformation. But

usually topologists consider spaces which have a topology (a qualitative shape or

connectivity) but no predefined (quantitative) geometry. Knots and manifolds are

typical examples of topological objects.

2. Manifold

In mathematics, a manifold is a topological space that looks locally like the “ordi-

nary” Euclidean space and is a Hausdorff space. One such example is the surface of a
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sphere such as Earth, which is not a plane, but small patches of it are homeomorphic

to (i.e., topologically equivalent to) patches of the Euclidean plane.

3. 2-Manifold

A 2-manifold is a manifold in two dimensions, usually embedded in higher dimen-

sion space. In mathematics, any surface is a 2-manifold. A 2-manifold is physically

realizable, and hence can be constructed in real life.

4. Genus

In geometric topology, the number of holes of an object/shape is defined as its genus.

So a high genus manifold is a surface that has many holes in its shape.

In this thesis we be modifying the topology of a low genus 2-manifold to create a high

genus 2-manifold.

Geometric modeling has been the topic of a lot of research in Computer Graphics.

Polygonal modeling has been popular both in the industry as well as in the academic cir-

cles. In spite of this interest in modeling methods, the modeling of high genus shapes has

received little attention from graphics researchers. On the other hand, industry profession-

als have come up with interesting indirect methods to represent such shapes. This section

briefly discusses some such approaches and research methods.

II.2. Previous work to represent very high genus models

II.2.1. Wireframe modeling

The wireframe model is perhaps the oldest way of representing solids. A wireframe model

consists of two tables, the vertex table and the edge table. Each entry of the vertex ta-

ble records a vertex and its coordinate values, while each entry of the edge table has two
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components giving the two incident vertices of that edge. A wireframe model does not

have face information. This technique is very efficient as it can convey a lot information

with very little resources. Many commercial software packages typically CAD packages

support wireframe modeling.

(a) Autocad wireframe ren-
dering

(b) Autocad shaded rendering

Fig. 12. Autocad rendering in wireframe as well as shaded mode [5].

All models created using the wireframe modeling technique appear to be made of

wires and look high genus. This is so because the model is represented only with edges and

vertices, but no faces. The model is not really high genus, and the wires in the model are

not actual 3D geometry, but just geometric lines. Moreover, as there is no face information

the model cannot be shaded, creating a very flat look. As shown in Figure 12a, wireframe

models are very ambiguous as just by looking at one it is difficult to tell which parts are

actually holes and which are solid [5]. In Figure 12b it can be seen where the actual holes

are.

II.2.2. Wireframe rendering techniques

There are several rendering tricks that have been used to make such objects look as

though they are wireframe models. Several commercial software packages support wire-

frame rendering. In this kind of rendering technique, the renderer does not render the
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polygonal faces but just renders the polygonal edges. Since it renders only the edges, the

object looks as though it is made of wires.

Wireframe rendering techniques can be categorized into two categories.

1. Hardware wireframe rendering is supported by software packages like Maya and

Cinema4d by using their Hardware Render buffer. Using this technique, one can

quickly create wireframe images of scene models. The main drawback in using this

technique besides getting a flat looking image, is that the whole scene needs to be

rendered in wire frame. Moreover, the thickness of the ‘wires’ in the wireframe are

fixed. Jared [17] developed a methodology to do hidden wireframe renders in Maya.

His methodology uses the Maya hardware buffer hence has the same drawbacks, the

only advantage being that his method occludes back and hidden faces, as shown in

Figure 13.

Fig. 13. Maya hardware rendering for wireframe render with and without backface showing.

2. Another popular technique is to use shaders to shade the polygon edges but not the

faces, with a thickness. For instance, Everett [9] has developed a Cinema 4d shader

plug-in that lets the users render only the edges as, shown in Figure 14a. This shader

lets the user choose the thickness and color of the wireframe. Harris has developed

a shader for Softimage XSI that shades only the polygon edges and lets everything

else be fully transparent, as shown in Figure 14b, [13]. 3ds Max has built-in material
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(a) Cinema4D plugin (b) XSI shader (c) 3DSmax material

Fig. 14. Software wireframe renderings.

to wirefame render objects, as shown in Figure 14c, [27]. These approaches are not

truly three-dimensional and hence lack the depth and richness of a real world object.

II.2.3. Texture mapping techniques

(a) Transparency map-
ping with shadows

(b) Close up detail

Fig. 15. A simple cube rendered with a checkered transparency map .

Transparency is the most widely used approach to represent objects that look very

high genus. The technique makes use of the alpha channel in an image for a texture map to

make parts of it transparent and parts of it opaque. When applied to an object it makes the

object look as though it has holes in the transparent areas, as shown in Figure 15.

It can be very effective in creating the illusion of an object that is high genus and is

extremely complex. Note that one can generate correct shadows with transparency mapped
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textures, it is just more complicated to implement. Objects represented using this technique

lose depth and richness when seen up close in detail, as shown in Figure 15c.

Transparency mapping can also be combined with displacement mapping to produce

such high genus models with more depth and richness. Transparency mapping and dis-

placement mapping can be combined it two ways. The first method is illustrated in Fig-

ure 16.

Fig. 16. This example illustrates the use of transparency maps with displacement maps [26].

The image shows the polygon version of the displacement map, the manual dele-

tion of faces that are transparent, the displacement polygon on top of the original

polygon and the final result.

In this example [26] normal transparency mapping is used for the model color where

as richer shadows are obtained by the use of displacement mapping. A polygonal model is

transparency mapped in the standard way and is used only for the primary color render with

the shadow casting turned off. A displacement map with positive displacement for opaque

areas is applied on a copy of the model. A Maya feature, which converts a displacement

map to its equivalent polygonal mesh, is used to get a 3D mesh of the displacement map.

The parts of the displacement mesh which correspond to the transparent areas in the trans-

parency map is manually deleted using Maya’s artisan tool. This version of the model is

then layered on top of the original model and is used only to render the shadow; color

rendering is turned off for this model.
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The final result is obtained by compositing the two different renderings in maya. This

technique is quite effect which is quite effective when viewed from a distance but loses

quality and richness on very close inspection.

The second method to combine Transparency with displacement is illustrated in Figure

17. Peter implemented this method [24] in XSI Softimage using a transparency map to

make parts of the model look like they have holes. He uses a displacement map, which

is identical to the transparency map to give depth to the opaque areas in the model. Both

the transparency and displacement maps are derived from the color map so that all three of

them match up and create a rich looking high genus object.

Fig. 17. This example illustrates the use of transparency maps with displacement maps [24].

The image shows the transparency map, the displacement map the color map and

the final image with all the three maps applied together.

Transparency mapping can also be used in conjunction with a very detailed model,

as shown in Figure 18b. This example [19] creates a very detailed model with a feature

called “Parallax Highlights”. This feature causes polygonal faces to be shaded differently

depending on their orientation to the camera. The mesh created is detailed, such that it has

separate faces for the holes and opaque areas. As can be seen in Figure 18a, the model has

separate materials for the “Face”, “ Edge” and “Hole” in the mesh. The “Face” and “Edge”

are usually textured opaque and the “Hole” is textured transparent. The parallax feature

is then used to give more depth to the model. This method creates a very high polygonal
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count. Since each face group is assigned a different texture, texturing also becomes a

tedious process. This sophisticated method creates a more believable three dimensional

look.

(a) Mesh Detail (b) Final Model

Fig. 18. This is another example of a texture map with transparency. The method used here

is more sophisticated and use “parallax highlights” to create a more believable three

dimensional look [19].

Transparency mapping is the most popular technique to represent high genus models.

It is very easy to use and is usually supported by most commercial software packages. This

technique can create very complex looking shapes as the final shape is based on an image.

Although this technique is very versatile and efficient it does not create an actual three-

dimensional shape. The model loses richness and three-dimensional depth when viewed

from a close distance. When used with displacement maps the model looks more three

dimensional, but even this method loses detail on close inspection, and has displacement

related artifacts. Moreover, such models look three-dimensional from only one side as the

displacement is positive only along one direction.

Thus to summarize transparency mapping techniques are very efficient and easy to use

but the results are not truly three-dimensional and hence lack depth and richness.
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II.2.4. Modeling techniques

Boolean Operations

The most commonly used modeling technique to create high genus shapes is

Boolean Operations, which is usually supported by most commercial modeling packages.

It can be used to quickly and easily create holes in a model, as shown in Figure 19.

(a) Simple Boolean oper-
ations

(b) Boolean operation to
model a building

(c) Undesirable Mesh
structure

Fig. 19. Some examples with boolean operations.

This is an approach that increases the genus of actual three dimensional geometry.

However, it is very unsuitable for creating objects with very high genus [29]. One would

have to use the Boolean operation many times. Boolean operations are not very robust and

result in mesh data that is not clean, thus resulting in an unstable model state. One can

manually clean up a mesh that has only a few Boolean operations, but it is unreasonable to

do so for a large number of such operations.

Molecular Modeling

Many scientific visualization software packages, used in biological and chemical molec-

ular visualization [12, 11], are used to represent molecular structures, as shown in Figure

20. These methods create objects that are truly high genus and three dimensional; thus
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Fig. 20. Molecular visualization.

have depth, and are rich in appearance. Unfortunately, in spite of producing good results,

the modeling is based on protein data, and is specific to the purpose. It cannot be used to

model a wide variety of real world objects and has limited flexibility.

Special Purpose Software

There are also people who develop their own special purpose software.

Fig. 21. George W. Hart’s sculptures.

For instance, mathematical sculptor George Hart creates highly geometric sculptures,

including very high genus models, using his own software. His sculptures are very intricate

and truly three-dimensional, but he creates only geometric shapes which are mathemati-

cally visualized, as seen in Figure 21. His process is not geared towards ease of use as he

codes specifically for each of his creations, making them very personal. Moreover it cannot
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be used to create organic natural shapes [14].

Other mathematicians create mathematical visualizations in which very beautiful high

genus shapes are created. These shapes are usually the result of mathematical equations

plotted in three-dimensional space, as shown in Figure 22. As these shapes are generated

from mathematical equations, it becomes very difficult to generalize the methodology so

as to generate any kind of shape. Moreover, to create a new shape one would have to come

up with new equations or modify existing ones; which is not very intuitive for artists and

users who do not have a mathematical background.

Fig. 22. Mathematical visualization.

Rind Modeling

Rind modeling is a method that can be used to easily create holes on the surface of an

object [2]. This method creates a surface thickness which can be sculpted with holes, as

shown in Figure 23.

This surface thickness is created by constructing another surface that is offset from

the original by a user specified amount. To create this offset each vertex in the surface

mesh is moved along the average of the face normals for that particular vertex. This causes

the new surface to be nested inside the original surface. The normals of the second nested

mesh are then reversed. This operation changes the inside and outside of the 2-manifold
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Fig. 23. Rind modeling.

mesh by changing the rotation orders of the faces. Both of these surfaces together create

the desired surface thickness that can be sculpted. The user can then select the faces that

need to be punctured. The method automatically identifies the corresponding face in the

nested surface and does a hole-handle operation to open a connecting hole between these

two faces to make them one surface. The two faces are deleted and the sides of the hole are

closed with new faces to complete the manifold. Some shapes created using this method

are shown in Figure 24.

Fig. 24. Rind modeling example.

The Rind modeling method creates shapes that are three-dimensional and high genus.

Since the shapes are three-dimensional they have depth and create rich images when ren-

dered. The only disadvantage in this method is that to create a very high genus shape the
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user has to repeatedly apply the hole-handle operation, which is very tedious. One of our

proposed methods is based on the Rind modeling hence this method is very important for

this thesis.

This brief study shows that there are a lot of indirect yet innovative methods to rep-

resent such complex objects. Unfortunately almost all these methods consistently lack the

detail and richness of a true three-dimensional model. On the other hand they have one

important advantage, that most of these methods do not generate large amounts of mesh

data. In contrast to these indirect methods there has been some work done by computer

graphics researchers which addresses this issue more directly but unfortunately they have

limited capabilities. This study thus implies that there is a lot of room for improvement in

this field.
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CHAPTER III

METHODOLOGY

In this chapter we will discuss the methodology to achieve our goal to create very high

genus models with the characteristics discussed before. To approach the problem it will be

necessary to study the actual objects that we are going to model. These objects have the

following notable characteristics

1. They have a very large number of perforations, and may be of genus thousand or

more.

2. There are no large continuous faces in the object shape. The solid parts in the objects

are typically cylinder-like, making the object shape look like an intricate framework

of ‘wires’.

3. These objects have an overall recognizable shape, i.e. the object may look like an

elephant, sphere etc.

We will also formulate certain criteria from a usability point of view.

1. There should be minimum user intervention. The process should be nearly automatic.

2. The finished model should be in an easily transferrable format for animation and

rendering purposes.

3. The user should be able to control the cross-section of the3D pipes.

Based on the above observations we will model shapes that have a large number of

perforations whose solid parts would be pipe-like, and have a recognizable shape. These

objects can be thought of as being constructed in two different ways.
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1. The first point of view would be to see these objects as having a large number of

perforations. The perforations are only on the surface of the object. They are a

surface feature and do not change the overall shape of the object. For example a

sphere will still look like a sphere but will have a large number of holes on the

surface. This approach would prompt a methodology that will sculpt an input mesh

with a large number of holes on the surface, as shown in Figure 25.

Fig. 25. First approach: Sculpt the input mesh by punching holes on the surface.

2. The other point of view would be to think of these objects as made up of a large

number of interconnected3D pipes. This approach is like building the object with

building blocks, in which the building blocks consist of pipes and joints, as shown in

Figure 26. The pipes can be of different cross sections, and the joints will hold the

pipes in place to create the final shape.

Both of the above mentioned approaches are opposite in principle but similar in result.

One approach creates the final shape essentially by subtracting 3D geometry from a larger

geometry, while the other approach creates the final shape by putting together many smaller

pieces of 3D geometry to create a large geometry. The end result of both the approaches is

essentially the same, i.e. each create intricate wire-frame like shapes that are made of3D
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Fig. 26. Second approach: Assemble joints and3D pipes.

pipessystematically joined together. It should be noted that since we are aiming to create

a recognizable shape in the end it will be necessary to start with such a shape initially. The

first approach will sculpt this initial shape with holes, while the second approach will use

it as a reference to place and assemble the3D pipesin space.

Although conceptually both the methods are different but both of them create a model

that looks like a framework of3D pipes, hence in both the cases we will refer to these

model elements as3D pipes.

Each approach has advantages and disadvantages. We argue that the first approach is

easier to implement and less expensive. In the first approach, we are sculpting the object

surface with holes, thus we have more control on the shape and size of the holes and almost

no control on the solid parts, i.e. the3D pipes. The second approach allows the user to

control the cross-section of the3D pipesbecause conceptually the3D pipesare building

blocks which we assemble and hence, can have any cross-section. This approach is more

expensive because the joints that connect the3D pipesare complex and difficult to compute.

Since both of the above approaches have advantages as well as disadvantages, we

implement both. As part of the discussion of results in this thesis we compare and contrast

the two approaches from the point of view of usability. In doing so we see that certain
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configurations of the input mesh makes it advantageous to use one approach over the other.

III.1. Wire modeling approach

The Wire modeling scheme is an extension of the Rind modeling method [2]. In our

approach we have automated the Rind modeling procedure for all the faces in the input

mesh.

In this scheme we sculpt an input mesh with holes. We have modified the input mesh

structure such that we have control on the shape and size of the holes. Since the3D pipes

lie along the edges of the input mesh and are joined together at the vertices so we replace

the edges and vertices in the input mesh with faces. These new faces in the input mesh

form the3D pipestructure in the final shape.

This modification in the mesh structure can be easily achieved by applying a Doo-

Sabin [8] subdivision scheme to the input mesh. The Doo-Sabin [8] scheme creates a

new face for everyedge, vertexand face in the input mesh, which we calledge-faces,

vertex-facesandface-facesrespectively, as shown in Figure 29a. We modify the original

Doo-Sabin scheme so that we have more control on the shape and size of the new faces

created.

III.1.1. Doo-Sabin modification in Wire modeling

Any polygonal 3D mesh has three main components -faces, edgesandvertices. A

vertex in the mesh is typically shared by a number of edges and faces, which defines the

valence of the vertex.

Consider a vertex, and a face that shares that vertex, in the original mesh. The Doo-

Sabin [8] scheme creates a new vertex for every suchface-vertexcombination. This new

vertex is created such that it is the average of the vertex point, the two edge points (the
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(a) Step 1 (b) Step 2 (c) Step 3

Fig. 27. The original Doo-Sabin scheme.

midpoints of the edges that are adjacent to this vertex in the face), and the face centroid

Figure 27. This is done for every such face-vertex combination in the mesh, and then edges

are inserted between the newly created vertices to get a smooth shape.

Fig. 28. The modification in the Doo-Sabin scheme.

In our scheme we modify the position of the new vertices such that they lie on the angle

bisector of the corresponding two edges and also fall on the corresponding face plane, as

shown in Figure 28. Since the new vertexNV lies on the angle bisectorABwe can specify

how far out it lies along the angle bisector. This distancea controls the size of the new
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faces created, and with some simple math it can be easily used to control the widthT of the

faces that corresponds to the edges and vertices.

(a) Modified Doo-Sabin (b) Modified Doo-Sabin applied on a
cube

Fig. 29. The modified Doo-Sabin scheme.

So our first step is to apply this modified Doo-Sabin scheme to the input mesh which

creates a mesh structure suitable for our purpose, as shown in Figure 29a.

III.1.2. Rind modeling integration

The modified Doo-Sabin scheme creates a mesh structure, as shown in Figure 29b. The

faces labeled asedge-faceis developed into the3D pipegeometry.

As mentioned before the Rind modeling method creates a nested mesh which has

corresponding faces for thevertex-face, edge-face and face-face. We keep track of theface-

facefaces in the mesh and automate Rind modeling to punch holes in all such faces. This

leaves behind theedge-facesandvertex-facesin the geometry, and creates the framework

of 3D pipesto form the final shape.

The edge-facesare connected to their respective faces in the nested geometry via
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Fig. 30. The nested surface and connecting side faces in Rind modeling.

newly createdside-facesin Rind modeling, as shown in Figure 30. These pair ofedge-

facesand pair ofside-facesform the 3D pipe. As the3D pipesneed to have a square

cross-section, all four faces must be perpendicular to each other. Since the structure of the

3D pipesare formed by the vertices of the nested surface,hence we are very particular as to

how we create them.

The mesh configuration at a vertex is shown in Figure 31. As we are dealing with

quadrilateral faces, we cannot guarantee that all such faces will be planar. So we localize

our perpendicularity condition to the vertex in question. So restating, we want the3D pipe

faces to be perpendicular locally at the vertices. In the original Rind modeling scheme we

create the nested vertices such that they lie on the average of the face normals that share the

vertex. This does not guarantee the required condition, hence we approach the problem, as

shown in Figure 31 and Figure 32.
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Fig. 31. The mesh configuration at a vertex.

fn1 is the face normal of face ef1 at vertex V in Figure 31.

fn1 = e1b× e1a

fn2 is the face normal of face ef2 at vertex V in Figure 31.

fn2 = e2a× e2b

sfn1 is the face normal of the side-face sf1 (not created) at vertex V in Figure 32a.

sfn1 = fn1× e1a

sfn2 is the face normal of the side-face sf2 (not created) at vertex V in Figure 32a.

sfn2 = e2a× fn2

N is the direction along which the nested vertex should lie, as shown in Figure 32b.

N = sfn1× sfn2

It is easy to see that N is perpendicular to both ef1 at V as well as ef2 at V. This

modification guarantees that the faces will be locally perpendicular at the vertices and the

nested surface will be calculated using this methodology.
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(a) Calculatesfn1andsfn2 (b) CalculateN - the direction
at which the nested vertex is
offset

Fig. 32. The faces of the3D pipeare locally perpendicular.

III.1.3. Dimension control of the3D pipes

We need to define the parameters in the model that let us control the dimensions of an

individual 3D pipes. The depth of the 3D pipes is the same as the surface thickness set

during the Rind modeling step. The length is the length of the edge that the particular3D

pipe corresponds to, which depends on the input mesh. The thickness of the3D pipe is

the width of the edge-face that we created in the Doo-Sabin step. The thickness and depth

of the3D pipe is the same as it has a square cross-section. We provide a user input field for

specifying this parameter. It should be noted that if the thickness of the3D pipesexceeds a

certain value it causes self-intersections in the model,which is not desirable. We thus limit

the thickness of the3D pipe so that we do not have such intersections.
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(a) Self-intersection with user defined
thickness

(b) No self-intersection with corrected
thickness

Fig. 33. CalculatingTmaxto prevent self-intersection.

III.1.4. Self-intersection

Self intersection occurs when there is an edge configuration, as shown in Figure 33. We

know that vertexv1 lies on the angle bisector of edgese1ande3, and vertexv2 lies on the

angle bisector of edgese3ande2. To avoid intersectionv1 andv2 need to be moved along

their respective angle bisectors towardsev1andev2respectively, till there is no intersection.

To simplify the problem we assume that the three edges lie on a plane. Although this does

not yield an accurate minimal result, it however guarantees no intersection. We then move

v1 and v2 such that the vectorv1v2 has zero magnitude, i.e. they coincide. Thus the

maximum permissible thicknessTmaxis

Tmax = (edgeLength× tanT1× tanT2)÷ (tanT1 + tanT2 )

where, edgeLength is the length of edge e3, i.e. magnitude of the vector ev1ev2

T1 is the angle bisector of angle between edges e1 and e3

T2 is the angle bisector of angle between edges e2 and e3
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In Wire modeling all the3D pipes have the same depth, hence we find the maximum

permissible thickness for every set of three continuous edges and use the minimum of all

the maximum thicknesses, to make the model. If the user input thickness is less than the

calculated one it is used, otherwise the calculated maximum thickness is used. It should be

noted that this step needs to be done before the Doo-Sabin scheme is applied to the initial

input mesh, in fact this is the first step in the methodology.

After we have made this modification we automate Rind modeling to punch holes in

all theface-facefaces in the mesh. This last step completes the wire-frame model.

To summarize the Wire modeling methodology:

1. Calculate the maximum permissible thickness of3D pipes. Use this calculated thick-

ness or the user input thickness whichever is less.

2. Apply the modified Doo-Sabin scheme to the input base mesh to create a mesh struc-

ture which creates faces that can be developed into3D pipes.

3. Keep track of the faces that correspond to original faces in the Doo-Sabin scheme,

call themface-face.

4. Modify the creation of the nested surface in Rind modeling to guarantee that all the

faces in the3D pipes are perpendicular to each other.

5. Automate Rind modeling on the modified mesh to punch holes in all theface-face

faces to complete the model.

III.2. Column modeling

In Column modeling we use an input base mesh as a reference to place the3D pipesas

opposed to sculpting it directly, as done in Wire modeling. As mentioned before, Column
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modeling creates shapes by making a framework of3D pipes and joint shapesthat keep

them together. There are four main steps to the Column modeling methodology.

1. Compute the joint shapes using a convex hull algorithm that joins the3D pipes to

make the model.

2. Clean up the convex hull to get rid of triangulation and get faces in the shape of the

desired3D pipe cross-section for each edge in the model.

3. Each edge in the model has a pair of corresponding faces in the convex hulls created.

Keep track of the edges and their corresponding faces.

4. Use the built-in handle operation to create a handle between the pair of faces for each

edge as stored in the previous step. This completes the model.

III.2.1. Joint shapes computation

The computation of the joint shapes is the most expensive and complicated part of the

methodology. The joint shape is typically very complex and organic, and its shape depends

on the complexity of the input mesh structure. In this section we outline the methodology

to compute the joint shape.

In Column modeling the3D pipesreplace the edges in the input mesh. The edges are

joined together at the vertices in the input mesh hence the joint shapes that we create are

centered at the vertices too.

The3D pipescan be thought of as frusta with an arbitrary user defined cross-section.

The joint shapes create a minimal shape by connecting the end-faces of the frusta which

belong to edges that originate from one vertex, as shown in Figure 34. Hence, to compute

the joint shape we need this set of end-faces for the vertex. The end-face is a planar polygon
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Fig. 34. Frustums or3D pipesand the joint shapes.

of the shape of a user defined cross-section for the3D pipes, whose normal vector is the

same as the edge vector and whose centroid lies on the edge vector, as shown in Figure 35.

Such a polygonal face for an edge is created by computing the position of each ver-

tex in the polygon incrementally, as shown in the Figure 36. The first vertex is along a

vector that is the average of the face-vertex normals of the two faces that share the edge in

question. It is at a distance from the edge defined by the user as the thickness of the3D

pipe, which is the radius of the circumscribed circle of the polygon. We then create the

next vertex which is the first vertex rotated at anincremental anglealong a plane that has

the edgevector as its normal. The plane is positioned on the edge depending on aradius

parameter whose computation is explained shortly. Theincremental angledepends on the

number of segments in the cross-section such that :

angle = 360÷Numberofsegments

While we create the vertices we will index them in the order of creation to facilitate

the cleanup of the convex hulls created at a later stage.
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Fig. 35. The end-faces.

In the methodology we consider one vertex in the input mesh at a time and create such

polygons for all the edges that originate from that vertex. The set of vertices generated by

these polygons defines the joint shape for that vertex. To create the joint shape geometry

we use a convex hull algorithm which creates a minimal 3D geometry shape for the set of

vertices.

In the joint shape we have to make sure that the end-faces are fully intact in the convex

hull geometry. As the convex hull creates a minimal geometry from the polygon vertices

hence it is easy to see that the polygons should lie on the surface of an imaginary sphere

centered on the vertex, as shown in Figure 37. The polygonal faces are positioned such

that they are tangent to the sphere and at least two faces just touch each other.

The vertices of the polygons thus generated will be used to create the convex hull

geometry. Any face that lies inside the sphere is either represented partially or not repre-

sented at all. Any face that lies outside such a sphere causes partial representation of the

other faces, besides increasing the size of the joint shape, thus making it no longer a mini-
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Fig. 36. The creation of individual vertices of the end-faces.

mal shape as desired. Now the question arises as to the computation of theradiusof such

a minimal sphere.

Consider an arbitraryvertex-edgeconfiguration of the input mesh in two dimension, as

shown in the Figure 38. We want a minimal sphere, as shown in the dotted line, such that

we can place the polygonal faces on its surface, centered at eachedge-sphereintersection,

and also ensure no self-intersection between the faces. A self-intersection is most likely

to occur between end-faces that correspond to adjacent edges which have the least angle

between them. In the example in Figure 38b, we can visually tell that edgese1 ande2

are the most acute. The minimum radius will occur when facesf1 andf2 meet at the angle

bisector ofe1ande2. As t is a user defined thickness parameter, the minimum radius is :

minimalsphereradius = t÷ tan(T/2)

We consider every pair of edges in the vertex to get the smallest possible radius corre-

sponding to that vertex.

It should also be noted that since the thicknesst is the radius of the circumscribed
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Fig. 37. The end-faces should be tangent to a minimal sphere centered at the vertex.

circle of the cross-sectional polygon, due to numerical discretization and approximation it

is impossible to find the exact point of contact of two such circles. Therefore, to be on the

safe side we will increase the radius by a small error factor.

So using this calculated radius for the minimal shape we place our cross-sectional

polygonal end-faces on the edges. The vertices of the set of such end-faces generated for

a vertex in the input mesh, are used to create a joint shape for that vertex using the convex

hull algorithm.

III.2.2. Convex hull cleanup

The convex hull geometry created for the joint shape results in a triangulated mesh

structure, as shown in Figure 39a. We cleanup the convexhull geometry so that we have

one complete face representing the end-face of the user defined cross-section, for every

edge originating from a vertex. We do this cleanup in two stages. In the first stage we use

an algorithm that deletes the shared edge between two adjacent faces if the face normals
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(a) Self-intersection (b) Correct calculation of sphere radius to
prevent overlapping end-faces

Fig. 38. CalculatingTmaxto prevent self-intersection.

are same. Doing this cleans up only the end-faces in the convex hull geometry because we

have created them to be planar. In the second stage we cleanup the rest of the geometry

to get rid of the triangulation so that we have as many quadrilaterals as possible. It should

be noted that this just creates a cleaner mesh structure that is good for subdivision, and is

desirable; but it is not a necessary step to create the final mesh.

Consider a simple case of such a convex hull situation when the3D pipehas even

number of segments in the cross-section. As mentioned before when we created the polyg-

(a) Triangulated con-
vex hull

(b) End-faces cleaned

Fig. 39. Convex hull with the first step of cleaning.
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Fig. 40. Convex hull with the second step of cleaning.

onalend-faceswe indexed the vertices in a circular order, as shown in Figure 40. When

the convex hull is created using these vertices it is triangulated. Careful observation shows

that, to obtain a clean mesh structure we want only the edges between all pair of vertices

that have both even indices or both odd indices. Hence, we go through all the edges in the

shape and delete the edges that connect even indexed vertices with odd indexed vertices.

While doing so we will take care not to delete edges that belong to anend-face. This ap-

proach works very well when the number of segments in the3D pipecross-section is even,

as shown in Figure 41.

Fig. 41. Convex hull cleaned.

Consider a case where the number of segments in the cross-section is odd, as shown
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in Figure 42. It is evident that there is no set pattern of connections. In this case we want

some of all the edges, that connect pair of vertices with both even indices, odd indices and

even-odd indices, to remain. Hence, we leave this situation out of the scope of this thesis.

Fig. 42. Convex hull for odd segmented3D pipe.

With even cross-sections if the mesh structure around the vertex is not symmetrical

then this method does not guarantee a regular mesh structure for the joint shape every time.

However, in most cases the results are acceptable.

III.2.3. Keeping track of connecting faces

We have to keep track of the pair ofend-facesthat correspond to the same edge in the

convex hulls, so that we can create a handle between them to make the3D pipe. It should

be noted that such a pair of faces belongs to two different joint shapes, as shown in Figure

43a. To do this we create an array of face-pointers with the array size twice the size of the

total number of edges in the input mesh. This provides us with two array elements for every
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(a) Matching faces corre-
sponding to an edge in the
convex hulls

(b) Connecting the matching
faces

Fig. 43. Matching and connecting faces to complete the model.

edge, as we need two elements for the twoend-facesthat correspond to every edge. The

DLFL implementation assigns a unique ID number to every edge in the input mesh. We

use this unique ID to reserve two elements in the array for every edge. During the creation

of the convex hull we store the face pointers for the pair of end-faces corresponding to an

edge, based on its edgeID, in the array. The face-pointers are stored next to each other in

the array and are indexed based on the edgeID. This system eliminates the need to search

the pair of end-faces that need to be connected.

III.2.4. Connecting the faces

To connect the faces, we use the handle operation which is already implemented in the

DLFL program. The handle operation connects two faces with a handle. It does so by

systematically inserting edges between the vertices of the two faces. Thus, it can properly

connect only faces with the same number of vertices. Since, this operation is already im-

plemented, it is done trivially as we just need to go through the array and keep connecting

the face-pointer entries next to each other, as shown in Figure 43b. Doing this for every

element in the array completes the model.
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CHAPTER IV

IMPLEMENTATION

The Wire and Column modeling system that we have developed can be used to convert

any polygonal model to a complex high genus model where in the polygonal faces become

holes and the edges become three dimensional like matchsticks. This modeling system is

useful in modeling highly perforated ornate architectural elements and other similar ob-

jects.

The modeling system is implemented in C++ and included as an option in an existing

2-manifold modeling system called the“DLFL mesh modeling system”(DLFL is a type of

data structure used by this mesh modeling system and stands for Doubly Linked Face List).

We extend the capabilities of the DLFL modeling system [1], to incorporate the algorithm

we have developed. Both systems currently run onSGI-Iris, LinuxandWindowsplatforms.

All of the interactive examples we have produced were run on an SGI-Linux Box. The

modeling system allows the creation of models with texture coordinates and the resulting

mesh can be exported to any commercial software package using the classical“obj” file

format.

The implementation of both the Wire and Column modeling methods need an initial

polygonal input model that either can be imported in theobj file format, which is compati-

ble with several commercially available software packages; or the model can be constructed

directly in the DLFL program. The modeling methods modify the input model as described

in this thesis work, to output very high genus intricate models. The genus of the final model

can be in the order of G 100 or more depending on the initial input mesh.
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IV.1. Wire modeling

The “Wire modeling” scheme is incorporated in theDLFL modeling program as fol-

lows:

Fig. 44. Wire modeling implementation.

1. A modified Doo-Sabin subdivision [8] scheme is applied to the input mesh. The

Doo-Sabin subdivision [8] scheme is modified such that the faces that are created

for every edge and vertex are smaller and tighter and the face that corresponds to

original faces is larger than in the original scheme [8]. This creates boundary faces

that replace all original edges and vertices and also gives control of the width of such

faces, as seen in Figure 44B.

2. Once the surface is subdivided, a nested surface is created that is offset by a user

specified distance from the original surface. A similar surface is created in the Rind

modeling system [2], but this implementation is slightly altered in Wire modeling.

The vertices are offset in such a way that the faces that fill the sides of the holes,

that are created using the handle-hole operation, are perpendicular to the faces of the

original as well as the nested surfaces.

3. After achieving this mesh configuration, holes are punched through the faces that

correspond to an original face in the Doo-Sabin [8] subdivision scheme. This is done
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using the hole-handle operation, as seen in Figure 44C. When this is done for all

such faces the final output model is completed.

The Wire modeling implementation lets the user control the thickness of thewires

created in the model. The program calculates a maximum thickness that prevents any

self-intersections in the resulting mesh and limits the user defined thickness to this

calculated value if required.

IV.2. Column modeling

The“ Column modeling ”method is implemented as follows:

Fig. 45. Column modeling implementation.

1. Column modelinguses the input mesh as a reference to place the joints and the3D

pipesin the model.
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2. A joint shape is created corresponding to every vertex in the reference mesh. The

algorithm loops through each vertex in the input mesh one at a time and considers

every edge that originates from that vertex. For every such edge it computes a set of

points that correspond to the vertices of a regular polygonal face that has its centroid

on the edge, and normal coinciding with the edge vector, Figure 45A. The number

of sides in the polygonal face is user defined. Such a set of points for every edge

of the vertex in question is created and used to generate a convex hull, Figure 45B.

The shape generated by the convex hull is the joint shape. Since the convex hull

is triangulated it is cleaned up to make sure that there is only one face correspond-

ing to every edge in the vertex, Figure 45C. A convex hull joint shape is created

corresponding to all the vertices in the input mesh

3. The joint shapes thus created have a pair of faces for every edge in the model. These

pairs of faces are identified and then“create handle” operation is used to make the

3D pipesto join them, Figure 45D. Once this is done for every edge we have our

completed output model.

In Column modeling the user can control the thickness, i.e. the radius of the circum-

scribed circle of the cross-sectional polygon of the3D pipes. The user can also control

the number of segments in the cross-section of the3D pipes. Presently this method can

generate models with only even number of segments in the cross-section for the3D pipes.

The Column modeling implementation does not check the thickness of the3D pipesfor

self intersection. This can be implemented in the future.

IV.2.1. User interface

The User-Interface for the”Wire and Column modeling”mapping program is devel-

oped as an extension to the existing User-Interface of the DLFL mesh modeling system [1],
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and is seamlessly integrated in to it.Wire modelingandColumn modelingcan be found un-

der theCrust modelingmenu in theDLFL Mesh modelingprogram. The User interface

is very simple and easy to use. There is one button each for“Wire modeling” and“Col-

umn modeling”. There is a “Thickness” input option that is accessed by both the methods.

There is a“Cross-Section segments”input option which is used only by Column modeling.

Screen captures of the user interface of the implementation of Wire and Column modeling

methods are shown in Figurs 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56.

Fig. 46. The DLFL mesh modeling user interface.
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Fig. 47. A dodecahedron model imported in the.obj file format.
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Fig. 48.Wire and Column modelingis under theCrust modelingmenu.
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Fig. 49. Column modeling applied to the model with a thickness of 0.25 and number of

segments as 12.
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Fig. 50. Column modeling with thickness 0.30 and number of segments 8.
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Fig. 51. Wire modeling with thickness 0.05 applied on top of the previous column model.
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Fig. 52. Wire modeling with thickness 0.35.
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Fig. 53. Wire modeling of thickness 0.05 applied on top of Wire modeling with thickness

0.35.
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Fig. 54. Column modeling of thickness 0.05 and segments 8 is applied on Wire modeling

of thickness 0.35.
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Fig. 55. Column modeling of 4 segments and thickness 0.35. Compare with Wire modeling

of similar parameters.
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Fig. 56. Column modeling applied twice.
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CHAPTER V

USABILITY ANALYSIS OF THE TWO METHODS

In this chapter we will discuss the features and drawbacks of the methods presented in

this thesis work. We will also discuss some suggested guidelines to achieve the best results

form the implementation.

V.1. Wire modeling usability

V.1.1. Features

• This method is used to create very high genus shapes by sculpting an input mesh.

• The output mesh looks like a shape that is a framework of wires or3D pipesjoined

together.

• The3D pipeshave a rectangular cross-section.

• The user can specify the thickness of the3D pipes. All the 3D pipesin the model

have a uniform thickness.

• The method makes sure that there is no self-intersection in the output mesh provided

there is none in the input mesh to begin with, and may change the user input thickness

to do so.

• It can take any shape as an input mesh which can be imported as an.obj file, which

is a very popular model file format.

• It is very fast when compared to other techniques that may be used to create identical

high quality models.
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• The mesh geometry generated in the output mesh is very clean and the mesh is pre-

dominantly made up of quadrilaterals, which is good for subdivision schemes.

• This method is faster than the Column modeling method for similar input meshes

and modeling parameters.

V.1.2. Limitations

• This method creates models wherein the3D pipescan have only rectangular cross-

sections.

• The implementation of this method cannot handle vertices with valence less than

two.

• The user has no control on the orientation of the3D pipesaround the edge axis.

• The user cannot have different thicknesses of3D pipesin the same model.

V.2. Column modeling usability

V.2.1. Features

• This method is used to create very high genus shapes by modifying an input mesh.

• The output mesh looks like a shape that is a framework of assembled tube-like build-

ing blocks or3D pipesthat are joined together with joint shapes.

• The3D pipescan have a user defined even number of segments

• The user can specify the thickness of the3D pipes. All the 3D pipesin the model

have a uniform thickness.

• The method has no restrictions on the vertex valence in the input mesh.
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• It can take any shape as an input mesh that can be imported in the program as an.obj

file, which is a very popular model file format.

• It is very fast when compared to other techniques that may be used to create identical

high quality models.

• The mesh geometry generated in the output mesh is predominantly quadrilateral,

which is good for subdivision schemes.

V.2.2. Limitations

• This method is slower than the Wire modeling method for similar input meshes.

• The method does not check for self intersection hence the output mesh can have self

intersections. The onus is on the user to find a suitable thickness for the3D pipes

which does not result in self intersection.

• The joint shapes are complex and may not always have a clean mesh structure as

desired. The method works best for a symmetrical or uniform input mesh structure.

• The user has no control on the orientation of the3D pipesaround the edge axis

• The user cannot have different thicknesses of3D pipesin the same model.

V.3. Usability tips

V.3.1. Use of subdivision algorithms

In both methods the output mesh is heavily dependant on the input mesh structure, as

the3D pipeframework strictly follows the edge configuration in the input mesh. It is thus

implied that the more articulated the input mesh is, the more beautiful the final results will
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be. Moreover, many real life objects like stone screens, furniture etc. have very geometric

designs. We therefore suggest that the several in-built subdivision algorithms be used to

articulate an input mesh. Subdivision algorithms are typically used for mesh refinement to

add detail and smoothness to a model. It is here that we suggest taking advantage of these

algorithms from a purely visual and artistic point of view. Subdivision algorithm are based

on highly geometric principles. Thus it turns out that it is also very useful to make the mesh

structure very geometric and beautiful. The following subdivision algorithms are provided

in the DLFL mesh modeling system

1. Catmull Clark

2. Doo Sabin

3. Honey Comb

4. Corner Cutting

5. Root

6. Simplest

7. Vertex Cutting

8. Pentagonal

9. Dual

These subdivision algorithms can be applied in any permutation and combination to

achieve an interesting and articulated mesh structure. The following suggestions should be

noted, although they are not necessary for obtaining the best results.
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The input mesh should be as sparse as possible, i.e the polygon count should be low,

and the vertex valence should be typically between three and five. Moreover, quadrilateral

faces are preferred as they respond to subdivision better than other polygons.

Although there is no limit on the number of subdivisions that can be applied to a

mesh, it is suggested to keep the number of subdivision between three and five. Very

few iterations of subdivisions does not articulate the mesh well enough to be beautiful,

however too many iterations creates a very dense mesh, which is not suitable for either of

the methods presented in this thesis.

Based on the above observations the recommended work flow for column and Wire

modeling would be as follows:

• Import an input mesh of the desired shape, preferably with a low polygon count.

• Apply several different combinations of subdivision algorithms to articulate the mesh

structure.

• Apply Wire modeling or Column modeling as desired to obtain the final output mesh.

The above observations are purely based on repeated usage of the program and are

stated without proof, experimental or otherwise. To study these observations and come up

with a concrete methodology for the discussed work flow, is suggested as a possibility for

future work.

V.3.2. Column modeling

Column modeling works best for a uniform input mesh structure. If the mesh structure

has vertices with a wide range of valences then the joint shapes generated are of widely

different sizes. For high valence vertices, or in case of vertices where the edges are too

close to each other, the joints become very big compared to other low valence vertices, and
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look ugly. If the mesh is uniform then all the joints formed are of similar size and the model

looks much better.

Column modeling is more advantageous due to the fact that one can increase the num-

ber of segments in the cross-section to give a more rounded look. To take advantage of this

feature it is better to use larger thickness for the3D pipesin the model so that one can see

the roundness of the3D pipes. Thus, it is better to use input meshes that are not dense.

With repeated use and experimentation it is found that Column modeling is more suitable

for shapes that are not very organic, like architectural models and geometric sculptures.

V.3.3. Wire modeling

Wire modeling produces beautiful results with almost any kind of input mesh. If the

input mesh is very dense then it is better to use Wire modeling over Column modeling

because it is faster. Moreover, the3D pipesformed are small and their cross-section do

not add any considerable visually quality to the model, thus using Column modeling is

unjustified.

One can also use both the methods in succession. The suggested order would be to

first do the Column modeling and then the Wire modeling. Column modeling should be

preferably done with large thickness and then Wire modeling should be done with a small

thickness. The Column modeling in this case dictates the over all shape of the model as

against the initial input mesh doing so. One can even do more than one level of Column or

Wire modeling, but with reducing thicknesses.

In this chapter both the methods presented in this thesis were discussed from a us-

ability point of view. The suggestions for better results presented are not rules, but guides

which may help produce better looking models. One should not be restricted to these sug-

gestions, and many interesting models can be made without following these guidelines.
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CHAPTER VI

RESULTS

As a proof of concept, we have created all final images and animations in Maya, as

shown in Figures 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67. The usability of the

system was tested in a graduate level computer graphics course. Students with diverse

backgrounds including art, architecture and computer science took the course. All the

students, regardless of their background, were able to successfully create very high genus

models using a variety of input meshes. Following are some significant results that have

been achieved, by using the modeling methods presented in this thesis work:

1. Very high genus models are created.

2. The modeling methods are automated and take significantly less time than traditional

methods.

3. The models created are always 2-manifold and hence physically realizable.
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Fig. 57. Wire modeling results : Cubes with different meshes created using permutations of

subdivision schemes.
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Fig. 58. Wire modeling results : Cubes with different meshes created using permutations of

subdivision schemes.
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Fig. 59. Wire modeling results : Caricature of Arnold with different meshes created using

permutations of subdivision schemes.
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Fig. 60. Wire modeling results : Car.
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Fig. 61. Wire modeling results : Caricature of Humphrey Bogart with different meshes cre-

ated using permutations of subdivision schemes.



69

Fig. 62. Wire modeling results : Horse with different meshes created using permutations of

subdivision schemes.
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Fig. 63. Wire modeling results : Rabbit with different meshes created using permutations

of subdivision schemes.
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Fig. 64. Wire modeling results : Kangaroo with different meshes created using permutations

of subdivision schemes.
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Fig. 65. Column modeling results : Eiffel Tower.
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Fig. 66. Column modeling results : Taj Mahal.
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Fig. 67. Column modeling results : Cathedral.
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CHAPTER VII

CONCLUSION AND FUTURE WORK

VII.1. Conclusion

The Wire modeling system proposed in this thesis work creates extremely high genus mod-

els from any polygonal mesh. We have presented two methods to achieve this goal, one

which creates only square cross-sectional models (Wire modeling), while the other creates

variable cross-sectional models (Column modeling). It is thus implied that it is also possible

to create square cross-sectional models using Column modeling, but the difference is in the

orientation and joints of the3D pipes; besides the fact that it is computationally expensive.

The input polygonal mesh required for these methods need not be high resolution. In fact

a sparse model with low polygon count is preferred. Subdivision schemes can be used to

articulate the surface mesh to make it beautiful. Hence, with very little effort on the part

of the modeler one can create very complicated and beautiful models. Since the program

output is in theobj file format, these models can be easily incorporated into commercially

available software for rendering and animation purposes.

VII.2. Future work

There are many directions in which possible future work can be carried on with respect to

the work presented in this thesis.

One set of work can be directed towards overcoming the limitations of the two meth-

ods, to make them more robust and versatile. Some examples would be:

• Extend Column modeling to be able to implement odd cross-sectional models instead

of just even cross-sections, and also have non-convex polygon cross-sections, like
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star-shapes, for the3D pipes.

• The Column modeling method may include corrective measures to prevent self-

intersection in the model.

• The joint shapes created in Column modeling depend on the edge configuration of

the vertex; this may result in a joint shape mesh that is not very clean or symmetrical.

One possible solution would be to have spheres as joint shapes.

• Wire modeling can be made more robust so that it handles all vertex-valence config-

urations.

• Both methods presently allow only one thickness of3D pipesthroughout the model.

It would be very helpful to have user control and provision for different thicknesses.

The methods presented in this thesis are dependent on the mesh structure of the input

mesh. Subdivision algorithms are suggested to articulate the input mesh for more beautiful

results. There is a large scope of work in investigating available subdivision algorithms

from an artistic point of view. New subdivision schemes can also be created, which generate

artistic mesh structures.

Interesting mesh structures can also be generated using three-dimensional and two-

dimensional geometry. Instead of using subdivision schemes or manually building a mesh,

one can copy the structure of a particular part of the mesh and spread it to the whole mesh

based on spatial symmetry. This could be an interesting avenue for future work.

Another way of creating interesting mesh structures may be to generate them based on

a 2D image. One could read in an image, digitize it, and then repeat it on the whole model

based on symmetry, or some other logic.

The two methods presented in this thesis create a3D pipefor every edge in the model.

It would also be interesting if one can create3D pipesfor selective edges based on some
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symmetry logic, such that there is more solid surface in the model.

It would also be interesting to find alternative modeling methodologies to generate

such shapes that does not have the limitations of the methods presented here.
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