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ABSTRACT 

 

Calibration and Data Reduction Algorithms for 

Non-conventional Multi-hole Pressure Probes. (May 2004) 

Vijay Ramakrishnan, B.Tech., Indian Institute of Technology-Madras, India 

Chair of Advisory Committee: Dr. Othon K. Rediniotis 

 

This thesis presents the development of calibration and data-reduction algorithms for 

non-conventional multi-hole pressure probes. The algorithms that have been developed 

for conventional 5- and 7-hole probes are not optimal for probes with port arrangements 

(on the probe tip) that are non-conventional. Conventional algorithms utilize the 

axisymmetry of the port distribution pattern to define the non-dimensional pressure 

coefficients. These coefficients are typically defined specifically for these patterns, but 

fail to correctly represent different patterns of port arrangements, such as patterns 

without axisymmetry or regularity. The algorithms introduced herein can handle any 

pattern of port arrangement, from axisymmetric and regular to random. Moreover, they 

eliminate the need to separate the measurement domain of a probe to “low-angle” and 

“high-angle” regimes, typical in conventional 5- and 7-hole-probe algorithms that 

require two different sets of pressure coefficient definitions and procedures. 

Additionally, the algorithms have been formulated such that they facilitate redundancy 

implementations, especially in applications where such redundancy is important, such as 

air-data systems.  

 

The developed algorithms are first applied to a non-conventional probe, a nearly omni-

directional 18-hole probe, and demonstrate very high flow measurement accuracy. 

Subsequently, the algorithms were applied to a new 12-hole, nearly omni-directional, 

flow velocity measurement probe capable of measuring reversed flows. The new 12-hole 
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design offers several advantages over a previously developed, 18-hole, nearly omni-

directional probe. The probe is optimized in the sense that, regardless of the flow 

direction, it allows calculation of the 4 unknown flow quantities, i.e. the two flow angles, 

the velocity magnitude and the static pressure, with the minimum necessary number of 

holes/ports on the probe tip. This probe also has a non-conventional arrangement of its 

pressure ports and therefore the new calibration and data-reduction algorithms can be 

effectively employed. With theoretically generated pressure data for the 12-hole probe, 

the coefficient definitions are analyzed and found to be well-behaved.  
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NOMENCLATURE 

 

ENGLISH SYMBOLS 

 

Aθ, Bθ = Polynomial coefficients for Cθ expression [-] 

Aφ, Bφ = Polynomial coefficients for Cφ expression [-] 

Cp = Pressure coefficient [-] 

Cs = Static pressure coefficient [-] 

Ct = Total pressure coefficient [-] 

Cθ = Cone-angle coefficient [-] 

Cφ = Roll-angle coefficient [-] 

Cθ-CAL = Cone-angle coefficient from calibration database [-] 

Cφ-CAL = Roll-angle coefficient from calibration database [-] 

d = Euclidean distance [-] 

Pi = Pressure at port ‘i’ [Pa] 

Ps = Static pressure [Pa] 

Pt = Total pressure [Pa] 

q = Freestream dynamic pressure [Pa] 

qest = Estimated freestream dynamic pressure [Pa] 

R, S, T = Polynomial coefficients for qest [-] 

Ts = Static temperature [K] 

Tt = Total temperature [K] 

u = Velocity magnitude [m/s] 

U = Freestream velocity magnitude [m/s] 
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α = Pitch angle [deg] 

β = Yaw angle [deg] 
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φ0 = Polynomial coefficient for φ expression [rad] 

λ = Scaling factor [-] 

ρ = Density of air [kg/m3] 
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1 INTRODUCTION 

 
Multi-hole pressure probes have, over the years, been used to resolve the three-

dimensional velocity vector and static and total pressures at the point of measurement in 

a flowfield. Such devices include 5- and 7-hole probes (Bryer and Pankhurst [1], Everett 

and Gerner [2], Kjelgaard [3], Zilliac [4], Rediniotis et al. [5]) and 18-hole, nearly omni-

directional probes (Kinser and Rediniotis [6]). There are of course other types of 

pressure probes such as pitot-static probes and yaw probes, which, however, are not of 

interest here, since they cannot resolve all three components of the velocity vector.  

 

Numerous calibration and data-reduction algorithms and procedures have been 

developed over the years for steady measurements with typical 5- and 7-hole probes. 

One of the approaches relates the flow velocity magnitude and incidence angle to a 

theoretical model, such as a potential flow model. Based on the theoretical model, the 

port pressures are related to the flow incidence and velocity magnitude. Kjelgaard [3] 

used this technique on a hemispherical tipped 5-hole probe. However, the fact that the 

measurement accuracy expected from multi-hole probes has dramatically increased over 

the years (often better than quarter degree in the flow angles and half a percent in the 

velocity magnitude) has eliminated this theoretical approach as a viable candidate, 

especially for small probe sizes (1/8” tip diameter or smaller), where manufacturing 

imperfections are inevitable. For small probes, non-nulling methods are best suited. 

These methods are based on extensive calibration of the probe and allow for 

imperfections in the probe tip geometry. The probe is calibrated in a flowfield with 

known properties where the probe is rotated and pitched through a range of angles to 

simulate every possible flow incidence angle. At each angle combination, the port 

pressures are recorded and stored in a database. Some early work includes Gettelman 

and Krause [7], who determined the influence of the flow angle on static pressure 

___________________ 
This thesis follows the style of Journal of Fluids Engineering. 
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measurements in subsonic flowfields using a 2-hole wedge probe. Although they did not  

directly use it for angle predictions, they demonstrated the relationships that can be used 

for angle predictions. Centolanzi [8] used a 40-degree cone probe to determine the angle 

and speed in supersonic flows. He used an expression combining the measured pressures 

which would be sensitive to either the yaw or the pitch angle. Varying other parameters 

while maintaining the corresponding flow angle constant, would keep the expression 

fairly constant.  Probe calibration is also discussed in Bryer and Pankhurst [1] where 

details on a probe traversing apparatus are presented. They gave a comprehensive 

overview of probe types, design, and construction as well as manometer systems for 

probes.  

 

After the probe has been calibrated, the data is processed and sets of non-dimensional 

velocity-invariant coefficients are calculated that relate the relative magnitude of the port 

pressures to the flow incidence angle. Furthermore, these non-dimensional coefficients 

are typically curve-fitted to the angles to form explicit polynomial expressions 

(Rediniotis et al. [5]). Following the processing, the probe can be inserted into a 

flowfield with unknown velocity magnitude and angularity. The non-dimensional 

pressure coefficients are calculated from the port pressures and the flow angles are found 

directly from the polynomial expressions. A similar method is used to find the velocity. 

 

There are a number of different approaches to the aforementioned procedure, varying in 

the definitions of the pressure coefficients and the method of curve fitting. Using only 

one set of coefficient definitions limits the angular range the probe can resolve since at 

high incidence angles the flow over one or more of the ports may be separated. Based on 

a 5-hole probe, Bryer and Pankhurst [1] divided the measuring region into a low-angle 

regime, corresponding to flow incidences resulting in the center port sensing the highest 

pressure, and four high-angle regimes, when one of the peripheral ports senses the 

highest pressure. This approach allows for region specific coefficient definitions and 

extends the angular range of the probe. Gerner and Maurer [9], Gerner and Sisson [10], 
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Everett et al. [11], [2] used 7-hole probes and split the angular domain into low-angle 

and high-angle flows similar to the methods by Bryer and Pankhurst [1], and extended 

the usable angular range up to 70 degrees in cone angle (angle between the velocity 

vector and the probe axis). Gerner and Maurer [9] defined separate non-dimensional 

pressure coefficients for the pitch and yaw angles. These coefficients were designed to 

be sensitive primarily to one of the two angles and not to the other. In other words, each 

one has a linear dependence on their respective angle and independence to the other 

angle. Also, like all pressure coefficients, these too are dependent upon Mach number 

and this becomes apparent only in the compressible regime (M > 0.3). As a corollary, the 

calibration data from any Mach < 0.3 can be used for the entire incompressible regime. 

Everett et al. [11], [2] determined the flow quantities with a set of third-order polynomial 

fits for each sector. They employed high speed computation to enable real-time flow 

measurement. They also investigated the effects of Reynolds number and found it to 

have no significant influence on the predicted flow properties. Kjelgaard [3] also 

measured the effects of Reynolds number by taking the calibration constants for the 

highest Reynolds number (from calibration data) and applying them to the data acquired 

for the lowest Reynolds number and vice versa. These data indicated little effect of 

Reynolds number in the measurements. Based on the work by Gerner and Maurer [9], 

Ostowari and Wentz [12] extended the angular range of a conical 5-hole probe to 85 

degrees. However, no quantitative analysis of the errors in the high angle range was 

given. 

 

The polynomial fitting of the non-dimensional coefficients to the flow angles has been 

studied extensively. Most early work used either a global procedure, where polynomials 

were created for all calibration points, or a sector based procedure (Gerner and Maurer 

[9]). Rediniotis et al. [5] were able to increase accuracy by dividing the port specific 

regions into several sections, thereby increasing the number of regions for which 

polynomials were used to describe the calibration coefficients. Houtman and Bannink 

[13] used a combined theoretical and experimental calibration on a hemispherical tipped 
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5-hole probe in high subsonic to supersonic flows. They found that the prediction 

capabilities were good at low flow angles, but deteriorated at cone angles larger than 

about 45 degrees due to separation and shock-wave effects. They also introduced a 

localized interpolation scheme using only eight calibration points for increased accuracy. 

Similar to the work by Houtman and Bannink [13], Zilliac [14], [4] and Johansen et al. 

[15] developed methods that are local in nature, where a calibration database is searched 

and interpolation or curve-fitting is performed locally, using only a few data points. 

Zilliac [14] used the Akima interpolation method, which is a weighted-nearest-neighbors 

method, instead of the more common (equally-weighted) curve-fit method and found 

significant reduction in errors. They also devised a simple technique to identify (and 

evade) pressure ports in the separated region of the 7-hole probe. Rediniotis and 

Vijayagopal [16] used Artificial Neural-Networks (ANN) rather than traditional 

polynomial fitting to relate the coefficient to the flow angles. Through extensive 

training, the ANN yielded very good prediction capabilities. 

 

The definitions of the non-dimensional coefficients are crucial to maximizing sensitivity 

and data-reduction accuracy, minimizing dependence on Mach and Reynolds numbers, 

and avoiding singularities. Clark et al. [17] calibrated hemispherical tipped probes in 

high subsonic up to Mach 2.0 flows, examining five different calibration coefficient 

definitions for sensitivity to Mach number effects. They also compared ten identically 

produced probes and found that individual calibrations were required for each single 

probe due to manufacturing idiosyncrasies. Takahashi [18] performed analysis on the 

coefficient behavior identifying singularities while also optimizing for processing speed. 

Shepherd [19] introduced a 4-hole cobra probe with tip shape similar to a 5-hole probe, 

but with one central port and only three peripheral ports. Since there are only four 

independent quantities to be measured, the 4-hole probe avoids redundant (pressure) 

information. He calibrated and used this probe to resolve velocity and pitch and yaw 

angles with reasonable accuracy. However, he only used one set of coefficient 

definitions, which limited the angular range of the probe to +/- 20 degrees in pitch and 
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yaw. The maximum flow incidence angle that can be resolved by a 5- or 7-hole probe 

depends on the probe tip geometry and port locations. Most probes can accurately 

resolve angles up to approximately 70 degrees. For many complex flowfields, the 

angular range in the measurement domain (either spatially, temporally, or both) is 

greater than what a 5- or 7-hole probe can resolve (e.g. the flow in the wake of a bluff 

body), and for such flows the omni-directional probe (Fig. 1) is preferred (Kinser and 

Rediniotis [6]). The omni probe is an extension of the 5- and 7-hole probes with the 

distinct advantage that it can resolve flow angles up to 160 degrees from its principal 

axis. Similar to the 5-hole probe, the omni probe predicts the flow angles, the local total 

and static pressures, and the velocity magnitude with a high degree of accuracy.  

  

 
 

 

(b) (a) 

(c)

Fig. 1 Schematics and picture of the nearly omni-directional 18-hole probe: (a) port arrangement 

and grouping, (b) isometric view showing spherical tip and cylindrical sting and (c) photograph 

showing a fully assembled 18-hole probe. 
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The 12-hole probe developed here offers several advantages over the previously 

developed 18-hole probe. The new design has 12 pressure ports distributed on the 

surface of a spherical tip. Its 12 ports are located at the corners of an icosahedron 

(canonical shape with 20 sides - each one of which is an equilateral triangle - and 12 

corners) inscribed inside a sphere (Fig. 2). The fact that the new design has 33% less 

number of holes has significant beneficial implications in the instrument’s spatial 

resolution (smaller probe sizes become possible), frequency response (larger internal 

tubing diameters become possible) as well as cost of interfacing and usage.  

 

 
Fig. 2 Icosahedron inscribed inside a sphere. The ports are located at the 12 apexes of the 

icosahedron. 

 

Consider for example two probes, an 18-hole and a 12-hole probe, both with the same 

spherical tip diameter, equal to 1/4” (0.25”). As seen in Fig. 1, all ports on the probe tip 

surface have to be routed to the base of the sting. Therefore, if the sting port/hole 

diameter is maintained the same for both probes, and equal to 0.014”, the smaller the 
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number of ports, the smaller the minimum sting diameter necessary to accommodate 

them and thus the smaller the sting interference. This in turn leads to a larger measurable 

flow angularity. In our example, the resulting sting diameters are 0.10” and 0.09” for the 

18-hole and 12-hole probes, respectively. As seen later, this reduced interference is also 

due to the fact that for the 12-hole probe, the tip surface ports closest to the sting are 

further from it than the ports closest to the sting in the 18-hole probe case. Alternately, if 

the sting diameter is maintained the same, for example equal to 0.10”, the holes/ports in 

it can be made bigger in diameter for the case of the 12-hole probe, and can thus be 

interfaced with tubes of bigger inner diameter. This in turn can increase the 

measurement frequency response of the instrument (Rediniotis and Pathak [20]). In our 

example, the sting hole diameters for the 18-hole and 12-hole probes would be 0.014” 

and 0.016”, respectively. Another possibility is, if one maintains the ratio sting 

diameter/tip diameter the same for both probes, as well as the same diameter for the 

sting ports, a smaller 12-hole probe can be manufactured, resulting in higher spatial 

resolution than the corresponding 18-hole probe, without sacrificing measurable 

angularity range or frequency response. Additionally, since every port has to be 

interfaced with a pressure sensor, significantly fewer pressure sensors are required for 

the operation of the 12-hole probe, resulting in fewer components and less expensive 

and/or complicated interface hardware. This advantage is accentuated, if the user plans 

to interface the probe with an ESP pressure scanner from PSI. The unit appropriate for 

this application would be either the 16-channel or the 32-channel unit (units with a 

number of channels between 16 and 32 are not available). For an 18-hole, a 32-channel 

unit would be necessary, while for the 12-hole probe, a 16-channel unit would suffice, 

resulting in 50% savings. Finally, reducing the number of ports from 18 to 12 results in 

reduction of the probe manufacturing time and thus probe price. 

 

The reason for minimizing the tubing length is that any pressure-measuring instrument, 

such as the omniprobe, has a frequency response that is dependent upon the geometric 

parameters of the tubing system that connects the measurement point (at the tip of the 
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probe) to the transducer diaphragm and the properties of the medium in the tubing 

system. The longer the tubing, the poorer the frequency response. Moreover, we have 

developed the hardware and software necessary to correct for the effects of the tubing 

between the ports and the sensors. First, the frequency response curves (amplitude and 

phase) of the tubing system are obtained in an experimental facility we have developed 

and the results are also checked against theory. Once these are known, a numerical 

algorithm uses these response curves to reconstruct the true pressure signals (at the 

ports) from the measured signals (at the transducers). 

 

The newly developed multi-hole probes (18-hole and 12-hole) do not necessarily have 

the conventional port arrangements of the 5- or 7-hole probes. One of the challenges 

when working with a generic port arrangement is that the conventional definitions of the 

non-dimensional pressure coefficients either can no longer be applied, or if they can be 

applied, they may be far from optimal. Some of the important properties of a properly 

defined coefficient include independence from the other three variables (for example, the 

yaw angle coefficient should be independent of the pitch angle, the dynamic and static 

pressures) and smooth, and preferably linear, behavior. As it will be demonstrated later, 

conventionally defined coefficients do not necessarily exhibit these properties for non-

conventional port arrangements. There is therefore the need for a systematic way of 

defining well-behaved coefficients for any port arrangement. Additionally, several 

conventional definitions and data-reduction methods lack considerations of redundancy 

and fault tolerance. Simple examples are the typical definitions of the flow angle 

coefficients for a 5- or 7-hole probe in the low-angle regime. These definitions involve 

all 5 or 7 port pressures. Therefore, even if one of the 5 or 7 pressure sensors 

malfunctions, the conventional definitions fail, although the probe itself is still perfectly 

functional, at least in the low-angle regime, since only 4 ports are needed for the 

calculation of the flow quantities (two flow angles, total and static pressures).  

 



 9

This thesis presents a systematic way of defining well-behaved pressure coefficients for 

any generic port arrangement (5-, 7-, 12-, 18-hole or other) for spherical or 

hemispherical tipped probes. These definitions also take into account redundancy and 

fault-tolerance considerations. Then, a data-reduction algorithm for any generic port 

arrangement is developed. Finally the performance of the developed coefficients and 

data-reduction procedures is demonstrated for the 18-hole probe and the newly-designed 

12-hole probe.  
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2 BASIC PRINCIPLE OF THE ALGORITHM 

 
At any measurement point in the flow, the four quantities we are attempting to measure 

are: the two flow angles, the magnitude of the flow velocity U and the static pressure Ps. 

The flow angles are the angles that fully define the orientation of the local flow velocity 

vector with respect to the probe coordinate system xpypzp. These angles are the cone and 

roll angles Θ and Φ, as defined in Fig. 3. The other two angles defined in the figure, i.e. 

the pitch and yaw angles α and β, can, alternatively be used to describe the orientation of 

the velocity vector. Angles α and β can be expressed in terms of angles Θ and Φ and 

vice versa. The probe coordinate system, which will be referred to as the global 

coordinate system, is defined as follows: axis xp is along the probe axis, from the tip to 

the probe base, while plane xpyp is defined by a reference surface, which is one of the six 

flat surfaces of a hexagonal sleeve mounted at the back of the probe. 

 

Let us consider 4 ports on the surface of the tip (taken as a sphere here) at arbitrary 

locations, as shown in Fig. 4. The ports are represented by the circles. As it will be 

discussed later, the locations of the ports cannot be totally arbitrary and there are some 

restrictions regarding their relative position in order to ensure that the four pressures 

measured by the ports can yield accurate estimates of the flow quantities of interest. Let 

us also assume that when the probe is positioned at a point in the flowfield it intends to 

measure, the stagnation point on the tip surface is point SP, represented by the star in 

Fig. 4. The center of the sphere is point C (not shown in the figure). Without loss of 

generality, let us assume that the ports are numbered according to the magnitude of the 
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Fig. 3 Global coordinate system for the probe. 
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pressure they sense, i.e. port 1 measures the highest pressure and port 4 the lowest. The 

direction of the flow velocity vector is defined by the stagnation point SP and the center 

of the sphere. Since the positions of the four ports are fixed and known in the global 

coordinate system, the problem of finding the flow angles reduces to finding the location 

of the stagnation point SP in the local coordinate system, in terms of the angles θ, φ as 

defined in Fig. 4. Angle θ is the angle between lines C-SP and C-2, while angle φ is the 

angle between planes C-2-1 and C-2-SP. 

 

1

3

4

2

SP

θ

φ

1

3

4

2

SP

θ

φ

 
Fig. 4 Local coordinate system for the probe. 

 

The pressures at the four ports can be written as: 

i sP P q Cp= + ⋅ i         (1)

where Ps is the static (freestream) pressure, q is the dynamic pressure ( ) , and 

 is the pressure coefficient at port i (i=1, 2, 3, 4). For the sake of illustration, assume 

potential flow with the surface velocity distribution give as:  

21 2 Uρ

iCp

 ( ) ( iu 3 2 U sin= ⋅ ⋅ ψ )         (2) 
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where U is the freestream velocity magnitude and angle ψi describes the position of port 

i with respect to the stagnation point SP and is the angle between lines C-SP and C-i, 

where i=1, 2, 3, 4. Then (1) can be written as: 

2 2
i i s s i

1 9P ( , U,P ) P U cos ( )
2 4

ψ = + ⋅ρ ⋅ ψ −
 

5
4


     (3) 

Since the geometric location of port i on the sphere is known, by applying simple 

geometric analysis we can easily show that the angle ψi is simply a function of the two 

unknown angles (θ, φ i.e. . For example, referring to Fig. 4, if (θi i ( , )ψ = ψ θ φ 3, φ3) 

represent the coordinates of port 3 in the local coordinates reference system, then  

1 3 3
3

1 cos cos sin sin cos( )( , ) 2 sin
2

− − θ ⋅ θ − θ ⋅ θ⋅ φ − φ
ψ θ φ = ⋅ 3   (4) 

So, equation  (3) can be written as: 

2 2
i s s i

1 9P ( , , U,P ) P U cos ( ( , ))
2 4

θ φ = + ⋅ρ⋅ ψ θ φ −
 

5
4




7
i

    (5) 

We now have 4 equations (5) (for i from 1 to 4), and 4 unknowns (θ, φ, U, Ps) and can 

therefore solve for all 4 unknowns. We come to the same conclusion even if we relax our 

assumption of potential flow and consider viscous flow with a surface-velocity 

distribution (White [21]): 

    (6) ( )3 5
i i iu U 1.5 0.4371 0.1481 0.0423= ⋅ψ − ⋅ψ + ⋅ψ − ⋅ψ

The above illustrates the basic principle of the algorithm. A few comments are in order 

here to ensure that the above equations can be uniquely solved for the flow unknowns. If 

we are to determine all four flow quantities (θ, φ, U, Ps), it is very important that all four 

ports are in the attached flow region. If only n ports are in the attached region (n<4), then 

only n out of the four unknowns can be determined. Moreover, for certain port 

arrangements, the possibility exists that there may be a stagnation point for which all 

angles ψi are equal, in which case not all four equations are independent of each other 

and therefore not all four unknowns can be determined. Also, if the highest three ports 

on the surface of the sphere are roughly “collinear”, i.e. the three lines C-i, with i 
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corresponding to the three ports, are on the same plane, the algorithm’s prediction was 

found to deteriorate. We will deal with both of these issues later. 

 

If the probe tip was a perfect sphere and the port locations were accurately known, there 

would be no need for experimental calibration of the probe. The above theoretical 

analysis would be enough to yield, from the 4 measured port pressures (as long as all 

four ports are in the attached flow region), reasonably accurate answers for the flow 

velocity, angularity and static pressure. However, this is typically not the case. The 

probe tip is not a perfect sphere and probe machining imperfections (especially for small 

probe tip diameters) make it practically impossible to know exactly the port locations. 

The above necessitate probe calibration.  
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3 DESIGN OF THE NON-DIMENSIONAL PRESSURE 

COEFFICIENTS 

 
One of the challenges when working with a generic port arrangement, not necessarily 

resembling the conventional 5-hole or 7-hole port arrangement pattern, is that the 

conventional definition of the non-dimensional pressure coefficients either can no longer 

be applied, or if it can be applied, it may be far from optimal. The previous statement is 

explained below.  

 

It should be kept in mind here that two important properties of a properly defined 

coefficient are: 

- independence from the other three variables ([14]) (for example, the yaw angle 

coefficient should be independent of the pitch angle, the dynamic and static pressures). 

- smooth, and preferably linear, behavior. 

Our experience with multi-hole probes has repeatedly demonstrated that a smooth and 

linear coefficient behavior is quite important for increased data-reduction accuracy 

(Rediniotis et al. [5]). Consider the two port arrangement patterns in Fig. 5. Fig. 5a 

shows a typical 5-hole port arrangement, while Fig. 5b shows a non-conventional port 

arrangement.  
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Fig. 5 Port arrangement: (a) conventional arrangement, (b) generic/non-conventional arrangement. 

 

For the 5-hole arrangement, the yaw angle coefficient for low-angle flow (port 1 senses 

the highest pressure), for example, is typically defined as: 

 2 3 2 3

est 1 2 3 4 5

P P P PC
q P (P P P P )β

− −
= =

− + + + / 4
     (7) 

which, due to the symmetry of the pattern, is intuitive and exhibits both of the properties 

stated above to a decent degree. However, for the non-conventional pattern of Fig. 5b, 

there is no obvious way to properly define a yaw angle coefficient. Even if one stretched 

the boundaries of intuition and defined the coefficient as: 

3 4 3 4

est 1 2 3 4

P P P PC
q P (P P P )β

− −
= =

− + + / 3
,      (8) 

one would soon find that this coefficient does not have the desired properties we 

discussed above. For the purposes of design, theoretical pressure data for the 18-hole 

probe was generated based on equation (6) (viscous flow over a sphere). Fig. 6 shows 

the yaw angle coefficient, defined as in equation (8) above, for a typical sector in the 18-

hole probe. As seen in the figure, the coefficient exhibits strong nonlinearity. Further, the 
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qest defined above (equation (8)), which is supposed to be an estimate of the dynamic 

pressure and should thus be fairly constant for a fixed velocity magnitude and static 

pressure, regardless of flow angle, does not have the desired near-constant value, as 

shown in Fig. 7. The actual dynamic pressure for all the points in this figure is a constant 

equal to 61.25 Pa. 
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Fig. 6 Yaw angle coefficient defined conventionally in a sample sector of the 18-hole. 

 



 18

25
30

35
40

45

θ (deg)
-20

-15
-10

-5
0

5

φ  (deg)

0
0

10
10

20
20

30
30

40
40

50
50

60
60

70
70

80
80

q es
t (P

a)

q e
st

 (P
a)

 
Fig. 7 Estimated dynamic pressure defined conventionally in a sample sector of the 18-hole. 

 

Moreover, the way we went about defining the coefficient above is heuristic, and the 

definition is quite likely to change as the port pattern changes. The above discussion 

makes it obvious that a procedure is needed through which, for any non-conventional 

port arrangement, we can design the coefficients methodically such that they exhibit the 

desired properties. The procedure is described next. 

 

Consider a multi-hole probe with a non-conventional port arrangement (such as the 18-

hole or the 12-hole probe). First, the ports are numbered for identification of their 

location on the tip. The specific numbering scheme is not important, as long as it 

identifies the location of a port on the tip. Let us now assume that for a specific flow 

condition, the three ports that sense the highest pressures, in order of decreasing 

magnitude, have the numbers max1, max2 and max3 respectively. In the ΘΦ domain 
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(see Fig. 3 for the definition of Θ, Φ), we define sectors pertaining to ports max1 

through max3, as follows: 

SectorNumber = max1×104 + max2×102 + max3 

As an example, Fig. 8 schematically presents the sector arrangement in the case where 

max1, max2, max3 take values from 1 to 5. In this figure, each sector is the locus of all 

possible stagnation points (in the Θ-Φ domain) that result in the order of the three 

highest pressures indicated by the number of the sector. For example, the triangle labeled 

“20103” is the locus of all possible stagnation points that result in port 2 sensing the 

highest pressure, and ports 1 and 3 sensing the second and third highest pressures, 

respectively. Each sector is only schematically represented as a triangle for simplicity. In 

reality, its boundaries are not necessarily straight lines. A local coordinate system is 

assigned to each sector as shown in  (same as that of Fig. 4).  Fig. 9

 
Fig. 8 Sector arrangement. 
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Fig. 9 Local coordinate reference system. 

 

For each sector, the following procedure is followed in designing the coefficients. Let us 

consider sector 10203. For each stagnation point in the sector, the port with the fourth 

highest pressure is identified. The port with the most occurrences is labeled max4 for 

that sector. For example, for sector 10203: max4=4, for sector 30102: max4=5. Then, for 

all points in the sector (from the calibration database), the following linear surfaces/fits 

are generated: 

 max1 max3P PP1 a1 b1 c1
q q

−∆
= = + ⋅θ + ⋅φ      (9) 

max 2 max3P PP2 a2 b2 c2
q q

−∆
= = + ⋅θ + ⋅φ      (10) 
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max3 max 4P PP3 a3 b3 c3
q q

−∆
= = + ⋅θ + ⋅φ      (11) 

where θ, φ are the local stagnation point coordinates in radians, and a1, b1, c1, a2, b2, 

c2, a3, b3, c3, are (non-dimensional) constants determined by the least squares fitting. 

The numerator contains the difference of pressures in order to eliminate dependence on 

the static pressure (Ps) and is divided by the dynamic pressure (q) to eliminate 

dependence on q. It turns out that, for the 18-hole probe at least, these linear fits have 

very high correlation coefficients, (R2 value) equal to or higher than 0.95. Subsequently, 

equations (9) and (10) are solved for θ, φ:   

0
P1 P2A B
q qθ θ

∆
θ = θ + ⋅ + ⋅

∆        (12) 

0
P1 P2A B
q qφ φ

∆
φ = φ + ⋅ + ⋅

∆        (13) 

where the constants Aθ, Bθ, Aφ, Bφ are found by inverse transformation of equations (9) 

and (10). In equations (12) and (13), it is interesting to note that θ0, φ0 are the 

coordinates (in radians) of the stagnation point when Pmax1 = Pmax2 = Pmax3. Then, the 

flow angle non-dimensional pressure coefficients Cθ and Cφ are defined as: 

0
A P1 B PC

q
θ θ

θ

⋅∆ + ⋅∆
= θ − θ =

2       (14) 

o

A P1 B P
C

q
φ φ

φ

⋅ ∆ + ⋅ ∆
= φ − φ =

2

3

      (15) 

The next challenge is to generate an estimate of the dynamic pressure that is as 

independent of (θ, φas possible. The dynamic pressure (qest) is expressed as: 

estq R P1 S P2 T P= ⋅∆ + ⋅∆ + ⋅∆ , or      (16) 

estq P1 P2 P3R S T
q q q q

∆ ∆ ∆
= ⋅ + ⋅ + ⋅       (17) 

Plugging equations (9), (10) and (11) into (17), the constants R, S, and T are solved from 

the following system of three equations (by setting the coefficients of θ and φequal to 

zero and the constant term equal to 1):  
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R a1 S a2 T a3 1⋅ + ⋅ + ⋅ =         (18) 

R b1 S b2 T b3 0⋅ + ⋅ + ⋅ =        (19) 

R c1 S c2 T c3 0⋅ + ⋅ + ⋅ =        (20) 

The above equations force qest to be equal to the actual q, and make it independent of the 

variables θ and φ. By plugging equation (16) in equations (14) and (15), the coefficients 

Cθ and Cφ can now be defined explicitly as: 

( ) ( )
( ) ( ) ( )

max1 max3 max 2 max3

max1 max3 max 2 max3 max3 max 4

A P P B P P
C

R P P S P P T P P
θ θ

θ

⋅ − + ⋅ −
=

⋅ − + ⋅ − + ⋅ −
  (21) 

 
( ) ( )

( ) ( ) ( )
max1 max3 max 2 max3

max1 max3 max 2 max3 max3 max 4

A P P B P P
C

R P P S P P T P P
φ φ

φ

⋅ − + ⋅ −
=

⋅ − + ⋅ − + ⋅ −
  (22) 

Finally, the non-dimensional coefficients Cs and Ct for the static and total pressure are 

defined as: 

( ) ( ) ( )
max1 s max1 s

s
est max1 max3 max 2 max3 max3 max 4

P P P PC
q R P P S P P T P P

− −
= =

⋅ − + ⋅ − + ⋅ −
 (23) 

 
( ) ( ) ( )

max1 t max1 t
t

est max1 max3 max 2 max3 max3 max 4

P P P PC
q R P P S P P T P P

− −
= =

⋅ − + ⋅ − + ⋅ −
 (24) 

The Cs and Ct definitions can be used irrespective of their dependence on flow angles, as 

long as they are velocity-invariant and single-valued. Note that the numerators in 

equations (23) and (24) are identical to those in traditional definitions of Cs and Ct. 

 

The pressure data required for checking the designed coefficients can be either 

theoretically or experimentally (via probe calibration) generated. However, if the data 

used is theoretically generated, the “quality” of the designed coefficients will have to be 

ultimately tested with the experimental/calibration data. Experimental data, obtained via 

probe calibration, as described later, was also used to validate the quality of the designed 

coefficients. As an example, sector 10205 of the 18-hole is chosen to illustrate the 

behavior of the non-dimensional coefficients designed here. For this sector, the constants 

Aθ, Bθ, Aφ, Bφ, R, S and T are found to be 0.330, -0.272, -0.450, -0.658, 1.074, 1.128 and 

1.037, respectively, based on theoretically generated data. The port pressures (hence 
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Pmax1, Pmax2 etc.) and Ps, Pt (flow conditions) at different (θ, φ) locations within the sector 

are known. Hence the four coefficients in equations (21), (22), (23) and (24) and also qest 

in equation (16) can be plotted for the sector as functions of the local (θ, φ). 

 

Fig. 10a and a present plots of CFig. 11 θ(θ,φ) and Cφ(θ,φ), respectively, based on 

theoretical data.  To show that the coefficients designed with theoretically generated data 

behave in the same way when applied to the actual (experimentally generated) 

calibration data, Fig. 10b and Fig. 11b present plots of Cθ(θ,φ) and Cφ(θ,φ), respectively, 

for the same sector, with experimental calibration data. For this case, the constants Aθ, 

Bθ, Aφ, Bφ, R, S and T were found to be 0.361, -0.390, -0.595, -0.513, 1.176, 0.996 and 

1.146, respectively (versus 0.330, -0.272, -0.450, -0.658, 1.074, 1.128 and 1.037, for the 

theoretically generated data). It is clear that the experimental surfaces have the desired 

qualities/properties and behave similar to the theoretical data. It should be stressed here 

that the viscous sphere pressure-distribution equation (6) is used only with the intention 

of studying the newly-designed non-dimensional probe coefficients. For the actual probe 

calibration and reduction, the pressure data is obtained experimentally and used 

exclusively, as explained in the next sections. As seen in Fig. 10 and Fig. 11, both for 

theoretical and experimental data, and contrary to the behavior of the conventional 

coefficient definition represented in Fig. 6, it is clear that Cθ(θ,φ demonstrates smooth 

and linear behavior and good independence from φ, while Cφ(θ,φ demonstrates smooth 

and linear behavior and good independence from θ. As explained earlier, both Cθ and Cφ 

are, by definition, independent of Ps and q. This means that the calibration data obtained 

at some flow conditions (Ps, q) can be used for all flow conditions (within a reasonable 

Mach number range, typically of +/-0.1).  
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(b)

Fig. 10 Typical behavior of the newly-defined cone angle coefficient (equation 21) for the 18-hole 

probe: (a) theoretical data, (b) experimental calibration data. 
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(b)

Fig. 11 Typical behavior of the newly-defined roll angle coefficient (equation 22) for the 18-hole 

probe: (a) theoretical data, (b) experimental calibration data. 
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Fig. 12

Fig. 12 Typical behavior of the newly-defined estimated dynamic pressure (equation 16). 

 presents a plot of qest(θ,φ) obtained with theoretical pressure data. The actual 

dynamic pressure for all the points here is, as before, 61.25 Pa. It is clear that qest(θ,φ) 

demonstrates smooth and nearly constant behavior (especially as compared to that of 

) and independence from θ, φ. Fig. 13 and Fig. 14 present plots of Cs and Ct, 

respectively, (again, with theoretical data) illustrating well-behaved surfaces. 

Fig. 7
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Fig. 13 Typical behavior of the newly-defined static pressure coefficient (equation 23). 
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Fig. 14 Typical behavior of the newly-defined total pressure coefficient (equation 24). 
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4 PROBE CALIBRATION 

 
A typical 18-hole probe with a tip diameter of 0.25 in. was calibrated in a high-speed 

wind tunnel, at different Mach numbers: 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 and 0.7. The 

experimentally obtained calibration database of the 18-hole probe consists of all 18 port 

pressures and the freestream dynamic pressure for a wide range of flow angles. The cone 

angle Θ was varied from 0 deg to about 150 deg in steps of 1.8 deg. For each one of 

these cone angles, the roll angle Φ was varied from -180 deg to 180 deg in steps of 3.6 

deg. Thus a total of about 8000 calibration points (stagnation point locations) all around 

the probe tip (except near the sting) are available. The probe was mounted on a dual-axis 

stepper-motor assembly, which can vary the cone and roll angles (Θ, Φ) through the 

desired range stated above. At each of the probe orientations the 19 pressures were 

acquired with a 32-transducer electronic pressure scanner (ESP) from PSI, Inc. An ESP 

unit with a pressure range of ±10 in. H2O was used for the M = 0.05 and the M = 0.1 

calibrations, a ±20 in. H2O unit was used for the M = 0.2 calibration, and a ±10 psi unit 

was used for all of the other calibrations. At each probe orientation, 1 second was 

allowed for the flow to settle and then measurements were taken for 4 seconds at 256Hz 

with a 12-bit data acquisition board. The wind-tunnel generates a jet out of a nozzle, 1” 

× 2” (2.5 cm × 5 cm) in dimensions and can attain a maximum speed of 320 m/s with a 

freestream turbulence of less than 0.25%.  
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5 PREPROCESSING THE CALIBRATION DATA 

 

First, the data in the calibration database is allocated among all the sectors and 

transformed into the respective local coordinate systems. Then the coefficients Aθ, Bθ, 

Aφ, Bφ, R, S and T for each of the sectors, as described in the previous sections, are 

calculated. Only those sectors with at least 5 calibration points within them are chosen as 

valid. The points lying in any of the discarded sectors are reassigned to adjacent sectors. 

Also, if the highest three pressure ports are found to be “collinear” as described earlier, 

∆P3 in equation (11) can be redefined as (Pmax2 – Pmax4) and was found to work well. 

Alternately, the third highest pressure port could be discarded and another port before 

the separation region (if available) can be selected. The second technique was used for 

the 18-hole probe since there was always an extra port available. In the 12-hole, such a 

situation due to the arrangement of ports was never encountered. Then, for each 

calibration point, the non-dimensional coefficients (Cθ, Cφ, Cs and Ct) and the stagnation 

point coordinates (θ, φ), in the local reference system, as described in Fig. 9, are 

calculated. To calculate the latter, it is necessary to have at least an estimate of the 

coordinate locations of the pressure ports. Due to the inevitable deviation from the 

design port location while machining, these have to be estimated based on the pressures 

from the calibration database. The pressure at any port due to the nearest few stagnation 

points behaves as shown in Fig. 15. By fitting a quadratic surface through the points and 

finding the (Θ,Φ) corresponding to the local maximum, a good estimate of the port’s 

coordinate location can be obtained. 
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Fig. 15 Pressure at port#2 of an 18-hole probe, varying with the stagnation point location (or 

equivalently, the flow angles). 
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6 DATA REDUCTION 

 
During an actual application of the probe, the following procedure is followed to 

calculate the flow variables, which consist of the two flow angles, the static and total 

pressure. For a given measurement data point, all port pressures are measured. Based on 

the highest three pressures, the sector number and the corresponding coefficients for the 

sector are obtained. At this point the algorithm checks if the sector number obtained is 

valid (i.e., sector is existent). If the sector number is found as one that was removed 

during preprocessing due to insufficient number of points within it, then the current test 

point is assigned to a suitable adjacent sector. The reader should recall that during the 

coefficient designing procedure (previous section), we generated seven coefficients, Aθ, 

Bθ Aφ, Bφ, R, S, T, for each sector, unique to each sector, which are used in defining the 

non-dimensional coefficients Cθ, Cφ and the estimated dynamic pressure qest. Using these 

coefficients, Cθ and Cφ are calculated for the data point. Cθ-CAL and Cφ-CAL for the 

adjacent calibration points are obtained from the preprocessed calibration database. 

From these, the closest 30 calibration points are selected, based on their Euclidean 

distance (d) from the current (Cθ, Cφ): 

 2
CAL CALd (C C ) (C C )θ θ− φ φ−= − + λ ⋅ − 2      (25) 

The scaling factor λ is introduced in the above equation to bring both the coefficients to 

the same scale and is defined for every sector based on the maximum and minimum 

values of its coefficients: 

 
( ) ( )
( ) ( )

max min

max min

C C
C C

θ θ

φ φ

−
λ =

−
        (26) 

 

To properly deal with data points that might be very close to the boundaries of a sector, 

calibration points from 10 adjacent sectors are also considered. For example, if the data 

point is in sector 10203 (see Fig. 8), calibration points from sectors 10204, 20103 and 
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10302 and so on are also used. The selected points are distributed into 4 quadrants in the 

Cθ-Cφ plane with the data point’s (Cθ, Cφ) as the origin. This is done so as to ensure that 

the selected calibration points “enclose” the test point. Out of the points thus distributed 

the nearest one from each quadrant is selected, one quadrant after the other, until the 

required number of calibration points (m) is obtained. Least-squares surface fits are 

performed locally on the selected calibration points for all the four variables. 

Subsequently these fits are used to calculate the quantities θ, φ, Cs and Ct corresponding 

to the current data point (Cθ, Cφ). A quadratic fit with m = 8 is seen to produce the best 

results. The θ, φ calculated are converted to global coordinates to get the global flow 

angles Θ, Φ. Then, the static and total pressures (Ps, Pt) are calculated from:  

s max1 s estP P C q= − ⋅         (27) 

t max1 t eP P C q= − ⋅ st

)

        (28) 

Using adiabatic, prefect gas relationships for air, the Mach number and static 

temperature (Ts) are calculated: 

 ( )( 2/ 7
t sM 5 P / P 1= −        (29) 

 t
s 2

TT
1 M / 5

=
+

         (30) 

The freestream velocity magnitude is then arrived at by the equation: 

sU M R T= ⋅ γ ⋅ ⋅         (31) 

Finally, the velocity components in the probe (global) coordinate system are calculated: 

         (32) 
x

y

z

U U cos
U U sin cos

U U sin sin

= ⋅ Θ
= ⋅ Θ⋅ Φ

= ⋅ Θ⋅ Φ

The flowchart in Fig. 16 illustrates the data reduction process.  
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Fig. 16 Data reduction process. 

 

In order to account for Mach number effects, a probe is typically calibrated in a range of 

Mach numbers, in steps of 0.1 in the Mach number (for example at Mach: 0.1, 0.2, 0.3, 

etc.), thus generating several calibration files/databases, one per Mach number. When 

the probe is used in an unknown flowfield, since the Mach number at the measurement 

location is not known, it is unknown which calibration file/database to use for the data 
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reduction of the specific point. Therefore, since during data reduction it is necessary to 

arrive at the correct calibration file, which corresponds to the flow Mach number, an 

iterative scheme is adopted. If the calibration file used for data reduction corresponds to 

a Mach number quite different from that of the measurement point, the predicted results 

can be highly erroneous. For example, the percentage error in the velocity magnitude for 

a flow at Mach 0.2 reduced with calibration data from Mach 0.5 was found to be as 

much as 6%. Although this is high, it serves to obtain a very good initial estimate of the 

measurement point’s Mach number (0.2 in this case). Therefore, for the first iteration, 

one can reduce the test data with, say, the Mach 0.3 calibration database and estimate the 

Mach number of the flow. Then a second iteration can be performed with the calibration 

database nearest to this estimated Mach number. We have implemented this procedure 

with conventional multi-hole probes, with very good results ([15]). 
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7 RESULTS AND DISCUSSION 

 
The algorithm was coded in Matlab 6.1 and in its present state can reduce 250 points per 

second (in a 2.4 GHz, 512 MB RAM Pentium-Class computer). Efforts are underway to 

write the code in Delphi (Pascal-based) to attain a faster reduction capability and a user-

friendly GUI. The reduction code was tested with the calibration data for the 18-hole 

probe. The calibration data itself was used as test data. It was made certain that for every 

test point, its own data was removed from the calibration data during reduction. The data 

consisted of 7400 test points obtained at a Mach number of 0.2 with the Θ-coordinate 

ranging up to 145 deg. Very accurate predictions were attained for the predicted flow 

angles, the velocity magnitude, the static and total pressures.  and Fig. 18 present 

the individual error histograms for the flow angles in the global reference system (Θ and 

Φ). Fig. 19 shows the histogram of the error (in percent) for the freestream velocity 

magnitude (U). The percent errors, taken with respect to the freestream dynamic 

pressure (q), in the predicted static and total pressures (P

Fig. 17

s and Pt) are shown in Fig. 20 

and Fig. 21. In all these plots, Gaussian error distributions are observed, with means very 

close to zero, which shows that there were no bias errors in the calibration or data-

reduction processes. 
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Fig. 17 Histogram of the error in the predicted cone angle (Θ) in degrees. 
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Fig. 18 Histogram of the error in the predicted roll angle (Φ) in degrees. 
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Fig. 19 Histogram of the percentage error in the predicted velocity magnitude (U). 
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Fig. 20 Histogram of the error in the predicted static pressure (Ps) as a percentage of dynamic 

pressure (q). 
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Fig. 21 Histogram of the error in the predicted total pressure (Pt) as a percentage of dynamic 

pressure (q). 

 
 

 

Table 1 shows the statistical data from the error analysis. It should be born in mind that 

these results were obtained with a handicap, i.e., for every test point, the test point itself 

was not part of the calibration points used for data reduction. This results in larger 

Euclidean distances between the test point and the nearest calibration points, as 

compared to the case in which the test points are at intermediate locations. Yet, very 

good predictions are observed as seen from the small standard deviations. For example, 

for the error in Θ (Table 1), a standard deviation of 0.061 deg. means that about 68% of 

the predictions will have an error (compared to the exact Θ angle) less than or equal to 

0.061 deg., or about 95% of the predictions will have an error less than or equal to 2 × 

0.061 deg. = 0.122 deg. 
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Table 1. Error data for the predicted variables at M=0.2. 

 Maximum Mean (µ) Standard Deviation (σ) 

Error in Θ (deg) 0.444 0.002 0.061 

Error in Φ (deg) 0.946 -0.004 0.122 

Error% in U 0.654 -0.008 0.086 

Error% in Ps w.r.t q 1.127 0.024 0.128 

Error% in Pt w.r.t q 0.713 0.008 0.096 

 

To check for consistency, the reduction was performed for the same probe at Mach 

numbers of 0.05, 0.1, 0.3, 0.4, 0.5, 0.6 and 0.7. For each case, the coefficients were 

designed specifically for that Mach number from their respective calibration data. In all 

these cases, the means and standard deviations are very similar to the Mach 0.2 case. 

Table 2 and Table 3 show the error data at Mach 0.05 and 0.7 respectively. The higher 

maximum errors in the Mach 0.7 case is due to a few stray bad points and is not of much 

concern. 
 

Table 2. Error data for the predicted variables at M=0.05. 

 Maximum Mean (µ) Standard Deviation (σ) 

Error in Θ (deg) 0.548 0.001 0.081 

Error in Φ (deg) 1.324 -0.004 0.162 

Error% in U 0.615 -0.010 0.130 

Error% in Ps w.r.t q 1.392 0.024 0.150 

Error% in Pt w.r.t q 1.024 0.004 0.201 
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Table 3. Error data for the predicted variables at M=0.7. 

 Maximum Mean (µ) Standard Deviation (σ) 

Error in Θ (deg) 0.598 0.001 0.061 

Error in Φ (deg) 1.210 0.001 0.131 

Error% in U 1.311 -0.002 0.130 

Error% in Ps w.r.t q 1.706 0.013 0.188 

Error% in Pt w.r.t q 1.054 0.012 0.097 

 

Since the sector coefficients Aθ, Bθ, Aφ, Bφ, R, S and T were designed to be independent 

of the freestream dynamic pressure, a test was performed to use these coefficients 

obtained from the pressure data at one Mach number and applied to the reduction at 

another Mach number. Table 4 shows the results obtained by using the sector 

coefficients at Mach 0.7 in calculating the flow variables at Mach 0.2. As expected, the 

error data behaves similar to that in Table 1. 
 

Table 4. Error data for the predicted variables at M=0.2 with sector coefficients from M=0.7. 

 Maximum Mean (µ) Standard Deviation (σ) 

Error in Θ (deg) 0.423 -0.003 0.059 

Error in Φ (deg) 1.136 -0.005 0.135 

Error% in U 0.512 -0.002 0.081 

Error% in Ps w.r.t q 0.870 0.013 0.111 

Error% in Pt w.r.t q 0.631 0.010 0.102 
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8 DESIGN OF THE 12-HOLE PROBE 

 

The new design has 12 pressure ports distributed on the surface of a spherical tip. Its 12 

ports are located at the corners of an icosahedron (Fig. 2), inscribed inside a sphere. The 

CAD model of the prototype 12-hole probe is shown in Fig. 22 and Fig. 23. The main 

difference between the two figures is the location of the sting on the spherical tip. In Fig. 

22, the center of the sting is located at the geometric center of any two adjacent ports; 

while in Fig. 23, the center of the sting is located at the geometric center of any three 

adjacent ports. These two configurations will be referred to as the two-port and the three-

port sting configuration, respectively. The importance of sting location will be discussed 

a little later. In both configurations, the locations of the tip ports are described in a 

spherical coordinate system, as defined in Fig. 3. For the two-port and three-port sting 

configurations, the locations of the tip ports are given in Table 5 and Table 6 

respectively, in terms of their Θ and Φ coordinates. 

 

For the two-port sting configuration, Fig. 22 presents a perspective view of the tip (

a), and front, side and back views of the tip ( b, c, d respectively), 

illustrating the location and numbering of the ports. Although ports 7 and 8 are not 

shown, port 7 is located diametrically opposite to port 5 and port 8 is located 

diametrically opposite to port 6. Fig. 22d also illustrates the arrangement of the holes on 

the base of the sting. 

Fig. 

22 Fig. 22 Fig. 22 Fig. 22
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Fig. 22 Model of 12-hole probe for the two-port sting configuration: (a) perspective view, (b) front 

view, (c) side view, (d) back view. Probe tip diameter: 3/8”, ratio of sting diameter over probe 

diameter:  = 0.324, tip hole diameter: 0.014”, sting hole diameter: 0.020”. 
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Fig. 23 Model of 12-hole probe for the three-port sting configuration. (a) perspective view, (b) front 

view, (c) side view, (d) back view. Probe tip diameter: 3/8”, ratio of sting diameter over probe 

diameter:  = 0.347, tip hole diameter: 0.014”, sting hole diameter: 0.020”. 
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Table 5. Tip port coordinates for two-port sting configuration. 

Port Number Θ (deg) Φ (deg) 
1 31.7175 0.0 
2 58.2825 90.0 
3 31.7175 180.0 
4 58.2825 270.0 
5 90.0 31.7175 
6 90.0 148.2825
7 90.0 211.7175
8 90.0 328.2825
9 148.2825 0.0 
10 121.7175 90.0 
11 148.2825 180.0 
12 121.7175 270.0 

 
Table 6. Tip port coordinates for three-port sting configuration. 

Port Number Θ (deg) Φ (deg) 
1 37.377 0.0 
2 37.377 120.0 
3 37.377 240.0 
4 79.188 60.0 
5 79.188 180.0 
6 79.188 300.0 
7 100.812 0.0 
8 100.812 120.0 
9 100.812 240.0 
10 142.623 60.0 
11 142.623 180.0 
12 142.623 300.0 
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As it was previously mentioned, each one of the sting holes communicates with one of 

the tip holes/ports. The arrangement of the sting holes is very important because it 

ultimately dictates the minimum possible sting diameter, which, in turn, affects the 

maximum possible measurable flow angularity by the probe. The design here was based 

on a 3/8” tip diameter, a 0.014” tip hole diameter and a 0.020” sting hole diameter. The 

selection of the tip hole diameter was based on our experience with the 18-hole probe in 

terms of the minimum possible tip hole diameter that will not suffer from port clogging 

problems and will yield a reasonable measurement frequency response. Once 0.014” was 

selected as the tip hole diameter, this automatically dictated a minimum of 0.020” sting 

hole diameter, based on the availability of stainless steel tubing in the market. As 

previously discussed, each hole in the sting base mates with a metal tube which 

ultimately connects each of the tip ports to a corresponding pressure sensor. The 

minimum-wall-thickness, 0.014”-I.D. stainless steel tube available in the market has an 

O.D. of 0.020”, hence the selection of the sting hole diameter. The geometric values 

chosen above and the fact that, for fabrication reasons, there has to be a distance of at 

least 0.005” between the edges of adjacent sting holes, dictate the optimal sting hole 

configuration  (optimal in terms of minimizing sting diameter) shown in Fig. 22d. For 

the 2-port sting configuration, the minimum possible ratio sting diameter over tip 

diameter is 0.324. If this is compared to the corresponding ratio for the 18-hole probe 

(0.347), the reader can see that the sting is significantly smaller for the 12-hole probe 

case, resulting in reduced sting interference and increased measurable flow angularity.  

 

For the three-port sting configuration, Fig. 23 presents a perspective view of the tip (

a), and front, side and back views of the tip ( b, c, d respectively), 

illustrating the location and numbering of the ports. In this case all ports are shown. 

d also illustrates the arrangement of the holes on the base of the sting. For the three-

port sting configuration, this sting hole arrangement is optimal (for the same tip, tip hole 

and sting hole diameters, i.e. 3/8”, 0.014” and 0.020”, respectively), although, as 

expected, it is different from the optimal sting hole arrangement of the two-port sting 

Fig. 

23 Fig. 23 Fig. 23 Fig. 23

Fig. 

23
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configuration. The resulting ratio of sting diameter over tip diameter is 0.347. As seen 

here, the minimum sting diameter, for the three-port sting configuration, is a little bigger 

than the minimum sting diameter for the two-port sting configuration and the same as 

the 18-hole. However, the nearest port to the sting is further away (than that in the 18-

hole) thus enabling increased measurable flow angularity. 

 

Algorithm Applied to the 12-Hole Probe 

Pressure data for the 12-hole probe was theoretically generated using equation (6). The 

non-dimensional coefficients for a typical sector (#60107) were plotted using 

TableCurve 3D for inspection. Fig. 24 and Fig. 25 show the Cθ and Cφ plots respectively. 

The surfaces are flat and sensitive only to their respective flow angle coordinates.  
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Fig. 24 Typical behavior of the newly-defined cone angle coefficient (equation 21) for a sector of the 

12-hole probe (theoretical data). 
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Fig. 25 Typical behavior of the newly-defined roll angle coefficient (equation 22) for a sector of the 

12-hole probe (theoretical data). 

The Cs and Ct plots are shown in Fig. 26 and Fig. 27. These are well-behaved surfaces 

with no sharp gradients.  
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Fig. 26 Typical behavior of the newly-defined static pressure coefficient (equation 23) for a sector of 

the 12-hole probe. 
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Fig. 27 Typical behavior of the newly-defined total pressure coefficient (equation 24) for a sector of 

the 12-hole probe. 

Finally the qest plot is also checked in Fig. 28. The surface is nearly constant as desired.  
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Fig. 28 Typical behavior of the newly-defined estimated dynamic pressure (equation 16) for a sector 

of the 12-hole probe. 
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The behavior of the coefficients, as is evident from the plots, suggests very good 

prediction capability of the reduction algorithm when applied to the 12-hole probe. 

 

The reduction was done with theoretical pressure data generated similar to the 18-hole 

probe case explored earlier. The statistical error data for the predicted flow quantities is 

shown in Table 7. In the absence of sting interference effects and experimental 

inaccuracies not incorporated by the theoretical data, the errors are very small. It 

signifies that a decent prediction is achievable when the probe is put to test in an actual 

flow field. 
 

Table 7. Error data for the predicted variables for a 12-hole probe at U=10m/s. 

 Maximum Mean (µ) Standard Deviation (σ) 

Error in Θ (deg) 0.243 0.000 0.028 

Error in Φ (deg) 0.232 0.000 0.035 

Error% in U 0.148 -0.008 0.030 

Error% in Ps w.r.t q 0.210 0.003 0.019 

Error% in Pt w.r.t q 0.370 -0.012 0.050 
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9 SUMMARY AND CONCLUSIONS 

 

The traditionally-used algorithms for the multi-hole probes require a symmetric 

arrangement of ports, an attribute absent in the 18-hole and the newly-designed 12-hole 

probes. Novel definitions for the non-dimensional coefficients developed here obviate 

this necessity. The new algorithm uses only 4 pressure ports at any measurement point 

thus also avoiding redundancy.  

 

The 18-hole probe has immense application in omni-directional flowfield measurement. 

An optimized version of the 18-hole probe, the 12-hole probe, was designed, which has 

the same functionality as the former but with many more advantages. The algorithm 

developed here is easily applicable to the 12-hole probe also. 

 

High accuracy of prediction of the flow variables was obtained with data from the 18-

hole probe – within 0.25 deg in Θ, 0.45 deg in Φ and 0.4% in velocity magnitude, all 

with 99% confidence. The algorithm is applicable in the entire subsonic regime. Indeed, 

with the 18-hole probe, the flowfield was resolved up to a Mach number of 0.7 with very 

small errors. 
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