
 

IDENTIFICATION AND MOLECULAR CHARACTERIZATION OF 

NOVEL GENOMIC TARGETS IN OXIDANT-INDUCED 

VASCULAR INJURY 

 

 

A Dissertation 

by 

CHARLES RANDAL PARTRIDGE 

 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of 
 

DOCTOR OF PHILOSOPHY 

 

 

December 2005 

 

 

 

Major Subject: Toxicology 

 



 

IDENTIFICATION AND  MOLECULAR CHARACTERIZATION 

OF NOVEL GENOMIC TARGETS IN OXIDANT-INDUCED 

VASCULAR INJURY 

 

 

A Dissertation 

by 

CHARLES RANDAL PARTRIDGE 

 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of 
 

DOCTOR OF PHILOSOPHY 

 

Approved by: 
Co-Chairs of Committee,  Kenneth Ramos 
         Stephen Safe 
Committee Members,       Emily Wilson 
         Thomas Spencer 
         Robert Burghardt 
Head of Department,       Robert Burghardt 
     

 

December 2005 

Major Subject: Toxicology 

 



 iii

ABSTRACT 
 

Identification and Molecular Characterization of Novel Genomic Targets in Oxidant- 
 

Induced Vascular Injury.  (December 2005) 
 

Charles Randal Partridge, B.S., Midwestern State University 
 

Co-Chairs of Advisory Committee:   Dr. Kenneth S. Ramos 
           Dr. Stephen H. Safe 

 
 
 

 Gene expression was examined in vascular smooth muscle cells to study the 

complex interaction between oxidative injury and the pathogenesis of vascular disease.  

Extensive vascular remodeling coupled to increased production of 8-epi-PGF2α nuclear 

localization of NFκB, and alterations in glutathione homeostasis were identified as 

major responses of the vascular wall to oxidative stress.  Transcriptional profiling 

studies, supported by immunohistochemistry and in situ hybridization measurements, 

identified genes involved in adhesion and extracellular matrix deposition (α1 integrin, 

collagen), cytoskeletal rearrangements (α-smooth muscle actin, α-tropomyosin), and 

signal transduction (NFκB, osteopontin, and LINE) as targets of oxidant injury.  In the 

case of osteopontin (OPN), elevation of OPN levels in vSMCs was shown to be 

mediated by redox-regulated transcriptional mechanisms. A 200bp region located in the 

5′ UTR of the osteopontin promoter was found to be responsive to oxidative stress.  This 

regulatory region contained two distinct cis acting elements involved in promoter 

inducibility.  These elements were tentatively identified as NFKB and TIEG-1 binding 

sites and shown to be highly responsive to hydrogen peroxide and chemical antioxidants.  
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Collectively these studies answer central questions regarding the mechanisms underlying 

the vascular response to oxidative stress and the involvement of OPN in diseases of the 

vascular wall. 
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CHAPTER I 

INTRODUCTION* 
 
 

Atherosclerosis and Diseases of the Vascular Wall 

 Atherosclerosis is the leading cause of death and disability in the United States 

and many other industrialized nations.  However, most forms of atherosclerosis are 

preventable or even reversible if appropriate intervention is applied.  The purpose of this 

study is to understand the underlying mechanisms leading to the initiation and 

progression of this pathological condition. One of the critical processes in the pathology 

of atherosclerosis is the uncontrolled production of reactive oxygen species (ROS).  ROS 

production within the vascular wall can lead to oxidative stress and compromised 

structural and functional integrity. To study the cellular and molecular bases of this 

complex interaction, this laboratory has adopted a model of oxidative injury using 

allylamine, a vascular poison that compromises redox homeostasis leading to activation 

or repression of redox-regulated genes, peroxidative injury, and cell death.   

 

 

 

 

 
                                                 
This dissertation follows the style and format of the Journal of Molecular and Cellular Cardiology. 

* Reprinted from Toxicology In Vitro, 19(5), Partridge, CR, Johnson CD and Ramos KS, In Vitro Models 
to Evaluate Acute and Chronic Injury to the Heart and Vascular Systems, 631-644, Copyright (2005), with 
permission from Elsevier.  
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 Cardiovascular System 

 The structure and function of the cardiovascular system has been 

extensivelyreviewed [1].  Briefly, the heart and blood vessels form a circuit for the 

transport of oxygen and nutrients to tissues throughout the body and the removal of 

waste products of cellular metabolism.  The heart pumps blood through a vascular 

network that includes arteries, veins, arterioles, capillaries, and post-capillary venules.  

Oxygen and nutrient exchange at the level of the tissue is regulated by changes of 

microvascular resistance in response to metabolic demands.  Blood returns to the heart 

through capacitance vessels of the venous compartment.   

 

Cardiac Morphology 

 The walls of the heart consist of three distinct layers that include the epicardium, 

myocardium and endocardium.  The epicardium is the external layer that originates from 

visceral connective tissue.  The myocardium consists exclusively of muscle cells, while 

the endocardium consists of a thin sheet of endothelial cells that extends from the 

coronary vessels to line the chambers and valves of the heart. Cardiac muscle consists of 

nodal tissue, Purkinje tissue, and muscle [2].  Nodal tissue exhibits a high degree of 

automaticity – that is the capacity to depolarize spontaneously.  Purkinje cells are highly 

specialized for conduction of electrical impulses, while ordinary muscle cells contract in 

response to electrical and pharmacological stimulation [3].   
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Contractility 

 The sarcolemma and the mitochondrial and sarcoplasmic reticulum membranes 

are key membrane systems involved in homeostasis of the heart [4].  Conduction of 

nerve impulses along the sarcolemma triggers the release of intracellular calcium stores 

from the sarcoplamic reticulum and the opening of voltage sensitive calcium channels.  

Spontaneous depolarization of specialized cells within the heart mediates conduction of 

electrical impulses that propagate electrical signals throughout the muscle and trigger 

ionic changes tightly coupled to muscle contractions.  As in other excitable cells, 

depolarization involves increased conductance of sodium ions across gated channels to 

reverse the polarity of the membrane and initiate ionic conductances that increase 

intracellular calcium.  Injury to the myocardium is often associated with ionic 

disturbances and accumulation of calcium at toxic levels.  This can be associated with 

cardiac hypertrophy, necrosis or apoptosis [5].   

 

Cellular Compartments 

 The sarcolemma consists of two layers: an inner plasma membrane that regulates 

ionic permeability and myocardial contractility, and an outer membrane involved in 

calcium binding.  Mitochondria function in energy generation via electron transport and 

participate in ionic transport and accumulation.  The sarcoplamic reticulum is a tubular 

system that comes in close contact with the sarcolemma and functions in calcium 

exchange and accumulation.  The sarcolemma is the membrane that surrounds each 

myofiber. It consists of invaginations called T-tubules. When an action potential reaches 
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the muscle cell and the sarcolemma is depolarized, this depolarization spreads down the 

t-tubule to the interior of the cell, where it stimulates the release of Ca++ from the 

sarcoplasmic reticulum.  Recent studies have identified cellular targets capable of 

decoding frequency-encoded intracellular calcium signals, indicating that calcium pulses 

as opposed to net calcium levels control downstream targets intracellularly [6].  At low 

frequency, calcium oscillations stimulate calmodulin kinase II followed by kinase 

deactivation between spikes.  During high frequency calcium oscillations the activity 

increases to maximal levels.  

 

Calcium  

 Calcium is critical to myocardial contraction.  In muscle cells, the regulation of 

this critical ion involves sarcolemmal pumps and exchangers that mediate energy-

dependent sequestration of free calcium [7].  Events that stimulate muscle activity by 

raising sarcoplasmic calcium begin with neural excitation at neuromuscular junctions. 

Excitation induces local depolarization of the sarcolemma, which spreads to the 

associated T tubule system and deep into the interior of the myofiber. T tubule 

depolarization spreads to the sarcoplasmic reticulum (SR), with the effect of opening 

voltage-gated calcium channels in the SR membranes. This is followed by massive, 

rapid movement of cisternal calcium into the sarcoplasm close to nearby myofibrils. The 

appearance of calcium very close to the Tn-C subunit of troponin results in the 

production of multiple myosin power strokes, as long as the available calcium 

concentration remains greater than about 1 to 5 micromolar [8]. The process of 

http://web.indstate.edu/thcme/mwking/nerves.html
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myocardial contraction is associated with calcium influx through the sarcolemma and 

release of intracellular calcium stores.  Calcium then binds troponin to remove the 

inhibition exerted by the troponin-tropomyosin system on actin and myosin.  A reduction 

of cytosolic calcium is associated with relaxation of the myocardium.  Cytosolic calcium 

concentration is lowered via energy-dependent mechanisms. Dysregulation of these 

calcium-mediated processes lead to cellular injury and impairment of cardiac function. 

Elevation of smooth muscle calcium to about 10-5M induces formation of 

Ca2+Calmodulin (CaCM) complexes which activate thin filaments by binding caldesmon 

(Cald) and freeing myosin binding sites on thin filaments. CaCM also binds and 

activates myosin light chain kinase (MLCK). Active MLCK phosphorylates myosin p-

light chain activating the actomyosin ATPase activity of myosin headpieces. 

Epinephrine binding to b-adrenergic receptors raises cAMP, activates cAMP-dependent 

protein kinase (PKA), which reduces the affinity of MLCK for CaCM and modulates the 

strength of contractions generated by elevated cytosolic calcium [9]. 

 

Arterial Morphology 

 The blood vessel wall of arteries is made of three distinct layers.  The innermost 

layer is the tunica intima and represents a single layer of endothelial cells resting on a 

thin basal lamina.  The medial layer consists of several sheets of smooth muscle cells 

dispersed in a matrix of collagen and elastin.  The outermost layer is formed by 

fibroblasts that provide structural support to the vessel, and participate in the regulation 
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of medial smooth muscle function.  Capillaries are endothelial tubes that rest on a thin 

basal lamina to which pericytes readily attach [10]. 

 

Contractility 

 In contrast to the heart, blood vessels require hormonal or pharmacological 

stimulation for initiation of contraction.  Smooth muscle relies heavily on calcium 

entering from the extracellular space to raise intracellular calcium levels and support 

prolonged energy efficient contractions, using approximately 1% of the energy of 

striated muscle [11].  Because of this contractile efficiency, prolonged contractile states 

can provide tone to vessels.  Reduction of extracellular calcium can lead to SMC 

proliferation that is similar to that seen in atherogenic phenotypes [12].  

 

Vascular Smooth Muscle Cells 

 Vascular smooth muscle exhibits multiple phenotypes that can be distinguished 

by their relative expression of smooth muscle-specific genes and their degree of 

proliferative activity.  In their most differentiated state, vascular smooth muscle cells are 

characterized by low mitotic rates, predominance of smooth muscle-specific proteins, a 

well-defined myofilament network, and contractility in response to physiologic 

stimulation [13]. Vascular smooth muscle cells can also exhibit less differentiated 

phenotypes characterized by enhanced proliferative, migratory, and synthetic capabilities 

and loss of smooth muscle-specific properties.  Less differentiated and apoptotic 

phenotypes make up the majority of the smooth muscle cells localized within 
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atherosclerotic lesions in both experimental and human disease [14].  As such, the 

transition of vascular smooth muscle cells from a quiescent phenotype to a succession of 

less differentiated proliferative phenotypes is the hallmark of atherosclerosis onset and 

progression [15].  These alterations in phenotype span the entire spectrum of cellular 

behaviors from quiescence to migration, apoptosis, differentiation, and proliferation. 

Subpopulations of vascular smooth muscle cells within the normal vessel that differ in 

their responsiveness to stimuli have also been described [16].   

 

Extracellular Matrix 

 The extracellular matrix is another key component of the myocardial and 

vascular environment.   This matrix provides a structural, chemical, and mechanical 

substrate essential in cardiovascular development, growth, and responses to 

pathophysiological signals. Metalloproteinases present in the myocardium degrade all 

the matrix components of the heart and as such, are the driving force behind myocardial 

matrix remodeling.  Matrix metalloproteinases (MMPs) represent a family of 

extracellular and membrane-bound proteases involved in maintaining extracellular 

matrix (ECM) integrity and modulating interactions between cells during development 

and tissue remodeling. MMPs have been implicated in the pathogenesis of numerous 

diseases. There are 24 matrix metalloproteinases (MMPs) known in the human genome. 

They may be secreted or present on the cell-surface as membrane-bound molecules.  

They bind and cleave a variety of substrates, in a zinc-dependent fashion. [17]. 
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 Integrins                                                                                             

 Transmembrane integrin receptors provide a dynamic interaction of 

environmental cues and intracellular events.  Integrins orchestrate multiple functions in 

the intact organism including organogenesis, regulation of gene expression, cell 

proliferation, differentiation, migration, and death [18].  Cell shape and mechanical 

stimulation (stretch) can regulate growth and differentiation in both myocardial and 

vascular smooth muscle cells.  The shape of cells is altered by cytoskeletal 

reorganization mediated by the extracellular matrix, suggesting that altered extracellular 

matrix-cytoskeletal dependent events may induce spatial changes that modify biological 

functions (see figure 1) [19]. Regulation of growth and differentiation by mechanical 

forces also act at the level of the extracellular matrix-cytoskeleton.  Increasing evidence 

indicates that the integrin family of cell adhesion receptors is involved in transduction of 

biochemical signals from the extracellular matrix to the cell interior in order to modulate 

cell growth and differentiation.  The myocardial extracellular matrix transmits 

mechanical forces generated by cardiomyocytes to cardiac cavities [20].  Integrins are 

members of a family of cell surface receptors that are comprised of α and β subunits.  

There exists at least 16 α and 8 β subunits that are capable of combining into at least 20 

different receptors [21].  The α and β subunits are composed of a large extracellular 

domain, a region that spans the cell membrane and a short domain that is contained in 

the cytoplasm [22].  The binding of ligand to the receptor and the clustering of the ligand 

bound receptors are critical for the activation of intracellular integrin mediated responses 

[23].  Divalent cations are also critical for integrin stability.  The binding of the cations 
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regulates the specificity and affinity of the receptor for ligands [24, 25].  Integrin binding 

and clustering initiates a signaling cascade which is capable of transmitting extracellular 

signals to the inside of the cell and can affect gene expression [26].  Integrin binding 

provides a way to link extracellular matrix proteins on the extracellular side of the 

plasma membrane to cytoskeletal proteins and actin filaments in the cytoplasm.  Ligand 

binding and the resulting clustering occur at sites called focal adhesions [27].  Focal 

adhesions initiate the nucleation of a large number of cystoskeletal proteins.  These 

proteins play an important role in cellular adhesion and migration.  The proteins 

localized in focal adhesions include, α actin, talin, vinculin, and tensin [28].  Integrin 

binding and the resulting complex of proteins regulates cell morphology, adhesion and 

motility.  The complex of proteins associated with the focal adhesions can also serve as 

scaffolding for various other proteins that mediate integrin signaling [21].  Clustering of 

integrins also elicits as enhancement in tyrosine phosphorylation termed focal adhesion 

kinase (FAK) [29].  FAK plays a critical role in integrin mediated transduction of 

signals.  FAK is targeted to focal adhesions via a focal adhesion targeting sequence 

(FAT) [30].  Several proteins localized to focal contacts also contain SH2 and SH3 

domains [31].  PI-3 kinase and PLC are two other proteins that are activated in response 

to integrin binding [32].  Grb2 and SOS also associate with focal adhesions following 

integrin binding [33]. 
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Figure 1.  Coupling of the ecm/integrin and growth factor RTK pathways. 

Upon integrin and growth factor bindings there is a reorganization of the actin 
cytoskeleton.  This reorganization that occurs with the integrin clustering provides as 
spatial and biochemical coupling if the integrin and growth factor pathways.  This 
coupling of pathways leads to activation of MAPK and can ultimately affect gene 
expression 

 
 
 

Remodeling 

 Network rearrangement and enlargement is an essential component of vascular 

remodeling at various pathological stages. In hypertrophic cardiomyopathy, the primary 

changes occur within cardiomyocytes that are subjected to either necrosis or mutation of 

genes that code for contractile proteins. A distortion of the mechanical link between the 

contractile apparatus and the collagen matrix may disturb force transmission in both 

directions and lead to decreased developed pressure and increased systolic volume. 

Thus, extracellular matrix alterations may be the primary factor in the pathogenesis of 

many cardiomyopathies [34]. 
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Response to Injury 

 In both heart and blood vessels, injury is associated with recruitment of 

inflammatory cells.  These cells play a very important role in determining outcomes of 

injury to the cells of the cardiovascular system.  Although cardiovascular cells are not 

prolific cells in the adult differentiated phenotype, a common response to injury involves 

activation of genes involved in the regulation of growth and differentiation.  Cardiac 

myocytes are terminally differentiated cells that undergo hypertrophy in response to 

injury.  This is often seen in smokers and those living in polluted cities [35].  Likewise, 

during the early phases of atherosclerosis, chemoattractants and molecules generated by 

the endothelium, smooth muscle, and monocytes such as monocyte chemotactic protein 

1, osteopontin, and modified low-density lipoprotein, attract monocytes and T cells into 

the artery. Monocyte-derived macrophages and specific subtypes of T lymphocytes are 

found at every stage of the disease [36].  Fluid pressure and physical forces acting on 

endothelial cells cause fluid shear stress, which effects endothelial cell morphology and 

facilitate movement into the vessel [37].  The balance between pro-inflammatory and 

anti-inflammatory cytokines may be decisive for the progression of the atherosclerotic 

lesion.  Class I major histocompatibility complex deficient mice demonstrated a three-

fold increase in lesion area [38]. Vascular smooth muscle cells in the media of arteries, 

as well as lesions are surrounded by different types of matrix, largely type I and III 

fibrillar collagen in healthy smooth muscle cells and proteoglycan intermixed with 

scattered collagen fibrils in atherosclerotic lesions. Other matrix types, such as 

fibronectin and heparan sulfate, may play a role in cell-matrix regulation of the 
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expression of chemokines by macrophages [36].  Oxidized LDL or, LDL cholesterol that 

has been bombarded by free radicals, has been attributed a key role in the development 

of atherosclerosis. Previous studies have demonstrated increased plasma levels of 

oxidized LDL in patients with established vascular disease [39]. Free radicals and 

oxidized low-density lipoprotein are cytotoxic for macrophages, smooth muscle cells 

and endothelium, whose death contributes to the central necrotic core as the lesions 

advance.  Studies of human and animal models of atherosclerosis suggest that apoptosis 

plays an important role in formation of the necrotic core [40].  Thus, the balance of cell 

death and proliferation is an important aspect of atherosclerosis.  Both proliferation and 

apoptosis are enhanced in undifferentiated vascular smooth muscle cell phenotypes [41].  

Transforming growth factor-β and other growth factors and cytokines stimulate 

proliferation and apoptosis.  [42].  The over-accumulation of lipid is toxic to cells and 

leads to necrosis and complex lesion formation [43].   

 

 Vascular-specific Injury 

 In serving circulatory functions, cells of the heart and vasculature are repeatedly 

exposed to blood-borne toxicants and their metabolic byproducts.  Toxic moieties 

compromise cardiovascular function by interference with specialized cellular functions.  

Because cardiotoxic insult interferes with pumping of blood through the vasculature, 

blood flow to major organs can be compromised leading to end-organ dysfunction [44].  

Acute myocardial injury may induce disruption of electrical activity and/or contractility, 

degradation of extracellular matrix and myocellular death.  Likewise, acute vascular 
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toxicity involves cellular death accompanied by destruction of extracellular matrix 

components.  Angiotoxicity may also cause alterations of arterial pressure due to 

changes in contractility and blood flow. Cardiovascular injury is often associated with 

recruitment of inflammatory cells and changes in the growth of cardiovascular cells [45].  

Chemically-induced injury to cells of the heart or vascular system may also involve 

excessive accumulation of toxic chemicals within the tissue and/or cell-specific 

bioactivation of protoxicants.   

 

Atherosclerosis 
 
 Heart disease is the number one leading cause of death in the United States. 

Cardiovascular disease is a primary or secondary cause in 60% of deaths in the United 

States, with 75% of these deaths resulting directly from atherosclerosis [46]. 

Atherosclerosis is a progressive disease of the arterial wall that is characterized by the 

migration of vascular smooth muscle cells (vSMCs) from the media to the intima, where 

they proliferate and lead to plaque formation in large to medium sized arteries.  This 

proliferation if left unchecked, can lead to compromise of lumen diameter and the 

eventual formation of thrombi and the complications that follow.  The differences 

between normal and atherosclerotic vascular morphology can be seen in figure 2.  

Unfortunately atherosclerosis produces no symptoms until the damage to the arteries is 

at a severe level, consequentially it takes ten to twenty years for symptoms to become 

evident.  This makes it extremely difficult to diagnose this disease in its early stages.  As 
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of yet, identification of cells predisposed to proliferation has been an elusive target for 

this disease. 

 

 Monoclonal Hypothesis 

 In order for the atherosclerotic plaque to progress, which is essentially a benign 

neoplastic tumor, there has to be a “switch” of vascular smooth muscle cells (vSMCs) 

from a contractile phenotype to a proliferative phenotype [47].  It is this initial “switch” 

that is the first step in a series of biochemical malfunctions that is extremely important in 

atherosclerosis. Indeed it is in the proliferation of a cellular population that is at the core 

of the diseases.  If one starts to look at atherogenesis as being neoplastic in origin, then 

these biochemical malfunctions become more apparent.  It was Earl Benditt who first 

hypothesized that atheromous plaques may indeed be neoplastic [48].  This observation 

had huge implications in the field of cardiovascular disease research because it was in 

direct conflict with what was the conventional wisdom of the time, which was that an 

atherosclerotic lesion was a proliferative response to toxic products that build up in the 

wall of an artery over time [49].  Without a doubt, this controversy continued for many 

years and has led to volumes of research being produced both for and against this 

divisive hypothesis.  It was only in 1998 that Schwartz proved Benditt correct by a new 

PCR based method on micro-dissected tissue from an atherosclerotic lesion to show that 

indeed the vSMCs present in lesions were monoclonal in origin [49].  Regardless of the 

origin of this monoclonal expansion, atherosclerotic plaques undergo a cellular 
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A. 

 

B. 

 

Figure 2.  Normal and atherosclerotic vascular morphology. 
A) Morphology and composition in the normal vasculature, with an intact endothelial 
layer and smooth muscle cells (SMC) contained mainly in the medial layer.  In the 
atherosclerotic vessel (B) smooth muscle has migrated and proliferated into the intimal 
space, macrophages have attached to the endothelium and migrated into in intima.  Once 
there, the macrophages become foam cells (FC) that deposit a lipid core upon death.  
These events can lead to a thrombus formation and vSMCs proliferation that will 
compromise the vessel lumen. 
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proliferation stage that is associated with progression of the disease.  This “phenotypic 

switching” is at the heart this disease. 

 

 Carcinogen-Induced Atherosclerotic Vascular Disease 

 A logical extension of the clonal theory of atherogenesis is that known chemical 

mutagens and carcinogens cause vSMC mutations and atherosclerotic lesions.  While the 

search for mutational targets has proven elusive, chemical mutagens have consistently 

been shown by different laboratories to induce atherosclerosis in experimental animals 

[50].   The body of knowledge implicating chemical carcinogens as etiologic factors in 

atherosclerosis coincided with Benditt’s original report.  Perhaps most relevant were the 

studies of Roy Albert and colleagues examining the atherogenicity of environmental 

chemical carcinogens [51].  Indeed, exposure of chickens to benzo(a)pyrene (BaP), a 

polycyclic aromatic hydrocarbon (PAH) present as a byproduct of the incomplete 

combustion of organic chemicals, initiates and/or accelerates atherosclerosis without 

altering serum cholesterol [52,53].  A similar response can be elicited by 7, 12-dimethyl-

benz [a, h] anthracene or 3-methylcholanthrene. The ability of these carcinogens to 

cause atherosclerotic lesions has been associated with cytochrome P450 mediated 

conversion of the parent hydrocarbon to reactive intermediates that adduct cellular 

macromolecules.  Aortic homogenates of chickens possess a cytochrome P-450-

dependent monooxygenase activity that bioactivates BaP to mutagens that bind 

covalently to DNA in vitro [54].  BaP hydroxylase activity is also expressed within the 

aortic wall in humans, monkeys and rabbits [55, 56].  Human fetal aortic smooth muscle 
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cells metabolize BaP and 7, 12-dimethylbenz[a]anthracene to phenols and 12-

hydroxymethyl-7-methylbenz[a]anthracene,7-hydroxymethyl-12-methylbenz[a] 

anthracene, 7, 12-dihydroxymethyl benz[a]anthracene, and trans-8, 9-dihydrodiol-7, 12-

dimethylbenz[a]anthracene, respectively.   

The majority of the activity responsible for the biotransformation of BaP is 

associated with the smooth muscle layers of the aorta, but activity is also localized in the 

aortic endothelium.  Interestingly, aortic aryl hydrocarbon hydroxylase activity 

correlates with the degree of susceptibility to atherosclerosis in avian species.  Other 

carcinogens implicated in animal or human atherosclerosis include 2, 4- and 2, 6-

dinitrotoluenes, nitrosamines, arsenic and dioxin [50].  Because the inherent genotoxic 

potential among this diverse group of carcinogens is highly variable, clearly complex 

mechanisms are at play in the initiation and progression of atherosclerosis by 

environmental carcinogens.  Regardless, the evidence suggests that atherosclerotic 

plaques and tumors both require disruption of mechanisms involved in control of 

cellular proliferation and differentiation.  Thus, “phenotypic switching” is at the heart of 

both diseases. 

 

 Risk Factors 

 Stroke, angina or heart attacks are just a few of the cardiovascular conditions that 

are preceded by, or accompanied by, atherosclerosis.  Risk factors for these diseases 

parallel those for atherosclerosis.  While there are risk factors that can not be modified 
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such as, genetics, familial history or age, there are many factors that can be modified to 

lower the occurrence or decrease the severity of atherosclerosis. 

 

 Smoking 

 The association between cigarette smoking and atherosclerosis is well 

established.  Smoking is one of the most important and most easily modifiable risk 

factors for this disease. Epidemiological studies have shown that smoking increases the 

incidence of atherosclerosis in both men and women and even in those exposed to 

passive secondary smoke [57]. Smoking has been established as increasing the incidence 

of cardiovascular disease. Conversely, the stopping of smoking will reduce the risk of 

atherosclerotic disease [58].  The pathophysiology of tobacco-related disease is complex 

with many confounding factors, the least of which is that cigarette smoke contains 

approximately 4000 compounds many of which are known atherogens and carcinogens 

[59].  These toxic compounds cause damage along many different biochemical 

pathways. This is just one of the many reasons why it is difficult to identify the 

mechanisms that lead to diseases that are tobacco related.  However, if one identifies and 

dissects out key compounds and metabolic by-products of cigarette smoking, then the 

process of identifying the mechanisms responsible becomes an easier task. Another 

problem with identifying the mechanisms of cigarette smoke induced disease is that in 

addition to the compounds themselves being pathogenic, the metabolic activation of the 

compounds present in tobacco can be highly pathogenic as well.  Sometimes these 

byproducts can even be more toxic that the parent compound found in smoke. 
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Experimental studies have shown that exposure to cigarette smoke induces the 

mutagenicity of heterocyclic amines found in smoke.  This increased mutagenicity 

occurs by metabolic activation of the compounds via the cytochrome p450 family of 

enzymes.  Smoking has been shown to specifically induce cyp1a2, cyp2a6, and cyp2a8 

[60, 61].   

 

 Sex Hormones 

 Estrogens and androgens have both been linked to the development of 

atherosclerosis.  Based on early epidemiological studies hormone replacement therapy 

(HRT) was recommended for all post-menopausal women [62].  This recommendation 

was based mainly on the positive biological effects that HRT seemed to have on 

cardiovascular disease.  However, recent clinical trials have shown that HRT may not be 

the best course of action in all cases because estrogen can produce undesirable effects in 

selective tissues.  Selective estrogen receptor modulation as well as tissue specific 

compounds may allow for clinicians to dissociate the favorable cardiovascular effects of 

estrogen from the unfavorable effects on breast and endometrial tissue [63].  

Testosterone has also been implicated in the development in atherosclerosis [64].  

However, like estrogen the causative effects of male hormones on atherogenesis are 

poorly understood and much more needs to be learned. 
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Age-Related 

 A relatively new concept has come about in medicine and biology that goes a 

long way in defining and describing pathologies that are seen in age-related diseases 

such an atherosclerosis.  This new hypothesis approaches these diseases as being the 

result of evolutionary pressure and is referred to as the Darwinian-evolutionary concept.  

According to this concept, man and other animals are designed as a compromise in form 

and function to guarantee survival until the time of reproduction.  These biological 

compromises that are made to ensure that the organism reaches a reproductive age 

whereby genetic material can be passed down to the next generation can be detrimental 

in later stages of life [65].  This compromise is not problematic for the majority of the 

animals in the world, because without human interference, the lifespan of the average 

animal has not dramatically increased.  However, this is not the case for man.  In the past 

hundred years, man’s lifespan has increased more than it has in the past 10,000 years.  

The compromises and evolutionary pressures that allowed man early on in his existence 

to be fit and survive to an age of reproduction, comes to be harmful later in life.  The 

genetic traits that allowed survival until reproductive age are now harmful in the aged 

[66, 67].  One clear example of this in atherosclerosis is immunity to HSP60.  HSP60 is 

highly conserved and is a highly immunogenic constituent of viruses, bacteria and 

parasites.  As a result, humans have developed immune reaction against microbial 

HSP60.  However, this can present problems because humans also have a HSP60 and 

this immunity to microbial HSP60 can lead to an autoimmune reaction against the hosts 

own HSP60 later in life [68].  
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 Diet  

 Given the central role that inflammation has on atherosclerosis, it should come as 

no surprise that diet can directly affect the pathogenesis of this disease.  Diet can have 

either a positive or negative effect, depending on the types and amounts of foods eaten.  

The most direct effect that diet can have on the inflammatory process is increasing the 

levels of antioxidants that are available to the body [69].  Alterations in these levels will 

enable the body to be better equipped to handle oxidative stress conditions.  Many 

studies have shown that increasing the intake of antioxidants either indirectly through 

the diet or directly via vitamin supplementation can afford a protective effect against 

inflammation in atherosclerosis [70].  Diet can also indirectly affect atherosclerosis in 

many other ways.  For example, it is known that the modification of cholesterol levels by 

dietary habits can, and does, have a beneficial effect on the progression and regression in 

atherosclerosis [71].  It has also been shown that there exists a strong correlation 

between dietary fat intake and predisposition for certain types of heart disease.  The 

toxins and mutagens that are also present in foods, either by the way it was processed, 

environmental contamination or as naturally occurring, can lead atherosclerotic disease 

[72]. 

 

Mechanisms of Vascular Disease 

 Atherosclerosis is a multifactoral disease.  As such, the mechanisms underlying 

the initiation and progression of atherosclerosis are complex and convoluted at best.  
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However, there are fundamental mechanisms that are common to all risk factors for 

atherosclerosis. 

 

 Inflammation 

 If there is one unifying concept that you can get the scientific community to 

agree on regarding the pathogenesis of atherosclerosis, is that inflammation and the 

reactions resulting from inflammation are key components in the disease.  Numerous 

pathophysiological observations in animals as well as in humans have led to the theory 

that chronic inflammation and the inflammatory process in general are key components 

in atherosclerosis.  Many of the key stages and components in atherosclerosis have a 

response to inflammation or the inflammatory pathway; migration, proliferation, gene 

expression, apoptosis and cell cycle regulation to name just a few.  Inflammation is 

characterized by macrophage activation, production of cytokines, inflammatory 

mediators, chemokines, acute phase proteins and mast cell activation [73].  All of these 

processes work in conjunction to activate and promote the inflammatory process.  Many 

of the inflammatory stimuli can affect nearby cells as well, such as endothelial cells, 

monocytes macrophages, platelets, and smooth muscle.  Inflammation can cause the 

production of cytokines by lymphocytes, macrophages, epithelial, or mesenchymal cells 

as well.  Chronic inflammation is often accompanied by, or followed by, the increased 

formation of ROS or even reactive nitrogen species.  This increase in oxidative stress 

can either be localized to the area of inflammation, or it can be systemic, all of which 

depends on the level of inflammation that is being experienced.  Continual inflammation 
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can result in a localized micro-environment in which there is an increase in the number 

of macrophages and lymphocytes.  This localized increase can lead to the formation of a 

lesion in the affected areas.  The inflammatory reactions that are seen in atherosclerosis 

are essentially the same inflammatory reactions seen in other inflammatory diseases such 

as rheumatoid arthritis, cirrhosis, and pulmonary fibrosis.  The only difference is that the 

cellular response in the arteries exhibits specific characteristics.  For example, in the 

chronic inflammatory response in the vessel wall there are three different types of 

macrophages present, each regulated by different T-cell cytokines.  Likewise, other 

inflammatory reactions share the same general characteristics as atherosclerotic 

inflammation with some minor changes specific to the cells type and location of where 

the inflammation is taking place [74, 75]. The initial damage to the blood vessel wall 

results in an inflammation response. Monocytes enter the artery wall from the 

bloodstreams. The monocytes differentiate into macrophages, which ingest oxidized 

cholesterol, slowly turning into large foam cells. Foam cells have a changed appearance 

resulting from numerous internal cytoplamic vesicles and resulting high lipid content. 

Microscopically, the lesion now appears as a fatty streak. Foam cells eventually die, and 

further propagate the inflammatory process. 

 

Infections 

 Injury due to infections, whether bacterial or viral, can activate the inflammatory 

cascade and processes that are associated with it, and contribute to the pathology of 

atherosclerosis.  Infectious pathogen burden has been implicated in the atherogenic 
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process.  Recent epidemiological studies have suggested that there may be an association 

between infection and atherosclerosis [76].  The impact of infectious burden on the 

progression of atherosclerosis follows the same etiology as that found in cancer.  This is 

that infection leads to inflammation, which in turn leads to oxidative stress, which 

affects the cellular homeostasis and cells ability to adequately deal with perturbations in 

homeostasis.  It should be noted that the relative risk of developing atherosclerosis 

seems to be related to the actual number of pathogens that an individual is infected with.  

When this happens, this can lead to a whole sequence of events that ultimately end up in 

the initiation of atherosclerosis [77]. 

 

 Oxidative Stress 

 In the early to intermediate stages of atherosclerosis there is a synthesis of DNA 

in lesions.  Many exogenous and endogenous factors can damage DNA via cellular 

stress.  One cause of such stress is the production of oxygen radicals.  The unregulated 

or prolonged production of oxidants has been linked to mutations and altered gene 

expression in many cell types [78].  It is through ROS that much of the damage occurs.  

ROS include superoxide anion, hydrogen peroxide, and hydroxyl radicals.  ROS have 

been linked to a variety of environmental stressors such as tobacco smoke, 

environmental pollutants, heat shock and UV irradiation.  Oxidative stress can lead to 

inflammation, cellular proliferation and lesion formation and is thought to be an 

important part in the initiation stage of atherosclerosis.  The consequences of oxidative 

stress and the pathways that lead to oxidative stress in the vasculature can be seen in 
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figure 3.  Oxidative stress has been linked with DNA instability, hypermethylation, 

mutations in repair genes, modification of macromolecules and cell cycle deregulation 

[79].  Such perturbations lead to an imbalance in cellular redox homeostasis, and can 

initiate the pathogenic cascade of oxidative stress.  This pathogenic cascade can lead to 

the expression of proteins not normally found in the cells.  An example of the role of 

oxidative stress in atherogenesis lies in p38mitogen-activated protein kinase (MAPK).  

p38 MAPK is involved in cellular migration, growth and apoptosis [80].  It has been 

shown that oxidative stress can induce p38MAPK which can lead to activation of several 

pathways that are detrimental in both of these diseases [81]. 

 

Figure 3.  Biological consequences of oxidative stress. 
Schematic representation of some of the causes and consequences of oxidative stress in 
the vasculature. 
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Genomic Targets in Atherogenesis 

 The growth and progression of atherosclerotic plaques requires a “phenotypic 

switch” of vSMCs from contractile to proliferative phenotypes.  This initial “switch” is 

at the core of atherogenesis and therefore, the study of oncogenes and related growth 

factors has dominated research efforts in the field of atherosclerosis for many years.  

These studies have proven critical to the elucidation of mechanisms of deregulation of 

vSMC proliferation in atherosclerotic plaques.  Platelet-derived growth factor (PDGF) 

has been identified as a key mediator of proliferation in atherosclerotic lesions [82].  

This protein is the product of the c-sis proto-oncogene, the first found as part of a 

retrovirus isolated from a monkey sarcoma.  Barrett and Benditt in 1987 assayed the 

expression of PDGF, PDGF-B, and v-sis gene expression in carotid plaques removed by 

endarterectomy and found an excess expression of PDGF-B message in the lesions 

compared with that found in normal artery wall [83].  PDGF was originally considered a 

likely oncogenic target in atherogenesis because its B-chain gene is almost identical to 

the transforming gene of the simian sarcoma virus [84].  This virus transforms many 

PDGF-responsive cells in tissue culture, including SMCs, fibroblasts and NIH 3T3 cells, 

and the phenotype of virus-transformed cells is relatively benign, being intermediate 

between that of normal cells and that produced by Kirsten mouse sarcoma virus.  Many 

cells transformed in culture by agents other than simian sarcoma virus or obtained from 

naturally occurring tumors produce a PDGF-like protein.  Whether this represents 

species-specific differences, or whether the population of vSMCs is different remains to 

be elucidated.  Little is known about the mechanism of c-sis activation.  Bejcek et al. 
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suggested that transformation by this gene is due to internal activation of the PDGF 

receptor before reaching the cell surface [85].  Other studies have implicated the myb 

gene in atherogenesis [86].  The c-myb and v-myb proteins bind DNA in a sequence-

specific manner [82], and trans-activate or trans-repress promoters containing the 

binding sequence [87].  Antisense studies showed that local delivery of antisense c-myb 

oligonucleotide suppresses intimal accumulation in a rat carotid SMC injury model [88].  

Other reports have implicated fos and jun in atherogenesis [89]. 

c-Ha-ras is a proto-oncogene that is a critical regulator of proliferative 

phenotypes and cellular differentiation of vSMCs.  Studies established a link between 

the expression of proliferative vSMC phenotypes and alterations in ras-regulated 

phospholipid signaling [90].  In subsequent studies, c-Ha-ras was identified as a critical 

regulator of vSMC growth and differentiation [91]. 

Exposure of vSMCs to the atherogenic hydrocarbon benzo-a-pyrene, BaP, 

enhances c-Ha-ras gene expression [92].  This response correlates with binding of BaP 

to protein(s) that interact with cis-acting regulatory elements in the 5'UTR of the c-Ha-

ras gene to increase ras transcription rates [93].  Sequence analysis of the c-Ha-ras 

promoter identified an Ahr response element (AhRE) at -30 and an antioxidant response 

element (ARE] at -543.  These elements were shown to interact in the regulation of 

redox-mediated transcriptional activation of the c-Ha-ras gene. 
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Murine Models of Cardiovascular Disease 

 In the study of cardiovascular disease, the use of murine models has proven to be 

invaluable tool.  It can safely be said that without the murine model system far less 

would be known about the etiology and pathology of cardiovascular disease. 

  

 In Vivo Models 
 
 In vitro methods of molecular analysis play a critical role in the laboratory today.  

However, discrepancies can arise between the in vitro and in vivo testing methods.  In 

vitro tests do not take into account the potential impact of factors such as plasma protein 

binding, tissue distribution, formation of active metabolites or hemodynamic effects.  

During in vitro analysis there exists the real possibility that the testing results will 

provide false positive or negative results when applied to the whole animal studies. For 

example, drug induced histamine release was not detected by in vitro experiments in the 

screening of some antibiotics and was only realized when applied to an in vivo model 

system [94].   For this reason, tests in experimental animals have to be carried out at 

some point to confirm in vitro data.  The advantages of a whole animal study is that it 

allows for the study of the integrative actions of the drug in question in a real 

pathological context [95].  It is only the combination of both in vitro and in vivo testing 

methods that the pharmacodynamics of the response can be fully appreciated. 
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LDL Model                                               

 During the process of atherogenesis, macrophages and vascular smooth muscle 

cells interact with low density lipoproteins (LDLs) to form foam cells.  Gesquiere et al. 

(1999) demonstrated that cholesterol metabolism is altered in the presence of free 

radicals in vascular smooth muscle cells [96].  In this manner, cholesterol and 

cholesteryl esters accumulate to stimulate formation of foam cells. The lipid model 

proposes that an elevation in levels of plasma LDL will result in infiltration of LDL into 

the arterial wall.  This infiltration leads to an increase in lipid accumulation in cells of 

the vascular wall, specifically smooth muscle cells and macrophages. LDL is also 

responsible for increases in smooth muscle cell hyperplasia and migration into the 

subintimal and intimal region in response to growth factors. Under these conditions, 

LDL is modified [39].  This altered LDL is rendered more atherogenic. The modified or 

oxidized LDL that is found in the vascular wall acts as a chemokine to monocytes.  This 

action promotes their migration into the intima, their early appearance in the fatty streak, 

and their transformation and retention in the subintimal compartment as macrophages. 

Also found on the surface of macrophages are scavenger receptors.  These receptors 

facilitate the entry of oxidized LDL into the vSMCs.  The entry of modified LDL 

transfers them into lipid-laden macrophages and foam cells. Oxidized LDL has also been 

found to be cytotoxic to other cell types, endothelial cells, and may be responsible for 

their dysfunction or loss from the more advanced lesion [97].  In a porcine model of 

atherosclerosis, pigs were fed a cholesterol-rich Western diet. Within 2 weeks of 

inducing hypercholesterolemia in these animals, monocytes become attached to the 
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surface of the arterial endothelium through the induction of specific receptors.  These 

monocytes then migrated into the subendothelium space, and started to accumulate lipid 

and started the transformation into foam cells [39]. Proliferating smooth muscle cells 

also accumulate lipid at an increased rate compared to non-proliferating cells. As the 

fatty streak and fibrous plaque enlarge and bulge into the lumen, the subendothelium 

becomes exposed to the blood at sites of endothelial retraction or tear, and platelet 

aggregates and mural thrombi form. Release of growth factors from the aggregated 

platelets may increase smooth muscle proliferation in the intima. Alternatively, 

organization and incorporation of the thrombus into the atherosclerotic plaque may 

contribute to its growth. 

 

  ApoE Model 

 In the early 90s, the development of apoliprotein E mutant mice provided a 

genetically modified model that replicates many of the features of the human disease 

[98].  This model replicates many of the changes observed in human populations linked 

to heightened susceptibility to atherosclerosis.  The progressive series of atherosclerotic 

lesions developed in these animals is similar to those found in humans [99,100]. A 

recent report investigated the interaction between hypercholesterolemia and BaP in apoE 

mutant mice.  These experiments showed that BaP accelerates the progression of 

atherosclerotic plaques in apoE mutant mice via mechanisms that involve a local 

inflammatory response [101]. Apolipoprotein E is a lipoprotein (a protein connected to a 

fat). Lipoproteins are responsible for packaging cholesterol and other fats, carrying them 
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through the bloodstream, and processing them. In particular, apolipoprotein E is a major 

component of specific lipoproteins called very low-density lipoproteins (VLDL). A key 

function of VLDLs is to remove excess cholesterol from the blood and carry it to the 

liver for processing. Maintaining normal levels of cholesterol is essential for the 

prevention of atherosclerosis.  There are at least three slightly different versions (alleles) 

of the APOE gene. The major alleles are called e2, e3, and e4. The most common allele 

is e3, which is found in more than half of the population [102].  Apolipoprotein E is also 

associated with cardiovascular disorders. People who carry at least one copy of the 

APOE e4 allele are at increased risk for atherosclerosis, which is an accumulation of 

fatty deposits in the lining of the arteries [103].  People who carry two copies of the 

APOE e2 allele are at risk for a condition known as hyperlipoproteinemia type III. This 

condition is characterized by increased levels of cholesterol, triglycerides (fats), and 

molecules called beta-VLDLs, which carry cholesterol and lipoproteins in the 

bloodstream [104]. 

 

AAM Model 

 Allylamine (AAM), 3-aminopropene is a precursor used in the manufacturing of 

several commercial and pharmaceutical by products [105].  AAM has been found to 

preferentially localize within large to medium sized arteries.  AAM is a selective 

vascular toxicant that causes the induction of vascular lesions that are similar to those 

found in atherosclerosis [106].  The toxicity and specificity of AAM is mediated by a 

vascular specific enzyme semicarbazide specific amine oxidase (SSAO).  SSAO 
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catalyzes the conversion of AAM to the reactive metabolites hydrogen peroxide and 

acrolein [107].  For a schematic representation of the metabolism of AAM see figure 4. 

The hydrogen peroxide that is generated during the deamination process contributes to 

cellular injury by causing the formation of oxygen radicals [108].  

 
 
 

H202 SSAO CH2=CH-CHOCH2=CH-CH2-NH3 NH2+ Hydrogen + Allylamine Acrolein 
Peroxide 

 

Figure 4. Allylamine metabolism. 
Allylamine accumulates in vascular tissues where it is converted to acrolein and 
hydrogen peroxide by semicarbazide-sensative amine oxidase (SSAO).  These two 
oxidative by products cause oxidative stress in the tissue. 

 
 
 
 
 The oxidative injury resulting from the metabolism of AAM can be inhibited by 

semicarbazide [107].  Recent studies from this lab and others have shown that vSMCs 

treated with AAM have an enhanced mitogenic responsiveness and this enhancement 

involves alterations in the regulation of growth by the ECM.  Cells plated on tissue 

culture dishes precoated with ECM components from AAM treated cells are afforded a 

growth advantage [109].  Cells from AAM treated rats display a rounded morphology, 

loss of contractile capacity and acquisition of enhanced mitogenic responsiveness [110].  

The enhanced proliferative capacity in AAM treated cells involves enhanced 
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phophalidylinositol metabolism, increase c-Ha-ras proto-oncogene expression and 

deposition of ECM components [111]. 

Experiments in the late 60’s and early 70’s established a model of atherogenesis in 

which chronic exposure to a cardiovascular-specific poison induces vascular lesions of 

atherosclerotic morphology.  In these experiments, male Sprague-Dawley rats are 

gavaged with allylamine for up to 20 days to allow preferential accumulation of the 

amine within the vascular compartment and conversion to acrolein and hydrogen 

peroxide by a vascular-specific amine oxidase [112].  Elevated levels of this enzyme in 

vSMCs account for highly specific oxidant injury to the media by acrolein and hydrogen 

peroxide, and induction of atherogenic vSMC phenotypes [113,114,115,116].  An 

example of the induction of the atherogenic phenotype by AAM through altered gene 

expression of osteopontin is shown in figure 5.  In vitro analysis of vSMCs isolated from 

oxidant-treated animals revealed disorganization of the contractile apparatus, increases 

in endoplasmic reticulum, and emergence of a prominent nucleolus.  Oxidant-activated 

vSMCs acquire a proliferative advantage that allows them to proliferate into the luminal 

space and contribute to plaque formation in vivo.   
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Figure 5.  Mechanism of allylamine-induced smooth muscle proliferation. 
The vascular specific compound allylamine (AAM) induces an increase in the 
expression of osteopontin.  This increased level of osteopontin, once it is secreted into 
the extracellular matrix is cleaved via thrombin.  This thrombin cleaved fragment, tOPN, 
then binds in the αV integrin and causes and increase in many genes responsible for 
phenotype in vSMCs. 
 
 In Vitro Models 

 Primary cultures can be established with relative ease from cell suspensions of 

cardiac and vascular tissue.  Vascular endothelial and smooth muscle cultures can also 

be established by the explant method in which pieces of tissue are placed in a culture 

vessel to allow for cellular migration and proliferation in vitro.  Neonatal and embryonic 

cells of cardiac origin proliferate readily under appropriate conditions in vitro [93].  The 
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ability of adult cardiac myocytes cells to divide is repressed, but not completely lost 

[117].  Myocardial cell division can be stimulated by stable insertion of the large tumor 

antigen from the SV40 virus into the myocyte genome [118].  

 Vascular endothelial and smooth muscle cells derived from large and medium-

sized vessels of embryonic, neonatal, or adult animals proliferate readily under 

appropriate conditions in vitro [119].   As such, cultures can be propagated to prepare 

cell strains that retain variable degrees of differentiation as a function of cultivation in 

vitro.  Bastaki et al. (1997] completed studies to establish three mouse endothelial cell 

lines from aorta (MAECs)[120], brain capillaries (MBECs), and heart capillaries 

(MHECs).  These cell lines exhibit endogenous expression of specific markers, as 

evidenced by angiotensin-converting enzyme, acetylated LDL receptor, constitutive 

endothelial NO synthase, and vascular cell adhesion molecule-1 and bind Griffonia 

simplicifolia-I lectin.  In other studies, an in vitro model of vascular injury by 

menadione-induced oxidative stress in bovine heart microvascular endothelial cells was 

developed [121].  

 VSMCs in suspension can be separated from non-muscle cells by a differential 

pour-off technique based on the rate of attachment of cells in suspension to the 

substratum [122].  Because the percentage of fibroblasts in culture increases 

logarithmically, if no attempt is made to separate individual cell types, fibroblasts will 

eventually dominate the cultures.  A monoclonal antibody to cell surface adhesion 

factors has been used to enrich preparations of cultured vSMCs [123].  Addition of 
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mitotic inhibitors and maintenance of cultures in glutamine-free or serum-free media 

have also been successfully used to enrich culture purity [124].    

 Matrix molecules modulate cellular behavior and toxicological responsiveness 

[125].  Recent work has established a role for ECM interactions in the induction of 

proliferative vascular smooth muscle cells phenotypes following oxidative chemical 

injury [126].  Other important considerations related to the use of cultured cell systems 

includes recognition that the presence of serum modulates antioxidant capabilities in 

vitro [127], and that cardiovascular cells in culture undergo variable degrees of 

dedifferentiation [128,129,130].  

Of particular interest from a toxicological perspective is that CYP (cytochrome 

p450) activities are present in cells of the cardiovascular system, and mediate 

metabolism-dependent toxicities.  For instance, vertebrate cardiac endothelial cells of the 

marine scup express CYP1A1 [131].  Although CYPI family members are often 

associated with metabolism of exogenous substrates, studies have linked P450s to 

eicosanoid formation and metabolism.  This is significant given the prominent role of 

these intermediates in regulation of cellular functions [132,133].  The pattern of 

constitutive and inducible expression of CYPIA1 and CYPIB1 genes in cultured human 

vascular endothelial cells and smooth muscle cells was recently defined [134].  In view 

of the role of CYPs in oxidation of exogenous and endogenous substrates, a link between 

CYP-mediated arachidonic acid metabolism, vascular SMC signaling and oxidant-

induced atherogenesis has been proposed. 
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Because toxicity is often due to interactions with, or disruption of antioxidant 

defense systems, measurements of the redox status of cells may be particularly useful in 

the elucidation of mechanisms of toxicity [135].  Ionic homeostasis can also be used as 

an index of disturbances in the structural and functional integrity of the plasma 

membrane [136].  Co-culture systems of muscle and non-muscle cells have been used to 

evaluate critical cell-cell interactions.  Co-cultures of vascular endothelial and smooth 

muscle cells [137,138], or cardiac myocytes and neurons have been employed to 

reconstruct the complexities of the cellular environment in vivo, while retaining the 

advantages of cell culture. The complexity of co-culture systems is exemplified by 

studies which show that endothelial cells modulate the extent of binding, internalization, 

and degradation of low-density lipoproteins by arterial smooth muscle cells [139], and 

produce growth factors for both smooth muscle cells and fibroblasts [140]. 

 Particularly relevant are the paracrine influences exerted by inflammatory cells 

recruited to sites of injury, such as macrophages.  Co-culture systems in which cells are 

seeded individually on separate surfaces and separated by semipermiable membranes 

have been developed [141,142,143].  Smooth muscle cells are seeded on conventional 

tissue culture plates, while macrophages are seeded on tissue culture inserts made of a 

semipermeable membrane of varying pore sizes. Because this co-culture model obviates 

direct cell-cell contact, individual cell populations can be separated at any time, while 

allowing soluble factors secreted from one cell type to interact with the other.   

 In other studies, rat aorta vascular smooth muscle cells and rat heart beating 

myocytes were challenged with allylamine and beta-aminopropionitrile singly and in 
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combination [144].  A combination of these agents provides myocardial protection from 

allylamine injury, but lead to severe aortic injury.  These responses are due to increased 

accumulation of allylamine metabolites in the aorta.  He et al. used cultured rat vascular 

smooth muscle cells to demonstrate that glutathione S-transferase is important in the 

defense against electrophilic atherogens [145]. This study emphasized the importance of 

vascular smooth muscle xenobiotic metabolism in the generation of reactive oxygen 

species, and cellular defense against oxidative stress and ensuing atherogenicity. 

 

In Depth Study of Vascular Responses to Chemically-Induced Vascular Injury 

 As outlined in the previous sections, oxidative stress induced by inflammatory 

cells, viruses, bacteria, smoke, or chemicals plays a central role in the onset and 

progression of atherosclerosis.  Therefore, studies were conducted to evaluate critical 

gene targets in oxidant-induced vascular injury and the mechanisms of osteopontin (opn) 

gene dysregulation.  Studies were carried out to characterize the mechanisms by which 

opn contributes to the atherogenic phenotype.  Specifically, two hypotheses were tested: 

1) Modulation of vascular smooth muscle cells (vSMCs) to the atherogenic phenotype 

via oxidative stress, in vitro and in vivo, involves activation of osteopontin (OPN).  2)  

The phenotypic transition and activation by oxidative stress that is seen in vSMCs is due 

to up-regulation of osteopontin, which is controlled at the transcriptional level by redox-

regulated cis-acting elements. 
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CHAPTER II 

NOVEL GENOMIC TARGETS IN OXIDANT-INDUCED 

VASCULAR INJURY† 

 
Synopsis 

To study the complex interactions between oxidative injury and the pathogenesis 

of vascular disease, vascular gene expression was examined in male Sprague Dawley 

rats given 35 or 70 mg/kg allylamine, a synthetic amine converted to acrolein and 

hydrogen peroxide within the vascular wall.  Vascular lesions and extensive vascular 

remodeling, coupled to increased production of 8-epi-PGF2α nuclear localization of NF-

κB, and alterations in glutathione homeostasis, were observed in animals treated with 

allylamine for up to 20 days.  Transcriptional profiling, immunohistochemistry, and in 

situ hybridization showed that genes involved in adhesion and extracellular matrix (α1 

integrin, collagen), cytoskeletal rearrangements (α-smooth muscle actin, α-

tropomyosin), and signal transduction (NFκB, osteopontin, and LINE) were altered by 

oxidant treatment.  To evaluate mechanisms of gene dysregulation, cultured aortic 

smooth muscle cells were challenged with allylamine or its metabolites and processed 

for molecular analysis.  These agents increased formation of reactive oxygen species and 

elicited changes in gene expression similar to those observed in vivo.  Oxidative stress 

and changes in gene expression were inhibited by N-acetylcysteine, a precursor of 
                                                 
† Reprinted from Journal of Molecular and Cellular Cardiology, 38(6), Partridge CR, Williams ES, 
Barhoumin R, Tadesse MG, Johnson CD, Lu KP, Meininger GA, Wilson E, Ramos KS, Novel and 
Genomic Targets in Oxidant-Induced Vascular Injury, 983-996, Copyright 2005, with permission from 
Elsevier. 
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glutathione.  These results indicate that genes along the extracellular matrix-integrin-

cytoskeletal axis, in addition to LINE, are molecular targets in oxidant-induced vascular 

injury. 

 

Introduction 

The development of atherosclerosis involves damage to endothelial cells and 

vascular smooth muscle cells (vSMCs), influx of inflammatory cells to sites of injury, 

release of inflammatory mediators, uncontrolled proliferation of vSMCs, and 

accumulation of lipids and matrix proteins.  The uncontrolled proliferation of vSMCs is 

a major factor contributing to lesion progression, and involves reprogramming of 

phenotypic expression from a quiescent to a mitogen responsive, highly proliferative 

state [146].  This phenotypic switch has been extensively studied, but little is known 

about the complex gene-gene interactions that participate in phenotypic control.  Of 

relevance is the finding that vascular oxidative stress caused by endogenous or 

exogenous reactive oxygen species (ROS) is a major contributor to phenotypic 

modulation and atherogenesis [147].   

Many of the vascular disorders involving phenotypic modulation of vSMCs have 

roots that can be traced to ROS and its effects.  For example, Angiotensin II induced 

hypertrophy of vSMCs is dependent on hydrogen peroxide produced intracellularly 

[148].  Likewise, there is a clear cut requirement for hydrogen peroxide in PDGF-

induced vSMC proliferation [149].  However, much of the work completed to date 

examining the impact of oxidative stress on vascular cell proliferation has relied solely 
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on the use of in vitro models, therefore hampering the study of the complex biological 

interactions in vivo.   

The study of vascular oxidative stress in vivo in this laboratory has been 

facilitated in experiments where oxidative injury is localized to cells of the 

cardiovascular system.  To this end, a chemical model of vascular injury has been 

developed where allylamine, a synthetic aliphatic amine converted to acrolein and 

hydrogen peroxide, is administered to rats for varying times [150].  In this model, 

repeated cycles of injury promote the development of vSMC lesions and phenotypic 

modulation of vSMCs.  The oxidative injury induced by allylamine is highly specific 

because metabolism of the parent amine is catalyzed by a vascular-specific amine 

oxidase expressed predominantly in vSMC [151].  Both acrolein and hydrogen peroxide 

promote peroxidative injury and activate the cellular stress response in vSMCs 

[152,153,154].  These metabolites induce phenotypic modulation of vSMCs in vivo, 

characterized by morphological and ultrastructural alterations [155], as well as changes 

in mitogenic signaling, extracellular matrix production and integrin expression [156]. 

In this study we test the hypothesis that that repeated cycles of oxidative injury 

alter the genomic circuitry of vSMCs.  Evidence is presented that the production of 

reactive intermediates from allylamine leads to changes in gene expression caused by 

compromised redox homeostasis.  As such, the injury induced by oxidative metabolites 

was fully preventable by N-acetylcysteine, an intracellular precursor of glutathione. Our 

findings defined genes within the vessel wall affected by oxidative stress and showed 
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that the adaptive response to oxidative injury involves disruption of growth regulatory 

genes and extracellular matrix-integrin-cytoskeletal associated genes.   

 

Materials and Methods 

 

 Animals   

 Six week old (175-180 g) male Sprague-Dawley rats were gavaged daily with 35 

or 70 mg/kg/day allylamine (99% purity) (Sigma, Milwaukee, WI), or water 

(1ml/kg/day) for 20 days.  All experimental procedures involving animals were in 

compliance with federal and institutional guidelines. 

 

 Antibodies  

  α1 Integrin and NF-κB were purchased from Chemicon (Temecula, CA), OPN 

from Santa Cruz (Santa Cruz, CA), α smooth muscle actin from Sigma (St. Louis, MO) 

and isoprostane from Assay Designs (Ann Arbor, Michigan). 

 

 Immunofluorescence 

   Vessels were removed, cut into 5 mm sections and placed in OCT embedding 

media (TissueTek, Torrence, CA), snap frozen in liquid nitrogen, and stored at –80°C.  

Tissues were sectioned at 8-10 µm, fixed in –20°C methanol for 15 minutes, and 

processed as described in Molecular Probes ELF-97 Protocol MP 06600 (Molecular 

Probes, Eugene, OR).  Tissues were incubated for 5 minutes with 4’, 6-diamidino-2-
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phenylindole, dihydrochloride (DAPI).  Slides were mounted in ELF-97 

immunohistochemical mounting medium from Molecular Probes. 

 

 Western Analysis   

 Thoracic aortas were removed and completely stripped of adventitia.  Vessels 

were placed into liquid N2 and powdered using a mortar and pestle.  Powdered aortas 

were then placed into T-PER (Pierce, Rockford IL) containing 1X HALT protease 

inhibitor cocktail (Pierce), and proteins extracted according to a manufacturer’s protocol.  

Protein concentrations were determined using a Biorad protein assay (Hercules, CA).  

Twenty-five µg of protein/lane were loaded onto NuPage 4-12% Bis-Tris gels 

(Invitrogen, Carlsbad, CA), run at 10V for 1 hr and then transferred onto Invitrolon 

PVDF (Invitrogen).  Gels were stained with Gelcode Blue stain reagent (Pierce) and the 

membranes stained with Ponceau S to determine loading efficiency.  Membranes were 

blocked overnight using 10% Blotto non-fat dry milk (Santa Cruz) and incubated with 

primary and secondary antibodies as noted below.  Primary antibody concentrations 

were as follows; α-smooth muscle actin (0.4 µg/ml), osteopontin (0.4 µg/ml), alpha-1 

integrin (1 µg/ml), and alpha-tropomyosin (0.67 µg/ml).  Blots were developed using the 

Pierce SuperSignal West Dura substrate.  Films were scanned and analyzed using 1D 

Image Anaysis Software version 3.5 (Kodak, Rochester, NY). 
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 Fluorescence In Situ Hybridization 

  The probe for the α-tropomyosin target (Tpm1) was a 50 nucleotide antisense 

oligo: 5  CAA GAC TCC TTC ATC AAG CCG GAT GTC CCA CCT CTC TGA GCT 

CTT TTT CG 3 .  Sense probe was used as a control for non-specific binding.  The 

oligos were designed according to manufacturer’s recommendations, labeled with Alexa 

Fluor 488 (Molecular Probes, Eugene, OR) and purified by PAGE.  Pretreatment and 

hybridization of sections was completed as specified in the Starfish (Fluorescent In Situ 

Detection kit (Genisphere, Hatfield PA).  

 

 Microscopy  

  Labeled tissues were visualized using a Bio-Rad RTS200MP Confocal 

Microscope (Bio-Rad, Hercules, CA) equipped with 4 , 6-diamidino-2-phenylindole, 

dihydrochloride (DAPI) long-pass (LP) and fluorescein-5-isothiocyanate (FITC) filter 

sets.  Sections were excited with the Tsunami Laser set to 790 nm.  ELF-substrate 

excitation and emission wavelengths were 360 and 535 ±18 nm, respectively.  UV band-

pass (BP) excitation filter 340–380 nm and LP suppression filter (425 nm) were used for 

the collection of DAPI images.  For FISH experiments, the images were captured using a 

Zeiss Axiovert200 equipped with an Axiocam HRm cooled CCD camera (Zeiss, 

Thornwood, NY).  
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 Image Analysis   

 Image analysis was carried out using either Metamorph Image Analysis software 

version 6.0 (Universal Imaging Systems, Downington PA) for immunofluorescence or 

KS3000 ver. 3.0 image analysis software (Zeiss, Thornwood,NY) for fluorescence in 

situ hybridization.  In each vessel, autofluorescence originating from elastin, cholesterol 

and lipids was corrected prior to quantification of antigen levels [157].  The extent of 

non-specific binding was also determined using secondary antibody only, or non-related 

IgG, and this intensity was used to normalize the signal of all antibodies examined.  

Frozen sections (8-10 µm in thickness) of thoracic aorta from at least 3 different animals 

were examined for each antigen.   

 

 Vessel Isolation for Microarray Analysis   

 Thoracic aortas were harvested from Sprague-Dawley rats treated with 35 or 70 

mg/kg allylamine for 20 days.  Following removal of the adventitia, isolated vessels 

were placed into RNAlater (Ambion, Austin, TX), snap frozen in liquid nitrogen, and 

stored at  

-80°C for later use, or immediately homogenized in Trizol (Invitrogen, Carlsbad, CA) 

for RNA isolation. 

 

 RNA Isolation  

  Frozen aortas were thawed on ice and rinsed with sterile PBS to remove excess 

tissue storage solution.  Tissues were placed in 1ml of TRIZOL Reagent and 



 46

homogenized using a polytron homogenizer.  RNA was isolated as specified in the 

manufacturer’s protocol except for an additional overnight incubation at –20° C in 

isopropanol. 

 

 Affymetrix GeneChip  

  Double stranded cDNA synthesis and biotinylated cRNA preparation were 

conducted as recommended in the Affymetrix GeneChip Expression Analysis Technical 

Manual (Affymetrix, Santa Clara, CA). Microarray analysis was repeated twice using 

different sources of RNA. 

 

 Data Analysis   

 After scanning, each image was inspected for major chip defects or abnormalities 

in hybridization signal as a quality control and analyzed using Affymetrix Microarray 

Suite Software 5.0 version for absolute and relative analyses. The data was then 

normalized to the 50th percentile of the median intensity for each chip.  All data sets 

used for microarray analysis are publicly available at the NCBI GEO repository under 

the following accession numbers GSM9246, GSM9248, GSM9249 and GSE610. 

 

  Clustering  

  K-means clustering was used to infer gene groupings before and after induction 

of oxidative stress.  The K-means clustering algorithm updates the cluster assignment of 

individual genes after each iteration.  Similarity between genes was measured based on a 
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minimum distance measure known as the Euclidean distance.  The process was repeated 

until the grouping stabilized. In our study, we initialized the algorithm with 5 cluster 

groups. 

 

 Cell Culture  

  vSMCs were isolated by enzymatic digestion of aortas from adult male 

Sprague–Dawley rats [158].  Subconfluent cultures were split at a 1:4 ratio twice weekly 

and maintained in Medium 199 supplemented with 10% FBS and 2 mM glutamine in 

5% CO2:95% air at 37 °C. Cell identity was confirmed by α smooth muscle actin 

immunofluorescence as described [159]. 

 

 ROS Detection   

 DCFDA (Molecular Probes,  Eugene OR) was used to measure ROS in naïve 

vSMCs seeded at 2x105 cells/well in 48 well tissue culture plates (Costar, Corning, NY).  

Cells were grown to ~80% confluence in M199 without phenol red (Invitrogen, 

Carlsbad,CA ) containing 10% FBS.  Media was aspirated and plates washed with sterile 

PBS.  Cells were pretreated for 1hr with M199 media containing 0.5% FBS plus or 

minus 0.5mM N-acetylcysteine.  Cells were then incubated for varying time points with 

allylamine or its metabolites in media containing 0.5% FBS and 10µM DCFDA.  

DCFDA fluorescence was determined on a Fusion plate reader (Perkin Elmer, 

Wellesley, MA) at an excitation of 480nm and emission of 530 nm. 
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 Real Time PCR  

  The double-stranded DNA-binding dye method was used to measure RNA 

levels. Primers were chosen using Beacon Designer 2.1 (Premier Biosoft, Palo Alto, 

CA). Real-time PCR amplification was performed using a Biorad iCycler (Biorad, 

LaJolla, CA).  For each run, 25 µl of 2X SYBR Master mix (Perkin-Elmer Applied 

Biosystems) and 0.4 µM of forward and reverse primers along with 10 µl each of 

appropriate transcriptase were mixed. The thermal cycling conditions comprised an 

initial denaturation step at 95°C for 10 minutes, 50 cycles at 95°C for 15 seconds, and 

65°C for 1 minutes. All experiments were performed in duplicate.  The primer sequences 

used are as follows; osteopontin Forward (F) 5’AGCCAGCCAAGGACCAACTAC 

3’,Reverse  (R) 5’ TGCCAAAC TCAGCCACTTTCAC 3’;α-1 integrin F 

5’AGAGGCACAATCCAGGACTG3’,R5’ AGGAGGAGCGAGACATTCAC 3’; 

alpha-tropomyosin F5’ CCTCCCAAGACTC CTTCATC 3’, R 5’ 

ACCTCTGTGACAATAAGAAAGC; LINE F5’ GTGCGGCT TCCAACATTCC 3’, 

R5’ AAGGTGGGCGTGTCTACAG 3’, GAPDH F5’ 

TGTTGAAGTCACAGGAGACAACCT 3’,R5’ TGTTGAAGTCACAGGAG 

ACAACCT 3’. 

 

Results 

 Vascular Injury 

   Male Sprague-Dawley rats were gavaged daily with 35 or 70 mg/kg/day 

allylamine or water (1ml/kg) for 20 days to induce vascular injury.  At the end of this 
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dosing regimen, thoracic aortas were removed and processed for morphological analysis.  

Allylamine treatment induced medial thickening as early as 7 days (Figure 6., compare 

panels A and C).  Pre-treatment with NAC prevented increased thickening in vessels 

from stressed animals (Figure 6., compare panels B and C).  Extensive remodeling and 

general disorganization of elastin fibers over the course of the treatment period was 

observed in vessels from allylamine-treated animals (Figure 6., compare panels G and I).  

To determine if vascular injury involved oxidative stress, frozen sections were probed 

with an antibody for 8-epi-PGF2α an isoprostane formed in vivo by a non-enzymatic 

free radical peroxidation step.  Isoprostanes are regarded as mediators of oxidant-

induced atherosclerosis [160], and reliable indices of oxidative stress in vivo [161].  
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Figure 6.  Morphological changes in Sprague-Dawley rats subjected to oxidative 
challenge.  
Images are representative of sections from animals that were control treated (panels A,D 
and G), pre-treated with NAC followed by AAM treatment (panels B,E,and H) or 
animals challenged with 70 mg/kg allylamine for various times (Panels C,F, and I).  
Medial thickening of the thoracic aorta is seen as early as 7 days after the start of the 
dosing regimen. (Panels A, B and C) Bar=250µm.  H&E staining of lesion area from 
control (D) ,NAC pre-treated (E)and stressed animals (F) showing anatomy of aorta and 
lesion. Bar=50µm. Elastin disorganization and vascular remodeling in animals treated 
with allylamine for 20 days (Panels G,H and I) Bar= 25µm.  These results are 
representative of vessel sections from 7 animals. Ti=Tunica intima, Tm=Tunica media, 
Ta=Tunica adventita, L=Lumen. 
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 The fluorescence signals for isoprostane in aortas from control and stressed 

animals are depicted in Figure 7 (panels A and B).  Significant increases in 8-epi-PGF2α 

signal intensity were observed in stressed animals relative to controls, as quantified 

using Metamorph software (Figure 7 C).  Induction of oxidative stress was also 

evidenced by increased nuclear localization of NFκB (Figure 7, panels D-F), as well as 

alterations in glutathione homeostasis.  Of note was the finding that amine treatment for 

20 days increased vascular levels of oxidized glutathione 3-fold (0.11 ± 0.011 versus 

0.39 ± 0.16 nmol/mg protein in control compared to treated animals, n = 7).  Further 

evidence for a role of oxidative stress in allylamine injury came from studies showing 

that daily pre-treatment with N-acetylcysteine prevented lesion occurrence in allylamine 

treated rats (Figure 6, panels B and C or E and F).  Next, the expression of α-smooth 

muscle actin, a marker of smooth muscle differentiation, was evaluated.  A marked 

decrease in α-smooth muscle actin staining was observed in oxidatively stressed animals 

(Figure 7, panels G-I).  These findings collectively indicate that induction of vascular 

lesions by allylamine involves oxidative stress within the aortic wall and changes in α-

smooth muscle actin.  Western blot analysis of α-smooth muscle actin was confirmed 

the results of immunohistochemistry experiments (Figure 9, panel A). 
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Figure 7.  Expression of selected markers within the vascular (aortic) wall of 
chemically stressed Sprague-Dawley rats.   
Panels A-C show isoprostane expression in control and oxidatively stressed animals, 
respectively. Isoprostane, a marker of lipid-mediated oxidative stress, was increased in 
AAM-treated animals.  NfκB expression in control and stressed vessels is shown in 
Panels D-F, respectively.  NfκB, a transcription factor implicated in the inflammatory 
response to vascular injury, was significantly elevated in vessels from allylamine-treated 
animals.  Immunofluorescence analysis of alpha smooth muscle actin expression in the 
thoracic aorta of control and stressed animals is shown in Panels G-I.  Notice the marked 
reduction in alpha smooth muscle actin signal. These results are representative of the 
average immunofluorescence intensities of vessel sections from treated animals.  
Quantified signals are shown for all markers examined in panels C, F and I, respectively. 
* denotes statistically significant differences at p<0.05.  A-B Bar = 50µm, D, E, G and H 
Bar = 100µm. L=Lumen. Average immunofluorescence intensities ± SEM of vessel 
sections from 3 separate animals for each group are shown. 
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 Genomic Analysis   

 Aortic RNA was hybridized to the rat genome U34A Affymetrix GeneChip 

Array.  Raw data images were acquired with the Agilent GeneArray Scanner and 

analyzed using Genespring microarray analysis software package version 4.1.5.  

Genechip analysis was repeated in duplicate using different sources of RNA to ensure 

reproducibility.  A total of 263 genes were significantly altered by oxidant treatment, 40 

of which were present in the allylamine groups at levels two-fold or less than control.  

K-means clustering was used to infer gene groupings before and after induction of 

oxidative stress by allylamine.  A cluster set of five was selected and after eight 

iterations the data converged.  Table 1 lists the genes by clusters that are involved in the 

vascular response to oxidative injury.  These genes could also be classified into one of 

three categories based upon their presumptive function: 1) adaptive response; 2) growth 

regulation; and 3) matrix association.  Of interest were OPN, α1 integrin, LINE and α-

tropomyosin, genes that exhibit redox-dependent profiles of regulation in vascular cells.  
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Table 1.  Genes Involved in the Response to Oxidant Induced Vascular Injury  
                                        Genes 35AAM 70AAM
Protocadherin 6 ↑ ↓
Solute carrier family 14, member 2 ↑ ↓
Development-related protein ↑ ↓
C-terminal binding protein 1 ↑ ↓
Regulator of G-protein signaling 19 ↑ ↓
proteasome activator rPA28 subunit alpha ↑ ↓
chytochrome P-450 ↑ ↓
Ral guanine nucleotide dissociation stimulator ↑ ↓
p67 ↑ ↓
Glutamate oxaloacetate transaminase 2 ↑ ↓
Arginine vasopressin (Diabetes insipidus) ↑ ↓
Alanine-glyoxylate aminotransferase  ↑ ↓
Homeobox A2 ↑ ↓
Methylmalonate semialdehyde dehydrogenase ↑ ↓
Ribosomal protein S15 ↑ ↓
Cystatin beta ↑ ↓
Ca++/calmodulin-dependent protein kinase II ↑ ↓
Beta-carotene 15, 15'-dioxygenase ↑ ↓
rRNA promoter binding protein ↑ ↓
Amiloride binding protein ↑ ↓
Superoxide dismutase 1, soluble ↑ ↓
Synaptogyrin 2 ↑ ↑ 
Cyclin D3 ↑ ↑ 
Annexin V ↑ ↑ 
protein tyrosine phosphatase epsilon M ↑ ↑ 
Agrin ↑ ↑ 
beta-galactoside-alpha 2,6-sialyltransferase ↑ ↑ 
ATPase, Ca++ transporting, cardiac muscle ↑ ↑ 
Ras homolog enriched in brain ↑ ↑ 
DNA polymerase beta ↑ ↑ 
insulin-like growth factor binding protein   ↑ ↑ 
Dnase1 ↑ ↑ 
Nuclear protein E3-3 orf1 ↑ ↑ 
ORF 2 ↑ ↑ 
MRNA for ribosomal protein S9 ↑ ↑ 
Mismatch repair protein ↑ ↑ 
Procollagen, type I, alpha 1 ↑ ↑ 
Inpp1-inositol polyphosphate-1-phosphatase ↑ ↑↑↑
COXI-cytochrome oxidase subunit I ↑ ↑↑↑
NG,NG dimethylarginine dimethylaminohydrolase ↑ ↑↑↑
Embigin ↑↑ ↑↑↑↑
LINE ↑↑ ↑↑↑↑
Tma2-striated-muscle alpha tropomyosin ↑↑ ↑↑↑↑
Alpha 1 Integrin ↑↑ ↑↑↑↑
OPN ↑↑ ↑↑↑↑
Cytoplasmic beta-actin ↑↑ ↑↑↑↑
Glutathione-S-transferase, alpha type (Ya) ↑↑ ↑↑↑↑
Superoxide dismutase 2, mitochondrial ↑↑ ↑↑↑↑
beta-2-gpI ↑↑↑ ↑↑↑
COLIA1-alpha-1 type I collagen ↑↑↑ ↑↑↑
Cytochrome b5 ↑↑↑ ↑↑↑
Ribosomal protein S29 ↑↑↑ ↑↑↑
Hemoglobin, beta ↑↑↑ ↑↑↑

Cluster I 

Cluster II 

Cluster III 

Cluster IV 

Cluster V 
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Data  in Table 1 was analyzed by K-means clustering; analysis was performed on genes 

present in the 35 and 70 allylamine (AA) groups.  A cluster set of five was selected and 

after eight iterations the data converged.  Similarity was measured by standard 

correlation.  =1.5-3 fold regulation, =3-5 fold regulation, =5-7, =>8 fold 

differential regulation. 

 

 OPN, α1 Integrin, and Tropomyosin Expression   

 OPN has come to light in recent years as a cytokine and matrix molecule 

involved in medial thickening and neointima formation [162].  Figure 8 (panels A-C) 

and Figure 4 (panel B) shows that, consistent with genomic data, a marked increase in 

OPN expression at the protein level was observed in oxidatively-stressed animals 

compared to controls.  α1 integrin mediates collagen and laminin cell-matrix interactions 

and plays a role in the regulation of cellular proliferation in collagenous matrices [163].  

As with OPN, significant increases in α1 integrin fluorescence intensity were observed 

in treated animals (Figure 8, panels D-F and Figure 9C).   Next, control and stressed 

vessels were examined for α-tropomyosin expression, an actin-binding structural protein 

that increases during transition of vSMCs from contractile to proliferative phenotypes 

[164].  Fluorescence in situ hybridization showed that α-tropomyosin mRNA (Figure 8, 

panels G-I) and protein (Figure 9D) increased in injured vessels relative to controls.  

Altogether, these observations support the conclusion that vascular injury by allylamine 

triggers vessel remodeling and shifts vSMCs within the aortic wall toward atherogenic 

phenotypes.  



 58

Figure 8.  Osteopontin, alpha-1 integrin, and α-tropomyosin expression in the 
thoracic aorta of oxidative stressed Sprague-Dawley rats.    
Panels A-B,D-E, and G-H show signals for control and stressed animals, respectively.  
Panels A-F refers to immunofluorescence data using antibodies against the respective 
proteins. Panels G-F refers to fluorescence data obtained using a RNA probe against 
tropomyosin.  Average intensities ± SEM of vessel sections from 3 separate animals are 
shown in graphical form in panels C, F, and G (* = p<0.05). For panels A-F the bar = 
25µm. For panels G-I the bar = 50 µm. 
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Figure 9.  Western blot confirmation of immunofluorescence results. 
  α-smooth muscle actin, osteopontin, alpha-1 integrin and α-tropomyosin results of 
immunofluorescence were confirmed via Western blot analysis of total cell lysates of 
complete thoracic aortas.  Data represents average intensities ± SEM for three different 
animals from two independent experiments normalized to control (white=control, 
black=stressed, n=3).  Top bands are ponceau S staining of PVDF membranes as loading 
control.  Bottom bands are representative of Western results (C=control, S=Stressed). 
 
 

Mechanisms of Gene Dysregulation   

To evaluate mechanisms of gene dysregulation following oxidant-induced 

vascular injury, naïve cultured vSMCs were treated with allylamine or its metabolites, 

acrolein and hydrogen peroxide, and processed for measurements of reactive oxygen 

species (ROS).  Treatment of vSMCs with allylamine (10 nM - 10µM) elicited 
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concentration-dependent increases in ROS production (Figure 10).  Gradual reductions 

in signal intensity were observed as cell viability decreased over time.  Allylamine-

induced ROS production was inhibited by N-acetylcysteine, a precursor of the 

antioxidant glutathione in vSMCs [165].  Challenge of vSMCs with the allylamine 

metabolites, acrolein or hydrogen peroxide, also increased ROS production.  However, 

the stress response differed both in terms of intensity and temporal dependence.  

Concentration-dependent increases in ROS production in peroxide-treated cells subsided 

over time, while the response to acrolein was more erratic. As predicted, N-

acetylcysteine afforded protection against metabolite injury, except in cells treated with 

1 µM hydrogen peroxide (Figure 11).  The protective actions of N-acetylcysteine are in 

keeping with the finding that allylamine and its metabolites compromise glutathione 

homeostasis and increase vascular levels of oxidized glutathione, and cause oxidative 

stress. To determine if modulation of gene expression involved oxidative mechanisms, 

real time PCR for selected genes was completed.  The results showed that modulation of 

OPN, LINE and α-tropomyosin gene expression by allylamine and hydrogen peroxide 

was fully prevented by pre-treatment with N-acetylcysteine (Figure 12)   Consistent 

measurements of gene expression could not be made for acrolein treated cells; a pattern 

attributed the erratic nature of the injury response observed. 
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Figure 10.  ROS detection in vSMCs treated with AAM or primary metabolites.  
Average DCFDA fluorescence ± SEM is shown as fold increase over control for varying 
chemical concentrations over time. (* = p<0.05,  n=4 for each group). 
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Figure 11.  Protective effects of N-acetylcysteine in vSMCs.  
ROS detection after 30 minutes of treatment with allylamine or its primary metabolites. 
Varying oxidant concentrations alone are represented as (solid bar) or following pre- 
treatment with NAC for 0.5 hours (clear bar).  The bar graph on the right shows actual 
DCFDA intensities ± SEM. (* = p<0.05, n=4 for each group). 
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Figure 12.  Real time PCR confirmation of genomic changes.   
Cultured vSMCs were treated with either AAM or hydrogen peroxide and mRNA 
extracted for gene analysis.  For NAC protection studies, cells were pretreated with NAC 
for 0.5hr, followed by oxidant treatment and RNA extraction.  Data shown as average 
fold increase ± SEM over control.  OPN-osteopontin, L1Rn-LINE, TPM1-α 
tropomyosin. (* = p<0.05 compared to control, **=p<0.05 compared to NAC-control, 
n=4 for each group). n=4 for each group. 
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Discussion 

Oxidative injury is a critical event in the pathways leading to initiation and 

progression of vascular diseases, such as atherosclerosis and hypertension [166].  While 

the vascular response to oxidative injury involves altered patterns of gene expression, 

critical genomic targets and molecular mechanisms of gene dysregulation have remained 

poorly understood.  In this study, experiments were conducted to evaluate the complex 

nature of such interactions in vessels challenged with allylamine, a pro-oxidant 

converted within the vessel wall by enzyme-catalyzed oxidative deamination to acrolein 

and hydrogen peroxide [167].  Acrolein is a reactive aldehyde that covalently modifies 

macromolecules and induces lipid peroxidation, and is found widely in the environment 

or formed endogenously via lipid peroxidation [168,169].  Acrolein conjugates with 

reduced glutathione in vascular cells and initiates peroxidative injury and changes in 

gene expression [170,171].  Hydrogen peroxide is a direct oxidant that modifies cellular 

macromolecules and induces oxidative stress [172]. The vascular response to allylamine 

is similar to that seen with methylamine in diabetes where increased production of 

formaldehyde and hydrogen peroxide disrupts redox homeostasis within the arterial 

vasculature and gives rise to protein cross-linking and angiopathy [173,174].  

Medial thickening and vascular remodeling were observed in rats treated with 

allylamine.  These changes likely involve reprogramming of redox-regulated genomic 

targets, including extracellular matrix-integrin-cytoskeletal axis genes.  Vascular injury 

is mediated by oxidative stress since isoprostane levels significantly increased in treated 

vessels, and these changes correlated with nuclear localization of NF-κB and increases 
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in oxidized glutathione levels.   Isoprostanes are stable peroxidation products of free 

radical mediated oxidation of arachidonic acid [160,175,176].  Increased levels of 

isoprostanes have been directly associated with the occurrence of atherosclerotic disease 

[161,176].   In its latent form, NF-κB exists in the cytoplasm of unstimulated cells as a 

dimer bound to an inhibitory protein, IκB.  Upon activation by oxidative stress, NF-κB 

dissociates from the inhibitory IκB protein and translocates to the nucleus where it 

regulates the expression of genes involved in diverse cellular functions, including 

inflammation and matrix remodeling [177]. In diseases such as hypertension and 

atherosclerosis, vSMCs can shift from a contractile state where the expression of α-

smooth muscle actin is high, to a proliferative state characterized by loss of α-smooth 

muscle actin expression [178].  Consistent with these correlations, oxidative injury by 

allylamine down-regulated α-smooth muscle actin expression, and this change was 

coupled to loss of normal architecture and increased thickness of the vessel wall 

Clustering analysis of genomic data indicated that the adaptive response to 

allylamine injury, a.k.a. “the stress response”, involved genes required for redox balance, 

such as superoxide dismutase, as well as genes involved in the extracellular matrix-

integrin-cytoskeletal axis.  Such relationships are consistent with existing knowledge, 

and suggest that gene-gene interactions regulated by oxidative stress may contribute to 

the progression of oxidative vascular injury by allylamine.  Initiation of oxidative stress 

is likely due to poor maintenance of the redox flux caused by changes in GSH balance 

[179,180]. Of interest was the finding that many of the genes altered by oxidant injury 

were genes that exhibit some level of regulation by NFκB, such as OPN and α1 integrin.  
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To validate genomic findings, and to define the molecular bases of the oxidant 

response, OPN and α1 integrin levels in vivo were probed at the protein level.  

Considerable fidelity of the genomic response was observed at the protein level, at least 

for these two targets.  OPN is a secreted acidic phosphoprotein involved in 

ECM/integrin interactions and proliferative control of vSMCs [167].  Elevated levels of 

OPN have been observed during neointimal formation and atherosclerotic disease [162].  

Because the proliferation of vSMCs is a key feature of atherogenesis, OPN is an ideal 

marker of modified vSMC phenotypes.  Integrins on the other hand, are a family of 

heterodimeric transmembrane glycoproteins composed of α and β subunits that allow 

cells to identify changes in ECM composition and activate intracellular signaling 

pathways [181].  ECM remodeling, a critical step in the pathogenesis of atherosclerosis, 

is highly dependent on the expression of matrix components and their receptors.  For 

instance, α integrin is a collagen/laminin receptor implicated in cellular proliferation, 

abnormal laminin deposition and inflammatory responses [163].  In inflammation, the α1 

integrin is responsible for monocyte adhesion to damaged tissue.  Blockade or deletion 

of the α1 integrin inhibits accumulation of matrix proteins, and may be of therapeutic 

value in the management of inflammatory disorders [182].  Recent reports from several 

laboratories, including our own, have demonstrated that cellular adhesion molecules 

provide signaling specificity during the vascular response to injury [150,183].   

Tropomyosin is a component of the contractile mechanism of the cell, and is 

present in both stress fibers and thin filaments. Isoform inter-conversions may be 

coordinated with changes in the vSMC phenotype [184].   Tissue-specific regulation and 
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developmental expression of this gene is regulated by alternative splicing of duplicated 

isotype-specific exons [185].  The expression of an alternate tropomyosin isoform in 

vSMCs may be partially responsible for a shift from contractile to proliferative 

phenotypes.  In keeping with this observation, evidence was obtained that oxidative 

injury increases the levels of α-tropomyosin within the vascular wall, as well as in 

vSMCs in culture.  Interestingly, gene expression in vivo was mainly localized to 

vSMCs in close proximity to the advential side of the vessel wall.  This localization is 

intriguing in light of evidence implicating the adventitia in neointima formation in the rat 

carotid injury model [186].  

The finding that oxidative injury increased the expression of several members of 

the LINE gene family is also of potential significance.  LINEs (Long Interspersed 

Nuclear Element) encode a reverse transcriptase and perhaps other proteins [187].  

Transcriptional activation of the LINEs can increase up to 70-fold after exposure to 

stressors, such as UV light and ionizing radiation [188].  Recent studies in this 

laboratory have shown that activation of LINE expression in vSMCs is mediated by 

redox-regulated transcription factors that interact with the antioxidant response element 

[189].  As such, it has been hypothesized that activation of retrotransposons following 

oxidative injury may induce genomic instability and contribute to phenotypic changes 

following oxidative injury [187,189].   

In order to characterize mechanisms responsible for gene dysregulation, the 

influence of N-acetylcysteine on oxidant-induced oxidative stress and gene expression 

was examined. Oxidative stress in cells challenged with allylamine or its metabolites 



 69

was inhibited by pre-treatment of the cells with N-acetylcysteine.  This finding is 

consistent with previous studies showing that NAC neutralizes the effects on allylamine 

on α7 integrin expression [150].  Because N-acetylcysteine upregulates reduced 

glutathione levels and antioxidant defense in vSMCs [165], these findings implicate 

glutathione depletion and oxidative stress in the gene dysregulation response by 

allylamine and its metabolites.  GSH may participate in the regulation of transcription 

factor binding to DNA.  For instance, in COS2 cells depleted of GSH, or treated with 

hydrogen peroxide, significant decreases in glucocorticoid receptor-DNA binding have 

been reported [190].  Thus, decreases in glutathione and oxidative stress may work to 

effect gene expression in oxidant-injured cells.  In this context, we have previously 

shown that depletion of cellular glutathione with buthionine sulfoximine is associated 

with redox-dependent transcriptional activation of ras proto-oncogene in vSMCs [165]. 

 Repeated exposure of rats to allylamine modulates vSMCs from quiescent to 

proliferative phenotypes [191].  This transition is viewed as a hallmark of oxidant-

induced atherogenesis, and involves increased production and secretion of extracellular 

matrix (ECM) components [192].  The results presented here identified the extracellular 

matrix-integrin- cytoskeletal axis, along with LINEs, as genomic targets of oxidative 

injury.  As such, gene modulation in this model system appears to be mediated by redox-

dependent mechanisms involving increased production of ROS and modulation of 

glutathione homeostasis.  Ongoing efforts in this laboratory are focusing on the 

resolution of discrete networks of biological activity using Boolean and coefficient of 

determination methodologies [193].   
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CHAPTER III 
 

COOPERATIVE REDOX REGULATION OF THE OSTEOPONTIN 

GENE IN VASCULAR SMOOTH MUSCLE CELLS: A ROLE FOR 

NF-κB AND TIEG-1 

 
Synopsis 

 Osteopontin has come to light in recent years as a primary cytokine and matrix-

associated protein playing an important role in medial thickening and neointima 

formation. OPN has a broad spectrum of biological activities ranging from regulation of 

extracellular matrix/integrin interactions to proliferative control of vascular smooth 

muscle cells (vSMCs).   Osteopontin is produced by vSMCs, activated macrophages, 

leukocytes and activated T-lymphocytes, is present in extracellular fluids and found at 

sites of inflammation and injury.  This laboratory has undertaken the task of dissecting 

the transcriptional regulatory mechanisms controlling the expression of osteopontin in 

response to oxidative injury/stress. Experimental data show that the transcriptional 

activity of the osteopontin promoter is regulated in a matrix dependant manner when 

activated vSMCs isolated from allylamine treated animals are seeded on a permissive 

fibronectin matrix. This increased transcriptional activity leads to increases in mRNA 

and protein levels of OPN, as confirmed by RT-PCR and in situ immunofluorescence in 

vivo.   Here we show by promoter analysis and DNA-protein binding experiments that 

elevated levels of osteopontin mRNA in vSMCs involve a redox-regulated 

transcriptional mechanism.  Specifically, a 200 bp region located in the 5′( UTR of the 
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osteopontin promoter was identified that mediates the redox regulatory response.  

Mutational analysis identified two distinct cis acting elements, NF-κB and TIEG-1, 

which are responsible for the promoter response to oxidative stress.  The redox 

regulation of these elements was confirmed using two antioxidants, N-acetylcysteine 

(NAC) and pyrrolidine dithiocarbamate (PTDC), to inhibit promoter activity.  Further, 

DNA-protein binding assays confirmed the responsiveness of the OPN promoter to 

oxidative stress and antioxidant treatment and identified RelA(p65) as a protein present 

in redox regulated DNA-protein complexes.  Collectively these studies help answer 

central questions regarding the mechanisms underlying increased OPN expression in 

diseases of the vascular wall. 

 

Introduction 

 Cardiovascular disease is a primary or secondary cause in 60% of deaths in the 

United States, with 75% of these deaths resulting directly from atherosclerosis. 

Atherosclerosis is a chronic inflammatory disease associated with thickening of the 

arterial wall and reduction in vessel lumen size.  The atherosclerotic lesion is termed a 

plaque, and consists of a mixture of immune cells, extracellular matrix, fatty deposits, 

and proliferative (i.e. atherogenic) vSMCs [59].  The activation of vSMCs to acquire 

atherogenic phenotypes is a critical event in atherogenesis, and oxidative injury is a 

critical event in the pathways leading to initiation and progression of this phenotypic 

transition [146].  Critical genomic targets and molecular mechanisms of gene 

dysregulation during the course of atherogenesis have remained poorly understood.  
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Previous studies in this, and other, laboratories have identified osteopontin as a putative 

molecular target in atherogenesis.  Osteopontin (OPN) was first isolated as a protein that 

plays a key role in bone remodeling.  This cytokine is secreted as a 55-80 kDa acidic 

phosphoprotein with varying degrees of post-translational modification.  OPN is 

regarded as a matricellular protein, proteins that do not serve a primary structural role 

but rather function as modulators of cell-matrix and cell-cell interactions [194].  As such, 

OPN participates in the regulation of ECM/integrin interactions and proliferative control 

of vSMCs [162,195].    

 OPN has come to light in recent years as a key cytokine and matrix molecule 

playing an important role in medial thickening and neointima formation.  Elevated levels 

of OPN have been observed during neointimal formation and atherosclerotic disease 

[196].  Because the proliferation of vSMCs is one of the key features of atherogenesis, 

OPN is an ideal marker of the modified (i.e. activated) vSMC phenotype.  However, it is 

not yet clear if OPN expression is a cause, or a result, of atherosclerosis. Osteopontin is 

expressed in atherosclerotic lesions in vivo [197] and in response to injury in vitro [198].  

Recent studies that employed transgenic mouse models of osteopontin overexpression 

indicate that this cytokine is necessary, but not sufficient to induce neointimal thickening 

in response to injury.  Further, osteopontin transgenic mice develop lesions more quickly 

in response to high cholesterol diets [197].  The work of Parrish and Ramos suggests that 

cleavage of osteopontin, which generates a biologically active 36 kDa fragment, is a key 

aspect in atherosclerosis [198, 199].  To this end we have adopted a model of oxidative 



 73

injury to study the molecular mechanisms governing the response of vSMCs to redox 

stress.   

 The study of the molecular mechanisms of transcriptional regulation is currently 

one of the most active areas of research in cell and molecular biology. Research in this 

field has been fueled by increased awareness of the crucial role of transcription in 

normal cell physiology and disease. For instance, transcription factors are involved in 

the regulation of vital cellular functions including cell growth, differentiation, apoptosis, 

metabolism, and secretion. In addition, alterations in transcription factor activity are 

increasingly being identified as causes of human diseases, including cancer and 

atherosclerosis [200].  Consequently, knowledge derived from cis-trans interactions in 

the regulation of gene expression has profound implications in medicine [201].  

 The present studies were conducted to evaluate a critical gene targets in oxidant-

induced vascular injury (OPN). Studies were carried out in vitro to characterize the 

mechanisms by which opn contributes to the atherogenic phenotype.  Specifically, one 

hypothesis will be tested: That the phenotypic transition and activation by oxidative 

stress that is seen in vSMCs is due to up-regulation of osteopontin, which is controlled at 

the transcriptional level by redox-regulated cis-acting elements. Following the 

identification and experimental confirmation of the functionality of these regions, site-

directed mutagenesis was performed.  Transient transfection and gel-shift analysis was 

then used to identify the regions responsive to oxidative injury, along with the proteins 

binding.   
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Materials and Methods 

 Nitrocellulose membranes were purchased from BioRad (Hercules, CA).  

Supersignal Dura chemiluminescent substrate was purchased from Pierce (Rockford, 

IL).  Synthetic oligonucleotides were obtained from Integrated DNA Technologies 

(Coralville, IA).    Medium 199, trypsin, and antibiotic/antimycotic solution were 

purchased from Gibco (Grand Island, NY).  Antibodies for NFΚB and p65 were 

purchased from Santa Cruz Biotechnologies (Santa Cruz, CA).  Nitrocellulose 

membranes were purchased from BioRad (Hercules, CA).  Synthetic oligonucleotides 

were obtained from Integrated DNA Technologies (Coralville, IA).  QuikChange Site-

Directed Mutagenesis Kit was obtained from Stratagene (La Jolla, CA).  Fugene6 and 

Reverse Transcriptase kits were obtained from Roche (Indianapolis, IN).  All other 

chemicals were purchased from Sigma Chemical Co. (St. Louis, MO).   

 

 Nuclear Extracts 

 Nuclear extracts were prepared as previously described [202].  In brief, cells 

were washed twice with ice-cold HEGD (25mM HEPES-Cl, pH 7.6, 1mM dithiothreitol 

(DTT), 1.5mM EDTA, 10% glycerol, 0.5mM PMSF) and scraped from plates using 1mL 

HEGD.  Cells were then transferred to a Dounce homogenizer and lysed with 20 strokes.  

Nuclei were pelleted at 16 x g, 2 minutes, 4°C in a variable speed microfuge, and the 

supernatant discarded.  Nuclei were resuspended in 50 ml HEGDK (HEGD plus 0.5 M 

KCl) and incubated on ice for 2-3 hours to extract nuclear proteins.  Nuclear ghosts were 

removed by centrifugation at 16 x g, 10 minutes, 4°C, in microfuge, and supernatant was 
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quick frozen in liquid nitrogen and stored at -80°C.  Protein concentration was 

determined by the method of Bradford.  

 

 Construction of Luciferase Deletion Plasmids 

 Genomic DNA was prepared from the rat vSMCs using Wizard Genomic DNA 

Purification Kit (Promega). Oligonucleotides, FOR and REV, were designed on the basis 

of genomic DNA sequence of 5-flanking region of the OPN gene, to amplify a portion of 

DNA starting -2200 bp upstream of the identified transcription start site (+1). In addition 

to the template (genomic DNA) and primers FOR and REV, the 50 µl reaction mixture 

contained 0.2 mM dNTPs, Pfu DNA polymerase buffer and 5units of Pfu DNA 

polymerase (Promega), and was subjected to 35 cycles of amplification (60 seconds at 

94 °C, 60 seconds at 55 °C, and 120 seconds at 72 °C). The PCR product was recovered 

from the agarose gel and used as template in PCR reaction. In this PCR amplification we 

used the primers FOR-Kpn and REV-Kpn tailed with a Kpn I restriction endonuclease 

recognition sequence (ggggtacc). The 50 µl reaction mixture contained the template, 

obtained as described above, primers For-Kpn and REV-Kpn, 0.2 mM dNTPs, PfuDNA 

polymerase buffer and 5 units of Pfu DNA polymerase (Promega). The reaction was 

subjected to 30 cycles of amplification (60 seconds at 94 °C, 60 seconds at 54 °C and 

120 seconds at 72 °C). The PCR product was loaded on 1.5% agarose gel, recovered 

from the gel, purified and ligated into pGL3-basic reporter vector Kpn I digested, and 

dephosphorylated; the resulting plasmid was inserted in the pGL3-basic reporter vector 

and the correct orientation were verified by DNA sequencing. A set of OPN promoter 
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reporter constructs containing 5′ deletion was prepared by PCR using specific 5′ primers 

(Table 1 for details), and a common 3′ primer (REV-Kpn). PCR amplification products 

were loaded on 2% agarose gel, recovered from the gel, purified and ligated into pGL3-

Basic reporter vector Kpn I digested.  The resulting plasmids were analyzed by DNA 

sequencing to ensure the fidelity of amplification and the correct orientation. 

 

 Site-Directed Mutagenesis                                                                

 Mutagenesis experiments were carried out using the QuickChange Mutagenesis 

kit according to the manufactures recommendations (Stratagene, La Jolla CA).  

Mutagenic oligonucleotides were designed according to the manufactures guidelines, 

and incubated with 2094bp rat OPN promoter as template.  High fidelity PCR followed 

by the digestion of the original template with DpnI endonuclease.  Clones were 

sequenced for verification of mutation of the targeted sites. 

 

 Transient Transfections and Luciferase Assays 

 rvSMCs cells were plated in 24-well plates 2 days before transfection. The day of 

transfection, cells were washed twice with PBS solution and replaced with serum-free 

M199 media (not containing penicillin-streptomycin). Cells were transfected using 

Fugene6 (Invitrogen) with 1 µg of the respective construct. rvSMCs were cotransfected 

with 200 ng of pGL3-renilla (Promega) (a plasmid containing the SV40 promoter 

upstream the renilla gene) to normalize for transfection efficiencies. After 4 hours of 

incubation at 37°C, the transfection solution was withdrawn and replaced with the 
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complete medium described above, and cultivated for an additional period of 48 hours at 

37°C. Transfection were performed in duplicate, and repeated at least three times. 

Measurement of luciferase activity was performed 48 hours after transfection using the 

Luciferase Assay Kit (Promega) according to the manufacturer’s protocol. Briefly, cells 

were washed with PBS solution, 100 µl of Passive Lysis Buffer (Promega) was added to 

each well and collected after 10 minutes at room temperature on orbital shaker. The 

lysates were centrifuged at 12000 x g for 2 minutes to remove cell debris. Luciferase 

activity was determined using 10 µl aliquots of supernatants in a Turner Biosystems 

20/20 Luminometer.  Each lysate was measured twice and activities were normalized for 

renilla activity in each extract to correct for transfection efficiency. Reporter gene 

expression was expressed as relative light units and the luciferase activity of each 

construct compared with that of the promoter less pGL3 Basic vector. 

 

 EMSA 

 Nuclear extracts from vSMCs were prepared using NE-PER Nuclear and 

Cytoplasmic Extraction Reagents (Pierce). Approximately 2 x 106 cells were trypsinized, 

collected and washed once in 5ml of PBS. The cell pellet was then processed as 

described by the manufacturer. The protein concentration of the nuclear extract was 

determined using the bicinchonininc acid assay (BCA; Pierce), and BSA as standard. 

The nuclear proteins were kept at -80°C and used in band shift assays. The  sequences of 

the oligonucleotides used are reported in Figure 13. To prepare the double-stranded 

oligonucleotides, single-stranded forward and reverse oligonucleotides were annealed by 
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heating to 95°C and cooling slowly to room temperature in TE Buffer (10mM Tris, 1 

mM EDTA). The 20 µl of binding solutions contain 3 µg of nuclear extract with 20 fmol 

of 5′ end-biotinylated DNA target in the presence or absence of competitor, 2.5% (v/v) 

glycerol, 5 mM MgCl2, 50 ng/l poly (dI-dC), 0.05% (v/v) NP-40, and the binding buffer 

provided with the kit. Binding reactions were incubated at room temperature for 20 

minutes 5 µl of 5x Loading Buffer was then added to each 20 µl binding reaction. The 

complex was separated on a 6% nondenaturing polyacrylamide gel in 0.5x Tris-Borate 

Buffer (TBE) for 1.5 hour at 100 V at room temperature. Complexes were then 

transferred to a nylon membrane using an electrophoretic transfer unit (Bio-Rad) 

according the manufacturers instructions, in 0.5x TBE cooled to 4°C, for 1 hour at 380 

mA. DNA was cross-linked to the membrane with UV-light cross-linker instrument. 

Complexes were detected according to Panomics EMSA Kit instructions. 20 ml of 

blocking buffer were added to the membrane, and this was incubated at room 

temperature for 15 minutes. This buffer was replaced with blocking buffer added with 

Stabilized Streptavidin-Horseradish Peroxidase Conjugate, and the membrane was 

incubated for 15 minutes at room temperature. The blot was washed five times for 15 

minutes each in 20 ml of 1x Wash solution and incubated in 30 ml of Substrate 

Equilibration Buffer for 5 minutes. The membrane was placed in Substrate Working 

Solution for 5 minutes and then placed in a film cassette and exposed to X-ray film.  For 

antibody supershift assay, 4 µg of NF-κB antibodies (Santa Cruz Biotechnology, Santa 

Cruz, CA) were added to the reaction mixture prior to the addition of the probes and 

incubated at room temperature for 30 minutes. Protein-DNA complexes were 
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fractionated an a 6% nondenaturing polyacrylamide gel in 0.5X TBE buffer at room 

temperature for 1.5 hour at 100 V. 

 

Results 

 Enhanced expression and secretion of osteopontin is a hallmark in the 

atherogenic phenotype [203].  Increased osteopontin mRNA levels have previously been 

described by our laboratory in an in vivo model of oxidative stress using vascular 

smooth muscles [198].  To evaluate the molecular mechanisms of osteopontin 

regulation, luciferase constructs containing the osteopontin promoter were generated and 

transfected into rat vSMCs.  The full length OPN gene promoter sequence, genebank 

#AF017272, was subjected to transcription factor analysis using MatInspector ver 2.2 to 

find potential transcription factor binding sites responsive to oxidative stress.  Several 

putative response elements that may participate in the redox-mediated were identified.  

PCR primers were designed  for the OPN promoter to allow for the construction of a 

series of sequential deletion mutants to study the relative contribution of different sites 

within the promoter.  The 5 primers along with the anchored 3 primer used in the 

creation of the constructs are delineated by an underscore in the promoter sequence 

shown in figure 13.  
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Figure 13.  Full length rat OPN promoter.  

Primer sequences used for the construction of the luciferase constructs are underlined 
and labeled in red. CAAT and TATA box are labeled in green downstream of the 127bp 
start site (vertical line). Select cis acting elements identified via MatInspector analysis 
are shown in blue, with their core binding sequence underlined in black.   
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 Eight different PCR-generated constructs of the osteopontin promoter were spliced into 

pGL3-basic, a luciferase reporter assay.  The constructs created and spliced into the 

reporter vector were as follows; full length 2094bp, 1916bp, 1627bp, 1105bp, 850bp, 

733bp, 397bp, and 213bp.   

 The constructs were then transfected into cells.  After allowing 36 hours post 

transfection for the cells to recover, the cells we subjected to one of three treatments 30 

minutes prior to measurements of luciferase activity.  The treatments were as follows, 

control-water only, hydrogen peroxide treatment 0.001 mM , or 0.5 mM NAC 

pretreatment for 30 minutes after which the NAC was removed and treatments with 

hydrogen peroxide for 0.5 hours initiated.  The results presented in figure 14 show, the 

response of the full length promoter to oxidative stress conditions was greatest relative to 

all of the constructs tested.  The redox sensitive nature of this response was confirmed 

by the decrease in luciferase activity seen in the constructs pretreated with the 

antioxidant NAC.  The region of the osteopontin promoter from 2094bp-1916bp 

contains oxidative stress responsive element(s), since  deletion of the sequences 

inhibited the induction response greater than 150%. The minimal promoter, 213bp, 

displayed very low levels of activity, but some degree of redox-sensitivity was retained 

in this region.  
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Figure 14.  OPN promoter activity of full length and serial deletion constructs. 
Control and stressed cells were seeded at equivalent densities and allowed to recover for 
eight hours.  Cells were then transfected with the respective OPN promoter constructs.  
Cells were co-transfected with a renilla construct to allow for normalization of the 
luciferase signal.  Sequential deletions of the full length OPN promoter (2094bp) were 
transfected into vSMCs.  Black bars represent control untreated cells, grey bars represent 
cells treated with hydrogen peroxide, clear bars represent cell pretreated with NAC prior 
to treatment with hydrogen peroxide.  n>3. 

 

 Examination of the 178bp sequence contained within the full length promoter 

identified several cis-acting elements, including NF-κB and TIEG-1 binding sites.  

These cis-acting elements identified by computerized analysis were then subjected to 

further experimentation to examine their contributions to the oxidative responsiveness of 

the promoter.  Site directed mutation analysis was performed on the two sites to 

determine whether or not they are contributory to the redox response.  The first site 

examined was the NF-κB binding site.  Previous experiments in this laboratory had 

identified the redox nature of this binding site in a phenotypically-modified cellular 
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model of oxidant induced injury (unpublished results).  Site directed mutagenesis of the 

putative sites was performed using the QuikChange Site Directed Mutagenesis Kit.  The 

mutations of the NF-κB binding site are detailed in figure 15a with the alterations in 

each element denoted by lower case letters.  The mutation introduced into the NFΚB 

binding site was determined in previous experiments to be sufficient to ablate NFΚB 

binding at least 50% of the response seen with oxidant treated cells (data not shown).  

Site directed mutation analysis was also performed on the TIEG-1 binding site to 

identify point mutations in the nucleotide sequence that would cause a reduction in 

luciferase activity of the promoter.  Mutation of a single nucleotide C to A outside of the 

consensus binding site did not have a significant effect on the luciferase activity of the 

promoter.  Likewise, a two nucleotide mutation GG to TA in the consensus binding site 

did not significantly decrease the luciferase activity.  However, mutation of the third G 

to A in the 5 end of the consensus binding site caused a 50% reduction of the luciferase 

activity of the full length promoter.  From these data it can be concluded that the extreme 

5′ end of the TIEG-1 DNA binding element does not contribute greatly to the binding of 

the zinc finger to this site (figure 15b).  
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A. 

AGGATTTGTGGAATTTCCCTGCACAGCNF-κB -original 

AGGATTTGaaGAATaaCaCTGCACAGCNF-κB -mutated 
 

B. 

 

Figure 15.  Site directed mutagenesis of the rat osteopontin promoter. 
A) NF-κB binding site was identified in the full length promoter at 481-495bp from the 
5′end of the OPN promoter (genebank#AF017274). Site directed mutagenesis was used 
to alter the consensus binding sequence (underlined). The resulting construct was then 
used for analysis in luciferase studies.  B)  Transcriptional binding site software also 
identified a TIEG-1 binding site 228-242bp from the 5′ end of the OPN promoter.  The 
consensus sequence for TIEG-1 is underlined, with the changes induced via site directed 
mutagenesis shown in lower case.  Several different mutations at different locations were 
tested.  The changes resulting from mutation 3 (mut3) caused the greatest decrease in 
promoter activity under oxidative stress conditions.  For this reason, mut3, was used for 
all TIEG-1 mutation luciferase experiments. n>3. 

 
 To examine the contributions of each of these elements to the oxidative response 

seen in the full length osteopontin promoter when cells are treated with hydrogen 

peroxide, a luciferase activity assay was conducted using vSMCs challenged with 

hydrogen peroxide.  In this experiment, oxidant treatment of cells transfected with full 

GGAAACGGGGTGTATACAGCCTCT

TIEG Mut Analysis
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w t
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GGAAAaGGGGTGTATACAGCCTCT 
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length osteopontin promoter caused a greater than five fold increase in luciferase activity 

compared to control.  When cells containing the same construct were pretreated for 

thirty minutes with antioxidants before addition of hydrogen peroxide the increase in 

luciferase activity was reduced to levels approaching or below that which is seen cells 

transfected with wild type construct.  This decrease in activity suggests that the 

luciferase activity seen in response to oxidant treatment is due in part to the presence of 

a redox sensitive element(s) within the osteopontin promoter.  To identify these 

elements, constructs containing the mutated binding site for NFΚB and TIEG-1 were 

analyzed.  In constructs containing the mutated NFΚB binding site a ~3 fold decrease in 

luciferase activity was seen upon treatment with hydrogen peroxide.  Additionally, in the 

construct containing the mutated TIEG-1 binding site a decrease in relative luciferase 

activity was observed.  This reduction however was only ~1.7 fold decrease of the levels 

seen in wild type cells treated with hydrogen peroxide.  The minimal promoter 213 bp 

showed little activity (figure 16).  
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Figure 16.  Analysis of site directed mutants of the OPN promoter. 
Site directed mutations created in the NF-κB and TIEG-1 binding sites were evaluated 
using luciferase assays.  The bars labeled control are cells containing the full length OPN 
promoter in the absence of oxidative stress.  All results were normalized to control.  
H2O2 bar represents cells treated with hydrogen peroxide before measurement of 
luciferase activity.  NAC is cells pretreated with antioxidant before treatment of 
hydrogen peroxide.  NF-κB and TIEG-1 are full length promoters in which the 
respective binding sites were mutated.  The minimal promoter is included as a control. 
n>3. 

 

 
  Transfection of vSMCs with increasing amounts of various promoter constructs 

yielded a dose-dependant activation of reporter activity.  These dose dependence profiles 

demonstrate that increases in luciferase activity are a direct result of the activity of the 

promoter constructs.  The data from this experiment, especially that at the 1000ng level, 

also shows that the NF-κB and TIEG-1 binding sites are acting in concert in causing 

increases in luciferase activity.  When double mutants for both of these sites are 
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introduced into a single construct the increase seen in response to oxidative stress is 

completely negated (figure 17).  
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Figure 17.  Concentration response for full length wild-type and mutant OPN 
promoter constructs. 
Increasing amounts of the respective promoters 0ng-1000ng were transfected into cells 
seeded at equivalent densities.  Cells were subjected to oxidative stress conditions via 
treatment with hydrogen peroxide and co-transfected with a renilla vector to allow for 
normalization of transfection efficiencies.  NFΚB-mut and TIEG-mut refer to full length 
vectors in which the respective cis acting elements have been mutated.  Double refers to 
a full length OPN promoter in which both the NFΚB and TIEG-1 binding sites have 
been mutated. n>3. 

 

 
 In order to determine the optimal concentration of hydrogen peroxide that will 

cause an increase in luciferase activity in cells transfected with the full length promoter, 
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a dose response experiment was performed.  In this experiment, the full length promoter 

shown  previously to be responsive to oxidative stress was examined in cells treated with 

(0.0001µM-1µM).  A concentration of 0.001µM hydrogen peroxide was the optimal 

concentration to activate luciferase activity in full length promoter constructs (figure 

18a).  Higher concentration of hydrogen peroxide produced a reduction luciferase 

activities compared to the optimal concentration.  This reduction may be due to the fact 

that at those levels hydrogen peroxide starts to become toxic.  To determine the optimal 

conditions under which to perform the luciferase assays, a time course of hydrogen 

peroxide treatment was also undertaken.  Time points from 0-15 minutes showed little, if 

any, increase in luciferase activity when cells were treated with an optimal concentration 

of hydrogen peroxide.  At the 30 minute mark, there was a dramatic increase in 

luciferase activity.  This increase continued into the 60 minute time point and then 

started to decrease by 120 minutes (Figure 18b).  
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Figure 18.  Dose and time course response of the full length OPN promoter in 
vSMCs. 
A) vSMCs were treated with a range of hydrogen peroxide from 0(Control) to 1µM.  B) 
Cells transfected with the full length OPN promoter were treated with 0.001µM 
hydrogen peroxide for varying time points from 0 minutes to 120.  Cells were seeded at 
equivalent densities and co-transfected with a renilla construct to normalize for 
transfection efficiency.  n>3. 
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 From this set of experiments it was determined that treatment of vSMCs with 

0.001µM hydrogen peroxide for 30 minutes elicits the greatest activation of the 

osteopontin promoter.  Since experiments were conducted to identify the oxidative 

responsive elements within the osteopontin promoter, experiments were performed in the 

presence of antioxidant. NAC, N-acetylcysteine , is a sulfur containing free form amino 

acid, derived from the amino acid L-cysteine was chosen.  NAC acts as a precursor of 

glutathione and proven to boost the intracellular production of glutathione [71].  To 

determine the optimal concentration and time for pretreatment with antioxidants, a series 

of experiments was performed to determine the dose and time response profile for 

antioxidant pretreatment.  Figure 19a shows that cells treated with 0.001 µM hydrogen 

peroxide were afforded protection against oxidative stress only when pretreated with 0.5 

mM NAC.  Higher antioxidant concentrations did not afford any additional protection, 

this is due to the fact that NAC can become cytotoxic at these levels. Also, to determine 

the optimal time for the NAC pretreatment a time course study was undertaken.  This set 

of experiments helped to determine the minimal length of time needed for NAC 

pretreatment to afford antioxidant protection.  From this study it was determined that 30 

minutes was the minimal amount of time needed in vSMCs to provide protection from 

oxidative stress (Fig 19b).   
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Figure 19.  Confirmation of the oxidative stress responsiveness of the OPN 
promoter. 
A)  vSMCs seeded at equal densities were transfected with the full length OPN promoter 
and a renilla vector as control.  Cells were subjected to three different conditions.  
Control- no treatment 2)H2O2 cells treated with 0.001 mM hydrogen peroxide for thirty 
minutes or 3) cell treated with a range of the antioxidant NAC (0.25 mM-2 mM). B)  It 
was also determined via a time course study that pretreatment with 0.5 mM NAC for 30 
minutes would afford the greatest protection from oxidative stress. n>3. 
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 To confirm the true oxidative responsiveness of the promoter, a second 

antioxidant was used.  PTCD, pyrrolidine dithiocarbamate, functions as a NFΚB 

inhibitor as well as a hydroxyl radical scavenger.  Pretreatment with 0.1mM PTDC 

caused the greatest decrease in luciferase activity in cells treated with hydrogen 

peroxide.  In a time course study, it was determined that pretreatment of cells with 

PTDC for thirty minutes prior to addition of the oxidant would afford the greatest 

protection against oxidative stress and evidenced by the decrease in luciferase activity 

(Figures 20 a and b). 

 Next, experiments were conducted to examine the specificity and binding 

profiles of NF-κB in treated and untreated cells (Figure 21). Specifically, competition 

and supershift EMSAs were performed to examine these profiles.  The profile of NF-κB 

binding in vSMCs produces 3 distinct complexes labeled C1-C3, arrows denote the 

location of the complexes in figure 21.  To identify the composition of these complexes, 

a supershift assay was also performed with antibodies against RelA (p65).  This antibody 

was added to Lanes 3,5,8,9,11 and 12.  The antibody produced a supershift in each of 

these lanes.  The supershift is denoted by (SS) in the figure.  This supershifted band was 

the greatest in cells that were subjected to oxidative stress (lane 5).  Cells that were 

pretreated with optimal level antioxidant, either 0.5 mM NAC or 0.1mM PTDC, showed 

a marked reduction in the supershift band intensities(lane 8 and 11).  When a lower 

concentration of antioxidant was given to these cells, a concentration that has been 

shown to not afford protection, there was an increase in the supershift in the bands when 

compared to that of the cells treated with the optimal levels.  This reduction produced a  
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Figure 20.  Effect of PTDC on promoter activity. 
To further confirm that the luciferase activity of the osteopontin promoter was indeed 
being controlled via a redox sensitive mechanism, the activity of the promoter was tested 
in the presence on another antioxidant (PTDC).  These date the dose response (A) and 
time course (B) indicate that the activity that is seem in the full length OPN promoter is 
indeed redox sensitive. n>3. 
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band that is similar in intensity to that seen in untreated cells.  The identity of this 

supershift is confirmed by lanes 6, which has not antibody and did not produce a 

supershift.  Sequence specificity of NF-κB binding was confirmed by running extracts in 

the presence of 10X cold oligonucleotides (Lanes 1, 2, 4, 7, 10 and 13) 

 

Figure 21.  Specificity of NF-κB binding activity.                                         
Competition and supershift EMSA were performed on extracts of vSMCs.  The cells 
were either untreated or subjected to oxidative stress.  Lanes 3,5,8,9,11 and 12 represent 
lanes in which anti- NF-κB p65 antibody was added and incubated with the extract after 
addition of the labeled oligonucleotide.  Lanes 4,7,10 and 13 represent lanes in which the 
extract was incubated with 10 fold excess unlabeled oligonucleotide.  Lanes 8,9,11 and 
12 represents lanes in which cells we pretreated with antioxidants before the addition of 
hydrogen peroxide. 
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Discussion 

 Of relevance to the work presented here is NF-κB, a transcription factor which 

uses a helix-loop-helix motif to bind to DNA sequence elements in the promoter / 

enhancer region of  target genes. DNA binding involves one of the alpha helices which 

positions itself in the major groove of the specific DNA sequence [204].  NF-κB is 

involved in the expression and regulation of a number of important cellular and 

physiological processes such as growth, development, apoptosis, immune and 

inflammatory response, and activation of various promoters. NFkappaB represents a 

group of structurally related and evolutionarily conserved proteins related to the proto-

oncogene c-Rel. Five members have been identified in mammals including Rel (cRel), 

RelA (p65), RelB, NFkappaB1 (p50 and its precursor p105), and NFkappaB2 (p52 and 

its precursor p100) [205,206].  NFkappaB/Rel proteins exist as homo- or heterodimers to 

form transcriptionally competent or repressive complexes. Although most NFkappaB 

dimers are activators of transcription, the p50/50 and p52/52 homodimers can repress the 

transcription of their target genes [207,208].  The p50/p65 heterodimer of NF kappa B is 

the most abundant in cells. A critical component in NF kappa B regulation is the 

IkappaB Kinase (IKK) complex. In a majority of unstimulated cells, the NF kappa B 

transcription factors exist in their inactive form and are retained in the cytoplasm by the 

bound inhibitory I kappa B proteins. Upon stimulation by multiple inducers including 

viruses or cytokines, such as TNFalpha, IL-1, or PMA, I kappa B alpha is rapidly 

phosphorylated and degraded, resulting in the release of the NF kappa B complex, most 

commonly the p105/p65 heterodimer. The p105 subunit is cleaved into its active p50 
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form [209]. This cleavage exposes the NLS sequence on the p50 subunit. The p50/p65 

heteroduplex then translocates to the nucleus where it activates gene transcription. NF 

kappa B induces the transcription of its own inhibitor, I kappa B alpha, causing an 

autoregulatory mechanism of NF kappa B activity and generating the inactive form of 

NF kappa B [210, 211]. The newly formed nuclear NF kappa B-I kappa B alpha 

complexes are then exported out to the cytoplasm, thereby reestablishing the 

cytoplasmic pool of inactive NF kappa B complexes primed for another round of 

activation to take place. The wide variety of genes regulated by NF kappa B includes 

those encoding cytokines, chemokines, adhesion molecules, acute phase proteins, and 

inducible effector enzymes. 

 Also identified in this study as contributing to the redox sensitivity of the 

osteopontin promoter activity was TIEG-1.  Transforming growth factor-beta (TGFβ) 

and members of the TGFβ/Smad signaling pathway share similar anti-proliferative 

properties and are well-documented suppressors of growth [212,213].  The TGFβ signal 

transduction pathway is implicated in tumor development in several types of cancers, 

and the activity of this pathway is modulated by mutations of critical components such 

as the TGFβ receptors, Smad2, and Smad4, or over-expression of signaling inhibitors 

such as c-Ski, SnoN, Smad6, and Smad7 [214,215,216,217].  Transforming growth 

factorβ inducible early gene, TIEG, was discovered and characterized as a three-zinc 

finger containing nuclear, transcription factor [218,219,220].  TIEG was first identified 

as a primary response gene for TGFβ in human osteoblasts, that encodes a 480 amino 

acid (72 kDa) protein [218], TIEG is a Krüppel-like transcriptional factor that serves a 
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unique regulatory role in the TGFβ signal transduction pathway. TIEG over-expression 

mimics the actions of TGFβ in many cell types. For example, TIEG modulates markers 

of differentiation and gene expression, regulated cell proliferation, and induced 

apoptosis [212,219].  Whereas Smad proteins are grouped according to their ability to 

activate or repress gene expression, the two TIEGs identified thus far only repress gene 

expression. The TIEG NH2-terminal region has three conserved motifs involved in 

repression, and four linker segments that separate the repressor motifs and the COOH-

terminal DNA binding domain. Overexpression of TIEG1 in a pancreatic cell line leads 

to growth suppression and apoptosis [221].  Similar overexpression of TIEG2 suppresses 

epithelial cell proliferation. Transgenic mice expressing TIEG2 exhibit increased 

apoptosis and disorganized acinar cell organization--similar to the early pancreatic 

atrophy observed in TGF-ß transgenic mice [222].  It is unknown whether TIEGs bind to 

the TGF-ß receptor, as demonstrated for Smad proteins, nor is it known whether TIEG1 

and TIEG2 share redundant properties or have specific roles in TGF-ß-mediated 

signaling [223].  These studies are beginning to fill a gap in the existing knowledge by 

characterizing those zinc finger proteins which participate in growth factor-induced cell 

proliferation, cell cycle arrest, death, and the modulation of neoplastic transformation 

[224].  The importance of this information is further emphasized by the fact that several 

therapeutic protocols currently exist which take advantage of controlling abnormal cell 

growth by interfering with growth factor signaling pathways.  

 The present study presents evidence that there exist in the 5 end of the 

osteopontin promoter elements that are redox sensitive in nature.  
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 A progressive rise of oxidative stress due to altered reduction–oxidation (redox) 

homeostasis appears to be one of the hallmarks of the processes that regulate gene 

transcription in many diseases [225].  Reactive metabolites serve as signaling 

messengers for the evolution and perpetuation of the inflammatory process that is often 

associated with cell death and degeneration. Redox-sensitive transcription factors are 

often associated with the development and progression of many human disease states 

and inflammatory-related injury [226].  The present study examines the role of the 

redox-sensitive and oxygen-sensitive transcription factor NFκB in mediating oxidative 

injury. Changes in the pattern of gene expression through regulatory transcription factors 

are crucial components of the machinery that determines cellular responses to oxidative 

and redox perturbations [227].  
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CHAPTER IV 

SUMMARY 

 

 At its core, the pathobiology of atherosclerosis and other inflammatory disorders 

is a result of, and intricately linked to, altered patterns of gene expression.  A major 

finding in this dissertation is that OPN, a secreted glycoprotein that binds cellular 

integrins, is a major target of oxidative injury within the vascular wall.  OPN participates 

in the pathogenesis of divergent diseases, such as tumor metastasis, diabetes and 

atherosclerosis [228], disorders which share a significant inflammatory component 

[229].  As such, OPN gene expression may serve as common denominator of the 

inflammatory response in somatic cells.  The molecular mechanisms linking 

inflammation and OPN have not yet been fully elucidated.  Evidence is presented here 

that redox mechanisms participate in the regulation of OPN gene expression in vSMCs.  

This finding is consistent with the mechanistic linkage between inflammation and redox 

stress , and the positive regulation of OPN gene by ROS [230,231].   

Inflammation is associated with Inflammation is characterized by macrophage 

activation, production of cytokines, inflammatory mediators, chemokines, acute phase 

proteins and mast cell activation.  All of these processes work in conjunction to activate 

and promote the inflammatory process.  At a mechanistic level, the process of 

inflammation involves over-production of ROS that interact with cellular 

macromolecules to modulate the redox status in target cells and their surroundings.  In 

the context of tissue repair, inflammation is a desirable process resulting in protection 
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against infectious agents and the propagation of pro-inflammatory responses in the 

context of human disease.  By the same token, ROS can severely damage biological 

macromolecules by oxidative modification to become detrimental to preservation of 

overall cellular homeostasis and health [232].  Redox reactions have the capacity to 

disrupt cellular functions via free radical mediated-injury if they are not kept in check by 

the cellular machinery [233].  Whether positive or negative outcomes are realized during 

the course of inflammation is defined by the relative expression of enzymes that regulate 

the cellular response to oxidative stress.  Many of these enzymes, such as glutathione 

transferase, quinone reductase, epoxide hydroxylase and heme oxygenase, neutralize the 

adverse effects of ROS and afford protection of the cell from the harmful effects of ROS 

[234].   

 Oxidative injury to cells within the vascular wall is a critical event in the 

pathogenesis of atherosclerosis.  To study the cellular and molecular basis of this 

complex interaction, this laboratory has adopted an in vivo model of repeated cycles of 

oxidative injury by allylamine (AAM), a cardiovascular-specific toxicant that induces 

vascular lesions reminiscent of those seen in human atherosclerosis.  AAM is 

metabolized within the vascular wall by a vascular specific enzyme, known as 

semicarbazide sensitive amine oxidase, to acrolein and hydrogen peroxide.  These 

metabolites compromise redox homeostasis in vascular smooth muscle cells leading to 

oxidative stress, activation/ repression of redox-regulated genes, peroxidative injury, and 

cell death.  To study these interactions, six week-old (175-180g) male Sprague-Dawley 

rats were gavaged daily with 35 or 70 mg/kg/day AAM or water as control (1ml/kg/day) 
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for twenty days.  The induction of oxidative stress by chemical stress was confirmed on 

the basis of glutathione depletion, activation of NF-κB, and increased formation of 

isoprostane.  Isoprostanes are chemically stable peroxidation products of arachadonic 

acid that have been identified as useful indicators of oxidative stress in vivo [160].  F2 

isoprostanes are prostaglandin F2-like compounds unaffected by COX inhibitors [235].  

An increase of 8-epi-PGF2α isoprostane is observed in animal models of oxidant injury 

[175], and in pathological processes such as atherosclerosis and cancer.   

A notable difference between normal and oxidant-injured tissue was the 

expression of proteins not normally expressed within the cell.  Many of the genes 

encoding these proteins were activated by transcription factors such as NF-κB [236].  

NKFB is a central mediator of the immune and inflammatory response; and the 

activation and translocation of NF-κB leads to transcription of genes that mediate stress 

signaling [237].  In its latent form, NF-κB exists in the cytoplasm of unstimulated cells 

as a dimer bound to an inhibitory protein, ΙΒ.  Upon activation by oxidative stress, NF-

κB dissociates from the inhibitory IκB protein and translocates to the nucleus where it 

regulates the expression of genes involved in diverse cellular functions, including the 

adaptive cellular response to stress [177].  Recent in vitro studies have identified NF-κB 

as a key transcription factor involved in the regulation of proliferative phenotypes and 

integrin-coupled ECM signaling in vSMCs following oxidative stress.  Of particular 

significance within this context is that NF-κB was markedly upregulated in stressed 

vessels, and that many of the genes regulated by vascular oxidative stress exhibited some 

level of regulation by NF-κB [238].    
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 vSMCs are involved in a number of diseases including hypertension and 

atherosclerosis.  In these pathological states, vSMCs undergo a phenotypic modulation 

from a contractile state where the expression of α-smooth muscle actin is high, to a 

proliferative state with different functional, morphological and biochemical 

characteristics.  When vSMCs transition to atherogenic phenotypes during formation of 

neointimal lesions, a loss in the expression of α-smooth muscle actin is observed [178].  

In our study, evidence was obtained that oxidative stress down-regulated α-smooth 

muscle actin expression.  This phenotypic modulation was also coupled to loss of normal 

tissue architecture, increased thickness of the vessel wall and increased cell numbers.  

Collectively, these alterations are consistent with the conclusion that oxidative injury 

induces atherogenesis in vivo. 

 Microarray analysis allows for the screening of thousands of genes in a single 

experiment.  This approach presents some pitfalls, mainly due to large data sets that 

must be extensively mined in order to glean useful information.  K-means clustering is a 

commonly used method for finding relationships in these large data sets.  Clustering 

analysis of the data indicated that allylamine treatment induces oxidative stress within 

the vessel wall in vivo, and identified distinct, as well as overlapping, transcriptional 

responses regulated by oxidative stress.  These emerging functional relationships are 

consistent with existing biological knowledge databases [239], and identified novel gene 

networks involved in the adaptive response of the vessel wall to oxidant injury.  Our 

results suggest that interactive gene networks that contribute to the progression of the 

atherogenic phenotype include: 1) adaptive response genes; 2) growth regulatory genes, 
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and 3) matrix-associated genes.  These targets were identified based on spatio-temporal 

profiles of transcriptional expression in stressed versus normal tissue.  The adaptive 

response, a.k.a. “stress response”, includes the regulation of genes required for 

detoxification of reactive oxygen species.  Initiation of oxidative stress is due to poor 

maintenance of the redox flux following peroxidative injury, and uncoupling of the 

respiratory chain during adaptation to the oxidant injury response [240].  Following 

oxidant injury, the differential regulation of growth regulatory and matrix-associated 

genes is likely part of the regulatory cascade that culminates in induction of atherogenic 

phenotypes [241].  Thus, if the role of interactive gene networks in a multi-factorial 

disease process such as atherosclerosis is to be elucidated, gene regulation networks 

involved in such diverse functions as growth control, matrix protein synthesis and 

deposition, and apoptosis must be considered.   

 In order to validate our genomic findings, and to define the molecular bases of 

the atherogenic response, OPN and α1 integrin levels in vivo were probed at the protein 

level.  The levels of these proteins were significantly increased in stressed vessels 

compared to controls.  OPN is a secreted acidic phosphoprotein involved in 

ECM/integrin interactions and proliferative control of vSMCs [167].  Elevated levels of 

OPN have been observed during neointimal formation and atherosclerotic disease [162].  

Because the proliferation of vSMCs is one of the key features of atherogenesis, OPN is 

an ideal marker of modified vSMC phenotypes.  However, it is not yet clear if OPN 

expression is a cause, or a result, of atherosclerosis.   
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α1 integrin expression was modulated by oxidative stress.  Integrins are a family 

of heterodimeric transmembrane glycoproteins composed of α and β subunits that allow 

cells to identify changes in ECM composition and activate intracellular signaling 

pathways [181].  ECM remodeling, a critical step in the pathogenesis of atherosclerosis, 

is highly dependent on the expression of matrix components and their receptors.  For 

instance, α integrin is a collagen/laminin receptor implicated in cellular proliferation, 

abnormal laminin deposition and inflammatory responses [163].  In inflammation, the α1 

integrin is responsible for monocyte adhesion to damaged tissue.  Blockade or deletion 

of the α1 integrin inhibits accumulation of matrix proteins, and may be of therapeutic 

value in the management of inflammatory disorders [182].  Recent reports from several 

laboratories, including our own, have demonstrated that cellular adhesion molecules 

provide specificity for signaling during the atherogenic response.  Although integrins 

independently afford intracellular signaling, it is the interaction of the ECM with the 

integrins that provides crucial signaling steps in the progression of proliferative 

phenotypes in atherosclerosis.  α1β1 integrin is the only collagen receptor that can 

activate the Shc/Grb2 pathway.  α1 integrin is unique in that it plays a central role in Shc 

mediated proliferation in response to changing conditions in the ECM, thus providing an 

autocrine pathway for proliferation [242].  Its role in oxidative injury-induced 

atherogenesis is intriguing and worthy of further investigation. 

 A change in vSMC phenotype is marked in part by differential regulation of 

alpha tropomyosin.  The alpha-tropomyosin (Tpm1) gene generates different mRNAs 

that encode for striated and smooth muscle isoforms by alternative splicing [243].  
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Tropomyosin is a component of the contractile mechanism of the cell, and is present in 

both stress fibers and thin filaments.  Changes in the tropomyosin profile of the cell 

would thus be indicative of a change in the morphology and functional characteristics of 

the cell.  Tissue-specific regulation and developmental expression of smooth muscle 

cells is regulated by alternative splicing of duplicated isotype-specific exons [243].  The 

expression of an alternate form of the isoform for gene Tpm1 in vSMCs may be partially 

responsible for a shift from contractile to proliferative phenotypes [185].  In keeping 

with this observation, evidence was obtained that oxidative injury increases the levels of 

Tpm1within the vascular wall.  Interestingly, Tpm1 expression was mainly localized to 

vSMCs in close proximity to the advential side of the vessel wall.  While the 

significance of this finding is unknown, it suggests that the response of vSMCs within 

the vessel wall to oxidative injury is highly heterogenous.  The localization of Tmp1 

mRNA is intriguing in light of evidence implicating the adventitia in neointima 

formation in the rat carotid injury model [186].  

 Of interest was the finding that oxidative injury in vivo increased the expression 

of LINE.  LINE (Long Interspersed Nuclear Elements) encodes a reverse transcriptase 

and perhaps other proteins [187].  Recent studies in this laboratory have shown that 

activation of LINE expression in vSMCs is mediated by activation of redox-regulated 

transcription factors [189].  As such, it has been hypothesized that activation of 

retrotransposons following oxidative injury may disrupt genomic stability and therefore, 

explain some of the phenotypic changes observed following oxidative injury [187,189].   
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In addition to causing cellular damage, low levels of ROS can initiate gene 

transcription [244].  Gene transcription involves the process of constructing a messenger 

RNA molecule using a DNA molecule as a template, with resulting transfer of genetic 

information to the messenger RNA..  Transcription is the first of the two-step protein 

biosynthesis process. Transcription is an enzymatic process that reads DNA and 

transcribes it into its complementary RNA sequence. Transcription ultimately leads to 

DNA translation. There is no proofreading or correction process; therefore, it has a lower 

copying fidelity than DNA replication. Transcription proceeds in a downstream direction 

(5' toward 3').The transcription process is divided in 3 stages: initiation, elongation and 

termination.  In the simplest of terms, gene expression is the manifestation of the cellular 

genotype into a phenotype. This complex process involves the execution of the 

instructions held within the sequence of nucleotides making up the genome, namely 

transcription of the genes, translation of the mRNAs and function of the protein product. 

The study of gene expression is of prime importance to elucidate the nature and order of 

molecular genetic events and processes in cells which ultimately allow it to survive and 

propagate, and is an essential part of utilizing the genome sequence information [245].  

Here we describe aspects of a redox-activated transcriptional mechanism that mediates 

expression of the OPN gene.  The importance of redox mechanisms in regulating the 

expression of OPN is suggested based on the ability of hydrogen peroxide to activate 

gene expression, and the ability of antioxidants to completely ablate gene expression.  

The data summarize here indicate that transcriptional mechanisms represent an 

important molecular mechanism in the regulation of OPN under imposed by cellular 
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stress conditions.  Analyses of deletion mutants of the OPN promoter defined the 5′ end 

of the OPN promoter as essential for inducibility by oxidizing agents.  Western blot 

analysis and real-time PCR showed that treatment of vSMCs with different oxidants 

increased the expression of OPN and that this induction response is mediated by oxygen-

derived free radicals.  Together, the data indicate that regulation of OPN by oxidizing 

agents is a complex process that requires both NF-κB and TIEG-1, and that these 

binding sites act in concert to mediate the cellular response to oxidative stress.   

It should be noted, however, that OPN is highly phosphorylated and glycosolated 

protein and these modifications are responsible for many aspects of the regulation of 

receptor recognition and affinity [246].  Neame and Butler have shown have shown that 

osteopontin is a multiply-phosphorylated glycoprotein which contains an RGD cell 

adhesion sequence and regions containing a high level of aspartic acid. Using mass 

spectrophotometry to analyze peptides, eleven sites were found that were variably 

phosphorylated [247]. 
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Figure 22.  Promoters: where genes meet the environment. 
 Promoters make appropriate adaptive changes in gene expression to maintain cellular 
homeostasis 
 

 The form and function of a cell are determined largely by the control of relative 

expression of precise sets of genes at precise times in its development, and in precise 

positions within the tissues. The activity of a gene is mainly determined by the 

regulation of transcription initiation and not the rate at which transcription proceeds 

along, which is largely constant for all gene transcription.  Evidence for this level of 

control comes from direct measurements of transcription from specific genes and of 

quantitative levels of transcription products.  The activity of the gene promoter 

determines the abundance of the corresponding mRNA.  The number of molecules of a 
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particular mRNA sequence is determined by the efficiency of the promoter and 

activating factors in assembling the initiation complex with RNA polymerase II. This 

determines how many transcripts are derived from the gene at any given point in time 

[248].   

 To this end, the Ramos laboratory has begun to identify “key” genes that are 

predictive of genomic behavior of disease phenotypes.  Since the development of 

microarray technologies in the mid 1990’s, there has been an enormous increase in gene 

expression data from many different model systems and organisms that is available to 

researchers.  One problem that has arisen from increases in the amount of expression 

data is how to make sense of what is happening at the level of your gene of interest in a 

large ‘sea’ of genes.  Emerging methodology is being designed to reconstruct how genes 

interact within the genomic context, and methods and algorithms are being developed 

that can best represent the intricate interconnections that exist between genes.  The 

ability to create gene networks from experimentally-derived data facilitates a systematic 

review of function at the genetic and molecular level of the cells.  In short, gene 

networks need to be developed that accurately describe these interactions.  To this end, 

methodology has been applied to describe the co-expression of genes coupled to additive 

probabilistic relationships to identify gene sets that are predictive of the complex and 

intertwined biological relationships that exist in situ. 

 Of relevance to the work presented here is that in large scale computational 

genomic studies OPN has emerged as a central node in regulation of the cellular 

response to stress [249].  Several other methods of creating gene networks have also 
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identified OPN as a key gene [250,251].  OPN gene regulatory networks were verified 

via literature searches as having experimentally-documented interactions.  It should 

come as no surprise that OPN emerged as a key predictor, especially when considering 

that OPN is seen as a target gene in many disease states such as arthritis, cancer, 

diabetes, and atherosclerosis.   

As noted previously, oxidative stress and the mechanisms and pathways affected 

by it may be a common denominator that allows for OPN to be an effective predictor of, 

and a central target of gene behavior.  Collectively, our findings emphasize the 

importance of oxidative stress in atherogenesis.  A greater understanding of the 

underlying mechanisms and genetic networks responsible in the generation of ROS, 

along with a more detailed characterization of the signaling and transcriptional pathways 

affected by oxidative stress will, without a doubt, lead to the identification of novel 

molecular targets and ultimately more effective therapies for the reduction of ROS-

induced vascular disorders. 
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