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ABSTRACT 

Measurement of Flammability in a Closed Cylindrical Vessel with Thermal Criteria.  

(December 2006) 

Wun K. Wong, B.S., Harvey Mudd College 

Chair of Advisory Committee:  Dr. James C. Holste 

 
 Accurate flammability limit information is necessary for safe handling of gas and 

liquid mixtures, and safe operation of processes using such mixtures.  The flammability 

limit is the maximum or minimum fuel concentration at which a gas mixture is 

flammable in a given atmosphere.  Because combustion occurs in the vapor phase, even 

in the case of liquids the flammability limits are applicable after calculating the vapor 

compositions.  The body of flammability data available in the literature is often 

inadequate for use with the variety of conditions encountered in industrial applications.  

This is due to the scarcity of flammability data for fuel mixtures in non-standard 

atmospheric conditions, and inconsistencies in flammability values provided by different 

experimental methods.   

 This work reports on the design, construction and utilization of an apparatus 

capable of measuring flammability limits for a range of conditions including fuel 

mixtures, varying oxygen concentrations, and extended pressure and temperature ranges.  

The flammability apparatus is a closed cylindrical reaction vessel with visual, pressure 

and thermal sensors.  A thermal criterion was developed for use with the apparatus based 

on observations of combustion behavior within the reaction vessel.  This criterion 
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provides more detailed information about the combustion than is provided by the 

pressure criterion methods.   

Measured flammability limits of several hydrocarbon mixtures in air compare 

well with limits obtained by open glass cylinder experiments, but not with the results of 

counterflow apparatus experiments.  The current results show that Le Chatelier’s rule 

describes the mixture results adequately.  Minimum oxygen concentrations also were 

determined for methane, butane, and methane-butane mixtures and compared with 

values reported in the literature.  Lower flammability limits were determined for an 

equimolar methane-butane mixture at varying oxygen concentrations.   

Results show that the flammability data determined with thermal criteria has an 

acceptable level of accuracy.  Recommendations for improving apparatus are made, 

based upon observations made while operating the flammability apparatus. 
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1.  INTRODUCTION 

 

 The safe handling of gas or liquid mixtures requires knowledge and 

understanding of their flammability.  Industry deals with mixtures at various 

temperatures, pressures, oxygen concentrations, and other atmospheric conditions.  

Flammability data at those conditions is necessary for safe operation of processes. 

 Flash points are useful for liquid safety because they describe the temperatures at 

which a liquid develops flammable vapors.  Regulatory agencies use flash point 

determinations produced by small-scale test apparatus to classify flammable liquids.  

Regulators provide guidance on transportation, handling, packaging, storing, dispensing, 

and protecting these materials based on these classifications [1].  They also require that 

flash points be provided as part of material safety data information.  Flammability limits 

are often provided with material safety data sheets as well as flash points because they 

describe the composition of the gas that can form propagating flames.  Because 

combustion occurs in the vapor phase, even in the case of liquids the flammability limits 

are applicable after calculating the vapor compositions.  Knowledge of the flammability 

limits is more valuable for safety in design because it is applicable to liquids and gas 

mixtures. 

 

 

____________ 
This thesis follows the style of Journal of Hazardous Materials. 
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 The body of flammability data available in the literature is often inadequate for 

use in the variety of conditions encountered in industrial applications.  First, 

flammability limits for many pure substances at atmospheric conditions are generally 

available, but information for pure substances and mixtures in non-standard atmospheres 

or at pressures other than atmospheric are scarce.  Models that predict the flammability 

limits of mixtures in non-standard conditions are particularly sought after, but their 

reliability is limited by the lack of experimental verification.  Second, the usefulness of 

flammability data is reduced by inconsistencies between the results of different 

measurement methods.  The differences are caused by a combination of environmental 

factors (size and shape of the apparatus, turbulence or flow scheme of the gas or 

mixture), source of ignition, and measurement criteria.  Standardization of the 

experimental methods can minimize the inconsistencies in the body of flammability 

data.  At the current state of the research, no such standards exist.   

This dissertation deals with the construction and operation of an apparatus to 

examine and compare different measurement criteria, and to gather flammability data on 

some selected gas mixtures.  The primary focus is on the feasibility and mechanics of 

using thermal criteria for the measurement. 
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2.  OBJECTIVES 

 

 The first objective of this research is the design and construction of a 

flammability apparatus.  Some design constraints include:  sufficient size in the reaction 

vessel to reduce wall quenching, sufficiently fast gas loading and mixing to enable a 

large number of experiments in a reasonable time, and capability to utilize visual, 

pressure, and thermal criteria to detect flame propagation. 

 The second objective of this research is to examine the thermal criterion as a 

measurement of flame propagation.  For open vessel apparatuses at atmospheric 

conditions, propagation is usually detected visually.  Closed vessel apparatuses are 

capable of higher pressures, but the materials of construction make visual detection more 

difficult, and pressure criteria more often are used.  Results from pressure and visual 

criteria experiments tend to differ significantly.  Thermal criteria offer an alternative 

method for detecting flame propagation that is applicable in closed or open vessels.  

Examination of the experimental data will develop the analysis method for the thermal 

criterion.  Also, comparisons between criteria can be made by collecting temperature, 

pressure and visual measurements simultaneously.   

 The third objective of this research is to determine the flammability limits of 

several hydrocarbon gases, as pure gases and as mixtures.  The measurements for the 

pure gases serve to verify the apparatus.  Mixture flammability limits serve to test the Le 

Chatelier model, which is accurate according to most experimental data, but not 

according counterflow experiments conducted recently [20]. 
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3.  PREVIOUS WORK 

 

3.1 Overview 

 

 Experimental work on flammability began as early as 1816, when Sir Humphrey 

Davy of England examined the flammability limits of methane by igniting methane-air 

mixtures in a narrow necked bottle out of concern for mine safety.  In 1891, Le Chatelier 

[2] developed a mixing rule for determining the flammabilities of multiple fuel mixtures 

by relating flammabilities of mixtures to flammabilities of the pure components and their 

molar fractions.  Since then, researchers have used a variety of methods to measure 

flammability, both of gases and liquids, to generate a body of flammability data for use 

in safety applications such as classification of chemicals, risk analysis, etc.  Liquid 

flammability information generally is presented in terms of flash points or flame points, 

which can be determined by methods produced by the American Society for Testing and 

Materials (ASTM).  Gas flammability information generally is given in terms of 

flammability limits, determined with several methods, including methods produced by 

the U.S. Bureau of Mines and the ASTM, as well as more recent European standard 

methods.  The body of experimental data is complicated by the sometimes interchanged 

use of the similar but different terms “flash point” and “flame point”, and the 

inconsistent values of flammability limits determined with different methods.  This 

presents a significant problem since various substance indices calculated from 

flammability limits would not contain information about the measurement method.  The 
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users of these resources potentially can receive incorrect information, especially in the 

case where the fuel is a mixture. 

 

3.2 Flash points, flame points, and flammability limits 

 

 Flash point as defined by ASTM is “the lowest temperature, corrected to a 

pressure of 760 mmHg at which application of an ignition source causes the vapors of a 

specimen to ignite under specified conditions of test” [3, 4].  Typical flash point 

measurements with ASTM methods involve heating a liquid sample in a cup to a test 

temperature.  A pilot flame of hydrocarbon gas is passed over the liquid surface or vapor 

space of the liquid.  Ignition is identified visually [4, 5].   

 Flame point (or fire point) is defined by the ASTM as “the lowest temperature at 

which a specimen sustains burning for a minimum of 5 s” [4].  The flame point is 

generally defined as the temperature at which the flame is self-sustained, usually slightly 

different than the flash point [6].  The sustained burning on top of a liquid is caused by 

downward propagation of the flame [7].  The difference between flash and flame point is 

simply that flame point refers to a self propagating flame, whereas the flash point only 

requires detectable ignition.   

 Flammability limits, sometimes referred to as explosion limits [8], are defined by 

ASTM as well as authors like Zabetakis and Britton as the fuel concentration in the 

mixture where a flame can propagate away from the ignition source in that mixture [3, 5, 

5, 9, 2].  When using this definition, it is possible to utilize flame point data to 
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approximate flammability limits by calculating the saturated vapor concentration of fuels 

at a given temperature, and vice versa.  However, some researchers make no such 

distinction;  instead they assume that the flash point vapor concentration is the 

flammability limit [10], a practice that causes some confusion in interpreting values 

reported in the literature.  In addition, flammability limits are divided into two types:  the 

upper flammability limit (UFL) where the fuel concentration becomes too rich to be 

ignited and a lower flammability limit (LFL) where the fuel concentration becomes too 

lean to be ignited.  Flash and flame points can be used to calculate the approximate LFL 

of a chemical, as they represent temperatures where barely enough fuel is in the vapor 

phase for combustion.  The UFL cannot be approximated using flash and flame points 

for this reason.  Attempts to relate flash and flame point data to flammability limits are 

further complicated by different experimental conditions and criteria that arise with 

different methods.  Flammability limits can be affected by temperature, pressure, 

direction of flame propagation, and other environmental factors such as shape, size, or 

material of reaction vessel, ignition type, ignition energy, etc. [8, 9, 11].  The following 

section provides background on the current and past state of research methods. 

 

3.3 Common experimental methods 

 

 The U.S. Bureau of Mines generated a large body of flammability data for pure 

gases, as well as some gas mixtures.  Much of the work was done and summarized by 

Coward and Jones et al., Zabetakis et al., and Kuchta et al. [8, 12, 13] through Bureau of 
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Mines Bulletin publications.  Flammability limits usually were determined by visual 

identification of flame propagation away from the point of ignition.  Most of the 

measurements were made on premixed, quiescent gases in glass cylinders that were open 

at the bottom.  The criterion for flammability is flame propagation from the bottom of 

the cylinder (ignition end) to the top of the cylinder( 1 to 1.5 m in length).  More recent 

experiments with a similar objective of measuring vertical flame propagation involve the 

use of an open bottomed steel cylinder with a thermocouple at the top for flame 

detection [14, 15]. 

 Apparatus with closed, steel, spherical (and near spherical) reaction vessels and 

center ignition also have been used for flammability limit determinations in recent years.  

Unlike glass cylinders the visual detection of flames cannot be accomplished without a 

port, so the detection criterion usually is the relative pressure increase resulting from 

combustion.  In these types of experiments there is no standard pressure rise criterion or 

vessel size.  Burgess in 1982 published data from a 25,500 L sphere (3.65 m I.D.) that 

incorporated a 7 % pressure rise criterion in addition to the visual detection of flame 

propagation [16], and Cashdollar in 2000 published data [17] from 20 L (0.337 m I.D.) 

and 120 L (0.612 m I.D.) chambers with 3 or 7 % pressure rise criterion as well as 

reviewed older data from 8 L (0.248 m I.D.) and 25,500 L chambers.   

 Flammability limits also have been determined indirectly using counterflow 

burners, where twin gas jets of premixed fuel and oxidizer are released from opposing 

nozzles against each other, and ignited to produce twin, planar flames.  The stretch rate, 

defined as the average gas exit velocity and half the distance between the nozzles, is 



 8

measured at different fuel concentrations.  The fuel concentration is plotted as a function 

of stretch rate.  The fuel concentration is extrapolated linearly to a stretch rate of zero, 

and this intercept is taken as the flammability limit [18].  This method is known to 

determine flammability limits of lower hydrocarbons at values similar to those found 

with spherical vessels, though it is suggested that the relationship between flame stretch 

and flammability limit is not strictly linear, and might fail to determine a correct limit 

under some conditions [19].  

 

3.4 Method parameters and flammability 

 

 Parameters that influence flammability limits can be described roughly by the 

following groups:  attribute of the apparatus (e.g. shape, size, ignition source power, 

ignition location), physical condition of the gas mixture (e.g. temperature, pressure, 

turbulence), and operator (criterion for flammability, accuracy) [8].  While any of those 

parameters can affect the flammability limit measured, usually the physical condition of 

the gas mixture is a characteristic of the chemical being investigated.  It is the apparatus 

and the operator parameters that are specified by an experimental method.  For methods 

with a reaction vessel that contains the gas mixture, vessel size and shape, ignition 

power and location, and flammability criteria are especially important.  Flame 

propagation requires sufficient heat transferred from the flame to the unburned gas 

surrounding it, thus anything that reduces the available energy will affect the limits [12].  

Vessels with greater distance between the walls and the ignition source, as well as larger 
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diameters therefore tend to have wider flammability limits ( lower LFLs, higher UFLs) 

as the quenching effects are reduced.  The power of the ignition source must be 

sufficiently large to induce consistent ignition, but not so large that spurious indications 

of propagation are observed [2].  The choice of criteria also must take the other factors 

into consideration.  For example, flame propagation in a cylinder with bottom ignition 

tends to cause a greater pressure increase than in an equivalent cylinder with center 

ignition.  This occurs because downward propagation of flames is less likely near the 

flammability limit and a greater amount of gas will combust if ignited at the bottom.  

The pressure rise criterion needs to be larger for this setup to address the difference. 

 Counterflow apparatuses do not share apparatus parameters such as vessel shape, 

size, or ignition energy with other apparatuses.  Instead, the key parameters are nozzle 

size and nozzle distance, because the method measures stretch rates from already 

burning twin jet flows of gas.   

 In some cases, inconsistent flammability values result from the differences in the 

methods.  A recent study on the lower flammability limits of methane-ethane and 

methane-propane mixtures using a counterflow apparatus yields significantly different 

values than those predicted by Le Chatelier’s rule [20].  This contradicts previous work 

by Coward et al. [21] that shows methane-ethane, methane-propane, and methane-butane 

mixtures obey Le Chatelier’s rule closely.  Figure 3.1 shows the experimental and 

predicted values of methane-ethane and methane-propane lower flammability limits.  

Additional measurements are required to resolve this contradiction. 
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Fig. 3.1 Experimental LFLs of fuel mixtures in air compared with Le Chatelier 

predictions.  Methane-ethane (top) and methane-propane (bottom) mixtures in air. 
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3.5 Standardization 

 

 There have been many attempts to standardize the measurement methods to 

improve compatibility of flammability data.  ASTM adopted three closed vessel methods 

for gas and vapors:  a general method (ASTM E 681-01), a specific method for gases 

and vapors at varying oxygen content (ASTM E 2079-01), and a specific method for 

chemicals at elevated temperature and pressure (ASTM E 918-83).  ASTM E 681-01 

uses a 5 L glass sphere with a high voltage, central spark as the ignition source.  Flame 

propagation is defined as an upward and outward movement of the flame front from the 

ignition point, which adds the important feature that the flame is required to show self 

propagation independent of the plume of hot gas created by the ignition source [22].  

ASTM E 2079-01 requires a 4 L or larger near-spherical vessel with a 10 J or greater 

ignition source, and a 7 % total pressure rise (with adjustment due to ignition effects) 

criterion [23].  E 918-83 requires a 1 L and 76 mm diameter minimum vessel inside an 

insulated oven with a fuse wire igniter near the bottom, and a 7 % total pressure rise 

criterion [24].   

 The current European standard methods for flammability limit determination are 

the DIN 51649 and EN 1839 methods.  The DIN 51649 test method uses a 6 cm 

diameter, 30 cm tall glass cylinder opened at the top, with a spark igniter (0.5 s, at 10 W) 

at the bottom.  The criterion for flammability is any visual sign of flame detachment 

from the ignition source.  The EN 1839 method has both an open cylinder method and a 

closed vessel method, generally referred to as EN 1839 (T) and EN 1839 (B) 
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respectively.  The EN 1839 (T) method uses a 8 cm wide, 30 cm tall, open top glass 

cylinder, with spark igniter at the bottom (0.2 s, at 10 W).  The criterion for flammability 

is propagation of the flame 10 cm vertically above the igniter or 12 cm in the horizontal 

direction at any point of the flame path.  EN 1839 (B) allows the use of a cylindrical or 

spherical vessel of at least 5 L and an exploding fuse wire (0.2 s, at 10 to 20 J) in the 

center.  The criterion for flammability is a 5 % minimum pressure rise after ignition [25]. 

 These attempts at standardization have achieved only limited success.  ASTM E 

681-01 has not been used widely, as most spherical vessel experiments use vessels larger 

than 5 L, and the pressure criterion instead of visual observation.  The ideal pressure 

criterion is also ambiguous as the 7 % and 5 % criteria specified by the ASTM and 

European standards respectively differ, and different fuels have different pressure rise 

characteristics.  For example, some refrigerants have a pressure rise of only 2 % when a 

propagating flame is ignited [26].  Researchers also continue to use counterflow 

methods, as well as other methods to determine flammability.  A survey done by Britton 

[2] shows that the closed vessel methods with pressure criteria tend to have wider 

flammability limits than the open cylindrical vessel methods done by the U.S. Bureau of 

Mines.  DIN 51649 and EN 1839 (T) tend to have much wider limits than other sets of 

data as well, possibly because their criterion only require short flame propagation 

distances.  Moreover, the European definition of flammability is different from the 

American definition.  The American standards and authors define flammability limits as 

the limiting fuel concentrations where the flame propagates through the mixture, while 

the European definition is the limiting concentration where the flame just fails to 
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propagate [25].  The difference in definitions and the effect of the less stringent criteria 

of short flame propagation distance and 5 % pressure rise instead of 7 % widens the 

flammability limits determined by DIN 51649-1 and EN 1839.   

 There is no universally accepted standard procedure for flammability 

determination.  In 2002, Britton [2] reviewed the state of flammability research and 

made the following recommendations: 

• Flammability limits should be measured to approximate free flame 

propagation independent of quenching effects by the walls or overdriving by 

the ignition source. 

• The body of data using the American definition of flammability and 

European definition of flammability should not be mixed, and if they are 

compiled together the difference in definition should be noted. 

• Experiments should be conducted in large diameter cylindrical apparatus, 

with bottom ignition, and a 7 % pressure rise criterion.  This set of parameter 

can reduce the effect of quenching, and increase the pressure rise for more 

consistent results. 

While the recommendations by Britton are based on reasonable assessments, experience 

showed that different pressure rise criteria than 7 % must sometimes be used to 

determine consistent flammability limits with different test vessels [8, 26, 27, 28].   
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3.6 New thermal criterion 

 

 This work uses an alternative criterion for flammability determination.  

Thermistors at multiple locations above the ignition point can be used to track flame 

propagation in a cylindrical or spherical vessel.  In this work we compare this thermal 

criterion with pressure and visual criteria, and flammability limits found by this method 

with those reported in the literature.  The vessel used for this work has a closed 

cylindrical geometry, based on the recommendation by Britton [2].   
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4. EXPERIMENTAL APPARATUS 

 

4.1 Overview 

 The flammability apparatus is a device used to detect flammability limits of gas 

mixtures.  The key design features of the apparatus include: 

1. Operational safety 

2. Practical operation and maintenance by one individual 

3. Multiple mthods to detect combuston 

4. Sufficient reaction vessel size to minimize flame quenching effects 

5. Sufficient distance between igniter and sensor to minimize spurious results 

caused by ignition effects 

6. Short turnaround time between experiments 

7. Sufficiently fast data acquisition system to capture detailed time profiles of 

sensor measurements 

 The primary apparatus design features include:  vessel shape, vessel size, ignition 

type, ignition location, and sensor locations. 

 The reaction vessel shape is a closed cylinder.  Britton [2] recommended this 

geometry partly for ease of maintenance, but mostly because when combined with 

bottom ignition the pressure rise will be relatively large so that a pressure criterion easily 

can be applied.  The geometry is also similar to that of the apparatus used by the U.S. 

Bureau of Mines and the more recent European standard EN 1839 (T).  Determination of 

flammability limits similar to those standards;  some propagation (10 cm vertical) away 
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from ignition source, or propagation to the top of the cylinder is likely to produce similar 

values, allowing for apparatus validation by comparison.  Figure 4.1 shows 

schematically the reaction vessel with design features. 

 

 

Fig. 4.1. Reaction vessel design features. 
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While the recommended size for such a vessel is 30 cm diameter, 100 to 150 cm long [2] 

or 30 cm diameter and 60 cm long [11], a stainless steel vessel of such size with 

sufficient pressure rating would be far too heavy for one person to handle, presenting 

safety and practical issues during maintenance.  The vessel interior dimension chosen is 

approximately 10 cm in diameter and 100 cm in length, which results in a much lighter 

reactor vessel.  Previous work has shown that reaction vessels with similar dimension 

have sufficient width to minimize quenching of typical fuel flames and sufficient 

distance between the igniter and the pressure sensor at the top of the vessel to minimize 

ignition energy effects on the measurement results [27].   

 The ignition source should provide enough energy to start the combustion 

process, but not too much additional energy.  The most commonly used ignition sources 

reported in the literature are fuse wires and electrical arcs (sparks), but fuse wire has a 

greater power density and therefore imparts more useful heat into the gas mixture [2].  

Furthermore, Mashuga [29] demonstrated that fuse wire explosions can have a consistent 

pattern of energy and power input, thus improving the repeatability of an experimental 

parameter.  Therefore this apparatus uses an exploding fuse wire as the ignition source. 

 The type of measurements needed for flammability detection are visual, pressure 

and thermal.  Thermal detection of flame along the vessel center can determine flame 

propagation.  Visual and pressure measurements can confirm the thermal detection 

results.  The thermal sensors are placed along the center axis of the vessel body to 

provide the most sensitive detection of flames and to minimize wall effects.  The 

pressure sensor is located at the top of the vessel to minimize effects of the ignition 
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source on the measurements.  The visual sensor is at the bottom of the vessel, allowing it 

to verify proper fuse wire explosions, and also to confirm instances of short flame 

propagation away from the igniter where the flame front does not reach the top of the 

vessel.   

 

4.2 Reaction vessel with enclosure 

 

 The reaction vessel consists of three major sections, the top plate, the reactor 

body, and the bottom plate.  The top plate is affixed permanently to the vessel enclosure, 

and the reactor body and bottom flange hang from it when assembled.  The reactor body 

is a schedule 40, 4 inch nominal (11.43 cm O.D., 10.22 cm I.D.), 100 cm long, stainless 

steel (SS 316) cylinder with welded flanges (7.78 cm O.D., 1.778 cm thick, 12 threaded 

bolt holes).  A clamp near the midpoint of the reactor body connects it to a 

counterweight pulley system that provides ease of handling during maintenance.  The 

bottom plate and the top plate bolt directly to the reactor body.  The vessel is sealed 

against vacuum and pressure with O-rings (Viton®, 10.76 cm I.D. 0.262 cm width) 

between flanges and top and bottom plates.  The reaction vessel has a volume of 8.2 L.  

Figure 4.2 shows the reaction vessel mounted on the enclosure.  
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Fig. 4.2.  Reaction vessel mounted in the safety enclosure.  
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 The top plate is a 1.905 cm thick, 20.32 cm wide, 60.96 cm long stainless steel 

plate with ports for the pressure transducer, thermistor signal feedthroughs, and the gas 

loading/relief valve section.  Two holes on the top plate allow steel cables through to the 

clamp on the reactor body to the counterweight system above.  Figure 4.3 shows the top 

plate.   

 

 

Fig. 4.3. Top flange of reaction vessel. 

 

 The bottom plate is an 1.778 cm thick, 17.78 cm diameter stainless steel flange 

with a large center port for igniter insertion, a port connecting to the signal/power 



 21

feedthrough for an internal camera and a spare port (currently unused).  Figure 4.4 

shows the bottom of the reaction vessel. 

 

 

Fig. 4.4. Bottom flange of reaction vessel. 

 

 The reaction vessel enclosure is a rectangular structure built of Unitstrut® 

components, with 1 5/8 inch square struts forming the frame.  The vessel is accessible 

through two hinged half-door sections that swing outward, allowing full access and 

partial access during igniter disengagement for fuse wire replacement.  Two of the walls 

are constructed of 1/8 in thick steel sections riveted together.  The third wall and the 
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hinged sections are covered with 2 layers of ¼ in thick Lexan® sheets.  Figure 4.5 shows 

the front view of the enclosure with the half-doors closed.  Figure 4.6 shows a side view 

of the enclosure from a steel wall side. 

 

 

Fig. 4.5. Reaction vessel enclosure front view. 
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Fig. 4.6. Reaction vessel enclosure side-back view. 

 

 The components for the reaction vessel and enclosure were constructed by the 

Texas A&M chemical engineering department machine shop.  The design and safety 

analysis of the reaction vessel are addressed in a later section. 

 

4.3 Gas loading and mixing 

 

 The gas mixtures used with the experimental apparatus are synthesized by 

loading the individual components from the pressurized cylinders in which they are 
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supplied into an external mixing device through a gas loading manifold.   After mixing is 

complete, the test mixtures are loaded into the reaction vessel through the manifold.  

Figure 4.7 shows schematically the gas loading manifold and peripherals for the 

flammability apparatus. 

 

 

Fig. 4.7. Gas loading manifold and peripherals. 
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 The gas loading system begins at the pressurized cylinders stored in the chemical 

storage hallway adjacent to the laboratory.  Each pressurized cylinder connects to an 

appropriate pressure regulator, then through the double valve gas feed wall panel (built-

in feature of laboratories in the Jack E. Brown Texas A&M Engineering Building) into 

the laboratory area.  Figure 4.8 shows the wall panel from the laboratory side (the 

arrangement in the storage hallway is identical). 

 

 

Fig. 4.8. Gas feed wall panel. 
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 The fuel lines and the oxidizer line connecting to the gas loading manifold all 

contain check valves to prevent reverse gas flow if valve failure or operator error occurs.  

The check valves (Swagelok®) have 6,000 psig maximum working pressure and 4 psid 

cracking pressure.  The combined gas line from all pressurized cylinders includes a 

metering valve leading to a cross junction that connects to four sections:  the external 

mixer, the reaction vessel, the vacuum pump (Welch Mfg. DuoSeal Pump, ultimate 

vacuum:  1.4x10-3 mm Hg from department tests), and the vent line.  The junction area 

has a pressure transducer (Omega PX603, 0.4 % accuracy with 0.04 %/F thermal zero 

and span effect) that provides pressure information for gas loading to specified 

pressures, and plug valves that allow isolation of each section from the gas line and each 

other.  The manifold is purged with inert gas (nitrogen) and evacuated between each gas 

loading step.  The vent line releases the contents from the manifold, as well as the 

reaction vessel and the mixer during different stages of gas loading, directly into a 

constant suction laboratory vent to prevent the build up of flammable gases in the 

laboratory.  All gas lines (1/4 in tubing, 0.028 in thick) and valves (Swagelok®, Nupro®, 

or Cajon®) in the manifold are stainless steel (Type 316) with Swagelok® compression 

fittings.  Detailed specifications are discussed in a later section. 

 The external mixer imitates the mixing scheme from a portable sample cylinder 

designed by Precision General Inc. (patents:  4,862,754;  4,930,361;  5,109,712).  The 

mixing vessel is a cylinder that contains a cylindrical Teflon® block that slides along the 

length of the vessel.  The block diameter is slightly smaller than the cylinder internal 

diameter, allowing smooth movement of the block.  When the vessel is rotated, the block 
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falls toward the lower end.  Gases moving between the block and the vessel wall create 

highly turbulent zones in front of and behind the moving block.  These zones facilitate 

fast mixing of the gases.  The external mixer consists of a mixing vessel and a motor for 

vessel rotation, both mounted on top of the mixing stand (made of 1.25 in square steel 

tubing welded together).  Figure 4.9 shows the external mixer assembly. 

 

 

Fig. 4.9. External mixing system. 
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Fig. 4.10.  Mixing vessel. 
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 The mixing vessel is a stainless steel pipe (3.88 inch internal diameter and 29.75 

inch internal length) with flanges (7/8” thick flanges, 8 bolts, and Buna-n gaskets) at 

both ends.  The mixing element is a cylindrical Teflon® block (3.65 inch diameter, 

2.9inch thick) mixing element.  The volume of the mixing vessel is 4.9 L.  Figure 4.10 is 

a schematic diagram of the mixing vessel. 

 The vessel is rotated lengthwise by a steel shaft (clamped on to the vessel), 

mounted with bearing blocks on top of the mixing stand.  A DC motor coupled to the 

shaft rotates the mixing vessel.  The motor is powered by a variable voltage controller, 

which enables rotation speed selection by voltage adjustment.  The mixing vessel is 

connected to the gas loading manifold during the loading phase with a quick connect 

fitting and a flexible metal hose.  The hose is disconnected from the mixing vessel while 

the mixing vessel is rotated during mixing.  For each mixture, the vessel is rotated for 5 

minutes, approximately 300 inversions.  This is far greater than the 60 inversions 

required to achieve to achieve consistent combustion (10 out of 10 attempts) for a 3 % 

ethylene and 97 % air mixture. 

 The external mixer was selected to be the mixing method of choice after 

comparison with other methods.  Internal mixing within the reaction vessel reduces the 

amount of flammable gases used per experiment, and it does not require loading the gas 

mixture to an external vessel before loading the gas mixture to the reaction vessel.  For 

that reason two internal mixing methods were investigated before the external mixer was 

adopted.  The first internal mixing method uses one to three brushless DC fans 

(Radioshack # 273-240, 12 VDC, 1.56 W) suspended from the top plate and one at the 
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bottom plate to produce turbulent regions within the reaction vessel where mixing will 

occur.  The second method uses a bellows pump (1/4 horsepower, Baldor, model MB-

111) to pull gas from the top of the reactor vessel and circulate it to the bottom of the 

vessel via a 1/8 in tubing while a brushless DC fan produces turbulence at the bottom of 

the vessel 

 The mixing methods were utilized with 3 % ethylene and 97 % air mixtures 

(within flammability limits according to previous works [2]) and tested for consistent 

combustion (10 out of 10 attempts).  The first method of fan-induced turbulence was 

unable to mix the gas mixture sufficiently to obtain consistent combustion within a 

reasonable time frame (24 hours) even after increasing to three the number of fans at the 

top.  The second method of pump-induced circulation was able to consistently mix the 

gas mixture sufficiently for combustion within 2 hours.  These mixing methods were not 

used in this work because they require too much time to achieve reliable mixing. 

 

4.4 Sensors 

 

 Visual, pressure, and thermal sensors are used to detect combustion in this 

apparatus.  The primary focus is on the behavior of the thermal measurements, using the 

visual and pressure measurements to confirm results.   

 The visual sensor is an Ultra Compact CCD camera (JPC-420P, 0.9 in × 0.9 in × 

0.45 in, 0.01 lux, electronic shutter speed of 1/60 s) that outputs a black and white video 

stream.  The camera is mounted on the bottom plate of the reaction vessel and directed 
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such that its field of vision captures the fuse wire explosions during ignition as well as 

light from a flame propagating away from the igniter.  The video captured during an 

experiment clearly identify whether the fuse wire explodes or fails to explode, and 

whether the flame dies out or propagates after the fuse wire explosion. 

 The pressure within the reaction vessel is monitored with a dynamic pressure 

transducer (Omega DPX 101) mounted on the top plate.  The piezoelectric quartz 

transducer has a range of 0 to 250 psig pressure rise, with 0 to 5 V nominal output 

signal, 1 μs rise time, 1 % amplitude linearity, and temperature effect of 0.03 %/oF.  The 

pressure transducer is mounted on the 1/8 in NPT port on the top plate of the reaction 

vessel, sufficiently distant from the ignition source so that heat effects on the measured 

pressures are negligible.  Maximum pressure is obtained by integrating the portion of the 

dynamic pressure vs. time curve that is above the baseline, and applying a conversion 

factor of 51.02 psi per V·s (from manufacturer specification).  

 The thermal sensors are five NTC thermistors (Thermometrics, 0.10 s response 

time in still air, 100 kΩ with 25 % variance, laboratory tested to be 107 kΩ).  NTC 

thermistors are thermal resistors with large negative temperature coefficients of 

resistance (resistance decreases as temperature increases).  There are several major 

advantages to using thermistors instead of thermocouples or resistance temperature 

detectors (RTD).  First of all, the thermistors have very small masses, and as a result 

they have very quick response times.  Secondly, the high resistance of thermistors 

compared to the resistance of the wiring in the circuitry means the noise from those 

factors is negligible.  Lastly, thermistors are very stable against high temperature, as well 
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as shock and vibration effects [30].  The first and third advantages are significant for 

measurements during combustion events where speed and stability are major 

considerations.  For the purpose of this research, the main disadvantage of thermistors is 

that the resistance to temperature characteristic is only roughly linear over a relatively 

short range (0 to 80 oC for the thermistors used).  However, the temperature trends can 

still be observed accurately with thermistor sensors. 

 The thermistors are suspended at the center axis of the reaction vessel at different 

lengths from the top by a frame consisting of two 1/8 in thick rods hanging from the top 

plate with short rods welded on at regular intervals for the signal wires to bundle around.  

The signal wires are AWG 26 enamel coated copper wires covered with Voltrex tubing 

insulation to prevent electrical shorts.  They connect outside the reaction vessel by a pair 

of electrical feedthroughs constructed from ½ in diameter stainless steel sleeve around ¼ 

in tubing sealed with epoxy (J-B Industro-Weld) and topped with silicone sealant to 

protect the wiring from damage.  Figure 4.11 shows the thermistor positions.  The signal 

wires are connected through shielded cables to the Wheatstone Bridge circuit to prevent 

interference from external electromagnetic sources (power lines, and other electrical 

devices in the lab). 
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Fig. 4.11. Thermistor and fuse wire igniter positions relative to the reaction vessel top 

plate. 
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 The Wheatstone bridge circuit consists of 4 resistor elements, one of which is the 

resistance to be measured, along with a constant voltage source and a voltage 

measurement device [31] as shown in figure 4.12. 

 

 

 

Fig. 4.12. Sample Wheatstone bridge circuit. 

 

 The advantage of this circuit is that, unlike resistance, the voltage difference can 

be  measured directly and converted to resistance values as long as the values of the 

other three resistors are known.  In the case where the bridge is initially balanced 
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(resistances adjusted so that Vout is 0) the change in the voltage output is roughly linear 

to the change in resistance for small resistance changes [31].  Figure 4.13 shows the 

thermistors’ signal output from 10 to 260 oC as calculated from the Wheatstone bridge 

parameters and thermistor calibration information from the manufacturer. 

 

 

Fig. 4.13. Wheatstone bridge voltage as a function of thermistor temperature. 

 

 For the purpose of flame detection rather than flame temperature determination, 

calculation of the temperature is not necessary as passage of a flame will induce sharp 

increases in the voltage signal.  Temperature trends of the gas mixture during and after 

combustion can be observed, providing data for qualitative analysis.  The circuit used for 



 36

the flammability apparatus is actually five circuits with a common voltage source 

provided by the data acquisition device (details to be discussed later in this section).   

 Data acquisition is performed with a desktop computer (Dell® Optiplex 210L, 

with Windows XP®) equipped with a video capture device (Belkin® USB Videobus II), 

and a Keithley®  data acquisition card (Keithley®  KPCI-3102, 8 differential inputs with 

total of 225k signals per second @ 0.05 % accuracy) with screw terminal attachment 

(Keithley®, STP-68).  The video stream from the camera inside the reaction vessel is 

processed by the video capture device and recorded with the MGI VideoWave IV SE® 

software in standard *.avi format.  The data acquisition card measures differential 

voltages, allowing it to measure both the thermistors and the pressure transducer.  The 

measurement process is controlled by a Labview® (National Instruments, version 7.1) 

program. 

 

4.5 Igniter system 

 

 The ignition system for the apparatus has three design requirements.  The first is 

the ability to ignite the gas mixture with a known amount of energy.  Igniter energy is 

one of the parameters that can affect the flammability limit determined, and a consistent 

input of energy is required if the results are to be valid.  The second is a consistent power 

delivery by the igniter.  It is established that power density has a strong influence on the 

success of ignition, and review of past works showed that a high power density ( > 1 

MW/cm3) allows gas ignitions with 1 to 100 mJ of energy, but when the power density is 
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low, the energy required to ignite gas mixtures is much higher than it would be 

otherwise [2].  If the power delivery has a varying pattern, even if the energy delivered is 

the same the results can be affected.  The third is that the igniter system should require 

minimal efforts to operate.  The ability to quickly and conveniently replace the fuse wire 

and reload the igniter is necessary for acceptable turnaround times between experiments.   

 The igniter system used in these experiments is similar to that outlined in ASTM 

E 918-83, which was demonstrated by Mashuga to be capable of inputting 10 J of energy 

with a repeatable power delivery [29].  The ignition source is a 10 mm piece of AWG 40 

tinned copper wire, vaporized by a 500 VA isolation transformer(Hammond 171 E) at 

115V AC switched on with a zero-crossing solid state relay (Omega, model 

#SSRL240DC100) so that the current is delivered beginning at the zero point of the AC 

cycle each time.  Figure 4.14 shows the igniter system circuitry.  

 

 

Fig. 4.14. Igniter system circuit. 
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 The igniter that holds the fuse wire consists of a wire holder section and a vessel 

seal section.  The wire holder section is a pair of square copper rods with a spring loaded 

wire grip section mounted on a cylindrical platform made of non conducting polymer.  

The fuse wire is connected to the igniter circuit via the copper rods, which are soldered 

to wiring that leads outside the reaction vessel via the vessel seal section.  The wire 

holder section is connected to the seal section with a short ¼ in stainless steel tube, 

which also contains the circuit wiring.  The seal section is a Cajon® VCO O-ring face 

seal connector gland and screw cap.  The center of the gland is fitted with a stainless 

steel plug and welded.  The circuitry wiring is routed through a ¼ in hole in the plug, 

which is filled with epoxy to provide a hermitic seal.  The igniter port on the bottom of 

the ignition vessel consists of a tapped 1 in NPT hole with the VCO face seal male 

connector portion (with Viton® O-ring) installed.  The pressure seal is accomplished by 

inserting the igniter into the port and tightening the screw cap.  Figure 4.15 shows the 

igniter design. 

 An alternate igniter system was considered, tested, and rejected prior to adopting 

the final design.  Power delivery via a filled, large capacitor is very consistent, thus 

capable of fulfilling the requirements for the igniter circuitry.  Figure 4.16 shows the 

circuit with a capacitor as ignition power source.   
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Fig. 4.15. Igniter. 

 

 

Fig. 4.16 Capacitor based igniter circuit. 
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 Unfortunately capacitors of sufficient capacitance to supply adequate energy 

generally have a significantly lower voltage capability than that provided by the AC 

circuit.  Experiments were conducted with a 24 Volt, 2 Farad Capacitor and 40 AWG 

tinned copper wire with ethylene air gas mixtures as well as methane air gas mixtures.  

As expected, the lower voltage input reduces the power density of the ignition source, 

rendering the ignition system adequate to start combustion.  Multiple high voltage low 

capacitance capacitor can be linked to bypass this problem, but the equipment cost is 

significantly higher than the AC circuit so this alternative was rejected. 

 

4.6 Safety analysis 

 

 A full safety review was conducted during the design phase of this project, and 

repeated before each modification.  A brief analysis of the final design of the 

flammability apparatus is presented here. 

 There are several potential hazards associated with the operation of the 

flammability apparatus.  In order of consequence, the hazards are:  1) fire and explosion 

hazard from overpressure of the reaction vessel or manifold or mixing vessel, 2) fire and 

explosion hazard from leaked flammable gases, 3) electrical hazard from igniter system, 

and 4) physical hazard from moving or movable parts.  The following discussion 

describes the hazards in more detail and the actions taken to reduce overall risk. 

 Analysis of the first hazard begins with understanding the potential pressures that 

the apparatus might experience.  The flammability apparatus was used for flammability 
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limit determinations at atmospheric pressure (~1 bar).  In the unlikely scenario where 

operational procedures were followed incorrectly, the gas mixture pressure within the 

reaction vessel can be higher, though not necessarily flammable (higher pressure might 

be due to incorrect loading of oxidizer or inert gas).  According to observations by U.S. 

Bureau of Mines [9], combustion can occur as a deflagration or a detonation.  During 

deflagration the flame velocity is less than the speed of sound, and the combustion can 

produce pressure waves roughly 8 times that of the starting pressure.  During detonation 

the flame velocity exceeds speed of sound, and the combustion can produce a pressure 

wave roughly to 40 times the starting pressure [9].  A conservative estimate that the 

maximum pressure wave is 50 times that of planned initial pressure, either due to error 

in vessel loading or an unusually powerful detonation, yields a theoretical maximum 

pressure of approximately 50 bar.  According to the Texas A&M chemical engineering 

department safety regulations, the apparatus must be designed to withstand at least 1.5 

times the anticipated maximum pressure (~76 bar or 1100 psia).   

 The sections of the apparatus that are likely to experience pressure from the 

combustion are the reaction vessel and the gas loading manifold.  The reaction vessel 

design took this into consideration, and was designed to fail at 103.4 bar or higher using 

modified guidelines from ASME design guide [32].  The reaction vessel has been tested 

hydrostatically to 82.74 bar, sufficient for the needs of the apparatus.  In addition, two 

independent safety measures are in place, a relief valve and an enclosure around the 

reaction vessel.  The relief valve at the top of the reaction vessel (Swagelok®, R4 

Proportional Relief Valve) relieves directly into the laboratory vent at 500 psig or 
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higher, which mitigates the pressure damage without releasing flames or hot gases into 

the laboratory.  The vessel enclosure provides two functions.  The enclosure walls (1/8 

in thick steel or double layers of 1/4 in thick Lexan®) offer protection from shrapnel in 

extreme cases where the vessel is unable to withstand pressure produced during 

combustion.  It also supports the apparatus at a sufficient height such that disassembly of 

the reaction vessel can be accomplished with the lowering of the reactor body rather than 

lifting, thus reducing safety hazards of reactor body weight during maintenance and 

modification.  

 The gas loading manifold is usually blocked from the reaction vessel with a 

closed stainless steel plug valve (Swagelok®, or Cajon®) with a pressure rating of 3000 

psig.  In the case where the valve is left open by operator error, the components in the 

manifold may experience high pressure.  The ¼ in tubing, the plug valves, and the 

metering valve in the manifold are all stainless steel with Swagelok® compression 

fittings and working pressure ratings of 2000 psig or higher.  Since the pressure ratings 

of components in the manifold are greater than the expected maximum pressure, the 

hazard from higher than normal operating pressures in the manifold components is 

negligible. 

 The mixing vessel usually contains higher than atmospheric pressure gas 

mixtures (~23 psig) during loading and mixing.  However, it does not present a hazard 

from combustion because the only internal wetted components are a Teflon® block and 

the stainless steel vessel walls, neither of which can provide an ignition source.  

Combustion can not occur without an ignition source 
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 The hazard of gas leaking from the apparatus is also negligible.  First, all gas 

cylinders are stored in a vented corridor separate from the laboratory space, with 

pressure regulators attached directly to the storage cylinders.  Fuel gases are fed to the 

apparatus at lower than atmospheric pressure, thus flammable gas leaking out of the 

apparatus only can occur after loading of oxidizer or inert gas.  Any flammables leaking 

out of the apparatus would be at a low concentration, and very small in volume relative 

to the laboratory.  The laboratory is exhausted constantly, making the occurence of a 

flammable gas mixture in the laboratory highly unlikely. 

 Electrical hazard from contact with exposed circuitry is also negligible.  All 

reachable exposed portions of the circuit are covered with either silicone sealant or 

electrical tape.   

 Physical hazard from moving parts comes in two forms:  the reaction vessel body 

during maintenance, and the mixing vessel during gas mixing.  The first hazard is 

rendered negligible by counter balancing the reaction vessel weight with a 

counterweight-pulley system, preventing damage to equipment or operator because the 

vessel body cannot drop suddenly.  The mixing vessel rotation can cause harm to the 

operator through impact, and damage to the gas loading manifold if it is still connected 

to the manifold when motor is turned on.  A spring-based coupling sheath is installed 

connecting the motor shaft to the mixing vessel shaft.  The mixing vessel is decoupled 

from the motor if a relatively small amount of force is applied to it in the opposite 

direction of the rotation.  This effectively forces the rotation to be started slowly during 
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experiments to avoid decoupling, but mitigates any impact it might have on the operator 

and equipment. 
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5. METHODS AND PROCEDURES 

 

5.1 Overview 

 

 The flammability apparatus operation consists of several steps:  evacuate the 

vessels and connecting lines;  load the gases into the mixing vessel;  evacuate the 

manifold between loadings;  mix the gases;  load the gas mixture into the reaction vessel;  

ignition and data acquisition;  and preparation for the next experiment.  Detailed 

procedures for these steps are provided to minimize error in the gas mixture 

compositions and to reduce risk from safety hazards caused by operator error.  In 

addition, several maintenance and preparatory procedures are required before each 

experiment.  

 

5.2 Apparatus setup 

 

 Setup of the flammability apparatus consists of leak tests, gas regulator checks, 

sensor tests, and cleaning.  Leak tests are performed after every vessel cleaning, 

modification, or extended period of dormancy.  This involves evacuating the reaction 

vessel, manifold, and mixing vessel to a moisture-free state, then observing the pressure 

after thermal equilibrium is established.  The pressure is recorded for 4 hours and the 

leak rate determined. For several tests, the leak rate was found to be 0.015 psia/hr.  If the 
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leak rate is greater than this the reaction vessel and mixing vessel flange bolts should be 

retightened. 

 The apparatus uses pressurized cylinders to supply gases during loading.  The 

pressure of the incoming gas is determined by the setting of the pressure regulators on 

each cylinder.  Fuel cylinders should be adjusted to -6 psig, whereas oxygen or air 

should be 30 psig and inerts 40 psig.  The numbers are arbitrary, but the pressures 

selected ensure precision during gas loading and that very little fuel gas can leak out of 

the gas line if the manifold accidentally is opened to the laboratory.   

 

 

Fig. 5.1. Video capture software control panel. 
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 Sensor tests are performed each day before experiments are begun.  The video 

sensor is checked by examining the video output in the video capture software.  Figure 

5.1 shows the control panel of the MGI VideoWave® software.  The pressure and 

thermal sensors are checked by observing the graphical output from the Labview® panel 

and ensuring that the range and noise level of the readings are within normal parameters.  

Figure 5.2 shows the Labview software panel during a test. 

 

 

Fig. 5.2. Labview control panel for pressure and temperature readings showing voltage 

(in V) as a function of time (in ms). 
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 Soot deposits on the reaction vessel and the igniter can result from incomplete 

combustion.  The soot can introduce error into the gas mixture concentrations through 

adsorption and or absorption of components, and also reduce the contact between fuse 

wire and igniter.  The vacuum pump oil also can be contaminated, reducing the pump 

efficiency.  Every 100 experiments, the reaction vessel is cleaned with ethanol and 

acetone, and the oil of the vacuum pump is replaced.  The igniter is cleaned with a 

toothbrush to remove majority of the soot, and also fuse wire fragments that remain in 

the fuse wire grip.  The contact surface at the fuse wire grip also is smoothed with fine 

sand paper occasionally to remove melted copper drops. 

 

5.3 Operating procedure 

 

 Step 1:  Preparation for gas loading consists of evacuating the reaction vessel, 

mixing vessel, and the gas loading manifold.  Figure 5.3 shows the configuration 

(opened/closed state) of each valve for this step.  After the valves are in the correct 

positions, the vacuum pump is activated and allowed to run until the pressure is constant 

(pressure change no greater than 0.01 psi) for over one minute.  The pump is then de-

activated, and the pressure is recorded for gas mixture composition calculations on an 

Excel spreadsheet.   
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Fig. 5.3 Valve configuration for evacuating the mixing vessel, reaction vessel, and 

manifold. 

 

 Step 2:  The mixing vessel is filled one gas at a time.  The fuel is the first gas to 

be loaded through the manifold into the mixing vessel.  Figure 5.4 shows the 

configuration of each valve for this step.  The fuel is loaded into the mixing vessel until 

a predetermined pressure is reached, using the metering valve to achieve precise pressure 

control.  The final pressure is recorded on an Excel spreadsheet to calculate the gas 

mixture composition. 
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Fig. 5.4 Valve configuration for loading fuel #1 into the mixing vessel. 

 

 Step3:  The gas loading manifold is evacuated between each gas loading.  Once 

the valves are configured as shown in figure 5.5, the pump is activated until the manifold 

pressure is constant (pressure change no greater than 0.01 psi) for 10 s.   
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Fig. 5.5 Valve configuration for manifold evacuation. 

 

 Steps 2 and 3 are repeated as often as necessary to load all fuel, oxidizer and inert 

components required to create the gas mixture.  Step 2 will vary slightly each time in 

that a different valve at the gas feed lines will be opened depending on the component to 

be added into the mixing vessel.  The valve between the manifold and the mixing vessel 

should be the last valve to be opened for that step, to prevent gas flowing back into the 

manifold before gas loading. 

 Step 4:  The external mixer is utilized after the gas loading is complete.  Care 

should be taken to ensure that the plug valve on top of the mixing vessel is closed, the 

manifold opened to the ventilation, and then disconnect the mixing vessel from the 

manifold.  After disconnection, activate the DC motor with slowly increasing voltage to 

the pre-set value (enables 30 rotations, or 60 inversions a minute) to start rotation.  The 
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motor is de-activated after 5 minutes, and the vessel rotated backwards (making use of 

the safety feature of the motor to shaft coupling sheath) until the mixing vessel’s top is 

in position, and reconnect to the manifold.  Repeat step 3 again to clear the manifold. 

 Step 5:  The gas mixture is loaded into the reaction vessel.  Figure 5.6 shows the 

valve configuration for this step.  The mixing vessel valve should be the last to be 

opened;  after all other valves are opened or closed.  Once the reaction vessel has filled 

to 14.7 psia, it should be isolated from the gas loading manifold by closing the valve 

between them.  The inert valve then should be opened to lower the fuel concentration in 

the manifold and the mixing vessel until it is no longer flammable.   

 

 

Fig. 5.6. Valve configuration for loading the test mixture into the reaction vessel. 
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 Step 6:  The ignition and data acquisition step is the most complex step, but still 

fairly simple.  The gas mixture is allowed to sit in the reaction vessel for five minutes to 

reach thermal equilibrium and become quiescent.  The Labview and MGI VideoWave 

software are activated to begin recording.  Approximately 2 s after the data acquisition 

starts, a 5 V signal to the solid state relay activates it, which completes the igniter circuit 

at the next zero point of the AC power cycle.  The ignition and the subsequent 

combustion (or lack of) can be viewed in real time through video or detected by the 

thermistor/pressure transducer readings.  The video recording must be terminated 

manually, producing 7 to 10 s long *.avi files.  The pressure and thermistor readings stop 

automatically after 10 s, and are written into a data file in column format for easy 

importation into Excel.  The readings are voltage values, with 2000 data points for each 

sensor (5 thermistors, 1 pressure transducer).  This number of measurements is far lower 

than the maximum capability of the data acquisition card.  However, the computer is not 

always reliable when acquiring voltage data at high speeds along with video capture, so 

a slower acquisition speed, which still provides adequate resolution, is used.  The video 

file and the data files are named identically (with different file extensions), and the name 

recorded along with the combustion results. 

 Step 7:  Preparing the flammability apparatus for the next experiment involves 

two tasks.  The first task is to vent the reaction vessel.  In the case where combustion 

occurred or the fuel concentration is below the lower flammability limit, the reaction 

vessel simply should be connected to the gas manifold and allowed to vent by opening 

the vent valve and the valve between reaction vessel and manifold.  The next task is to 
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remove the igniter from the reaction vessel, clean it, replace the fuse wire, and reload it 

into the reaction vessel, taking care to tighten the screw cap to ensure pressure seal.  This 

step normally requires 3 to 5 minutes. 

 In rare cases the ignition fails due to fuse wire damage.  Accidental damage to 

the fuse wire resulting from handling or a defect in manufacturing can cause only a 

portion of the fuse wire to melt rather than for the entire wire to explode as required for 

consistent ignition.  Since only a fraction of the 10 J ignition energy is delivered to the 

gas mixture, even a flammable mixture might not ignite.  This situation can be detected 

by observing the video capture of the ignition event.  In such a case, inert gas is loaded 

into the reaction vessel until the fuel concentration is well below the flammability limit 

(50 % or less) before venting.  The flammability apparatus is ready for another 

experiment after completing these tasks.  This procedure also should be followed when 

combustion does not occur because the gas in the vessel is above its upper flammability 

limit. 

 

5.4 Flammability limit selection method 

 

 The step size (step change made in the fuel concentration between experiments) 

and the number of repeat experiments are significant factors in the accuracy of the 

flammability limits determined.  When a relatively small step size is chosen, the number 

of experimental repetitions must be increased to maintain accuracy. 
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 Measurements of the flammability limits with the experimental apparatus uses 

0.01 mol % step size for pure fuel in air and 0.02 mol % for all other experiments.  

These small step sizes are chosen because precise flammability values can be used more 

effectively in models and for comparisons with existing data of similar precision.  Up to 

10 repetitive tests are conducted per step to compensate for the small step size.   

 Common practice with American researchers, and recommended by ASTM 

methods [23], is to determine the lower flammability limit by averaging the lowest fuel 

concentration with flame propagation and the highest concentration in which flame will 

not propagate, vice versa for the upper flammability limit.  This experimental definition 

is not directly applicable to repetitive experiments, since gas mixtures near the limit may 

or may not propagate after ignition.  Wierzba et al. [15]showed that probability of flame 

propagation can vary from 0 to 100 % when the fuel concentration is within 1 to 2 % 

(relative) of the upper limit (defined by Weirzba as the 0 % propagation concentration).  

This demonstrates that flame propagation near the limits has a probabilistic nature.   

 It is expected that repetitive tests at the flammability limit will result in flame 

propagations in 50 % of the experiments because random parameter differences will 

distribute the mixture concentration above and below the flammability limit equally.  

Because the fuel concentrations tested are unlikely to be exactly at the flammability 

limit, there will be a pair of concentration values differing by one experimental step size 

where one is above and other below the limit.  The experimental flame propagation rates 

for those fuel concentrations above and below the LFL and will be greater than 50 % and 

less than 50 % respectively and vice versa for the UFL.  This research selects the fuel 
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concentration that is measured to have less than 50 % (4 or less flame propagations out 

of 10) as the flammability limit, unless the rate is 0 %, in that case the other 

concentration is selected as the limit. 
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6. RESULTS AND DISCUSSION 

 

6.1 Overview 

 

 The flammability limits of hydrocarbons fuels, fuel mixtures in air, fuel mixtures 

in varying oxygen concentration, and minimum oxygen concentrations for hydrocarbon 

gases and their mixtures were determined using the thermal criterion developed for this 

apparatus.  The experimentally determined flammability limits and minimum oxygen 

concentrations are compared with measurements reported in the literature.  The mixture 

lower flammability limits are used to evaluate the Le Chatelier model applied to 

methane-propane and methane-butane mixtures in air.   

 Initial experiments with methane-air and ethylene-air mixtures were used to 

evaluate mixing and ignition configurations.  These experiments utilized thermistor 

sensors in combination with video and pressure data to identify four types of combustion 

behavior in the flammability apparatus:  non-propagation, flash, discontinuous flame 

propagation, and continuous flame propagation.  A thermal criterion is developed for the 

flammability apparatus by matching combustion behavior with the signal vs. time curves 

of the thermistors.   
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6.2 Combustion types in reaction vessel 

 

 Combustion behavior observed in the flammability apparatus can be grouped in 

the following categories: 

Non-propagation refers to the lack of flame propagation from the ignition source.   

Flash combustion is a flame with vertical flame propagation, but little or no 

horizontal propagation, that terminates within a short distance of the ignition 

source to produce minor temperature and pressure increase.   

Discontinuous flame propagation is a flame that propagates vertically and 

horizontally, but terminates before it reaches the top of the reaction vessel. 

Continuous flame propagation occurs when the flame is able to propagate vertically 

and horizontally and does not terminate until it reaches the top of the reaction 

vessel. 

 The combustion behavior within the apparatus first was observed with 

experiments of methane/air and ethylene/air mixtures over a range of concentrations that 

span from above to below the lower flammability limits for these gases.  The data from 

the video, pressure, and thermal sensors are acquired simultaneously, and interpreted to 

identify the combustion types.  The video data is examined first due to ease of 

interpretation.  The images made from frames captured from the videos are presented 

along with temperature and pressure data to facilitate identification of combustion type 

and thermistor signal vs. time curves in different combustion zones. 
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 Non-propagation combustion is defined by the lack of flame propagation after 

ignition, which can be due to a variety of factors, such as very low fuel or oxidizer 

concentration, as well as low ignition energy or power.  A blank experiment was 

conducted with air only (no fuel) at 14.7 psia to provide information about background 

effects.   

 

 

Fig. 6.1. Images of non-propagation combustion in blank(air) experiment.   

 

 

 



 60

Figure 6.1 shows glowing droplets of fuse wire illuminating the interior of the 

reaction vessel for a short time period after the fuse wire explosion (ignition).  

Illumination by fuse wire droplets lasted approximately 0.1 s.  Images in figure 6.1 (and 

all subsequent figures with video captured images) are arranged in chronological order 

from left to right, top row to bottom row.   

Figure 6.2 shows the temperature and pressure data.  Non-propagation type 

behavior in the flammability apparatus has negligible pressure fluctuation (a single 

measurement that suggests a pressure pulse of 0.005 psi lasting approximately 5 ms), 

and a minor temperature increase at the lowest thermistor , approximately 10 cm from 

the ignition source.  Note that the thermistors are numbered in an ascending manner, 

such that thermistor 1 is at the bottom and thermistor 5 is at the top. 

 The small temperature spike came from a portion of the gas heated by the 

ignition energy and rising to the lowest thermistor’s area.  The temperature quickly 

cooled because of heat transfer to surroundings, thus no change in temperature is 

indicated by the thermistors farther from the ignition source.  The pressure and 

temperature data show that ignition energy from the igniter has negligible direct impact 

on the measurements during combustion. 
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Fig. 6.2. Temperature (top) and pressure (bottom) profiles for non-propagation 

combustion.   



 62

 

 The flash type combustion is a vertical propagation (little to no horizontal) of 

flame that terminates after a short distance from the ignition source.  Figure 6.3 shows 

the images from igniting 4.26 % methane in air at 14.7 psia.   

 

 

Fig. 6.3. Images of flash combustion. (4.26 % methane in air) 
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Fig. 6.3. Continued. 

 

 The images show combustion of the gas mixture surrounding the ignition source, 

and a rising source of illumination for a short period of time.  The time between ignition 

and the end of the illumination is approximately 0.2 s, twice as long as the illumination 

provided by the fuse wire droplets.  The increased time interval and the rising light 

source shown in figure 6.3 show that some of the gas mixture continued to burn above 

the ignition source after ignition.  The video does not provide sufficient detail to 

determine the flame speed or the propagation distance of the flame plume. 

 Figure 6.4 shows the temperature and pressure data for flash combustion of 4.26 

% methane in air at 14.7 psia.   
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Fig. 6.4. Temperature (top) and pressure (bottom) profiles for flash combustion 
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 The pressure measurements show a maximum increase of 0.20 psi (1.4 %).  The 

large noise to signal ratio for the pressure data indicate a significant amount of relative 

error in the maximum pressure found, but it is clear that there is a small pressure effect 

caused by combustion of some of the fuel mixture.  The temperature measurements 

show a temperature peak at thermistor 1 (peak temperature approximately 45 oC) and a 

minor temperature increase at thermistor 2.   

 The flash combustion example shown here has a very minor temperature and 

pressure increase, but some flash combustions have greater temperature and pressure 

increases.  In some cases, the signal from thermistor 2 also exhibits a peak, indicating 

that the flame plume propagated sufficiently to affect the temperature there. 

 Discontinuous flame propagation is a flame that propagates vertically and 

horizontally, but terminates before reaching the top of the vessel.  Figure 6.5 shows the 

images from igniting 5.00 % methane in air at 14.7 psia.  The images show the fuse wire 

explosion igniting the gas in its surrounding, and the flame plume propagates upward 

away from the ignition source.  Within a short time a wider flame propagates back down, 

demonstrating downward and horizontal propagation.  Downward and propagation past 

the initial flame path indicates the presence of uncombusted gas.  This shows that the 

flame plume is initially relatively narrow compared to the vessel width, allowing a 

sizable volume of gas to avoid combustion on the first pass of the flame.   
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Fig. 6.5. Images from discontinuous flame propagation. (5.00 % methane in air) 

 

 The temperature and pressure profiles of discontinuous flame propagation differ 

substantially from the profiles of flash combustion (see figure 6.6).  
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Fig. 6.6. Temperature (top) and pressure (bottom) profiles for discontinuous flame 

propagation combustion.   
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 The maximum pressure rise is 6.38 psi (43.4 %), which is significantly greater 

than the pressure rise criterion used by ASTM methods (7 %) or the criterion used by 

EN 1839(B) method (5 %).  The pressure rise shows that a greater proportion of the gas 

in the reaction vessel participated in combustion than the flash behavior examined 

earlier, but does not offer conclusive evidence that the flame propagated to the top of the 

vessel.  The temperature profiles at locations along the vessel offer more detailed 

information.  The signal profiles from the lowest thermistors (1 & 2) shows very high 

temperature increases (above 260 oC, the highest temperature value in thermistor data 

given by manufacturer) and slow cooling.  Thermistor 3, which is near the center of the 

reaction vessel shows a sharp temperature increase, but a faster temperature drop than 

thermistors 1 and 2.  Thermistors 4 and 5 both have similar signal profiles as thermistor 

3, except their amplitudes are much lower, with maximum temperatures of 

approximately 95 and 60 oC respectively.  The relatively low temperatures and quick 

cooling suggest that thermistors 3, 4, and 5 are detecting hot gases rising from below 

instead of flame propagating past them.  The signal profiles shown for thermistors 3, 4 

and 5 occur in the event of flame termination below the thermistors. 

 Continuous flame propagation describes a flame that propagates within the 

reaction vessel until it reaches the top of the vessel.  Figure 6.7 shows the images from 

igniting 5.23 % methane in air at 14.7 psia.  The images show the flame plume 

propagating up from the ignition source after ignition, then propagating back down, 

similar to discontinuous flame propagation (see fig. 6.5).   
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Fig. 6.7. Images from continuous flame propagation. (5.23 % methane in air)  
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Fig. 6.7. Continued. 

 

 The video data shows that flame propagation occurred in all directions (upward, 

downward, and horizontal), but does not provide an objective means to distinguish 

discontinuous and continuous flame propagation.  However, the temperature and 

pressure profiles show substantial differences between the two combustion behaviors. 

 Figure 6.8 shows temperature and pressure measurements from the combustion 

of 5.23 % methane in air.  The pressure measurements indicate a maximum pressure rise 

of 16.53 psi (112 %), which is more than an order of magnitude larger than the pressure 

rise criterion specified by the ASTM methods (7 %) or the criterion specified by EN 

1839(B) (5 %), and more than double the pressure rise from discontinuous flame 

propagation.  All of the temperature signals increase to near the maximum signal range, 

similar to behavior of thermistors 1 and 2 in discontinuous flame propagation.  In 

continuous flame propagation, the temperature rise for each thermistor in succession, 

and then slowly decreases as the gas around the thermistors cools.   

 



 71

 

Fig. 6.8. Temperature (top) and pressure (bottom) profiles for continuous flame 

propagation combustion.  
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 While the greater pressure rise is a strong indication that more gas was 

combusted in the experiment, the magnitude fluctuates depending upon the amount of 

gas combusted.  If the flame terminates near the top of the reaction vessel, the pressure 

rise can be fairly high, creating a situation where a simple pressure criterion cannot 

distinguish between continuous and discontinuous flame propagation.  The temperature 

profiles from the thermistors are the measurements that show propagation to the top of 

the vessel.  The nearly identical signal profiles, with time delay between thermistors, 

show that the same thermal events that occurred at the bottom of the vessel also occurred 

along the entire length of the vessel.  This thermistor signal profile occurs in the event of 

an expanded flame propagating past the thermistor.  The difference between 

discontinuous and continuous flame propagation therefore can be inferred from the 

temperature profiles. 

 Thermistor behavior during combustion of ethylene is in good agreement with 

that observed during combustion of methane, with the exception of a minor discrepancy 

during continuous and discontinuous flame propagations.  The data for combustion of 

2.72 % ethylene in air is shown to illustrate this phenomenon.  Figure 6.9 shows the 

thermistor temperature profiles for ethylene combustion with continuous flame 

propagation. 
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Fig. 6.9 Temperature profiles for continuous flame propagation of ethylene. (2.72 % 

ethylene in air) 

 

 The signal profiles of thermistors 1 and 4 both show a sharp dip before they rise 

to the maximum value.  The other profiles match those observed with continuous flame 

propagation of methane (see figure 6.6), which shows that this is a continuous flame 

propagation as well.  The signal profiles of thermistors 1 and 2 from figure 6.9 are 

compared in figure 6.10, which shows that they are nearly identical except for the dip. 
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Fig. 6.10. Comparison of signal profiles for thermistors 1 and 2. (2.72 % ethylene in air) 
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 Figure 6.11 shows the pressure data of ethylene with continuous flame 

propagation.  The maximum pressure rise is approximately 16.1 psi (109 %).  The 

pressure rise and the shape of the curve in figure 6.11 are not significantly different from 

the pressure data of methane with continuous flame propagation shown in figure 6.6.   

 

 

Fig. 6.11 Pressure profile for continuous flame propagation of ethylene. (2.72 % 

ethylene in air) 

 

 The images in figure 6.12 show the ignition, upward propagation, and then the 

downward propagation of the ethylene flame.  The video images are similar to those of 

methane with continuous flame propagation, except the downward propagation occurs 

slightly later, approximately 0.5 s with ethylene instead of 0.3 s with methane. 
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Fig. 6.12. Images of continuous flame propagation of ethylene. (2.72 % ethylene in air) 
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Fig. 6.12. Continued. 

 

 The video and pressure observations show only minor dissimilarities, and do not 

demonstrate a cause for the change in thermistor signal profiles.  A possible explanation 

is that the ethylene flame propagates horizontally at a lower rate, leaving a greater 

volume of uncombusted gas around the initial flame path.  The passage of the flame 

creates a turbulent zone where the combusted and uncombusted gas mixes, lowering the 

temperature temporarily until combustion resumes in the area.   

 It is not necessary to consider the dip in the thermistor signal profiles when 

determining the type of combustion behavior observed in the flammability apparatus.  In 

addition, greater knowledge of the gas flows within the reaction vessel during 

combustion is necessary to resolve the question of its meaning.  Therefore further 

analysis of this feature is outside the scope of this dissertation. 
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6.3 Thermistor signal and combustion zones 

 

 The thermistor signal profiles correspond to different zones in the reaction vessel 

for different combustion types.  Figure 6.13 illustrates the zones and their relationship to 

combustion types identified in section 6.3:  non-combustion, expanded flame, 

termination (1), and termination (2). 

 

 

Fig. 6.13 Zones within the reaction vessel during combustion.  
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 The non-combustion zone is the volume within the reaction vessel where the 

flame propagation has not reached, and with little to no hot products of combustion.  The 

temperature in the non-combustion zone is ambient or nearly ambient.  The expanded 

flame zone is the volume that experiences complete or near complete combustion of the 

gas mixture from horizontal and vertical flame propagation.  The temperature in the 

expanded flame zone is very high, and it decreases slowly.  Figure 6.14 shows 

generalized thermistor signal vs. time curves for non-combustion and expanded flame 

zones. 

 

 

Fig. 6.14 Sample thermistor signal profiles:  expanded flame and non-combustion. 
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 The termination (2) zone is the region above the expanded flame zone, where a 

relatively large volume of hot gases rises into, and mixes with, unburned gases.  The 

temperature in the termination zone (2) can be high, but it drops significantly faster than 

in the expanded flame zone.  This produces a distinctively different thermistor signal 

profile than in the expanded flame zone.  Figure 6.15 shows generalized thermistor 

signal profiles for the termination (2) zone. 

 

 

Fig. 6.15 Sample thermistor signal profiles:  termination (2). 

 

 The termination (1) zone is the volume where flash combustion occurs and 

terminates.  The heat produced by the terminated flame quickly dissipates into the 
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unburned gases nearby, resulting in a peak in the thermistor signal.  Figure 6.16 shows 

generalized thermistor signal profiles for the termination (1) zone. 

 

 

Fig. 6.16 Sample thermistor signal profiles:  termination (1).  

 

 The magnitude of the temperature peak can be large or small, depending upon 

the distance propagated by the flame.  Sometimes the signals from both thermistors 1 

and 2 exhibit peaks, which indicates that the flame propagated up to or near thermistor 2 

(see figure 6.17).   
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Fig. 6.17.  Double temperature peaks during combustion. (4.5 % methane in air) 

 

 This phenomenon indicates when the flame propagates past thermistor 1, and in 

theory if a temperature peak occurs at thermistor 3 it would indicate that the flame plume 

propagated past thermistor 2.  However, there is no signal behavior that conclusively 

indicates the level the flame plume propagated to, only past.  An estimation of the 

propagation distance is thus possible, but the large uncertainty renders it unsuitable for 

use in measurement criteria. 
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6.4 Thermal criterion for flammability 

 

 Determination of flammability limits requires three components:  a definition of 

flammability, a measurement criterion to detect combustion of mixtures at various 

concentrations, and a method to select the flammability limit from the measurements. 

 American standards and authors define flammability limits as the limiting fuel 

concentrations where the flame can propagate through the mixture, while the European 

definition is the limiting concentration where the flame just fails to propagate [23].  

Regardless of which definition is used, the central focus of the measurement criterion is 

the detection of flame propagation.  The questions of how far the flame has to propagate, 

or what pressure changes must result from the flame propagation to indicate a flammable 

mixture are functions of measurement criteria, which vary from one apparatus to 

another. 

 The thermistor sensors have been demonstrated to be capable of detecting flame 

propagation in section 6.2, and their signal profiles matched with the combustion zones 

in section 6.3 for use in analysis.  The reaction vessel of the flammability apparatus is a 

closed cylindrical vessel with ignition at the bottom, similar to open glass cylinder 

experiments conducted by U.S. Bureau of Mines.  A measurement criterion that defines 

a gas mixture as flammable when the flame propagates to the top of the vessel would 

allow the measured limits to be compared to existing data collected in similarly shaped 

vessels, and to represent concentrations of fuels that can sustain combustion indefinitely.   
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 The selection method consists of guidelines on the step size, number of 

experiments to be conducted and the number of propagations determined by the 

measurement criterion that selects the flammability limit.  The selection method is an 

important factor in the accuracy and precision of the limits determined, as discussed in 

section 5.4.  Flame propagation for mixtures near the flammability limit display 

probabilistic behaviors due to random errors in composition, fluctuations in mixture 

conditions (turbulence, pressure, temperature), and variation in ignition energy or power.  

Multiple experiments with mixtures made at the same composition can yield different 

results.  Experiments at two compositions (within one step size of each other) that 

demonstrate continuous flame propagation over 50 % of the time at one composition and 

less than 50 % of the time at the other would indicate that the flammability limit lies 

somewhere in between those compositions.  In the case where one composition has 0 % 

propagation occurences, the composition with over 50 % propagation occurences is 

selected as the flammability limit.  In all other cases, the composition with less than 50 

% propagation occurences is selected for the flammability limit.  Combining the 

selection method with a small step size (0.01 mol % for pure fuels in air, 0.02 mol % for 

all other mixtures), precise and conservative flammability limits can be measured. 

 The thermal criterion for the flammability apparatus is the detection of an 

expanded flame zone at the fifth thermistor (top), indicating continuous flame 

propagation from the ignition source at the bottom to the top of the reaction vessel.  The 

lower flammability limit is the highest concentration where four or less flame 



 85

propagations are detected with the thermal criterion, and vice versa for the upper 

flammability limit. 

 

6.5 Flammability of hydrocarbons in air 

 

 The flammability of several hydrocarbon gases were determined in air at 

atmospheric pressure (14.7 psia), 22.5 oC using the thermal criterion.  The experimental 

results are summarized in table 6.1. 

 

Table 6.1. 
Combustion of hydrocarbons in air at and near the flammability limit 
  Continuous Flame Propagation 
 Fuel conc.  

(mol %) 
(%) Number of 

propagations 
Number of 
experiments 

methane   5.23*   40      4    10 
   5.24 100      5      5 
 15.77   62.5      5      8 
 15.78*   25      2      8 

ethane   2.72*   14.3      1      7 
   2.73   55.6      5      9 

propane   2.09*   14.3      1      7 
   2.10   83.3      5      6 

butane   1.72*   40      4    10 
   1.73   83.3      5      6 

ethylene   2.70     0      0      2 
   2.71*   14.3      1      7 
   2.72   55.6      5      9 
 30.19 100      5      5 
 30.20*   33.3      3      9 

propylene   2.26     0      0      6 
   2.27*   55.6      5      9 

* Selected flammability limit concentration. 
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 The experimentally determined LFLs and some values reported in the literature 

are summarized in table 6.2.  All reported limits are given as mole fractions in per cent.   

 

Table 6.2. 
Lower flammability limits (fuel concentrations) of hydrocarbons in air 
 This Work 

(mol %) 
Previous 
Workers 
(mol %) 

Apparatus type 

Methane 5.23 5.3 
4.85 
4.3 
4.9 
4.66 

Vertical glass cylinder[12] 
20 L sphere, 7 % pressure rise[29] 
EN 1839 (T) [25] 
EN 1839 (B) [25] 
Counterflow burner[20] 

Ethane 2.72 3.0 
2.53 
2.9 

Vertical glass cylinder[12] 
20 L sphere, 7 % pressure rise[8] 
Counterflow burner[20] 

Propane 2.09 2.2 
1.93 
2.249 

Vertical glass cylinder[12] 
20 L sphere, 7 % pressure rise[8] 
Counterflow burner[20] 

Butane 1.72 1.9 
1.55 

Vertical glass cylinder[12] 
20 L sphere, 7 % pressure rise[8] 

Ethylene 2.71 3.05 
2.62 
2.4 
2.6 

Vertical glass cylinder[12] 
20 L sphere, 7 % pressure rise[29] 
EN 1839 (T) [25] 
EN 1839 (B) [25] 

Propylene 2.27 2.4 Vertical glass cylinder[12] 

 

 The upper flammability limits of methane and ethylene also were determined.  

Table 6.3 summarizes the results and compares them with values reported in the 

literature. 
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Table 6.3. 
Upper flammability limits (fuel concentrations) of methane and ethylene 
 This work 

(mol %) 
Previous 
Workers 
(mol %) 

Apparatus type 

Methane 15.78 14 
16.14 
16.8 
16.9  

Vertical glass cylinder[12] 
20 L sphere, 7 % pressure rise[29] 
EN 1839 (T) [25] 
EN 1839 (B) [25] 

Ethylene 30.20 28.6 
30.38 
32.6 
27.4  

Vertical glass cylinder[12] 
20 L sphere, 7 % pressure rise[29] 
EN 1839 (T) [25] 
EN 1839 (B) [25] 

 

 The experimental results from the new apparatus generally fall between the 

values measured by the U.S. Bureau of Mines using vertical glass cylinders with visual 

criterion of flame propagation to the top, and results measured with 20 L spheres with 7 

% pressure rise criterion or 14 L spheres with 5 % pressure rise criterion (EN 1839(B)).  

This demonstrates that the new apparatus provides a reasonable level of accuracy. 

 The results from the EN 1839 (T) apparatus (glass cylinder with 10 cm vertical 

propagation criterion) show much wider flammability ranges for methane and ethylene.  

This is not unexpected because of the difference in the measurement criteria.  Flash 

combustions within the new apparatus often produced temperature peaks that indicated 

flame propagation reached the level of thermistor 2 (26 cm from ignition source) or at 

least past thermistor 1 (10 cm from ignition source).  The gas mixtures exhibiting those 

combustions are not considered flammable by the criteria used in this study, but they 

would satisfy the EN 1829 (T) criterion.  For example, 4.26 mol % methane and 2.58 
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mol % ethylene are fuel concentrations just below the concentrations where double 

temperature peaks occur after ignition.  However, because the thermistor signals do not 

represent a way to precisely measure flame propagation distance for small flames, such 

determinations would be highly subjective.   

 The differences with the results from the counterflow burner apparatus are more 

difficult to explain.  The flammability limits determined by counterflow burner 

apparatuses are obtained by extrtapolating the fuel concentration to zero stretch rate, 

instead of direct determination of flame propagation or the lack thereof.  The 

counterflow burner does not share apparatus parameters such as vessel shape, size, or 

ignition energy with other apparatuses.  Instead its parameters are nozzle size and nozzle 

distance because it measures stretch rates from already burning twin jet flows of gas 

from the nozzles aimed at each other.  There is no explanation as to why the methane 

lower flammability limit measured is higher than the counterflow results, while the 

ethane and propane lower flammability limits are lower (see table 6.1).   

 

 

6.6 Comparison of fuel mixture flammability limits with counterflow data 

 

 Under certain conditions, flammability limits determined using the counterflow 

method are not consistent with other experimental data.  A recent study by Subramanya 

et al. [20] using a counterflow apparatus suggests that the lower flammability of 

methane-ethane and methane-propane fuel mixtures have large deviations from values 
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predicted using Le Chatelier’s rule.  Their result contradicts values obtained by Coward 

et al. in open glass cylinders [21] (see figure 3.1).  The results are unusual since Le 

Chatelier’s rule is known to give reasonably good estimates of the lower flammability 

for many fuel mixtures, though there are notable deviations when applied to upper 

flammability limits [15].   

 The lower flammability limits of methane-propane and methane-butane mixtures 

also were determined with the new apparatus.  The methane-propane data enables 

comparison with the counterflow data, and the methane-butane data enables comparison 

with open glass cylinder data and the counterflow data.  Methane-ethane mixtures were 

not investigated because such mixtures have been characterized in natural gas related 

studies [12].  There are few recent works that deal with the lower flammability of butane 

mixtures.   

 Table 6.4 shows the experimental results from the combustion of methane-

propane and methane-butane mixtures determined using the new apparatus.   
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Table 6.4 
Combustion of methane/propane and methane/butane mixtures in air 
  Continuous Flame Propagation 
 Fuel conc. 

(mol %) 
(%) Number of 

propagations 
Number of 
experiments 

50/50 methane/propane 3.04*   25      2      8 
 3.06   83.3      5      6 
     
75/25 methane/propane 3.88*   14.3      1      7 
 3.90   62.5      5      8 
     
24/76 methane/butane 2.09*   33.3      3      9 
 2.11   83.3      5      6 
     
49/51 methane/butane 2.56*   14.3      1      7 
 2.58   71.4      5      7 
     
75/25 methane/butane 3.50*   14.3      1      7 
 3.52 100      5      5 
     
*Selected flammability limit concentration. 

 

 Figure 6.18 shows the experimental and calculated lower flammability limits of 

methane-propane and methane-butane mixtures determined by the new apparatus, 

counterflow apparatus [20], and Coward et al. [21].  The curves in figure 6.18 are 

calculated from pure component flammability limits using Le Chatelier’s rule: 

Lm =
100

Yi

Lii=1

n

∑
        (6.1) 

Lm is the flammability limit of the fuel mixture in air in volume %.  Li is the 

corresponding flammability limit for the fuel component i in volume %.  Yi is the 

corresponding volume fraction of the fuel component i in the fuel mixture in volume %. 
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Fig. 6.18. Comparison of Le Chatelier predictions with experimental LFLs for 

methane/butane (top) and methane/propane (bottom) mixtures in air.   
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 Le Chatelier’s rule predictions agree well with the flammability limits 

determined in this work, as is the case for the results of Coward et al. [21].  Figure 6.19 

compares Le Chatelier’s rule predictions with measured flammability limits.  The largest 

deviations for Le Chatelier’s rule predictions are less than 0.1 % for the flammability 

limits determined by Coward et al. [21] and in this work.  On the other hand, the limits 

determined with the counterflow apparatus have maximum deviations from Le 

Chatelier’s rule of 1.1 % for methane-ethane mixtures and for methane-propane 

mixtures. 

 It is clear that the mixture flammability measurements made using the 

counterflow apparatus are inconsistent with measurements made using the more 

common cylindrical type apparatuses with respect to the applicability of Le Chatelier’s 

rule.   The consistency between the results of Coward, et al. [21], and the results 

reported here strongly support the use of Le Chatelier’s rule for practical applications.  

Currently it is unknown if it is the dissimilar apparatus parameters or the method of 

extrapolation (or both) that is responsible for the discrepancies in the counterflow results 

of Subramanya et al. [20]. 
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Fig. 6.19. Mixture LFL deviations from Le Chatelier’s rule predictions. 

 

6.7 Flammability in atmospheres with reduced oxygen concentration 

 

 A standard tactic in dealing with the hazards of flammable gas releases is the 

addition of one or more inert gases in order to lower the fuel concentration below the 

lower flammability limit of that fuel in the specific atmosphere, usually air.  The 

addition of inert gases lowers both the fuel concentration and the oxygen concentration 

at the same time.  The LFL of the fuel increases and the UFL decreases when the oxygen 

concentration is reduced, eventually converge at the minimum oxygen concentration 

(MOC) necessary for combustion of the fuel of interest.  
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Table 6.5. 
Combustion of methane, butane, and methane/butane mixture in atmosphere with 
reduced oxygen concentration 
   Continuous Flame Propagation 
 O2 conc. 

(mol %) 
Fuel 
conc. 

(mol %) 

Propagation 
Occurrence 
Rate  (%) 

Number of 
Propagations 

Number of 
Experiments

CH4 11.9** 5.70     0      0      6 
 11.9** 5.72*   55.6      5      9 
 11.9** 5.74     0      0      6 
 12.1 5.40     0      1      0 
 12.1 5.50 100      1      1 
 12.1 5.60 100      1      1 
      
C4H10 10.6** 2.04     0      0      6 
 10.6** 2.06*   62.5      5      8 
 10.6** 2.08     0      0      6 
 10.7 2.04 100      1      1 
 10.7 2.06 100      1      1 
 10.7 2.08 100      1      1 
      
50/50 CH4/C4H10 21.0 2.58*   14.3      1      7 
 21.0 2.60   83.3      5      6 
 17.0 2.58*   25      2      8 
 17.0 2.6   71.4      5      7 
 13.5 2.64*   14.3      1      7 
 13.5 2.66 100      5      5 
 12.5 2.74*   33.3      3      9 
 12.5 2.76   83.3      5      6 
 11.5 2.82*   14.3      1      7 
 11.5 2.84   55.6      5      9 
 11.0 2.86*   14.3      1      7 
 11.0 2.88   83.3      5      6 
 10.7** 2.94     0      0      6 
 10.7** 2.96*   55.6      5      9 
 10.7** 2.98     0      0      6 
 10.6 2.94     0      0      1 
 10.6 2.96     0      0      1 
 10.6 2.98     0      0      1 
      
* denotes LFL concentrations, and ** the minimum oxygen concentrations. 
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 The lower flammability limit of an equimolar methane-butane mixture was 

measured as a function of oxygen concentration in oxygen/nitrogen atmospheres.  The 

MOC also was determined for the methane/butane mixture, methane, and butane 

(selected as the oxygen concentration where the LFL and the UFL converges).  Table 6.5 

summarizes the experimental results. 
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Fig. 6.20. Experimental LFL of 50/50 methane-butane mixture within a reduced oxygen 

atmosphere. 
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 Figure 6.20 shows that the mixture lower flammability limit does not change 

appreciably until the oxygen concentration decreases to approximately 14%, then it 

gradually increase until the MOC (10.7 vol %) is reached. 

 The MOC of the methane-butane mixture in this work is lower than the values 

produced by previous work in glass cylindrical vessels.  The MOC measured for pure 

butane in this work is somewhat lower than a previously reported value and slightly 

lower than the mixture MOC (see table 6.6). 

 

Table 6.6. 
Comparison of minimum oxygen concentration values 
 MOC (mol%) from this 

work 
MOC (mol%) from vertical glass 
cylinder vessel [12] 

methane 11.9 12.8 

butane 10.6 12.1 

50/50 methane-
butane 

10.7 N/A 

 

 MOC measurements using 20 L spheres and 7% pressure rise criterion also have 

lower MOC values, with the mixture MOC similar in value with the pure component that 

has the lower MOC (see table 6.7). 
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Table 6.7. 
Comparison of minimum oxygen concentration values found in previous works 
 MOC (mol%) from 20 L 

spherical vessel [29] 
MOC (mol%) from vertical glass 
cylinder vessel [12] 

methane 11.6 12.8 

ethylene 9.3 10 

50/50 methane-
ethylene 

9.4 N/A 

 

 The MOC values are reasonable in view of the general trend among the literature 

data.  The flammability limits from previous work using vertical glass cylinders are not 

as wide as the limits determined using spherical vessels and pressure rise criteria.  The 

flammability apparatus developed in this work combines features from the older works 

(vessel shape and propagation to the vessel top) and more recent methods (fuse wire 

explosion for high power ignition, greater vessel width).  It is reasonable for the MOC 

values to fall between values produced by the vertical glass cylinder vessels and the 

spherical vessels, following the pattern observed with other flammability values 

determined with the new apparatus and criteria. 

 

6.8 Summary 

 

 We have demonstrated that the new apparatus can detect expanded flame 

propagation, and distinguish it from other phenomenon occurring within the reaction 

vessel by utilizing the thermistor sensors.  It can detect and distinguish between 

discontinuous and continuous flame propagation, which enables the application of the 
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thermal criterion developed for flammability measurement.  The flammability limits 

measured in air for selected pure fuel gases and fuel gas mixtures agree well with work 

reported previously.  The limits of the gas mixtures are compared to limits obtained with 

open glass cylinder experiments and counterflow apparatus experiments by examining 

their deviations from Le Chatelier’s rule.  The minimum oxygen concentrations for 

methane, butane, and an equimolar methane-butane mixture also were measured.  The 

methane and butane results agree with previously reported results.  There are no reports 

of measured MOC for the equimolar mixture.   The lower flammability limits of the 

equimolar methane-butane mixture were measured as a function of decreasing oxygen 

concentration. 
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7. SUMMARY AND RECOMMENDATIONS 

 

7.1 Summary 

 

 The purpose of this research is to develop an apparatus capable of measuring 

flammability limits for a range of conditions including mixtures, varying oxygen 

concentration, and extended pressure and temperature ranges.  Three objectives are 

achieved for this purpose:  design and construction of a flammability apparatus with a 

closed cylindrical reaction vessel; examination of the combustion behavior within the 

vessel with visual, pressure, and thermal sensors to develop a thermal criterion for 

flammability limit determination; and comparison of flammability limits determined 

using the thermal criterion with limits determined using pressure and visual criteria that 

have been reported in the literature. 

 The resulting flammability apparatus is able to detect combustion within the 

reaction vessel by visual, pressure, and thermal sensors.  The apparatus has a reaction 

vessel with shape and size comparable to vertical glass cylinder vessels used by other 

workers and a short cycle time for data collection.   

 Combustion behavior within the reaction vessel is observed using visual, 

pressure, and thermal sensor data, and categorized into four types:  non-propagation, 

flash, discontinuous flame propagation, and continuous flame propagation.  The visual 

and pressure measurements were found to be incapable of distinguishing between 

discontinuous and continuous flame propagation.  Different zones during combustion 



 100

within the reaction vessel are identified:  non-combustion, expanded flame, termination 

(1) and termination (2).  Thermal sensor signal profiles are related to the combustion 

zones, allowing determination of combustion types with thermal sensors alone.  The 

thermal criterion is developed for the determination of flammability limits with the new 

apparatus based upon what to measure (definition of flammability) and how to measure 

(thermal sensor signal profiles). 

 The flammability limits of the following gases were determined using the 

thermal criterion: 

• Methane (LFL and UFL) 

• Ethane (LFL) 

• Propane (LFL) 

• Butane (LFL) 

• Ethylene (LFL and UFL) 

• Propylene (LFL) 

The lower flammability limits of the following gas mixtures in air were determined and 

preditctions from Le Chatelier’s rule compared with the experimental results: 

• methane-propane 

• methane-butane 

The minimum oxygen concentrations of the following gases and mixtures were 

measured: 

• methane 

• butane 
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• equimolar methane-butane mixture 

Lastly, the lower flammability limits of the equimolar methane-butane mixture were 

measured in atmospheres with reduced oxygen concentrations and the minimum oxygen 

concentration required to support combustion was determined. 

 The flammability limits of pure fuel gases fall between values determined using 

vertical glass cylinder apparatuses and spherical apparatuses, which indicates a 

reasonable level of agreement with the general body of flammability data.  The lower 

flammability limits of the gas mixtures correlate well with predictions by Le Chatelier’s 

rule, revalidating the simple model against dissenting results from recent studies made 

using counterflow-type apparatuses.  The minimum oxygen concentration of methane 

and butane are lower than values found with vertical glass cylinder vessels, but the 

methane MOC value is close to MOC value from a spherical apparatus.  The MOC for 

the equimolar methane mixture is very close the MOC for pure butane, which has the 

lower MOC of the two pure constituents. 

The results of this work show that the flammability data determined with thermal 

criteria have an acceptable level of accuracy.  The flammability apparatus is capable of 

producing wider (higher UFL, lower LFL) flammability limits values if a more lenient 

thermal criterion is used.  
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7.2 Recommendations 

 

 Experience acquired during the experiments suggests possible improvements to 

the flammability apparatus that have not been implemented to date.  A new flammability 

apparatus design is proposed that should improve accuracy and data acquisition cycle 

time, as well as settling unresolved issues.   

 In the modified design, the reaction vessel remains a steel cylinder sealed by 

bolted flanges at both ends, but the vessel is not mounted by the top plate to an enclosure 

structure.  Instead, it is clamped by the body and suspended in the air by metal supports 

connected to a stand with a wide base (see figure 7.1) 

 

 

Fig. 7.1. Recommended reaction vessel body setup. 
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 The top flange will have a recessed portion to allow for the installation of a 

thermistor rack consisting of a circular ring to set into the recess, a structure of metal 

rods to hold the thermistors at desired locations, with the wiring leading to a signal 

connector that can connect to a feedthrough on the bottom plate of the reaction vessel 

instead of the top to avoid excess wiring hanging in the path of flame propagation (see 

figure 7.2).   

 

 

Fig. 7.2 Recommended thermistor rack and new bottom plate setup. 
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This new setup has a couple of advantages over the current design:  it will allow 

for easier thermistor maintenance and modification, because the entire structure can be 

removed;  and the vessel body no longer needs to be moved during maintenance, thus 

minimizing the weight-related hazards.  When the safety hazard associated with weight 

is removed, a thicker vessel wall can be selected to reduce the risk of vessel rupture due 

to pressure, thus removing the need for a reaction vessel enclosure.  The vessel also can 

have a larger diameter to accommodate experiments using gas mixtures with larger 

quenching distances.  The addition of an extra camera to capture images above that of 

the first camera offers potential insights into the propagation behavior of the flame 

plume that forms immediately after ignition.  The camera position within the vessel can 

be higher to provide face-on view of the interested area, yet without intruding in the 

flame plume’s path, if the vessel body is sufficiently wide.  This can provide insight as 

to when and where the flame plume terminates during flash combustion, as well as when 

and where the flame plume expands in the cases of discontinuous and continuous flame 

propagation.   
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