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ABSTRACT 

 

An Efficient Bayesian Approach to History Matching and Uncertainty Assessment. 

(December 2005) 

Chengwu Yuan, B.S., China University of Petroleum, China; 

M.S., University of Petroleum, Beijing, China 

Chair of Advisory Committee:  Dr. Akhil Datta-Gupta 

 

Conditioning reservoir models to production data and assessment of uncertainty can be 

done by Bayesian theorem. This inverse problem can be computationally intensive, 

generally requiring orders of magnitude more computation time compared to the forward 

flow simulation. This makes it not practical to assess the uncertainty by multiple 

realizations of history matching for field applications. 

     We propose a robust adaptation of the Bayesian formulation, which overcomes the 

current limitations and is suitable for large-scale applications. It is based on a 

generalized travel time inversion and utilizes a streamline-based analytic approach to 

compute the sensitivity of the travel time with respect to reservoir parameters. 

Streamlines are computed from the velocity field that is available from finite-difference 

simulators. We use an iterative minimization algorithm based on efficient SVD (singular 

value decomposition) and a numerical ‘stencil’ for calculation of the square root of the 

inverse of the prior covariance matrix. This approach is computationally efficient. And 

the linear scaling property of CPU time with increasing model size makes it suitable for 

large-scale applications. Then it is feasible to assess uncertainty by sampling from the 

posterior probability distribution using Randomized Maximum Likelihood method, an 

approximate Markov Chain Monte Carlo algorithms.  

     We apply this approach in a field case from the Goldsmith San Andres Unit (GSAU) 

in West Texas. In the application, we show the effect of prior modeling on posterior 

uncertainty by comparing the results from prior modeling by Cloud Transform and by 
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Collocated Sequential Gaussian Simulation. Exhausting prior information will reduce 

the prior uncertainty and posterior uncertainty after dynamic data integration and thus 

improve the accuracy of prediction of future performance. 
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CHAPTER I  

INTRODUCTION 
 

1. 1 Introduction 

Conditioning geologic models to production data and assessment of uncertainty in 

models is generally done using a Bayesian formulation. The Bayesian inverse problem 

can be computationally intensive, generally requiring an order of magnitude more 

computation time compared to flow simulation itself. This makes assessment of 

uncertainty by examining multiple realizations practically infeasible for large-scale field 

applications.  

     Recently streamline simulators have shown great promise in this regard. Streamline 

models are limited in terms of their ability to account for compressible flow and 

complex physical mechanisms. In contrast, finite difference models have much broader 

applicability. Unfortunately field-scale applications of inverse modeling using finite-

difference models have been mostly limited to relatively modest model sizes. This is 

partly because current approaches suffer from high computation costs associated with 

sensitivity computations and minimization algorithms. 

     We propose a fast and robust adaptation of the Bayesian formulation for inverse 

modeling that overcomes much of current limitations and is suitable for large-scale field 

applications. This approach is based on a generalized travel time inversion and utilizes a 

streamline-based analytic approach to compute the sensitivity of the travel time with 

respect to reservoir parameters such as porosity and permeability. The streamlines can be 

computed from a numerical velocity field that is readily available from finite-difference 

simulators. So, this approach is applicable to both finite-difference as well as streamline 

simulators. For solving the inverse problem, we utilize an iterative minimization 

algorithm based on efficient singular value decomposition and a numerical technique for  
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the calculation of square root of the inverse of the prior covariance matrix in the 

Bayesian formulation. This approach is computationally efficient and more importantly 

the CPU time scales linearly with respect to model size. So, it is particularly suitable for 

large-scale field applications. It is then feasible to assess uncertainty by sampling from 

the posterior probability distribution using approximate Markov Chain Monte Carlo 

algorithms. We demonstrate the power and utility of our approach using a field example 

from the Goldsmith San Andres Unit (GSAU) in West Texas. 

 

1.2 Literature Review 

Conditioning geological models to production data typically require the solution of 

inverse problem. Such inverse problems are usually ill posed and their solutions suffer 

from difficulties in existence, uniqueness, and stability. To remedy these problems, a 

regularization term, in the form of data-independent prior information is generally added 

to the objective function in the inverse problem. Two different approaches to impose the 

regularization term have been used extensively in reservoir characterization literatures. 

One of these approaches is the Bayesian1-7, and the other is the deterministic8-11. Both 

approaches have been successfully applied for conditioning geological models to 

production history and comparison between the two approaches can be found in the 

literature12,13. Unlike the deterministic approach, the Bayesian approach associates a 

probability distribution to the prior models and is thus considered well-suited for post-

data inference and uncertainty assessment by defining a posterior distribution of models 

and sampling multiple realizations from this distribution. That is why we used the 

Bayesian approach for uncertainty assessment during this work.   

     Different methods are used to sample the posterior distribution for uncertainty 

assessment14,15. This requires the solution of the Bayesian inverse problem commonly 

done by gradient-based algorithms of Newton-type like Gauss-Newton or modified 

Gauss-Newton16,4,5,7 . The Newton-type algorithms have quadratic rate of convergence17 

in the vicinity of the solution compared to other type of search directions like quasi-
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Newton which has super linear rate of convergence, the steepest descent and conjugate 

gradient which have linear rate of convergence.         

     However, the Bayesian inverse problem still suffers from three major limitations that 

make it impractical for field scale applications. The CPU time for Bayesian inverse 

problem using the conventional Gauss-Newton algorithm scales in quadratic manner 

with increasing the model size18,13. The sensitivity calculation required by Gauss-

Newton algorithm depends upon the number of model parameters19 or the number of 

data20-23, 4-6. And high CPU time and memory required for covariance matrix calculation. 

Some attempts made to alleviate the third limitation associated with analytically derived 

stencil to approximate the inverse of the covariance matrix for large-scale field 

applications24,25, however those are limited only for the exponential covariance models.        

     We propose a fast and robust adaptation of the Bayesian formulation of inverse 

modeling that overcomes much of current limitations and is well suited for large-scale 

field applications. Our approach utilizes a streamline-based analytic sensitivity 

computation that is computationally efficient, requires only a single flow simulation per 

minimization iteration and is applicable to both finite difference and streamline 

simulators. The production data integration relies on a generalized travel time inversion 

that has been shown to be extremely robust because of its quasi-linear properties26. A 

minimization algorithm based on efficient singular value decomposition is used to solve 

the inverse problem. We propose a numerical ‘stencil’ for calculation of the square root 

of the inverse of the prior covariance matrix in the Bayesian formulation. The numerical 

stencil is broadly applicable to a wide class of covariance models and leads to significant 

savings in computation time.  

     Our proposed approach exhibits a linear scaling of the CPU time with respect to 

model size making it particularly well-suited for large-scale field applications and at the 

same time preserves the quadratic convergence of Gauss-Newton. It now makes it 

feasible to assess uncertainty by rigorously sampling from the posterior probability 

distribution using Markov Chain Monte Carlo algorithms. In particular, we utilize a 

previously proposed approximate Metropolis-Hastings sampling approach based on 
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randomized maximum likelihood method27. The efficiency of the method lies in the fact 

that it ensures acceptance of all realizations that are conditioned to production data and 

at the same time adequately samples the uncertainty space.  

     We demonstrate the power and utility of our approach applying a field example from 

the Goldsmith San Andres Unit (GSAU) in West Texas .It includes multiple patterns 

consisting of 11 injectors, 31 producers and over 20 years of production history. We 

utilized the concept of randomized maximum likelihood to sample from the posterior for 

uncertainty assessment during the production history using both streamline and finite 

difference as the forward models. The effects of prior modeling are studied by 

comparing study in this application. 

 

1.3 Objectives 

The main objectives of this research are to: 

• Apply an efficient Bayesian formulation that is suitable for large-scale field 

applications. 

• Apply a novel approach, numerical stencil, to compute the square root of the 

inverse of the prior covariance matrix required by our Bayesian formulation, 

which is general to different types of covariance functions. 

• Apply the generalized travel time approach with streamline-based sensitivity.  

• Generate multiple prior models by sequential Gaussian simulation collocated by 

porosity to improve the estimation of permeability. Compare it with results 

obtained from cloud transform to study the effect of prior modeling in the 

uncertainty of matching and prediction. 

• Assess the uncertainty in the matching of production history and in performance 

prediction for a field example to test its practical feasibility. 
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CHAPTER II 

THE EFFICIENT BAYESIAN APPROACH FOR DYNAMIC 

DATA INTEGRATION 
 
A Bayesian formulation is proposed which is applicable for both finite difference and 

streamline models. It has three advantages. First, use the numerically derived stencil to 

compute the square root of the inverse of the prior covariance and it is general for any 

covariance model. Second, the data misfit term, which is given as a single value, called 

“generalized travel time shift” at each well. Third, the analytical sensitivity based on 

streamline concept for finite difference models, which requires only one forward 

simulation run per iteration and is applicable for both streamline and finite difference 

models. Then, an iterative sparse matrix solver, LSQR28, is used for model parameter 

updating. The CPU time scales linearly with increasing model size compared to the 

quadratic scaling13,18 manner in the conventional Gauss-Newton while it preserves the 

quadratic convergence of Gauss-Newton in the vicinity of the solution.  

 

2.1 Reformulation of Bayesian Approach 

The Bayesian approach provides a natural framework for combining prior geologic data 

with the dynamic production data. The objective is to derive a more refined statistical 

distribution for the model parameters, called the posterior distribution, which will be 

more tightly constrained, compared to the prior distribution. We can then explore the 

posterior distribution to obtain plausible models given the data. If we assume that the 

prior model has a multivariate Gaussian distribution with a covariance matrix MC and the 

production data has Gaussian uncertainty described by the data covariance dC , then the 

Bayesian approach leads to the following posterior distribution, Eq. 2.1. 

 

( )[ ] ( )[ ] [ ] [ ]}
2
1

2
1exp{)( 11

pM
T

pd
T mmCmmmgdCmgddmP −−+−−−∝ −− ………. (2.1) 
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     Where d represents the data vector of dimension Nd, m represents the model 

parameter vector with dimension M and g(m) defines the non-linear relationship 

between the model parameters and the calculated data. 

     We start out by re-writing the objective function in the Bayesian formulation as 

follows: 

 

( ) eemF T

2
1

= ...……………………………………………………………………..(2.2)  

     Where, 
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−
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2
1

………………………………………………………………. (2.3) 

 

     The minimization of the objective function given in Eq. 2.2 can be obtained by using 

Newton’s optimization algorithm17 as follows: 

 

eJmH T−=δ ……………………………………………………………………... (2.4) 

 

     Where the Jacobian J and the Hessian H are given by the following equations: 

 

eJ ∇= …………………………………………………………………………….. (2.5) 

JJH T≅ ……………………………………………………………………………(2.6) 

 

     The approximation for the Hessian, Eq. 2.6, is the same as that of the Gauss-Newton 

algorithm and is strictly valid near the solution (small misfit) or for quasilinear 

problems. We can now write Eq. 2.4 as follows 

 

eJmJJ TT −=δ ……………………………………………………………………. (2.7) 
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     Notice that Eq. 2.7 is a least-squares solution to the following system of equations 

 

emJ −=δ …………………………………………………………………………. (2.8) 
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δ ……………………………………………….……(2.9a) 

 

     The data misfit term, [ ])(mgd − , is given in Eq. 2.9a by a single value called 

“Generalized Travel Time Shift”, t~Δ at each well. This reduces the dimension of the 

data misfit vector to be of nw x 1, the data covariance matrix, CD, to be of nw x nw and the 

sensitivity matrix, G, to be of nw x M. Where, nw is the number of wells and M is the 

number of model parameters.   The detail about the formulation of the generalized travel 

time shift will be discussed later in the chapter. So, Eq. 2.9a becomes: 
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     Eq. 2.9b represents a system of linear equations and we use an iterative sparse matrix 

solver, LSQR28 for solving this system. LSQR is well suited for highly ill conditioned 

systems and is widely used for large-scale tomography problem in seismology29. 

However, difficulties arise in the computation of the square root of the matrix inverse in 

Eq. 2.9b. In practice, the data covariance matrix is assumed to be diagonal and is thus 

easy to manipulate. However, the covariance matrix for the model parameters can be full 

and in general, the calculation of 2
1−

MC  will be computationally prohibitive for large-

scale inverse problems. Previous efforts to compute 2
1−

MC  analytically have been limited 

to exponential covariance model13. We propose an approach to approximate the square 



 

 

8

 

root of the inverse of the covariance using a numerical stencil, which is general for any 

covariance model.  

 

2.2 Numerically-Derived Stencil for Computing Square Root of the Inverse of the   

      Prior Covariance Matrix  

The exact analytical calculation of the square root of the inverse of the covariance can be 

done using the concept of matrix diagonalization30. Since the covariance matrix is a 

symmetric matrix. The inverse of the square root can be calculated exactly using the 

following equation:  

 

UUC T
M  2/12/1 −− Λ=                                                                                                   (2.10) 

 

     Where U is the matrix, whose columns are the eigenvectors of CM, Λ  is the diagonal 

matrix whose diagonal elements are the eigenvalues of the covariance matrix CM. This 

computation is very difficult to handle especially for large field scale cases where the 

covariance matrix is large.  

     The alternative is to approximate the square root of the inverse of the covariance by 

obtaining analytically its stencil from the covariance kernel13. However, the analytical 

stencil suffers from two major limitations; it is applicable only for exponential 

covariance and the ratio of the grid size to the range in the three directions are equal.  

     We proposed a method that overcomes these limitations which is based on two basic 

principles; First, the covariance matrix and the square root of its inverse can be 

constructed using their respective kernels, Second, the two kernels remain unchanged 

regardless of the size of the matrix.  

     The following are the steps used to approximate the square root of the inverse of the 

covariance matrix using a numerically derived stencil.  

     In step 1, we set up a size of the stencil, we found that 5x5x5 stencil provided a good 

compromise between efficiency and accuracy, so we used 5x5x5 stencil to approximate 

the square root of the inverse of the covariance.  
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     In step 2, we use the matrix diagonalization given in Eq. 2.10 to get the square root of 

the inverse of the covariance for 5x5x5 grid block (125x125 covariance matrix) by 

knowing the kernel of the covariance. This is equivalent to getting the kernel of the 

square root of the inverse of any covariance function in a discretized or numerical form 

other than obtaining the kernel analytically, which is too complicated especially for the 

Gaussian and spherical covariance models.  

     In step 3, we set up the 5x5x5 stencil. This stencil has only 27 distinct elements due 

to symmetry. We use any column or any row of the covariance matrix calculated from 

the second step to get the value of stencils. Finally, we use the stencil from second step 

to construct the exact matrix of the model size under study.  

     This technique provides a good approximation for the exponential, the spherical and 

the Gaussian models.  And the constraint imposed by the analytical technique—that the 

ratio of the grid sizes to the ranges in the three directions of anisotropy must be 

constant—has been removed.  

     To justify this approach, the eigenvalues of covariance matrix from different models 

are calculated in a synthetic case as shown in Table 2.1. From Fig. 2.1 (a), (b) and (c), 

we can see that, with range increase, the eigenvalues of covariance matrix decrease 

steeply for these three models. If we set a small cut off, only a small part of the grids in 

the range contribute much to the estimate. So, when the range is high, the 5x5x5 stencil 

will catch the high values above a small cut off. When the range is low, the 5x5x5 stencil 

is enough to cover most parts or all of the range. That is why the numerical stencil gives 

good approximation. 

 

Table 2.1 – Data used to generate covariance matrix for the illustrative example 

Model σ2 Δx Δy Δz Nx Ny Nz 

Exp 1.00 0.04 0.15 0.4 12 7 13 

Sph 1.00 0.04 0.15 0.4 12 7 13 

Gauss 1.00 0.43 0.41 0.5 12 7 13 
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Fig. 2.1 –  Eigenvalues for different covariance models. (a) Exponential, (b) Gaussian,  (c) Spherical                                  
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2.3  Data Misfit via Generalized Travel Time  

Production data misfit is most commonly represented as follows 

 

( )∑∑
= =

−=
w djn

j

n

i
i

obs
ji

cal
jijp tytywJ

1 1

2
)()( …………………………………………………………(2.11) 

For  wdj njni ,,1,,,1 LL == . 

 

     In the above equation, )( ij ty  denotes the production data for well j at time ti, nw and 

ndj stand for the number of production wells and the number of observed data at each 

well, respectively and ijw represent the data weights.  Instead, we define a ‘generalized 

travel-time’ whereby we seek an optimal time-shift at each well to minimize the 

production data misfit at the well. Taking well j as an example, the optimal shift will be 

given by the tj that minimizes the misfit function, 
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     Or, alternatively maximizes the coefficient of determination given by the following 
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     Thus, we define the generalized travel-time as the ‘optimal’ time-shift 

jt
~Δ  that 

maximizes )(2
jtR Δ  or minimizes Jp. It is important to point out that the computation of 

the optimal time-shift does not require any additional flow simulations. It is carried out 

as a post-processing at each well after the calculated production response is derived 

using a flow simulation. The overall production data misfit can now be expressed in 

terms of a generalized travel-time misfit at all wells as follows  
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2.4  Sensitivity Calculations 

One important aspect of this formulation is computation of the sensitivity matrix G as in 

Eq. 2.9a, which relates the production response to model parameters. Although several 

methods are available for computing sensitivities, for example, perturbation method, or 

ad joint state method, which are limited by their computational costs and complex 

implementations. Streamline-based analytic sensitivity computation approach is 

extremely efficient and requires only a single simulation run. We use a streamline-based 

analytic approach for this purpose. The streamline-based sensitivity computation can be 

used for both streamline and finite-difference simulators11. For finite difference 

simulators, we first trace the streamline trajectories from the fluid fluxes obtained from 

the simulator. We can then compute the time of flight and parameter sensitivities as 

discussed in several of our previous publications10,11,26.  

     In generalized travel time inversion (GTTI), every data point in the fractional-flow 

curve has the same shift time, that is, tttt L ~~....~~ 21 Δ=Δ==Δ=Δ . So we can sum up and 

average the travel time sensitivities of all data points to obtain a rather simple expression 

for the sensitivity of the generalized travel time with respect to reservoir parameters m at 

well j as follows10  

( )
dj

N

djN

i
mjit

m

j
t ∑

=
∂∂

−=
∂

Δ∂
1

/,
~

…………………………………………………………... (2.15) 

 

     It now reduces to the sensitivity of the arrival times at the producing well j, mt ji ∂∂ /,
. 

These sensitivities can be easily obtained in terms of the sensitivities of the streamline 

time of flight10, 
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 ………………………………………………………………. ………(2.16) 

 
     In the above expression, the fractional flow derivatives are computed at the saturation 

of the outlet node of the streamline. The time of flight sensitivities can be obtained 

analytically in terms of simple integrals along streamline. For example, the time of flight 

sensitivity with respect to permeability will be given by7 

 

dx
k
sdx

k
s

k ∫∫
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=
∂

∂
)(
)(

)(
)(

)( x
x

x
x

x
τ ………………………………………………….…. (2.17) 

 
     Where, the integrals are evaluated along the streamline trajectory, and the ‘slowness’, 

which is the reciprocal of interstitial velocity, is given by 

)()(
)(

)(
xx

x
x

Pk
s

t ∇
=

λ
φ ……………………………………………………………….(2.18) 

 
     Note that the quantities in the sensitivity expressions are either contained in the initial 

reservoir model or are available after the forward simulation run. 
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CHAPTER III 

UNCERTAINTY ASSESSMENT BY THE 

RANDOMIZED MAXIMUM LIKELIHOOD METHOD 
 

Uncertainty is usually evaluated from the simulated performance of a small number of 

reservoir models.  Unfortunately, most of the methods for creating reservoir models 

conditional to production data are known to generate a distribution of realizations that is 

only approximately correct.  The correctness of the approximations is unknown, 

although several investigations of the approximate algorithms have suggested that the 

distribution of realizations could be seriously deceptive. 

Liu et al.14 evaluate the ability of the various sampling methods to correctly assess 

the uncertainty in reservoir predictions by comparing the distribution of realizations with 

a standard distribution from a Markov Chain Monte Carlo method.  This study compares 

the ensemble of realizations from five sampling algorithms for a synthetic, one-

dimensional, single-phase flow problem in order to establish the best algorithm under 

controlled conditions.  The small test problem was chosen in order that a sufficiently 

large number of realizations could be generated from each method to ensure the 

statistical validity of the comparisons. 

The methods evaluated belong to two types: those that are known to sample 

correctly, and those that are only approximately correct.  In the first category, they 

consider the Rejection algorithm and a Markov Chain Monte Carlo algorithm.  The three 

approximate methods include Linearization about the Maximum a Posteriori, 

Randomized Maximum Likelihood, and Pilot Point methods. 

From this study, it appears that, of the methods considered, generating realizations 

using the Randomized Maximum Likelihood (RML) method is the only practical 

alternative that provides acceptable assessment of uncertainty. 

     Kitanidis30 and Oliver, He, and Reynolds27 proposed that unconditional realizations 

from a Gaussian random field could be used to generate realizations conditional to 

nonlinear data by a process of minimization.  If the prior covariance of the reservoir 
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model parameters and the variance of the observed data are known, samples can be 

generated in the following way: 

     Step1: Generate an unconditional realization of the reservoir model parameters, 

 

[ ]Mpru CmNm ,← ............................................................................................... (3.1) 

 

     Step2: Generate a realization of the data,  

 

[ ]Dobsu CdNd ,← ................................................................................................ (3.2) 

 

     Step3: Compute the set of model variables, m , that minimizes the function: 

 

( ) ( ) ( ) ( )[ ] ( )[ ]uD
T

uuM
T

u dmgCdmgmmCmmmS −−+−−= −− 11

2
1

2
1 ...................... (3.3) 

 

The minimization step is similar to the computation of the maximum a posteriori 

estimate, with the difference that the regularization is with respect to unconditional 

realizations of the model and the data instead of the prior model and the observed data. 

Oliver, et al.27 originally suggested that this method be used to generate trial states 

for a Markov Chain Monte Carlo algorithm but, because the acceptance criterion was 

difficult to evaluate and the acceptance rate was very high (approximately 95% for a 

small highly nonlinear problem), they suggested that the acceptance test be ignored and 

all trials accepted.  Because the method seeks to minimize the data mismatch and the 

distance from the unconditional realization, the realizations almost surely honor the data 

and appear to be from the correct distribution. 

The procedure proposed by Oliver et al.27 to ensure that the realizations that are 

generated are distributed correctly is to use the calibrated realizations as trial states in a 

Markov Chain Monte Carlo (MCMC) method.  However, in order to be able to use the 

MCMC method, we need to be able to calculate the probability of proposing the 
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calibrated model.  The state calm  that is proposed is the result of calibrating the 

unconditioned realization to the unconditioned data (observed data plus noise) using the 

Eq. 3.3.  The joint probability density, ( )usus dmf ,  of proposing ( )usus dm , , is easily 

calculated since usm and usd are independent random variables.  Hence, for this problem, 

 

( ) ( ) ( ) [ ] [ ]
⎭
⎬
⎫

⎩
⎨
⎧ −−−−−−∝ −−

obsusD
T

obsus
T

usM
T

ususus ddCddmCmdmf 11

2
1

2
1

2
1exp, μμ .... (3.4) 

 

The joint probability density, ( )uscal dmh , , of proposing ( )uscal dm ,  can, theoretically 

be calculated if the functional relationship between ( )usus dm ,  and ( )uscal dm ,  is known. 

In their procedure, they calculate calm using a Gauss-Newton method to find the 

minimum of Eq. 3.3, given usm  and usd .  Reversing the procedure, usm  can be solved for 

as a function of calm  and usd .  Excluding the regions of the ( )uscal dm ,  space that are 

inaccessible to the calibration routine, we obtain a unique one-to-one, invertible, 

relationship between ( )usus dm ,  and ( )uscal dm , . The joint probability of proposing 

( )uscal dm ,  can then be calculated as follows31 

 

( ) ( ) Jdmfdmh usususcal .,, = .................................................................................. (3.5) 

 

where, J is the Jacobian of the transformation. 

 

cal

us

m
m

J
∂
∂

= ........................................................................................................... (3.6) 

 

The probability of proposing calm  is found by integrating ( )uscal dmh ,  over the data 

space. 
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( ) ( )∫=
D

ususcalcal dddmhmq , .................................................................................. (3.7) 

 

For most practical problems, evaluation of the integral in Eq. 3.7 is too difficult to 

attempt.  The authors then present a one-dimensional example for which the calculation 

can be attempted, and then show an approximation that seems to work well under a 

fairly broad range of conditions. 

If the probability of proposing a transition to state jm  is independent of the current 

state, Hasting’s rule for the acceptance of a proposed transition from state im to state 

jm can be written as 

 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

ji

ij
ji q

q
π
π

α ,1min, ............................................................................................. (3.8) 

 

jq is the probability of proposing the conditioned model and depends only on the 

proposed state.  The probability density of the conditioned model, jπ  is 

 

( ) ( ) ( )[ ] ( )[ ]
⎭
⎬
⎫

⎩
⎨
⎧ −−−−−−∝ −−

obsjD
T

obsjjM
T

jj dmgCdmgmCm 11

2
1

2
1exp μμπ ....... (3.9) 

 

Note that the probability is not based on the quality of the match obtained in the 

minimization, but on the quality of the match to the prior model and the observed data. 

Oliver, et al. 27 demonstrated that, for linear problems, all calibrated reservoir models 

would be accepted by a Metropolis-Hastings algorithm.  For small nonlinear problems, 

they observed that accepting all calibrated models resulted in a reasonable 

approximation to the correct distribution.  Then, they bring up the question of whether 

there is any reason to believe that it might be a valid method of sampling for large 

multivariate problems. 
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They start by considering the probability density for proposing calibrated models.  

First, new states usm and usd are proposed from the Gaussian prior distribution, 

 

( ) ( ) ( ) [ ] [ ]
⎭
⎬
⎫

⎩
⎨
⎧ −−−−−−∝ −−

obsusD
T

obsus
T

usM
T

ususus ddCddmCmdmf 11

2
1

2
1

2
1exp, μμ .... (3.10) 

 

A calibrated model, calm , is got from usm and usd by minimizing with respect to m.  

 

( ) ( ) ( ) ( )[ ] ( )[ ]usD
T

ususM
T

us dmgCdmgmmCmmmO −−+−−= −− 11

2
1

2
1 ........................ (3.11) 

 

If the minimization is “good,” )( calmO  will be relatively small. The calm  and )( calmg  

will be close to usm  and usd , respectively.  In this case, the meaning of “close” is with 

respect to the weighted 2L  norm.  Let uscal mm −=ε  and ( ) uscal dmg −=η .  In terms of 

ε andη the distribution from which states are proposed can be written as 

 

( ) ( ) ( )
⎩
⎨
⎧ −−−−−∝ − μεμε calM

T
calusus mCmmdf 1

2
1exp,  

( )[ ] ( )[ ]obscalD
T

obscal dmgCdmg −−−−− − ηη 1

2
1 ................................................... (3.12) 

 

where, calm ,ε andη must be thought of as functions of usm  and usd .  Reorganization 

of the terms results in an equivalent expression in which the first two terms of the 

argument of the exponential are independent of ε  and η  

 

( ) ( ) ( )
⎩
⎨
⎧ −−−∝ − μμ calM

T
calusus mCmmdf 1

2
1exp,  

( )[ ] ( )[ ]obscalD
T

obscal dmgCdmg −−− −1

2
1  
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( ) εεμε 11

2
1 −− −−+ M

T
calM

T CmC  

( )[ ] }ηηη 11

2
1 −− −−+ D

T
obscalD

T CdmgC ................................................................. (3.13) 

 

The probability density of proposing a state, calm , can be obtained by multiplying 

Eq. 3.13 by the Jacobian of the transformation between usm  and calm , then integrating 

over the data space.  We formally write this as 

 

( ) ( ) ( )
⎩
⎨
⎧ −−−∝ − μμ calM

T
calcal mCmmq 1

2
1exp ( )[ ] ( )[ ] }obscalD

T
obscal dmgCdmg −−− −1

2
1

( )
⎩
⎨
⎧ −− −−∫ εεμε 11

2
1exp M

T
calM

T

D

CmC
us

( )[ ] } usD
T

obscalD
T ddJCdmgC ηηη 11

2
1 −− −−+ ..... (3.14) 

 

Now we must treat J ,ε andη as functions of calm  and usd .  The term outside the 

integral is the posterior probability density for the model.  The Metropolis-Hastings 

acceptance criterion depends only on the ratio jiij qq ππ .  If this ratio is equal to one 

then the proposed transition to state j should be accepted.  Direct computation of the 

ratio gives 
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q
q

ηηηεεμε

ηηηεεμε

π
π

1111

1111

2
1

2
1exp

2
1

2
1exp

. (3.15) 

 

It seems unlikely that useful bounds can be placed on this ratio for general nonlinear 

functions g  but, because ε  and η  (which are small) occur in every term within the 

integral in Eq. 3.15, the authors claim that the ratio is of the order of one in the regions 

of interest. 
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CHAPTER IV  

APPLICATION IN A FIELD CASE 

 
In this chapter, the efficient Bayesian formulation Bayesian formulation along with the 

RML method is applied to one field scale case, the Gold Smith Field. 

 

4.1 Introduction of Gold Smith Field 

We have applied the RML method along with the efficient Bayesian formulation to a 

CO2 pilot project area in the Gold Smith San Andres Unit (GSAU), a dolomite formation 

in west Texas.  The pilot area consists of nine inverted 5-spot patterns covering around 

320 acres with average thickness of 100 ft and has over 50 years of production history 

prior to CO2 project initiation in Dec 1996.  The water flooding production history prior 

to the CO2 injection is integrated.  Fig. 4.1 shows the CO2 pilot project site in the GSAU. 

 

 
Fig. 4.1 – CO2 pilot project site, Gold Smith field 

 

 

The extended study area is shown in Fig. 4.2 with 11 injectors and 31 producers. 



 

 

21

 

 
Fig. 4.2  Extended study area, Gold Smith field 

 
Fig. 4.2 – Extended study area, Gold Smith field 

 

 

The porosity field was generated from log data using Sequential Gaussian 

Simulation.  It was not allowed to change during the integration. 

 

4.2 Generation of Prior Permeability Model 

The stochastic modeling of prior permeability is the start point of assessment of 

uncertainty. In this application, cloud transform32  and Collocated Sequential Gaussian 

Simulation are used to generate the prior permeability field. The results will show how 

important it is to exhaust the available prior static information. 

 

4.2.1 Generation of  Prior Model by Cloud Transform  

A cloud transform use the scatter or uncertainty in the relationship between porosity and 

permeability to generate permeability fields. It involves the following steps: 
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Step 1: Construct a probability field.  This basically consists of assigning a CDF 

value to each grid block.  This is attained using a geostatistic model such as a Sequential 

Gaussian Simulation or a moving average technique. 

      Step 2: For each grid block,  

a. Pick the value of porosity. 

b. Pick the corresponding values of permeability from the porosity-

permeability relationship, and generate a permeability distribution. 

c. Sample the permeability distribution using the value of CDF 

corresponding to that particular grid block. 

      Step 3: Use the permeability obtained in 2c as the unconditioned permeability of that 

particular grid block. 

     Step 4: Repeat steps 2 and 3 for all other grid blocks. 

Forward runs were made using each of the prior permeability fields by Eclipse 

2004a. Five unconditioned realizations of the water cut were generated by adding a 

randomly generated Gaussian error with a standard deviation of 0.03 to the observed 

water cut. The unconditioned water cuts are shown in Figs. 4.3a (a) to 4.11a (a). 

 

4.2.2 Generation of Prior Model by Collocated SGS 

      Cokriging vs. Collocated Cokriging 

This Cokriging estimation involves complicated system of equations and requires 

modeling variograms of permeability and porosity and cross-variogram of them. 

 

∑∑ +=
j

jj
i

iicok KK )()()( 0 xxx φμλ ……………………………...(4.1)      

 

The target variable, permeability, is sparsely sampled at well sites. While the 

auxiliary variable, the porosity, are available in all grids. In such case, collocated 

cokriging is a good approximation and simplification of strict cokriging. In its strict 

sense, collocated cokriging makes use of the auxiliary variable only at the current point 

where the target variable is to be estimated.  
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)(.)()( 0,0 xKK k
i

iicok φλλ φ+= ∑ xx …………………………..(4.2)      

 

In the multi-collocated form, it also makes use of the auxiliary variable at all points 

where the target variable is available. In this case, the collocated cokriging is used to 

generate the prior distribution of permeability with the aid of available porosity. 

 

Collocated Sequential Gaussian Simulation (CSGS) 

Construction of a permeability fields by CSGS involves the following steps: 

Step 1: Select a random location in the grid scheme. 

Step 2: Perform collocated kriging and get values of Z* and VarZ*. 

Step 3: Assume Z* and VarZ* are the mean and variance of a normal distribution, 

Sample from this distribution and assign a value as simulated value of this grid. 

Step 4: Select another location. 

Step 5: Perform collocated kriging by latest simulated values. And get Z* and 

VarZ*; 

Step 6: Repeat Step 3~ Step 5 until all grids are visited. 

 

4.3 Uncertainty Assessment in History Matching  

The available data are 7800-day water cut.  Ten unconditioned water cut were generated 

by adding a randomly Gaussian error with a standard deviation of 0.03 to the observed 

water cut. To integrate the unconditioned permeability and water cut data, the efficient 

Bayesian formulation are applied. The prior model by cloud transform and collocated 

simulation are integrated with water cut respectively. 

The results of unconditioned water cut and conditioned water cut are shown as Figs. 

4.3 (a) to 4.11 (a) and Figs. 4.3 (b) to 4.11 (b), respectively,  for prior modeling by 

cloud transform. The results of conditioned water cut are shown as Figs. 4.3 (a) to 4.11 

(a) and Figs. 4.3 (b) to 4.11 (b), respectively, for prior modeling by collocated Gaussian 

sequential simulation. 
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Fig. 4.3a– Water cut for well 1, Cloud Transform.   (a) Unconditioned, (b) Conditioned 
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Fig. 4.3b– Water cut for well 1, CSGS.   (a) Unconditioned, (b) Conditioned 
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Fig. 4.4a– Water cut for well 2, Cloud Transform.   (a) Unconditioned, (b) Conditioned 
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(b) 
Fig. 4.4b – Water cut for well 2, CSGS.   (a) Unconditioned, (b) Conditioned 
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Fig. 4.5a – Water cut for well 3, Cloud Transform.   (a) Unconditioned, (b) Conditioned 
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(b) 
Fig. 4.5b – Water cut for well 3, CSGS.   (a) Unconditioned, (b) Conditioned 
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Fig. 4.6a – Water cut for well 4, Cloud Transform.   (a) Unconditioned, (b) Conditioned 
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(b) 
Fig. 4.6b – Water cut for well 4, CSGS.   (a) Unconditioned, (b) Conditioned 
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Fig. 4.7a – Water cut for well 5, Cloud Transform.   (a) Unconditioned, (b) Conditioned 
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(b) 
Fig. 4.7b – Water cut for well 5, CSGS.   (a) Unconditioned, (b) Conditioned 
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Fig. 4.8a – Water cut for well 6, Cloud Transform.   (a) Unconditioned, (b) Conditioned 
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Assess of Uncertainty: Well 6 
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Fig. 4.8b – Water cut for well 6, CSGS.   (a) Unconditioned, (b) Conditioned 
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Fig. 4.9a – Water cut for well 7, Cloud Transform.   (a) Unconditioned, (b) Conditioned 
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Fig. 4.9b – Water cut for well 7, CSGS.   (a) Unconditioned, (b) Conditioned 
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Fig. 4.10a – Water cut for well 8, Cloud Transform.   (a) Unconditioned, (b) Conditioned 
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Fig. 4.10b – Water cut for well 8, CSGS.   (a) Unconditioned, (b) Conditioned 
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(b) 
Fig. 4.11a – Water cut for well 9, Cloud Transform.   (a) Unconditioned, (b) Conditioned 
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(b) 
Fig. 4.11b – Water cut for well 9, CSGS.   (a) Unconditioned, (b) Conditioned 
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4.4 Uncertainty Assessment in Prediction of Performance 

It could be shown with the field application that a quantitative measure of the change in 

uncertainty resulting from the integration of production data was feasible.  However, 

sound match does not ensure a sound prediction based on the nature of non-uniqueness 

and difficulties to completely sample from the posterior. A more practical application 

would be to be able to condition the reservoir model using limited production data to 

then predict future reservoir performance. The scatter in the ensemble of predictive 

water cut curves would thus provide an uncertainty assessment tool. The comparison of 

prediction with available data will be an indicator of the quality of the approach applied.  

The entire available data are 7800-day water cut data.  First half data of about 4000 

days are integrated with unconditioned permeability and water cut data, the efficient 

Bayesian formulation described in Chapter II are used. The prior model by cloud 

transform and collocated simulation are integrated with water cut respectively. 

The conditioned water cut is shown as Figs. 4.12 to 4.20 for prior modeling by 

Cloud Transform. 
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Fig. 4.12 – Conditioned water cut for well 1, Cloud Transform 

Using 4,080 days data, Prediction to 7,800 days 
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Fig. 4.13 – Conditioned water cut for well 2, Cloud Transform 

Using 4,080 days data, Prediction to 7,800 days 
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Fig. 4.14 –  Conditioned water cut for well 3, Cloud Transform 

Using 4,080 days data, Prediction to 7,800 days 
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Fig. 4.15 –  Conditioned water cut for well 4, Cloud Transform 

Using 4,080 days data, Prediction to 7,800 days 

 

 

Assessment of Uncertainty
Well 5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

- 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000
Time, days

W
at

er
 C

ut

Observed (not used)

Observed (used)

Case 1

Case 2

Case 3

Case 4

Case 5

 
Fig. 4.16 – Conditioned water cut for well 5, Cloud Transform 

Using 4,080 days data, Prediction to 7,800 days 
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Fig. 4.17 – Conditioned water cut for well 6, Cloud Transform 

Using 4,080 days data, Prediction to 7,800 days 
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Fig. 4.18 – Conditioned water cut for well 7, Cloud Transform 

Using 4,080 days data, Prediction to 7,800 days 
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Fig. 4.19 – Conditioned water cut for well 8, Cloud Transform 

Using 4,080 days data, Prediction to 7,800 days 

 

 

Assessment of Uncertainty
Well 9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

- 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000

Time, days

W
at

er
 C

ut

Observed (used)

Observed (not used)

Case 1

Case 2

Case 3

Case 4

Case 5

 
Fig. 4.20 – Conditioned water cut for well 9, Cloud Transform 

Using 4,080 days data, Prediction to 7,800 days 
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     The conditioned water cut is shown as Figs. 4.21 to 4.29 for CSGS method. 
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Fig. 4.21 – Conditioned water cut for well 1, Collocated SGS 

Using 4,080 days data, Prediction to 7,800 days 
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Fig. 4.22 – Conditioned water cut for well 2, Collocated SGS 

Using 4,080 days data, Prediction to 7,800 days 
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Fig. 4.23 – Conditioned water cut for well 3, Collocated SGS 

Using 4,080 days data, Prediction to 7,800 days 
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Fig. 4.24 – Conditioned water cut for well 4, Collocated SGS 

Using 4,080 days data, Prediction to 7,800 days 
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Assessment of Prediction Uncertainty: Well 5 
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Fig. 4.25 – Conditioned water cut for well 5, Collocated SGS 

Using 4,080 days data, Prediction to 7,800 days 
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Fig. 4.26 – Conditioned water cut for well 6, Collocated SGS 

Using 4,080 days data, Prediction to 7,800 days 
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Assessment of Prediction Uncertainty: Well 7 
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Fig. 4.27 – Conditioned water cut for well 7, Collocated SGS 

Using 4,080 days data, Prediction to 7,800 days 
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Fig. 4.28 – Conditioned water cut for well 8, Collocated SGS 

Using 4,080 days data, Prediction to 7,800 days 
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Assessment of Prediction Uncertainty: Well 9 
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Fig. 4.29 – Conditioned water cut for well 9, Collocated SGS 

Using 4,080 days data, Prediction to 7,800 days 

 

After comparing the spread in the posteriors from prior modeling by cloud transform 

and Collocated Sequential Gaussian Simulation, we can see the spread in the prior 

modeling will influence the spread in the matching and prediction of data.   

By the Collocated Sequential Gaussian Simulation, the prior distribution of 

permeability field is better modeled than that from cloud transform. The explanation is 

that, in Collocated SGS, the information of spatial relation among prior data is integrated 

by modeling of the covariance matrix of them while in the cloud transform, no 

information on spatial relation of permeability and porosity is included.  

It is important to exhaust available quantified information in the priors before 

integration of dynamic data. 

 

 



 

 

52

 

CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 
 
Integration of production data and assessment of uncertainty by multiple realizations can 

be done by Bayesian approach. This inverse problem is computationally intensive for 

large-scale field case because sensitivity computations and conventional minimization 

algorithms have high computation costs.   

 

5.1 Conclusions 

We propose an adaptation of the Bayesian formulation, which can be solved efficiently 

by LSQR and along with other advantages that overcomes limitations of current 

approach.  

(1) The advantages can be summarized in following. 

a. Sensitivity Calculation. 

 It uses streamline-based analytic sensitivity Streamline-based sensitivity. The 

calculation of streamline sensitivity requires only one forward simulation and is 

applicable for both streamline and commercial finite-difference simulators.  

b. Data Misfit Calculation. 

Generalized travel time data misfit was used in this algorithm, which is the optimal 

time shift per well.  Thus, reduce size of the matrix solution 

c. Numerical stencil. 

     The numerical stencil technique based on efficient SVD (singular value 

decomposition) is used to calculate the square root of covariance matrix, which is fast 

and efficient and applicable to all kinds of covariance models. 

d. Time Scaling Property. 

     The CPU time scales linearly compared with square scaling property in conventional 

approach. 

(2) The high computational efficiency due to above advantages makes it particularly 

suitable for uncertainty assessment of large-scale field cases. We demonstrate the utility 
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of our approach along with Randomized Likelihood Maximum in uncertainty assessment 

using a field example. 

(3) It is important to exhaust available quantified information in the priors before 

integration of dynamic data. 

 By the collocated sequential Gaussian simulation, the prior distribution of 

permeability field is better modeled than that from cloud transform. The explanation is 

that, in collocated SGS, the information of spatial relation among prior data is integrated 

by modeling of the covariance matrix of them while in the cloud transform, no 

information on spatial property of permeability and porosity and relation between them 

is included.  

 

5.2 Recommendations 

In our current approach, the 5x5x5 stencil was used to approximate the square root of 

the prior covariance matrix, which is a trade-off  between the accuracy and the 

computational efficiency. 

Streamline-based sensitivity has unique advantage in term of its fast sensitivity 

calculation. Generalization the sensitivity to full three phases will eventually make this 

method more applicable and precise. 

The integration of static data such as the well logging and seismic is done by 

integrated the data derived from well logging (permeability) and seismic (porosity) 

respectively. The direct integration of seismic and well logging through one common 

proxy (such as elastic property of formation) might decrease the loss of data precision by 

decreasing the artificiality or by decreasing the steps of data explanation.  

To generate multiple equally probable models honoring prior information, the 

sequential Gaussian simulation based on the variogram has been widely used. However, 

as statistical tool quantify the dissimilarity of variable at two spatial sites, variogram is 

not a necessary good measure of special heterogeneity in the geological sense. It is far 

from exhausting the prior geological information other than two point quantitative 

relations. Also, the hidden assumptions of stationarity, ergodicity and preferred 
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multivariate Gaussian distribution idealizes and oversimplifies the geological complexity 

and reality. 
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NOMENCLATURE 

t~Δ  = Generalized travel time shift 
Λ  = Diagonal matrix whose diagonal are the eigenvalues of the covariance    

    matrix 
tλ  = Total mobility ratio 

τ = Time of flight 
δ m = Change in the model parameter 
Δtj = Time shift at well j 

Δx, Δy, Δz = Cartesian grid block sizes 
a = Range of reservoir parameter in the x-direction 
b = Range of reservoir parameter in the y-direction 
C = Range of reservoir parameter in the z-direction 
Cd = Data covariance matrix  
CM = Prior covariance matrix of the model parameter 
d = Column vector with observed data 
e = Residual of the objective function F(m) 

Exp, Sph 
Gauss 

= Exponential and spherical covariance models, respectively 
= Gaussian covariance model 

F(m) = Objective function of Bayesian formulation 
Fw = Fractional flow of water 
G = Sensitivity matrix 

G(m) = Column vector with calculated reservoir performance data 
H = Hessian of the objective function F(m) 
J = Jacobian of the objective function F(m). Gradient of e 
Jp = Misfit objective function 
JT = Transpose of the jacobian  
K = Permeability 
L = Last time step (last data point) 
M = Number of model parameters 
m = Column vector of the reservoir parameter  
mp = Column vector with prior knowledge of reservoir parameter  
nd = Number of data points 
Ndj = Number of data points at well j 
nw = Number of wells 

Nx, Ny, Nz = Number of grid blocks in the x, y, and z direction, respectively 
P = Pressure 
R2 = Coefficient of determination 
s = Slowness 

Sw = Water saturation 
t = Time 
U = Matrix whose column are the eigenvectors of the covariance 
UT = Transpose of matrix X 
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Wi,j = Data weight for each data point (i) and at well (j)  
yj

cal = Calculated data at well j 
yj

obs = Observed data at well j 
φ = Porosity 
σ2 = Variance of reservoir parameter  
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