# APPLYING THE MODIFIED QUADRIFORM TO MEASURE EFFICIENCY IN TEXAS PUBLIC SCHOOLS 

A Dissertation<br>by<br>CHAD AARON STEVENS<br>Submitted to the Office of Graduate Studies of Texas A\&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY

December 2006

Major Subject: Educational Administration

# APPLYING THE MODIFIED QUADRIFORM TO MEASURE EFFICIENCY IN TEXAS PUBLIC SCHOOLS 

A Dissertation<br>by<br>CHAD AARON STEVENS

# Submitted to the Office of Graduate Studies of Texas A\&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY 

Approved by:
Chair of Committee, John R. Hoyle
Committee Members, Virginia S. Collier
Robert O. Slater
Ben D. Welch
Head of Department, James J. Scheurich

December 2006

Major Subject: Educational Administration

ABSTRACT<br>Applying the Modified Quadriform to Measure Efficiency in<br>Texas Public Schools. (December 2006)<br>Chad Aaron Stevens, B.S., Tarleton State University; M.S., University of Houston - Clear Lake Chair of Advisory Committee: Dr. John R. Hoyle

The purpose of this study was to identify school districts in the state of Texas that would be considered efficient based on the modified quadriform model, and to identify alterable school characteristics most associated with those efficient schools. The researcher used data from the 2003-2004 Texas Academic Excellence Indicator System in this analysis. Texas school districts that had low expenditures with high student output were classified as efficient.

There were two stages to the modified quadriform analysis. In stage one the relationship between input and output was evaluated by two separate linear regressions. The input regression modeled total per pupil expenditure for the district regressed against unalterable school characteristics such as total district enrollment, percentage of economically disadvantaged students, percentage of special education students, percentage of minority students, and local tax base value per pupil. In the output regression six different measures of student outcomes were regressed against the same unalterable characteristics. The measures of student achievement used were the percentage of all students passing the math and reading Texas Assessments of

Knowledge and Skills, graduation completion rate, percentage of students taking the Scholastic Aptitude Test and the ACT Test, and the mean scores on the Scholastic Aptitude Test and/or ACT Test. Once the efficient school districts were identified using the positive and negative residuals from the regressions, a discriminant analysis was conducted to determine what alterable characteristics had the most significant relationship with the different student outcome measures.

Just over 32\% of Texas School Districts would be considered efficient in this model, and the number of students per teacher has a significant relationship with the output measures of mean SAT and ACT scores, district completion rate, and Texas Assessment of Knowledge and Skills scores in both math and reading. The data also showed that the percentage of expenditures at central administration was least associated with mean Scholastic Aptitude Test and ACT scores along with district completion rate. This study was intended to be a descriptive "bird's eye" view of efficiency in the Texas system, the researcher believes that this initial study will be a catalyst for more focused research using this production function method of measuring efficiency, and that one day it may lead to an operational definition of efficiency in the Texas system.

## DEDICATION

To my wife, Sarah
and sons Caleb and Carson.

We did it, Gig 'em.

## ACKNOWLEDGEMENTS

I have been blessed by many great mentors in my life that have led me down a path knowing that I could accomplish my goals with hard work, the right attitude and determination. In many ways with all the late nights studying, the 45,000 plus miles on the road to classes and the nights spent away from home this study is a testament to all of those people that have molded me from diapers to doctorate. I am eternally grateful to each of you.

Dr. John Hoyle, thanks for always being there to talk Aggie baseball or dissertation. You made a nervous young Ph.D. student believe that this goal was attainable from the instant I met you almost six years ago. Thanks for being a compassionate and caring role model for me in this field of educational administration. The lessons that you have taught me in the time we have spent together will always be cherished.

To my committee members: Dr. Virginia Collier, Dr. Robert Slater and Dr. Ben Welch, thanks for being there when I needed you as I navigated my way through this long distance maze called my doctorate. Also, thanks to two other invaluable members of the Educational Administration department, Joyce Nelson and Bill Ashworth for always making sure the t's were crossed and the i's were dotted in everything I did.

I would also like to recognize the administration of Clear Creek Independent School District. Former Superintendent Dr. John Wilson helped to get me started in the
program and current Superintendent Dr. Sandra Mossman served as my mentor during internship. I would also like to thank Holly Hughes, Assistant Superintendent for Elementary Education, for her support during the final years of this journey. In addition, the staffs of Armand Bayou, Clear Lake City, Silvercrest in Pearland and especially Falcon Pass Elementary that have been such a support throughout this process. Obtaining a goal like this cannot be accomplished without a supportive work environment that covets life-long learners.

To Jim and Prella Phillips for being the most supportive in-laws I could ask for. Both of you have always supported me like I was your son for the past sixteen years of my life. Sarah, Caleb and I greatly appreciate all of your support during our life together and during this doctorate degree. To all of my extended family Jamieson, Laura, Maisie, Mallorie, Rebecca, Jed, Jed Jr., Victoria and Jonathan, thanks for taking care of Sarah and Caleb so many times while I was away. Knowing that Sarah and Caleb were spending time with family always made me feel better when I was on the road.

To Mom and Dad, when you dropped me off at Texas A\&M in 1991 I bet you never dreamed this path that I have taken. Thanks for always being by my side in whatever dream I was shooting for. You both instilled in me a never quit attitude that has permeated my life. In many ways I would have never finished this degree without the many lessons I learned from each of you in my youth and adulthood. I love you both very much, more than you know. To my brother, Dr. Tobey Stevens, M.D., I know during your residency and the end of my doctorate it was hard to make time to spend together, but I am so blessed that you are practicing near our family. I have always
admired the way you focused during your program, and it helped me to finish mine thinking about your determination. Thanks for being an example for me.

When I began this degree I did not have any children. As I end it I have Caleb and Carson on the way. Caleb, I know you are just a little guy, and probably didn't notice how much I was gone, on the computer or in the study, but know that Dad sure did realize every second I was away from you. I am looking forward to many fishing adventures, hunting trips and baseball games in our future.

Finally, to the best thing that ever happened to me, Sarah, this degree is as much yours as it is mine. I did not earn this alone, we earned it together. I can never repay you for the sacrifices that you have made for me to earn this degree, and realize this dream. Not one of the sacrifices went unnoticed or unappreciated. You always kept me focused on my goals and my mind in perspective. Thanks for being my driver so I could sleep or study on the way to College Station, and my chief editor. Also, thanks for being a great Mom. I never worry about Caleb when I am on the road. You are a blessing to him and me. It is now over, and you can get that Aggie ring picture you always wanted!

## TABLE OF CONTENTS

Page
ABSTRACT ..... iii
DEDICATION ..... v
ACKNOWLEDGEMENTS ..... vi
TABLE OF CONTENTS ..... ix
LIST OF TABLES ..... xiii
CHAPTER
I INTRODUCTION ..... 1
Statement of the Problem ..... 5
Purpose of the Study ..... 5
Research Questions ..... 5
Operational Definitions ..... 6
Assumptions and Limitations ..... 7
Significance of the Study ..... 8
Organization of the Remainder of the Study ..... 9
II REVIEW OF RELATED LITERATURE ..... 10
History of Texas School Finance ..... 10
West Orange-Cove Revisited ..... 19
Texas School Finance System ..... 20
House Bill 1 ..... 25
How Can We Use the Money We Have to Accomplish Our Goals? ..... 26
Efficiency Measurement Techniques in Education. ..... 33
Future Directions for Educational Efficiency Research ..... 38
Modified Quadriform Analyses ..... 41
III PROCEDURES AND METHODOLOGY ..... 43
Research Design ..... 43
Population ..... 44
Instrumentation ..... 45
CHAPTER Page
Procedures ..... 45
Data Analysis ..... 47
IV ANALYSIS OF DATA ..... 49
Total Expenditures per Pupil Regression ..... 50
All Grades Tested Math Regression ..... 51
All Grades Tested Reading Regression. ..... 51
District Completion Rate without G.E.D. Regression ..... 52
Mean SAT Score Regression ..... 53
Mean ACT Score Regression ..... 53
Total Students Taking SAT and ACT Regression ..... 54
Discriminant Analysis All Grades Tested Math ..... 55
Discriminant Analysis All Grades Tested Reading. ..... 56
Discriminant Analysis District Completion Rate without G.E.D ..... 58
Discriminant Analysis Mean SAT Score. ..... 60
Discriminant Analysis Mean ACT Score ..... 62
Discriminant Analysis Total Students Taking SAT and ACT ..... 64
Research Question One ..... 66
Research Question Two ..... 66
Research Question Three ..... 68
Summary ..... 69
V FINDINGS, CONCLUSIONS, IMPLICATIONS, AND RECOMMENDATIONS ..... 71
Findings ..... 72
Research Question One ..... 72
Research Question Two ..... 73
Research Question Three ..... 74
Conclusions ..... 74
Implications for Public Policy ..... 77
Recommendations for Further Study ..... 78
REFERENCES ..... 80

## Page

APPENDIX A ..... 85
APPENDIX B ..... 95
APPENDIX C ..... 105
APPENDIX D ..... 115
APPENDIX E ..... 124
APPENDIX F ..... 133
APPENDIX G ..... 141
APPENDIX H ..... 143
APPENDIX I ..... 145
APPENDIX J ..... 147
APPENDIX K ..... 149
APPENDIX L ..... 151
APPENDIX M ..... 153
APPENDIX N ..... 155
APPENDIX O ..... 157
APPENDIX P ..... 159
APPENDIX Q ..... 161
APPENDIX R ..... 163
APPENDIX S ..... 165
APPENDIX T. ..... 167
APPENDIX U ..... 169
APPENDIX V.................................................................................... 171

APPENDIX W................................................................................. 173
APPENDIX X.................................................................................. 175
APPENDIX Y...................................................................................... 177
VITA.............................................................................................. 179

## LIST OF TABLES

TABLE Page
1 State and Local Revenue for Public Schools (in millions) ..... 18
2 Model Summary for Dependent Variable
Total Expenditures per Pupil ..... 50
3 Model Summary for Dependent Variable All Grades Tested Math ..... 51
4 Model Summary for Dependent Variable All Grades Tested Reading ..... 52
5 Model Summary for Dependent Variable District Completion Rate without G.E.D. ..... 52
6 Model Summary for Dependent District Mean SAT Score. ..... 53
7 Model Summary for Dependent District Mean ACT Score ..... 54
8 Model Summary for Total Students Taking SAT and ACT ..... 54
9 Wilks' Lambda for All Grades Tested Math 2004 ..... 55
10 All Grades Tested Math Correlations and Standardized Function Coefficients ..... 56
11 Wilks' Lambda for All Grades Tested Reading 2004. ..... 57
12 All Grades Tested Reading Correlations and Standardized Function Coefficients ..... 57
13 Wilks' Lambda for District Completion Rate without G.E.D. 2003 ..... 59
14 District Completion Rate without G.E.D. 2003 Correlations and Standardized Function Coefficients ..... 59
15 Wilks' Lambda for District Mean SAT Score 2003 ..... 61
16 District Mean SAT Score 2003 Correlations and Standardized Function Coefficients ..... 61
TABLE Page
17 Wilks' Lambda for District Mean ACT Score 2003 ..... 62
18 Mean ACT Score 2003 Correlations and Standardized Function Coefficients ..... 63
1920District Total Students Taking SAT and ACT 2003Correlations and Standardized Function Coefficients65
21 Correlation Coefficients of Independent Variables MostAssociated with Dependent Variables in theDiscriminant Analysis67
22 Correlation Coefficients of Independent Variables Least Associated with Dependent Variables in the Discriminant Analysis ..... 68

## CHAPTER I

## INTRODUCTION

In 1787, Thomas Jefferson stated, "Above all things I hope the education of the common people will be attended to, convinced that on their good sense we may rely with the most security for the preservation of a due degree of liberty" (Kramer, 2002). School finance was as much in the spotlight in the $18^{\text {th }}$ century as it is today in the $21^{\text {st }}$ century. A decade ago, the United States spent $\$ 292$ billion on elementary and secondary education, just $\$ 2$ billion less than they spent on defense (Kramer, 2002). Four years ago $\$ 70$ billion was spent on Kindergarten through $12^{\text {th }}$ grade public education, and only $\$ 29.3$ billion of that was funded by the state, while $\$ 40.4$ billion was funded by local property taxes (Charles A. Dana Center, 2003).

In 1876, the framers of the Texas Constitution adopted a flat grant system of education. However, as time passed, the state's role in financing education decreased, and in later years the constitution was amended to allow local taxes levied by the school board to supplement the flat grant system. This flat grant system in combination with the local taxes began to cause large disparity in funding between wealthy and poor districts, so in 1949 Texas adopted a foundation program. A foundation program is a state equalization program that guarantees a certain foundation level of expenditures for each student (Odden \& Picus, 1992). In the 1960's Texas added a state matching program to encourage particular programs, such as special education.

The style and format for this dissertation will follow that of The Journal of Educational Research.

The matching program became problematic and even compounded the disparity, because wealthy districts in terms of property tax could still take advantage of the system by receiving more matching funds, furthering the gap between wealthy and poor (Carrollton-Farmers Branch Independent School District vs. Edgewood Independent School District, 1992). In 1971 the Texas legislature faced pressure to address the funding inequalities of the state. At that point, they introduced a Guaranteed Tax Base (GTB) program that served as a second tier to the foundation program. This was another attempt to equalize the wealth potential of each district. The Texas legislature tweaked the system again in 1977, 1979, 1984, and 1989 (Carrollton-Farmers Branch Independent School District vs. Edgewood Independent School District, 1992). The program remained in place until Edgewood Independent School District vs. Kirby, et al. required the legislature to make additional changes.

Now, Texas is a growing state that has 1037 school districts and approximately 4.4 million students. It was predicted that between 1996 and 2008 Texas would face a fourteen percent growth rate (Kramer, 2002). The incredible growth predominantly is due to immigration from Mexico and other states. Before the Edgewood vs. Kirby, et al. suit, the inequalities in the state funding were vast. The taxable property value in some districts was as low as $\$ 20,000$ per student to as high as $\$ 14$ million per student in other districts, and the range in per pupil spending was from $\$ 2,112$ to $\$ 19,333$ (Clark, 1995). The cornerstone argument for the case against the state was stated in the Texas constitution, Article VII, section 1. Article VII gives the legislature the duty "to establish and make suitable provision for the support and maintenance of an efficient
system of public free schools" (Carrollton-Farmers Branch Independent School District vs. Edgewood Independent School District, 1992). The Texas Supreme Court ruled that the existing system of education in place was ineffective, and stated, "Children who live in poor districts and children who live in rich districts must be afforded a substantially equal opportunity to have access to educational funds" (Edgewood Independent School District vs. Kirby, et al., 1989). A year later in 1990, the Foundation-GTB program was again restructured. In 1991, the state was challenged again and lost, with the courts ruling that the legislature had failed to restructure the finance system adequately.

The issues above, the fact that Texas law does not allow the state to take back excess revenue from districts, the still large discrepancies in top property values in the state, and the $\$ 1.50$ cap for property tax led to the 1993 passing of Senate Bill 7, known as "Robin Hood" (Kramer, 2002). The bill mandated that rich districts share with poorer districts. Robin Hood functions as a way to cap the amount of wealth a district can tax, and the state has limited the amount of property tax that can be applied. However, it is not a full state-funding program, and it does not help to guarantee that funds are distributed equitably to school districts. The Center on Public Policy Priorities reported that in 1996 and 1997 the range of spending in Texas schools was from $\$ 4000$ to $\$ 10,000$ per student (1998). Under Robin Hood, districts with a taxable base above $\$ 305,000$ per weighted students have a choice of five methods to lower their ratio of wealth per student. The district's choices are to consolidate with another district, detach property from the district, purchase attendance credits, contract to educate students outside the district, or consolidate only their tax base with another district.

The system of school finance in Texas has many inherent problems, in addition to the issues discussed thus far. The funding of schools has not been able to keep pace with inflation. The annual average operating fund increase for the last ten years was $\$ 1,127,521$, and the average annual increase in state funding was $\$ 339,706$, which led to increased local funding that increased property taxes over time. Districts all over the state are reaching the $\$ 1.50$ cap, which was set by the legislature. In 2003, almost eighty percent of districts were within $\$ 0.10$ of the cap. Coupling these financial issues with annual pay increases, increased cost of health insurance, a teacher shortage, energy costs, and the rising cost of maintaining high academic standards, many people believe that school finance in Texas is in crisis, and that the crisis is affecting students. Districts are dipping into reserved funds to get by, cutting budgets, delaying improvement projects, and reducing staff, services and programs. Until the Texas legislature comes up with a solution to these problems in the system, leaders must focus on costeffectiveness and efficiency. Regardless of the effect additional funds might have, it is important that existing resources be used as efficiently as possible (Miles, 1995).

The relationship between school achievement and school district spending is known as educational production function research. Regression analysis can be used to relate spending and resources to student achievement while controlling for student demographics (Wenglinsky, 1998). This type of research has led to the development of systematic techniques which can determine efficiency. Modified quadriform analyses provide for an operational definition of efficiency that can be used to measure the complex relationship between resources and student achievement (Anderson, 1996).

## Statement of the Problem

As the Texas school finance system goes through reform, the legislature is again facing the questions of inequities in schools. During the same time, the public is becoming more concerned with the quality of schools. As the money provided by the state is reduced and schools become increasingly locally funded the local taxpayers are becoming more concerned with the effective use of funds. The combination of wanting quality schools and demanding effective use of funds points to a need in the area of understanding efficiency in education (Anderson, 1996).

## Purpose of the Study

The primary purpose of this study will be to identify school districts in Texas that are using resources efficiently based on the modified quadriform model, and to identify what characteristics these efficient district's have that are alterable so that school leader's can know what expenditures make the largest impact on student output.

## Research Questions

The following specific research questions were addressed.

1. What school districts in Texas would be considered efficient using the modified quadriform model?
2. What alterable characteristic(s) of school districts has the biggest impact on school efficiency?
3. What alterable characteristic(s) of school districts has the least impact on school efficiency?

## Operational Definitions

For the purpose of this study, the following definitions apply:
Alterable school characteristics: school variables that are more open to change such as teacher to student ratios, teacher salaries, and the amount of funding allotted for various programs (Anderson, 1996).

Economically disadvantaged: students eligible for free or reduced lunch prices or other public assistance (TEA, 2003).

Educational efficiency: the optimal use of educational resources which results in student achievement (Anderson, 1996).

Modified quadriform: The modified quadriform captures the input-output relationship of variables in two separate linear regressions in order to determine efficient and inefficient school districts. The model then uses discriminant analysis to distinguish what alterable school characteristics differ between the efficient and inefficient school districts (Anderson, 1996).

Production function research: identifying patterns and relationships of input and outputs (Anderson, 1996).

Resources: any element of school districts relating to funding: per pupil expenditures, local tax base value per pupil, percentages of expenditures per population, teacher average salaries, teacher years of experience, and student to teacher ratios.

Student achievement: student scores on state criterion referenced test (e.g., the Texas Assessment of Knowledge and Skills) in English, graduation completion rate, percentage of students taking the Scholastic Aptitude Test, and the mean scores on the Scholastic Aptitude Test.

Unalterable school characteristics: demographics of students and school districts that school officials have little control over such as total district enrollment, percentage of economically disadvantaged students, percentage of special education students, percentage of minority students, and local tax base value per pupil (Anderson, 1996).

## Assumptions and Limitations

1. When using socioeconomic status as a factor in one of the unalterable characteristics, it is assumed that all parent applications for this federal program were turned in and done correctly.
2. The data that will be taken from the Academic Excellence Indicator System reports may not always be accurate.
3. This study will be a single year evaluation; a longitudinal study would allow the researcher to determine variation in the independent and dependent variables.
4. By using the Texas Assessment of Knowledge and Skills, test bias can factor into the research. However, this measure has only been in place for four years, and there is limited research to support this specific test.

## Significance of the Study

With the education of our children increasingly being funded locally in Texas, educators must look closely at how efficiently the taxpayer's money is being used. The school districts differ from the classic business model of input / output ratio. The school district's product is for students to achieve, become good citizens, and contribute to our society. None of these things are easily measurable, but the modified quadriform developed by Anderson (1996) helps us to get a better understanding of what truly makes for efficient use of our funds.

The study will help to explore in Texas what alterable characteristics impacts student achievement. In other words, what do we have control over that can make our educational system better? Production function research has just begun to scratch the surface in Texas, and this study will be a foundation for other researchers to build upon. The model can be applied in a variety of settings and ultimately it will help us all understand what efficiency looks like in schools.

What gets measured gets done, and currently there is no definitive measure for efficiency in Texas schools. Once we have a measure of efficiency, school districts that are not using funds appropriately can be given help in order to make improvements. To this date, without using regression to eliminate the affects of unalterable school characteristics, this was not possible. This study will allow educators to increase their base of knowledge in this arena.

## Organization of the Remainder of the Study

Chapter II is a review of the literature that is related to this study. Chapter III outlines the procedures and methodology employed in the study. Chapter IV contains the description of the results of the study. Finally, Chapter V contains the summary, conclusions, implication for public policy, and recommendations for further research that arose from the study.

## CHAPTER II

## REVIEW OF RELATED LITERATURE

In 1787, Thomas Jefferson stated, "Above all things I hope the education of the common people will be attended to, convinced that on their good sense we may rely with the most security for the preservation of a due degree of liberty" (Kramer, 2002). School finance was as much in the spotlight in the $18^{\text {th }}$ century as it is today in the $21^{\text {st }}$ century. A decade ago, the United States spent $\$ 292$ billion on elementary and secondary education, just $\$ 2$ billion less than they spent on defense (Kramer, 2002). Four years ago $\$ 70$ billion was spent on Kindergarten through $12^{\text {th }}$ grade public education, and only $\$ 29.3$ billion of that was funded by the state, while $\$ 40.4$ billion was funded by local property taxes (Charles A. Dana Center, 2003).

## History of Texas School Finance

In 1876, the framers of the Texas Constitution adopted a flat grant system of education. However, as time passed, the state's role in financing education decreased, and in later years the constitution was amended to allow local taxes levied by the school board to supplement the flat grant system. This flat grant system in combination with the local taxes began to cause large disparity in funding between wealthy and poor districts, so in 1949 Texas adopted a foundation program. A foundation program is a state equalization program that guarantees a certain foundation level of expenditures for each student (Odden \& Picus, 1992). In the 1960's Texas added a state matching program to encourage particular programs, such as special education. Educational
finance reform in Texas continued to evolve in the 1970's with the Rodriguez case, and then the Edgewood litigation that began in 1987 and ended in 1995.

When Texas became a state in 1876 the Constitution established an Available School Fund that was subsidized by the Permanent School Fund. The money that flowed into the Permanent School Fund was generated from one-fourth of the general state revenue, and a one dollar poll tax on male voters from age twenty-one to age sixty. Earnings from the Available School Fund were distributed to schools annually based on per-capita. In 1876 there were no provisions for local property taxes. However, the legislature gave taxing authority to some towns giving urban schools an advantage over some rural schools (Thomas \& Walker, 1982). Thus began a disparity in educational funding that is still in the forefront of reform over one hundred and twenty five years later.

There was little change in Texas school finance through 1915. The income provided by the Available School Fund was the exclusive source of funds for local schools. This flat grant system began in 1876 by allocating $\$ 3.59$ per pupil, and by 1884 rose to $\$ 480$ per average daily attendance. This put quite a strain on the school finance system in Texas and in 1883 voters passed an amendment approving a state property tax of $\$ .20$ per $\$ 100$ valuation to be added to the Available School Fund. This amendment also added a $\$ .20$ per $\$ 100$ valuation local property tax that could be approved by a twothirds vote of property owners in the district (Casey, 2001). This $\$ .20$ local tax was only available to common school districts, those run by counties. The urban municipal school
districts could continue collecting up to $\$ .50$ per $\$ 100$ valuation. This continued the disparity between urban and rural school districts that began to exist in 1876.

In 1901, the Permanent School Fund was made available to independent school districts in order to invest in building bonds. This resulted in many school districts that were run by counties converting to independent school districts in order to take advantage of this funding source. In just three years over $90 \%$ of the three hundred eighty one school districts in Texas were imposing taxes while over seven thousand districts run by counties were not (Thomas \& Walker, 1982). In 1915, the Texas legislature attempted to address this issue by trying a guaranteed yield. They appropriated $\$ 1$ million in rural school aid for the biennium. To qualify for this aid the district would have to assess at least $\$ .50$ per $\$ 100$ valuation. As a reward for assessing the valuation they received this aid from the state. In 1920, the constitutional limits on local tax rate were eliminated creating an even wider gap in funding between rural and urban districts (Casey, 2001).

Through the 1920's, 1930's and 1940's little changed in Texas with regards to school finance except some legislation that increased district taxing potential which led to even greater disparities. By, 1947 World War II had ended and school enrollment began to swell in Texas. School districts were only receiving an allotment of about $\$ 100$ per student, and the quality of education was suffering. However, the communities with greater taxing abilities were offering a comprehensive education with little tax effort (Thomas and Walker, 1982). As the $50^{\text {th }}$ Texas Legislature met in 1947 school finance reform was again in the forefront.

In 1947 a debate over teacher salaries evolved into a clash over the entire system of school finance in Texas. A group known as the Gilmer-Aiken committee was established in order to overhaul the education finance system. In 1948 the committee presented their proposal which included a minimum foundation program, which allocated funds for operations and personnel. It also called for the state to assume 80\% of the costs for education with a $20 \%$ fund assignment for local districts. The local districts were still available to enrich their programs through levying more taxes, but it had to be approved by the local tax payers (Casey, 2001). The Minimum Foundation Program was designed to give each student a minimum educational opportunity supplemented by state aid sufficient to compensate for the variations in local taxpaying ability (Thomas \& Walker, 1982). It is also important to note that at this time the legislature eliminated all non-operating school districts, cutting the number of school districts in Texas in half (Thomas \& Walker, 1982).

This legislation immediately helped districts out of financial trouble. State aide per Average Daily Attendance raised $\$ 73$ per student under the new plan. Although this new plan did relieve some of the financial pressures on school districts it was not perfect. The system still allowed numerous small low tax rate districts to exist. It also used the county education index as a measure of district wealth. This index had flaws in the formula because of poor statistical data, inaccurate credits for lands affected some districts' assignments and the index was based on income while the wealth was based on property values. Lastly, the Minimum Foundation Program was based on legislature appropriations rather than an accurate figure of what it would take to provide a quality
education (Thomas \& Walker, 1982). Due to a continued reliance on property taxes the discrepancies continued to grow between school districts with wealthy or poor property taxes.

In 1965 the Governor's Committee on Public Education did extensive research on public education, and they published there findings in 1968. Unfortunately, provisions that would have brought more equity to the finance system were ignored. In 1971, the federal district court ruled that the Texas school funding system was unconstitutional in Rodriguez v. San Antonio (1971). Although this decision was later overturned in 1973 by the United Sates Supreme Court it pressured the Texas legislature to address the funding inequalities of the state and they began to adjust the system in 1975. House Bill 1126 introduced a Guaranteed Tax Base program that served as a second tier to the foundation program. This was another attempt to equalize the wealth potential of each district by increasing state funding allocations, creating weighed personnel units for staffing formulas and reforming the calculation of the local shares from the Foundation School Program from an economic index to an estimated actual market value.

The Texas legislature tweaked the system again in 1977 and 1979 (CarrolltonFarmers Branch Independent School District vs. Edgewood Independent School District, 1992). However in 1983 the legislature was faced with a poor economic outlook and began to look once more on the educational system of Texas. A committee was once again formed by the governor to examine every aspect of the education system. This examination led to the development and passing of House Bill 72 which had a number of
changes to the school finance system. House Bill 72 changed from personnel units to weighted pupil units for the distribution of funds, it established a price index and it broadened adjustments for small districts with little population. In addition the bill called for the use of full-time equivalents in special education and vocational programs, expanded compensatory and bilingual education allotments and instituted teacher career ladders (Casey, 2001).

The program remained in place until Edgewood Independent School District v. Bynam which later became Edgewood Independent School District v. Kirby, et al. required the legislature to make additional changes in 1984 (Sparkman \& Carpenter, 1994). In the early part of 1987 the first Edgewood case went to trial. The plaintiff's argument was that the Texas school funding system violated two provisions of the Texas Constitution. Before the Edgewood vs. Kirby, et al. suit, the inequalities in the state funding were vast. The taxable property value in some districts was as low as $\$ 20,000$ per student to as high as $\$ 14$ million per student in other districts, and the range in per pupil spending was from $\$ 2,112$ to $\$ 19,333$ (Clark, 1995). The cornerstone argument for the case against the state was stated in the Texas constitution, Article VII, section 1. Article VII gives the legislature the duty "to establish and make suitable provision for the support and maintenance of an efficient system of public free schools" (CarrolltonFarmers Branch Independent School District vs. Edgewood Independent School District, 1992). The Texas Supreme Court ruled that the existing system of education in place was ineffective, and stated, "Children who live in poor districts and children who live in rich districts must be afforded a substantially equal opportunity to have access to
educational funds" (Edgewood Independent School District vs. Kirby, et al., 1989). A year later in 1990, the Foundation-GTB program was again restructured. The new plan described a full guaranteed yield program with a drastic redistribution of state aid. The plan was called Robin Hood and the disapproval of the plan prompted the legislature to enact Senate Bill 1 in only four days (Farr \& Trachtenberg, 1999).

In 1991, the state was challenged again and lost, with the courts ruling that the legislature had failed to restructure the finance system adequately. After this court defeat, the legislature attempted to make county education districts by consolidating school districts together to help with parity, but this notion was denied in the courts after being found in disagreement with the Texas Constitution.

After the three Edgewood court cases the legislature came up with a plan that was acceptable to the courts, however there are still many obstacles facing the current system, including the foundation program itself, an aging population with less children and Senate Bill 7 which was crafted and passed in May of 1993 (Kramer, 2002). Senate Bill 7 differed from previous legislation by authorizing the recapturing of local tax revenue above a specified per-pupil wealth level. Like Senate Bill 1, Senate Bill 7 came to be known as Robin Hood. Districts that have more than $\$ 280,000$ of taxable wealth per pupil have a choice of five methods to lower their ratio of wealth per student. The district's choices are to consolidate with another district, detach property from the district, purchase attendance credits, contract to educate students outside the district, or consolidate only their tax base with another district. In addition to the wealth equalization component of this bill there were several changes to the school finance
system made due to Senate Bill 7. Of course, in 1993 Senate Bill 7 was challenged but it was found to be constitutional. This would be the fourth Edgewood case evolving from the original lawsuits. The system was last tweaked when Senate Bill 1 called for some modifications to the finance system.

In 2001, a group of property rich school districts formed an advocacy group for school districts that are forced to give money back that have no additional means to support their district through taxes (Ratcliffe, 2001). The group argued that by capping the tax rates at $\$ 1.50$ and having to send money back to the state for poorer school districts was unconstitutional. The judge ruled that because only $19 \%$ of districts were at the cap, that the districts chose to assess the maximum, and that the districts were still maintaining an adequate education and the case was dismissed (West Orange-Cove Consolidated Independent School District v. Nelson, 2001). This decision was appealed to the $3^{\text {rd }}$ court of appeals in 2002, but it was upheld. However, in May of 2003 the Texas Supreme Court ruled 8-1 that districts should be allowed to prove their claims.

Now, Texas is a growing state that has 1037 school districts and approximately 4.4 million students. It was predicted that between 1996 and 2008 Texas would face a fourteen percent growth rate (Kramer, 2002). The incredible growth predominantly is due to immigration from Mexico and other states. The system of school finance in Texas to this day still has many inherent problems, in addition to the issues discussed thus far. The funding of schools has not been able to keep pace with inflation. The annual average operating fund increase for the last ten years was $\$ 1,127,521$, and the average annual increase in state funding was $\$ 339,706$, which led to increased local
funding that increases property taxes over time (See Table 1). Districts all over the state are reaching the $\$ 1.50$ cap, which was set by the legislature. In 2003, almost eighty percent of districts were within $\$ 0.10$ of the cap. Coupling these financial issues with annual pay increases, increased cost of health insurance, a teacher shortage, energy costs, and the rising cost of maintaining high academic standards, many people believe that school finance in Texas is in crisis, and that the crisis is affecting students. Districts are dipping into reserved funds to get by, cutting budgets, delaying improvement projects, and reducing staff, services and programs. Until the Texas legislature comes up with a solution to these problems in the system, leaders must focus on costeffectiveness and efficiency. Regardless of the effect additional funds might have, it is important that existing resources be used as efficiently as possible (Miles, 1995).

Table 1. State and Local Revenue for Public Schools (in millions)

|  | Local <br> Revenue | State Aide | Total State <br> and Local | Percentage <br> State Share |
| :--- | :---: | :---: | :---: | :---: |
| 1993 | $\$ 8,147.0$ | $\$ 6,958.3$ | $\$ 15,115.3$ | 46.1 |
| 1994 | $\$ 8,516.0$ | $\$ 7,032.3$ | $\$ 15,548.3$ | 45.2 |
| 1995 | $\$ 8,743.3$ | $\$ 7,283.4$ | $\$ 16,025.7$ | 45.4 |
| 1996 | $\$ 9,328.1$ | $\$ 8,325.9$ | $\$ 17,654.0$ | 47.1 |
| 1997 | $\$ 9,893.3$ | $\$ 8,286.6$ | $\$ 18,197.9$ | 45.6 |
| 1998 | $\$ 10,306.1$ | $\$ 9,161.0$ | $\$ 19,467.1$ | 47.2 |
| 1999 | $\$ 11.368 .2$ | $\$ 9,304.0$ | $\$ 20,672.2$ | 45.6 |
| 2000 | $\$ 11,717.4$ | $\$ 10,391.4$ | $\$ 22,108.8$ | 47.0 |
| 2001 | $\$ 13,336.6$ | $\$ 10,247.6$ | $\$ 23,584.4$ | 43.5 |
| 2002 | $\$ 14,430.0$ | $\$ 9,720.3$ | $\$ 24,150.3$ | 40.2 |
| 2003 | $\$ 15,777.4$ | $\$ 10,381,6$ | $\$ 26,159.0$ | 39.7 |
| 2004 | $\$ 16,631.4$ | $\$ 9,774.0$ | $\$ 26,405.4$ | 37.0 |
| 2005 | $\$ 17,548.7$ | $\$ 10,454.0$ | $\$ 28,002.7$ | 37.3 |
| 2006 | $\$ 18,674.9$ | $\$ 10,676.0$ | $\$ 29,350.9$ | 36.4 |
| 2007 | $\$ 19,576.5$ | $\$ 10,280.0$ | $29,856.5$ | 34.4 |

## West Orange-Cove Revisited

In August of 2004 the West Orange-Cove case was called back to trial in district court. District Judge John Dietz ruled that the Texas school finance system was unconstitutional in that it violates Article VIII, section 1-e of the Texas Constitution because the $\$ 1.50$ cap on $\mathrm{M} \& \mathrm{O}$ tax rates has become both a floor and a ceiling, denying school districts discretion in setting their tax rates. The courts also ruled that the school finance system did not meet the adequacy clause in Article VII, section 1 of the Texas Constitution. Finally, the court ruled the entire finance system for schools in Texas to be inefficient, inadequate and unsuitable violating Article VII, section 1 of the Texas Constitution yet again.

In July of 2005 the Texas Supreme Court began to hear arguments in the case. The courts were to again to decide the fate of the Texas school finance system with three separate groups of districts raising three separate challenges. The plaintiffs were 47 school districts led by West-Orange Cove Consolidated School District who contend that property taxes, though imposed locally, have become in effect a state property tax prohibited by Article VIII, section 1-e of the Texas Constitution. Edgewood Independent School District and Alvarado Independent School District contended that funding for school operations and facilities were inefficient in violation of Article VII, section 1 of the Texas Constitution. All three groups also contended that the public school system cannot achieve "a general diffusion of knowledge" as required by article VII, section 1 of the Texas Constitution, because the system is under funded.

In this case the Texas Supreme Court ruled that local property taxes for school funding did amount to a statewide tax and gave the state until June 1, 2006 to fix the system. The court agreed 7-1, but found that overall school funding was adequate and that poor districts did have equal access to facilities funding. On April 17, 2006 a special session began on school finance in the Texas legislature resulting in the adoption of House Bill 1 on Wednesday, May 10, 2006.

## Texas School Finance System

Funding for Texas public school districts come from three sources. Local funds are generated primarily from property taxes. State funds come from a variety of revenue sources including general revenue, the Available School Fund and special fees. Federal funds make up the remainder of funding for Texas public schools. During the 19992000 school year local, state and federal funds amounted to $\$ 24.9$ billion dollars. Statewide approximately 50.5 percent of funds come from local sources, 46.1 percent from state funds and 0.3 percent from federal funds (Texas Center for Educational Research, 2001).

Local funds in the Texas public education system come primarily from property taxes. Districts adopt the tax rates each year, one for maintenance and operation and one for debt service or interest and sinking fund, if the district has debt. Maintenance and operation taxes are subject to a statutory maximum of $\$ 1.50$ per $\$ 100$ of taxable value. Districts may levy up to an additional $\$ 0.50$ per $\$ 100$ of taxable value for debt service
taxes at the time bonds are issued. One note is that there is no cap on debt service tax rates to finance debt issued before September 1, 1992.

State funds for public education come from many sources. However most of the funding does come from the General Revenue Fund through the Foundation School Fund. Other major sources of funding for districts include the Available School Fund, revenues from the Permanent School Fund, funds recaptured from wealthy districts, lottery proceeds, and miscellaneous other funds like the Telecommunication Infrastructure Fund. A portion of Available School Fund revenues is set aside for textbooks and school technology allotments.

Federal funds make up a small portion of school funding in Texas. Most of these funds are designated for specific programs or groups of students. In general these funds must be used to supplement programs and not to replace state or local dollars. About half of the federal funds go directly to school districts while the other half goes to fund state or regional education service center.

The funding system in Texas is a shared arrangement between state and local school districts. The system consists of two tiers to fund maintenance and operation, including a number of formulas and weights in order to help the allocations reflect the needs of the school districts and its students. There are separate and additional formulas to help provide districts funding to address existing debt and new facilities construction. The first tier is considered the base or foundation funding level for the state. Calculation of the Tier I funding begins with the Basic Allotment, the base level for funding for each
student is average daily attendance. For the 2002-2003 school year the basic allotment was set at $\$ 2537$.

The state multiplies the basic allotment by district adjustments that include the Cost of Education Index, the small and mid-size school district adjustments, and the sparsity adjustment. The Cost of Education Index is designed to reflect geographic cost variations that are beyond district control. The index for each district is based primarily on teacher salaries of neighboring districts, school district size, and concentration on low-income students. The small and mid-size district adjustments are designed to help smaller districts compensate for diseconomies of scale encountered in serving smaller populations. Adjusting the basic allotment results in the adjusted allotment, and then instructional program weights are applied based on the number of students enrolled in various special programs including special, compensatory, bilingual, career and technology, and gifted and talented education. It is also adjusted for students participating in public education grants. The special education and career and technology weights are calculated on a full time equivalent student basis, for other programs weights are applied to average daily attendance.

Transportation funds are also included in Tier I but they are not calculated on a per-pupil basis. These funds are distributed based on the number of drivers and the number of miles on the bus routes in the district. The final Tier I allotment received by a school district is the sum of the adjusted allotments for each program category plus transportation costs. In order to participate in this system districts are required to levy a $\$ 0.86$ tax rate. The distribution of responsibility for funding Tier I is a function on local
property value. The local fund assignment, district's share of Tier I cost, is the amount of revenue that can be raised by $\$ 0.86$ tax rate. Districts with sufficient wealth to generate the entire allotment on their own receive no state aid in Tier I, and those districts that can not generate the funds have the difference made up by the state.

Tier II funds provide additional funds to school districts beyond the base funding level provided by Tier I. Unlike the $\$ 0.86$ tax that districts are required to levy, the Tier II tax rate of $\$ 0.64$ is discretionary. Districts can levy up to a $\$ 0.64$ tax rate, but it is not required by law. The Tier II tax rate produces resources in the form of a guaranteed yield. In 2003 this yield was that one penny of tax rate would generate $\$ 27.14$ per student in weighted average daily attendance from a combination of local and state sources. Districts with property wealth below the guaranteed wealth threshold generated local revenue, and the state provides additional funding in order to meet the guaranteed yield. When districts reach a certain level of wealth all Tier II funds are generated locally. In 2003 this number was $\$ 271,400$ per weighted average daily attendance.

Chapter 41 wealth sharing came about with the passing of Senate Bill 7 in 1993. Districts with wealth over \$305,000 weighted average daily attendance in 2003 are subject to the wealth reduction provisions brought forth in this legislation. In order to equalize their wealth, districts can consolidate with another school district, detach commercial property, purchase attendance credits from the state, educate non-resident students, or consolidate tax bases with another district. There are only two exceptions to the recapture, known as Robin Hood. Debt service tax revenue is not subject to recapture, only maintenance and operation tax revenue is. Also, a group of property-rich
districts can choose to have their equalized wealth level computed under a revenue hold harmless provision that allows a district to retain as much revenue per weighted average daily attendance as the district had available in 1999-2000. Only districts that did not offer all twelve grades in the 1999-2000 school year are eligible for this alternative calculation.

During the 1997-1998 school year, districts were able to receive funds from a guaranteed yield program for facilities. The funds can be used for construction, lease or purchase of instructional facilities under the instructional facilities allotment. In 20022003 the legislature set aside $\$ 1.09$ billion for this program. Districts in which voters have granted authority to sell bonds may apply for state assistance. The assistance is based on the amount needed to service the debt and is limited to the lesser of the annual debt service payment of $\$ 250$ per average daily attendance. School districts that participate in the instructional facilities allotment are guaranteed $\$ 35$ per penny per unweighted pupil of debt service tax. Districts with a wealth level above the Chapter 41 threshold are not eligible for the instructional facilities allotment. In 1999 the Texas legislature allocated funds for a program to help school districts pay for old debt. The existing debt allotment program guarantees school districts $\$ 35$ per penny per student up to a maximum of $\$ 0.29$ of debt service taxes to service bonds for which the district levied taxed in 1998-1999. The legislator also responded to the needs of fast growing districts by providing a $\$ 25$ million new instructional facilities allotment. The first year the school is open the district is entitled to an allotment of $\$ 250$ per student. The second
year a school is open the district is entitled to a $\$ 250$ allotment for each additional student at the school (Texas Center for Educational Research, 2001).

## House Bill 1

Overall, House Bill 1 provided for a reduction to 88.67 percent of current tax rates for 2006-2007, and an M\&O tax compression rate of 66.67 percent for the 20072008 school year. In addition to this, districts will be allowed $\$ 0.04$ of additional pennies without voter approval, and these monies are not subject to recapture. In 20082009, if the voters approve and the district had a $\$ 1.50 \mathrm{M} \& \mathrm{O}$ tax rate in 2005, districts would be allowed an additional $\$ 0.02$ of guaranteed yield. If a district was under the $\$ 1.50$ cap in 2005, the district could access the additional \$0.02 at a higher yield set by Austin Independent School District without a vote, again these additional funds are not subject to recapture.

Also approved by House Bill 1 was an $88^{\text {th }}$ percentile yield for guaranteed yield, equalized wealth level and basic allotments. The estimated new guaranteed yield will be $\$ 31.95$, the new equalized wealth level will be $\$ 319,500$ and the new basic allotment will be around $\$ 2,748$. In addition to these basic financial changes to satisfy the court's ruling the bill made changes in state and regional governance, accountability, school district efficiency, issues relating to educational employees and high-school success.

House Bill 1 does correct the constitutional violation providing significant additional state revenue to fund the public school system and enable school districts to
exercise meaningful discretion in setting local property tax rates. The bill also contains provisions to provide financial transparency to taxpayers and parents.

## How Can We Use the Money We Have to Accomplish Our Goals?

One of the main problems that school districts face in this arena is that they often implement new educational programs, but rarely use program evaluation to eliminate those that do not affect student learning (Picus, 2000). This is why program evaluation is important and why school leaders must understand the importance of such evaluation. Picus calls for an "attitude adjustment" from "We don't have enough money," to "How we can use the money we have to accomplish our goals" (2000). Districts usually start the budgeting process by looking at what it will cost next year to provide the same goods and services provided this year. If the funds are not there, the district is forced to make reductions. The reductions usually are made as far from the students as possible, and could be staff at the administration building. For example, districts may consolidate some positions at the administration building, and cut some assistant principals to part time. At first glance, this seems like a good idea to help with budget constraints, however, the effects of these changes will trickle down to the building principal, and then to the teacher which could cut into instructional time. Another common used budget-cutting approach is to cut all programs by a fixed percentage (Picus, 2000). The problem with this is that it may leave some programs unable to operate if they already had a small operating budget to begin with. Kramer calls this need blind equity (2002). In other words, the needs of the students are not taken into consideration when making
fiscal decisions. Rather than go to these measures, what Picus calls for is better program evaluation by looking at program impact on student achievement when making decisions about budget priorities.

Odden, in his analysis in 1997, argues that individual schools could find additional funds up to $\$ 250,000$ by a creative use of categorical funds, elimination of aides, reallocation of classroom resources, and possibly eliminating teaching positions. He goes on to argue that a more efficient use of staff, although increasing classroom sizes in some cases, would allow for better professional development, and result in improved student performance. Roughly, half of any district's employees are teachers, and their salaries represent about 60 percent of a district's budget. The real gains in student achievement are likely to occur in the classroom with the teachers, because they have direct contact with the students (Picus, 1998). Thus, districts need to look at how teachers use their time, how they are trained, and how they are compensated. Investing in sound professional development that helps current employees learn how to make new programs successful will make the district more efficient (Picus, 2000). Efficiently using new programs requires a commitment to helping employees through change and giving them support. If the research says that an older program is not working, leaders cannot just simply drop the old program and adopt a new program. They must provide adequate training to implement it correctly.

In addition to looking at teachers and their use, we must also look at the other peripheral positions in the schools. Schools today have a growing number of aides devoted to classrooms, and teacher-specialists that do not necessarily have a regular
classroom assignment (Picus, 2000). These positions often lower student to teacher ratio on reports such as the Academic Excellence Indicator System, which can be misleading when teachers and administrators report actual class sizes. In Tennessee, current research showed no better student outcomes of classes with or without instructional aides (Picus, 2000). The teacher-specialists are a luxury that may need to be examined. These are usually the most gifted and talented teachers in the district, and to take them out of the classroom seems to fly in the face of improving student performance (Picus, 2000). Often times without new funds the increased number of specialists drives up the student-teacher ratio in the other classes. These issues of specialists are often times very political and deal with sensitive issues such as special education, Section 504, and gifted and talented education, but if we are to look at efficiency and student performance, this may be a good place to start.

An example was given earlier about the reduction of administrative staff at the administration building, which is a popular solution at in some school districts. The key before surrendering to this notion is to examine what each position does for students (Picus 2000). Specifically, you can look at how administrative staff are used to evaluate programs, ensure adherence to law through correct paperwork, and manage the overall operation of the school district. The question to ask is, "If these people are not going to provide this service who is going to?" Would it affect school site administrators and teachers? Will these decisions put the burden of more administrative tasks on principals, and further remove them from the goal of being an instructional leader? These are all
complex questions, but as leaders, we must examine these issues in order to run a more cost-effective school district.

Besides the pressing issues surrounding staff, many nonstaff resources also must be considered and looked at in terms of cost-effectiveness. These include technology, transportation, maintenance and operations, risk management, foodservices, purchasing and special programs. With technology, budgeting can be very difficult. It is not that school districts are not capable, but they have little experience in budgeting for things that have a life span of three to five years (Picus, 2000). Relying solely on one-time grants and ignoring technology in the budget can lead to poor technology equipment and instruction. Computers are not a one-time expenditure and they cannot be thought of that way. The district must have a replacement plan in the budget to keep the equipment up to date. Repair and maintenance of these machines is another issue. Having a regular replacement plan can help with this, but most computer technicians in school districts are overwhelmed with repair requests. Unless teachers are confident that the technology will work, they will more than likely not have confidence to implement it into their curriculum (Picus, 2000). Budgeting for the maintenance of technology is difficult because the needs for repair are random. The staffing of a repair team can be difficult during times of financial needs. In addition to this, it is difficult for school districts to have competitive pay when compared to corporations. Outsourcing these services on a contract basis may be the most cost-effective way to handle this in school districts (Picus, 2000). Staffing is also an issue with technology. Most schools have computer resource personnel in place, but Picus believes that one or two consultants might be able
to help teachers implement technology, and it would also leave more advanced technological teachers in the classrooms (2000).

Transportation costs vary greatly in school districts. In Texas, rural school districts tend to spend more on transportation sometimes just due to the distance from home to school. More urban areas deal with population density and student safety to and from school. Buses much like technology require maintenance and a regular replacement plan that can save the district money in the long term. Maintenance and operations also is a big-ticket budget item. Hentschke suggests giving control of this to the actual school site, so that any savings generated go to the school (1988). Usually this will not work because of inequities in school facilities. Some schools may be older and less efficient. Generally, this is the same for maintenance, where the newer buildings cost less to maintain. Once again, the leaders must evaluate individual campuses to best utilize the money. Health insurance is another item on the rise. School officials are torn in this area between having greater risk pools that drive costs down, however, this leads to a less individualized product that may or may not meet the needs of employees. It is imperative that benefits personnel look carefully at these things so that funds used for such programs do not take away from direct instruction.

Food services are largely outsourced to companies or people that have a greater knowledge of these types of programs. However, this is a large budget item and leaders need to think carefully about the cost-effectiveness of maintaining their own food service versus outsourcing. For many years, schools have had large purchasing operations for supplies (Picus, 1997). They would buy in bulk and distribute to the
various schools at substantial cost savings. Picus believes that the decentralization of such practices could be a cost saver for districts because of today's market for office supplies (1997). He advocates a system where schools are given a credit card for an office supply company that they can order directly from. The system would be easy to monitor and maintain, and it would eliminate district inventory storage and distribution. Lastly, in the area of non-staff issues are special needs students. There are laws surrounding the funding of these students services, however, the district must not be blind in allocation of funds. They must evaluate programs and ensure that money is being spent optimally for each student, based on their individualized education plan.

With this information about cost-effectiveness and efficiency, what are the steps that school districts must take next? Over the past ten years, analysts of educational policy have pinpointed four different approaches to achieve educational adequacy (Picus, 2001). First, we must determine the economic cost of various educational functions. The key question here is: How much money is needed per pupil to produce a given level of student performance? This approach relies on some complicated statistical analysis that takes into consideration differences in students and district characteristics when compared to other districts (Picus, 2001). Economists favor this type of method to determine effectiveness, but it is complicated and hard to understand for some policy makers. In addition to this, it usually yields high funding levels and school districts have many financial and political roadblocks to clear before this becomes a viable option (Picus, 2001). Another way to analyze spending is to link it to performance benchmarks. The method is much easier to explain to policy makers,
however reaching agreement on standards when adding in the financial piece could be difficult (Picus, 2001). The question is what to do when districts do not meet the performance standards set by the policy makers? Most states are looking at the cost of specific strategies (Picus, 2001).

Asking professional educators is another approach to measuring costeffectiveness of educational programs. The model states or districts create teams of education experts that identify best practices in schools based on staff and resources needed (Picus, 2001). The states and districts that use this approach are able to identify effective instructional strategies, link them to programs, and evaluate programs that are not improving student performance and get rid of them. One drawback to this is that it relies mostly on education professionals rather than research (Picus, 2001). The approach that does focus more on research is where states take research findings based on high-performance comprehensive school designs, identifies the strategies used, and then determines the cost for each of the strategies (Picus, 2001). The state then determines the adequate spending level based on the research for each school or district. Because each school design is research based, it establishes a direct link between student performance and funding (Picus, 2001). This allows districts to decide on funding levels based on goals, and gives states the ability to measure efficiency. A superintendent would do good to take a hybrid of the last four approaches in order to increase district cost-effectiveness.

With schools using public funds that must be approved by the school board, districts are typically run top down when it comes to finance. The system has its
benefits, but it sometimes can stifle the creativity of spending. With this system in place, most districts are still modeled on an allocation mechanism to fund individual schools, usually on a per pupil basis (Picus, 2000). These mechanisms reduce flexibility, and give the individual schools little discretion. This system gives principals little reason to create long-term financial plans. Considering this, one could see what a difficult task it will be to change spending patterns of schools in the United States. We must change our schools to more of a cost-effective model to ensure the education that all students deserve, and are entitled to, in this country.

## Efficiency Measurement Techniques in Education

There are three major approaches to the study of efficiency with regard to education in public schools. A review of past research shows that studies can be grouped into production functions, cost-effectiveness or cost-benefit studies (Hickrod, 1989). These studies use principles of economics that were founded by profit-seeking organizations that derive much of their revenues from consumer purchases. School districts derive most of their funding from taxing authorities. Thus, the economic reality faced by school districts differs greatly from their private counterparts. Despite these noted differences educational researchers have been committed to improving schools through the use of traditional economic analysis with sometimes varied results (Rolle, 2003).

The production function approach is probably the oldest approach in school finance to measuring educational efficiency (Hickrod, 1989). This approach selects an
educational output and compares it to an independent variable. There are usually two independent variables, one that is non-controllable by administration and one that the administration has some control over. Often times the non-controllable factors have something to do with ethnicity or socio-economic status. This division in variables is important, the same principle is explained later when discussing the modified quadriform.

Nevertheless, the production function approach when applied to education has been proven to have some limitations. Sometimes these divisions in variables are not straightforward. For example, an important part of these investigations is to find out what effect dollars have on output. An example of this would be attempting to control for the variables that educators have little control over while trying to find the effect on educational spending. This question becomes important in the literature especially when dealing with constitutional challenges the school finance system. Unfortunately spending is so interlocked with socio-economic status variables that some researchers like Hickrod believe that there appears to be no direct way to ever answer the policy relevant question, what is the effect of dollars spent in education (1989).

If there were many examples of school districts populated by high socioeconomic families that had low expenditures and examples of school districts populated by low socio-economic families with high expenditures then it would be easier to answer the question of what the effect of expenditures has on educational outputs, such as test scores, using traditional research designs. Unfortunately that is not the case in most districts in the United States. In most wealthy districts around the country there is above
average spending and most poor districts continue to have low expenditures per student. This continues to happen even with all of the litigation that has taken place to attempt to alleviate this situation over the past thirty years.

In addition to the above limitations with production function research, many of the studies have been narrowly modeled. In education finance, most things are both curvilinear and interactive, but in the body of literature it is difficult to find studies that have been researched to the point where the true curvilinear relations of the variables being used have been found (Hickrod, 1989). Most researchers assume a linear trajectory without exploring whether or not curves are there. Also, educational variables are often interactive. Occasionally researchers will discuss one interaction, but fail to go deeper and look at other interactions. The literature shows many studies that are linear and additive and not curvilinear and multiplicative (Hickrod, 1989). In early production function research studies there seemed to be a tendency to look for a function that would explain all learning for all kinds of students. This notion was soon dropped and researchers began to select target populations of students, and then research began to be even more specific when variables included schools to individual programs and in some cases individual students.

The production function approach could be called the input-output approach to school finance efficiency measurement. Although this model has some limitations it would not be appropriate to abandon it. The reason for the existence of educational administration itself rests on the assumption that some sort of production functions does exist in education (Monk \& Underwood, 1990). Administrators are trained to examine
the effects that expenditures have on educational outcomes, and over the past three decades the production function techniques that have been used are even more sophisticated than the earlier studies completed.

The cost-effectiveness approach may be a better tool for school administrators when trying to determine school efficiency. In these studies the researcher may construct a production function equation to predict test scores, and then set up a cost equation to predict costs and then compare the cost coefficients with the production coefficients. Researchers also sometimes can run more normal school effectiveness studies by determining which educational treatment is more effective that other educational treatments with controlling for variables proceeded by costing-out the price of each educational treatment. This is a valid approach, but there are few examples in the body of literature of this specific technique.

Hickrod believes that more of these studies haven't been completed because there is no clear distinction in the research between educational effectiveness and educational efficiency (1989). The outcome of many cost-effectiveness studies shows that one treatment may be more professionally effective, but another may be more economically efficient. In other words there may be a technique that produces better results for children, but it is often times more expensive. This dilemma is not unique to the education profession, but in education we are using taxpayers money and we have to search for not only the most professionally efficient way to deliver instruction but also the most economically efficient way to deliver it.

In general cost-effectiveness studies seem to have very narrowly defined outputs. In order to best look at efficiency we need to develop measures that give us a more global output, taking into consideration many factors. Often times in education there is a linear relationship between cost and effectiveness. In these cases cost-effectiveness studies do not work. A positive aspect of these cost-effectiveness studies is that in terms of accountability they have the ability to answer global questions that the community may have.

Cost-benefit studies are based of the rate of return economic concept. They tend to be more focused on the economics of education rather than actual school finance issues. These studies do serve a purpose and often times they are used by legislators at the state and national level to defend the allocations of public funds in some way. This type of research is often times performed by professional economists not necessarily interested in improving the educational system for children. It is noteworthy that if the United States education system was centralized like many countries this approach may have some merit. However, the schools of the United States are governed by fifty states with thousands of independent school districts. Presuming that we could actually figure a rate of return on our investment in education nationally we still do not have a central source for funding. This approach becomes even more problematic at the local level.

## Future Directions for Educational Efficiency Research

Anthony Rolle and Eric Houck from the Peabody College of Vanderbilt
University address the future of education finance and economics comprehensively in an article written in 2004,
$\mathrm{K}-12$ education finance and economics issues confront policymakers, practitioners, and researcher with a host of confounding, practical and theoretical questions that do not hold simple solutions. Nationally, implementation of the federal No Child Left Behind Act of 2001 challenges parents, educators, and community members to reexamine perspectives, policies, practices, and objectives regarding our commitment to public education. State governors and legislators face the effects of a slow growth economy, and resultant shortage of state revenues, and citizen sponsored litigation regarding inequitable or inadequate levels of school funding. Concomitantly, local education agencies must respond to these policy and revenue changes by increasing taxes or issuing long-term bonds to finance short-term debt. And, because finance and economic issues are the foundations of public policy, educational reform issues ultimately become education finance and economic policy concerns. As such researchers in the field of education finance must be responsive enough to address a myriad of policy issues and yet be disciplined enough to provide practitioners and policymakers with solid reference points form which to address important theoretical principles (p.1)

As we begin to confront these issues as researchers two paradigms for examining educational productivity and efficiency will continue to be prominent. The first are normative economic frameworks that focus on improving measurements of financial inputs, refining and redesigning statistical models that estimate educational processes, and improve student productivity bases on improved measures of input-service. The second are public choice economic frameworks that focus on economic, organizational and political incentives influencing the behavior of groups and individuals within the public education system (Rolle, 2004). Based on these nonmarket-based incentives,
researchers can attempt to explain and predict educational cost and organizational outputs generated by the incentives mentioned above.

Normative economic approaches are based on the assumption that efficiency in public schools is concerned with how much knowledge or education is delivered to the students at what cost. Typically being efficient means one of two things, either we are increasing outputs using the same amount of dollars or we are maintaining our output while lowering expenditures. However this is not as straightforward as it may seem. These studies are complicated by issues like having accurate input and output data to selecting proper mathematical forms. Recent attempts at normative economic efficiency studies have been focused on five major areas, understanding the relationship between human resources allocation, individual preferences and organizational incentives, developing systematic data collection at all levels, and having accurate dissemination methods and improving statistical relations between purchased educational inputs and student learning outcomes. In addition to these the focus has been on determining the influence of nonpurchased inputs on student learning and creating incentives that transfer organizational and individual productivity efforts to help organizational outcomes (Rolle, 2004).

Even with these efforts to improve normative economic research dating back to the early 1990's Rolle calls for even more conceptual ideas to be explored in the future including expanding the traditional two-stage production function relation into multistage models that more accurately reflect educational processes, analyzing individual subgroups using expanded statistical models, and examining the hierarchical and
nonlinear statistical models and relations that more accurately represent the educational process for all students and subgroups (2004). Lastly he believes that we need to investigate the effects of time on statistical models again trying to represent the educational process for all students and subgroups and exploring theoretical and statistical relations that accurately represent all students using multiple output regression analyses.

Public choice economic frameworks are conducted in a sociopolitical environment. In these types of studies the researcher must take into account nonmarket influences on educational productivity. Rolle calls for the use of at least three nontraditional forms with in these public-choice paradigms, data envelopment analysis, stochastic frontier analysis and modified quadriform analysis (2004).

Data envelopment analysis has been utilized by researchers for about the past twenty-five years and it is used commonly to evaluate the level of efficiency in an organization relative to a best performing organization in the sample investigated by economic and public policy researchers. The focal point of this analysis is the determination of the best performing organization statistically. Schools are then compared and a production function frontier is defined. This production function frontier defines the maximum combination of outputs that can be produced for combinations of inputs between the groups of schools. Any school or organization which falls below the production function frontier is considered inefficient and an efficiency ratio can be calculated that lets us know how far the school or organization is from the frontier line.

Stochastic frontier analysis is similar to data envelopment. It to uses an efficiency frontier, and compares it to a data to measure relative efficiency. However, stochastic frontier analysis brings in more technical statistical techniques in its measures. Because of these techniques the cost efficiency frontier in this method is represented by a curve. Any organization that falls above the cost curve in considered inefficient and can the estimated level of inefficiency can be measured by using an efficiency ratio. The ratio defines the extent to which costs are over the estimated level of efficiency. In addition to calculating an overall measure of efficiency, stochastic frontier analysis can allow for the distinct measurements of allocative and technical efficiency depending on its functional form and availability of data (Barrow, 1991). Modified quadriform analysis which is the foundation for this dissertation was the final nontraditional type of research that Rolle discussed and it is outlined in the next section of this review of related literature.

## Modified Quadriform Analyses

The relationship between school achievement and school district spending is known as educational production function research. Regression analysis can be used to relate spending and resources to student achievement while controlling for student demographics (Wenglinsky, 1998). This type of research has led to the development of systematic techniques which can determine efficiency. Modified quadriform analyses provide for an operational definition of efficiency that can be used to measure the complex relationship between resources and student achievement (Anderson, 1996).

The quadriform was originally used as an abstract tool devised to allow twodimensional relations to be viewed graphically (Hickrod, 1989). Typically student outcomes are measured along the vertical axis and expenditures are measured along the horizontal axis. Unlike average-marginal cost analyses, the modified quadriform examines expenditure and output variables relative to other school districts in the sample. School districts are grouped using these relations into four quadrants, efficient, effective, ineffective and inefficient. Efficient public schools are those that have high outcomes and low expenditures. Effective schools have high outcomes with high expenditures. Ineffective schools produce low outcomes paired with low expenditures, and inefficient schools have low outcomes with high expenditures. Anderson later used the modified quadriform to analyze expenditure-output relations quantitatively and to measure different levels of economic efficiency among school districts (1996).

In theory this model is constructed by using two separate multiple regression to develop the axis of the quadriform, and the regression residuals are used to determine with of the four quadriform categories a school district is assigned (Rolle, 2004). The second part of the analysis comes when the researcher uses discriminant analysis to identify alterable characteristics that distinguish efficient school districts from inefficient school districts.

## CHAPTER III

## PROCEDURES AND METHODOLOGY

The purpose of the following chapter is to detail the research methodology and procedures utilized in this study. To that end, this chapter will begin with a brief review of Modified Quadriform Analyses methodology from Chapter II followed by a discussion of the population, procedures, instrumentation and data analysis.

## Research Design

The relationship between school achievement and school district spending is known as educational production function research. Regression analysis can be used to relate spending and resources to student achievement while controlling for student demographics (Wenglinsky, 1998). This type of research has led to the development of systematic techniques which can determine efficiency. Modified quadriform analyses provide for an operational definition of efficiency that can be used to measure the complex relationship between resources and student achievement (Anderson, 1996).

The quadriform was originally used as an abstract tool devised to allow twodimensional relations to be viewed graphically (Hickrod, 1989). Typically student outcomes are measured along the vertical axis and expenditures are measured along the horizontal axis. Unlike average-marginal cost analyses, the modified quadriform examines expenditure and output variables relative to other school districts in the sample. School districts are grouped using these relations into four quadrants, efficient, effective, ineffective and inefficient. Efficient public schools are those that have high
outcomes and low expenditures. Effective schools have high outcomes with high expenditures. Ineffective schools produce low outcomes paired with low expenditures, and inefficient schools have low outcomes with high expenditures. Anderson later used the modified quadriform to analyze expenditure-output relations quantitatively and to measure different levels of economic efficiency among school districts (1996).

In theory this model is constructed by using two separate multiple regression to develop the axis of the quadriform, and the regression residuals are used to determine with of the four quadriform categories a school district is assigned (Rolle, 2004). The second part of the analysis comes when the researcher uses discriminant analysis to identify alterable characteristics that distinguish efficient school districts from inefficient school districts.

## Population

The population of this study will be all school districts in the state of Texas. Data on these districts will be retrieved from the Public Education Information Management System (PEIMS). The Texas Education Agency compiles data for campuses and school districts on an annual basis. This information includes student performance data as well as district characteristics. Data for this study is from the 2003 - 2004 school year.

## Instrumentation

The modified quadriform model will be the analytical technique employed to measure the efficiency of schools. An important attribute of this model is that it allows the researcher to take into account alterable and unalterable characteristics and distinguish between the two. The modified quadriform was developed by Anderson (1996). He based his model on the quadriform analysis of efficiency developed by Hickrod (1989). In the corporate world, economists would say that efficiency is accomplished by maximizing the input-output ratio. Achieving the highest output with the least amount of input would be the goal. However, in education, measuring efficiency is not that defined. In education, no precise formulas exist on which to base increased productivity in terms of resource allocation (Anderson, 1996). For this study, efficient districts will be defined as districts that earn higher than expected output scores (e.g., test scores, graduation rates, dropout rates) while having lower than expected expenditures per pupil. The modified quadriform procedure was developed to provide a method to analyze the complex relationships between educational inputs and educational outputs.

## Procedures

There are two stages to the modified quadriform model of analysis. In stage one, the relationship between input and output will be evaluated by two separate linear regressions. The input regression will be total per pupil expenditure for the district regressed against a group of unalterable school district characteristics. Thus the
dependent variable will be total per pupil expenditure and the independent variables will be the characteristics unalterable by school personnel. The unalterable characteristics that will be included are total district enrollment, percentage of economically disadvantaged students, percentage of special education students, percentage of minority students, and local tax base value per pupil. For the output regression, student achievement will be regressed against the same set of unalterable school district characteristics. Again, student achievement will be the dependent variable, and the unalterable characteristics will serve as the independent variables. The measures of student achievement to be used will be the percentage of all students passing the math and reading Texas Assessments of Knowledge and Skills, graduation completion rate, percentage of students taking the Scholastic Aptitude Test and the ACT Test, and the mean scores on the Scholastic Aptitude Test and ACT Test. In stage two, a discriminant analysis is conducted to recognize the alterable school characteristics that distinguish relatively efficient schools. Alterable characteristics would include percentage of instructional expenditures in Bilingual/ESL, percentage of instructional expenditures in compensatory education, percentage of instructional expenditures in regular education, percentage of instructional expenditures in special education, teacher average salary, teacher average years of experience, student to teacher ratio, percentage of expenditures in central administration, percentage of expenditures in instructional leadership, percentage of expenditures in campus leadership, percentage of expenditures in gifted and talented and teacher turnover rate.

## Data Analysis

Based on the modified quadriform model developed by Anderson (1996) the regression equations will be in the following form:

$$
\mathrm{Z}_{\mathrm{i}}=b_{0}+b_{1} W_{1 \mathrm{i}}+b_{2} W_{2 \mathrm{i}}
$$

Z will be the expected value for each school district, either total per pupil expenditure or student achievement. The $W$ variables are the unalterable values for each school district. Once the regressions have been calculated, residual values can be found for each school district. The residuals will be the difference between the actual school district expenditure or outcome values and the predicted values from the two regressions. Then Anderson's model (1996) will be followed by placing each of the districts into one of four quadrants based on the two regressions. Quadrant one will be those districts that have high outcomes with low expenditures. Quadrant two will be for those districts with low outcomes and high expenditures, Quadrant three will be districts with high outcomes and high expenditures, and quadrant four will be for the districts with low outcomes and low expenditures.

In stage two, the researcher will use discriminant analyses to identify alterable characteristics that are found in relatively efficient districts. This is significant in two ways. One, the inputs and outputs are separated into two different regressions. This allows the unalterable characteristics to be compared to total per pupil expenditure and student achievement separately. Second, we can analyze alterable school characteristics that can be changed, because unalterable characteristics are separated out. This will allow decision makers to look at the alterable characteristics that impact school district
efficiency and make changes based on the findings of the study. The quadriform eliminates the variance due to the unalterable characteristics, which in turn allows for a more stable analysis of the alterable characteristics (Anderson, 1996).

## CHAPTER IV

## ANALYSIS OF DATA

This study was designed to identify school districts in the State of Texas that would be considered efficient, low expenditures and high output, using the modified quadriform model. This was done by conducting seven separate multiple regressions. One with the independent variable being expenditures per pupil regressed against total district enrollment, percentage of economically disadvantaged students, percentage of special education students, percentage of minority students, and local tax base value per pupil, and six with different outputs for dependent variables using those same unalterable characteristics for independent variables. Once these efficient districts were identified a discriminant analysis was done for each of the six outputs as dependent variables using percentage of instructional expenditures in Bilingual/ESL, percentage of instructional expenditures in compensatory education, percentage of instructional expenditures in regular education, percentage of instructional expenditures in special education, teacher average salary, teacher average years of experience, student to teacher ratio, percentage of expenditures in central administration, percentage of expenditures in instructional leadership, percentage of expenditures in campus leadership, percentage of expenditures in gifted and talented and teacher turnover rate as independent variables.

The analyses of the data from this study are presented in this chapter. This chapter will begin with an explanation of each multiple regression individually, and then each discriminant analysis will be analyzed. Finally, each of the research questions will be addressed.

1. What school districts in Texas would be considered efficient using the modified quadriform model?
2. What alterable characteristic(s) of school districts has the biggest impact on school efficiency?
3. What alterable characteristic(s) of school districts has the least impact on school efficiency?

## Total Expenditures per Pupil Regression

A multiple regression was conducted to determine residuals for each school district in Texas for total expenditures per pupil. These residuals were calculated by regressing the independent variables of total number of students, percentage of economically disadvantaged students, percentage of special education students, percentage of African-American students, percentage of Asian students, percentage of Hispanic students, percentage of Native American students, and standardized local tax base per pupil against the dependent variable of total expenditures per pupil. Regression results indicate an $R^{2}=.457, R_{\text {adj }}^{2}=.452, F(8,1028)=108.025, p<.001$. (See Table 2)


|  |  | Adj. | Std. Error | R |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | R | R | of the | Square |  |  |  | Sig. F | Durbin- |
| R | Square | Square | Estimate | Change | F Change | df1 | df2 | Change | Watson |
| .676 | .457 | .452 | 1965.586 | .457 | 108.025 | 8 | 1028 | .000 | 2.026 |

## All Grades Tested Math Regression

A multiple regression was conducted to determine residuals for each school district in Texas for T.A.K.S. math scores for all grades tested. These residuals were calculated by regressing the independent variables of total number of students, percentage of economically disadvantaged students, percentage of special education students, percentage of African-American students, percentage of Asian students, percentage of Hispanic students, percentage of Native American students, and standardized local tax base per pupil against the dependent variable of district T.A.K.S. math scores for all grades. Regression results indicate an $R^{2}=.397, R^{2}{ }_{\text {adj }}=.392, F(8$, $1025)=84.193, p<.001 .($ See Table 3)


|  |  | Adj. | Std. Error |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | R | R | of the | R Square | F |  |  | Sig. F | Durbin- |
| R | Square | Square | Estimate | Change | Change | df1 | df2 | Change | Watson |
| .630 | .397 | .392 | 7.68774 | .397 | 84.193 | 8 | 1025 | .000 | 2.050 |

## All Grades Tested Reading Regression

A multiple regression was conducted to determine residuals for each school district in Texas for T.A.K.S. reading scores for all grades tested. These residuals were calculated by regressing the independent variables of total number of students, percentage of economically disadvantaged students, percentage of special education students, percentage of African-American students, percentage of Asian students, percentage of Hispanic students, percentage of Native American students, and standardized local tax base per pupil against the dependent variable of district T.A.K.S.
reading scores for all grades. Regression results indicate an $R^{2}=.466, R_{\text {adj }}^{2}=.462, F(8$, $1019)=111.214, p<.001 .($ See Table 4)


|  |  | Adj. | Std. Error |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | R | R | of the | R Square | F |  |  | Sig. F | Durbin- |
| R | Square | Square | Estimate | Change | Change | df1 | df2 | Change | Watson |
| .683 | .466 | .462 | 4.63482 | .466 | 111.214 | 8 | 1019 | .000 | 2.115 |

## District Completion Rate Without G.E.D. Regression

A multiple regression was conducted to determine residuals for each school district in Texas for district completion rate without G.E.D. These residuals were calculated by regressing the independent variables of total number of students, percentage of economically disadvantaged students, percentage of special education students, percentage of African-American students, percentage of Asian students, percentage of Hispanic students, percentage of Native American students, and standardized local tax base per pupil against the dependent variable district completion rate without G.E.D. Regression results indicate an $R^{2}=.055, R_{\text {adj }}^{2}=.047, F(8,958)=$ $7.009, p<.001$. (See Table 5)

Table 5. - Model Summary for Dependent Variable District Completion Rate without G.E.D.

|  |  | Adj. |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R |  |  |  |  |  |  |  |  |  |
| R | R Square | Std. Error |  |  |  |  |  |  |  |
| of the | R | Square | F |  |  |  |  |  |  |
| Estimate | Change | Change | df1 | df2 | Change | Curbin- | Watson |  |  |
| .235 | .055 | .047 | 5.10533 | .055 | 7.009 | 8 | 958 | .000 | 1.963 |

## Mean SAT Score Regression

A multiple regression was conducted to determine residuals for each school district in Texas for district mean SAT score. These residuals were calculated by regressing the independent variables of total number of students, percentage of economically disadvantaged students, percentage of special education students, percentage of African-American students, percentage of Asian students, percentage of Hispanic students, percentage of Native American students, and standardized local tax base per pupil against the dependent variable district mean SAT score. Regression results indicate an $R^{2}=.317, R_{\text {adj }}^{2}=.310, F(8,699)=40.616, p<.001$. (See Table 6)

Table 6. - Model Summary for Dependent District Mean SAT Score

| R | R Square | $\begin{gathered} \hline \hline \text { Adj. } \\ \text { R } \\ \text { Square } \end{gathered}$ | Std. Error of the Estimate | R Square Change | F Change | df1 | df2 | Sig. F <br> Change | Durbin- <br> Watson |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| . 563 | . 317 | . 310 | 65.28461 | . 317 | 40.616 | 8 | 699 | . 000 | 2.028 |

## Mean ACT Score Regression

A multiple regression was conducted to determine residuals for each school district in Texas for district mean ACT score. These residuals were calculated by regressing the independent variables of total number of students, percentage of economically disadvantaged students, percentage of special education students, percentage of African-American students, percentage of Asian students, percentage of Hispanic students, percentage of Native American students, and standardized local tax
base per pupil against the dependent variable district mean ACT score. Regression results indicate an $R^{2}=.380, R_{\text {adj }}^{2}=.374, F(8,872)=66.823, p<.001$. (See Table 7)

Table 7. - Model Summary for Dependent District Mean ACT Score

|  |  | Adj. | Std. Error |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R | of the | R Square | F |  |  | Sig. F | Durbin- |  |  |
| R Square | Square | Estimate | Change | Change | df1 | df2 | Change | Watson |  |
| .616 | .380 | .374 | 1.34147 | .380 | 66.823 | 8 | 872 | .000 | 2.066 |

## Total Students Taking SAT and ACT Regression

A multiple regression was conducted to determine residuals for each school district in Texas for total students taking SAT and ACT. These residuals were calculated by regressing the independent variables of total number of students, percentage of economically disadvantaged students, percentage of special education students, percentage of African-American students, percentage of Asian students, percentage of Hispanic students, percentage of Native American students, and standardized local tax base per pupil against the dependent variable total students taking SAT and ACT.

Regression results indicate an $R^{2}=.078, R^{2}{ }_{\text {adj }}=.070, F(8,936)=9.865, p<.001$. (See Table 8)

Table 8. - Model Summary for Total Students Taking SAT and ACT

| R | R Square | Adj. R <br> Square | Std. Error of the Estimate | R Square Change | $\begin{gathered} \text { F } \\ \text { Change } \end{gathered}$ | df1 | df2 | Sig. F Change | Durbin- <br> Watson |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| . 279 | . 078 | . 070 | 16.07563 | . 078 | 9.865 | 8 | 936 | . 000 | 2.082 |

## Discriminant Analysis All Grades Tested Math

A discriminant analysis was conducted to determine whether twelve variables; percentage of expenditures on bilingual / E.S.L., percentage of expenditures on compensatory education, percentage of expenditures on regular education, percentage of expenditures on special education, average teacher salary, average teacher experience, number of students per teacher, percentage of expenditures on central administration, percentage of expenditures on instructional leadership, percentage of expenditures on campus leadership, percentage of expenditures on gifted and talented and teacher turnover rate could predict T.A.K.S. Math scores for all grades tested for the 332 school districts considered efficient when comparing total operating expenditures per pupil and T.A.K.S. math scores. $\Lambda=.941, \chi^{2}(12, N=332)=62.616, p<.001$. (See Table 9) The tests of Equality of Group Means can be found in Appendix G.

Table 9. - Wilks’ Lambda for All Grades Tested Math 2004

| Test of Function(s) | Wilks' Lambda | Chi-square | df | Sig. |
| :--- | :---: | :---: | :---: | :---: |
| 1 | .941 | 62.616 | 12 | .000 |

Standardized function coefficients and correlation coefficients (see Table 10) revealed that the variables of number of student's per teacher and teachers average years of experience were most associated with the function of T.A.K.S. math scores for all grades. Expenditures by program in regular and special education along with bilingual education had the least impact on T.A.K.S. math scores for all grades.

Table 10. - All Grades Tested Math Correlations and Standardized Function Coefficients

|  | Correlation Coefficients with Discriminant Function | Standardized Function Coefficients |
| :---: | :---: | :---: |
| \% Expenditures Bilingual /E.S.L. | . 008 | -. 102 |
| \% Expenditures Compensatory Education | . 213 | . 474 |
| \% Expenditures Regular Education | -. 100 | . 139 |
| \% Expenditures Special Education | -. 018 | -. 002 |
| Average Teacher Salary | . 136 | -. 307 |
| Average Teacher Experience | . 351 | . 498 |
| Number of Students per Teacher | . 661 | . 921 |
| \% Expenditures Central Administration | -. 397 | -. 007 |
| \% Expenditures Instructional Leadership | . 252 | -. 027 |
| \% Expenditures Campus Leadership | . 267 | . 279 |
| \% Expenditures Gifted and Talented | . 136 | -. 012 |
| Teacher Turnover Rate | -. 399 | -. 261 |

## Discriminant Analysis All Grades Tested Reading

A discriminant analysis was conducted to determine whether twelve variables; percentage of expenditures on bilingual / E.S.L., percentage of expenditures on compensatory education, percentage of expenditures on regular education, percentage of expenditures on special education, average teacher salary, average teacher experience, number of students per teacher, percentage of expenditures on central administration,
percentage of expenditures on instructional leadership, percentage of expenditures on campus leadership, percentage of expenditures on gifted and talented and teacher turnover rate could predict T.A.K.S. Reading scores for all grades tested for the 326 school districts considered efficient when comparing total operating expenditures per pupil and T.A.K.S. math scores. $\Lambda=.936, \chi^{2}(12, N=326)=67.845, p<.001$. (See Table 11) The tests of Equality of Group Means can be found in Appendix J.

Table 11. - Wilks' Lambda for All Grades Tested Reading 2004

| Test of Function(s) | Wilks' Lambda | Chi-square | df | Sig. |
| :--- | :---: | :---: | :---: | :---: |
| 1 | .936 | 67.845 | 12 | .000 |

Standardized function coefficients and correlation coefficients (see Table 12) revealed that the variables of number of student's per teacher and teacher's average years of experience were most associated with the function of T.A.K.S. reading scores for all grades. Expenditures in regular education, bilingual education and compensatory education were least associated with T.A.K.S. reading scores for all grades.

Table 12. - All Grades Tested Reading Correlations and Standardized Function Coefficients

|  | Correlation Coefficients with <br> Discriminant Function | Standardized Function <br> Coefficients |
| :--- | :---: | :---: |
| \% Expenditures Bilingual <br> /E.S.L. | .024 | -.010 |
| \% Expenditures Compensatory <br> Education | .036 | .295 |
| \% Expenditures Regular <br> Education | .057 | .179 |

Table 12. Continued

|  | Correlation Coefficients with <br> Discriminant Function | Standardized Function <br> Coefficients |
| :--- | :--- | :--- |
| \% Expenditures Special <br> Education | -.102 | -.102 |
| Average Teacher Salary | .164 | -.385 |
| Average Teacher Experience | .433 | .572 |
| Number of Students per <br> Teacher <br> \% Expenditures Central <br> Administration <br> \% Expenditures Instructional <br> Leadership <br> \% Expenditures Campus <br> Leadership <br> \% Expenditures Gifted and <br> Talented | .648 | .819 |
| Teacher Turnover Rate | . .452 | -.134 |

## Discriminant Analysis District Completion Rate without G.E.D.

A discriminant analysis was conducted to determine whether twelve variables; percentage of expenditures on bilingual / E.S.L., percentage of expenditures on compensatory education, percentage of expenditures on regular education, percentage of expenditures on special education, average teacher salary, average teacher experience, number of students per teacher, percentage of expenditures on central administration, percentage of expenditures on instructional leadership, percentage of expenditures on campus leadership, percentage of expenditures on gifted and talented and teacher turnover rate could predict District Completion Rate for the 312 school districts
considered efficient when comparing total operating expenditures per pupil and District Completion Rate $\Lambda=.962, \chi^{2}(12, N=312)=38.615, p<.001$. (See Table 13) The tests of Equality of Group Means can be found in Appendix M.

Table 13. - Wilks' Lambda for District Completion Rate without G.E.D. 2003

| Test of Function(s) | Wilks' Lambda | Chi-square | df | Sig. |
| :--- | :---: | :---: | :---: | :---: |
| 1 | .962 | 38.615 | 12 | .000 |

Standardized function coefficients and correlation coefficients (see Table 14) revealed that the variables of number of student's per teacher and teacher's average years of experience were most associated with the function of District Completion Rate. Expenditures on compensatory education, regular education and special education had the least association with District Completion Rate.

Table 14. - District Completion Rate without G.E.D. 2003 Correlations and Standardized Function Coefficients

| Coefficients | Correlation Coefficients with <br> Discriminant Function | Standardized Function <br> Coefficients |
| :--- | :---: | :---: |
| \% Expenditures Bilingual <br> /E.S.L. <br> \% Expenditures Compensatory <br> Education | .110 | .003 |
| \% Expenditures Regular <br> Education <br> \% Expenditures Special <br> Education | .064 | .167 |
| Average Teacher Salary | -.048 | -.012 |
| Average Teacher Experience | .039 | -.180 |

Table 14. Continued

|  | Correlation Coefficients with <br> Discriminant Function | Standardized Function <br> Coefficients |
| :--- | :--- | :--- |
| Number of Students per <br> Teacher <br> \% Expenditures Central | .671 | .688 |
| Administration <br> \% Expenditures Instructional <br> Leadership | -.649 | -.424 |
| \% Expenditures Campus <br> Leadership <br> \% Expenditures Gifted and <br> Talented | .248 | -.067 |
| Teacher Turnover Rate | .211 | .218 |

## Discriminant Analysis Mean SAT Score

A discriminant analysis was conducted to determine whether twelve variables; percentage of expenditures on bilingual / E.S.L., percentage of expenditures on compensatory education, percentage of expenditures on regular education, percentage of expenditures on special education, average teacher salary, average teacher experience, number of students per teacher, percentage of expenditures on central administration, percentage of expenditures on instructional leadership, percentage of expenditures on campus leadership, percentage of expenditures on gifted and talented and teacher turnover rate could predict District Mean SAT for the 260 school districts considered efficient when comparing total operating expenditures per pupil and District Mean SAT $\Lambda=.871, \chi^{2}(12, N=260)=123.701, p<.001$. (See Table 15) The tests of Equality of Group Means can be found in Appendix P.

Table 15. - Wilks' Lambda for District Mean SAT Score 2003

| Test of Function(s) | Wilks' Lambda | Chi-square | df | Sig. |
| :--- | :---: | :---: | :---: | :---: |
| 1 | .871 | 123.701 | 12 | .000 |

## Standardized function coefficients and correlation coefficients (see Table 16)

 revealed that the variables of number of student's per teacher and percentage of expenditures on instructional leadership were most associated with the function of District Mean SAT. Total expenditures on school leadership, and expenditures in regular and compensatory education had the least association with District Mean SAT.Table 16. - District Mean SAT Score 2003 Correlations and Standardized Function Coefficients

|  | Correlation Coefficients with <br> Discriminant Function | Standardized Function <br> Coefficients |
| :--- | :--- | :--- |
| \% Expenditures Bilingual   <br> /E.S.L.   <br> \% Expenditures Compensatory   <br> Education   <br> \% Expenditures Regular .154 .096 <br> Education <br> \% Expenditures Special -.018 .235 <br> Education   | -.046 | .214 |
| Average Teacher Salary | .159 | .116 |
| Average Teacher Experience | .167 | -.494 |
| Number of Students per <br> Teacher <br> \% Expenditures Central | .314 | .539 |
| Administration <br> \% Expenditures Instructional <br> Leadership | .713 | .555 |

Table 16. Continued

|  | Correlation Coefficients with <br> Discriminant Function | Standardized Function <br> Coefficients |
| :--- | :---: | :---: |
| \% Expenditures Campus <br> Leadership <br> \% Expenditures Gifted and <br> Talented | .056 | .053 |
| Teacher Turnover Rate | .171 | -.013 |

## Discriminant Analysis Mean ACT Score

A discriminant analysis was conducted to determine whether twelve variables; percentage of expenditures on bilingual / E.S.L., percentage of expenditures on compensatory education, percentage of expenditures on regular education, percentage of expenditures on special education, average teacher salary, average teacher experience, number of students per teacher, percentage of expenditures on central administration, percentage of expenditures on instructional leadership, percentage of expenditures on campus leadership, percentage of expenditures on gifted and talented and teacher turnover rate could predict District Mean ACT for the 295 school districts considered efficient when comparing total operating expenditures per pupil and District Mean ACT $\Lambda=.906, \chi^{2}(12, N=295)=95.333, p<.001$. (See Table 17) The tests of Equality of Group Means can be found in Appendix S.

Table 17. - Wilks' Lambda for District Mean ACT Score 2003

| Test of Function(s) | Wilks' Lambda | Chi-square | df | Sig. |
| :--- | :---: | :---: | :---: | :---: |
| 1 | .906 | 95.333 | 12 | .000 |

## Standardized function coefficients and correlation coefficients (see Table 18)

revealed that the variables of number of student's per teacher, teacher years of experience and percentage of expenditures on instructional leadership were most associated with the function of District Mean ACT. Total expenditure on bilingual education, school leadership and compensatory education had the least impact on District Mean ACT.

Table 18. - Mean ACT Score 2003 Correlations and Standardized Function Coefficients

|  | Correlation Coefficients with <br> Discriminant Function | Standardized Function <br> Coefficients |
| :--- | :--- | :--- |
| \% Expenditures Bilingual <br> /E.S.L. <br> \% Expenditures Compensatory <br> Education <br> \% Expenditures Regular <br> Education <br> \% Expenditures Special | .141 | .014 |
| Education | .050 | 1.175 |
| Average Teacher Salary | -.201 | -.021 |
| Average Teacher Experience | .249 | .158 |
| Number of Students per <br> Teacher <br> \% Expenditures Central | .423 | -.397 |
| Administration |  |  |
| \% Expenditures Instructional | -.661 | .637 |
| Leadership <br> \% Expenditures Campus <br> Leadership <br> \% Expenditures Gifted and <br> Talented | .428 | .529 |
| Teacher Turnover Rate | .068 | -.334 |

## Discriminant Analysis Total Students Taking SAT and ACT

A discriminant analysis was conducted to determine whether twelve variables; percentage of expenditures on bilingual / E.S.L., percentage of expenditures on compensatory education, percentage of expenditures on regular education, percentage of expenditures on special education, average teacher salary, average teacher experience, number of students per teacher, percentage of expenditures on central administration, percentage of expenditures on instructional leadership, percentage of expenditures on campus leadership, percentage of expenditures on gifted and talented and teacher turnover rate could predict District Total Students Taking SAT and ACT for the 257 school districts considered efficient when comparing total operating expenditures per pupil and District Total Students Taking SAT and ACT $\Lambda=.929, \chi^{2}(12, N=257)=72.430$, $p<.001$. (See Table 19) The tests of Equality of Group Means can be found in Appendix V.

Table 19. - Wilks' Lambda for District Total Students Taking SAT and ACT 2003

| Test of Function(s) | Wilks' Lambda | Chi-square | df | Sig. |
| :--- | :---: | :---: | :---: | :---: |
| 1 | .929 | 72.430 | 12 | .000 |

Standardized function coefficients and correlation coefficients (see Table 20) revealed that the variables of teacher turnover rate and percentage of expenditures on central administration were most associated with the function of District Total Students Taking SAT and ACT. Total expenditures on instructional leadership, school leadership
and compensatory education had the least association with District Total students Taking SAT and ACT.

Table 20. - District Total Students Taking SAT and ACT 2003 Correlations and Standardized Function Coefficients

|  | Correlation Coefficients with Discriminant Function | Standardized Function Coefficients |
| :---: | :---: | :---: |
| \% Expenditures Bilingual /E.S.L. | . 073 | -. 014 |
| \% Expenditures Compensatory Education | . 008 | . 026 |
| \% Expenditures Regular Education | . 071 | . 096 |
| \% Expenditures Special Education | -. 112 | -. 080 |
| Average Teacher Salary | . 199 | . 808 |
| Average Teacher Experience | -. 490 | -. 788 |
| Number of Students per Teacher | -. 371 | -. 622 |
| \% Expenditures Central Administration | . 388 | . 321 |
| \% Expenditures Instructional Leadership | . 042 | . 203 |
| \% Expenditures Campus Leadership | -. 028 | -. 011 |
| \% Expenditures Gifted and Talented | -. 094 | . 027 |
| Teacher Turnover Rate | . 364 | . 209 |

## Research Question One

Statistics will show that just over 32 percent of all Texas school districts would be considered efficient when looking the outputs measured as a whole. A detailed list of each school district and their residuals can be found in Appendix A-F. Appendix Y shows a graphical breakdown of each output measure and the percentages of schools found in each quadrant. The output measure all grades tested T.A.K.S. math 2004 had $32.1 \%$ of schools measure efficient out of a sample of 1034. The measure all grades tested T.A.K.S. reading had a sample of 1028 school districts with $31.7 \%$ considered efficient. $32.2 \%$ of districts were considered efficient for the output measure of district completion rate without G.E.D. The sample size was 967 districts. District mean Scholastic Aptitude Test scores had the highest efficiency rating of any output with $36.7 \%$ of school districts out of 708 falling in that category. District mean ACT had the second highest efficiency percentage with $33.5 \%$ of 881 schools falling in quadrant one. Finally, number of students taking the Scholastic Aptitude Test and ACT had a percentage of $27.2 \%$ in quadrant one out of 945 school districts. This was the only output with less than $30 \%$ of districts in quadrant one.

## Research Question Two

The student to teacher ratio had the highest correlation coefficient in five of the six output measures analyzed. This shows that teacher to student ratio or number of students per teacher is most associated with all outputs measured other than number of students taking the Scholastic Aptitude Test and ACT. (See Table 21) Percentage of
expenditures on instructional leadership proved to be associated with mean Scholastic Aptitude Test and mean ACT scores. Teachers years of experience was found to be associated with overall T.A.K.S. reading scores and mean ACT scores. Finally, percentage of expenditures on central administration had a slight association with the number of students taking the Scholastic Aptitude Test or ACT test. All of these correlation coefficients and the corresponding standardized functions can be found in Table 21.

Table 21. - Correlation Coefficients of Independent Variables Most Associated with Dependent $\underline{\text { Variables in the Discriminant Analysis }}$

| Independent Variable for Discriminant Analysis | Correlation Coefficients with Discriminant Function | Standardized Function Coefficients | Dependent Variable for Discriminant Analysis |
| :---: | :---: | :---: | :---: |
| Number of Students per Teacher | 0.713 | 0.555 | District Mean SAT 2003 |
| Number of Students per Teacher | 0.671 | 0.688 | District Completion <br> Rate without G.E.D. |
| Number of Students per Teacher | 0.661 | 0.921 | All Grades Tested TAKS Math 2004 |
| Number of Students per Teacher | 0.653 | 0.529 | District Mean ACT 2003 |
| Number of Students per Teacher | 0.648 | 0.819 | All Grades Tested TAKS Reading 2004 |
| \% Expenditures Instructional Leadership | 0.435 | 0.149 | District Mean SAT 2003 |
| Average Teacher Experience | 0.433 | 0.572 | All Grades Tested TAKS Reading 2004 |
| \% Expenditures Instructional Leadership | 0.428 | 0.153 | District Mean ACT 2003 |

$\underline{\underline{\text { Table 21. Continued }}}$

| Independent <br> Variable for <br> Discriminant <br> Analysis | Correlation <br> Coefficients with <br> Discriminant Function | Standardized Function <br> Coefficients | Dependent Variable <br> for Discriminant <br> Analysis |
| :--- | :---: | :---: | :---: |
| Average Teacher <br> Experience | 0.423 | 0.637 | District Mean ACT <br> 2003 |
| $\%$ Expenditures <br> Central <br> Administration | 0.388 | 0.321 | District SAT / ACT |
| Tested 2003 |  |  |  |

## Research Question Three

Percentage of expenditures on central administration proved to have a low association with mean Scholastic Aptitude Test and ACT, district completion rate and reading T.A.K.S. scores district wide. This independent variable had the lowest three associations with any dependent variables in the study. (See Table 22) The independent variable teacher turnover rate also did not have an impact in several areas including district T.A.K.S. reading and math, mean Scholastic Aptitude Test and ACT and district completion rate. The last independent variable in the bottom ten was teacher's years of experience which had little association with the number of students taking the Scholastic Aptitude Test or ACT.

Table 22. - Correlation Coefficients of Independent Variables Least Associated with Dependent Variables in the Discriminant Analysis

| Independent | Correlation |  |  |
| :--- | :---: | :---: | :---: |
| Variable for | Coefficients with <br> Discriminant <br> Analysis | Standardized Function <br> Discriminant Function | Dependent Variable <br> for Discriminant <br> Analysis |
| \% Expenditures | -0.742 | -0.474 | District Mean SAT |
| Central |  | 2003 |  |

Table 22. Continued


## Summary

In conclusion, the researcher found that $32.2 \%$ of Texas school districts would be considered efficient, low expenditures and high output, when analyzing the output measures in one group. After conducting the discriminant analysis number of students per teacher was found to be most associated with high outcomes for students, and percentage of expenditures in central administration appears to be least associated with
high outcomes for students. These findings will be discussed in greater detail in Chapter V on findings, conclusions, implications and recommendations.

## CHAPTER V FINDINGS, CONCLUSIONS, IMPLICATIONS, AND RECOMMENDATIONS

Schools and how they should be funded has been debated since the founding of our country. Texas is no different with the legislator just this year adopting House Bill I, yet another adjustment in the school funding system. In this age of accountability the public is more concerned than ever with the quality of our schools. At the same time over the past fifteen years state funding of public schools in Texas has dropped over $11 \%$. Until the Texas legislature addresses this trend schools will continue to have to do more with less funds. Article VII of the Texas Constitution gives the legislature the duty "to establish and make suitable provision for the support and maintenance of an efficient system of public free schools" (Carrollton-Farmers Branch Independent School District vs. Edgewood Independent School District, 1992). This leads for a need to operational define what efficiency looks like in the complex arena of school finance.

The purpose of this study was to identify school districts that are using resources efficiently based on the modified quadriform model. The secondary purpose was to identify the characteristics of these efficient school districts in order to see what expenditures most relate to successful student output. The goal in short was to find out what expenditures across Texas get the biggest bang for their buck. Anderson (1996) believed that modified quadriform analysis could help us to operationally define efficiency.

The researcher used regression analysis to relate spending and resources to student achievement. This allowed the researcher to take into account unalterable characteristics that could skew data when comparing school districts with varying demographics. This technique was used to simply identify school districts who spent less while achieving a high output on a variety of outcome measures related to student academic achievement. Once these efficient districts were identified discriminant analysis was used to find out what alterable school characteristics had the strongest relationship with these academic successes.

## Findings

The finding of this study are derived from the modified quadriform analysis, then by analyzing the discriminant analysis. The findings are organized by looking at each of the three research questions individually. These sections will be followed by overall conclusions, implications for public policy and recommendations for further study.

## Research Question One

The first research question sought to determine what school districts were considered efficient based on the modified quadriform analyses model. The researcher found that $32.2 \%$ of Texas school districts would be considered efficient, low expenditures and high output, when analyzing all output measures in one group. 19.5\% of school districts were considered effective, high expenditure and high output. 17.5\%
of school districts were considered ineffective, high expenditures and low outcomes, while $30.8 \%$ of school districts were inefficient, low expenditures and low outcomes.

Texas school districts were most efficient, $36.7 \%$ when analyzing mean Scholastic Aptitude Test scores, which had a sample size of 708 school districts. Districts were least efficient in terms of the number of student taking both the Scholastic Aptitude Test and ACT at $27.2 \%$; the sample size was 945 school districts. The output measure all grades tested T.A.K.S. math 2004 had $32.1 \%$ of schools measure efficient out of a sample of 1034. The measure all grades tested T.A.K.S. reading had a sample of 1028 school districts with $31.7 \%$ considered efficient. $32.2 \%$ of districts were considered efficient for the output measure of district completion rate without G.E.D. The sample size was 967 districts. District mean ACT had the second highest efficiency percentage with $33.5 \%$ of 881 schools falling in quadrant one.

## Research Question Two

The second research questions looked to answer what alterable school characteristics had the largest impact on different outcome measures related to student achievement. It was clear that student to teacher ratio was most related with successful student outcomes. When looking at the ten highest correlation coefficients during the discriminant analysis teacher to student ratio yielded the top five. It appears that student to teacher ratio is an expenditure that warrants additional analysis. Four of the next five highest correlation coefficients in the discriminant analysis relate to what the researcher considers campus level dollars, instructional leadership and average teacher's years
experience. It appears that based on this discriminant analysis monies focused at the building level are closely related to student achievement when analyzing the outputs used in this study.

## Research Question Three

While question two looks at the expenditures most likely to affect student outcomes, question three does the opposite by looking at what least affects student academic outcomes. Again, there is a trend when looking at the correlation coefficients that have the least impact. Percentage of expenditures on central administration has the bottom three lowest scores. It also has the sixth lowest coefficient giving it four of the top ten lowest relationship scores. The rest of this list is rounded out with teacher turnover rate and average teacher's experience. Teacher turnover rate produced five of the bottom ten scores in this discriminant analysis. This would suggest that teacher turnover rate may not have as large an impact on student outcomes as the researcher thought.

## Conclusions

The modified quadriform is a tool that takes the abstract setting of school finance and portrays it in a more concrete understandable way. As with other quadriform studies dating back to early 1990's, school districts are going to fall in each of the four categories discussed. The researcher was not surprised that right at $50 \%$ of school were above and $50 \%$ were below the x -axis of the quadriform which defined academic
success regardless of low or high expenditures. The modified quadriform in this study was more of a means to find a target of schools to analyze using a discriminant analysis. This is where the researcher finds direction and many recommendations to continue this type of research in the state of Texas.

Student to teacher ratio stood out when analyzing the correlation coefficients. The fact that it had a strong relationship with five of the six output variables cannot be ignored. In fact with correlation coefficients ranging from .648 to .713 were by far the highest in this study and the only correlation coefficients above .500. During the past twenty-five years many researchers have looked at the relationship between class size and student achievement. Three particular studies stand out related to student to teacher ratio and achievement. In 1978, Glass and Smith conducted a classic meta-analysis of over 80 studies on class size. Their conclusions were that reduced class size can be expected to produce increased academic outcomes and that classes below twenty students gained the most benefit. However, critics of Glass and Smith believed that the selection of studies were not high-quality because many of the studies were too short. In 1986, Robinson and Wittebols conducted an extensive study by reviewing nearly 100 separate studies on class size and student achievement. They concluded that the effects of class size vary based on grade level, student characteristics, subjects, teaching styles and other learning interventions (Robinson, 1990). This is not surprising as complicated as research is in the educational field. Studies like this one must start out large and then focus to find trends in the statistics. In 1989, Slavin and Madden conducted what they called a best evidence synthesis. Like Glass and Smith he did a meta-analysis, however
he only looked at studies that lasted more than one year, had substantial class size reductions and involved random assignments. Slavin and Madden concluded that class size did have a positive effect on students, but not as large as first thought by Glass and Smith. Finn and Voelkl (1994) in a brief overview of research identified three approaches to studying the issue of class size, the classroom focus approach, the ecological approach and the cost-related approach. The cost-related approach associated most closely with this research and it is appropriate to include an overview in the conclusions.

Lowering class sizes is expensive. While state and local policy makers should be commended for being cautious with limited tax dollars, they really do not have a tool to determine the dollar value of school achievement. Production function approaches like the modified quadriform may give policy makers such a tool to justify these difficult often scrutinized decisions. Studies have shown during the past decade that student to teacher ratio is associated with increased pupil performance using production function research methodology (Laine et al., 1995). Wenglinsky (1997) concluded that monies spent on reducing pupil to teacher ratios had a positive impact on $4^{\text {th }}$ graders. Ferguson and Ladd (1996) analyzed class sizes in 131 Alabama school districts and found that class size does matter in both the early and later grades. It appears that this study in some ways contributes to this body of research with the significant correlation coefficient scores for student to teacher ratio in relation to other variables in this study.

Other correlation coefficients that stood out were those at the bottom in terms of relationship with positive student outcomes. Percentage of expenditure on central
administration had negative relationships with mean Scholastic Aptitude Test and ACT scores and district completion rate. All of these outputs are key variables in measuring success in a school district and the correlation coefficients ranged from -0.649 to -0.742 . This particular variable represents two things, the number of employees working at central office and the salaries of those individuals. If researchers take this further in the future they may consider identifying and separating these two issues. The researcher believes this would be beneficial because while some central offices may be considered top heavy, others may be trying to compete in the job market for central administration type positions. The salaries of superintendents alone could very much skew this data. The teacher turnover rate variable also appeared many times on this lower list. It appears that the explanation for this is that teacher turnover rate may not have as big of impact on student learning as the researcher may have thought. It is important to note that at certain grade levels this variable could have a tremendous impact, but this particular study looked at outputs relate to the end of high school, except for the T.A.K.S. scores used.

## Implications for Public Policy

The researcher hopes that this study opens the door for others to do modified quadriform research with a more specific focus. One study of this magnitude, state wide and over 1000 school districts will not operationally define what efficiency is in Texas. However, if other researchers build on this study, that only begins to point us in a direction, then it could have a large impact on public policy in the future. One must be
reminded that the modified quadriform was first used to analyze schools in 1991. If this happens then one day there may be a universally agreed upon measure of efficiency in Texas.

## Recommendations for Further Study

Based on the review of related literature and the analysis of data in this study the following recommendations for further study were determined.

1. A study should be conducted that breaks the school districts into regions using this approach of modified quadriform analysis and discriminant analysis.
2. A study should be done that examines the idea of the "voided cross" developed by Hickrod in which school districts that fall within a certain range of the x and y axis are discarded.
3. A study should be done that breaks the alterable characteristics into two categories, campus level expenditures and district level expenditures. This may shed light on where money should be focused in order to improve output scores.
4. A study should be done using the same procedures as this study examining teacher to student ratio looking at specific grades and specific grade outputs, to determine if class size has a bigger effect size at certain grade levels.
5. If further research is done in the area of student to teacher ratio it would be important to look at actual class size versus what is reported through A.E.I.S. The data used in this study is a broad definition of student to teacher ratio.
6. Each study conducted here after should be more focused, where as this study was exploratory and descriptive others should look at specific policy issues in a more causal manner.

The word efficient is not going away when debating school finance. The Texas Constitution says that the state should establish efficient free public schools. Yet efficiency is never defined in the document. While school finance reform in the past has been focused mostly on inequities, the future direction in the field of educational finance is efficiency. Tax payers want to know that money is not wasted, and that students are learning. In today's information age the community knows more about the daily operations and rating of our school districts and schools than ever before. This study gives us an idea of where districts fall across the state in the efficiency landscape and a direction for future research that may someday lead us to define what efficiency looks like in today's complex world of education finance.

## REFERENCES

Anderson, D. (1996). Stretching the tax dollar: Increasing efficiency in urban and rural schools. In L. O. Picus, \& J. L. Wattenberger (Eds.), Where does the money go? Resource allocation in elementary and secondary schools (pp. 156-177). Thousand Oaks, CA: Corwin Press.

Barrow, M. M. (1991). Measuring local education authority performance: A frontier approach. Economics of Education Review, 10, 19-27.

Carrollton-Farmers Branch Indep. Sch. Dist., et al. v. Edgewood Indep. Sch. Dist., 826 S.W.2d 489, 494-497 (Tex. 1992).

Casey, D. T. (2001). The history of Texas public school finance through 1996. Austin, TX: Texas Association of School Boards.

Charles A. Dana Center. (2003). School finance in 2003: Keeping the system afloat and charting a course for the future. Austin, TX: The University of Texas.

Center on Public Policy Priorities, The. (1998). Measuring up: The state of Texas education, school finance in Texas. Retrieved June 21, 2002, from www.cppp.org/kidscount/education/finance.html

Clark, C. (1995). Regional school taxing units: The Texas experience. The Journal of Education Finance, 21, 87.

Edgewood Indep. Sch. Dist. v. Kirby, et al., 777 S.W.2d 391, 397 (Tex. 1989).
Farr, S . J. , \& Trachtenberg, M. (1999). The Edgewood drama: An epic quest for educational equity. Yale Law \& Policy Review, 17, 607-727.

Ferguson, R. F. \& Ladd, H. F. (1996). How and why money matters: An analysis of Alabama schools. In H.F. Ladd (Ed.). Holding schools accountable: Performance-based reform in education. Washington, DC: The Brookings Institution.

Finn, J. D. \& Voelkl, K. E. (1994). Class size. In T. Husen \& T. N. Postlethwaite (Eds.). International encyclopedia of education (2 ${ }^{\text {nd }}$ Edition). Oxford, UK: Pergamon Press.

Glass, G. V. \& Smith, M. L. (1978). Meta-analysis of research on the relationship of class size and achievement. San Francisco: Far West Laboratory for Educational Research and Development.

Hentschke, G. (1988). Budgetary theory and reality: A microview. In D. H. Monk (Ed.). Microlevel school finance: Issues and implications for policy. Cambridge, MA: Ballinger Publishing Company.

Hickrod, G. A. (1989). The biggest bang for the buck: An initial report of technical economic efficiency in K-123 schools with a comment on Rose V. The Council. Norman, IL: Center for the study of Education Finance.

Kramer, L. (2002). Achieving equitable education through the courts: A comparative analysis of three states. Journal of Law and Education, 31, 1-51.

Laine, R. D., Greenwald, R. \& Hedges, L. V. (1995). Money does matter: A research synthesis of a new universe of education production function studies. In L. O. Picus, \& J. L. Wattenberger (Eds.), Where does the money go? Resource
allocation in elementary and secondary schools (pp. 44-70). Thousand Oaks, CA: Corwin Press.

Miles, K. H. (1995). Freeing resources for improving schools: A case study of teacher allocation in Boston public schools. Educational Evaluation and Policy Analysis, 17, 476-493.

Monk, D \& Underwood, J. (1990). Educational finance: An economic approach. New York, NY: McGraw-Hill.

Odden A. (1997). The finance side of implementing new American schools. Paper prepared for the New American Schools. Alexandria, VA.

Odden, A. R., \& Picus, L. O. (1992). School finance: A policy perspective. Boston, MA: McGraw Hill.

Picus, L. O. (1997). Assigning responsibilities: Where do the dollars go?. School Business Affairs, 63, 8-15.

Picus, L. O. (1998). Rethinking equity - There are alternatives. School Business Affairs, 64, 3-8.

Picus, L. O. (2000). Setting budget priorities. American School Board Journal, 187, 3033.

Picus, L. O. (2001). How much is enough. American School Board Journal, 188, 2830.

Ratcliffe, R. G. (2001, May 30). Ratliff aims arrow at Robin Hood funding: Changes in school finance, taxes urged. Houston Chronicle. Retrieved January 14, 2005, from http://www.chron.com/es/CDA/story.hts/metropolitan/924864

Robinson, G. E. (1990). Synthesis of research on effects of class size. Educational Leadership, 47 (7), 80-90.

Robinson, G. E. \& Wittebols, J. H. (1986). Class size research: A related cluster analysis for decision making. Arlington, VA: Educational Research Services. Rodriguez v. San Antonio Indep, Sch. Dist., 337 F. Supp. 280 (W.D. Tex, 1971).

Rolle, R. A. (2003). Getting the biggest bang for the educational buck: An empirical analysis of public school corporations as budget-maximizing bureaus, In W.J. Fowler, Jr. (Ed.), Developments in school finance: 2001-2002 (pp. 25-52). Washington, DC: National Center for Education statistics.

Rolle, R. A. (2004). Out with the old - in with the new: Thoughts on the future of educational productivity research. Peabody Journal of Education, 79 (3), 31 56.

Rolle, R. A. \& Houck, E. A. (2004). Introduction to the Peabody Journal of Education's special issue on the future of school finance research. Peabody Journal of Education, 79 (3), 1-6.

Slavin, R. E. \& Madden, N. A. (1989). What works for students at risk: A research synthesis. Educational Leadership, 46 (5), 4-13.

Sparkman, W. E., \& Carpenter, C. (1994). School finance policy issues in Texas. Paper presented at the annual meeting of the American Educational Research Association, New Orleans.

Texas Center for Educational Research. (2001). A guide to Texas school finance. Austin, TX: Texas Association of School Boards.

Texas Education Agency (2003) Glossary for the Academic Excellence Indicator System 2002-2003 Report. (http://www.tea.state.tx.us/perfreport/aeis/2003/glossary.html)

Thomas, S. B., \& Walker, B. D. (1982). Texas public school finance. Journal of Education Finance, 8, 223-281.

Wenglinsky, H. (1997). When money matters: How educational expenditures improve student performance and when they don't. Princeton, NJ: Educational Testing Service, Policy Information Center.

Wenglinsky, H. (1998). Finance equalization and within-school equity: The relationship between education spending and the social distribution of achievement. Educational Evaluation and Policy Analysis, 20 (4), 269-283.

West Orange-Cove Consolidated Independent School District v. Nelson, No. GV1 00528 (250 ${ }^{\text {th }}$ Dist. Ct. Travis Cty., TX. July 11, 2001).

# APPENDIX A MODIFIED QUADRIFORM FORMATION 

 ALL GRADES MATH 2004 QUADRANT I SCHOOL DISTRICTS









## APPENDIX B

# MODIFIED QUADRIFORM FORMATION 

## ALL GRADES READING 2004

 QUADRANT I SCHOOL DISTRICTS| District Name | Std. <br> Residual | $\begin{array}{r} \hline \text { TOTAL } \\ \text { XPEND } \\ \text { ITURES } \\ \text { PER } \\ \text { PUPIL } \\ (2002- \\ 2003) \\ \hline \end{array}$ | Predicted Value | Residual | Std. <br> Residual | ALL GRADES READIN G 2004 | Predicted Value | Residual |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ABERNATHY ISD | -0.228 | 8,712 | 9,160.68 | -448.682 | 1.099 | 92.00 | 86.9073 | 5.09273 |
| ABILENE ISD | -0.695 | 7,345 | 8,711.86 | -1,366.856 | 0.897 | 90.00 | 85.8425 | 4.15752 |
| ALAMO HEIGHTS ISD | -0.430 | 8,725 | 9,569.40 | -844.399 | 0.329 | 94.00 | 92.4767 | 1.52331 |
| ALPINE ISD | -0.792 | 7,142 | 8,698.50 | -1,556.502 | 1.436 | 92.00 | 85.3423 | 6.65770 |
| ALVIN ISD | -0.283 | 7,334 | 7,890.65 | -556.650 | 0.388 | 89.00 | 87.2029 | 1.79707 |
| AMARILLO ISD | -0.492 | 7,093 | 8,060.60 | -967.604 | 0.145 | 86.00 | 85.3301 | 0.66985 |
| ANGLETON ISD | -0.965 | 6,551 | 8,447.70 | -1,896.703 | 1.315 | 93.00 | 86.9049 | 6.09509 |
| ANSON ISD | -0.490 | 8,229 | 9,191.72 | -962.720 | 0.773 | 90.00 | 86.4153 | 3.58471 |
| ANTHONY | -0.023 | 9,904 | 9,949.49 | -45.494 | 1.653 | 85.00 | 77.3406 | 7.65941 |
| ARCHER CITY ISD | -0.030 | 8,144 | 8,203.66 | -59.660 | 0.222 | 94.00 | 92.9713 | 1.02873 |
| ATLANTA ISD AUSTWELL- | -0.608 | 7,337 | 8,532.97 | -1,195.968 | 1.456 | 91.00 | 84.2528 | 6.74725 |
| TIVOLI ISD | -1.882 | 11,235 | 14,934.13 | -3,699.128 | 1.954 | 95.00 | 85.9418 | 9.05820 |
| AXTELL ISD | -0.643 | 9,106 | 10,370.26 | -1,264.258 | 0.036 | 90.00 | 89.8319 | 0.16809 |
| BANDERA ISD | -0.399 | 7,952 | 8,736.66 | -784.664 | 0.241 | 91.00 | 89.8811 | 1.11893 |
| BANGS ISD | -0.489 | 7,839 | 8,799.27 | -960.269 | 0.497 | 91.00 | 88.6960 | 2.30398 |
| BANQUETE ISD | -0.043 | 8,781 | 8,864.74 | -83.744 | 0.582 | 86.00 | 83.3012 | 2.69880 |
| BARTLETT ISD | -0.327 | 8,164 | 8,806.79 | -642.793 | 0.512 | 84.00 | 81.6291 | 2.37089 |
| BELLVILLE ISD | -0.215 | 7,377 | 7,799.79 | -422.789 | 0.513 | 92.00 | 89.6208 | 2.37916 |
| BELTON ISD | -0.384 | 7,553 | 8,308.73 | -755.725 | 0.015 | 88.00 | 87.9292 | 0.07080 |
| BENAVIDES ISD | -0.189 | 10,033 | 10,405.01 | -372.012 | 0.404 | 81.00 | 79.1283 | 1.87167 |
| BIG SANDY ISD | -0.434 | 7,606 | 8,459.51 | -853.507 | 0.535 | 89.00 | 86.5188 | 2.48116 |
| BIG SANDY ISD | -1.115 | 9,060 | 11,251.37 | -2,191.374 | 0.072 | 89.00 | 88.6641 | 0.33589 |
| BIRDVILLE ISD | -0.371 | 7,288 | 8,016.83 | -728.834 | 0.025 | 90.00 | 89.8830 | 0.11704 |
| BISHOP CONS ISD BLOOMINGTON | -0.766 | 8,215 | 9,721.44 | -1,506.442 | 1.311 | 91.00 | 84.9251 | 6.07489 |
| ISD | -0.572 | 8,094 | 9,219.09 | -1,125.087 | 0.213 | 82.00 | 81.0147 | 0.98534 |
| BLUFF DALE ISD | -0.426 | 10,304 | 11,141.16 | -837.162 | 0.945 | 97.00 | 92.6207 | 4.37928 |
| BOERNE ISD | -0.256 | 7,862 | 8,365.75 | -503.747 | 0.189 | 94.00 | 93.1247 | 0.87526 |
| BOLING ISD BOSQUEVILLE | -0.139 | 7,527 | 7,800.83 | -273.827 | 1.356 | 91.00 | 84.7142 | 6.28581 |
| ISD | -0.118 | 8,297 | 8,528.77 | -231.769 | 1.517 | 96.00 | 88.9683 | 7.03165 |
| BRAZOS ISD | -0.536 | 7,976 | 9,028.57 | -1,052.573 | 0.463 | 89.00 | 86.8529 | 2.14711 |
| BRAZOSPORT ISD | -1.326 | 6,904 | 9,510.30 | -2,606.302 | 0.575 | 90.00 | 87.3358 | 2.66423 |
| BRENHAM ISD | -0.108 | 7,815 | 8,026.95 | -211.945 | 0.878 | 90.00 | 85.9283 | 4.07168 |
| BRIDGE CITY ISD BROWNSVILLE | -0.641 | 6,706 | 7,965.89 | -1,259.888 | 0.010 | 92.00 | 91.9527 | 0.04727 |
| ISD <br> BROWNWOOD | -0.361 | 8,053 | 8,762.28 | -709.283 | 0.236 | 79.00 | 77.9064 | 1.09359 |
| ISD | -0.677 | 7,267 | 8,598.25 | -1,331.246 | 0.418 | 88.00 | 86.0624 | 1.93762 |
| BRYSON ISD | -0.562 | 8,367 | 9,471.72 | -1,104.722 | 0.828 | 93.00 | 89.1625 | 3.83746 |
| BUENA VISTA ISD | -0.251 | 17,414 | 17,906.43 | -492.433 | 0.984 | 91.00 | 86.4403 | 4.55970 |
| BUNA ISD <br> BURNET CONS | -0.208 | 7,615 | 8,024.02 | -409.017 | 0.143 | 92.00 | 91.3359 | 0.66410 |
| ISD | -0.569 | 8,098 | 9,215.85 | -1,117.845 | 0.267 | 91.00 | 89.7627 | 1.23733 |
| BUSHLAND ISD | -0.383 | 9,177 | 9,929.39 | -752.385 | 0.680 | 97.00 | 93.8506 | 3.14939 |
| CALALLEN ISD | -0.603 | 6,840 | 8,026.10 | -1,186.098 | 0.629 | 92.00 | 89.0834 | 2.91661 |
| CALDWELL ISD | -0.293 | 7,561 | 8,137.45 | -576.454 | 0.186 | 88.00 | 87.1373 | 0.86272 |





| District Name | Std. <br> Residual | TOTAL XPEND TURES PER PUPIL (20022003) | Predicted Value | Residual | Std. <br> Residual | ALL GRADES READIN G 2004 | Predicted Value | Residual |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LA GRANGE ISD | -0.701 | 7,241 | 8,618.10 | -1,377.098 | 0.171 | 89.00 | 88.2074 | 0.79264 |
| LA JOYA ISD | -0.390 | 7,894 | 8,659.88 | -765.884 | 0.456 | 80.00 | 77.8848 | 2.11522 |
| LA PORTE ISD LAMAR | -0.274 | 8,709 | 9,246.89 | -537.890 | 0.027 | 90.00 | 89.8769 | 0.12306 |
| CONSOLIDATED ISD | -0.069 | 7,728 | 7,863.15 | -135.155 | 0.063 | 86.00 | 85.7102 | 0.28981 |
| LAZBUDDIE ISD | -0.128 | 10,364 | 10,616.00 | -252.000 | 1.558 | 91.00 | 83.7796 | 7.22036 |
| LEGGETT ISD | -0.410 | 9,444 | 10,249.71 | -805.707 | 0.085 | 82.00 | 81.6066 | 0.39343 |
| LEVELLAND ISD | -0.898 | 7,571 | 9,335.64 | -1,764.636 | 0.088 | 85.00 | 84.5903 | 0.40971 |
| LIBERTY ISD | -0.125 | 7,696 | 7,942.57 | -246.568 | 0.461 | 94.00 | 91.8621 | 2.13785 |
| LINDALE ISD | -0.295 | 7,273 | 7,851.92 | -578.920 | 0.733 | 94.00 | 90.6022 | 3.39777 |
| LINDEN-KILDARE CONS ISD | -0.314 | 7,965 | 8,582.30 | -617.305 | 2.148 | 97.00 | 87.0437 | 9.95634 |
| LINGLEVILLE ISD | -0.390 | 8,289 | 9,054.67 | -765.668 | 0.013 | 85.00 | 84.9419 | 0.05806 |
| LITTLEFIELD ISD | -0.714 | 7,083 | 8,486.26 | -1,403.257 | 0.956 | 88.00 | 83.5699 | 4.43011 |
| LLANO ISD | -0.831 | 10,037 | 11,670.87 | -1,633.871 | 0.419 | 93.00 | 91.0580 | 1.94197 |
| LOCKNEY ISD | -0.412 | 7,704 | 8,513.18 | -809.184 | 0.280 | 85.00 | 83.7010 | 1.29904 |
| LOMETA ISD | -0.304 | 9,498 | 10,094.95 | -596.954 | 0.505 | 87.00 | 84.6591 | 2.34093 |
| LONDON ISD | -0.104 | 8,300 | 8,503.83 | -203.834 | 0.823 | 96.00 | 92.1852 | 3.81485 |
| LONE OAK ISD | -0.398 | 7,386 | 8,169.28 | -783.283 | 0.619 | 95.00 | 92.1321 | 2.86791 |
| LONGVIEW ISD | -0.398 | 7,759 | 8,541.28 | -782.276 | 0.544 | 83.00 | 80.4808 | 2.51922 |
| LORENA ISD LOS FRESNOS | -0.687 | 6,209 | 7,559.46 | -1,350.458 | 0.032 | 94.00 | 93.8519 | 0.14813 |
| CONS ISD | -0.641 | 7,727 | 8,987.41 | -1,260.412 | 1.496 | 86.00 | 79.0673 | 6.93268 |
| LUBBOCK ISD LUBBOCK- | -0.585 | 7,702 | 8,852.84 | -1,150.836 | 0.870 | 93.00 | 88.9673 | 4.03273 |
| COOPER ISD | -0.302 | 7,610 | 8,203.99 | -593.990 | 0.548 | 87.00 | 84.4621 | 2.53793 |
| LUFKIN ISD | -0.588 | 7,224 | 8,379.70 | -1,155.704 | 1.364 | 89.00 | 82.6793 | 6.32075 |
| LYTLE ISD | -0.218 | 8,005 | 8,434.06 | -429.061 | 0.463 | 85.00 | 82.8562 | 2.14376 |
| MABANK ISD MADISONVILLE | -0.986 | 7,154 | 9,092.94 | -1,938.941 | 0.403 | 91.00 | 89.1318 | 1.86818 |
| CONS ISD | -0.232 | 7,791 | 8,246.85 | -455.855 | 0.943 | 88.00 | 83.6287 | 4.37134 |
| MARSHALL ISD MARTINS MILL | -0.527 | 7,313 | 8,349.23 | -1,036.225 | 0.532 | 85.00 | 82.5325 | 2.46752 |
| ISD <br> MARTINSVILLE | -0.166 | 8,435 | 8,760.73 | -325.732 | 1.165 | 95.00 | 89.5989 | 5.40107 |
| ISD | -0.258 | 7,960 | 8,467.95 | -507.949 | 0.122 | 87.00 | 86.4368 | 0.56323 |
| MAUD ISD | -0.318 | 7,608 | 8,233.21 | -625.214 | 0.778 | 93.00 | 89.3945 | 3.60552 |
| MAY ISD | -0.510 | 9,108 | 10,111.08 | -1,003.078 | 0.418 | 91.00 | 89.0623 | 1.93768 |
| MCALLEN ISD | -0.381 | 7,395 | 8,143.38 | -748.376 | 0.345 | 83.00 | 81.4004 | 1.59955 |
| MCLEAN ISD | -0.291 | 9,156 | 9,728.70 | -572.701 | 0.820 | 94.00 | 90.1974 | 3.80264 |
| MCLEOD ISD | -0.082 | 7,865 | 8,025.62 | -160.615 | 1.214 | 97.00 | 91.3739 | 5.62614 |
| MEDINA ISD | -0.176 | 10,444 | 10,789.55 | -345.546 | 1.057 | 95.00 | 90.0996 | 4.90038 |
| MERIDIAN ISD | -0.713 | 7,221 | 8,623.32 | -1,402.319 | 0.355 | 89.00 | 87.3527 | 1.64734 |
| MERKEL ISD | -0.469 | 8,427 | 9,348.40 | -921.398 | 0.284 | 90.00 | 88.6838 | 1.31623 |
| MIDLAND ISD | -0.344 | 7,077 | 7,753.19 | -676.190 | 0.241 | 87.00 | 85.8840 | 1.11597 |
| MILDRED ISD | -0.136 | 8,093 | 8,359.58 | -266.576 | 0.346 | 93.00 | 91.3976 | 1.60240 |


| District Name | TOTALEXPENDITURESPERStd.PUPILResidual2002-$2003)$ |  | Predicted Value | Residual | ALL  <br> GRADES  <br> Std. READIN <br> Residual G 2004 |  | Predicted Value | Residual |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MINEOLA ISD | -0.280 | 8,257 | 8,807.05 | -550.045 | 0.666 | 90.00 | 86.9123 | 3.08774 |
| MONAHANS- <br> WICKETT-PYOTE |  |  |  |  |  |  |  |  |
| ISD | -1.090 | 7,266 | 9,409.03 | -2,143.027 | 1.158 | 92.00 | 86.6350 | 5.36502 |
| MORGAN MILL |  |  |  |  |  |  |  |  |
| ISD | -0.975 | 7,309 | 9,225.26 | -1,916.262 | 1.619 | 97.00 | 89.4943 | 7.50573 |
| MOULTON ISD | -0.318 | 7,770 | 8,394.16 | -624.159 | 2.047 | 97.00 | 87.5127 | 9.48730 |
| MOUNT CALM |  |  |  |  |  |  |  |  |
| ISD | -0.083 | 8,815 | 8,977.84 | -162.836 | 0.968 | 91.00 | 86.5150 | 4.48497 |
| MOUNT |  |  |  |  |  |  |  |  |
| PLEASANT ISD | -0.783 | 7,857 | 9,395.76 | -1,538.762 | 0.416 | 84.00 | 82.0720 | 1.92803 |
| MOUNT VERNON |  |  |  |  |  |  |  |  |
| ISD | -1.003 | 7,226 | 9,197.92 | -1,971.919 | 0.377 | 92.00 | 90.2546 | 1.74537 |
| MUENSTER ISD | -0.225 | 7,250 | 7,692.06 | -442.057 | 0.230 | 95.00 | 93.9349 | 1.06513 |
| MULESHOE ISD | -0.445 | 8,166 | 9,040.36 | -874.363 | 0.463 | 85.00 | 82.8526 | 2.14740 |
| MUMFORD ISD | -1.314 | 6,160 | 8,743.54 | -2,583.536 | 2.036 | 91.00 | 81.5620 | 9.43796 |
| MURCHISON ISD | -0.685 | 8,397 | 9,743.80 | -1,346.803 | 2.215 | 99.00 | 88.7343 | 10.26566 |
| NAVARRO ISD | -0.247 | 7,603 | 8,088.48 | -485.479 | 0.794 | 93.00 | 89.3213 | 3.67875 |
| NECHES ISD | -0.720 | 7,488 | 8,903.79 | -1,415.792 | 1.281 | 96.00 | 90.0640 | 5.93599 |
| NEW BOSTON ISD | -0.821 | 6,960 | 8,573.39 | -1,613.386 | 1.169 | 93.00 | 87.5839 | 5.41612 |
| NEW DEAL ISD | -0.562 | 7,944 | 9,048.68 | -1,104.684 | 0.900 | 91.00 | 86.8301 | 4.16992 |
| NIXON-SMILEY |  |  |  |  |  |  |  |  |
| CONS ISD | -0.129 | 8,347 | 8,599.58 | -252.584 | 0.395 | 84.00 | 82.1690 | 1.83099 |
| NOCONA ISD | -0.229 | 8,624 | 9,073.59 | -449.591 | 0.347 | 90.00 | 88.3939 | 1.60612 |
| NORMANGEE ISD | -0.087 | 7,950 | 8,121.54 | -171.541 | 0.011 | 90.00 | 89.9470 | 0.05301 |
| NUECES CANYON |  |  |  |  |  |  |  |  |
| CISD | -0.307 | 10,306 | 10,908.83 | -602.833 | 1.469 | 92.00 | 85.1924 | 6.80758 |
| NURSERY ISD | -2.682 | 7,919 | 13,190.96 | -5,271.964 | 1.099 | 97.00 | 91.9077 | 5.09225 |
| OLNEY ISD | -0.490 | 8,225 | 9,188.45 | -963.450 | 0.737 | 92.00 | 88.5846 | 3.41544 |
| ORANGE GROVE |  |  |  |  |  |  |  |  |
| ISD | -0.314 | 7,657 | 8,273.50 | -616.497 | 1.268 | 90.00 | 84.1242 | 5.87576 |
| ORE CITY ISD | -0.207 | 8,271 | 8,677.95 | -406.947 | 1.031 | 92.00 | 87.2237 | 4.77631 |
| PALACIOS ISD | -0.556 | 10,028 | 11,121.37 | -1,093.370 | 0.095 | 86.00 | 85.5588 | 0.44117 |
| PANHANDLE ISD | -0.335 | 8,604 | 9,261.96 | -657.958 | 0.247 | 94.00 | 92.8567 | 1.14329 |
| PARIS ISD | -0.086 | 7,937 | 8,106.01 | -169.011 | 0.613 | 85.00 | 82.1577 | 2.84233 |
| PASADENA ISD | -0.073 | 7,170 | 7,313.81 | -143.809 | 0.518 | 85.00 | 82.5972 | 2.40276 |
| PAWNEE ISD | -0.184 | 9,883 | 10,245.05 | -362.047 | 0.401 | 89.00 | 87.1424 | 1.85759 |
| PETTUS ISD | -0.159 | 9,688 | 10,000.48 | -312.478 | 0.369 | 87.00 | 85.2914 | 1.70856 |
| PEWITT ISD | -0.452 | 7,800 | 8,688.34 | -888.344 | 0.463 | 88.00 | 85.8529 | 2.14706 |
| PHARR-SAN |  |  |  |  |  |  |  |  |
| JUAN-ALAMO ISD | -0.227 | 7,996 | 8,442.72 | -446.724 | 0.026 | 78.00 | 77.8788 | 0.12124 |
| PINE TREE ISD | -0.630 | 6,608 | 7,845.61 | -1,237.609 | 0.215 | 90.00 | 89.0055 | 0.99451 |
| PITTSBURG ISD | -0.676 | 7,593 | 8,921.61 | -1,328.608 | 0.528 | 86.00 | 83.5510 | 2.44898 |
| PLAINVIEW ISD | -1.091 | 6,334 | 8,478.89 | -2,144.889 | 0.954 | 88.00 | 83.5799 | 4.42006 |
| PLEASANT |  |  |  |  |  |  |  |  |
| GROVE ISD | -0.071 | 6,787 | 6,926.54 | -139.536 | 0.588 | 96.00 | 93.2765 | 2.72346 |
| PLEASANTON ISD | -0.784 | 7,517 | 9,058.86 | -1,541.862 | 0.277 | 86.00 | 84.7149 | 1.28514 |
| POINT ISABEL ISD | -1.682 | 8,726 | 12,032.70 | -3,306.698 | 0.813 | 84.00 | 80.2319 | 3.76815 |


| District Name | Std. <br> Residual | TOTAL EXPEND ITURES PER PUPIL (20022003) | Predicted Value | Residual | Std. <br> Residual | ALL GRADES READIN G 2004 | Predicted Value | Residual |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PORT ARTHUR |  |  |  |  |  |  |  |  |
| ISD | -0.110 | 7,808 | 8,024.91 | -216.912 | 0.051 | 77.00 | 76.7626 | 0.23743 |
| POST ISD | -0.417 | 9,045 | 9,864.34 | -819.342 | 0.783 | 89.00 | 85.3712 | 3.62881 |
| POTTSBORO ISD | -0.139 | 8,292 | 8,565.34 | -273.343 | 0.163 | 94.00 | 93.2456 | 0.75440 |
| PRAIRILAND ISD | -0.846 | 7,217 | 8,879.87 | -1,662.870 | 0.863 | 93.00 | 89.0014 | 3.99856 |
| PROSPER ISD | -0.049 | 7,918 | 8,013.44 | -95.442 | 0.103 | 94.00 | 93.5209 | 0.47912 |
| QUANAH ISD | -0.466 | 9,376 | 10,292.80 | -916.798 | 1.024 | 92.00 | 87.2555 | 4.74455 |
| QUEEN CITY ISD | -1.059 | 7,713 | 9,793.67 | -2,080.669 | 1.227 | 93.00 | 87.3126 | 5.68737 |
| RAINS ISD | -0.550 | 7,848 | 8,928.96 | -1,080.961 | 0.117 | 90.00 | 89.4579 | 0.54211 |
| RANKIN ISD REAGAN COUNTY | -0.554 | 14,580 | 15,668.28 | -1,088.278 | 1.666 | 97.00 | 89.2796 | 7.72035 |
| ISD | -0.255 | 10,440 | 10,940.77 | -500.770 | 0.242 | 87.00 | 85.8794 | 1.12062 |
| RED LICK ISD | -0.720 | 5,825 | 7,240.81 | -1,415.807 | 0.964 | 98.00 | 93.5330 | 4.46699 |
| RED OAK ISD | -0.271 | 6,839 | 7,370.96 | -531.955 | 0.074 | 92.00 | 91.6574 | 0.34265 |
| REFUGIO ISD | -0.547 | 9,016 | 10,090.39 | -1,074.385 | 0.061 | 86.00 | 85.7158 | 0.28423 |
| RICARDO ISD | -0.741 | 7,891 | 9,346.73 | -1,455.734 | 2.442 | 95.00 | 83.6840 | 11.31597 |
| RICE ISD | -0.618 | 7,329 | 8,544.05 | -1,215.048 | 0.001 | 87.00 | 86.9963 | 0.00370 |
| RICHARDS ISD | -0.926 | 7,368 | 9,187.98 | -1,819.979 | 0.925 | 91.00 | 86.7112 | 4.28881 |
| RICHARDSON ISD | -0.119 | 8,160 | 8,394.37 | -234.369 | 0.423 | 89.00 | 87.0400 | 1.95998 |
| RIESEL ISD | -0.276 | 7,632 | 8,174.53 | -542.531 | 0.343 | 93.00 | 91.4096 | 1.59035 |
| RIO HONDO ISD | -0.025 | 9,249 | 9,297.70 | -48.697 | 0.058 | 80.00 | 79.7324 | 0.26760 |
| RIVERCREST ISD | -0.451 | 7,502 | 8,387.76 | -885.759 | 0.864 | 93.00 | 88.9934 | 4.00664 |
| ROCKWALL ISD | -0.012 | 7,439 | 7,462.71 | -23.711 | 0.235 | 94.00 | 92.9111 | 1.08892 |
| ROGERS ISD | -0.064 | 7,817 | 7,943.43 | -126.430 | 0.967 | 94.00 | 89.5167 | 4.48328 |
| ROOSEVELT ISD | -0.420 | 8,335 | 9,160.08 | -825.081 | 0.895 | 88.00 | 83.8504 | 4.14964 |
| ROSEBUD-LOTT |  |  |  |  |  |  |  |  |
| ISD | -0.357 | 7,623 | 8,324.14 | -701.140 | 0.044 | 86.00 | 85.7981 | 0.20189 |
| ROUND TOP- |  |  |  |  |  |  |  |  |
| CARMINE ISD | -0.461 | 9,972 | 10,877.23 | -905.231 | 0.872 | 97.00 | 92.9605 | 4.03950 |
| ROYAL ISD | -0.089 | 8,436 | 8,611.42 | -175.420 | 0.119 | 80.00 | 79.4500 | 0.54999 |
| ROYSE CITY ISD | -0.082 | 7,694 | 7,855.55 | -161.545 | 0.123 | 90.00 | 89.4300 | 0.56998 |
| SABINAL ISD | -0.371 | 8,708 | 9,436.85 | -728.847 | 0.635 | 86.00 | 83.0570 | 2.94302 |
| SALTILLO ISD | -0.748 | 8,199 | 9,669.45 | -1,470.454 | 1.099 | 93.00 | 87.9078 | 5.09224 |
| SAM RAYBURN |  |  |  |  |  |  |  |  |
| ISD | -0.464 | 7,372 | 8,284.35 | -912.351 | 1.281 | 96.00 | 90.0630 | 5.93703 |
| SAN BENITO |  |  |  |  |  |  |  |  |
| CONS ISD | -0.516 | 7,727 | 8,741.36 | -1,014.363 | 0.441 | 81.00 | 78.9545 | 2.04552 |
| SAN ISIDRO ISD | -0.316 | 12,137 | 12,757.45 | -620.453 | 2.133 | 91.00 | 81.1125 | 9.88751 |
| SAN MARCOS |  |  |  |  |  |  |  |  |
| CONS ISD | -0.803 | 7,671 | 9,249.75 | -1,578.755 | 0.299 | 85.00 | 83.6130 | 1.38701 |
| SANDS CISD | -0.199 | 10,188 | 10,579.61 | -391.614 | 1.667 | 93.00 | 85.2728 | 7.72719 |
| SCHULENBURG |  |  |  |  |  |  |  |  |
| ISD | -0.283 | 8,158 | 8,713.99 | -555.993 | 2.112 | 96.00 | 86.2116 | 9.78836 |
| SEMINOLE ISD | -1.438 | 9,870 | 12,697.23 | -2,827.228 | 0.454 | 90.00 | 87.8972 | 2.10279 |
| SHALLOWATER |  |  |  |  |  |  |  |  |
| ISD | 0.000 | 7,724 | 7,724.00 | -0.003 | 0.257 | 90.00 | 88.8104 | 1.18957 |
| SHARYLAND ISD | -0.308 | 6,986 | 7,592.03 | -606.025 | 0.691 | 87.00 | 83.7979 | 3.20209 |
| SHERMAN ISD | -0.573 | 7,560 | 8,685.97 | -1,125.967 | 0.458 | 89.00 | 86.8794 | 2.12056 |



| District Name | Std. <br> Residual | $\begin{array}{r} \hline \text { TOTAL } \\ \text { ITPEND } \\ \text { ITURES } \\ \text { PER } \\ \text { PUPIL } \\ (2002- \\ 2003) \\ \hline \end{array}$ | Predicted Value | Residual | Std. <br> Residual | ALL GRADES READIN G 2004 | Predicted Value | Residual |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WEBB CONS ISD | -0.041 | 20,119 | 20,200.26 | -81.261 | 1.735 | 95.00 | 86.9582 | 8.04183 |
| WESLACO ISD | -0.326 | 7,882 | 8,523.39 | -641.391 | 0.766 | 82.00 | 78.4502 | 3.54984 |
| WEST ISD | -0.801 | 7,384 | 8,957.66 | -1,573.660 | 0.576 | 94.00 | 91.3293 | 2.67067 |
| WEST RUSK ISD | -0.124 | 8,543 | 8,786.54 | -243.535 | 0.412 | 88.00 | 86.0897 | 1.91032 |
| WEST SABINE ISD | -0.750 | 7,758 | 9,232.78 | -1,474.777 | 0.796 | 91.00 | 87.3084 | 3.69160 |
| WHARTON ISD | -0.550 | 7,067 | 8,147.43 | -1,080.431 | 0.210 | 83.00 | 82.0281 | 0.97189 |
| WHEELER ISD | -0.154 | 8,248 | 8,550.15 | -302.148 | 1.744 | 95.00 | 86.9164 | 8.08359 |
| WHITE OAK ISD WHITE | -0.202 | 6,530 | 6,926.13 | -396.133 | 0.573 | 95.00 | 92.3439 | 2.65609 |
| SETTLEMENT ISD WHITEWRIGHT | -0.457 | 6,887 | 7,784.53 | -897.533 | 0.049 | 89.00 | 88.7745 | 0.22553 |
| ISD <br> WICHITA FALLS | -0.321 | 7,493 | 8,123.41 | -630.412 | 0.656 | 93.00 | 89.9580 | 3.04200 |
| ISD | -0.432 | 7,329 | 8,177.58 | -848.578 | 0.402 | 88.00 | 86.1358 | 1.86422 |
| WINNSBORO ISD | -1.109 | 6,451 | 8,630.02 | -2,179.021 | 0.628 | 93.00 | 90.0889 | 2.91112 |
| WODEN ISD | -0.724 | 7,166 | 8,589.24 | -1,423.237 | 0.425 | 92.00 | 90.0303 | 1.96967 |
| WOODVILLE ISD | -0.108 | 8,699 | 8,911.15 | -212.152 | 0.201 | 85.00 | 84.0704 | 0.92959 |
| WYLIE ISD | -0.436 | 6,186 | 7,042.52 | -856.522 | 0.131 | 95.00 | 94.3935 | 0.60650 |
| YANTIS ISD | -0.824 | 7,979 | 9,598.95 | -1,619.949 | 0.663 | 93.00 | 89.9289 | 3.07114 |
| YOAKUM ISD | -0.221 | 8,048 | 8,481.83 | -433.834 | 0.578 | 88.00 | 85.3191 | 2.68089 |
| YORKTOWN ISD | -0.356 | 7,274 | 7,973.83 | -699.827 | 0.369 | 89.00 | 87.2914 | 1.70858 |
| YSLETA ISD | -0.359 | 7,338 | 8,043.15 | -705.146 | 0.883 | 84.00 | 79.9094 | 4.09064 |

## APPENDIX C

MODIFIED QUADRIFORM FORMATION
DISTRICT COMPLETION RATE
WITHOUT G.E.D. 2003
QUADRANT I
SCHOOL DISTRICTS



| District Name | TOTAL |  |  | DISTRIC |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | T ${ }^{\text {T }}$ |  |  |  |  |
|  | EXPEND |  |  |  |  |  |  |  |
|  | ITURES |  |  |  |  | TION |  |  |
|  |  | PER |  |  |  | RATE |  |  |
|  |  | PUPIL |  |  |  | W/O |  |  |
|  | Std. | (2002- | Predicted |  | Std. | GED | Predicted |  |
|  | Residual | 2003) | Value | Residual | Residual | 2003 | Value | Residual |
| EAST BERNARD |  |  |  |  |  |  |  |  |
| ISD | -0.115 | 7,604 | 7,829.62 | -225.621 | 1.083 | 100.00 | 94.4733 | 5.52668 |
| EDCOUCH-ELSA |  |  |  |  |  |  |  |  |
| ISD | -0.246 | 8,209 | 8,693.36 | -484.357 | 0.002 | 92.10 | 92.0909 | 0.00909 |
| EDINBURG |  |  |  |  |  |  |  |  |
| CONSOLIDATED | -0.138 | 8,263 | 8,534.95 | -271.955 | 0.218 | 92.60 | 91.4846 | 1.11544 |
| EDNA ISD | -0.470 | 6,880 | 7,803.64 | -923.645 | 0.492 | 96.30 | 93.7896 | 2.51036 |
| EL CAMPO ISD | -0.739 | 7,002 | 8,453.63 | -1,451.627 | 0.776 | 97.20 | 93.2399 | 3.96009 |
| ELKHART ISD | -0.766 | 7,398 | 8,903.12 | -1,505.123 | 0.639 | 98.70 | 95.4391 | 3.26092 |
| ELYSIAN FIELDS |  |  |  |  |  |  |  |  |
| ISD | -0.452 | 7,423 | 8,310.75 | -887.747 | 0.828 | 98.90 | 94.6719 | 4.22814 |
| ENNIS ISD | -0.500 | 7,798 | 8,779.83 | -981.833 | 0.200 | 94.60 | 93.5778 | 1.02218 |
| EULA ISD | -0.218 | 8,962 | 9,391.06 | -429.064 | 0.429 | 97.80 | 95.6078 | 2.19219 |
| EVADALE ISD | -0.396 | 12,030 | 12,808.20 | -778.202 | 0.779 | 100.00 | 96.0212 | 3.97884 |
| EVANT ISD | -0.539 | 7,279 | 8,338.91 | -1,059.913 | 0.967 | 100.00 | 95.0650 | 4.93496 |
| FABENS ISD | -0.139 | 8,437 | 8,709.91 | -272.910 | 0.434 | 94.40 | 92.1863 | 2.21366 |
| FAIRFIELD ISD | -1.413 | 8,350 | 11,127.89 | -2,777.890 | 0.102 | 94.80 | 94.2791 | 0.52094 |
| FARWELL ISD | -0.035 | 8,776 | 8,844.97 | -68.968 | 1.054 | 100.00 | 94.6178 | 5.38216 |
| FERRIS ISD | -0.971 | 6,697 | 8,605.75 | -1,908.746 | 0.161 | 94.60 | 93.7775 | 0.82253 |
| FLORESVILLE ISD | -0.431 | 7,567 | 8,414.79 | -847.790 | 0.089 | 94.20 | 93.7479 | 0.45212 |
| FLOUR BLUFF ISD | -0.666 | 6,951 | 8,260.36 | -1,309.361 | 0.215 | 96.00 | 94.9009 | 1.09908 |
| FOLLETT ISD | -0.287 | 10,376 | 10,940.57 | -564.572 | 0.819 | 100.00 | 95.8174 | 4.18260 |
| FORSAN ISD | -0.499 | 7,206 | 8,187.54 | -981.543 | 0.192 | 96.10 | 95.1223 | 0.97767 |
| FRANKSTON ISD | -0.341 | 7,655 | 8,325.80 | -670.802 | 0.292 | 96.30 | 94.8107 | 1.48927 |
| FREDERICKSBUR |  |  |  |  |  |  |  |  |
| G ISD | -0.628 | 7,909 | 9,143.92 | -1,234.916 | 0.554 | 97.30 | 94.4717 | 2.82826 |
| FRENSHIP ISD | -0.399 | 6,986 | 7,769.56 | -783.556 | 0.324 | 96.30 | 94.6465 | 1.65352 |
| FRIONA ISD | -0.681 | 7,320 | 8,658.84 | -1,338.841 | 0.568 | 96.10 | 93.2003 | 2.89966 |
| FT STOCKTON ISD | -0.565 | 9,012 | 10,123.35 | -1,111.353 | 0.229 | 94.20 | 93.0333 | 1.16667 |
| GALENA PARK |  |  |  |  |  |  |  |  |
| ISD | -0.190 | 7,813 | 8,187.11 | -374.107 | 0.562 | 94.70 | 91.8322 | 2.86783 |
| GARLAND ISD | -0.047 | 6,623 | 6,716.09 | -93.092 | 0.587 | 95.60 | 92.6021 | 2.99788 |
| GIDDINGS ISD | -0.155 | 7,513 | 7,817.48 | -304.484 | 0.772 | 97.50 | 93.5607 | 3.93927 |
| GILMER ISD | -0.739 | 7,344 | 8,795.81 | -1,451.815 | 0.035 | 94.70 | 94.5193 | 0.18071 |
| GLASSCOCK |  |  |  |  |  |  |  |  |
| COUNTY ISD | -1.738 | 10,289 | 13,706.04 | -3,417.036 | 1.054 | 100.00 | 94.6195 | 5.38051 |
| GLEN ROSE ISD | -2.453 | 8,601 | 13,423.37 | -4,822.373 | 0.457 | 97.60 | 95.2692 | 2.33081 |
| GOLDTHWAITE |  |  |  |  |  |  |  |  |
| ISD | -0.317 | 8,391 | 9,014.93 | -623.934 | 0.959 | 100.00 | 95.1047 | 4.89528 |
| GOLIAD ISD | -0.453 | 8,653 | 9,543.56 | -890.559 | 0.935 | 99.00 | 94.2253 | 4.77469 |
| GONZALES ISD | -0.591 | 7,235 | 8,397.06 | -1,162.064 | 0.436 | 95.60 | 93.3761 | 2.22393 |
| GORMAN ISD | -0.469 | 8,797 | 9,718.76 | -921.757 | 1.047 | 100.00 | 94.6538 | 5.34616 |
| GRAFORD ISD | -0.822 | 10,668 | 12,284.68 | -1,616.682 | 0.852 | 100.00 | 95.6489 | 4.35108 |
| GRAHAM ISD | -0.529 | 7,090 | 8,129.94 | -1,039.944 | 0.740 | 98.90 | 95.1198 | 3.78022 |
| GRANGER ISD | -0.073 | 8,221 | 8,363.86 | -142.858 | 0.524 | 97.20 | 94.5271 | 2.67286 |
| GRAPE CREEK |  |  |  |  |  |  |  |  |
| ISD | -0.363 | 7,862 | 8,576.39 | -714.388 | 1.011 | 100.00 | 94.8392 | 5.16080 |







|  | TOTAL |  |  | DISTRIC |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | T |  |  |  |  |
|  | EXPEND |  |  | COMPLE |  |  |  |  |
|  | ITURES |  |  |  |  | TION |  |  |
|  |  | PER |  |  |  | RATE |  |  |
|  |  | PUPIL |  |  |  | W/O |  |  |
|  | Std. | (2002- | Predicted |  | Std. | GED | Predicted |  |
| District Name | Residual | 2003) | Value | Residual | Residual | 2003 | Value | Residual |
| WHITEWRIGHT |  |  |  |  |  |  |  |  |
| ISD | -0.321 | 7,493 | 8,123.41 | -630.412 | 0.135 | 95.90 | 95.2089 | 0.69112 |
| WILLS POINT ISD | -0.428 | 7,396 | 8,237.42 | -841.422 | 0.520 | 97.60 | 94.9450 | 2.65500 |
| WINNSBORO ISD | -1.109 | 6,451 | 8,630.02 | -2,179.021 | 0.111 | 96.00 | 95.4314 | 0.56855 |
| WINONA ISD | -0.098 | 7,733 | 7,926.29 | -193.292 | 0.117 | 94.90 | 94.3050 | 0.59499 |
| WYLIE ISD | -0.436 | 6,186 | 7,042.52 | -856.522 | 0.427 | 97.80 | 95.6206 | 2.17937 |
| YOAKUM ISD | -0.221 | 8,048 | 8,481.83 | -433.834 | 0.153 | 94.70 | 93.9168 | 0.78321 |
| YORKTOWN ISD | -0.356 | 7,274 | 7,973.83 | -699.827 | 1.114 | 100.00 | 94.3109 | 5.68910 |
| YSLETA ISD | -0.359 | 7,338 | 8,043.15 | -705.146 | 0.421 | 93.00 | 90.8498 | 2.15016 |
| ZAVALLA ISD | -0.512 | 7,913 | 8,918.62 | -1,005.616 | 0.168 | 96.60 | 95.7413 | 0.85869 |
| ZEPHYR ISD | -0.637 | 8,336 | 9,587.97 | -1,251.974 | 0.834 | 100.00 | 95.7408 | 4.25918 |

## APPENDIX D

# MODIFIED QUADRIFORM FORMATION 

## DISTRICT MEAN SAT 2003

 QUADRANT I SCHOOL DISTRICTSTOTAL

| District Name | Std. <br> Residual | TOTAL <br> XPEND <br> TURES <br> PER <br> PUPIL <br> (2002- <br> 2003) | Predicted Value | Residual | Std. <br> Residual | $\begin{array}{r} \text { DISTRIC } \\ \text { T MEAN } \\ \text { SAT } \\ 2003 \\ \hline \end{array}$ | Predicted Value | Residual |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ABERNATHY ISD | -0.228 | 8,712 | 9,160.68 | -448.682 | 0.721 | 1,014.00 | 966.9569 | 47.04305 |
| ABILENE ISD | -0.695 | 7,345 | 8,711.86 | -1,366.856 | 0.574 | 1,001.00 | 963.5070 | 37.49300 |
| ACADEMY ISD ALAMO HEIGHTS | -0.382 | 7,651 | 8,401.94 | -750.936 | 0.777 | 1,067.00 | 1,016.2555 | 50.74449 |
| ISD | -0.430 | 8,725 | 9,569.40 | -844.399 | 1.494 | 1,130.00 | 1,032.4842 | 97.51575 |
| ALICE ISD | -0.315 | 7,766 | 8,385.59 | -619.592 | 0.124 | 933.00 | 924.8895 | 8.11045 |
| ALPINE ISD | -0.792 | 7,142 | 8,698.50 | -1,556.502 | 0.509 | 988.00 | 954.7832 | 33.21684 |
| ALVIN ISD | -0.283 | 7,334 | 7,890.65 | -556.650 | 0.394 | 1,001.00 | 975.2746 | 25.72536 |
| AMARILLO ISD | -0.492 | 7,093 | 8,060.60 | -967.604 | 1.275 | 1,045.00 | 961.7336 | 83.26637 |
| ANGLETON ISD | -0.965 | 6,551 | 8,447.70 | -1,896.703 | 0.442 | 1,010.00 | 981.1546 | 28.84544 |
| ANSON ISD | -0.490 | 8,229 | 9,191.72 | -962.720 | 0.328 | 973.00 | 951.5875 | 21.41245 |
| ANTHONY ARANSAS | -0.023 | 9,904 | 9,949.49 | -45.494 | 0.985 | 921.00 | 856.7184 | 64.28161 |
| COUNTY ISD | -0.934 | 8,193 | 10,029.08 | -1,836.081 | 0.427 | 999.00 | 971.1007 | 27.89927 |
| ARP ISD | -0.328 | 7,695 | 8,340.45 | -645.445 | 0.314 | 969.00 | 948.5113 | 20.48871 |
| ATHENS ISD | -0.381 | 7,633 | 8,382.33 | -749.326 | 0.998 | 1,016.00 | 950.8454 | 65.15462 |
| AUSTIN ISD | -0.127 | 8,415 | 8,665.28 | -250.280 | 1.019 | 1,045.00 | 978.4891 | 66.51086 |
| AXTELL ISD | -0.643 | 9,106 | 10,370.26 | -1,264.258 | 0.668 | 1,028.00 | 984.3723 | 43.62769 |
| BANGS ISD | -0.489 | 7,839 | 8,799.27 | -960.269 | 0.663 | 1,017.00 | 973.6957 | 43.30434 |
| BANQUETE ISD | -0.043 | 8,781 | 8,864.74 | -83.744 | 1.299 | 1,018.00 | 933.2071 | 84.79294 |
| BASTROP ISD | -0.422 | 7,582 | 8,410.60 | -828.601 | 0.132 | 978.00 | 969.3504 | 8.64963 |
| BAY CITY ISD | -0.248 | 8,080 | 8,567.06 | -487.060 | 0.509 | 972.00 | 938.7529 | 33.24711 |
| BEEVILLE ISD | -0.305 | 7,692 | 8,291.36 | -599.358 | 0.809 | 975.00 | 922.1738 | 52.82624 |
| BELLVILLE ISD | -0.215 | 7,377 | 7,799.79 | -422.789 | 0.507 | 1,039.00 | 1,005.8798 | 33.12023 |
| BELTON ISD | -0.384 | 7,553 | 8,308.73 | -755.725 | 0.905 | 1,037.00 | 977.9485 | 59.05152 |
| BIG SPRING ISD | -0.620 | 7,188 | 8,407.27 | -1,219.266 | 1.310 | 1,025.00 | 939.5090 | 85.49096 |
| BIRDVILLE ISD | -0.371 | 7,288 | 8,016.83 | -728.834 | 0.034 | 1,017.00 | 1,014.7765 | 2.22345 |
| BOERNE ISD | -0.256 | 7,862 | 8,365.75 | -503.747 | 0.365 | 1,059.00 | 1,035.1853 | 23.81471 |
| BONHAM ISD | -0.737 | 7,447 | 8,895.70 | -1,448.700 | 0.192 | 985.00 | 972.4945 | 12.50546 |
| BORGER ISD | -0.625 | 6,827 | 8,055.49 | -1,228.489 | 2.453 | 1,144.00 | 983.8444 | 160.15557 |
| BOWIE ISD | -0.445 | 7,373 | 8,246.80 | -873.800 | 0.211 | 1,002.00 | 988.2160 | 13.78400 |
| BRAZOSPORT ISD BRECKENRIDGE | -1.326 | 6,904 | 9,510.30 | -2,606.302 | 0.750 | 1,030.00 | 981.0505 | 48.94952 |
| ISD | -0.836 | 7,425 | 9,067.88 | -1,642.881 | 0.569 | 989.00 | 951.8631 | 37.13687 |
| BRENHAM ISD | -0.108 | 7,815 | 8,026.95 | -211.945 | 0.792 | 1,027.00 | 975.2794 | 51.72056 |
| BRIDGEPORT ISD BROOKS COUNTY | -0.711 | 7,411 | 8,808.66 | -1,397.657 | 0.411 | 1,022.00 | 995.1767 | 26.82332 |
| ISD | -0.789 | 9,513 | 11,062.99 | -1,549.993 | 0.124 | 879.00 | 870.9318 | 8.06823 |
| BROWNFIELD ISD BROWNSVILLE | -0.634 | 8,030 | 9,275.40 | -1,245.396 | 0.032 | 932.00 | 929.9095 | 2.09049 |
| ISD | -0.361 | 8,053 | 8,762.28 | -709.283 | 0.195 | 892.00 | 879.2800 | 12.72003 |
| BRYAN ISD | -0.235 | 7,524 | 7,986.80 | -462.797 | 1.248 | 1,016.00 | 934.4944 | 81.50559 |



| District Name | TOTAL  <br> EXPEND  <br> ITURES  <br>  PER <br> Std. (2002- <br> Residual $2003)$ |  | Predicted Value | Residual |  DISTRIC <br>  T MEAN <br> Std. SAT <br> Residual 2003 |  | Predicted Value | Residual |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DRIPPING |  |  |  |  |  |  |  |  |
| SPRINGS ISD | -0.253 | 7,595 | 8,091.41 | -496.406 | 0.724 | 1,103.00 | 1,055.7582 | 47.24181 |
| EANES ISD | -0.045 | 9,555 | 9,643.77 | -88.772 | 1.429 | 1,188.00 | 1,094.6775 | 93.32246 |
| EASTLAND ISD | -0.460 | 7,547 | 8,450.67 | -903.674 | 0.263 | 999.00 | 981.8203 | 17.17965 |
| ECTOR COUNTY |  |  |  |  |  |  |  |  |
| ISD <br> EDINBURG | -0.901 | 6,336 | 8,106.35 | -1,770.347 | 0.378 | 975.00 | 950.3089 | 24.69114 |
| CONSOLIDATED | -0.138 | 8,263 | 8,534.95 | -271.955 | 0.303 | 907.00 | 887.2424 | 19.75756 |
| EDNA ISD | -0.470 | 6,880 | 7,803.64 | -923.645 | 0.270 | 981.00 | 963.4016 | 17.59836 |
| EL CAMPO ISD | -0.739 | 7,002 | 8,453.63 | -1,451.627 | 0.816 | 991.00 | 937.7596 | 53.24036 |
| ELKHART ISD | -0.766 | 7,398 | 8,903.12 | -1,505.123 | 0.201 | 993.00 | 979.8874 | 13.11263 |
| ENNIS ISD | -0.500 | 7,798 | 8,779.83 | -981.833 | 1.749 | 1,070.00 | 955.8072 | 114.19281 |
| ERA ISD | -0.149 | 7,107 | 7,400.02 | -293.018 | 0.349 | 1,030.00 | 1,007.2075 | 22.79249 |
| EUSTACE ISD | -1.470 | 7,063 | 9,951.93 | -2,888.935 | 0.889 | 1,019.00 | 960.9374 | 58.06262 |
| FAIRFIELD ISD | -1.413 | 8,350 | 11,127.89 | -2,777.890 | 0.013 | 990.00 | 989.1371 | 0.86286 |
| FARMERSVILLE |  |  |  |  |  |  |  |  |
| ISD | -0.401 | 6,848 | 7,636.62 | -788.623 | 0.203 | 1,010.00 | 996.7227 | 13.27735 |
| FLOUR BLUFF ISD | -0.666 | 6,951 | 8,260.36 | -1,309.361 | 0.581 | 1,026.00 | 988.0815 | 37.91847 |
| FRANKSTON ISD | -0.341 | 7,655 | 8,325.80 | -670.802 | 1.471 | 1,071.00 | 974.9396 | 96.06038 |
| FREDERICKSBUR |  |  |  |  |  |  |  |  |
| G ISD | -0.628 | 7,909 | 9,143.92 | -1,234.916 | 0.884 | 1,039.00 | 981.2883 | 57.71172 |
| GAINESVILLE ISD | -0.302 | 8,228 | 8,822.33 | -594.333 | 1.108 | 1,031.00 | 958.6857 | 72.31431 |
| GALVESTON ISD | -0.319 | 7,957 | 8,583.11 | -626.113 | 0.255 | 958.00 | 941.3285 | 16.67149 |
| GATESVILLE ISD | -0.940 | 6,455 | 8,303.39 | -1,848.391 | 0.322 | 1,019.00 | 997.9512 | 21.04885 |
| GEORGE WEST |  |  |  |  |  |  |  |  |
| ISD | -0.522 | 7,558 | 8,583.54 | -1,025.539 | 1.682 | 1,073.00 | 963.1701 | 109.82993 |
| GLEN ROSE ISD | -2.453 | 8,601 | 13,423.37 | -4,822.373 | 0.102 | 1,004.00 | 997.3311 | 6.66893 |
| GOLDTHWAITE |  |  |  |  |  |  |  |  |
| ISD | -0.317 | 8,391 | 9,014.93 | -623.934 | 0.933 | 1,054.00 | 993.0789 | 60.92109 |
| GOLIAD ISD | -0.453 | 8,653 | 9,543.56 | -890.559 | 0.467 | 1,008.00 | 977.5188 | 30.48122 |
| GONZALES ISD | -0.591 | 7,235 | 8,397.06 | -1,162.064 | 0.817 | 983.00 | 929.6454 | 53.35463 |
| GOOSE CREEK |  |  |  |  |  |  |  |  |
| CISD | -0.266 | 8,144 | 8,667.19 | -523.188 | 0.451 | 978.00 | 948.5580 | 29.44199 |
| GRAHAM ISD | -0.529 | 7,090 | 8,129.94 | -1,039.944 | 0.466 | 1,012.00 | 981.5767 | 30.42335 |
| GRANBURY ISD | -0.583 | 7,611 | 8,756.56 | -1,145.563 | 0.328 | 1,022.00 | 1,000.5995 | 21.40050 |
| GRAND PRAIRIE |  |  |  |  |  |  |  |  |
| ISD | -0.093 | 7,698 | 7,881.47 | -183.466 | 0.283 | 981.00 | 962.4946 | 18.50536 |
| GRAND SALINE |  |  |  |  |  |  |  |  |
| ISD | -1.025 | 5,950 | 7,964.41 | -2,014.410 | 1.029 | 1,042.00 | 974.8106 | 67.18944 |
| GRAPE CREEK |  |  |  |  |  |  |  |  |
| ISD | -0.363 | 7,862 | 8,576.39 | -714.388 | 0.182 | 967.00 | 955.1186 | 11.88143 |
| GRAPELAND ISD | -1.100 | 6,770 | 8,932.26 | -2,162.260 | 0.123 | 960.00 | 951.9753 | 8.02471 |
| GRAPEVINECOLLEYVILLE |  |  |  |  |  |  |  |  |
| ISD | -0.115 | 7,777 | 8,003.89 | -226.892 | 0.229 | 1,083.00 | 1,068.0392 | 14.96077 |
| GREENVILLE ISD | -0.184 | 7,449 | 7,810.26 | -361.263 | 0.548 | 996.00 | 960.2379 | 35.76214 |


| District Name | TOTALEXPENDITURESPERPtd.PUPILResidual |  | Predicted Value | Residual |  DISTRIC <br>  T MEAN <br> Std. SAT <br> Residual 2003 |  | Predicted Value | Residual |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| GREGORY- |  |  |  |  |  |  |  |  |
| PORTLAND ISD | -0.504 | 6,669 | 7,659.65 | -990.654 | 0.358 | 1,022.00 | 998.6157 | 23.38433 |
| GROESBECK ISD | -0.934 | 8,384 | 10,220.82 | -1,836.815 | 0.601 | 1,004.00 | 964.7604 | 39.23963 |
| GROVETON ISD | -0.125 | 8,403 | 8,648.85 | -245.846 | 0.308 | 981.00 | 960.8859 | 20.11415 |
| HALLSVILLE ISD HARLINGEN | -0.793 | 7,063 | 8,621.84 | -1,558.836 | 0.063 | 1,000.00 | 995.8759 | 4.12414 |
| CONS ISD | -0.362 | 7,656 | 8,367.03 | -711.032 | 0.300 | 936.00 | 916.3923 | 19.60768 |
| HAWKINS ISD | -0.396 | 8,822 | 9,601.33 | -779.327 | 0.245 | 987.00 | 971.0072 | 15.99280 |
| HAWLEY ISD | -0.500 | 7,518 | 8,501.77 | -983.771 | 0.822 | 1,038.00 | 984.3292 | 53.67082 |
| HEMPHILL ISD | -0.136 | 8,958 | 9,226.19 | -268.192 | 0.704 | 989.00 | 943.0619 | 45.93808 |
| HENDERSON ISD | -0.563 | 7,577 | 8,683.52 | -1,106.521 | 0.926 | 1,027.00 | 966.5705 | 60.42949 |
| HEREFORD ISD | -0.820 | 7,355 | 8,966.77 | -1,611.768 | 1.336 | 1,002.00 | 914.7536 | 87.24641 |
| HICO ISD | -0.573 | 7,508 | 8,633.61 | -1,125.605 | 0.552 | 991.00 | 954.9819 | 36.01815 |
| HIGHLAND PARK |  |  |  |  |  |  |  |  |
| ISD <br> HIGHLAND PARK | -1.688 | 8,203 | 11,521.73 | -3,318.727 | 1.602 | 1,187.00 | 1,082.3936 | 104.60640 |
| ISD | -1.294 | 9,208 | 11,752.34 | -2,544.342 | 0.282 | 1,006.00 | 987.6053 | 18.39475 |
| HOWE ISD | -0.076 | 7,591 | 7,740.50 | -149.496 | 1.374 | 1,113.00 | 1,023.2770 | 89.72300 |
| HUDSON ISD <br> HUGHES SPRINGS | -0.464 | 7,062 | 7,974.01 | -912.015 | 0.795 | 1,003.00 | 951.1120 | 51.88802 |
| ISD | -0.608 | 7,655 | 8,850.23 | -1,195.228 | 0.343 | 976.00 | 953.6298 | 22.37018 |
| HUNTSVILLE ISD | -0.302 | 7,079 | 7,672.33 | -593.326 | 0.567 | 990.00 | 952.9754 | 37.02459 |
| HURST-EULESSBEDFORD ISD | -0.266 | 7,622 | 8,145.52 | -523.519 | 0.035 | 1,024.00 | 1,021.6953 | 2.30472 |
| IDALOU ISD | -0.168 | 7,726 | 8,055.54 | -329.539 | 0.796 | 1,038.00 | 986.0299 | 51.97012 |
| INGLESIDE ISD IOWA PARK CONS | -1.406 | 6,278 | 9,042.44 | -2,764.442 | 0.676 | 1,048.00 | 1,003.8537 | 44.14626 |
| ISD | -0.551 | 6,517 | 7,601.00 | -1,083.997 | 1.555 | 1,107.00 | 1,005.4705 | 101.52952 |
| IRVING ISD JACKSONVILLE | -0.233 | 7,554 | 8,012.94 | -458.939 | 0.579 | 994.00 | 956.2098 | 37.79024 |
| ISD | -0.402 | 7,618 | 8,408.60 | -790.597 | 2.322 | 1,075.00 | 923.4035 | 151.59646 |
| JEFFERSON ISD | -0.462 | 8,380 | 9,288.59 | -908.592 | 1.086 | 1,008.00 | 937.0999 | 70.90013 |
| JIM NED CONS |  |  |  |  |  |  |  |  |
| ISD | -0.076 | 7,753 | 7,902.11 | -149.105 | 0.716 | 1,050.00 | 1,003.2369 | 46.76310 |
| JOURDANTON ISD | -0.701 | 7,667 | 9,044.04 | -1,377.037 | 1.020 | 1,008.00 | 941.4306 | 66.56944 |
| KARNES CITY ISD | -0.281 | 8,109 | 8,660.89 | -551.894 | 1.259 | 1,023.00 | 940.8030 | 82.19704 |
| KEMP ISD | -0.326 | 7,549 | 8,190.24 | -641.243 | 0.649 | 1,027.00 | 984.6302 | 42.36983 |
| KERENS ISD | -0.214 | 7,910 | 8,331.01 | -421.008 | 0.359 | 973.00 | 949.5782 | 23.42180 |
| KERRVILLE ISD | -0.567 | 7,694 | 8,808.03 | -1,114.025 | 0.730 | 1,025.00 | 977.3494 | 47.65060 |
| KIRBYVILLE CISD | -0.651 | 6,838 | 8,118.25 | -1,280.246 | 0.836 | 1,019.00 | 964.4024 | 54.59758 |
| LA FERIA ISD | -0.080 | 8,267 | 8,424.87 | -157.870 | 2.369 | 1,048.00 | 893.3235 | 154.67649 |
| LA GRANGE ISD | -0.701 | 7,241 | 8,618.10 | -1,377.098 | 0.678 | 1,025.00 | 980.7180 | 44.28197 |
| LA JOYA ISD | -0.390 | 7,894 | 8,659.88 | -765.884 | 0.462 | 905.00 | 874.8668 | 30.13321 |
| LA PORTE ISD | -0.274 | 8,709 | 9,246.89 | -537.890 | 0.036 | 1,009.00 | 1,006.6501 | 2.34993 |
| LA VEGA ISD | -0.478 | 7,679 | 8,619.29 | -940.288 | 0.398 | 950.00 | 924.0383 | 25.96165 |



|  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \text { TOTAL } \\ & \text { XPEND } \\ & \text { TURES } \end{aligned}$ |  |  |  |  |  |  |
| District Name | Std. <br> Residual | PER | Predicted Value | Residual | DISTRIC |  | Predicted | Residual |
|  |  | PUPIL |  |  |  | T MEAN |  |  |
|  |  | (2002- |  |  | Std. | SAT |  |  |
|  |  | 2003) |  |  | Residual | 2003 | Value |  |
| NECHES ISD | -0.720 | 7,488 | 8,903.79 | -1,415.792 | 2.481 | 1,162.00 | 1,000.0356 | 161.96442 |
| NEW BOSTON ISD | -0.821 | 6,960 | 8,573.39 | -1,613.386 | 1.158 | 1,058.00 | 982.3860 | 75.61404 |
| NEW BRAUNFELS |  |  |  |  |  |  |  |  |
| ISD | -0.366 | 7,361 | 8,081.01 | -720.008 | 0.194 | 1,005.00 | 992.3474 | 12.65255 |
| NEW DEAL ISD | -0.562 | 7,944 | 9,048.68 | -1,104.684 | 0.593 | 1,002.00 | 963.2969 | 38.70314 |
| NOCONA ISD | -0.229 | 8,624 | 9,073.59 | -449.591 | 0.374 | 993.00 | 968.6074 | 24.39260 |
| NORTH LAMAR |  |  |  |  |  |  |  |  |
| ISD | -0.918 | 6,323 | 8,126.83 | -1,803.834 | 0.474 | 1,037.00 | 1,006.0840 | 30.91596 |
| OLNEY ISD | -0.490 | 8,225 | 9,188.45 | -963.450 | 0.390 | 997.00 | 971.5662 | 25.43380 |
| ORANGE GROVE |  |  |  |  |  |  |  |  |
| ISD | -0.314 | 7,657 | 8,273.50 | -616.497 | 2.747 | 1,110.00 | 930.6327 | 179.36728 |
| PALESTINE ISD | -0.237 | 7,487 | 7,952.56 | -465.556 | 0.065 | 937.00 | 932.7620 | 4.23805 |
| PAMPA ISD | -0.540 | 7,256 | 8,316.82 | -1,060.824 | 0.901 | 1,035.00 | 976.2038 | 58.79619 |
| PARIS ISD | -0.086 | 7,937 | 8,106.01 | -169.011 | 2.116 | 1,077.00 | 938.8783 | 138.12167 |
| PASADENA ISD | -0.073 | 7,170 | 7,313.81 | -143.809 | 0.383 | 972.00 | 946.9718 | 25.02824 |
| PEARSALL ISD | -0.531 | 7,649 | 8,692.15 | -1,043.151 | 0.676 | 942.00 | 897.8651 | 44.13492 |
| PERRYTON ISD | -0.641 | 7,332 | 8,592.80 | -1,260.800 | 2.127 | 1,092.00 | 953.1484 | 138.85156 |
| PINE TREE ISD | -0.630 | 6,608 | 7,845.61 | -1,237.609 | 0.938 | 1,058.00 | 996.7351 | 61.26489 |
| PLAINVIEW ISD | -1.091 | 6,334 | 8,478.89 | -2,144.889 | 0.278 | 963.00 | 944.8734 | 18.12661 |
| PLEASANT |  |  |  |  |  |  |  |  |
| GROVE ISD | -0.071 | 6,787 | 6,926.54 | -139.536 | 1.082 | 1,114.00 | 1,043.3580 | 70.64201 |
| PLEASANTON ISD | -0.784 | 7,517 | 9,058.86 | -1,541.862 | 0.308 | 968.00 | 947.9194 | 20.08063 |
| PLEMONS- |  |  |  |  |  |  |  |  |
| STINNETT- |  |  |  |  |  |  |  |  |
| PHILLIPS CONS |  |  |  |  |  |  |  |  |
| ISD | -1.968 | 11,152 | 15,021.21 | -3,869.207 | 0.719 | 1,015.00 | 968.0592 | 46.94081 |
| PORT ARANSAS |  |  |  |  |  |  |  |  |
| ISD | -1.368 | 11,218 | 13,906.53 | -2,688.527 | 0.596 | 1,072.00 | 1,033.0688 | 38.93121 |
| POTEET ISD | -0.481 | 7,884 | 8,829.97 | -945.967 | 0.094 | 922.00 | 915.8604 | 6.13960 |
| POTTSBORO ISD | -0.139 | 8,292 | 8,565.34 | -273.343 | 0.105 | 1,033.00 | 1,026.1632 | 6.83681 |
| PROSPER ISD | -0.049 | 7,918 | 8,013.44 | -95.442 | 0.222 | 1,060.00 | 1,045.5385 | 14.46150 |
| QUEEN CITY ISD | -1.059 | 7,713 | 9,793.67 | -2,080.669 | 0.916 | 1,026.00 | 966.1689 | 59.83111 |
| RAINS ISD | -0.550 | 7,848 | 8,928.96 | -1,080.961 | 0.029 | 980.00 | 978.1214 | 1.87862 |
| RALLS ISD | -1.024 | 8,133 | 10,145.63 | -2,012.630 | 0.529 | 948.00 | 913.4657 | 34.53426 |
| RICE CONS ISD | -0.692 | 8,190 | 9,549.89 | -1,359.890 | 0.239 | 949.00 | 933.3888 | 15.61123 |
| RICHARDSON ISD | -0.119 | 8,160 | 8,394.37 | -234.369 | 0.776 | 1,067.00 | 1,016.3119 | 50.68805 |
| RIESEL ISD | -0.276 | 7,632 | 8,174.53 | -542.531 | 0.905 | 1,063.00 | 1,003.8980 | 59.10198 |
| RIO HONDO ISD | -0.025 | 9,249 | 9,297.70 | -48.697 | 0.412 | 923.00 | 896.1210 | 26.87899 |
| RIVER ROAD ISD | -0.488 | 7,034 | 7,992.58 | -958.578 | 0.720 | 1,032.00 | 985.0161 | 46.98392 |
| ROBSTOWN ISD | -0.512 | 8,581 | 9,586.47 | -1,005.466 | 1.224 | 956.00 | 876.0952 | 79.90479 |
| ROCKSPRINGS |  |  |  |  |  |  |  |  |
| ISD | -0.045 | 10,875 | 10,964.34 | -89.338 | 0.845 | 959.00 | 903.8459 | 55.15414 |
| ROCKWALL ISD | -0.012 | 7,439 | 7,462.71 | -23.711 | 0.373 | 1,067.00 | 1,042.6486 | 24.35140 |
| ROOSEVELT ISD | -0.420 | 8,335 | 9,160.08 | -825.081 | 0.297 | 945.00 | 925.6304 | 19.36956 |
| ROSEBUD-LOTT |  |  |  |  |  |  |  |  |
| ISD | -0.357 | 7,623 | 8,324.14 | -701.140 | 1.633 | 1,069.00 | 962.3705 | 106.62950 |


| District Name | TOTALEXPENDITURESPERPtd.PUPILResidual(2002-2003) |  | Predicted Value | Residual |  DISTRIC <br>  T MEAN <br> Std. SAT <br> Residual 2003 |  | Predicted Value | Residual |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ROUND TOPCARMINE ISD | -0.461 | 9,972 | 10,877.23 | -905.231 | 0.332 | 1,043.00 | 1,021.3473 | 21.65270 |
| RUSK ISD <br> S AND S CONS | -0.597 | 7,074 | 8,247.38 | -1,173.385 | 0.316 | 981.00 | 960.4010 | 20.59900 |
| ISD | -0.192 | 7,934 | 8,311.57 | -377.570 | 0.656 | 1,056.00 | 1,013.1560 | 42.84402 |
| SAINT JO ISD | -0.402 | 7,978 | 8,768.33 | -790.333 | 1.347 | 1,076.00 | 988.0414 | 87.95863 |
| SALADO ISD | -0.435 | 7,119 | 7,973.88 | -854.877 | 0.921 | 1,086.00 | 1,025.8593 | 60.14069 |
| SAN ANGELO ISD SAN FELIPE-DEL | -0.697 | 6,686 | 8,055.30 | -1,369.304 | 0.303 | 984.00 | 964.2143 | 19.78568 |
| RIO CONS ISD SAN MARCOS | -0.486 | 7,660 | 8,614.42 | -954.419 | 0.544 | 942.00 | 906.4652 | 35.53482 |
| CONS ISD | -0.803 | 7,671 | 9,249.75 | -1,578.755 | 0.635 | 980.00 | 938.5564 | 41.44357 |
| SANTO ISD SCHULENBURG | -0.225 | 8,593 | 9,034.99 | -441.994 | 0.375 | 1,009.00 | 984.4935 | 24.50651 |
| ISD | -0.283 | 8,158 | 8,713.99 | -555.993 | 0.652 | 1,011.00 | 968.4557 | 42.54430 |
| SEALY ISD | -0.323 | 7,479 | 8,114.83 | -635.828 | 0.584 | 1,014.00 | 975.8513 | 38.14873 |
| SEGUIN ISD | -0.414 | 7,890 | 8,703.19 | -813.189 | 0.592 | 987.00 | 948.3751 | 38.62487 |
| SHARYLAND IS | -0.308 | 6,986 | 7,592.03 | -606.025 | 0.485 | 987.00 | 955.3310 | 31.66900 |
| SHERMAN ISD | -0.573 | 7,560 | 8,685.97 | -1,125.967 | 1.211 | 1,055.00 | 975.9166 | 79.08340 |
| SHINER ISD | -0.006 | 8,570 | 8,580.83 | -10.829 | 0.802 | 1,033.00 | 980.6481 | 52.35191 |
| SIDNEY ISD | -0.003 | 10,062 | 10,067.40 | -5.399 | 0.886 | 1,024.00 | 966.1481 | 57.85189 |
| SIMMS ISD | -1.296 | 6,549 | 9,097.14 | -2,548.144 | 0.012 | 966.00 | 965.2293 | 0.77075 |
| SLATON ISD | -0.407 | 8,043 | 8,842.69 | -799.694 | 0.667 | 979.00 | 935.4607 | 43.53927 |
| SNYDER ISD SPRING BRANCH | -0.683 | 8,034 | 9,376.79 | -1,342.792 | 1.939 | 1,094.00 | 967.3817 | 126.61829 |
| ISD | -0.138 | 8,545 | 8,816.76 | -271.764 | 1.552 | 1,081.00 | 979.7020 | 101.29797 |
| SPRING HILL ISD | -0.205 | 6,338 | 6,740.00 | -401.999 | 0.783 | 1,072.00 | 1,020.8760 | 51.12405 |
| STAMFORD ISD | -0.099 | 8,652 | 8,846.33 | -194.331 | 0.226 | 949.00 | 934.2709 | 14.72913 |
| STEPHENVILLE SULPHUR | -0.562 | 6,889 | 7,994.48 | -1,105.476 | 0.522 | 1,027.00 | 992.8981 | 34.10188 |
| SPRINGS ISD | -0.428 | 7,344 | 8,185.13 | -841.133 | 0.303 | 997.00 | 977.2209 | 19.77908 |
| TATUM ISD | -1.895 | 7,663 | 11,388.46 | -3,725.456 | 0.896 | 1,037.00 | 978.5233 | 58.47675 |
| TAYLOR ISD | -0.228 | 8,056 | 8,504.06 | -448.057 | 1.127 | 1,020.00 | 946.4165 | 73.58350 |
| TEMPLE ISD | -0.139 | 8,254 | 8,526.56 | -272.556 | 0.879 | 1,015.00 | 957.6146 | 57.38538 |
| TERRELL ISD | -0.315 | 8,071 | 8,690.28 | -619.276 | 0.007 | 948.00 | 947.5198 | 0.48023 |
| TEXARKANA ISD | -0.543 | 7,387 | 8,453.37 | -1,066.374 | 2.294 | 1,090.00 | 940.2536 | 149.74635 |
| TRINITY ISD | -0.581 | 7,777 | 8,918.96 | -1,141.955 | 1.472 | 1,014.00 | 917.8707 | 96.12933 |
| TULIA ISD TULOSO- | -0.242 | 7,951 | 8,427.53 | -476.526 | 3.057 | 1,123.00 | 923.4193 | 199.58070 |
| MIDWAY ISD | -0.604 | 7,622 | 8,809.52 | -1,187.524 | 1.511 | 1,071.00 | 972.3610 | 98.63903 |
| TYLER ISD | -0.434 | 7,233 | 8,085.38 | -852.384 | 0.780 | 1,006.00 | 955.0519 | 50.94812 |
| UTOPIA ISD UVALDE CONS | -0.315 | 9,348 | 9,966.82 | -618.824 | 0.825 | 1,029.00 | 975.1311 | 53.86892 |
| ISD <br> VALLEY MILLS | -0.481 | 7,750 | 8,695.30 | -945.300 | 0.580 | 944.00 | 906.1056 | 37.89444 |
| ISD | -0.517 | 8,392 | 9,408.91 | -1,016.911 | 0.070 | 981.00 | 976.4465 | 4.55348 |



## APPENDIX E

## MODIFIED QUADRIFORM FORMATION

DISTRICT MEAN ACT 2003
QUADRANT I
SCHOOL DISTRICTS

| District Name | Std. <br> Residual | TOTAL EXPEND <br> ITURES PER PUPIL (20022003) | Predicted Value | Residual | Std. <br> Residual | DISTRIC <br> T MEAN <br> ACT <br> 2003 | Predicted Value | Residual |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ABERNATHY ISD | -0.228 | 8,712 | 9,160.68 | -448.682 | 0.183 | 19.80 | 19.5544 | 0.24561 |
| ABILENE ISD | -0.695 | 7,345 | 8,711.86 | -1,366.856 | 1.041 | 20.80 | 19.4031 | 1.39692 |
| ACADEMY ISD ALAMO HEIGHTS | -0.382 | 7,651 | 8,401.94 | -750.936 | 1.048 | 22.10 | 20.6937 | 1.40630 |
| ISD | -0.430 | 8,725 | 9,569.40 | -844.399 | 2.179 | 24.10 | 21.1764 | 2.92361 |
| ALBANY ISD | -0.275 | 8,539 | 9,079.09 | -540.094 | 1.474 | 22.00 | 20.0222 | 1.97780 |
| ALPINE ISD | -0.792 | 7,142 | 8,698.50 | -1,556.502 | 0.346 | 19.80 | 19.3362 | 0.46381 |
| ALVIN ISD | -0.283 | 7,334 | 7,890.65 | -556.650 | 0.954 | 21.20 | 19.9199 | 1.28010 |
| AMARILLO ISD ANDERSON- | -0.492 | 7,093 | 8,060.60 | -967.604 | 0.633 | 20.40 | 19.5506 | 0.84937 |
| SHIRO CONS ISD | -1.031 | 8,054 | 10,079.75 | -2,025.755 | 0.924 | 21.50 | 20.2605 | 1.23948 |
| ANGLETON ISD | -0.965 | 6,551 | 8,447.70 | -1,896.703 | 0.304 | 20.20 | 19.7917 | 0.40827 |
| ANSON ISD ARANSAS | -0.490 | 8,229 | 9,191.72 | -962.720 | 0.855 | 20.40 | 19.2535 | 1.14652 |
| COUNTY ISD | -0.934 | 8,193 | 10,029.08 | -1,836.081 | 0.257 | 20.20 | 19.8551 | 0.34489 |
| ARCHER CITY ISD | -0.030 | 8,144 | 8,203.66 | -59.660 | 0.176 | 21.20 | 20.9641 | 0.23586 |
| ATHENS ISD | -0.381 | 7,633 | 8,382.33 | -749.326 | 0.618 | 20.10 | 19.2712 | 0.82877 |
| ATLANTA ISD | -0.608 | 7,337 | 8,532.97 | -1,195.968 | 0.819 | 20.00 | 18.9018 | 1.09818 |
| AUSTIN ISD AUSTWELL- | -0.127 | 8,415 | 8,665.28 | -250.280 | 0.183 | 20.00 | 19.7540 | 0.24596 |
| TIVOLI ISD | -1.882 | 11,235 | 14,934.13 | -3,699.128 | 2.028 | 21.70 | 18.9792 | 2.72079 |
| AXTELL ISD | -0.643 | 9,106 | 10,370.26 | -1,264.258 | 0.721 | 20.70 | 19.7328 | 0.96725 |
| BAIRD ISD | -0.154 | 8,984 | 9,286.42 | -302.420 | 1.190 | 21.60 | 20.0038 | 1.59617 |
| BANDERA ISD | -0.399 | 7,952 | 8,736.66 | -784.664 | 0.486 | 20.90 | 20.2479 | 0.65214 |
| BANGS ISD | -0.489 | 7,839 | 8,799.27 | -960.269 | 1.557 | 21.90 | 19.8119 | 2.08814 |
| BARTLETT ISD | -0.327 | 8,164 | 8,806.79 | -642.793 | 0.577 | 19.10 | 18.3264 | 0.77361 |
| BAY CITY ISD | -0.248 | 8,080 | 8,567.06 | -487.060 | 2.973 | 22.80 | 18.8122 | 3.98784 |
| BELLVILLE ISD | -0.215 | 7,377 | 7,799.79 | -422.789 | 0.136 | 20.60 | 20.4173 | 0.18265 |
| BIG SANDY ISD | -0.434 | 7,606 | 8,459.51 | -853.507 | 0.859 | 20.50 | 19.3471 | 1.15294 |
| BIG SPRING ISD | -0.620 | 7,188 | 8,407.27 | -1,219.266 | 0.929 | 20.30 | 19.0533 | 1.24667 |
| BOERNE ISD | -0.256 | 7,862 | 8,365.75 | -503.747 | 0.339 | 21.70 | 21.2456 | 0.45440 |
| BONHAM ISD | -0.737 | 7,447 | 8,895.70 | -1,448.700 | 0.909 | 21.00 | 19.7812 | 1.21877 |
| BORGER ISD | -0.625 | 6,827 | 8,055.49 | -1,228.489 | 1.324 | 21.80 | 20.0241 | 1.77591 |
| BOWIE ISD | -0.445 | 7,373 | 8,246.80 | -873.800 | 0.056 | 20.50 | 20.4247 | 0.07525 |
| BRADY ISD | -0.445 | 8,312 | 9,187.51 | -875.514 | 0.664 | 20.00 | 19.1098 | 0.89016 |
| BRAZOSPORT ISD BRECKENRIDGE | -1.326 | 6,904 | 9,510.30 | -2,606.302 | 1.673 | 22.10 | 19.8562 | 2.24376 |
| ISD | -0.836 | 7,425 | 9,067.88 | -1,642.881 | 1.344 | 21.30 | 19.4967 | 1.80329 |
| BRENHAM ISD | -0.108 | 7,815 | 8,026.95 | -211.945 | 0.502 | 20.30 | 19.6263 | 0.67366 |
| BRIDGEPORT ISD | -0.711 | 7,411 | 8,808.66 | -1,397.657 | 0.429 | 20.90 | 20.3243 | 0.57568 |
| BROWNFIELD ISD BROWNSBORO | -0.634 | 8,030 | 9,275.40 | -1,245.396 | 0.524 | 19.40 | 18.6972 | 0.70284 |
| ISD | -0.644 | 6,719 | 7,984.67 | -1,265.673 | 0.133 | 20.20 | 20.0213 | 0.17875 |
| BROWNSVILLE ISD | -0.361 | 8,053 | 8,762.28 | -709.283 | 0.642 | 18.50 | 17.6392 | 0.86083 |
| BROWNWOOD ISD | -0.677 | 7,267 | 8,598.25 | -1,331.246 | 0.233 | 19.70 | 19.3871 | 0.31293 |









# APPENDIX F <br> MODIFIED QUADRIFORM FORMATION <br> DISTRICT SAT / ACT <br> TESTED 2003 <br> QUADRANT I <br> SCHOOL DISTRICTS 

| District Name | Std. <br> Residual | TOTAL XPEND ITURES PER PUPIL (20022003) | Predicted Value | Residual | Std. <br> Residual | $\begin{array}{r} \text { DISTRIC } \\ \mathrm{T} \\ \text { SAT/AC } \\ \mathrm{T} \\ \text { TESTED } \\ 2003 \end{array}$ | Predicted Value | Residual |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ABERNATHY ISD | -0.228 | 8,712 | 9,160.68 | -448.682 | 0.870 | 77.10 | 63.1187 | 13.98126 |
| ABILENE ISD ALAMO HEIGHTS | -0.695 | 7,345 | 8,711.86 | -1,366.856 | 0.167 | 62.40 | 59.7174 | 2.68256 |
| ISD | -0.430 | 8,725 | 9,569.40 | -844.399 | 1.015 | 89.30 | 72.9831 | 16.31687 |
| ALBANY ISD | -0.275 | 8,539 | 9,079.09 | -540.094 | 1.199 | 80.60 | 61.3214 | 19.27856 |
| ALICE ISD | -0.315 | 7,766 | 8,385.59 | -619.592 | 1.596 | 87.30 | 61.6375 | 25.66252 |
| ALPINE ISD | -0.792 | 7,142 | 8,698.50 | -1,556.502 | 0.134 | 65.70 | 63.5399 | 2.16010 |
| ANSON ISD | -0.490 | 8,229 | 9,191.72 | -962.720 | 0.313 | 64.30 | 59.2662 | 5.03382 |
| ANTHONY | -0.023 | 9,904 | 9,949.49 | -45.494 | 1.216 | 75.00 | 55.4557 | 19.54430 |
| ANTON ISD ARANSAS | -0.889 | 8,167 | 9,914.20 | -1,747.201 | 0.881 | 75.00 | 60.8411 | 14.15888 |
| COUNTY ISD | -0.934 | 8,193 | 10,029.08 | -1,836.081 | 0.158 | 67.80 | 65.2579 | 2.54205 |
| ARCHER CITY ISD | -0.030 | 8,144 | 8,203.66 | -59.660 | 0.676 | 75.60 | 64.7253 | 10.87470 |
| ATLANTA ISD | -0.608 | 7,337 | 8,532.97 | -1,195.968 | 1.163 | 74.80 | 56.1036 | 18.69636 |
| AUSTIN ISD | -0.127 | 8,415 | 8,665.28 | -250.280 | 0.446 | 70.40 | 63.2378 | 7.16219 |
| AVERY ISD | -0.524 | 7,796 | 8,825.71 | -1,029.709 | 2.053 | 90.90 | 57.8972 | 33.00277 |
| BAIRD ISD | -0.154 | 8,984 | 9,286.42 | -302.420 | 1.108 | 79.20 | 61.3904 | 17.80957 |
| BANDERA ISD | -0.399 | 7,952 | 8,736.66 | -784.664 | 0.160 | 66.00 | 63.4244 | 2.57555 |
| BANGS ISD | -0.489 | 7,839 | 8,799.27 | -960.269 | 0.949 | 75.00 | 59.7368 | 15.26315 |
| BANQUETE ISD | -0.043 | 8,781 | 8,864.74 | -83.744 | 1.972 | 93.80 | 62.0926 | 31.70741 |
| BARTLETT ISD | -0.327 | 8,164 | 8,806.79 | -642.793 | 0.770 | 69.70 | 57.3255 | 12.37446 |
| BEAUMONT ISD | -0.079 | 7,404 | 7,558.85 | -154.853 | 0.353 | 63.00 | 57.3222 | 5.67777 |
| BECKVILLE ISD | -0.763 | 10,051 | 11,551.72 | -1,500.724 | 1.486 | 91.70 | 67.8130 | 23.88700 |
| BELLVILLE ISD | -0.215 | 7,377 | 7,799.79 | -422.789 | 0.620 | 74.50 | 64.5371 | 9.96295 |
| BENAVIDES ISD | -0.189 | 10,033 | 10,405.01 | -372.012 | 1.003 | 76.00 | 59.8703 | 16.12967 |
| BIG SANDY ISD | -0.434 | 7,606 | 8,459.51 | -853.507 | 0.275 | 61.90 | 57.4734 | 4.42660 |
| BIG SANDY ISD | -1.115 | 9,060 | 11,251.37 | -2,191.374 | 0.762 | 78.90 | 66.6454 | 12.25457 |
| BISHOP CONS ISD | -0.766 | 8,215 | 9,721.44 | -1,506.442 | 2.029 | 98.10 | 65.4825 | 32.61752 |
| BLOOMBURG ISD | -0.576 | 8,104 | 9,236.09 | -1,132.093 | 0.716 | 72.20 | 60.6955 | 11.50445 |
| BOERNE ISD | -0.256 | 7,862 | 8,365.75 | -503.747 | 1.446 | 92.40 | 69.1496 | 23.25038 |
| BOVINA ISD | -0.481 | 7,886 | 8,831.63 | -945.633 | 0.057 | 60.70 | 59.7775 | 0.92250 |
| BOWIE ISD | -0.445 | 7,373 | 8,246.80 | -873.800 | 0.471 | 70.30 | 62.7318 | 7.56816 |
| BOYD ISD | -0.507 | 7,642 | 8,639.18 | -997.185 | 0.315 | 69.70 | 64.6315 | 5.06848 |
| BRADY ISD BRECKENRIDGE | -0.445 | 8,312 | 9,187.51 | -875.514 | 0.488 | 67.50 | 59.6626 | 7.83742 |
| ISD | -0.836 | 7,425 | 9,067.88 | -1,642.881 | 0.607 | 70.40 | 60.6399 | 9.76013 |
| BRIDGE CITY ISD | -0.641 | 6,706 | 7,965.89 | -1,259.888 | 0.486 | 73.50 | 65.6892 | 7.81081 |
| BROADDUS ISD BROOKS COUNTY | -0.555 | 8,773 | 9,863.18 | -1,090.178 | 1.173 | 73.10 | 54.2477 | 18.85227 |
| ISD | -0.789 | 9,513 | 11,062.99 | -1,549.993 | 0.374 | 64.10 | 58.0848 | 6.01521 |
| BUENA VISTA ISD | -0.251 | 17,414 | 17,906.43 | -492.433 | 0.740 | 85.70 | 73.8111 | 11.88887 |
| BUNA ISD | -0.208 | 7,615 | 8,024.02 | -409.017 | 0.238 | 65.90 | 62.0730 | 3.82699 |
| BURKBURNETT ISD | -0.030 | 7,554 | 7,613.28 | -59.281 | 0.217 | 67.00 | 63.5143 | 3.48565 |
| BURKEVILLE ISD | -0.109 | 10,118 | 10,332.68 | -214.676 | 1.509 | 78.30 | 54.0454 | 24.25461 |
| CALALLEN ISD | -0.603 | 6,840 | 8,026.10 | -1,186.098 | 0.691 | 77.20 | 66.0852 | 11.11481 |


| District Name | TOTAL |  |  |  | DISTRIC |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EXPEND |  |  |  |  |  |  |  |
|  | ITURES |  |  |  | T |  |  |  |
|  | PER |  |  |  | SAT/AC |  |  |  |
|  |  | PUPIL |  |  |  | T |  |  |
|  | Std. <br> Residual | $\begin{array}{r} (2002- \\ 2003) \end{array}$ | Predicted Value | Residual | Std. <br> Residual | $\begin{array}{r} \text { TESTED } \\ 2003 \end{array}$ | Predicted Value | Residual |
| CANTON ISD | -0.240 | 7,066 | 7,537.43 | -471.426 | 0.075 | 66.20 | 65.0022 | 1.19783 |
| CANYON |  |  |  |  |  |  |  |  |
| INDEPENDENT |  |  |  |  |  |  |  |  |
| SCHOOL |  |  |  |  |  |  |  |  |
| DISTRICT | -0.545 | 6,424 | 7,495.74 | -1,071.737 | 0.049 | 67.50 | 66.7149 | 0.78510 |
| CARLISLE ISD | -0.160 | 7,752 | 8,067.01 | -315.011 | 1.278 | 78.90 | 58.3518 | 20.54822 |
| CELESTE ISD | -0.120 | 7,681 | 7,917.53 | -236.525 | 1.336 | 83.30 | 61.8219 | 21.47810 |
| CENTER ISD | -0.370 | 6,941 | 7,669.17 | -728.173 | 0.513 | 65.70 | 57.4486 | 8.25136 |
| CENTER POINT |  |  |  |  |  |  |  |  |
| ISD | -0.185 | 8,703 | 9,066.12 | -363.122 | 0.180 | 63.30 | 60.4113 | 2.88874 |
| CENTRAL |  |  |  |  |  |  |  |  |
| HEIGHTS ISD | -0.264 | 7,349 | 7,867.94 | -518.945 | 0.322 | 65.40 | 60.2257 | 5.17428 |
| CHICO ISD | -0.507 | 7,941 | 8,937.20 | -996.199 | 0.970 | 79.40 | 63.8028 | 15.59719 |
| CHILDRESS ISD | -0.040 | 8,502 | 8,580.86 | -78.861 | 1.048 | 77.80 | 60.9463 | 16.85368 |
| CHISUM ISD | -1.421 | 7,078 | 9,870.35 | -2,792.346 | 1.222 | 85.30 | 65.6589 | 19.64108 |
| CLARENDON ISD | -0.035 | 9,109 | 9,178.77 | -69.766 | 1.456 | 81.60 | 58.1891 | 23.41092 |
| CLARKSVILLE |  |  |  |  |  |  |  |  |
| ISD | -0.151 | 8,501 | 8,798.59 | -297.593 | 1.315 | 75.00 | 53.8588 | 21.14118 |
| CLIFTON ISD | -0.290 | 8,313 | 8,882.99 | -569.991 | 0.653 | 74.60 | 64.1073 | 10.49269 |
| CLYDE CONS ISD | -0.391 | 7,532 | 8,301.19 | -769.185 | 0.692 | 72.40 | 61.2766 | 11.12338 |
| COAHOMA ISD | -0.471 | 7,603 | 8,529.17 | -926.175 | 0.626 | 73.70 | 63.6321 | 10.06794 |
| COLMESNEIL ISD | -0.521 | 7,166 | 8,189.18 | -1,023.176 | 0.540 | 68.40 | 59.7177 | 8.68231 |
| COLUMBUS ISD | -0.803 | 6,871 | 8,450.22 | -1,579.223 | 1.274 | 84.00 | 63.5241 | 20.47591 |
| COMAL ISD | -0.164 | 8,353 | 8,674.72 | -321.718 | 0.190 | 70.30 | 67.2491 | 3.05090 |
| COMFORT ISD | -0.239 | 8,260 | 8,730.07 | -470.071 | 0.526 | 72.40 | 63.9396 | 8.46041 |
| COMMERCE ISD | -0.591 | 7,803 | 8,964.99 | -1,161.988 | 1.213 | 77.90 | 58.4054 | 19.49464 |
| COPPELL ISD | -0.086 | 7,793 | 7,961.14 | -168.136 | 0.849 | 96.40 | 82.7523 | 13.64766 |
| CORRIGAN- |  |  |  |  |  |  |  |  |
| CAMDEN ISD | -0.249 | 8,579 | 9,068.09 | -489.088 | 0.283 | 61.90 | 57.3434 | 4.55657 |
| CROWLEY ISD | -0.007 | 7,173 | 7,186.37 | -13.368 | 0.253 | 70.80 | 66.7283 | 4.07170 |
| DALLAS ISD | -1.064 | 7,160 | 9,251.73 | -2,091.731 | 0.241 | 64.80 | 60.9230 | 3.87695 |
| DAWSON ISD | -0.280 | 7,978 | 8,528.22 | -550.215 | 0.877 | 72.70 | 58.5968 | 14.10324 |
| DE LEON ISD | -0.643 | 6,583 | 7,845.97 | $-1,262.967$ | 0.723 | 73.00 | 61.3742 | 11.62581 |
| DIBOLL ISD | -0.515 | 7,534 | 8,545.83 | -1,011.834 | 1.102 | 75.20 | 57.4813 | 17.71873 |
| DIMMITT ISD | -0.533 | 7,944 | 8,992.61 | -1,048.613 | 0.129 | 61.50 | 59.4242 | 2.07576 |
| DOUGLASS ISD | -0.045 | 7,651 | 7,739.64 | -88.636 | 0.441 | 71.40 | 64.3098 | 7.09025 |
| DRIPPING |  |  |  |  |  |  |  |  |
| SPRINGS ISD | -0.253 | 7,595 | 8,091.41 | -496.406 | 0.996 | 86.60 | 70.5857 | 16.01427 |
| DUBLIN ISD | -0.964 | 6,920 | 8,814.26 | -1,894.258 | 1.015 | 75.40 | 59.0791 | 16.32086 |
| EAST BERNARD |  |  |  |  |  |  |  |  |
| ISD | -0.115 | 7,604 | 7,829.62 | -225.621 | 0.274 | 68.80 | 64.3944 | 4.40559 |
| EAST CENTRAL |  |  |  |  |  |  |  |  |
| ISD | -0.013 | 7,997 | 8,021.75 | -24.745 | 0.486 | 68.90 | 61.0925 | 7.80755 |
| EASTLAND ISD | -0.460 | 7,547 | 8,450.67 | -903.674 | 0.086 | 64.10 | 62.7141 | 1.38585 |
| EDCOUCH-ELSA |  |  |  |  |  |  |  |  |
| ISD | -0.246 | 8,209 | 8,693.36 | -484.357 | 0.732 | 68.30 | 56.5298 | 11.77016 |
| EDINBURG |  |  |  |  |  |  |  |  |
| CONSOLIDATED | -0.138 | 8,263 | 8,534.95 | -271.955 | 0.907 | 72.40 | 57.8138 | 14.58617 |
| ELKHART ISD | -0.766 | 7,398 | 8,903.12 | -1,505.123 | 0.041 | 60.00 | 59.3335 | 0.66650 |


| District Name | TOTAL |  |  |  | DISTRIC |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EXPEND |  |  |  |  |  |  |  |
|  | ITURES |  |  |  | T |  |  |  |
|  |  | PER |  |  |  | SAT/AC |  |  |
|  |  | PUPIL |  |  |  | T |  |  |
|  | Std. <br> Residual | $\begin{gathered} (2002- \\ 2003) \end{gathered}$ | Predicted Value | Residual | Std. <br> Residual | $\begin{array}{r} \text { TESTED } \\ 2003 \end{array}$ | Predicted Value | Residual |
| ELYSIAN FIELDS |  |  |  |  |  |  |  |  |
| ISD | -0.452 | 7,423 | 8,310.75 | -887.747 | 0.973 | 77.80 | 62.1511 | 15.64890 |
| ERA ISD | -0.149 | 7,107 | 7,400.02 | -293.018 | 0.672 | 75.00 | 64.1926 | 10.80742 |
| EVANT ISD | -0.539 | 7,279 | 8,338.91 | -1,059.913 | 0.012 | 61.10 | 60.9041 | 0.19594 |
| FAIRFIELD ISD | -1.413 | 8,350 | 11,127.89 | -2,777.890 | 0.128 | 69.10 | 67.0471 | 2.05293 |
| FARWELL ISD | -0.035 | 8,776 | 8,844.97 | -68.968 | 2.051 | 95.20 | 62.2295 | 32.97048 |
| FLORENCE ISD | -0.302 | 8,364 | 8,956.97 | -592.968 | 0.747 | 73.60 | 61.5906 | 12.00937 |
| FOLLETT ISD | -0.287 | 10,376 | 10,940.57 | -564.572 | 2.159 | 100.00 | 65.2989 | 34.70113 |
| FRIONA ISD | -0.681 | 7,320 | 8,658.84 | -1,338.841 | 0.227 | 64.90 | 61.2574 | 3.64257 |
| GANADO ISD | -0.124 | 7,966 | 8,209.03 | -243.035 | 0.630 | 72.70 | 62.5651 | 10.13489 |
| GARY ISD | -0.332 | 9,701 | 10,352.88 | -651.876 | 1.458 | 85.70 | 62.2543 | 23.44567 |
| GILMER ISD | -0.739 | 7,344 | 8,795.81 | -1,451.815 | 0.609 | 69.30 | 59.5138 | 9.78618 |
| GLADEWATER |  |  |  |  |  |  |  |  |
| ISD | -0.467 | 7,896 | 8,814.80 | -918.798 | 0.223 | 62.00 | 58.4197 | 3.58031 |
| GLEN ROSE ISD | -2.453 | 8,601 | 13,423.37 | -4,822.373 | 0.661 | 82.50 | 71.8754 | 10.62460 |
| GOLDTHWAITE |  |  |  |  |  |  |  |  |
| ISD | -0.317 | 8,391 | 9,014.93 | -623.934 | 0.991 | 78.30 | 62.3673 | 15.93267 |
| GOLIAD ISD | -0.453 | 8,653 | 9,543.56 | -890.559 | 2.036 | 97.50 | 64.7627 | 32.73733 |
| GORMAN ISD | -0.469 | 8,797 | 9,718.76 | -921.757 | 0.173 | 59.30 | 56.5166 | 2.78340 |
| GRADY ISD | -0.021 | 10,218 | 10,258.78 | -40.777 | 0.615 | 76.90 | 67.0132 | 9.88677 |
| GRAFORD ISD | -0.822 | 10,668 | 12,284.68 | -1,616.682 | 0.490 | 75.00 | 67.1201 | 7.87994 |
| GRAPELAND ISD | -1.100 | 6,770 | 8,932.26 | -2,162.260 | 0.811 | 70.70 | 57.6588 | 13.04123 |
| GRAPEVINE- |  |  |  |  |  | COLLEYVILLE |  |  |
| ISD | -0.115 | 7,777 | 8,003.89 | -226.892 | 0.785 | 87.90 | 75.2885 | 12.61154 |
| GREENWOOD ISD | -0.428 | 6,723 | 7,564.73 | -841.729 | 1.102 | 83.30 | 65.5802 | 17.71976 |
| GREGORY- |  |  |  |  |  |  |  |  |
| PORTLAND ISD | -0.504 | 6,669 | 7,659.65 | -990.654 | 1.764 | 94.30 | 65.9468 | 28.35318 |
| GROVETON ISD | -0.125 | 8,403 | 8,648.85 | -245.846 | 0.717 | 70.50 | 58.9812 | 11.51875 |
| GUSTINE ISD | -0.187 | 8,747 | 9,113.75 | -366.752 | 0.855 | 72.70 | 58.9518 | 13.74823 |
| HALLETTSVILLE |  |  |  |  |  |  |  |  |
| ISD | -0.683 | 7,867 | 9,208.88 | -1,341.881 | 0.251 | 69.00 | 64.9671 | 4.03294 |
| HALLSVILLE ISD | -0.793 | 7,063 | 8,621.84 | -1,558.836 | 0.433 | 71.80 | 64.8314 | 6.96863 |
| HAMLIN ISD | -0.201 | 9,714 | 10,108.72 | -394.716 | 0.886 | 72.00 | 57.7565 | 14.24355 |
| HAMSHIRE- |  |  |  |  |  |  |  |  |
| FANNETT ISD | -0.220 | 7,202 | 7,635.34 | -433.339 | 0.795 | 78.20 | 65.4229 | 12.77710 |
| HARDIN ISD | -0.469 | 7,146 | 8,068.51 | -922.510 | 1.115 | 81.20 | 63.2698 | 17.93021 |
| HARLETON ISD | -0.208 | 7,540 | 7,948.95 | -408.954 | 0.341 | 67.70 | 62.2227 | 5.47727 |
| HARMONY ISD | -0.476 | 8,102 | 9,037.99 | -935.994 | 0.966 | 78.60 | 63.0635 | 15.53648 |
| HARPER ISD | -0.071 | 9,272 | 9,412.08 | -140.082 | 1.074 | 81.80 | 64.5271 | 17.27289 |
| HAWLEY ISD | -0.500 | 7,518 | 8,501.77 | -983.771 | 1.267 | 80.90 | 60.5401 | 20.35987 |
| HEMPHILL ISD | -0.136 | 8,958 | 9,226.19 | -268.192 | 0.200 | 60.90 | 57.6927 | 3.20730 |
| HENDERSON ISD | -0.563 | 7,577 | 8,683.52 | -1,106.521 | 0.110 | 61.90 | 60.1354 | 1.76460 |
| HICO ISD | -0.573 | 7,508 | 8,633.61 | -1,125.605 | 1.014 | 75.70 | 59.3934 | 16.30658 |
| HONDO ISD | -0.201 | 7,646 | 8,041.15 | -395.146 | 0.263 | 67.00 | 62.7648 | 4.23524 |
| HONEY GROVE |  |  |  |  |  |  |  |  |
| ISD | -0.143 | 8,080 | 8,360.96 | -280.964 | 1.032 | 75.60 | 59.0021 | 16.59795 |
| HOOKS ISD | -0.163 | 7,474 | 7,793.94 | -319.944 | 0.261 | 64.50 | 60.3072 | 4.19278 |


| $\underline{\mathrm{u}}$ |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TOTAL |  |  |  |  |  |  |  |  |
|  | EXPEND |  |  |  | DISTRIC |  |  |  |
|  | ITURES |  |  |  | T |  |  |  |
|  | PER |  |  |  | SAT/AC |  |  |  |
|  |  | PUPIL |  |  |  | T |  |  |
| District Name | Std. <br> Residual | $\begin{gathered} (2002- \\ 2003) \end{gathered}$ | Predicted <br> Value | Residual | Std. <br> Residual | $\begin{array}{r} \text { TESTED } \\ 2003 \end{array}$ | Predicted <br> Value | Residual |
| HOWE ISD | -0.076 | 7,591 | 7,740.50 | -149.496 | 0.659 | 75.40 | 64.8112 | 10.58885 |
| HUGHES SPRINGS |  |  |  |  |  |  |  |  |
| ISD | -0.608 | 7,655 | 8,850.23 | -1,195.228 | 1.978 | 89.60 | 57.8005 | 31.79952 |
| IDALOU ISD | -0.168 | 7,726 | 8,055.54 | -329.539 | 0.866 | 78.30 | 64.3757 | 13.92435 |
| INGRAM ISD | -0.232 | 8,096 | 8,551.37 | -455.369 | 0.511 | 68.80 | 60.5874 | 8.21261 |
| ITASCA ISD | -0.004 | 8,993 | 9,001.42 | -8.416 | 2.165 | 91.90 | 57.0975 | 34.80252 |
| JARRELL ISD | -0.769 | 8,239 | 9,750.83 | -1,511.829 | 0.370 | 71.10 | 65.1592 | 5.94083 |
| JASPER ISD | -0.147 | 7,684 | 7,973.91 | -289.909 | 0.843 | 68.80 | 55.2466 | 13.55338 |
| JEFFERSON ISD | -0.462 | 8,380 | 9,288.59 | -908.592 | 1.427 | 78.70 | 55.7634 | 22.93656 |
| JIM NED CONS |  |  |  |  |  |  |  |  |
| ISD | -0.076 | 7,753 | 7,902.11 | -149.105 | 0.069 | 64.60 | 63.4917 | 1.10831 |
| JOURDANTON ISD | -0.701 | 7,667 | 9,044.04 | -1,377.037 | 0.857 | 75.80 | 62.0215 | 13.77846 |
| KARNES CITY ISD | -0.281 | 8,109 | 8,660.89 | -551.894 | 0.818 | 74.40 | 61.2542 | 13.14579 |
| KERRVILLE ISD | -0.567 | 7,694 | 8,808.03 | -1,114.025 | 0.185 | 66.90 | 63.9211 | 2.97892 |
| KINGSVILLE ISD | -0.455 | 7,834 | 8,728.79 | -894.790 | 0.153 | 63.60 | 61.1413 | 2.45871 |
| KIRBYVILLE CISD | -0.651 | 6,838 | 8,118.25 | -1,280.246 | 0.427 | 64.90 | 58.0360 | 6.86400 |
| KOUNTZE ISD | -0.166 | 7,448 | 7,774.24 | -326.236 | 0.386 | 66.70 | 60.4996 | 6.20035 |
| KRUM ISD | -0.066 | 8,597 | 8,726.10 | -129.097 | 0.066 | 66.70 | 65.6386 | 1.06136 |
| LA GRANGE ISD | -0.701 | 7,241 | 8,618.10 | -1,377.098 | 0.005 | 63.90 | 63.8173 | 0.08272 |
| LA MARQUE ISD | -0.041 | 7,480 | 7,559.83 | -79.829 | 0.851 | 71.20 | 57.5117 | 13.68827 |
| LAGO VISTA ISD | -0.077 | 9,398 | 9,550.33 | -152.325 | 0.773 | 84.50 | 72.0761 | 12.42385 |
| LAKE WORTH ISD | -0.314 | 8,400 | 9,017.33 | -617.327 | 0.011 | 58.00 | 57.8158 | 0.18419 |
| LAMESA ISD | -0.790 | 6,985 | 8,537.23 | -1,552.229 | 0.035 | 61.00 | 60.4379 | 0.56211 |
| LATEXO ISD | -0.059 | 7,975 | 8,091.46 | -116.460 | 0.635 | 74.10 | 63.8969 | 10.20311 |
| LEGGETT ISD | -0.410 | 9,444 | 10,249.71 | -805.707 | 2.318 | 91.70 | 54.4441 | 37.25592 |
| LEONARD ISD | -0.165 | 7,586 | 7,909.38 | -323.384 | 0.477 | 68.80 | 61.1252 | 7.67477 |
| LIBERTY HILL ISD | -0.296 | 7,504 | 8,085.51 | -581.507 | 0.092 | 55.60 | 54.1287 | 1.47134 |
| LINDEN-KILDARE |  |  |  |  |  |  |  |  |
| CONS ISD | -0.314 | 7,965 | 8,582.30 | -617.305 | 1.036 | 75.00 | 58.3515 | 16.64846 |
| LITTLEFIELD ISD | -0.714 | 7,083 | 8,486.26 | -1,403.257 | 0.160 | 62.50 | 59.9356 | 2.56440 |
| LLANO ISD | -0.831 | 10,037 | 11,670.87 | -1,633.871 | 0.313 | 71.90 | 66.8700 | 5.02995 |
| LOCKNEY ISD | -0.412 | 7,704 | 8,513.18 | -809.184 | 0.830 | 73.80 | 60.4537 | 13.34632 |
| LONE OAK ISD | -0.398 | 7,386 | 8,169.28 | -783.283 | 0.153 | 65.30 | 62.8422 | 2.45776 |
| LONGVIEW ISD | -0.398 | 7,759 | 8,541.28 | -782.276 | 0.457 | 64.30 | 56.9578 | 7.34216 |
| LUBBOCK ISD | -0.585 | 7,702 | 8,852.84 | -1,150.836 | 0.049 | 63.80 | 63.0079 | 0.79215 |
| LULING ISD | -0.072 | 8,139 | 8,280.19 | -141.189 | 0.172 | 62.10 | 59.3309 | 2.76915 |
| LUMBERTON ISD | -0.377 | 6,793 | 7,534.41 | -741.410 | 0.284 | 68.10 | 63.5418 | 4.55819 |
| LYTLE ISD | -0.218 | 8,005 | 8,434.06 | -429.061 | 0.037 | 60.80 | 60.2098 | 0.59024 |
| MADISONVILLE |  |  |  |  |  |  |  |  |
| CONS ISD | -0.232 | 7,791 | 8,246.85 | -455.855 | 0.509 | 65.20 | 57.0120 | 8.18797 |
| MARTINS MILL |  |  |  |  |  |  |  |  |
| ISD | -0.166 | 8,435 | 8,760.73 | -325.732 | 1.194 | 80.00 | 60.8089 | 19.19107 |
| MAUD ISD | -0.318 | 7,608 | 8,233.21 | -625.214 | 1.585 | 84.60 | 59.1227 | 25.47728 |
| MAY ISD | -0.510 | 9,108 | 10,111.08 | -1,003.078 | 0.131 | 61.50 | 59.3988 | 2.10121 |
| MCALLEN ISD | -0.381 | 7,395 | 8,143.38 | -748.376 | 0.459 | 69.40 | 62.0200 | 7.37998 |
| MCLEAN ISD | -0.291 | 9,156 | 9,728.70 | -572.701 | 1.273 | 84.60 | 64.1355 | 20.46454 |


| District Name | TOTAL |  |  |  | DISTRIC |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EXPEND |  |  |  |  |  |  |  |
|  | ITURES |  |  |  | T |  |  |  |
|  |  | PER |  |  |  | SAT/AC |  |  |
|  |  | PUPIL |  |  |  | T |  |  |
|  | Std. <br> Residual | $\begin{array}{r} (2002- \\ 2003) \end{array}$ | Predicted Value | Residual | Std. <br> Residual | $\begin{array}{r} \text { TESTED } \\ 2003 \end{array}$ | Predicted Value | Residual |
| MEDINA VALLEY |  |  |  |  |  |  |  |  |
| ISD | -0.203 | 7,627 | 8,025.73 | -398.734 | 0.041 | 64.60 | 63.9434 | 0.65658 |
| MERIDIAN ISD | -0.713 | 7,221 | 8,623.32 | -1,402.319 | 1.858 | 90.90 | 61.0266 | 29.87343 |
| MERKEL ISD | -0.469 | 8,427 | 9,348.40 | -921.398 | 0.511 | 67.40 | 59.1815 | 8.21851 |
| MEXIA ISD | -0.078 | 8,199 | 8,353.28 | -154.280 | 0.645 | 66.10 | 55.7275 | 10.37246 |
| MILDRED ISD | -0.136 | 8,093 | 8,359.58 | -266.576 | 0.435 | 71.40 | 64.4097 | 6.99026 |
| MONAHANS- |  |  |  |  |  |  |  |  |
| WICKETT-PYOTE |  |  |  |  |  |  |  |  |
| ISD | -1.090 | 7,266 | 9,409.03 | -2,143.027 | 0.269 | 69.10 | 64.7803 | 4.31968 |
| MOODY ISD | -0.914 | 6,474 | 8,269.68 | -1,795.681 | 0.481 | 68.20 | 60.4689 | 7.73113 |
| MORGAN ISD | -0.788 | 9,951 | 11,500.76 | -1,549.757 | 0.036 | 55.60 | 55.0241 | 0.57594 |
| MOULTON ISD | -0.318 | 7,770 | 8,394.16 | -624.159 | 0.756 | 72.70 | 60.5540 | 12.14596 |
| MUENSTER ISD | -0.225 | 7,250 | 7,692.06 | -442.057 | 1.073 | 84.00 | 66.7529 | 17.24715 |
| MULESHOE ISD | -0.445 | 8,166 | 9,040.36 | -874.363 | 0.128 | 61.40 | 59.3363 | 2.06375 |
| MUMFORD ISD | -1.314 | 6,160 | 8,743.54 | -2,583.536 | 1.504 | 80.00 | 55.8259 | 24.17408 |
| MUNDAY CISD | -0.245 | 7,717 | 8,197.91 | -480.910 | 0.888 | 72.70 | 58.4315 | 14.26854 |
| NAVARRO ISD | -0.247 | 7,603 | 8,088.48 | -485.479 | 1.071 | 83.60 | 66.3767 | 17.22325 |
| NEDERLAND ISD | -0.740 | 6,506 | 7,960.36 | -1,454.364 | 0.851 | 81.90 | 68.2221 | 13.67793 |
| NEW BOSTON ISD | -0.821 | 6,960 | 8,573.39 | -1,613.386 | 1.703 | 86.80 | 59.4279 | 27.37214 |
| NEW BRAUNFELS |  |  |  |  |  |  |  |  |
| ISD | -0.366 | 7,361 | 8,081.01 | -720.008 | 0.082 | 67.20 | 65.8898 | 1.31018 |
| NOCONA ISD | -0.229 | 8,624 | 9,073.59 | -449.591 | 1.113 | 78.00 | 60.1094 | 17.89057 |
| OLNEY ISD | -0.490 | 8,225 | 9,188.45 | -963.450 | 1.031 | 76.60 | 60.0216 | 16.57836 |
| ORANGE GROVE |  |  |  |  |  |  |  |  |
| ISD | -0.314 | 7,657 | 8,273.50 | -616.497 | 1.220 | 79.20 | 59.5862 | 19.61376 |
| ORANGEFIELD |  |  |  |  |  |  |  |  |
| ISD | -0.379 | 6,833 | 7,577.13 | -744.125 | 0.012 | 65.60 | 65.4125 | 0.18753 |
| PERRYTON ISD | -0.641 | 7,332 | 8,592.80 | -1,260.800 | 0.002 | 63.20 | 63.1709 | 0.02914 |
| PHARR-SAN |  |  |  |  |  |  |  |  |
| JUAN-ALAMO ISD | -0.227 | 7,996 | 8,442.72 | -446.724 | 1.184 | 75.40 | 56.3621 | 19.03790 |
| PINE TREE ISD | -0.630 | 6,608 | 7,845.61 | -1,237.609 | 0.414 | 71.20 | 64.5514 | 6.64864 |
| PITTSBURG ISD | -0.676 | 7,593 | 8,921.61 | -1,328.608 | 0.300 | 62.40 | 57.5694 | 4.83062 |
| PLEASANT |  |  |  |  |  |  |  |  |
| GROVE ISD | -0.071 | 6,787 | 6,926.54 | -139.536 | 1.334 | 90.80 | 69.3480 | 21.45203 |
| PLEMONS- |  |  |  |  |  |  |  |  |
| STINNETT- |  |  |  |  |  |  |  |  |
| PHILLIPS CONS |  |  |  |  |  |  |  |  |
| ISD | -1.968 | 11,152 | 15,021.21 | -3,869.207 | 0.309 | 73.20 | 68.2402 | 4.95983 |
| PORT ARANSAS |  |  |  |  |  |  |  |  |
| ISD | -1.368 | 11,218 | 13,906.53 | -2,688.527 | 0.797 | 89.30 | 76.4835 | 12.81648 |
| PRESIDIO ISD | -0.472 | 7,965 | 8,892.31 | -927.314 | 2.277 | 92.90 | 56.2942 | 36.60585 |
| PROSPER ISD | -0.049 | 7,918 | 8,013.44 | -95.442 | 0.818 | 83.00 | 69.8523 | 13.14770 |
| QUANAH ISD | -0.466 | 9,376 | 10,292.80 | -916.798 | 1.987 | 91.70 | 59.7610 | 31.93902 |
| QUEEN CITY ISD | -1.059 | 7,713 | 9,793.67 | -2,080.669 | 0.850 | 72.20 | 58.5360 | 13.66396 |
| RAINS ISD | -0.550 | 7,848 | 8,928.96 | -1,080.961 | 0.327 | 66.30 | 61.0452 | 5.25482 |
| RALLS ISD | -1.024 | 8,133 | 10,145.63 | -2,012.630 | 0.356 | 63.40 | 57.6805 | 5.71948 |
| RANGER ISD | -0.551 | 9,248 | 10,330.15 | -1,082.153 | 1.876 | 87.00 | 56.8477 | 30.15231 |
| RANKIN ISD | -0.554 | 14,580 | 15,668.28 | -1,088.278 | 1.615 | 100.00 | 74.0367 | 25.96329 |


|  |  | TOTAL |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | XPEND |  |  |  | DISTRIC |  |  |
|  |  | TURES |  |  |  | T |  |  |
|  |  | PER |  |  |  | SAT/AC |  |  |
|  |  | PUPIL |  |  |  | T |  |  |
| District Name | Std. <br> Residual | (2002- | Predicted Value |  | Std. <br> Residual | TESTED | Predicted |  |
| District Name |  |  |  | Residual |  |  |  | Residual |
| REAGAN COUNTY |  |  |  |  |  |  |  |  |
| ISD | -0.255 | 10,440 | 10,940.77 | -500.770 | 0.047 | 66.70 | 65.9453 | 0.75467 |
| RED OAK ISD | -0.271 | 6,839 | 7,370.96 | -531.955 | 0.139 | 68.40 | 66.1729 | 2.22713 |
| REDWATER ISD | -0.237 | 6,999 | 7,465.30 | -466.302 | 1.469 | 87.90 | 64.2890 | 23.61097 |
| REFUGIO ISD | -0.547 | 9,016 | 10,090.39 | -1,074.385 | 0.056 | 65.20 | 64.2935 | 0.90648 |
| RICHARDSON ISD | -0.119 | 8,160 | 8,394.37 | -234.369 | 0.965 | 84.40 | 68.8881 | 15.51195 |
| RIESEL ISD | -0.276 | 7,632 | 8,174.53 | -542.531 | 0.618 | 72.40 | 62.4669 | 9.93310 |
| RIVERCREST ISD | -0.451 | 7,502 | 8,387.76 | -885.759 | 1.717 | 88.00 | 60.3908 | 27.60922 |
| ROBSTOWN ISD | -0.512 | 8,581 | 9,586.47 | -1,005.466 | 1.085 | 73.70 | 56.2569 | 17.44308 |
| ROCKWALL ISD | -0.012 | 7,439 | 7,462.71 | -23.711 | 0.210 | 72.90 | 69.5182 | 3.38180 |
| ROMA ISD | -0.435 | 7,729 | 8,583.28 | -854.284 | 0.100 | 58.70 | 57.0952 | 1.60479 |
| ROOSEVELT ISD | -0.420 | 8,335 | 9,160.08 | -825.081 | 0.047 | 58.70 | 57.9416 | 0.75836 |
| ROSEBUD-LOTT |  |  |  |  |  |  |  |  |
| ISD | -0.357 | 7,623 | 8,324.14 | -701.140 | 0.028 | 59.10 | 58.6449 | 0.45511 |
| ROUND TOP- |  |  |  |  |  |  |  |  |
| CARMINE ISD | -0.461 | 9,972 | 10,877.23 | -905.231 | 0.624 | 82.40 | 72.3609 | 10.03906 |
| S AND S CONS ISD | -0.192 | 7,934 | 8,311.57 | -377.570 | 0.588 | 73.50 | 64.0517 | 9.44825 |
| SALADO ISD | -0.435 | 7,119 | 7,973.88 | -854.877 | 0.147 | 70.60 | 68.2313 | 2.36871 |
| SAM RAYBURN |  |  |  |  |  |  |  |  |
| ISD | -0.464 | 7,372 | 8,284.35 | -912.351 | 0.691 | 72.00 | 60.8938 | 11.10623 |
| SAN ELIZARIO |  |  |  |  |  |  |  |  |
| ISD | -0.489 | 8,240 | 9,200.21 | -960.207 | 1.002 | 71.50 | 55.3918 | 16.10818 |
| SAN ISIDRO ISD | -0.316 | 12,137 | 12,757.45 | -620.453 | 2.176 | 100.00 | 65.0144 | 34.98558 |
| SAN SABA ISD | -0.217 | 8,660 | 9,086.26 | -426.256 | 0.668 | 70.60 | 59.8561 | 10.74386 |
| SANDS CISD | -0.199 | 10,188 | 10,579.61 | -391.614 | 1.933 | 94.10 | 63.0233 | 31.07674 |
| SANTA ROSA ISD | -0.421 | 8,609 | 9,436.87 | -827.869 | 1.370 | 77.30 | 55.2843 | 22.01574 |
| SCHULENBURG |  |  |  |  |  |  |  |  |
| ISD | -0.283 | 8,158 | 8,713.99 | -555.993 | 0.648 | 72.00 | 61.5865 | 10.41355 |
| SCURRY-ROSSER |  |  |  |  |  |  |  |  |
| ISD | -0.003 | 8,275 | 8,281.13 | -6.132 | 0.941 | 78.00 | 62.8780 | 15.12196 |
| SHALLOWATER |  |  |  |  |  |  |  |  |
| ISD | 0.000 | 7,724 | 7,724.00 | -0.003 | 0.191 | 65.80 | 62.7237 | 3.07628 |
| SHARYLAND ISD | -0.308 | 6,986 | 7,592.03 | -606.025 | 0.490 | 73.20 | 65.3260 | 7.87398 |
| SHELDON ISD | -0.253 | 8,987 | 9,483.42 | -496.421 | 0.283 | 65.20 | 60.6433 | 4.55666 |
| SHINER ISD | -0.006 | 8,570 | 8,580.83 | -10.829 | 1.473 | 85.70 | 62.0225 | 23.67747 |
| SIDNEY ISD | -0.003 | 10,062 | 10,067.40 | -5.399 | 0.655 | 69.20 | 58.6680 | 10.53195 |
| SIMMS ISD | -1.296 | 6,549 | 9,097.14 | -2,548.144 | 0.611 | 67.90 | 58.0827 | 9.81725 |
| SINTON ISD | -0.646 | 7,457 | 8,726.31 | -1,269.311 | 0.308 | 65.70 | 60.7411 | 4.95885 |
| SKIDMORE- |  |  |  |  |  |  |  |  |
| TYNAN ISD | -0.443 | 7,814 | 8,684.32 | -870.322 | 0.106 | 62.20 | 60.5030 | 1.69702 |
| SOUTHLAND ISD | -0.675 | 8,497 | 9,824.27 | -1,327.275 | 1.235 | 80.00 | 60.1536 | 19.84635 |
| SPRING BRANCH |  |  |  |  |  |  |  |  |
| ISD | -0.138 | 8,545 | 8,816.76 | -271.764 | 0.197 | 70.10 | 66.9400 | 3.16001 |
| SPRING HILL ISD | -0.205 | 6,338 | 6,740.00 | -401.999 | 0.800 | 78.80 | 65.9333 | 12.86667 |
| STAMFORD ISD | -0.099 | 8,652 | 8,846.33 | -194.331 | 0.918 | 72.50 | 57.7471 | 14.75286 |
| STEPHENVILLE | -0.562 | 6,889 | 7,994.48 | -1,105.476 | 0.877 | 78.40 | 64.2975 | 14.10249 |
| STOCKDALE ISD | -0.084 | 8,007 | 8,172.26 | -165.259 | 0.583 | 71.70 | 62.3207 | 9.37933 |
| STRAWN ISD | -0.553 | 8,312 | 9,399.12 | -1,087.122 | 0.355 | 66.70 | 60.9874 | 5.71260 |


| District Name | TOTAL |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EXPEND |  |  |  | DISTRIC |  |  |  |
|  | ITURES |  |  |  | T |  |  |  |
|  |  | PER |  |  |  | SAT/AC |  |  |
|  |  | PUPIL |  |  |  | T |  |  |
|  | Std. <br> Residual | $\begin{gathered} (2002- \\ 2003) \end{gathered}$ | Predicted Value | Residual | Std. <br> Residual | TESTED <br> 2003 | Predicted Value | Residual |
| SULPHUR |  |  |  |  |  |  |  |  |
| SPRINGS ISD | -0.428 | 7,344 | 8,185.13 | -841.133 | 0.069 | 62.40 | 61.2973 | 1.10269 |
| TEXARKANA ISD | -0.543 | 7,387 | 8,453.37 | -1,066.374 | 0.300 | 60.40 | 55.5851 | 4.81495 |
| TIMPSON ISD | -0.197 | 7,961 | 8,348.33 | -387.329 | 0.054 | 57.10 | 56.2259 | 0.87414 |
| TORNILLO ISD | -0.545 | 7,598 | 8,669.31 | -1,071.307 | 0.683 | 66.70 | 55.7208 | 10.97919 |
| TROY ISD | -0.380 | 7,674 | 8,421.14 | -747.144 | 0.127 | 64.90 | 62.8629 | 2.03714 |
| TULIA ISD | -0.242 | 7,951 | 8,427.53 | -476.526 | 0.215 | 62.30 | 58.8438 | 3.45617 |
| TURKEY- |  |  |  |  |  |  |  |  |
| QUITAQUE ISD | -0.326 | 8,122 | 8,763.62 | -641.625 | 2.136 | 92.90 | 58.5644 | 34.33562 |
| UNION GROVE |  |  |  |  |  |  |  |  |
| ISD | -0.274 | 7,596 | 8,134.64 | -538.637 | 0.124 | 63.60 | 61.6023 | 1.99774 |
| VAN VLECK ISD | -0.060 | 8,524 | 8,641.18 | -117.178 | 0.327 | 65.60 | 60.3472 | 5.25280 |
| VIDOR ISD | -0.918 | 7,065 | 8,869.16 | -1,804.157 | 0.407 | 66.00 | 59.4580 | 6.54200 |
| WALNUT |  |  |  |  |  |  |  |  |
| SPRINGS ISD | -0.710 | 8,036 | 9,432.15 | -1,396.155 | 0.810 | 71.40 | 58.3812 | 13.01876 |
| WASKOM ISD | -0.913 | 7,323 | 9,117.58 | -1,794.584 | 1.664 | 85.70 | 58.9542 | 26.74583 |
| WEIMAR ISD | -0.055 | 8,522 | 8,629.54 | -107.535 | 0.858 | 76.50 | 62.7088 | 13.79117 |
| WESLACO ISD | -0.326 | 7,882 | 8,523.39 | -641.391 | 0.168 | 60.10 | 57.3992 | 2.70076 |
| WEST HARDIN |  |  |  |  |  |  |  |  |
| COUNTY CONS |  |  |  |  |  |  |  |  |
| ISD | -0.067 | 8,308 | 8,440.35 | -132.354 | 0.020 | 60.50 | 60.1795 | 0.32048 |
| WEST SABINE ISD | -0.750 | 7,758 | 9,232.78 | -1,474.777 | 1.499 | 80.60 | 56.5083 | 24.09169 |
| WHEELER ISD | -0.154 | 8,248 | 8,550.15 | -302.148 | 1.191 | 82.90 | 63.7509 | 19.14907 |
| WHITEWRIGHT |  |  |  |  |  |  |  |  |
| ISD | -0.321 | 7,493 | 8,123.41 | -630.412 | 0.391 | 67.60 | 61.3094 | 6.29056 |
| WINNSBORO ISD | -1.109 | 6,451 | 8,630.02 | -2,179.021 | 0.601 | 71.60 | 61.9458 | 9.65422 |
| WODEN ISD | -0.724 | 7,166 | 8,589.24 | -1,423.237 | 1.170 | 78.40 | 59.5961 | 18.80389 |
| WOODVILLE ISD | -0.108 | 8,699 | 8,911.15 | -212.152 | 0.776 | 68.90 | 56.4233 | 12.47672 |
| WYLIE ISD | -0.436 | 6,186 | 7,042.52 | -856.522 | 1.054 | 86.60 | 69.6559 | 16.94407 |
| YANTIS ISD | -0.824 | 7,979 | 9,598.95 | -1,619.949 | 0.967 | 80.00 | 64.4519 | 15.54814 |
| YSLETA ISD | -0.359 | 7,338 | 8,043.15 | -705.146 | 2.437 | 96.80 | 57.6245 | 39.17553 |
| ZEPHYR ISD | -0.637 | 8,336 | 9,587.97 | -1,251.974 | 2.643 | 100.00 | 57.5129 | 42.48707 |

# APPENDIX G <br> TEST OF EQUALITY OF GROUP MEANS 

ALL GRADES MATH 2004
QUADRANT I
SCHOOL DISTRICTS

Tests of Equality of Group Means


# APPENDIX H <br> STANDARDIZED FUNCTION COEFFICIENTS 

ALL GRADES MATH 2004
QUADRANT I
SCHOOL DISTRICTS

Standardized Canonical Discriminant Function Coefficients

|  | Function |
| :---: | :---: |
|  | 1 |
| EXPENDITURES BY |  |
| PROGRAM BILINGUAL | -. 102 |
| / ESL EDUCATION | -. 102 |
| PERCENT |  |
| EXPENDITURES BY |  |
| PROGRAM | . 474 |
| COMPENSATORY | . 474 |
| EDUCATION PERCENT |  |
| EXPENDITURES BY |  |
| PROGRAM REGULAR | . 139 |
| EDUCATION PERCENT |  |
| EXPENDITURES BY |  |
| PROGRAM SPECIAL | -. 002 |
| EDUCATION PERCENT |  |
| AVG. SALARY | 307 |
| TEACHER | -. 307 |
| AVERAGE YEARS |  |
| EXPERIENCE FOR | . 498 |
| TEACHERS |  |
| NUMBER OF |  |
| STUDENTS PER | . 921 |
| TEACHER |  |
| TOTAL EXPENDITURE |  |
| BY FUNCTION - |  |
| CENTRAL | -. 007 |
| ADMINISTRATION |  |
| PERCENT |  |
| TOTAL EXPENDITURE |  |
| BY FUNCTION - | -. 027 |
| INSTRUCTIONAL | -. 027 |
| LEADERSHIP PERCENT |  |
| TOTAL EXPENDITURE |  |
| BY FUNCTION - | 279 |
| SCHOOL LEADERSHIP | . 279 |
| PERCENT |  |
| EXPENDITURES BY |  |
| PROGRAM GIFTED | -012 |
| AND TALENTED | -. 012 |
| PERCENT |  |
| TEACHER TURNOVER RATE | -. 261 |

## APPENDIX I

# CORRELATION COEFFICIENTS WITH DISCRIMINANT FUNCTION 

 ALL GRADES MATH 2004QUADRANT I
SCHOOL DISTRICTS

## Structure Matrix

|  | Function |
| :---: | :---: |
|  | 1 |
| NUMBER OF |  |
| STUDENTS PER | . 661 |
| TEACHER |  |
| TEACHER TURNOVER | -. 399 |
| RATE | -. 39 |
| TOTAL EXPENDITURE |  |
| BY FUNCTION - |  |
| CENTRAL | -. 397 |
| ADMINISTRATION |  |
| PERCENT |  |
| AVERAGE YEARS |  |
| EXPERIENCE FOR | . 351 |
| TEACHERS |  |
| TOTAL EXPENDITURE |  |
| BY FUNCTION - | 267 |
| SCHOOL LEADERSHIP | . 267 |
| PERCENT |  |
| TOTAL EXPENDITURE |  |
| BY FUNCTION - | . 252 |
| INSTRUCTIONAL | . 252 |
| LEADERSHIP PERCENT |  |
| EXPENDITURES BY |  |
| PROGRAM | 213 |
| COMPENSATORY | . 213 |
| EDUCATION PERCENT |  |
| AVG. SALARY | 136 |
| TEACHER | . 136 |
| EXPENDITURES BY |  |
| PROGRAM GIFTED | 36 |
| AND TALENTED | 6 |
| PERCENT |  |
| EXPENDITURES BY |  |
| PROGRAM REGULAR | -. 100 |
| EDUCATION PERCENT |  |
| EXPENDITURES BY |  |
| PROGRAM SPECIAL | -. 018 |
| EDUCATION PERCENT |  |
| EXPENDITURES BY |  |
| PROGRAM BILINGUAL | . 008 |
| / ESL EDUCATION | . 008 |
| PERCENT |  |

Pooled within-groups correlations between discriminating variables and standardized canonical discriminant functions. Variables ordered by absolute size of correlation within function.

## APPENDIX J

TEST OF EQUALITY OF GROUP MEANS
ALL GRADES READING 2004
QUADRANT I
SCHOOL DISTRICTS

Tests of Equality of Group Means


# APPENDIX K <br> STANDARDIZED FUNCTION COEFFICIENTS 

ALL GRADES READING 2004
QUADRANT I
SCHOOL DISTRICTS

## Standardized Canonical Discriminant Function Coefficients

|  | Function |
| :--- | :---: |
|  | 1 |
| EXPENDITURES BY |  |
| PROGRAM BILINGUAL | -.010 |
| / ESL EDUCATION |  |
| PERCENT |  |
| EXPENDITURES BY |  |
| PROGRAM | .295 |
| COMPENSATORY |  |
| EDUCATION PERCENT |  |
| EXPENDITURES BY |  |
| PROGRAM REGULAR | .179 |
| EDUCATION PERCENT |  |
| EXPENDITURES BY |  |
| PROGRAM SPECIAL | -.102 |
| EDUCATION PERCENT |  |
| AVG. SALARY |  |
| TEACHER |  |
| AVERAGE YEARS | . .385 |
| EXPERIENCE FOR |  |
| TEACHERS |  |
| NUMBER OF |  |
| STUDENTS PER | . .323 |
| TEACHER |  |
| TOTAL EXPENDITURE |  |
| BY FUNCTION - |  |
| CENTRAL |  |
| ADMINISTRATION | -.134 |
| PERCENT |  |
| TOTAL EXPENDITURE |  |
| BY FUNCTION - |  |
| INSTRUCTIONAL |  |
| LEADERSHIP PERCENT |  |
| TOTAL EXPENDITURE |  |
| BY FUNCTION - |  |
| SCHOOL LEADERSHIP |  |
| PERCENT |  |
| EXPENDITURES BY |  |
| PROGRAM GIFTED |  |
| AND TALENTED |  |
| PERCENT |  |

## APPENDIX L

# CORRELATION COEFFICIENTS WITH DISCRIMINANT FUNCTION 

ALL GRADES READING 2004
QUADRANT I
SCHOOL DISTRICTS

## Structure Matrix

|  | Function |
| :---: | :---: |
|  | 1 |
| NUMBER OF |  |
| STUDENTS PER | . 648 |
| TEACHER |  |
| TEACHER TURNOVER |  |
| RATE | -. 507 |
| TOTAL EXPENDITURE |  |
| BY FUNCTION - |  |
| CENTRAL | -. 452 |
| ADMINISTRATION |  |
| PERCENT |  |
| AVERAGE YEARS |  |
| EXPERIENCE FOR | . 433 |
| TEACHERS |  |
| EXPENDITURES BY |  |
| PROGRAM GIFTED | 222 |
| AND TALENTED | . 222 |
| PERCENT |  |
| TOTAL EXPENDITURE |  |
| BY FUNCTION - |  |
| INSTRUCTIONAL | 90 |
| LEADERSHIP PERCENT |  |
| TOTAL EXPENDITURE |  |
| BY FUNCTION - | 165 |
| SCHOOL LEADERSHIP | 165 |
| PERCENT |  |
| AVG. SALARY | 164 |
| TEACHER | . 164 |
| EXPENDITURES BY |  |
| PROGRAM SPECIAL | -. 102 |
| EDUCATION PERCENT |  |
| EXPENDITURES BY |  |
| PROGRAM REGULAR | . 057 |
| EDUCATION PERCENT |  |
| EXPENDITURES BY |  |
| PROGRAM BILINGUAL |  |
| / ESL EDUCATION | . 036 |
| PERCENT |  |
| EXPENDITURES BY |  |
| PROGRAM |  |
| COMPENSATORY | . 024 |
| EDUCATION PERCENT |  |

Pooled within-groups correlations between discriminating variables and standardized canonical discriminant functions. Variables ordered by absolute size of correlation within function.

## APPENDIX M

TEST OF EQUALITY OF GROUP MEANS DISTRICT COMPLETION RATE

WITHOUT G.E.D. 2003

QUADRANT I
SCHOOL DISTRICTS

Tests of Equality of Group Means


## APPENDIX N <br> STANDARDIZED FUNCTION COEFFICIENTS <br> DISTRICT COMPLETION RATE <br> WITHOUT G.E.D. 2003 <br> QUADRANT I <br> SCHOOL DISTRICTS

## Standardized Canonical Discriminant Function Coefficients

|  | Function |
| :---: | :---: |
|  | 1 |
| EXPENDITURES BY |  |
| PROGRAM BILINGUAL | . 003 |
| / ESL EDUCATION | . 003 |
| PERCENT |  |
| EXPENDITURES BY |  |
| PROGRAM | 67 |
| COMPENSATORY | 7 |
| EDUCATION PERCENT |  |
| EXPENDITURES BY |  |
| PROGRAM REGULAR | -. 012 |
| EDUCATION PERCENT |  |
| EXPENDITURES BY |  |
| PROGRAM SPECIAL | -. 180 |
| EDUCATION PERCENT |  |
| AVG. SALARY | -. 468 |
| TEACHER | -. 468 |
| AVERAGE YEARS |  |
| EXPERIENCE FOR | . 483 |
| TEACHERS |  |
| NUMBER OF |  |
| STUDENTS PER | . 688 |
| TEACHER |  |
| TOTAL EXPENDITURE |  |
| BY FUNCTION - |  |
| CENTRAL | -. 424 |
| ADMINISTRATION |  |
| PERCENT |  |
| TOTAL EXPENDITURE |  |
| BY FUNCTION - |  |
| INSTRUCTIONAL | -. 067 |
| LEADERSHIP PERCENT |  |
| TOTAL EXPENDITURE |  |
| BY FUNCTION - | 218 |
| SCHOOL LEADERSHIP | . 218 |
| PERCENT |  |
| EXPENDITURES BY |  |
| PROGRAM GIFTED | -. 003 |
| AND TALENTED | -. 003 |
| PERCENT |  |
| TEACHER TURNOVER |  |
| RATE | -. 232 |

# APPENDIX 0 <br> CORRELATION COEFFICIENTS WITH DISCRIMINANT FUNCTION DISTRICT COMPLETION RATE <br> WITHOUT G.E.D. 2003 <br> QUADRANT I <br> SCHOOL DISTRICTS 

## Structure Matrix

|  | Function |
| :---: | :---: |
|  | 1 |
| NUMBER OF |  |
| STUDENTS PER | . 671 |
| TEACHER |  |
| TOTAL EXPENDITURE |  |
| BY FUNCTION - |  |
| CENTRAL | -. 649 |
| ADMINISTRATION |  |
| PERCENT |  |
| TEACHER TURNOVER | -. 419 |
| RATE | -. 419 |
| AVERAGE YEARS |  |
| EXPERIENCE FOR | . 319 |
| TEACHERS |  |
| TOTAL EXPENDITURE |  |
| BY FUNCTION - | 248 |
| INSTRUCTIONAL | . 248 |
| LEADERSHIP PERCENT |  |
| TOTAL EXPENDITURE |  |
| BY FUNCTION - | 211 |
| SCHOOL LEADERSHIP | . 211 |
| PERCENT |  |
| EXPENDITURES BY |  |
| PROGRAM GIFTED | 187 |
| AND TALENTED | 187 |
| PERCENT |  |
| EXPENDITURES BY |  |
| PROGRAM BILINGUAL |  |
| / ESL EDUCATION | 110 |
| PERCENT |  |
| AVG. SALARY | . 075 |
| TEACHER | . 075 |
| EXPENDITURES BY |  |
| PROGRAM |  |
| COMPENSATORY | . 064 |
| EDUCATION PERCENT |  |
| EXPENDITURES BY |  |
| PROGRAM REGULAR | -. 048 |
| EDUCATION PERCENT |  |
| EXPENDITURES BY |  |
| PROGRAM SPECIAL | -. 039 |
| EDUCATION PERCENT |  |

Pooled within-groups correlations between discriminating variables and standardized canonical discriminant functions. Variables ordered by absolute size of correlation within function.

# APPENDIX P <br> TEST OF EQUALITY OF GROUP MEANS DISTRICT MEAN SAT 2003 <br> QUADRANT I <br> SCHOOL DISTRICTS 

Tests of Equality of Group Means


# APPENDIX Q <br> STANDARDIZED FUNCTION COEFFICIENTS <br> DISTRICT MEAN SAT 2003 <br> QUADRANT I <br> SCHOOL DISTRICTS 

## Standardized Canonical Discriminant Function Coefficients

|  | Function |
| :--- | :---: |
|  | 1 |
| EXPENDITURES BY |  |
| PROGRAM BILINGUAL | .096 |
| / ESL EDUCATION |  |
| PERCENT |  |
| EXPENDITURES BY |  |
| PROGRAM | .235 |
| COMPENSATORY |  |
| EDUCATION PERCENT |  |
| EXPENDITURES BY |  |
| PROGRAM REGULAR | .214 |
| EDUCATION PERCENT |  |
| EXPENDITURES BY |  |
| PROGRAM SPECIAL | . .416 |
| EDUCATION PERCENT |  |
| AVG. SALARY |  |
| TEACHER |  |
| AVERAGE YEARS | . .494 |
| EXPERIENCE FOR |  |
| TEACHERS |  |
| NUMBER OF |  |
| STUDENTS PER | . .013 |
| TEACHER |  |
| TOTAL EXPENDITURE |  |
| BY FUNCTION - |  |
| CENTRAL |  |
| ADMINISTRATION | -.474 |
| PERCENT |  |
| TOTAL EXPENDITURE |  |
| BY FUNCTION - |  |
| INSTRUCTIONAL |  |
| LEADERSHIP PERCENT |  |
| TOTAL EXPENDITURE |  |
| BY FUNCTION - |  |
| SCHOOL LEADERSHIP |  |
| PERCENT |  |
| EXPENDITURES BY |  |
| PROGRAM GIFTED |  |
| AND TALENTED |  |
| PERCENT |  |
| RATE |  |

## APPENDIX R

CORRELATION COEFFICIENTS WITH DISCRIMINANT FUNCTION DISTRICT MEAN SAT 2003

QUADRANT I
SCHOOL DISTRICTS

## Structure Matrix

|  | Function |
| :---: | :---: |
|  | 1 |
| TOTAL EXPENDITURE |  |
| BY FUNCTION - |  |
| CENTRAL | -. 742 |
| ADMINISTRATION |  |
| PERCENT |  |
| NUMBER OF |  |
| STUDENTS PER | . 713 |
| TEACHER |  |
| TOTAL EXPENDITURE |  |
| BY FUNCTION - |  |
| INSTRUCTIONAL | 435 |
| LEADERSHIP PERCENT |  |
| TEACHER TURNOVER |  |
| RATE | -. 405 |
| AVERAGE YEARS |  |
| EXPERIENCE FOR | . 314 |
| TEACHERS |  |
| EXPENDITURES BY |  |
| PROGRAM GIFTED | 171 |
| AND TALENTED | 171 |
| PERCENT |  |
| AVG. SALARY | 167 |
| TEACHER | . 167 |
| EXPENDITURES BY |  |
| PROGRAM SPECIAL | . 159 |
| EDUCATION PERCENT |  |
| EXPENDITURES BY |  |
| PROGRAM BILINGUAL | . 154 |
| / ESL EDUCATION | . 154 |
| PERCENT |  |
| TOTAL EXPENDITURE |  |
| BY FUNCTION - | 056 |
| SCHOOL LEADERSHIP | . 056 |
| PERCENT |  |
| EXPENDITURES BY |  |
| PROGRAM REGULAR | -. 046 |
| EDUCATION PERCENT |  |
| EXPENDITURES BY |  |
| PROGRAM |  |
| COMPENSATORY | -. 018 |
| EDUCATION PERCENT |  |

Pooled within-groups correlations between discriminating variables and standardized canonical discriminant functions. Variables ordered by absolute size of correlation within function.

## APPENDIX S

TEST OF EQUALITY OF GROUP MEANS DISTRICT MEAN ACT 2003

QUADRANT I
SCHOOL DISTRICTS

Tests of Equality of Group Means


# APPENDIX T <br> STANDARDIZED FUNCTION COEFFICIENTS 

ALL GRADES MATH 2004
QUADRANT I
SCHOOL DISTRICTS

## Standardized Canonical Discriminant Function Coefficients

|  | Function |
| :--- | :---: |
|  | 1 |
| EXPENDITURES BY |  |
| PROGRAM BILINGUAL | .014 |
| / ESL EDUCATION |  |
| PERCENT |  |
| EXPENDITURES BY |  |
| PROGRAM | .175 |
| COMPENSATORY |  |
| EDUCATION PERCENT |  |
| EXPENDITURES BY |  |
| PROGRAM REGULAR | -.021 |
| EDUCATION PERCENT |  |
| EXPENDITURES BY |  |
| PROGRAM SPECIAL | .158 |
| EDUCATION PERCENT |  |
| AVG. SALARY |  |
| TEACHER |  |
| AVERAGE YEARS | . .397 |
| EXPERIENCE FOR |  |
| TEACHERS |  |
| NUMBER OF |  |
| STUDENTS PER | . .183 |
| TEACHER |  |
| TOTAL EXPENDITURE |  |
| BY FUNCTION - |  |
| CENTRAL |  |
| ADMINISTRATION | -.334 |
| PERCENT |  |
| TOTAL EXPENDITURE |  |
| BY FUNCTION - |  |
| INSTRUCTIONAL |  |
| LEADERSHIP PERCENT |  |
| TOTAL EXPENDITURE |  |
| BY FUNCTION - |  |
| SCHOOL LEADERSHIP |  |
| PERCENT |  |
| EXPENDITURES BY |  |
| PROGRAM GIFTED |  |
| AND TALENTED |  |
| PERCENT |  |
| RATEACHER TURNOVER |  |

## APPENDIX U

# CORRELATION COEFFICIENTS WITH DISCRIMINANT FUNCTION 

DISTRICT MEAN ACT 2003
QUADRANT I
SCHOOL DISTRICTS

## Structure Matrix

|  | Function |
| :---: | :---: |
|  | 1 |
| TOTAL EXPENDITURE <br> BY FUNCTION - |  |
|  |  |
| CENTRAL | -. 661 |
| ADMINISTRATION |  |
| PERCENT |  |
| NUMBER OF |  |
| STUDENTS PER | . 653 |
| TEACHER |  |
| TOTAL EXPENDITURE |  |
| BY FUNCTION - | . 28 |
| INSTRUCTIONAL |  |
| LEADERSHIP PERCENT |  |
| AVERAGE YEARS |  |
| EXPERIENCE FOR | . 423 |
| TEACHERS |  |
| TEACHER TURNOVER |  |
| RATE - 401 |  |
| EXPENDITURES BY |  |
| PROGRAM GIFTED | 329 |
| AND TALENTED |  |
| PERCENT |  |
| EXPENDITURES BY |  |
| PROGRAM SPECIAL | . 249 |
| EDUCATION PERCENT |  |
| AVG. SALARY | 218 |
| TEACHER . 218 |  |
| EXPENDITURES BY |  |
| PROGRAM REGULAR | -. 201 |
| EDUCATION PERCENT - -201 |  |
| EXPENDITURES BY |  |
| PROGRAM BILINGUAL |  |
| / ESL EDUCATION | . 141 |
| PERCENT |  |
| TOTAL EXPENDITURE |  |
| BY FUNCTION - | 068 |
| SCHOOL LEADERSHIP | 068 |
| PERCENT |  |
| EXPENDITURES BY |  |
| PROGRAM |  |
| COMPENSATORY | . 050 |
| EDUCATION PERCENT |  |

Pooled within-groups correlations between discriminating variables and standardized canonical discriminant functions. Variables ordered by absolute size of correlation within function.

# APPENDIX V <br> TEST OF EQUALITY OF GROUP MEANS DISTRICT SAT / ACT <br> TESTED 2003 <br> QUADRANT I SCHOOL DISTRICTS 

Tests of Equality of Group Means

|  | Wilks' <br> Lambda | F | df1 | df2 | Sig. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| EXPENDITURES BY |  |  |  |  |  |
| PROGRAM BILINGUAL / ESL EDUCATION | 1.000 | . 404 | 1 | 995 | . 525 |
| PERCENT |  |  |  |  |  |
| EXPENDITURES BY PROGRAM |  |  |  |  |  |
| COMPENSATORY | 1.000 | . 005 | 1 | 995 | . 945 |
| EDUCATION PERCENT |  |  |  |  |  |
| EXPENDITURES BY |  |  |  |  |  |
| PROGRAM REGULAR EDUCATION PERCENT | 1.000 | . 379 | 1 | 995 | . 538 |
| EXPENDITURES BY |  |  |  |  |  |
| PROGRAM SPECIAL | . 999 | . 942 | 1 | 995 | . 332 |
| EDUCATION PERCENT |  |  |  |  |  |
| AVG. SALARY | . 997 | 2.997 | 1 | 995 | . 084 |
| TEACHER | . 997 | 2.997 | 1 | 995 | . 084 |
| AVERAGE YEARS |  |  |  |  |  |
| EXPERIENCE FOR TEACHERS | . 982 | 18.164 | 1 | 995 | . 000 |
| NUMBER OF |  |  |  |  |  |
| STUDENTS PER | . 990 | 10.385 | 1 | 995 | . 001 |
| TEACHER |  |  |  |  |  |
| TOTAL EXPENDITURE |  |  |  |  |  |
| BY FUNCTION - |  |  |  |  |  |
| CENTRAL | . 989 | 11.402 | 1 | 995 | . 001 |
| ADMINISTRATION |  |  |  |  |  |
| PERCENT |  |  |  |  |  |
| TOTAL EXPENDITURE |  |  |  |  |  |
| BY FUNCTION - | 1.000 | . 132 | 1 | 995 | . 716 |
| INSTRUCTIONAL <br> LEADERSHIP PERCENT |  |  |  |  |  |
| TOTAL EXPENDITURE |  |  |  |  |  |
| BY FUNCTION - |  |  |  |  |  |
| SCHOOL LEADERSHIP | 1.000 | . 059 | 1 | 995 | . 809 |
| PERCENT |  |  |  |  |  |
| EXPENDITURES BY |  |  |  |  |  |
| PROGRAM GIFTED |  |  |  |  |  |
| AND TALENTED | . 999 | . 661 | 1 | 995 | . 416 |
| PERCENT |  |  |  |  |  |
| TEACHER TURNOVER | . 990 | 9.994 | 1 | 995 | . 002 |
|  |  |  |  |  |  |

## APPENDIX W <br> STANDARDIZED FUNCTION COEFFICIENTS <br> DISTRICT SAT / ACT <br> TESTED 2003 <br> QUADRANT I <br> SCHOOL DISTRICTS

## Standardized Canonical Discriminant Function Coefficients

|  | Function |
| :--- | :---: |
|  | 1 |
| EXPENDITURES BY |  |
| PROGRAM BILINGUAL | -.014 |
| / ESL EDUCATION |  |
| PERCENT |  |
| EXPENDITURES BY |  |
| PROGRAM | .026 |
| COMPENSATORY |  |
| EDUCATION PERCENT |  |
| EXPENDITURES BY |  |
| PROGRAM REGULAR | .096 |
| EDUCATION PERCENT |  |
| EXPENDITURES BY |  |
| PROGRAM SPECIAL | -.080 |
| EDUCATION PERCENT | .808 |
| AVG. SALRY TEACHER |  |
| AVERAGE YEARS | -.788 |
| EXPERIENCE FOR |  |
| TEACHERS |  |
| NUMBER OF | . .622 |
| STUDENTS PER |  |
| TEACHER |  |
| TOTAL EXPENDITURE |  |
| BY FUNCTION - |  |
| CENTRAL |  |
| ADMINISTRATION | .027 |
| PERCENT |  |
| TOTAL EXPENDITURE |  |
| BY FUNCTION - |  |
| INSTRUCTIONAL |  |
| LEADERSHIP PERCENT |  |
| TOTAL EXPENDITURE |  |
| BY FUNCTION - |  |
| SCHOOL LEADERSHIP |  |
| PERCENT |  |
| EXPENDITURES BY |  |
| PROGRAM GIFTED |  |
| AND TALENTED |  |
| PERCENT |  |

# APPENDIX X <br> CORRELATION COEFFICIENTS WITH DISCRIMINANT FUNCTION DISTRICT SAT / ACT <br> TESTED 2003 <br> QUADRANT I <br> SCHOOL DISTRICTS 

## Structure Matrix

|  | Function |
| :--- | :---: |
|  | 1 |
| AVERAGE YEARS |  |
| EXPERIENCE FOR | -.490 |
| TEACHERS |  |
| TOTAL EXPENDITURE |  |
| BY FUNCTION - | .388 |
| CENTRAL |  |
| ADMINISTRATION |  |
| PERCENT |  |
| NUMBER OF | . .371 |
| STUDENTS PER |  |
| TEACHER | .199 |
| TEACHER TURNOVER |  |
| RATE |  |
| AVG. SALARY | -.112 |
| TEACHER |  |
| EXPENDITURES BY |  |
| PROGRAM SPECIAL |  |
| EDUCATION PERCENT | .008 |
| EXPENDITURES BY |  |
| PROGRAM GIFTED | -.094 |
| AND TALENTED |  |
| PERCENT |  |
| EXPENDITURES BY | .072 |
| PROGRAM BILINGUAL |  |
| / ESL EDUCATION |  |
| PERCENT |  |
| EXPENDITURES BY |  |
| PROGRAM REGULAR |  |
| EDUCATION PERCENT |  |
| TOTAL EXPENDITURE |  |
| BY FUNCTION - |  |
| INSTRUCTIONAL |  |
| LEADERSHIP PERCENT |  |
| TOTAL EXPENDITURE |  |
| BY FUNCTION - |  |
| SCHOOL LEADERSHIP |  |
| PERCENT |  |
| EXPENDITURES BY |  |
| PROGRAM |  |
| POMPENSATORY |  |

Pooled within-groups correlations between discriminating variables and standardized canonical discriminant functions. Variables ordered by absolute size of correlation within function.

## APPENDIX Y

## MODIFIED QUADRIFORM ANALYSIS

FOR ALL SCHOOLS IN STATE OF TEXAS 2004

| Efficient <br> Quadrant I <br> $32.1 \%$ | Effective <br> Quadrant III $193 \%$ |
| :---: | :---: |
| Ineffective Quadrant II $203 \%$ | Inefficient Quadrant IT $283 \%$ |

All Grades Tested TAKS Math 2004
( $\mathrm{n}=1034$ )


District Completion Rate without G.E.D. 2003

$$
(\mathrm{n}=967)
$$

| Efficient <br> Quadrant I <br> $335 \%$ | Effective Quadrant III $17.6 \%$ |
| :---: | :---: |
| Ineffective Quadrant II $179 \%$ | Inefficient Quadrant IV $310 \%$ |

District Mean ACT 2003 $(\mathrm{n}=881)$

| Efficient <br> Quadrant I <br> $31.7 \%$ | Effective <br> Quadrant III <br> $21.8 \%$ |
| :---: | :---: |
| Ineffective Quadrant II $175 \%$ | Inefficient QuadrantIV $29.0 \%$ |

All Grades Tested TAKS Reading 2004 $(\mathrm{n}=1028)$


District Mean SAT 2003 ( $\mathrm{n}=708$ )

| Efficient <br> Quadrant I <br> $27.2 \%$ | Effective <br> Quadrant III <br> $21.0 \%$ |
| :---: | :---: |
| Ineffective <br> Quadrant II <br> $17.0 \%$ | Inefficient QuadrantIV $34.9 \%$ |

District SAT / ACT Tested 2003
( $\mathrm{n}=945$ )

## VITA

Chad Aaron Stevens received his Bachelor of Science degree in exercise and sports studies from Tarleton State University in 1996. He entered the educational management program at University of Houston - Clear Lake in summer 1997, and received his Master of Science degree in December of 1999. He entered the doctorate program at Texas A\&M University in July of 2001 seeking a Ph.D. in educational administration with a specialization in public school administration. He received his Ph.D. from Texas A\&M University in December 2006. His research interests include school finance, educational administration theory, gifted and talented education, curriculum and educational history.

Dr. Stevens may be reached at 2465 Falcon Pass Elementary, 2465 Falcon Pass Drive, Houston, TX 77062. His e-mail is cstevens@ccisd.net.

