

MASTER OF SCIENCE

RIGGING SKELETAL PERISSODACTYL AND ARTIODACTYL

UNGULATE LIMBS USING ANALYTIC INVERSE KINEMATIC-

BASED SOLUTIONS FOR A FEATURE FILM PRODUCTION

ENVIRONMENT

A Thesis

by

WILLIAM LAWRENCE TELFORD JR

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

December 2006

Major Subject: Visualization Sciences

MASTER OF SCIENCE

Approved by:

Chair of Committee, Karen Hillier
Committee Members, Ergun Akleman
 Donna Hajash
Head of Department, Mark Clayton

December 2006

Major Subject: Visualization Sciences

RIGGING SKELETAL PERISSODACTYL AND ARTIODACTYL

UNGULATE LIMBS USING ANALYTIC INVERSE KINEMATIC-

BASED SOLUTIONS FOR A FEATURE FILM PRODUCTION

ENVIRONMENT

A Thesis

by

WILLIAM LAWRENCE TELFORD JR

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

 iii

ABSTRACT

Rigging Skeletal Perissodactyl and Artiodactyl Ungulate Limbs Using Analytic Inverse

Kinematic-based Solutions for a Feature Film Production Environment.

(December 2006)

William Lawrence Telford Jr, B.E.D., Texas A&M University

Chair of Advisory Committee: Prof. Karen Hillier

The goal of this thesis is to develop and construct a repeatable, scalable, and portable

rigging solution for the skeletal limbs of ungulates, maximizing functionality while

streamlining intuitive interface controls for a feature film production pipeline. The

research presents a methodology for breaking down character reference materials

commonly available to feature film productions like artwork, anatomical drawings,

photographs, and client provided performance criteria. It then presents a modular

methodology and approach for successfully evaluating and applying the character

reference to the construction of skeletal limbs using ungulates as the primary example.

Each limb is broken down into modules that more easily translate into the digital world.

The methodology then further defines how to combine and apply digital rigging tools

such as constraints and inverse and forward kinematic techniques in a layered and

modular way in order to achieve a robust character rig. The resulting ungulate limb rig

provides an efficient, intuitive, and robust solution capable of replicating the given

performance criteria as well as an example of a scalable approach applicable to non-

 iv

ungulates. In application of the repeatable modular approach presented, huge efficiency

gains have been realized in feature film production pipelines. Animation studios are

under increasing pressure to create larger quantities of work, at higher quality, with

shorter timetables, and smaller relative budgets. This methodology successfully meets

those criteria.

 v

ACKNOWLEDGEMENTS

I would like to thank my thesis committee for their continued patience, guidance, and

support. I would also like to thank my family for their encouragement in all of my life’s

pursuits. Finally I would like to thank my wife for her love, sacrifice, and understanding

as this research extended from school and on into my career.

 vi

TABLE OF CONTENTS

Page

1. INTRODUCTION..1

2. PROBLEM STATEMENT ..6

3. RIGGING PHILOSOPHY ...7

4. CHARACTER REFERENCE..10

4.1 Form ...10
4.2 Function..12

5. TOOLS ...13

5.1 Kinematics..13
5.1.1 Forward Kinematics ..13
5.1.2 Inverse Kinematics ..14

5.2 Transforms ...16
5.3 Expressions and Scripts..21

6. STRUCTURE...22

6.1 Natural Anatomy ..22
6.1.1 Forelimb ..24
6.1.2 Hindlimb..26

6.2 Digital Anatomy...27
6.2.1 Forelimb ..29
6.2.2 Hindlimb..43

7. INTERFACE..48

8. CONCLUSIONS..51

9. FUTURE WORK ...53

REFERENCES...54

VITA ..55

 vii

LIST OF FIGURES

Page

Figure 1: Simple IK structure. Parented nodes A, B, and C. Nodes A, B, and C

achieving goal. Nodes A, B, and C attempting to reach goal.2

Figure 2: An example of a proposed rigging solution versus a single iterative IK

solution. ..15

Figure 3: Comparison of an analytic IK solver versus an iterative solver with a single

iteration and a high tolerance. ..16

Figure 4: A translation constraint applied in world space..17

Figure 5: A stable and unstable aim constraint. In the second image both x and y axes

are trying to point in the same direction creating instability.19

Figure 6: An object being constrained to a nurbs sphere. ..20

Figure 7: Horse skeleton. (Adapted from Ref. [7]). ...23

Figure 8: Pectoral sling. ...25

Figure 9: Digital ungulate limb joints. ...28

Figure 10: Digital scapula structure. ..30

Figure 11: Rotational range of motion with modified pivot for scapula..........................31

Figure 12: Shoulder FK structure...33

Figure 13: IK structure rooted at elbow with its first goal at the fetlock.34

Figure 14: Two poses shown with and without kneelock. ...35

Figure 15: Result of rotating fetlock control. ...37

 viii

Page

Figure 16: Reverse leg used to auto place fetlock rotation. ...39

Figure 17: Demonstration of fetlock motion when IK handle is moved..........................40

Figure 18: Curl control. ..41

Figure 19: Squash control. ...42

Figure 20: Parallel bones created by reciprocal motion in stifle and hock joints.44

Figure 21: Reverse leg structure used to generate reciprocal motion in stifle and hock

joints. ..45

Figure 22: Changing angular distribution in stifle and hock by altering length

proportions in the reverse leg. ..46

Figure 23: 11 icons used to control ungulate limb rig..49

1

 1. INTRODUCTION

The study of character rigging is a relatively new discipline in the field of computer

graphics. According to Aaron Sims and Michael Isner, it is the dream of assembling all

the tools and mechanical systems of 3D and creating a new creature [1]. It has had a

slow and steady evolution, growing out of a need for more complex motion while

providing intuitive controls to execute increasingly more complex animation.

Historically animators are responsible for their own character rigs. Over time it has

become clear that while animation tends to be an artistic task requiring aesthetic and

stylistic decision making, rigging is a more mechanical task requiring logic and good

problem solving skills. It is difficult to find someone who possesses the skills to both

animate and rig well. As such, visual effects companies and animation studios are

identifying specialists to concentrate solely on character rigging.

Early character rigs depended on simple hierarchical structures of nodes. A

hierarchy implies a parent-child relationship between all nodes [2]. They were animated

with forward kinematics (FK). FK is a technique in which each node in the hierarchy

inherits its transforms from the node that precedes it in a parent/child relationship. It

requires the animator to explicitly define the orientations of all joints [2]. By employing

this method, an animator can animate a character's leg by traversing down the hierarchy,

first rotating its hip, which in turn moves the knee (its child), ankle, and any subsequent

This thesis follows the style and format of IEEE Transactions on Visualization and
Computer Graphics.

 2

joints. The animator then rotates the knee which moves the ankle and any subsequent

joints. This technique is very successful for animation that requires free hanging motion

like a swinging arm, but is extremely tedious for other tasks such as planting a footfall.

Anytime a parent or subsequent ancestor of a node is moved, it requires that its children

be counter-animated back to the ground. This creates a painstaking redundancy in the

animator's workflow. A better solution is a technique called inverse kinematics (IK).

Using IK a user can drive many joints through the placement of just one node [2].

There are many different kinds of IK solvers. One of the most basic is a two

"bone" or three "joint" analytic IK solver. This system employs simple trigonometry and

requires that you have three nodes (A, B, and C) at unique points in space and another

node to act as a goal or target (Figure 1).

Figure 1: Simple IK structure. Parented nodes A, B, and C. Nodes A, B, and C achieving

goal. Nodes A, B, and C attempting to reach goal.

 3

Node C is parented to B, and B to A. This structure resembles an arm from

shoulder to wrist. The goal exists outside the hierarchy. To simplify the system the

transforms of nodes A, B, and C are limited to rotations only. The IK solver populates

nodes A, B, and C with the appropriate rotations to allow C to reach the goal. If no

solution is achievable, the solver comes as close as possible. Using this technique, an

animator is able to place the location of a character's hip and the location of its foot,

while the location of its knee is calculated for them. This greatly simplifies problems like

placing footfalls.

The FK and IK methods described above are just two of the many building

blocks available in most commercial and proprietary animation software packages used

by visual effects companies and animation studios. At its root all characters are still just

hierarchical structures of nodes. It is the rig's job to simplify the animator's interaction

with those nodes allowing the animator to concentrate on performance and not

technology. The complexity of the problem does not end there. Beyond an animator's

interaction with a rig, it is usually necessary for the rig to provide the foundation for a

deformation structure for geometry that represents the character's skin. This foundation

is analogous to a character’s skeleton.

To build a successful rig it is not only important to have a strong understanding

of the available toolsets, but to also have a strong understanding of a character's

anatomy. This applies to characters that don't exist in real life as well. A character rigger

must still define and adhere to a functionally appropriate anatomy. Simply a slight shift

 4

in the position of any joint in a character can make or break the believability of the

motion and deformations. It is possible, and usually necessary, to take liberties with the

structure of a character, but how and why the character deviates from its true anatomy

must be planned and understood. Usually these deviations require a compromise in

either performance or deformation for the sake of simplicity. The spine of a character is

a good example of this. Many times the spine of a 3D character is built upon a spline,

allowing the use of four or five joints as opposed to the much higher anatomically

correct number. This eliminates the need for controlling so many joints in the spine, but

it does so at the cost of more accurate deformations. Quite often this is an acceptable

compromise between accuracy and ease of use, as it greatly improves the animator's

efficiency. How and where to make compromises is usually decided by animation

supervisors and character-rigging supervisors after carefully weighing the cost benefit of

such a decision.

To successfully rig for a feature production environment the impact of the rig on

the entire production pipeline must be considered as well as the impact on animation.

The choices made at each stage of the pipeline (modeling, rigging, animating, lighting,

and effects) have an impact both up and down stream. The topology and form of a

model is heavily dependent on rigging requirements. The default pose of a character is

often dictated by what is most convenient for the rig and deformations. Many lighting

problems can be traced back to a poorly deforming character, as certain deformation

problems do not become evident until they are properly shadowed and shaded. In many

 5

cases effects can interact heavily with a character, putting its own set of constraints on

the rig.

 6

2. PROBLEM STATEMENT

Feature film production pipelines require a robust character rig to achieve the level of

realism required by a modern audience. The rigging solution must be implemented in

both a computationally and time efficient manner. Prior work in this area concentrates

on specific implementations within specific commercial software packages. The goal of

this thesis is to develop and construct a repeatable, scalable, and portable rigging

solution using the example of skeletal limbs of ungulates, maximizing functionality

while streamlining intuitive interface controls for a feature film production pipeline. The

methodology and philosophy presented is an approach that is applicable across multiple

platforms, software packages, and countless rigging problems.

 7

3. RIGGING PHILOSOPHY

In order to successfully rig a character, it is necessary to have a strong philosophy about

how to approach the problem. Rigging is, at its most basic, a series of problems that need

to be solved. It is appropriate to first approach each problem individually. By doing this

a rig can be separated into a set of modules that serve as building blocks. These modules

can then be assembled into larger and larger systems. By attacking the problem in a

modular way, it is possible to reuse modules both within the same character as well as

others and increase efficiency. For example, it is not uncommon to use identical modules

on front and rear limbs. Multiple modules assembled into a system can then be viewed

as an even larger module. This process is then repeated to develop a way of layering

complexity into a character.

Layering helps keep a rig consistent, improves the efficiencies of both rigger and

animator, and facilitates debugging. Reusing modules in the same rig assures that similar

problems are solved and behave the same way in all areas. This consistency is invaluable

to animators counting on the behavior of the rig. Without it an animator would have to

spend more time learning how to use the rig. The consistency also helps the rigger as

they build more complex systems that depend on these modules. If an error or instability

is found in a module it can easily be corrected and propagated out to similar modules.

Without this, the rigger could easily overlook a similar instability elsewhere in the rig. In

addition, the consistency from module to module and character to character allows other

 8

character riggers to participate in the construction and support of a character with little

education as to the history of the rig.

The success of a character rig also depends heavily on its stability. It is important

that all systems in the rig be as stable as possible. In using a modular approach a rigger

can more easily insure the stability of a rig by verifying that the modules used are each

stable as a unit. When a rig is unstable it can drastically affect the performance and

efficiency of the character. Quite often instabilities can manifest themselves in ways that

don't always seem repeatable. Instabilities can be as drastic as a joint flipping 180

degrees or as subtle as a joint that can't achieve its rest position by a fraction of a degree.

A rig’s usability is also greatly affected by its efficiency. Many tools available to

riggers come with a steep computational cost. Quite often this cost is calculated by

determining how fast animation on the rig can be played back. The ideal frame rate for

film is 24 frames per second (fps), or real time. It is not uncommon for rigs with

expensive deformations to play back at 1 or 2 fps. The slower the rig the more difficult

the rig is to animate. This expense must be balanced with the complexity of the rig. As

animators work one frame at a time this usually doesn’t inhibit their ability to pose the

rig, but it does slow down their ability to evaluate motion. To accommodate this problem

most animation packages have caching systems that allow for real time playback of

complex rigs.

 One common component found in complex character rigs is automation. Automation

can be as simple as having one joint’s rotational value follow another joint’s rotational

value or as complex as providing all rotational movement of a ball given only its

 9

translation through space. Automation is an extremely powerful tool, but it can also be

disruptive. It is very difficult to direct the performance of an automated object, as its

motion is driven indirectly through another system. This does not necessitate the

exclusion of automation from a character rig, but it does require that the animators have

the ability to turn off the automation.

 10

4. CHARACTER REFERENCE

Constructing a solid character rig requires thorough research and planning that entails

gathering character design reference. Design reference can come in many forms

including artwork, anatomical reference, video, and client descriptions. Any conflicting

information must be reconciled to develop a complete character profile. For example,

vertebrates have a small amount of flexibility in their spine. This allows for small

amounts of squash and stretch. A computer generated (CG) character may require a

more cartoon-like performance, necessitating larger amounts of squash and stretch.

 A common issue when working with anthropomorphic characters is reconciling

lip-synch with an animal whose facial musculature does not support such motions. Quite

often additional structures and controls must be created that would not exist in the

character reference to allow the desired performance.

4.1 Form

Many times reference for a character is given in the form of two dimensional (2D)

artwork. It is also very common for this form of reference to have anatomical

inconsistencies due to different drawing techniques such as foreshortening of the image.

When constructing a character it is most useful to have 2D reference images with as little

distortion as possible. Other cheats are completely aesthetically driven. One of the most

famous examples of a cheat when translating a character for 2D to three dimensions

(3D) is a problem referred to as the Mickey Mouse ears problem. Mickey Mouse's ears

are represented as perfect circles at all times. When he is facing camera they are placed

 11

evenly to the left and right side of his head. When he is shown in profile his ears actually

appear one in front of the other. When viewing a 2D cartoon this placement is

unobtrusive to the viewer, however translating this character into 3D presents a

multitude of problems. First, for his ears to appear perfectly circular from all angles, they

would have to be constructed as perfect spheres. This solution would be incorrect, as it is

implied that his ears are flat discs. The other issue would become apparent as a camera

moved around his head. As the camera moved from head on to his profile the ears would

need to physically change their contact point with Mickey's head. This example does not

show a flaw in his design, but rather an inconsistency in the behavior of artistic reference

and true anatomical reference that needs to be reconciled before rigging can begin.

 Not all characters present problems as complex as the Mickey Mouse ears

problem. Many times a character is meant to replicate its living counterpart as much as

possible. When it is possible, it is necessary to study true anatomical reference. This can

consist of anatomical drawings (which can suffer from drawing cheats as well), nature

photographs and films, and an age-old technique used by artist such as Leonardo Da

Vinci, animal dissections. It is even possible and necessary to gather anatomical

reference for creatures that might not truly exist. In mythology there are many creatures

that mankind has dreamed up which do not exist; however that does not mean that

anatomical reference does not. For example, Pegasus was part horse part bird. He has six

limbs: two wings and four legs. No existing mammal has six limbs. If it became

necessary to construct Pegasus in 3D one could still use anatomical references to build

him. The same modular approach described earlier can be applied to natural systems as

 12

well. The majority of Pegasus's structure and anatomy could be derived from reference

of horses while the wing reference could be derived from eagles or other large birds.

Chuck Jones states in his book that what he looks for is not how another creature is

different, but how he is the same [3]. The only area not addressed by these references

would be how to join the wings and forelimbs into the torso in close proximity to each

other. In those cases the last resort is to make an educated guess to interpret the anatomy.

4.2 Function

Once the anatomical structure and skeletal requirements of the character are understood,

it is necessary to evaluate the performance criteria of the character. What is its range of

motion? Does a quadruped need to behave as a biped? Does the quadruped need to be

able to pronate and supinate its forelimbs in performing as a biped? Performance criteria

can dictate that a joint, that in the natural world would usually be limited, have those

limits relaxed or removed all together in the CG version to provide a broader range of

motion. If a character's performance requires it to break its leg so that his knee can bend

backwards, then the rig needs to be capable of achieving this in an animator controllable

way.

 13

5. TOOLS

Once a character's design, performance criteria, and anatomy are known, the appropriate

tools can be chosen. Most non-deformation related tools can be categorized as a

transform. Transform refers to the way in which an object’s position or orientation can

be affected by the user (animator).

5.1 Kinematics

Outside of a single object placed in space, the next most common way to place objects

when rigging is through a hierarchical approach. Objects are arranged in a parented

hierarchy in which each node can have only one parent, but unlimited numbers of

children. An additional limitation is that objects cannot be parented in a cyclic fashion.

For example you may not parent object A to B and B to A. In a hierarchical structure

each object inherits the motion of its parent object.

5.1.1 Forward Kinematics

In order to animate in such a system it is necessary to start with the root node, or the

uppermost parent in the structure, and then traverse down the hierarchy to its children.

This is repeated until all nodes have the necessary animation. Unfortunately any

performance changes that affect a node can necessitate the re-animation, or counter-

animation, of its children in order to restore their original position in space. This method

is referred to as forward kinematics or FK.

 14

5.1.2 Inverse Kinematics

To avoid re-animation or counter animation another technique is used, inverse

kinematics or IK. IK allows a user to place and orient a controller and the computer

calculates the joint angles for the hierarchy in order to reach the goal [4]. IK algorithms

can be divided into two major types, analytic solvers and iterative solvers (Figure 2).

An analytic IK solver uses the cosine rule to calculate joint angles. In a 3-node

hierarchy the entire system can be viewed as a triangle with 2 sides that are unchanging

in length. When placing the goal for the system, its distance from the root node in the

hierarchy can be calculated, giving the third side of the triangle. With the length of all

three sides of the triangle known, all angles can be calculated. This does not provide a

unique solution, as the entire system can still be rotated about the axis formed by the root

and the goal providing an infinite number of solutions. One more target must be created

to stabilize the solution. This target, along with the root of the hierarchy and the IK goal,

define the plane that the solution exists within to provide a unique solution. This is the

more mathematically efficient methodology of the two.

Iterative IK solvers are less efficient as they can only approximate a solution. The user

specifies a set number of iterations. The algorithm approaches a solution, error checking

itself with each iteration, until the solution is within a specified tolerance (Figure 3).

This method becomes less efficient the higher the number of iterations and the smaller

the error tolerance is set.

 15

Figure 2: An example of a proposed rigging solution versus a single iterative IK

solution.

 16

Figure 3: Comparison of an analytic IK solver versus an iterative solver with a single

iteration and a high tolerance.

This method is often utilized for hierarchical systems with more than three nodes,

as it requires more effort for the rigger to create an analytic solution. Some commercial

packages utilize only an iterative solver, despite the computational expense, due to its

versatility.

5.2 Transforms

Most animation packages provide for an FK and IK hierarchical rigging approach. It is

also helpful to understand what other types of transforms are available. Common

transforms include but are not limited to translational constraints, rotational constraints,

aim constraints, geometry constraints, analytic surface or volume constraints, and

projection constraints. Different animation packages may label transforms differently,

but most are either readily available or easily implemented using existing tools.

 17

 A translation constraint allows one object or node to replace its own position in

space with the position of another object. Many times versions of this tool have options

in place that allow you to more freely define the space in which the object is constrained.

The most common translation constraint is the ability to replace one object’s world space

position with the world space position of another (Figure 4).

Figure 4: A translation constraint applied in world space.

Other permutations of this constraint are replacing one’s local position (its

position relative to its parent in the hierarchy) with the world position of another,

replacing one's world position with the local position of another, or even replacing one's

local position with the local position of another. These relationships can get very

complex, sometimes allowing objects to be represented in spaces other than their own

parents.

 A rotational constraint is similar to a translation constraint. Instead of affecting

the position of an object, it affects an object’s orientation instead. Many of the same

 18

options are available to this constraint. Rotations can be more complex than translations

when interpolating their effect on and off. It is necessary to determine what interpolation

method be used, as the results can be drastically different. Two choices of rotational

interpolation are Euler angles and quaternion. Interpolating quaternions usually provides

a more predictable behavior than interpolating Euler angles as the latter can appear to

change direction during interpolation, but it comes at a higher computational cost.

 In its most basic form, an aim constraint allows one object to point an axis at

another object. Unfortunately, using it in this form is a very common source of

mathematical instability in a character rig. Pointing a single axis of an object at another

does not provide a singular solution to the orientation of the object. With one axis

pointed at another object it’s still possible for the object to spin about that axis providing

an infinite number of solutions. To resolve this, most implementations of an aim

constraint provide the ability to add a second and even third target to the constraint.

Adding a second constraint will stabilize the object through most situations; however as

the targets for both axes converge, the system becomes unstable (Figure 5).

 19

Figure 5: A stable and unstable aim constraint. In the second image both x and y axes are

trying to point in the same direction creating instability.

When the two targets share the same point in space, or are coincident, the spin is

no longer stable. This is why sometimes a third target for the third axis of rotation is

necessary. Unfortunately it is always possible to pose this system in a way that is

unstable. With a good plan and rigging philosophy this can mostly be avoided. As with

all rotational solutions, interpolation of this constraint’s affect is subject to the

interpolation method chosen.

 In complex rigs it is sometimes necessary to constrain an object’s position to a

piece of geometry or its orientation to a surface's normal and tangent. There are multiple

ways of achieving this. One is a geometry constraint that maps an object to the closest

point on geometry’s surface (Figure 6). This process can be heavy for polygonal or sub-d

geometry surfaces, as computationally expensive operations to find an intersection on a

surface are necessary. The more dense the surface, the more expensive the constraint

 20

becomes. To avoid the heavy calculation of geometry constraints, it is possible to

constrain an object to a surface or volume that has an analytic representation. Nurbs

surfaces, ellipsoids, spheres, and cubes are examples of surfaces and volumes that can be

represented analytically, it is a less expensive operation to identify a point on the surface

or contained within the volume. It is common to replicate a piece of geometry, like a

polygonal surface, with an analytic surface for purposes of calculating a constraint

cheaply.

Figure 6: An object being constrained to a nurbs sphere.

Another constraint that is easily implemented if not readily available involves

projection calculations. Using simple mathematical projection algorithms it is possible to

project an object using a planar, spherical, or cylindrical projection onto a point,

segment, line, plane, or surface. Projection, surface, geometry, and volume constraints

can all provide very complex ranges of motion or limits to the motion.

 21

5.3 Expressions and Scripts

Outside of transforms, a robust character rig can also require the use of formulas and

scripts. Maya, a popular 3D animation package, refers to the ability to use formulas to

control a rig as expressions. At its most basic it allows one value in a rig to drive

another. For example, a formula might be created to set the Y rotation of object A to be

the same value as the Z rotation of object B. In more complex forms, a formula may be

written that lets multiple values drive other values through a more complex algebraic

formula. These formulas can be powerful as they can be evaluated as the animator

interacts directly with the rig. Due to their interactive nature, formulas may not be able

to handle all complex calculations. Small scripts can be created to handle even more

robust tasks. Scripts can be used to populate values temporarily, leaving the ability for

the animator to modify the output after calculation unlike formulas or expressions. For

example, a script might be used to copy animation from one character to another without

keeping a live connection between the two. After the animation is copied, the animator

still has the ability to animate the two characters independently without affecting the

other.

 22

6. STRUCTURE

The structure is where the rig interprets the anatomy. It is possible to represent every

anatomically accurate bone in 3D but it comes at a cost. The more bones that are

introduced into the structure the more objects have to be controlled. Conversely, the

fewer bones represented into the structure the less accurate the skeleton becomes. A

balance between the two must be struck, allowing few enough bones to be manageable

and enough bones to convey the appropriate performance and anatomical structure.

6.1 Natural Anatomy

In stark contrast to the age of rigging and computer graphics is the study of animal

anatomy. In 350 BC Aristotle had to consider the parts of animals and why each part is

as it is and why they possess them [5]. Just as he did, to successfully rig a character the

same questions must be asked. This research focuses on the anatomy of ungulate limbs.

An ungulate is defined as any hoofed mammal. Ungulates are divided into two major

categories perissodactyla and artiodactyla, which refers to an ungulate with an odd

number of toes or an even number of toes respectively. Paleontology has not determined

to what degree the two are related to each other, but their anatomy is similar enough to

be represented by a single digital paradigm [6]. Horses, cattle, deer, and pigs are

examples of ungulates. An ungulates method of locomotion is referred to as unguligrade

or hoof-walking as opposed to digitigrade or toe walking and plantigrade or sole

walking.

 23

 For the sake of this research the ungulates limb anatomy is divided into several

structures. On the forelimb it is divided into the shoulder, the elbow, the knee, the

fetlock, and the hoof. On the hindlimb it is divided into the hip, the stifle, the hock, the

fetlock, and the hoof (Figure 7).

Figure 7: Horse skeleton. (Adapted from Ref. [7]).

 24

6.1.1 Forelimb

In the forelimb the shoulder structure controls both the rotation of the scapula, the

translation of the scapula, and the rotation of the shoulder. It is the most complex

structure in ungulate limbs to replicate and it produce the most complex motion. The

scapula structure produces such a complex motion due to the degrees of freedom found

in the rotation and translation of the scapula. Unlike humans there is no bone that

connects an ungulate’s shoulder structure to its trunk. Humans have a clavicle which

connects the shoulder to the sternum. In place of such a bone the ungulate has a complex

system of muscles and tendons that hold the shoulder flush to the animal’s rib cage.

Straps of muscle connect from the scapula down to the animal’s chest called the thoracic

sling or pectoral sling, acting like a basket that the chest hangs in (Figure 8). This

downward pressure on the muscle pulls the tips of the scapula outward. To counter this

motion another set of muscles and tendons connect from the scapula to the spine.

 25

Figure 8: Pectoral sling.

The motion of the scapula is handled primarily by the trapezius and pectoralis

muscles. By contracting and relaxing these muscles in different sequences the animal is

able to slide its entire shoulder structure fore and aft and up and down along it rib

structure as well as rotate the scapula in three degrees of freedom about arbitrary pivot

points in the structure. The shoulder joint is a ball and socket joint allowing three

degrees of rotational freedom, with limited lateral motion. These rotations are primarily

controlled by deltoid and tricep muscles.

 26

 The next structure on the ungulates forelimb is the elbow structure. This joint is a

simple hinge joint, allowing primarily only one degree of rotation freedom. There is of

course, as in any real joint, a certain negligible amount of play and give in the other axis

of rotation as well as negligible amounts of translation. The rotation of the elbow is

handled primarily by the bicep and tricep muscles.

 The knee structure, or carpal joint, has two primary degrees of freedom, or is

biaxial. It only has a negligible amount of axial rotation. The rotations of this joint are

primarily controlled by the radialis muscle.

 The fetlock, or the metacarpophalangeal joint, has one primary degree of

freedom. The rotations of the fetlock are controlled by a system of muscles, tendons and

ligaments including the superficialis and interosseus medius muscle. These tendons have

three primary functions: flexion and extension, support and stabilization, and shock

absorption [8].

 The hoof structure consists of the pastern joint and the pedal joint analogous to

the knuckle joints in a human’s fingers. Each joint has one primary rotational degree of

rotation with very little movement and is controlled by a system of tendons and

ligaments.

6.1.2 Hindlimb

In the hindlimb, the hip has three degrees of freedom as it is a ball and socket joint. The

primary rotation for locomotion is controlled by the gluteus superficialis muscle and the

tensor fascie latae muscle.

 27

 The stifle structure has one primary rotational degree of freedom. Its rotation is

handled by the biceps femoris muscle and the quadriceps muscles.

 The hock structure has one primary rotational degree of freedom. The rotation of

this joint is handled by the gastrocnemius muscle and the extensor digitorum longus

muscle. The hock and stifle flex are reciprocal joints, which means that they flex and

extend in unison [9].

 The fetlock structure, or the metatarsophalangeal joint, has one primary degree of

freedom. The rotations of the fetlock are controlled by a system of muscles, tendons, and

ligaments including the interosseus medius muscle.

 The hoof structure, like the forelimb, consists of the pastern and pedal joint. Each

of these joints has one primary rotational degree of freedom and is controlled by a

system of tendons and ligaments.

6.2 Digital Anatomy

The digital anatomy is where the rig interprets the natural anatomy. Certain liberties are

taken given different performance criteria, but the end product is still derived from real

world examples. For the rigging of ungulate limbs the natural anatomy is broken up into

functional modules for the sake of digital replication. These digital modules can then be

assembled to provide a functional structure. The digital structures for the forelimb are

the shoulder, the elbow, the knee, the fetlock, and the hoof. The hindlimb is divided into

the hip, then stifle, the hock, the fetlock, and the hoof (Figure 9). If the modules are

defined efficiently, certain modules may be reused. For this research the fore and hind

 28

fetlock structures are identical. This allows for a level of efficiency and consistency in

the rig.

Figure 9: Digital ungulate limb joints.

 For this research it is important to have a flexible and functional rig. As such,

many structures are modal. A balance must be struck between too many modes and not

enough control, as additional modes can add to confusion in usability. When possible the

 29

following structures have both an IK and FK mode. Other structures have the ability to

have automated transforms toggled on and off.

6.2.1 Forelimb

The shoulder structure has to mimic the same complex motion that the natural structure

exhibits. It is possible to give animators unlimited control of the shoulder and scapula

joints, but it would put an undue burden on their creativity without providing any limits

or constraints to the motion. All arcs and motion would need to be verified by the

animator, allowing for the possibility of unrealistic motion. This is not desirable in a

production environment. The steps in designing the digital structure for the shoulder are

identical to the steps needed to design the entire character. As in all aspects of the

process, it is about layering the complexity of a character, working on the problem at

different granularities. The performance criterion of the shoulder needs to be addressed

first. How should it move? How much control should the animator have over different

aspects of its motion? What motion should be automated and what motion should be

explicitly driven by the animator? These questions are addressed in a production

environment by discussion between supervisors of both animation and rigging.

 How should it move? The first scapula/shoulder motion to address is the slide.

The rig needs the ability to mimic the ungulates ability to slide the entire shoulder

structure up and down and fore and aft along the musculature of the ribs. This is

accomplished utilizing a surface representative of the shape of the rib cage (Figure 10).

 30

Figure 10: Digital scapula structure.

By constraining the system’s translations onto the surface, the user is allowed a

wide range of motion without risking separating the structure from the body. Several

methods exist for constraining to the surface. The most efficient is indexing into the

parametric space of the surface. The parametric space of the surface is defined by u and

v coordinates as opposed to Cartesian coordinates [2]. The shoulder also requires that the

scapula can be rotated along the axis perpendicular to the ungulates torso in almost a full

90+ degree sweep (Figure 11).

 31

Figure 11: Rotational range of motion with modified pivot for scapula.

In addition, the scapula needs to have the ability to tilt a few degrees along the

axis of the spine and be able to tilt fore and aft. In nature the rotation needs to happen

about arbitrary pivot points, but by also providing the animator with pre-specified pivot

point and translation controls, the animator can mimic the motion of an arbitrary pivot

point, by translating while rotating. Several things must be considered when choosing a

pivot point. The first issue to consider is if a pivot point is placed anywhere other than

central to the joint between the scapula and humerus it is necessary for the humerus to

inherit the motion of the scapula, or be a child of the scapula as opposed to being its

sibling or parent. This is so the scapula is not able to pull away from the humerus when

rotating. It is also necessary that both bones inherit the same translation so that one bone

may not be translated away from the other. The second issue to consider when placing

the pivot point is what motion that pivot point will allow. If the pivot is placed at the

joint it allows the scapula and humerus to simply rotate about the joint. If the pivot is

place further up the scapula in a configuration where the shoulder inherits its motion, the

 32

rotation of the scapula will cause a rotation in the scapula and humerus as well as a

translation of the humerus. Using an IK system or simple target control on the humerus

any rotation created by this control would be cancelled out on the humerus and only

manifest itself as a rotation in the scapula when the pivot is in the first configuration. In

the second configuration both would rotate, but the humerus would slide in an arc along

the ungulates body as well. This extra motion is good in layering complexity into the

animation with minimal user controls. However, when an animator is refining animation

and wishes to re-align the scapula, he may not do so without disturbing the position of

the humerus. This is a trade off that must be resolved prior to completing this structure.

This researcher chooses to place the pivot point at the shoulder for maximum

controllability in a production environment. An additional control is added to the

structure as a child of the humerus and parent of the scapula that pivots about the

shoulder joint. The sole purpose of this control is to provide a rotational offset to the

position of the scapula without disturbing the position of the humerus or successive

joints.

 The overall motion of the humerus must still be addressed. For this structure, no

unique control for humerus translation is given, just rotation. In this configuration it is

known that the humerus inherits all translations from the control of the scapula control,

however there is still freedom to further control its rotation. The humerus is designed

with a modal functionality. In the FK mode the humerus inherits all rotation and

translation from it parent, giving the user the ability to further rotate the humerus about

 33

its pivot point using the provide x, y, and z rotation controls (Figure 12). The other

mode is a pseudo IK mode

.

Figure 12: Shoulder FK structure.

 In many arm structures it is common to have the humerus under the control of an

IK structure with its root at the shoulder and its goal at the knee. In such structures it is

acceptable to animate by placing the knee using the goal and allowing the IK to solve the

angles for the rest of the arm. This method does not provide accurate control for an

ungulate as ungulates’ knee joints are not near the end of their limbs. Ungulates walk on

only the tips of their digits covered with hooves [10]. Controlling them from the knee

does not provide enough control over their contact with the ground. They must be

controlled with a goal at the bottom of their hoof (Figure 13).

 34

Figure 13: IK structure rooted at elbow with its first goal at the fetlock.

For this reason the structure built starts the IK chain at the elbow instead of the

shoulder, leaving the humerus out of the IK chain all together. There is an overlapping

structure referred to below as knee lock that integrates the control of the humerus into a

different IK solution. That IK structure is used for locking the knee straight for certain

sections of an ungulate walk cycle.

 The digital knee structure has three modes, FK, IK, and knee lock. FK is the most

simple. X, Y, and Z rotation controls are provided to rotate the knee and its children on

top of any transformations it has inherited from it parents.

 35

 The IK structure for the knee is rooted at the elbow and terminates at the fetlock.

As the goal for the IK is moved the fetlock joint follows its position and orientation, and

the knee’s rotation is calculated for the user. A pole target for the direction of the bend is

placed out in front of the knee to provide a unique solution to the IK solver.

 The most complex structure created to control the knee is the knee lock

functionality. Through portions of an ungulates walk cycle, the animal will plant its hoof

and lock its knee straight as it pushes its body forward (Figure 14).

Figure 14: Two poses shown with and without kneelock.

Doing foot plants is a task best handled by IK as it eliminates the need for

counter animation. Fixing a rotation in FK is as simple as not animating the rotational

 36

control, but given a fixed goal (a hoof plant) and a moving root (the ungulates body

moving forward) it is very difficult to counter animate the shoulder rotation to keep the

knee from bending or from pulling the hoof off of its goal. This re-introduces the

problem of counter animation. The desired position of the knee is perfectly straight,

therefore certain liberties can be taken with the skeletal structure. In this case a false

limb was created. The false limb contains fewer joints than the real limb. It has a

duplicate shoulder joint, a duplicate elbow joint, and a duplicate fetlock joint. There is

no duplicate knee joint. An IK chain is then constructed that is rooted at the false

shoulder and terminates at the false fetlock. The goal for this IK chain can be the same

goal as the first IK chain as well as the same pole target. Now when the leg is animated

on a follow through the false leg shows the correct orientation for the humerus, radius,

and metacarpal bones. By constraining the orientation of the true shoulder to the false

shoulder, the real skeletal structure will maintain a locked elbow position. The constraint

of the shoulder orientation is then driven by a control labeled knee lock, allowing its

value to be keyed on and off as desired.

 The next digital structure is the fetlock. The fetlock is a modal structure

providing both IK and FK options. As on the knee the fetlock is not given its own set of

translation controls, only rotations (Figure 15).

 37

Figure 15: Result of rotating fetlock control.

The IK solver for this limb terminates at the fetlock, making it possible to either

inherit the orientation of the goal or ignore it. The IK will still solve the other joints

properly. It is also possible to indirectly control the goal by providing it with a parent.

This allows the user to work with a control offset from the original goal. For the

ungulates limb the IK goal is ultimately controlled by a node that is positioned at the

front most tip of the hoof. By utilizing this control an animator is able to place the

control on the ground, thereby planting the hoof, and then rotate the control, allowing the

ungulate to rotate its leg about the tip of its hoof. This FK and IK control structure do not

provide all the control needed to fully animate this structure in the limb. When an

ungulate applies weight to the limb there is varying amounts of give in the fetlock and

 38

successive hoof joints that act as a shock absorber. It is necessary to create a structure

that can accommodate this motion while still allowing the IK to solve.

 Two solutions exist in this methodology that allow for this motion. One is a

simple FK-like rotation that takes place around the first joint of the hoof. The other is a

more automated give that can be set and driven on by a percentage. The first is the most

straightforward implementation. An extra node with rotations on it is created sharing the

same pivot as the first joint in the hoof. The goal of the IK structure is then parented to

this node. The extra node is then parented into the control at the tip of the hoof. Now

rotations on the extra node allow the fetlock and its parent joints to arc about the first

hoof joint. The next system automates this. The methodology is to rotate the extra node

for the user so that a relationship is created between the proximal phalanx and the radius.

As the radius changes orientation so would the phalanx. Unfortunately any structures

that derive the motion of the phalanx from the motion of the radius would create a cycle

because the motion of the radius is ultimately derived from the rotation of the phalanx

through the IK solver. In more simple terms the phalanx depends on the radius therefore

the radius cannot depend on the phalanx without creating a cycle.

Another structure that solves in parallel to the original IK must be created to

avoid this cycle. This is done by aiming the extra node at yet another node created

behind the limb. Now as the new node is translated the proximal phalanx aligns itself

with it. This in itself does not solve the problem. It has merely changed the control from

a rotational control to a translational control. A system must be constructed to drive the

translations of the new node.

 39

A simple way to create a relationship between the proximal phalanx and the

radius is by constructing a quadrilateral between the radius, the metacarpal, and a false

reverse radius and reverse metacarpal (Figure 16).

Figure 16: Reverse leg used to auto place fetlock rotation.

Two sides of the quadrilateral already exist in the base skeleton. The existing IK

structure terminates at the elbow; therefore a cycle can be avoided by only creating

dependencies on nodes that exist above the elbow in the hierarchy. The first node above

 40

the elbow is the shoulder. The second two sides of the quadrilateral can be created as its

children. They are created by first creating a false elbow joint, followed by a false knee

joint and a false first hoof joint. The false knee joint is placed behind the true knee in

line with the aim of the proximal phalanx. An IK solver is then created that roots at the

false elbow and terminates at the false first hoof joint. The goal of the new solver is

parented to the node that controls the give in the fetlock. The node where the phalanx

points can now be translationally constrained to the new false knee. Subsequently when

then IK handle for the whole leg is moved the fetlock automatically adjusts its give

(Figure 17).

Figure 17: Demonstration of fetlock motion when IK handle is moved.

 41

A rotational constraint between the manual give and the automatic give is then

created. As the user dials the constraint on and off it controls what percentage of fetlock

give is automated, while still providing a manual offset. This same structure can be

reused to control the fetlock of the hindlimb.

 The hoof has a very limited range of motion. The main extent of the needed

motion is to curl when running and give when bearing weight (Figure 18). The digital

structures created are referred to as curl and squash. The curl is a simple structure that

requires a single animatable parameter. The single degree of freedom of all hoof joints is

then depended on the parameter using a simple formula. The squash structure is more

complex.

Figure 18: Curl control.

 42

 The squash control, like the curl, can be a single parameter, but the expression is

more involved. The basic concept is a control that allows the first joint of the hoof

(pastern joint) to lower and rotate at the same time so that the tip of the hoof does not

penetrate the ground plane (Figure 19).

Figure 19: Squash control.

This, like an IK structure, can be calculated using simple trigonometry. The

distance from the pastern joint to the tip of the hoof is a fixed distance. Given the

distance between the pastern joint and the ground plane, the angle required to keep the

 43

tip of the hoof on the ground can be calculated. The squash parameter adjusts the height

of the pastern and the formula continuously re-evaluates the necessary angle.

 The squash structure is identical on both perissodactyl and artiodactyl ungulates.

One addition is made for ungulates with more than one toe. Same as the toe squash; it is

desirable that each toe spread a specified amount. For multiple toes the squash structure

is duplicated for each toe. Each structure is then parented to a rotational control that

rotates each toe away from each other. A formula can then be written to allow the squash

parameter to drive this spread rotation.

6.2.2 Hindlimb

The hindlimb of the ungulate does not require nearly as complex a system as the

forelimb. The structure used for the fetlock and hoof are identical. The complexity of the

forelimb comes primarily from the complexity of the scapula structure and the tendency

to lock the knee straight when walking.

 The digital hip structure is the hierarchical root of the hindlimb. As a joint, the

hip needs to move fore and aft, but also requires subtle rotation in the other two degrees

of freedom. In FK the hip requires three degrees of rotation. When designing the IK

structure for the limb, the overall motion of the leg must be considered. When ungulates

walk or run the bones of their leg maintain a distinct relationship. The hock and stifle

joints are reciprocal joints which forces the femur and the metatarsal bone stay close to

parallel to one another through the entire range of motion (Figure 20). As such it is

necessary that the IK structure helps maintain this relationship.

 44

Figure 20: Parallel bones created by reciprocal motion in stifle and hock joints.

In order to accomplish this, the hip, stifle, and hock must be controlled by the

same IK system. This is accomplished through a false reverse leg consisting of a hip,

false reverse stifle, and fetlock (Figure 21). The structure is constructed so that the bone

between the false reverse stifle and the fetlock is aligned with the metatarsal bone. The

length of the two bones in the reverse leg need to total the length of the hindlimb from

the hip to the fetlock so that they align at full extension. The distribution of this length

 45

can be altered to provide additional control. The reverse leg is rooted at the hip with its

IK goal at the fetlock while the hindlimb has two IKs. The first IK is rooted at the hip

with its goal at the hock. The second IK is rooted at the hock with its goal located at the

fetlock. The two IK goals for the hind limb can be parented to the bone of the reverse leg

created between the reverse stifle, and the fetlock joint.

Figure 21: Reverse leg structure used to generate reciprocal motion in stifle and hock

joints.

 46

Now any translation of the reverse legs goal results in movement of the hindlimb,

keeping a fixed angular relationship between the femur and the metatarsal bone. Then by

creating controls to alter the length relationship between the two reverse bones the

animator has the ability to adjust the rotational distribution between the stifle and the

fetlock (Figure 22).

Figure 22: Changing angular distribution in stifle and hock by altering length

proportions in the reverse leg.

For further control, an FK like structure is created to give the user the ability to

animate a rotational offset to alter the angle of the metatarsal bone supplementing the

movement provided by the IK structure. To do this a control is created at the location of

 47

the reverse leg fetlock parented to the second bone of the reverse leg with a full set of

rotations. The IKs of the hindlimb can then be re-parented to the new control. When

animating the IK controls, the leg responds the same, but now any rotation placed on the

new control creates a rotational offset of the metatarsal bone.

The hindlimb is completed with the addition of identical structures to the

forelimb for the fetlock to the hoof.

 48

7. INTERFACE

Ultimately each character rig will have a user base, usually a group of animators. It is

common for character rigs to have controls that number in the thousands, supporting

multiple modes of operation. Once the functionality of the rig is in place it must be

presented in a user friendly way. This means reducing control sets to provide the most

functionality with the fewest and most intuitive set of controls. The solution to this

usually lies in layering the control sets, presenting the broadest controls first, but

exposing layer upon layer of additional control for finer tweaking of motions.

At its most basic level, users are presented a set of animatable parameters for

control of the character rig. There are several methods for populating and accessing

these controls. In order to populate a control the user must choose which control to

populate. This selection can usually be done by typing a command to access the control

by name, through some window or interface that will choose sets of controls based on

functionality, or using a mouse to pick and manipulate an icon. The last method must be

integrated into the design of the rig itself in order to place icons in 3D space in an

intuitive way. An icon can be manipulated in most animation packages using a visual

controller that allows the user to alter an attribute in 3D called a manipulator [2]. The

rigger must determine what the most intuitive icon for each particular control is. Icons

can be as basic as two dimensional primitives (squares, circles, and triangles) and as

complex as animating three dimensional shapes. Regardless of the complexity of the

icon, it is necessary to consider its purpose.

 49

 Well designed icons provide an indication to the user of the function of the

control. A well designed rig will incorporate visual cues like size, shape, color, drawing

order, and opacity into the icon design (Figure 23).

Figure 23: 11 icons used to control ungulate limb rig.

This allows users to quickly access needed controls without interrupting their

workflow. The icon for scapula control might be designed to be a triangle that shares the

orientation and size of the character’s scapula. Icons can be color coded to provide

additional information to the user. One possibility is a set of red, green, and blue icons to

represent right, center, and left animation controls respectively. When an animator is

 50

working in an orthographic side view, such a system allows them the ability to access

the correct control without switching camera views or resorting to trial and error. A

complex production rig can have hundreds of controls, often in very close proximity to

one another. If all controls were the same size, shape, and color animators would spend

much of their time searching for the correct icon.

Each icon exposes a set of animatable parameter to the user. It is the rigger’s job

to arrange and manage these parameters in a usable way. It is possible in one extreme to

take every animatable parameter of the rig and place them on a single icon. While this

makes all controls accessible to the user, it would not provide a very clean or intuitive

interface. On the other extreme, every parameter could be placed on its own icon. This

would be just as perplexing to the user. It is also possible to run controls for the hindlimb

from icons for the forelimb. Appropriately grouping parameters is just as important. A

balance must be struck so that each icon represents a reasonable grouping of related

parameters.

 51

8. CONCLUSIONS

All areas of the production pipeline benefit if the appropriate amount of research and

development (R&D) and time is devoted to build a comprehensive rig. A well-designed

rig can help identify and resolve modeling problems, as well as facilitate the

construction of accurate deformations while reducing the excess man-hours and

confusion of creating deformation based band-aids to correct rigging flaws. It can also

reduce the number of animation iterations while improving the overall motion,

performance, and efficiency of the character, in addition to avoiding surface-based

lighting problems.

The preceding methodology is a strong foundation for the construction of any

character rig needed in computer graphics. The modular and layering approaches can be

utilized for the construction of far more complex systems. As with any animation, a well

designed rig does not guarantee good animation, just as good animation is not an

indication of a well designed rig. The use of a well designed rig does allow for greater

efficiency and control for animators of all skill levels.

Commercially available animation packages as well as proprietary software

provide users with varying levels of access and functionality. Not all systems presented

are available across all software. It is sometimes necessary to adapt to the toolsets at

hand. The underlying principals remain consistent.

Rigging by nature is a problem-solving endeavor, and as such, limitations do

apply. Not every component of every rig can be constructed modularly and re-used.

 52

Unique problems will present themselves and require unique solutions. However, the

methodology presented allows for a process and philosophy, that when followed will

produce a robust and feature rich foundation for both characters and a feature film

production environment. Using this modular philosophy to layer a character rig together

will drastically improve both rigger and animator efficiency.

In application of the presented methodology huge efficiency gains have been

realized in feature film production pipelines. Animation studios are under increasing

pressure to create larger quantities of work, at higher quality, with shorter timetables,

and smaller relative budgets. This methodology has successfully helped meet those

criteria.

 53

9. FUTURE WORK

While this thesis outlines a successful methodology for the movement of bones, more

work is required to successfully translate that motion into a believable deformation.

Many more complex structures must be layered on top of this base motion to achieve

believable skin motion.

Another opportunity for future research is to auto-populate animation controls

based off a more limited animation. This would be beneficial in the scapula motion

where there is not a one-to-one relationship between leg position and scapula orientation.

In a future scenario an animator might animate the translations of the animal's shoulder

and limb, but a post process could populate the scapula's rotations based on a pre-defined

criteria.

It is also reasonable to expand work into interface design that allows the user

faster access and organization to the vast amounts of controls that can be presented to the

user. The systems can provide quick selection of controls, graphical representations of

the character, and even ways to organize and present prior animation libraries or scripts

for greater animation control.

Lastly, expanding the toolsets available to the rigger allows for faster and more

robust solutions. Significant rigging and runtime can be saved by breaking down the

rigged structures into smaller components that can be internalized in the software so it is

not necessary to rebuild them from the beginning every time.

 54

REFERENCES

[1] M. Isner and A. Sims. The Official Softimage XSI 4 Guide to Character Creation.

Boston: Muska & Lipman, 2004, pp. 79.

[2] D. Gould. Complete Maya Programming: An Extensive Guide to MEL and the

C++ API. San Francisco: Morgan Kaufman, 2003, pp. 473-476.

[3] C. Jones. Chuck Amuck: The Life and Times of an Animated Cartoonist. New

York: Farrar, Straus and Giroux, 1989, pp. 260.

[4] R. Parent. Computer Animation: Algorithms and Techniques. San Francisco:

Morgan Kaufmann, 2002, pp. 192.

[5] Aristotle. (350 BC). On the Gait of Animals. [On-line]. Available:

www.netlibrary.com [Jan. 23, 2005].

[6] F. Walther. Communication and Expression in Hoofed Mammals. Animal

 Communication. Bloomington, Indiana: Indiana UP, 1984, pp. 1.

[7] G. Stubbs. The Anatomy of the Horse. New York: Dover Publications, 1976, pp.

87.

[8] L. Schultz. Howell Equine Handbook of Tendon and Ligament Injuries. New

York: John Wiley & Sons, 2004, pp. 18.

[9] S. Harris. Horse Gates, Balance and Movement. New York: Howell, 1993, pp.

10.

[10] M. Allaby (1999). A Dictionary of Zoology. [On-line]. Available:

www.netlibrary.com [Jan. 23, 2005].

 55

VITA

William Lawrence Telford Jr

B.E.D., Texas A&M University, December 1997

M.S. Visualization Sciences, Texas A&M University, December 2006

Visualization Laboratory

C418 Langford Center

Texas A&M University

3137 TAMU

College Station, Texas 77843-3137

