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ABSTRACT 

Proactive Communication in Multi-Agent Teamwork. (December 2005) 

Yu Zhang, B.S.; M.S., Central South University, China 

Chair of Advisory Committee: Dr. Richard A. Volz 

Sharing common goals and acting cooperatively are critical issues in multi-

agent teamwork. Traditionally, agents cooperate with each other by inferring others' 

actions implicitly or explicitly, based on established norms for behavior or on 

knowledge about the preferences or interests of others. This kind of cooperation either 

requires that agents share a large amount of knowledge about the teamwork, which is 

unrealistic in a distributed team, or requires high-frequency message exchange, which 

weakens teamwork efficiency, especially for a team that may involve human members.  

In this research, we designed and developed a new approach called Proactive 

Communication, which helps to produce realistic behavior and interactions for multi-

agent teamwork. We emphasize that multi-agent teamwork is governed by the same 

principles that underlie human cooperation. Psychological studies of human teamwork 

have shown that members of an effective team often anticipate the needs of other 

members and choose to assist them proactively. Human team members are also 

naturally capable of observing the environment and others so they can establish certain 

parameters for performing actions without communicating with others. Proactive 

Communication endows agents with observabilities and enables agents use them to 

track others’ mental states. Additionally, Proactive Communication uses statistical 
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analysis of the information production and need of team members and uses these data 

to capture the complex, interdependent decision processes between information needer 

and provider. Since not all these data are known, we use their expected values with 

respect to a dynamic estimation of distributions. 

The approach was evaluated by running several sets of experiments on a Multi-

Agent Wumpus World application. The results showed that endowing agents with 

observability decreased communication load as well as enhanced team performance. 

The results also showed that with the support of dynamic distributions, estimation, and 

decision-theoretic modeling, teamwork efficiency were improved. 
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CHAPTER I  

INTRODUCTION 

1.1. Motivation 

An agent is defined as a mapping from perceptions to actions [102]. It can be 

achieved via hardware (e.g. robotics) or software systems. The agent resides in the 

environment, behaves autonomously, purposively, and flexibly; it may have sensing, 

adaptive, social, and emotional capabilities [127]. The capabilities of a single agent are 

limited by its knowledge, its computing resources, and its perspective. Particularly, 

when interdependent problems arise, agents in the system must coordinate with one 

another to ensure that interdependent problems are properly managed. Thus, they form 

multi-agent systems. In a multi-agent system, multiple agents that cooperate towards 

the achievement of a joint goal are viewed as a team. Teamwork is a cooperative effort 

by a team of agents to achieve a joint goal [121]. 

Sharing common goals and acting cooperatively are critical issues in multi-

agent teamwork [1, 13, 21, 90]. To date, control paradigms for cooperative teamwork 

have allowed agents to communicate about their intentions, plans, and the relationships 

between them [65, 97, 114, 115, 116, 119, 121]. Using communication, team members 

can share common goals and coordinate their actions by distributing valuable 

teamwork-related information. In order to do so, each of the team members should 

track the activities of the others, reason about possible conflicts or constraints, establish 
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certain parameters for performing joint actions, and provide or ask for any information 

that is needed to perform tasks. Existing solutions for the communication problem have 

four major disadvantages: 

• Agents share a large amount of knowledge about the teamwork, which 

is unrealistic in a distributed team. 

• Communication interactions are hard-coded in teamwork processes, 

which is not universal. 

• Cooperation processes involve high-frequency message exchange, 

which weakens teamwork efficiency. 

• Current solutions ignore communication risk, which is one of the most 

important factors of agent decision-making. 

Moreover, some researchers have found that communication, while a useful paradigm, 

is expensive relative to local computation [2]. Therefore effective, universal, and 

practical communication mechanisms are needed for helping agents produce effective 

and realistic behaviors and interactions in teamwork. 

1.2. Investigating Effective Communication 

Most of the literature (see Section 2.2) reports on technologies empowering 

agents from outside, such as teaching them to obey social conventions [111]. We 

investigate this problem by bringing agent initiatives into play. 

We investigate effective human team cooperation and incorporate the findings 

into multi-agent teamwork. Humans are naturally capable of observing the 

environment and others so they can establish certain parameters for performing actions 
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without communicating with others. A shared mental model [100, 118], one of the 

major psychological underpinnings of teamwork, enables an effective human team to 

anticipate information needs of teammates and offer the information [135]. We call this 

ability proactivity. Therefore, effective team cooperation can be achieved, if agents are 

able to observe the environment and each other, predict needs for teamwork-related 

information and distribute such information proactively. 

1.2.1. Observability 

Observability is the ability to observe the environment and other agents, and 

from it, make inferences about them. Although it has gained some attention [95, 68, 7, 

59], observability in multi-agent teamwork has not been explored deeply. We argue 

that the reasons for this might be threefold. First, from the team point of view, 

observability is a capability of an individual agent, rather than of a whole team. It is 

difficult to abstract a team’s observability based on every team member’s individual 

observability. Second, since belief reasoning is theoretically intractable [47], the 

process of an agent using its observability to reason about teammates’ beliefs becomes 

highly complex. Third, agents lack an effective way to reason about others’ 

observabilities. However, in a dynamic, distributed teamwork environment, apart from 

prior knowledge such as the team goal, observability is a major means for an individual 

agent to obtain information. An agent with observability may produce effective 

communication by observing the environment and its teammates and then estimating 

their beliefs without generating unnecessary messages. 
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1.2.2. Proactivity 

Proactivity is the ability to take initiative by exhibiting goal-directed behavior 

[127]. Intelligent-agent researchers maintain that proactivity is one of the hallmarks of 

agency [127]. Agents with proactivity can respond to external stimuli in a timely way, 

and they can also prepare knowingly for some unexpected future [135]. Hence the 

ability to anticipate the information needs of teammates and assist them proactively is 

highly desirable. While an agent can anticipate certain information needs of teammates, 

it may not always be able to predict all of their needs, especially if the team interacts 

with a dynamic environment. Therefore, when an agent needs some information, it is 

also necessary to anticipate the information production of teammates and ask for the 

information actively. Hence, proactivity allows agents to proactively tell others about a 

piece of information when producing it or to actively ask for a piece of information 

when needing it. Proactivity may produce effective communication in three ways. 

First, messages will be conveyed to agents when they need an information item, rather 

than sending all information to them. Second, proactive tell can partially eliminate the 

need to ask. Third, if there is no proactive tell, active ask may eliminate multiple 

requests for information, i.e., only ask one time per need. 

1.2.3. Challenges 

The challenges in achieving effective communication in an agent team exist in 

three aspects. First, the distributed nature of an agent team and the dynamic nature of 

the world often make it infeasible for an agent to have complete and up-to-date 

information about other teammates and the world. The resultant uncertainty may 
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seriously affect quality of communication among agents. Furthermore, agents have 

different capabilities for solving the problems, such as different observabilities, which 

lead to different abilities for obtaining information. This increases the difficulty of 

deducing what others know and consequently what they need. Third, agents are 

distributed in the world, so they do not realize each time at which a piece of 

information is produced or needed by others. Therefore delivering a tell or ask to others 

at the proper time becomes critical for a team. 

1.3. Our Approach and Its Contributions 

The goal of this research is to devise effective communication mechanisms, 

enabling agent initiatives and dynamic cooperation in multi-agent teamwork. We 

design and develop a new model called Proactive Communication, for supporting 

realistic behavior and interactions in complex and dynamic domains. The central thesis 

of this research is that 

Proactive Communication captures and represents the complex, 

interdependent communication decision-making processes among 

agents, and achieves effective communication by giving agents the 

capabilities of observability and proactivity. Observability helps agents 

to monitor the environment and track teammates’ mental states. 

Proactivity allows agents to act in anticipation of future information 

productions or needs to tell or ask each other about teamwork-related 

information. 
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Our approach endows agents with observability and proactivity via three 

distinct but closely related perspectives: 

• Observation-Based Proactive Communication (OBPC). It allows agents 

to use their observabilities to track others’ mental states as well as 

decreasing the communication load. Different from other observation 

approaches, agents can observe not only the environment, but also 

actions of others, and use this knowledge to decide which information 

might be known by others and therefore does not need to be exchanged. 

• Dynamic Information Prediction (DIP). It is a dynamic estimation of the 

probability distributions of information productions or needs and the use 

of these data to capture the complex internal processes of decision-

making regarding communication. The major feature distinguishing this 

approach is that agents take advantage of their historical knowledge to 

estimate the distributions of the information need and production times. 

• Decision-Theoretic Proactive Communication (DTPC). It is a decision-

theoretic determination of communication strategies. During multi-agent 

teamwork, agents should be able to deal with uncertainties, since they 

may only have incomplete information about the teamwork, the 

environment, and the potential value and cost of information delivery. 

One way to deal with this problem is a decision-theoretical approach 

[25]. Broadly speaking, the decision theory is a means of analyzing a 

series of strategies in order to decide which should be taken, when it is 
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uncertain exactly what the result of taking the strategy will be [92]. 

However, departing from the traditional decision-theoretic approach, 

DTPC emphasizes communication benefiting the team and focuses on 

decision interactions between needer and provider, i.e., their decisions 

are interdependent, so they must consider how their counterpart’s 

decisions impact their own. 

The major novel contribution of this research is the concentration on 

interactions between agents and the emphasis of relations connecting them. This 

feature makes communication benefit the team as well as enhancing agents’ ability to 

take initiatives. Specifically, 1) we use agents’ observabilities to track team members’ 

mental states, so they can infer what the others know and when and therefore can 

decrease the communication load; 2) we introduce an idea of dynamic information 

prediction, which allows agents to anticipate coming information production or need 

time based on historical knowledge; 3) we introduce an model that agents estimate 

others decisions in the decision-theoretic communication, which empowers agents to 

deal with communication interdependencies in team cooperation. 

1.4. Structure of the Dissertation 

This section introduces the motivation of this research and the overall idea of 

our approaches and contributions. The rest of this dissertation is organized as the 

following: 

• In Chapter II, we review related work to this research. 
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• In Chapter III, we represent system architecture and agent execution 

cycle, and give an overview to Proactive Communication and its three 

components: OBPC, DIP and DTPC. 

• In Chapter IV, we focus on OBPC. We 1) define syntax and semantics 

to observability, and 2) develop algorithms for using observability to 

decrease communication load. 

• In Chapter V, we focus on DIP. We 1) introduce a statistical 

approximation of distributions of information production and need, and 

2) introduce the data acquisition process for performing the 

approximation. 

• In Chapter VI, we focus on DTPC. We 1) define communication 

policies, which can be used by agents in different communication 

situations, and time points relevant to information production and need, 

2) define utility function which is used to evaluate each policy, 3) 

introduce agent decision making processes and 4) develop algorithms 

for decision-theoretic proactive communication. 

• In Chapter VII, we 1) introduce criteria of applicable domain for 

Proactive Communication, 2) design an application domain, 3) design 

and analyze two sets of experiments we have run in the domain. 

• Finally, in Chapter VIII, we conclude this dissertation and discuss some 

future work. 
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CHAPTER II 

RELATED WORK 

This research is about communication in multi-agent teamwork and is built on 

several areas of previous research. In this section, we review the literature of these 

areas and the progress of the work at Texas A&M University (TAMU) that is the 

foundation for this research, including teamwork theories and teamwork systems (see 

Section 2.1); decision making models in agent research (see Section 2.2), decision-

theoretic modeling communication (see Section 2.3), other effective communication 

approaches (see Section 2.4), observability and belief maintenance (see Section 2.5), 

problem-specific prediction (see Section 2.6), psychological study of shared mental 

models (see Section 2.7), and context of work at TAMU (see Section 2.8). 

2.1. Teamwork as Represented by Artificial Intelligence 

Recently, researchers have been interested in building teamwork in distributed 

and dynamic domains, where each autonomous team member works cooperatively to 

solve a part of a problem in parallel. However, a team of agents is more flexible and 

efficient than a group of single agents only when a flexible and efficient means of 

coordinating the agents exists. In many ways, the teamwork problem is similar to that 

of parallel computing: doubling the number of processors used in a computation 

usually will not double the speed with which the solution is found. The extra 

processing power does not become an advantage until a sophisticated means of 

cooperative processing is found. This challenge inspires many teamwork theories, such 
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as joint intention [20, 81], shared plan [44, 46], commitments and conventions [63, 64], 

and planned team activity [70]. This section introduces these theories, followed by 

three examples of teamwork system implementations. 

2.1.1. Teamwork Theories 

2.1.1.1. Joint Intention 

Joint intention is one of the most important teamwork theories [20, 80, 81]. It 

was developed based on individual intention, which is a logical formalization called 

persistent goals [19]. Cohen and Levesque derived an operator, PGOAL, which 

describes how an agent’s intentions are related to its beliefs, commitments, and actions. 

An agent A has a persistent goal G, if all of the following are true: 1) A wants G to be 

true at some point in the future; 2) A believes that G is not yet true; 3) A believes that 

either G will be true or G will be impossible before it abandons its goal. 

PGOALS are used to define intentions, in the form of the primitives INTEND1 

and INTEND2. INTEND1 is defined as the persistent goal to perform a particular 

action by an agent. In other words, intending to take an action is a kind of persistent 

goal. Thus, intentions are future-directed. This is a near-approximation to present-

directed intention: the agent desires to have done an action immediately after believing 

that it was about to do it, i.e. intentions are directed towards something happening next. 

However, because INTEND1 is a commitment to perform a particular action, it does 

not handle the case where the agent does not know what action it needs to perform to 

bring about the goal. INTEND2 is defined as the persistent goal to have done some 
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actions to bring about the goal (this means the agent has a plan), and the agent would 

not select these actions if they are thought not to lead to the goal. 

Cohen and Levesque use their theory of persistent goals to build a theory of 

joint intentions. Joint intentions are intended to clarify the relationships among belief, 

desires, and intentions (BDI) for multiple agents [9, 10, 96]. Joint intentions are 

developed on three levels. First, they define weak goals, which specify the conditions 

under which an agent holds a goal, and the actions it must take if the goal is satisfied or 

impossible. Second, they define joint persistent goals for multiple agents. Finally, they 

define joint intentions in terms of weak goals and joint persistent goals. Joint intentions 

are attractive because they are presented in an implementable framework. For example, 

Jennings developed an implementation of joint intentions for industrial robots [65]. 

Joint intention theory imposes a strong “observant and proactive” requirement. 

It uses mutual beliefs to form joint intentions. An agent who personally comes to 

believe that a joint goal is either achieved, unachievable, or irrelevant, must commit to 

let all other team members mutually believe that this is the case. While mutual belief, 

being an infinite recursion about other agents’ beliefs, is undecidable in theory [47], a 

computational approximation is required in practice [65, 97]. Thus, issues of 

observation, prediction and proactive communication are raised for practical 

implementations. 

2.1.1.2. Shared Plan 

Shared plan [44, 46] is another important teamwork theory. It was developed to 

deal with collaborative activities among human-agent mixed teams. It considers team 
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collaboration not as a group of single agents patched together, but as an integrated 

system that needs to be designed from beginning to end [43, 108]. As opposed to joint 

intention, shared plan does not have joint conceptions. It assumes that each agent has 

its own mental state (including intentions, capabilities, and commitments) and shares it 

with others. The formal representation of these aspects of the mental states of team 

members is called a Shared Plan. The shared part can guarantee teamwork, such as two 

agents working together to perform an action. 

Grosz and Kraus propose five types of plans: FIP for full individual plans 

which means an individual agent has a full recipe for doing an action, PIP for partial 

individual plans which means an individual agent only has partial knowledge of doing 

an action, FSP for full shared Plans which means a group of agents has complete recipe 

of some group activity, PSP for partial shared plans which means a group of agents 

only has partial recipe of some group activity, and SP for shared plans which means a 

group of agents has a certain level of belief in their abilities to perform group actions 

[44]. The definitions of FSP and PSP only explicitly state some of the requisite 

knowledge, others which are implicit produced from agents’ interactions form SP.  

These plans are defined in terms of beliefs and intentions in agents’ mental 

states. At the beginning, agents have only partial plans (individual or shared). By 

reasoning individually, communicating with others, or observing the environment, 

these partial plans are completed. In the special case where an agent finds that it cannot 

perform an action, the whole group will revise its procedures. 
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The evolving process mentioned above obviously requires agents’ observation 

and communication. Shared Plan theory touches the proactive communication problem 

in other ways. First, as in joint intention, the theory requires that a group of agents must 

have a mutual belief of a partial procedure in order to have a collaborative plan for an 

action. Second, in several places the theory proposes that in collaborative activities, 

participants not only do means-ends reasoning about their own mental states and 

actions, they also reason about others’ mental states to support others’ actions better. 

For example, the term Int.To (intending to) presents an agent’s intention to do an 

action while the term Int.Th (intending that) presents an agent’s intention that some 

propositions hold true [44]. Thus, Int.Th concerns how others’ intentions affect the 

agent’s intention. Third, the theory requires agents to know that their teammates are 

capable of carrying out their actions. Grosz [44] notes that agents must communicate 

enough about their plans to convince teammates of their capabilities to carry out 

actions. If agents can predict this requirement and tell it proactively, the process can be 

simplified. Fourth, Grosz, in axiom A1, [44] points out that an agent cannot knowingly 

hold conflicting intentions. Note that the axiom is not valid if the agent is unaware of 

the conflict. Since some of these intentions involve others’ mental states, the 

requirements for observation and proactive communication are the same to avoid such 

conflicts. 

2.1.1.3. Commitments and Conventions 

Jennings emphasizes that coordination is a key property that guarantees better 

multi-agent team performance [63, 64]. Without coordination, a multi-agent system can 
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become a collection of incohesive individuals. He developed a model of coordination, 

whose two central concepts are (joint) commitment and (social) convention. Jennings 

views a commitment as a promise to take a certain action, and conventions as rules for 

monitoring these commitments. He argues that “all coordination mechanisms can 

ultimately be reduced to joint commitments and their associated social conventions” 

[63, 64]. 

Properties of commitments and conventions can be found in numerous sources 

[9, 4, 8, 27, 36, 107, 109]. Commitments and conventions have been adopted widely in 

solving multi-agent cooperation problems. In agent-oriented programming (AOP), 

Shoham treats commitments as obligations of agents and uses commitment rules to 

decide their actions [112]. The BDI model [10] uses commitments to direct an agent’s 

actions and planning. In Reusable Task Structure-based Intelligent Network Agents 

(RETSINA), [119] devises a complex negotiation protocol to force agents to agree on 

their commitments and then to perform socially complex actions. In their collaborative 

agent system (COLLAGEN), Rich and Sidner provide a set of conventions based on 

principles underlying human collaboration for collaborative discourse between humans 

and agents [97]. 

Jennings emphasizes that conventions are used to decide what information 

needs to be tracked about agents, and how to track them. For instance, a convention 

may require an agent to report to its teammates any changes it detects with respect to 

the attainability of the team goal. This need to report raises the requirement of analysis 

of communication needs before agents communicate with each other. Jennings also 
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gives an example of specific conventions for high- and low-bandwidth situations, in 

which some knowledge is not communicated to all agents if the bandwidth is not 

available. This raises the issue of the need of effective communication [63, 64]. 

Jennings does not explore deeply such problems as how conventions are selected or 

what the tradeoffs and guarantees associated with the selection of particular 

conventions are. 

Our work provides a solution to effective communication. In our work, agents 

use observation to deduce the amount of communication needed. Meanwhile, agents 

can predict future information production and need by analyzing historical information 

records. DTPC is a sophisticated process that guarantees agents choose the right rules 

(conventions) by which to communicate. 

2.1.1.4. Planned Team Activity 

A group of Australian researchers propose planned team activity in the logical 

and practical design of rational agents cooperating in a team [70]. They suggest that 

joint plans (common to all team members) that specify the means of satisfying joint 

goals are supplied in advance, rather than being generated by the agents. Their 

argument is that the agents embedded in a dynamic environment can respond rapidly to 

important events by adopting applicable plans. The joint plans are represented by 

concepts of team skills and team members’ roles. These plans usually will be qualified 

by preconditions that specify under what circumstances they are applicable. The plan 

execution for each agent consists of the selection and hierarchical expansion of these 

plans. 
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To achieve the planned team activity, common knowledge necessary for 

coordination and synchronization of agents’ activities is imposed on the agents. The 

common knowledge that includes mutual beliefs about the world and about each 

other’s actions places strong requirements upon agents’ observation. Kinny et al. 

propose that the common knowledge can be achieved alternatively by communication 

between agents. This approach implies the need of effective communication. The 

assumption that the plans of individual agents are known at compile time might 

enhance the team’s proactivity by the possibility of reasoning in advance about which 

team members potentially can achieve certain goals. 

2.1.2. Teamwork Systems 

2.1.2.1. STEAM 

STEAM (Shell for TEAMwork) is a teamwork system built on joint-intention 

theory. STEAM addresses two important issues of joint-intention theory: 1) There is no 

practical method given for forming joint intentions; 2) A single agent's defection 

automatically causes the failure of the entire group task. Tambe describes methods for 

solving these two problems [121]. He solves the first problem, that of forming joint 

intentions through communication. He frames the solution in terms of joint intention 

itself. In order to synchronize a joint intention, the cooperating agents form weak 

achievement goals to bring others into their plan. Agents who have accepted the joint 

goal as their own form weak achievement goals. The same mechanisms that enforce 

communication when plans break down under joint intentions are used here to ensure 

synchronization when attempting to form a plan. 
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The second problem, what to do in case an individual agent defects from the 

group, is more interesting. This case necessitates replanning—allowing a single 

defector to cause the failure of the group as a whole is clearly unacceptable in robust 

systems. To implement the replanning process, Tambe created a set of role-monitoring 

constraints, which describe each agent's importance to the plan as a whole. The 

constraints describe cases where one of the following apply: 1) AND-combination, the 

actions of each member of a group of agents are vital to the achievement of the goal; 2) 

OR-combination, the actions of any one of a set of agents would suffice to achieve the 

goal; 3) Role dependency, one agent's actions depend on another agent's actions, such 

that without the second agent, the first can not complete its role. When an agent defects 

from a group action, the remaining agents invoke a repair action. Each examines the 

dependency structure to see whether the remaining group can complete the plan; if so, 

they continue. If the failure was in fact the result of a single agent's defection (Tambe 

calls this situation a critical role failure), the agents reorganize and carry on with new 

roles. If there is no possible reorganization that can complete the goal, then the goal 

fails. 

Another interesting feature of STEAM is selective communication, where 

agents communicate only information with high utility to the completion of the plan. 

Tambe and Rosenbloom proposed that agent-monitoring is a key capability required 

for intelligent interaction [120]. Selective communication involves monitoring other 

agents’s observable actions and inferring their high-level goals, plans, and behaviors. 

Communication is generated based on monitoring and reasoning about the cost of 
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communication in deciding whether to communicate or not. However, Tambe’s work 

focuses on establishing the joint intentions of team members in trying to achieve a joint 

goal, but not on analyzing the information needs among team members in order to 

provide information proactively, which is our focus. The differences between selective 

communication and our approach are examined in greater detail Section 2.3.1. 

The reliance on communication among agents in joint intention theory means 

that the possible domains are limited, however. Joint-intention theory can not be used 

when agents are unable to signal each other or to cooperate with agents that were not 

designed with joint intention in mind. We want a system that can cooperate with agents 

in general, not just those that were designed to cooperate with the present system, 

another reason we use observation as well as communication for inter-agent 

cooperation, thus agents do not need to communicate with each other about the 

information which they can be seen by themselves or which they believe can see by 

others. 

2.1.2.2. GRATE* 

GRATE* is an extended version of GRATE (Generic Rules and Agent model 

Test-bed Environment) [63, 64]. In GRATE*, joint responsibility is built on joint 

intention. GRATE* specifies that preconditions must be attained before collaboration 

can guarantee that individuals behave together either when joint activity is progressing 

satisfactorily or when it runs into difficulty. Like STEAM, it also requires agents to 

agree on the team plans that are to be executed. 
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However, several simplifying assumptions used to approximate a formal 

description of joint responsibility deprive GRATE* of scalability for dealing with more 

general systems. First, GRATE* is used in industrial settings in which foolproof 

communications can be assumed [65], and thus communication is the only way to track 

agents. By comparison, we track agents by both communication and observation. We 

also use observation and decision-theoretic proactive communication to decrease the 

amount of communication. Second, Jennings supposes that agents are able to predict, 

with a reasonable degree of accuracy, the time it will take to execute each of their 

domain-level activities. In order to do so, each action recipe presents its starting time 

and duration of the action. We argue that since agents are in a dynamic environment, 

the starting time and duration of an action vary with a number of uncertain elements, 

such as when an action’s precondition is attained. Thus, we need a prediction of 

communication needs associated with preconditions and effects of an action, rather 

than fixed action starting time and duration in action presentation. Third, GRATE* 

maintains knowledge about other agents through acquaintances models, which are used 

to keep track of what teammates’ capabilities are. However, the question of how much 

knowledge should be used in these models is left unaddressed. In contrast, we use 

observation to track teammates’ mental states, in order to reason about what they can 

see and what they can infer from what they can see. 

2.1.2.3. COLLAGEN 

COLLAGEN (COLLaborative AGENt) [97] is a collaborative human user-

interface system that is built on shared-plan theory. In COLLAGEN, communication is 
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assumed to be reliable. However, from a human-usability perspective, limiting the 

number of communications is still desirable. To address this issue, recent empirical 

work by Lesh, Sidner and Rich [79] utilizes plan-recognition in COLLAGEN. The 

focus of that work is on using the collaborative setting to make plan-recognition 

tractable. For instance, ambiguities in plan-recognition may be resolved by asking the 

user for clarification. 

COLLAGEN includes observation as one kind of communication (another kind 

is discourse) and assumes all agents’ and users’ actions are mutually observable 

through a directed-manipulation graphical interface. We separate observation and 

communication because observation involves a complex belief-maintenance process 

and hence is the basis of communication decisions. Work on COLLAGEN did not 

investigate how much knowledge must be maintained for effective collaborative 

dialogue with the user. In contrast, we are able to provide such knowledge by 

analyzing team plans, i.e., the preconditions and effects of plans. Furthermore, 

analyzing the dialogue plans for risk points may allow systems such as COLLAGEN to 

decide whether to use communication for clarification, regardless of plan-recognition 

ambiguity. 

2.2. Decision Making Models in Agent Research 

Researchers in psychology, cognitive science and computer science have 

generated a variety of computational models of decision making, oriented toward 

understanding and modeling behaviors of human decision making, under situations 

with risky, time pressure, high stakes and dynamic uncertainty settings [142, 72, 71, 
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86, 143, 144, 138, 18]. Perhaps the most familiar fields for AI are two: classic decision 

theory and naturalistic decision-making. We introduce each of these models. 

2.2.1. Classic Decision Theory 

Classic Decision theory [93] is used to select an optimal action. It generally 

includes four areas: 1) decision theory, 2) Bayesian probability theory, 3) Markov 

decision process and 4) game theory. 

2.2.1.1. Decision Theory 

The assumption underlying decision theory is rationality, i.e. the decision 

maker won’t intentionally select an action that is inferior to some other actions. The 

theory requires that the decision maker specifies a set of possible actions, a complete 

and mutually exclusive set of uncertain states, and a set of evaluative dimensions. The 

decision maker then assesses the utility of each action based on the probability of each 

uncertain state and the weight of each evaluative dimension. The theory enables 

decision makers to calculate a utility reflecting the overall desirability of each action. 

With the general decision-making procedure, the decision theoretic models vary. For 

example, the basic model, maximization of expected utility (MEU) [102] consists of 

summarizing the value of each potential outcome multiplied by the probability that the 

outcome would in fact be obtained. This product sum is then compared with the 

expected values for the other actions. The action that has the largest expected value is 

the one that should be selected, called MEU. In the work [142], it summarizes other 14 

types of decision theoretic models, including Maximization of Subject Expected Utility 

(MSEU) which is the same model as MEU except that utility is substituted for dollar 
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value, Lexicographic (LEX) model which assumes that each option has attributes that 

will promote valued outcomes, etc.. It can be seen that in addition to the assumption 

about rationality described above, each of these decision theoretic models assumes that 

the decision maker has preferences for the outcomes and that these preferences can be 

measured, e.g. by a utility function.  

Our decision-making is based on the same rationality consideration, thus the 

decision maker will choose a communication policy with the maximum utility. We 

handle the unknown random variables in the utility function by utilizing the Empirical 

Distribution Function to estimate their probabilities. 

2.2.1.2. Bayesian Probability Theory 

Bayesian probability theory [92, 93] is used to draw inferences about situations. 

It requires that decision maker to identity a set of states (e.g. weather condition of 

Houston when the decision maker is in College Station). Then for each pair of states 

the decision maker can establish whether the pair is independent or not. The decision 

maker then can build a graph in which each node for a state and an arc points from 

state A to state B if the latter depends on the former. The resulting graph is known as a 

Bayesian network [93]. The Bayesian network provides a computational framework to 

calculate the probabilities of preferences to the decision maker. The next steps are to 

assess the probability that each hypothesis is true, identify all the potential observations 

that might bear on those hypotheses in the future, and quantify the impact of each such 

observation. Then as new observations occur, decision makers can use algorithms from 

the theory, such as Bayesian rule, to updating probabilities in the hypotheses. The 
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decision making method in this theory is the same with that of the decision theory. For 

each state, we calculate a utility for each state and we will prefer the state with the 

highest MEU. 

2.2.1.3. Markov Decision Processes (MDPs) 

In essence an MDP is an iterative set of classical decision problems [102]. As 

the Bayesian network, MDP is also represented by a graph in which one node denotes a 

state. Performing an action in that state will result in a transition to one of a number of 

states each connected to the first state, with some probability, and incurs some cost. 

After a series of transitions a goal state may be reached, and the sequence of actions 

executed to do this is known as a policy. Solving an MDP means to find a minimal cost 

policy for moving from some initial state to a goal state [88]. A big problem of MDPs 

is that, it unrealistically assumes that agent knows at every point what state it is in. This 

means that it is possible to measure some aspect of the world and from this 

measurement the agent can tell precisely what state the world is in. In reality, it is more 

likely that from the measurement something there is still uncertain in the world. In such 

case, the states of an MDP are replaced by the agent’s beliefs about those states, and 

we have a partially observable MDP (POMDP) [88]. Because POMDP can capture so 

many real problems, it is currently a hot topic in agent research, despite the fact that 

they are intractable for all but the smallest problems. 

Our problem also deals with partially observable environment. However, 

different from POMDP, our agents make decisions based on not only data collected 

from history, but also estimations of a sequence of future communication interactions 



 

 

24

between information providers and needers. Different sequences will lead to different 

values of communication policies to be chosen by the agents and the agents will choose 

a best one with the maximum utility (meaning the minimum cost). To handle the 

intractable problem occurring in decision-making processes, we use some 

approximation to balance the quality of decisions with the complexity of computation. 

While this is not exactly precise, it is shown to be a practical solution in our 

experiments. 

2.2.1.4. Game Theory 

Game theory is a branch of economics that studies interactions between self-

interested agents. Perhaps the most compelling area that the game theory has been 

applied on multi-agent systems is negotiation [76, 104, 48]. Game theoretic studies of 

rational choice in multi-agent systems typically assumed that agents were allowed to 

select the best strategy from the space of all possible strategies, by considering all 

possible interactions. The search space of strategies and interactions that needs to be 

considered has exponential growth, which means that the problem of finding an 

optimal strategy is in general computationally intractable. The study of finding 

efficient (polynomial time) algorithms for intractable problems in multi-agent 

negotiations is an ongoing area of work [92]. 

In our system, agents share a common goal, and would therefore be willing to 

assistant others. Therefore, decision-making strategies are different from that of the 

game theory that contains self-interested agents. For example, in a team, agents help 

each other to maximize utility for the whole team; while in a game, every agent acts in 



 

 

25

the manner maximizing its own utility but minimizing utility for competitors. Many 

human teams (including ours) involving joint decision-making as information 

gathering and task allocations have the computation complexity problem. Again, we 

use some approximations to balance the quality of decisions with the complexity of 

computation. 

2.2.2. Naturalistic Decision Making 

Naturalistic decision directly relates to the way experienced people actually 

make decisions in natural settings [142]. Comparing to the decision theory that is about 

selecting an option, the naturalistic decision focuses on diagnostic decision-making 

(situation assessment). Among many models developed under this field, recognition-

primed decision (RPD) model [72] is the most common one. The RPD model 

emphasizes the recognition of situational dynamics as one of the key drivers in 

selecting an action. The RPD model describes how decision makers can rely on their 

experience to recognize situations and identify viable courses of action without 

comparing the relative benefits or liabilities of multiple actions. The decision maker 

first identifies the situation as familiar or typical. This recognition enables the decision 

maker to know several important things, such as which goals to take, what to expect 

and which actions typically work. The RPD model focuses attention on the importance 

of situation awareness for successful decision making in field settings. For example, 

[33] uses RPD to support human teams to make faster and better decisions when there 

is not time for extensive reasoning.  
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RPD model requires the decision maker to have enough experience to assess 

novel and dynamic environment it encounters. Also the process which enable 

experienced decision maker to develop their situation awareness requires the designer 

have completely understanding to domains; this tends to discourage the generic 

problem solving across different domains. Therefore RPD has wide applications in 

military training tasks, such as training with Tactical Decision Making Under Stress 

(TADMUS) [18]. 

2.3. Decision-Theoretic Modeling Communication 

Though growing up long before the concept of an intelligent agent was 

conceived, decision-theoretic modeling has gained increasing interest as a technique 

for communication in multi-agent systems. 

2.3.1. Selective Communication 

STEAM uses selective communication, by which agents communicate only 

information with high utility [121]. The decision depends not only on the cost and 

benefit of the communication, but also on the likelyhood that the information may be 

already mutually belived. One of two communciation strategies will be chosen: C for 

communicating and NC for not communicating. If C is selected, the team has a reward 

for knowing the information but also has the cost for sending the information. If NC is 

chosen, two outcomes are possible. There is some probability that the information was 

already commonly known, in which case the team is given an extra penalty for 

miscoordimation, besides the reward. Otherwise the team has the reward. 
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There are four major differences between STEAM and our approach. First, 

STEAM focuses on establishing joint intentions of team members, but not on analyzing 

the information production and need among team members in order to be able to 

provide information proactively or ask for information actively, which is our focus. 

Second, in STEAM, the decision to communicate is based on monitoring other team 

members’ sensory capabilities and role constraints, while our model can dynamically 

predict information production and need among agents based on collections of 

historical data. Third, the communication strategies of STEAM are either to 

communicate or not, while our model offers agents more realistic options and considers 

the interdependency of their decisions. Fourth, STEAM does not include risk in 

decision-making, while we consider the risk an important part in the utility function. 

This is particularly necessary in hostile environments. 

2.3.2. Probabilistic Plan Recognition 

Huber and Durfee suggest using a probabilistic plan recognizer [53, 54], similar 

to their 1993 work, to deduce the status of the commitments of other agents involved in 

a joint plan. In fact, it is easier to reason about the commitments of other agents when 

they are known to be following a joint plan than it is to reason about their plans when 

there is no such basis of knowledge between the observing and the observed agents. All 

an observing agent need do is compare the observed agent's current actions with the 

current plan to determine the status of that agent's commitment. Huber and Durfee’s 

system is called the University of Michigan Procedural Reasoning System (UM-PRS) 

[54]; it is used for mapping plans, and for plan recognition by a Bayesian Net approach 



 

 

28

given in [53] (see also [17] for an introduction to bayes nets, or [93] for a detailed 

description). Huber and Durfee use no vision in their system, assuming that logical 

predicates can be detected directly by the cooperating agents. Strategies such as plan 

recognition normally have high computational complexity that weakens teamwork 

efficiency. However, a major point of our work is that the underlying system interprets 

team plans of the agents do some of the fundamental work for handling 

communication. For example, by analyzing preconditions and effects of the team plans 

and operators, we generate a set of information to be exchanged among the needers and 

the providers. 

2.3.3. Game-Theoretic Recursive Modeling 

Because agents who have different knowledge and capabilities must work 

together, they must communicate the right information to coordinate their actions. 

Gmytrasiewicz et al. developed a rigorous approach for modeling the utility of 

communication, based on decision and game-theoretic methods [39, 40]. The model is 

called Recursive Modeling Method (RMM). An agent that is considering sending a 

message should base its decision on an estimation of whether the message’s recursive 

impact on the sender and receiver’s beliefs will improve the expected outcome of its 

decisions [39, 40]. In this framework, an agent begins with a recursively elaborated set 

of models about another agent. Using the probabilistic nature of these models, the 

agent can compute the expected utility for the other agent’s alternative decisions. It 

then models how exchanged information will influence the probabilities, and thus 

affect the expected utilities of the other agent’s decision.  
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The common thing between our approach and RMM is that we both model a 

message’s recursive impact on the receiver and the sender in turn by using the 

decision-theoretic method. However, there are four major differences between our 

approach and RMM. First, we focus on a multiple agent team cooperating to achieve a 

common goal, while RMM is primarily suitable for two-player teams and considers 

agents’ decision-making from the perspective of an individual agent in a self-interested 

environment.  

Second, RMM estimates a message’s recursive impact regarding to how this 

message is relevant to the receiver’s goal. While in our model, relevance of a message 

is inferred by reasoning about the goals of other agents (specifically, the preconditions 

of these goals constitute the information relevance to other agents). We model the 

impact regarding to timeliness and correctness of the information that is not considered 

by RMM. 

Third, RMM uses a decision tree containing probabilities of other agents’ 

actions and the probabilities are domain knowledge. However, obtaining these 

probabilities when the environment is dynamic and not fully observable is difficult. 

Our model, in contract, does not rely on pre-determined knowledge, but computes the 

timeliness and correctness of the information based on possibly incomplete and 

uncertain knowledge of other agents. 

Fourth, RMM uses iterative deepening of RMM levels to detect convergence or 

cycles. This makes it very costly and time consuming to compute a solution. If the 

depth of a hierarchy is finite and complete, the model can traverse this hierarchy and 
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retrieve the best strategy to play. However, because this nested model can involve 

many branches and extend to deep levels of recursion, so when there is a loop or when 

there is not enough time to traverse the whole hierarchy, RMM may not be able to 

return the optimal solution. Our approach makes decisions based on methods for 

inexpensive approximation to balance the quality of decisions with the costs of making 

them. While this is not exactly precise, it is shown to be a practical solution in our 

experiments. 

2.3.4. Optimal Communication among a Team 

Bui, Kieronska and Venkatesh present a formal framework based on the game 

theory with incomplete information for modeling the coordination and communication 

problem among a team of collaborative agents; they also defined what optimal 

communication means in this setting [11, 41]. The framework defines the notion of 

team optimality (TOP) to be taken as the ideal solution to the team coordination 

problem. Communication is considered to be an extended team problem where agents 

are allowed to broadcast messages. Optimal communication then is defined as a 

combination of communication strategies with maximal value and minimum cost. To 

reduce computation complexity caused by unknown parameters in the utility function, 

the framework uses domain-dependent assumptions to reduce hypothesis space. It also 

assumes the probability distributions about the unknown parameters are given and 

suggests these can be learned by the agents through their repeated interactions with the 

environment and with one other. However it does not give the detail about the learning 

process. We propose a solution that agents attach some relevant data to messages sent 
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to each other and use the practical EDF to model distributions of the unknown 

parameters. 

2.3.5. Multi-Agent Markov Decision Process  

Xuan and Lesser present a multi-agent extension to Markov Decision Process 

(MDP) to optimize both actions and communication [133]. They model communication 

as an explicit action that incurs a cost. They describe how to model communication and 

the cost of communication properly and define the optimality of combining 

communication acts for a group of cooperative agents. However, their framework is 

heuristic and does not consider communication risk in decision-making. To relieve 

prohibitive computation complexity in the optimization problem, they use social 

conventions. For example, one of the conventions they use is “no news is good news”. 

If agents do not hear anything from others, they assume everything is fine and process 

their work without communication. However, they need to negotiate a new plan if the 

progress is not as intended. We are interested in the most comprehensive case where 

cooperative agents must determine which message they should transmit, and when, 

assuming that communication incurs a cost and a risk. 

2.3.6. Dec_POMDP_Com 

Decentralized Partially Observable MDP Communication (Dec_POMDP_Com) 

[41] is a theoretic model for decentralized control of multiple decision-makers that 

share a common set of objectives. Similar to the Multi-Agent MDP model, 

Dec_POMDP_Com aims to find a joint policy that maximizes the expected utility over 

the hypothesis that consists of policies of actions and policies of communications. The 
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difference between them is that to decrease computation, the former uses heuristic 

social conventions while the latter uses a myopic greedy algorithm to approximate 

optimal communication. For example, at the offline planning stage, a best policy is 

specified and will be used throughout the rest processes. Our approach is more 

dynamic in that, without using heuristic assumption or offline planning stage, the best 

policy is always guaranteed at every time of decision-making. To deal with uncertainty, 

we take advantage of history data of information production and need and use a 

practical statistical analysis to approximate distributions of the information production 

and need. This decreases the number of possible outcomes of unknown parameters in 

the utility function to a finite set. 

2.3.7. COM-MTDP 

Communicative Multi-agent Team Decision Problem (COM-MTDP) [95] 

offers a theoretic model that considers the uncertainties and costs in real world 

scenarios, addressing some of the deficiencies of BDI systems. This model compares 

complexity results when either free communication, no communication or general 

communication is assumed. While the model accounts for the value and the cost of 

communication, it does not consider the risk that we examine in our approach. The 

authors applied a single case of communication, which allows an agent to send a single 

message indicating that a certain goal has been achieved. Our work studies a more 

general problem: the agents take advantage of the timing and frequency of information 

production and need and are allowed to communicate (possibly) several times until 

sending out or receiving a teamwork-related information item. We are interested in 
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problems where agents may act independently to perform their own tasks but may need 

to exchange their information from time to time to coordinate in more efficient ways. 

This includes each agent deciding when and what to communicate to whom. 

Additionally, a single agent’s decision is not independent and needs to consider the 

impact of its counterparts’ decisions. 

2.4. Other Effective Communication Approaches  

2.4.1. Centralization Modeling 

In the contract net protocol [115], when an agent needs help from the others in 

the group, it broadcasts a task-announcement message. The other agents evaluate their 

resources and submit bids to the original agent. The original agent then evaluates these 

bids and assigns the task to the most suitable one. The contract net protocol is 

appropriate in a decentralized control regime where the agent does not know in 

advance the other agents' information. With the generality of the broadcast, this 

approach becomes inefficient in many cases. We propose to eliminate the broadcasting 

of this communication with an assisted coordination approach [38]. In this approach, a 

central manager agent tracks the overall status of the group; any agent wishing to locate 

peers sends a message to the manager agent and receives the address of the peer agent. 

Lashkari's collaborative framework [78] is another example of this approach. 

2.4.2. Comparative Reasoning 

Sugawara reports on the use of comparative reasoning and analysis techniques 

for learning and specifying coordination rules for a system in which distributed agents 

coordinate in diagnosing a faulty network [117]. The investigation is focused on 
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optimizing coordination rules to minimize inefficiency and redundancy in the agents’ 

coordinating messages. Upon detecting sub-optimal coordination (via a fault model), 

the agents exchange information on their local views of the system and the problem-

solving activity, and construct a global view. They then compare the local view to the 

global view to find critical values and attributes missing from the local view that gave 

rise to the sub-optimal performance. These values and attributes are used in 

constructing situation-specific rules that optimize coordination in particular situations. 

For example, network-diagnosis agents may learn a rule that guides them to choose a 

coordination strategy in which only one agent performs the diagnosis and shares its 

result with the rest of the diagnosis agents. 

2.4.3. Social Conventions 

Shoham and Tennenholtz suggest that a society of agents adopt a set of 

conventions [50, 111]. Each agent will obey these conventions and will be able to 

assume that all others will obey them as well. On one hand, these rules will constrain 

the plans available to the agents, but on the other, they will guarantee certain behaviors 

on the part of other agents. This approach totally eliminates communication and uses 

convention rules to guide agents’ actions. As an example, Shoham and Tennenholtz 

present a number of traffic laws for a restricted domain of mobile robots. They show 

how social conventions ensure that no collisions or deadlocks occur, and agents are 

still allowed enough freedom to plan close to optimal paths. 
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2.4.4. Focal Points 

In environments where communication is impossible, Fenster and Kraus 

explore a coordination technique common to communication-free human interactions, 

namely focal points [34, 75, 105]. This approach is based on the intuition that humans 

are sometimes capable of sophisticated interaction with little communication, and that 

it ought to be possible for agents to emulate this behavior. Focal points are based on the 

naturalness and intuitiveness of certain objects (or solutions) in the world. Since agents 

do not have the common sense needed to judge the naturalness and intuitiveness, the 

designer endows them with an algorithm capable of identifying focal points to which 

they adhere. They then develop a domain-independent algorithm and test it in 

simulations of various instances of an abstract world. They find that given a problem 

and a set of possible solutions from which the agents need to choose, focal points are 

prominent solutions of the problem to which agents are drawn [34]. In most randomly 

generated situations, there is more than a 90% probability that agents will make a 

common choice. 

2.5. Observability and Belief Maintenance 

In a dynamic, distributed teamwork environment, apart from prior knowledge 

such as the team goal, observability is a major means for an individual agent to obtain 

information. An agent with observability may monitor its teammates by observing the 

environment and their actions and then estimating their beliefs without generating 

unnecessary messages. In what follows, we review literature about belief and belief 

maintenance after observation. 
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2.5.1. Knowledge and Belief 

In [112, 94], the internal state of an agent is called its mental state, and it is 

represented by modal logic. One important modality in mental state is belief. Building 

belief and the process of belief revision and update are very complex [74]. If we want 

to introduce belief, we have to introduce knowledge first. Knowledge, belief, and the 

relationship between them have been studied extensively in philosophy for a long 

time.Most work in Artificial Intelligence (AI) on knowledge and belief has its origins 

in the philosophical work of Hintikka [49]. Moore was an important early researcher 

who introduced Hintikka’s ideas into AI [89]; the most comprehensive and up-to-date 

discussion of knowledge and belief in computer science appears in [31]. 

Most formalization of knowledge and belief is expressed in modal logic. The 

standard logic for knowledge, called the S5 system, contains the following axioms: 

• K  [Kϕ∧K(ϕ ⊃ ψ)] ⊃ Kψ 

• T  Kϕ ⊃ ϕ 

• 4 Kϕ ⊃ KKϕ 

• 5 ¬Kϕ ⊃ K¬Kϕ 

The K axiom says that an agent’s knowledge is closed under deduction, while the T 

axiom says that what the agent knows is true. Axiom 4 implies that the agent knows 

what it knows, while axiom 5 says that it knows what it doesn’t know. 

A logic of belief results from dropping the T axiom from S5 and using the 

operator BEL instead of K. The derived system is called K45. In fact, the most 
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common logic of belief is a strengthening of K45 by the D axiom: BELϕ ⊃ ¬BEL¬ϕ 

(the resulting system is called KD45). Intuitively, the D axiom ensures that the agent’s 

belief is internally consistent. 

2.5.2. Visibility, Seeing, and Knowledge Logic 

In recent years, observability has been used widely to understand behaviors of 

multi-agent systems. One study of particular interest is logic for visibility, seeing and 

knowledge (VSK) [128, 129, 130, 131], which explores relationships between what is 

true, visible, perceived, and known. The VSK logic is an extension of modal logic. The 

semantics of the VSK logic is based on Kripke possible worlds [31]. A space of Kripke 

structures (“worlds”) is defined, each of which encodes the instantaneous state of 

environment plus the internal state local to each agent. Then several equivalence 

relations are defined to capture the meaning of the modal operators. For example, for 

each world, there is a relation, ~v, that determines what other worlds are 

indistinguishable, and similarly for S and K. The content of what an agent sees or 

knows is determined by these equivalence relations. For example, an agent is said to 

know ϕ if ϕ is satisfied by all the worlds accessible from the current world. 

Wooldridge goes on to prove some properties about the interrelations among 

accessibility, sensibility and knowledge in this system, and he also offers a proof of the 

theory with a guarantee of completeness [128].  Wooldridge also investigates a number 

of interaction axioms among agents, such as under which conditions agent a sees 

everything agent b sees, or agent b knows everything agent a sees [128].  
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However, there are three major issues regarding agent cooperation that are not 

addressed in VSK logic: 1) the effects of actions play a major role in helping an agent 

infer what others likely know, while there is no way to treat actions through 

observation; 2) agents do not have an effective way to utilize their observation to 

manage communication and 3) VSK models knowledge (from observation), but not 

belief. Agents should be allowed to believe different or even incorrect things and 

maintenance of multiple agents’ beliefs are a difficulty problem. Our approach uses 

these issues and agents’ observations of the world to determine which information is 

already believe by other agents, and therefore does not need to be communicated. 

2.5.3. Beliefs of Agents 

The VSK logic introduced in last section is basically suitable for describing and 

reasoning about belief and observability of a single agent. In multi-agent systems, 

agents are expected to not only reason about belief and observability of itself but also 

of others.  

Beliefs of Agents (BOA) is a multi-agent belief maintenance and reasoning 

model, from both theoretical and practical aspects [101]. It is able to represent multiple 

states of beliefs and justify beliefs with different strengths [60]. To achieve fast and 

efficient reasoning, BOA implements multi-agent belief reasoning in a first-order logic 

back-chainer by sacrifices some degree of expression (i.e. it does not handle things like 

nested belief) [7]. 
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Comparing with a multi-agent truth maintenance system which maintain the 

integrity of observed and communicated information [28, 55, 84, 85], BOA answers 

two difficulties that are not addressed by the later. 

The first is resolving conflicting beliefs about a certain thing. In the multi-agent 

truth maintenance system, a single agent is generally not free to change the status on its 

own accord and must coordinate with the other agents so that they are all consistent on 

the status of the information. However, agents may come to conflict beliefs about a 

certain thing. For example, agent a may receives a message from agent b saying it is 

raining now, but agent a currently does not observe the rain. BOA resolves this 

problem by reasoning about the justification for the beliefs, including direct-

observation, observability, effects of actions, inferences, persistence and default 

knowledge [60]. 

Second, the main purpose of reasoning about beliefs and observabilities is to 

help agents assist each other. Typical a belief is a fact (proposition) with the value true 

or false. BOA represents the fact that another agents belief is unknown (neither true nor 

false) or whether (either true or false). Then agent a would provide a piece of 

information to agent b if agent a believes agent b does not know the value for the 

information; also agent a would ask about needed information from agent b if agent a 

believes whether agent b know the truth value of the information. 

2.5.4. Seeing Is Believing 

The observability and reasoning of a single agent have received researchers’ 

attention for some time. Perception reasoning is one of these research directions [72, 
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73]. For example, “seeing is believing” has been adopted for perception-based belief 

reasoning [25, 91]. These theories are intended to apply to perception in humans and to 

perception in agents at the level of symbolic interface between a vision system and a 

belief system. They give a logical analysis of perception and then consider when 

perception should lead to change of belief. Similar work can be found in [122]. Van 

Linder et al. describe different ways agents can acquire information: seeing, hearing, 

and jumping (default reasoning) [82]. They also propose a classification of the 

information that an agent processes according to credibility. Agents then can solve 

various conflicts that may arise when acquiring information from different sources, 

based on information credibility. 

2.5.5. Nested Belief Reasoning 

Isozaki and Katsuno [61] propose an algorithm for estimating others’ beliefs 

from observation. An agent maintains its own belief by checking three factors: 1) 

observation factor: if one observes a proposition now, one believes the proposition 

now; 2) effects factor: if one has just observed an action, then one believes in all of its 

effects, even if one has not yet observed them; 3) memory factor: if no new information 

is available, one’s previous belief remains valid. An agent a can estimate agent b’s 

belief at different times: 

• b’s initial belief: agent a checks b’s observation factor at initial time; 

• b’s belief at a time later than initial: agent a checks b’s observation 

factor, effects factor, and memory factor at that time. 



 

 

41

Isozaki and Katsuno [62] also propose a way to reason about nested beliefs 

(which are one’s belief about what another believes) based on observation. However, 

neither of their works represents the process of observation, i.e., what can be seen and 

under which conditions. 

2.5.6. Cooperation by Observation 

Kuniyoshi, Rougeaux and Ishii [77] proposed a cooperation framework called 

“cooperation by observation”. Its basic function is to allow minimal communication 

supported by mutual observation of actions. Agents cooperate by using visual action-

recognization to classify task patterns. Their framework presents several standard 

attentional templates, e.g. who monitors whom. They define a team attentional 

structure as one in which all agents monitor each other. Viroli and Omicini [123] 

devise a formal framework for observation that abstracts conditions that cause agents’ 

interactive behaviors. Kaminka and Tambe [67] use observation to monitor failed 

social relationships between agents, but they do not give details about how agents’ 

belief about their teammates’ mental states are updated. 

2.6. Problem-Specific Prediction 

There are many learning techniques for problem-specific estimation. Here we 

just name a few. 

2.6.1. OVERSEER  

Kaminka et al. propose OVERSEER, a statistical model for exploring plans 

used by a team to predict team responses effectively during execution [68]. They 

consider communication to be observable action (only to sender and receiver agents) 
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and use plan recognition to predict future observed messages. They assume that the 

duration of a plan is an exponential random variable, and parameters in exponential 

distribution can be acquired from domain experts or learned from previous runs. 

However, they neither explain why the duration of a plan conforms to exponential 

distribution, nor investigate the learning processes in depth. More detail of this work 

can be found in [68] and [69]. 

2.6.2. Successful Story Learning 

In a dynamic teamwork system, agents need to consider not only the dynamic 

changes of the system, but also the actions of their teammates. Agents may have some 

historical data for predicting the actions of others. Schmidhuber and Zhao [106] 

consider a system with three self-interested agents. The agents learn evidence released 

during the course of interaction and use a backtracking method called “successful-story 

algorithm” to establish success histories of behavior, i.e. agents keep actions that have 

been successful and remove actions that have failed. In this way, the successful 

histories can be enforced despite interference from other agents. 

2.6.3. Regression Modeling 

Hu and Wellman [52] adopt regression methods for online derivation of 

relations between other agents’ actions and their internal states. They find that 

performance of an agent can be quite sensitive to its assumption about the policy of 

other agents, and when there is substantial uncertainty about the other agents, 

minimizing assumptions might be the best policy. Another example is Jensen, 

Atighetchi and Lesser [66]. They investigated techniques for allowing agents to gain 
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statistical knowledge about non-local effects (NLEs) and found that a combination of 

three simple learning techniques (empirical frequency distributions, deterministic 

properties of schedules, and linear regression) can be surprisingly effective. 

2.7. Psychological Study of Shared Mental Model in Human Teamwork 

Teamwork is a collaborative activity with diverse knowledge resources and 

distributed team formats. As a team increases in size, it is often difficult or impractical 

to put all necessary information on a single agent. Furthermore, though today‘s 

advanced telecommunications and collaboration technologies allow collaborations 

within geographically distributed team members, coordination in a distributed, large-

scale team is still problematic because working from a distance brings increased 

coordination overhead, communication overload and substantial delays [30]. Ioerger 

presents an overview of current research of human teamwork, focusing on modeling 

teamwork in human-behavior representation simulations in command-and-control 

domains [59]. We review the human teamwork from psychological aspect focusing on 

shared mental model. 

Team psychology research literature suggests that mechanisms like shared 

mental models aid coordination [12, 73, 99]. Shared mental models refer to organized 

knowledge that members share about things like the task, each other, goals and 

strategies [12]. A recent study of teamwork in a flight simulation task found that shared 

mental models had a positive effect on team coordination, which improved 

performance [83]. Studies of software teams have also found that their team members 

need to acquire, share, and integrate substantial amounts of knowledge of the 
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application domain to ensure positive outcomes [23, 124]. Another study with software 

requirement analysis teams found that teams that exhibited a “collective mind”, i.e., a 

shared understanding of the group’s task and each other [125], were more coordinated 

because members understood how their work contributed to group outcomes [22]. 

In this research, shared mental models is developed based on shared knowledge 

about team structures and teamwork procedures, which help team members to form 

accurate information and expectations about the task and each other. This is achieved 

through observing the environment and teammates’ actions, predicting teammates’ 

information production and need, and communicating teamwork related information. 

2.8. Context of Work at TAMU 

The long-term research goal of the research group at TAMU is to develop an 

intelligent-team training system (ITTS), which involves both humans and agents. By 

playing vitual team-member roles, agents train humans and improve the humans’ 

teamwork skills. Previous work includes three parts: 

1. TaskableAgents, a single agent architecture that provides adaptive task 

decompositions. 

2. CAST (Collaborative Agents for Simulating Teamwork), an architecture 

for simulating multi-agent teamwork. 

3. Various proactive information exchange algorithms with different 

focuses on inter-agent communication. 
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2.8.1. TaskableAgents 

TaskableAgents is a general single agent architecture which was originally 

motivated by the purpose of simulating activities of staff officers in tactical operation 

centers in Army combat simulations [139, 140, 57]. TaskableAgents is mainly 

consisted of TRL (Task Representation Language) and APTE (Adaptive Protocol for 

Task Execution), a task decomposition algorithm. 

TRL provides descriptors for representing four fundamental types of 

information: goals, tasks, methods, and operators [57]. Each descriptor starts with a 

keyword, such as :TASK or :METHOD, a symbolic name, and a list of formal 

parameters. The parameters allow arguments to be passed in when a task is invoked. In 

TaskableAgents, greater emphasis is placed on encoding pre-determined tasks and 

methods. This knowledge defines what to do under various circumstances by providing 

procedural descriptions similar to high-level programming languages. 

The tasks and goals assigned to an agent are carried out by the APTE algorithm 

(Adaptive Protocol for Task Execution) for task decompositions [57]. Conceptually, 

there are two phases to APTE. In the very first time step of the simulation, APTE takes 

the top-level tasks given to the agent and expands them downward as a tree by: 1) 

selecting appropriate methods for tasks, 2) instantiating the process networks for 

selected methods, 3) identifying sub-tasks that could be taken in the initial situation, 

and recursively expanding these sub-tasks further downward. Once the expansion is 

down to the set of concrete operators, the execution takes the first step as selecting one 

(perhaps based on priority or preference) and executes it. In every subsequent time 
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step, APTE must repair the task-decomposition tree. This partly involves marking the 

action just taken and moving tokens forward in the next process. More importantly, 

APTE also re-checks each of the termination conditions associated with the tasks and 

methods in the current tree. If a termination condition has been reached (generally 

indicating failure), APTE backtracks and tries to find another method that satisfies the 

parent task. If a task at some level has successfully completed, then a step forward can 

be taken to the parent process. 

In TaskableAgents, agents communicate with each other through the use of 

built-in TRL operators for sending messages. After being received, messages are stored 

in a queue local to each agent. At regular intervals (between normal decision-making 

cycles), all messages stored in an agent’s queue are emptied into its knowledge base. 

The agent can then process the messages accordingly using message-handling methods 

written in TRL [139, 140]. 

Different from the planning system that usually relies on goal-regression to 

select sequences of actions, the TaskableAgents focuses on dynamically selecting and 

managing tasks. It has two distinguishing features: 1) reasoning about how to select the 

most appropriate method for any given task, and 2) being able to react to significant 

changes in conditions and find alternative methods when necessary. TRL is expressive 

enough to allow the specification of complex procedures for the agent to follow, and 

the APTE algorithm enables flexible behavior in the form of reactivity to changes in 

conditions. 
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2.8.2. Collaborative Agents for Simulating Teamwork 

CAST is a multi-agent architecture that simulates and supports teamwork 

involving both human and software agents [135, 137]. Motivated by psychological 

studies about human teamwork demonstrating that intelligent team behaviors rely on 

overlapping shared mental models among team members, CAST is based on the shared 

mental model [118, 100], which states that, by default, all agents are assumed to share 

common knowledge about the roles, capabilities and responsibilities in which they are 

involved within the team, and that they believe all other agents have the same beliefs 

[137]. This assumption reduces the amount of knowledge a team member should have 

and simplifies the belief reasoning among agents. From a teamwork-theory 

perspective, CAST is close to shared-plan theory. CAST starts with only partial 

knowledge of the shared environment and the other participants and uses 

communication and individual information-gathering to determine what the appropriate 

action is, who should perform it, and so on. 

Belief reasoning has been recognized as being intractable [47]. Consequently, 

representing and updating agents’ mental states is a challenging problem. CAST deals 

with this problem in two ways. First, we make a teamwork procedure (such as roles, 

responsibilities, and plans), and all agents share it. This procedure is represented by 

MALLET language (Multi-Agent Logic-based Language for Encoding Teamwork). 

Second, it uses Petri Nets to model the team member’s plans, as a computational form 

of a shared mental model.  
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MALLET is a team knowledge representation language [136]. The team 

knowledge includes team structures (such as team members, agents, roles, 

responsibilities, and capabilities) and teamwork processes (such as team goals, team 

plans, and individual plans). In terms of a MALLET specification, members of a team 

share a static portion of common knowledge described by MALLET. MALLET 

assumes that a team has a set of goals to be achieved. Goals are achieved by assigning 

a team of agents to plans and then invoking these plans, meaning that the agents are 

ordered to achieve the goal. Each plan consists of a set of steps, each of which is either 

a primitive operator (e.g., moveleft), or a composite operation (e.g., a sub-plan). Both 

plans and operators have preconditions and effects associated with them. Each 

precondition and effect is a conjunction of predicates. The difference between 

operators and plans is that operators do not have any body. Plans are essentially 

designed to describe processes which give plans a hierarchical structure. The processes 

consist of invocation of operators, or arbitrary combinations using various constructs 

such as sequential, parallel, branch, and iteration. The syntax of processes can be 

defined recursively based on these constructs. 

2.8.3. Proactive Information Exchange 

Based on TaskableAgents and CAST, the research group at TAMU bore rich 

fruits in proactive information exchange research. Three major algorithms are 

developed with different focuses on inter-agent communication. 

Team-to-Individual Plan Conversion (TIP-C) algorithm [6] is the first 

attainment towards multi-agent communication. It takes plans written in a multi-agent 
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teamwork language (MALLET) and converts them to equivalent individual plans in a 

single agent language (TRL). The algorithm analyzes agent responsibilities and 

automatically inserts necessary and appropriate communication acts to the individual 

plans and will still facilitate proper dynamic teamwork. These communication actions 

can help to produce the complex team activities such as delegation of responsibilities, 

carrying them out, and providing backup behavior. 

Dynamic Inter-Agent Rule Generator (DIARG) algorithm is the preliminary 

implementation of the idea of proactive information exchange [135]. It embeds in the 

CAST kernel that enables CAST agents to decide on-the-fly how to provide 

information proactively to teammates to assist their work. DIARG generates 

communication in order to resolve ambiguity of responsibilities and to predict 

information needs among agents and generate the necessary (proactive) communication 

to fulfill these needs. DIARG includes two parts: offline and online. The offline part 

analyzes the preconditions and effects of operators and generates an information flow 

describing potential information needs. An information flow is defined as a three tuple 

<info, providers, needers>, where info is the predicate name together with zero or more 

arguments; providers is a list of agents who might know such information; and needers 

is a list of agents who might need to know the information. The online part infers the 

potential information needs by reasoning preconditions and effects of actions/plans and 

generates information flow that is a list of needers and a list of providers for every 

piece of information.  
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Proactive Information Exchange (PIEX) [60, 101] improves DIARG in two 

important ways. First, unlike DIARG which is based on analyzing a static predicate 

network, PIEX monitors teammates’ responsibilities and encodes them in a shared plan 

[60]. Agents anticipate information needs based on these responsibilities; this is more 

flexible than the offline information flow generated by DIARG. Second, PIEX includes 

reasoning about other agents’ beliefs to reduce unnecessary message exchanges. It 

provides belief justifications to resolve conflict beliefs. It is also able to represent 

unknown and whether states for other’s beliefs. The communication becomes more 

efficient by narrowing down the receivers of a message to those agents who does not 

know the information, and narrowing down the provider for a message to those agents 

who know whether the information is true or false. 

Our research, Proactive Communication, is similar to PIEX in that both utilize 

agents’ sensing capabilities to reduce what information must be sent. Agents will infer 

some aspects of the mental states of other agents by observing the environment and the 

actions of the other agents. This, together with reasoning about what others can see, 

will allow an agent to decide when it does not need to send information to other agents 

and whom to ask when it needs information, in a manner that reduces overall 

communication. 

Moreover, Proactive Communication provides a communication solution that 

makes decisions under uncertainty according to cost, risk and the value of information 

the communication conveys. DIARG requires a domain expert to publish frequencies 

associated with information production and information need. It looks at the general 
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frequency, i.e., for a piece of information, in spite of how many agents produce it or 

need it, there is only one frequency related to the information production or the 

information need. Hence, this approach is too rigid to apply to different situations. For 

agent communication, DIARG also imposes obeys a regular rule, which says that 

information that is needed more frequently than it is produced must be told proactively; 

otherwise it must be asked for actively. Proactive Communication develops a more 

general way to deal with frequencies of information production or information need. 

Also it uses the decision theory to guide agents to make optimal communication 

decisions under dynamic situations. 
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CHAPTER III 

PROACTIVE COMMUNICATION: AN OVERVIEW 

In this section, we introduce our system archtecture and agent execution cycle, 

and give an overview of Proactive Communciation mechanism. As discussed in 

Section 2.8, this research is based on CAST [135]. We investigate how to add two 

important capabilities humans use, observability and proactivity, to CAST agents in 

order to emulate, as closely as possible, the principles used by humans to achieve 

effective Proactive Communication. 

3.1. The OP-CAST Architecture 

We develop an OP-CAST architecture, as shown in Fig. 3.1, for Observant and 

Proactive CAST, which is an extension of CAST. The extension is threefold: 

• Giving agents observabilities and developing Observation-Based 

Proactive Communication (OBPC) algorithms for reducing 

communication load through agents’ observabilities. 

• Developing Dynamic Information Prediction (DIP) methodology for 

helping agents make communication decisions, by predicting 

information production and needs among the agents dynamically. 

• Developing Decision-Theoretical Proactive Communication (DTPC) 

methodology by which agents communicate proactively by evaluating 

cost, risk and value of communication in the decision-theoretical 

approach. 
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Fig. 3.1. OP-CAST Architecture. 

 

An agent team is composed of a set of agents. An environment simulation 

provides an interface through which the agents interact with the environment. The team 

members share the knowledge of teamwork processes as well as team structures, 

controlled by CAST. Each agent has an individual knowledge base (KB) to specify its 

beliefs to the environment and other agents. During plan execution, individual agents 

observe the environment and their teammates’ behaviors1. Dotted circles in Fig. 3.1 

indicate agents’ observability radiuses. Different agents have different radiuses and 

their radiuses may overlap. Agents communicate with each other by exchanging 

                                                 
1 In this research, observation is not limited to vision; rather it means perception through sensors with 
which the agents are equipped.  
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teamwork-related information2. The teamwork-related information and its provider and 

needer are not chosen arbitrarily; they are specified by exploring team plans. Straight 

lines in Fig. 3.1 connect information provider and needer and arrows show the 

communication could occur in either direction3. Decisions about optimal 

communication strategies are supported by Proactive Communication. 

3.2. Agent Execution Cycle 

Our system uses discretized time. At each time step, every agent has an 

execution cycle, shown in Fig. 3.2: 

• First they observe the environment and teammates’ actions and adjust 

their own beliefs; 

• If they produce or need some information, they will predict the 

information need or production of others; 

• They choose optimal communication strategies. The decision may be to 

communicate or not at this time; 

• They execute the strategy chosen; 

• They act with teammates and the actions affect the environment and 

enter the next time step. 

                                                 
2 There are two kinds of information that can be communicated. One is the information explicitly needed 
by an agent to complete a given plan, i.e., conjuncts in a precondition of plans or operators that the agent 
is going to perform. The other is the information implicitly needed by the agent. For example, if agent a 
needs predicate p and knows p can be deduced from predicate q, even if the providing agent does not 
know p, it still can tell agent a about q once it has q, because it knows that agent a can deduce p from q. 
This research, however, deals only with agents communicating information that is explicitly needed. 
3 This research, however, does not consider chaining communication, such as communicating via third-
party brokers. 



 

 

55

 

Predict 
Info. need 

and production 

Observe
Sense

Decide
Strategy

Communicate
Information 

Act 
Effect 

 
Execution 
Cycle 

 

Fig. 3.2. Agent Execution Cycle. 

 

3.3. Proactive Communication 

Proactive Communication is a decision-theoretic communication mechanism to 

choose the optimal communication strategy during multi-agent teamwork, by giving 

agents the capabilities of observability and proactivity. Observability helps agents to 

monitor the environment and track teammates’ mental states. Proactivity allows agents 

to anticipate future needs or changes and tell or ask each other about teamwork-related 

information. To achieve these objectives, we divide the problem into three pieces and 

developed solutions for each. 
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3.3.1. Observation-Based Proactive Communication 

To endow agents with observability, we express what an agent can see. 

Additionally, successful teamwork requires interdependency among agents [45], which 

suggests that agents should know something about others’ observabilities. 

Consequently, we also express what an agent believes another agent can see. In order 

to explain how agents use their observabilities to observe the environment and others 

and how they reason about others’ observabilities, we clarify notions of:  

• What an agent can see, what it actually sees, and what it believes from 

its seeing. 

• What an agent believes another agent can see, what it believes another 

agent actually sees, and what it believes another agent believes from its 

seeing. 

The purpose of introducing observability is to reduce excessive communication, 

but there are some fundamental issues to be addressed first. We define which kind of 

information will be communicated, who needs it and who provides it, by reasoning 

about team plans. We also develop two algorithms: 

• To determine whether or not an agent having information should tell 

another agent, based on its belief about what the other agent can see. 

• To determine whether to ask some specific agent for needed 

information, based on the needer’s belief about what the specific agent 

can see. 

OBPC is introduced in Chapter IV. 
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3.3.2. Dynamic Information Prediction 

Agents need to know values of teamwork-related information. However, the 

values of the information change in a dynamic environment. It is impossible for agents 

to know all information at all times. 

For a piece of information, we assume that the production time interval by an 

agent and the need time interval by an agent are random according to some unknown 

distributions. A key aspect of DIP is to estimate the time of information production and 

need of teammates based on these distributions. As a basis for accomplishing this, we 

have agents send a partial past history of the time intervals of their information 

production or need when they send or ask for information. This additional information 

can often be sent at modest cost and subsequently enables the receiving agent to make 

predictions about the information production or need times of other agents. After 

gathering previous data on information production and need opportunistically, we use a 

practical Empirical Distribution Function (EDF) [15] to approximate the distributions 

of information production and needs of other agents. The distributions are used in the 

utility functions of communication strategies to help agents decide whether or not to 

tell or ask for a piece of information. DIP is introduced in Chapter V. 

3.3.3. Decision-Theoretic Proactive Communication 

We develop a decision-theoretic approach to determine whether to proactively 

tell (relative to the need for the information) a piece of information to one or more 

other agents, and whether and which agent(s) to ask for a piece of information (relative 

to the production of the information). We equipped agents with a set of communication 
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strategies for different decision-making situations. The utility (difference between cost, 

risk and value) of the strategies allows agents to decide which one to apply. Since not 

all parameters in the utility function are known, we approximate their distributions with 

respect to the dynamic estimation of distributions of information production and need. 

The utility function will be used to evaluate agents’ decisions and their estimations of 

other agents’ responding decisions. Taking others’ decisions into account enables the 

agents to deal with the decision interdependency of team cooperation and to 

communicate in a way benefiting the whole team. DTPC is introduced in Chapter VI. 

3.4. Summary 

The OP-CAST agents are endowed with two capabilities to pursue realistic 

behaviors and effective interactions: observability and proactivity. The first one 

enables them to track teammates’ mental states and decrease the communication load, 

and the second one allows them to estimate information production and need of 

teammates, so they can assist teammates at the proper time. These capabilities are 

encoded in three mechanisms we developed. OBPC formally defines agents’ 

observabilities and deduces extraneous communication by reasoning about the 

observabilities. DIP estimates distributions of information production and need. The 

distributions are used in capturing complex decision interdependency among agents. 

DTPC provides agents an optimal communication strategy when they act in uncertain 

and dynamic environments. 
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CHAPTER IV 

OBSERVATION-BASED PROACTIVE COMMUNICATION 

4.1. Motivation and Overview 

A major problem with CAST is that significant status information must be 

communicated among agents, and there is no attempt to utilize agents’ sensing 

capabilities to reduce the amount of information sent. A more realistic approach (from 

a human perspective) is to give the agents sensing or observing capabilities. Although 

partial observability of dynamic, multi-agent environments has gained much attention 

[95, 68, 60], little work has been done to address how to process what is observable 

and under which conditions; how an agent’s observability affects the individual’s 

mental state and whole team performance; and how agents can communicate 

proactively with each other in a partially observable environment. 

To address these issues, we introduce an explicit treatment of an agent’s 

observability that aims to achieve more effective communication among agents. We 

employ the agent’s observability as the major means for individual agents to reason 

about the environment and other team members. Agents will infer some aspects of the 

beliefs of other agents by observing the environment and the actions of the other 

agents. Together with reasoning about what others can sense, these inferences will 

allow an agent to decide when it does not need to send information to other agents and 

whom to ask when it needs information, in a manner that reduces overall 

communication. 
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We implement the following methods to achieve OBPC: 

• Reasoning about what information each agent on a team will produce, 

and thus, what information each agent can offer others. This is achieved 

through: a) analysis of the effects of individual actions in the specified 

team plans; b) analysis of observability specifications, indicating what 

each agent can perceive about the environment and other agents, and 

under which conditions. 

• Reasoning about what information each agent will need in the process 

of plan execution,through the analysis of the preconditions for 

individual actions involved in team plans. 

• Reasoning about whether an agent should act proactively when 

producing some information. The decision is made in terms of: a) which 

agent(s) needs this information; and b) whether or not the agent who 

needs this information is able to obtain the information independently 

by observing the environment and other agents’ actions. 

• Reasoning about whether an agent should ask actively when needing 

some information. The decision is made in terms of: a) which agent(s) 

produces this information; and b) which agents are able to obtain the 

information through observation. 

The following sections first present preliminary contextual information. Then, 

we introduce a representation of observability and algorithms for reasoning about it. 

Finally we describe algorithms of OBPC. 
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4.2. Preliminaries 

In OP-CAST, the team members share the team knowledge represented in 

MALLET, which provides descriptors for encoding knowledge about teamwork 

processes (i.e. individual and team plans and operations), as well as specifications of 

team structures (e.g., team members and roles) [136]. 

4.2.1. Plans 

Plans are at the center of activity. They describe how individuals or teams can 

go about achieving various goals. Each plan has a process consisting of a set of 

operations, each of which is either a primitive operator, or a composite operation (e.g., 

a sub-plan). A DO statement is used to assign one or several agents to carry out 

specific operators or sub-plans. Fig. 4.1 is an example plan for the multi-agent version 

of Wumpus World (refer to Chapter VII for details; a complete version of Multi-Agent 

Wumpus World MALLET plan is attached in Appendix B). 

 

 
(plan startKill(?fi) 
  (pre-cond (newKnow ?wumpusId ?x ?y)) 
  (process     
    (seq         
        (DO ?fi (moveToWumpus ?fi ?wumpusId ?x ?y))      
        (DO ?fi (shootWumpus ?wumpusId))  
        (DO ?fi (retract (newKnow ?wumpusId ?x ?y))) 
        (DO ?fi (nextStep ?fi)) 
    ) 
  ) 
) 

 

Fig. 4.1. An Example of the Plan. 
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StartKill is an individual plan for a fighter agent ?fi. The plan has a 

precondition which must be satisfied by the fighter before it tries to execute this plan, 

i.e. the fighter must know the location of a newly found wumpus. MoveToWumpus is 

an individual sub-plan by which the fighter will move to an adjacent location to the 

wumpus. ShootWumpus is an individual operator specified as follows: 

(ioper shootWumpus (?wumpusId) 

(effects (dead ?wumpusId))) 

The effect of this operation will be automatically asserted to the fighter’s KB 

after execution (Section 4.4.5 elaborates an algorithm for updating KB). After 

shootWumpus is executed, this wumpus’ id and location will be retracted from the 

fighter’s KB so that the fighter will not kill the same (dead) wumpus at next step. 

4.2.2. Actions 

MALLET operators are defined based on standard STRIPS (STanford Research 

Institute Problem Solver) operators [35], i.e. as discrete state transitions with 

preconditions and effects, which are logical conjunctions. Using STRIPS 

representation is important because we want to reason about precondition and effect to 

make communication decisions (see Section 4.5). MALLET has three forms of action: 

individual action, team action and joint action [32]. 

We view the world in terms of discrete state transitions and assume actions are 

instantaneous operations, i.e. they are performed instantaneously. An individual action 

is the execution of an instantiated operator in a DO statement. It is represented as: 

<action> ::= (DO <doer> (<operator-name> <args>*)), 
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where <doer> is the agent assigned to the action and <operator-name> and <args> 

correspond to the name and arguments of the operator. Team action is very similar to 

individual actions except that <doer> denotes a list of agents involved and these agents 

must perform the action simultaneously [32]. We assume that precondition of an 

action, individual action or team action, must be believed by <doer> before the action 

can be performed and the effect must be believed after the action is performed. If the 

precondition is not believed by <doer>, then Proactive Communication will be 

implicitly considered (see Chapter VI). Fig. 4.1 illustrates the example of invoking the 

shootWumpus action. 

Joint action uses a descriptor joint-do. It includes a list of DO statements and 

specifies three different joint types: AND, OR or XOR. For the type AND, each 

individual DO action must be executed by the corresponding individual agent before 

the complementation of the joint activity, which requires all involved agents acting 

simultaneously. For an OR, at least one DO must be executed by the corresponding 

individual agent while for an XOR, only one DO needs to be executed. Below is an 

example type AND joint action: 

(joint-do AND (?ag1 ?ag2) 

(DO ?ag1 (liftTable)) 

(DO ?ag2 (cleanCarpet))) 

which requires two agents ?ag1 and ?ag2 to cooperate to do a clean operation. 

Comparing team action with joint action, they are in common on that all agents 

involved must perform the action simultaneously. The difference between the two is 
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that, for the team action, the agents evaluate exactly the same precondition before the 

action, perform exactly the same action, and apply exactly the same effect after the 

action; while for the joint-action, the agents only perform the action they are assigned, 

hence they will only evaluate precondition of that action, perform that action and apply 

effect of that action. 

Our approach focuses on observing individual actions. The ideas can be 

extended to team actions and joint actions, which essentially are the collection of 

simultaneous individual actions performed by individual agents. 

4.2.3. Environment and Properties 

Another important setting for agent teamwork is environment. The environment 

is composed of objects. Each object has properties. A property is a predicate 

represented as follows: 

<property> ::= (<property-name> <object> <args>*) 

<object>     ::= <agent>|<non-agent>, 

where <object> could be either agent or non-agent, and <args> is a list of arguments 

describing the property. Sample properties in the Multi-Agent Wumpus World are as 

follows: 

(location ?o ?x ?y), 

(dead ?wumpusId). 

The environment evolves from the state at one time to the state at the next time with an 

action possibly being taken during the time interval, saving only the current 

environment state.  
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During a teamwork process, the environment simulation provides an interface 

through which the agents can observe properties and their teammates’ actions. We treat 

the environment as a knowledge base (KB) denoting objective truths of the world. 

Since actions are domain-dependent, when agents perform the actions, they send a 

signal to the environment KB. Thus, the actions will be added to the environment KB 

as a fact. We assume the environment KB is accessible to all agents. Then, the actions 

can be sensed by those whose observability permits them at the time the actions are 

performed. 

4.2.4. Agent Beliefs 

Each agent maintains beliefs about the environment and about other agents in 

its own KB. These beliefs are used at the time when the agent evaluates precondition of 

plans or actions it is involved. At that time, an attempt is made to match each conjunct 

of the precondition to the agent’s KB via unification, using variables for any or all of 

the arguments. Unification will provide values for the free variables that make the 

conjunct true. If there are no such values, then the value for the conjunct is false.  

The version of MALLET used in this work is based upon the Closed World 

Assumption that assumes that anything that is not true is false [56]. A limitation of this 

assumption is that, there is nothing in the language to distinguish between false and 

unknown, which are other two important states for belief [60]. For example, suppose an 

agent cannot prove a precondition I from its KB, then what the precondition would be 

evaluated to, not I or unknown? This problem will occur frequently, since in many 
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domains, not everything can be inferred from observability. Therefore, proper handling 

of false beliefs and unknown beliefs is important. 

The version of MALLET used in this work avoids this problem by defining 

wait semantics for preconditions. That is, if a precondition evaluates to false, the agent 

waits (possibly indefinitely) for the precondition to become true. This, of course, could 

lead to some branches of a parallel process (or even an entire plan) being blocked 

forever. Proactive Communication algorithms can recognize this situation and invoke 

communication decision processes to determine what information, if any, is exchanged. 

From the perspective of MALLET, then, there is not a need to distinguish in the KB of 

an agent between false and unknown with regard to the value for an information item I 

used in any precondition. 

It still would be better if a more general approach were used. Newer versions of 

MALLET consider alternative semantics for preconditions, such as failing upon false 

preconditions, waiting for a maximum length of time and then fail, or trying to achieve 

the precondition by invoking a planner [32]. Except for the first and last cases, it still is 

left to the Proactive Communication algorithms to determine whether or not to 

communicate when a precondition evaluation fails, and thus would not impact the work 

presented here in a significant way. 

For effect of plans or actions in which the agent is involved, all conjuncts are 

treated as positive facts, with the interpretation that not I means to remove I from the 

agent’s KB. 
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4.3. Agent Observability 

We define the syntax of observability and give semantics to this observability. 

4.3.1. Syntax of Observability 

To represent agent observability, we define a meta-predicate CanSense which 

takes three arguments: 

CanSense(<observer> <observable> <cond>) 

where <observer> specifies the agent doing the observing, <observable> identifies 

what is to be observed, and <cond> specifies the conditions under which the 

<observer> can sense the <observable>.  

Successful teamwork requires interdependency among the agents [44]. This 

suggests that an agent should know at least some things about what other team 

members can sense. However, an agent may not know for sure that another agent can 

sense some things. Rather, an agent may only believe that another agent can sense 

something. We then use 

B(<believer> CanSense(<observer> <observable> <cond>)) 

to mean that one agent believes another agent can sense something under certain 

conditions. Belief is denoted by the modal operator B and for its semantics, we adopt 

the axioms K, D, 4, 5 in modal logic [31]. 

The syntax we use for observability is given in Fig. 4.2.  
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<observability> ::= (CanSense <viewing>)* 
                 (B <believer> (CanSense <viewing>))* 
<viewing>         ::= <observer><observable> <cond>* 
<believer>         ::= <agent> 
<observer>        ::= <agent> 
<observable>     ::= <property>|<action> 
<cond>              ::= <property> 
<property>        ::= (<property-name> <object>* <args>*) 
<action>            ::= (DO <doer> (<operator-name> <args>*)) 
<object>            ::= <agent>|<non-agent> 
<doer>               ::= <agent> 

 

Fig. 4.2. The Syntax of Observability. 

 

For example, the observability specification for a carrier in the Multi-Agent 

Wumpus World is shown in Fig. 4.3, where ca, rca, fi, rfi represent the carrier, 

carrier’s detection radius, fighter and fighter’s detection radius, respectively. 

An agent has two kinds of knowledge, shared team knowledge, encoded in 

MALLET, and individual knowledge, contained in its KB. The syntax of observability 

can be used either as rules in an agent’s KB [141], or as capability incorporated into 

MALLET. In this research, we encode observability as rules in agents’ KBs. 
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((CanSense ca (location ?o ?x ?y)) 
(location ca ?xc ?yc) (location ?o ?x ?y) 
(radius ca ?rca) (inradius ?x ?y ?xc ?yc ?rca) 

) ;The carrier can sense the location property of an object. 
 
((CanSense ca (DO ?fi (shootwumpus ?w))) 

(play-role fighter ?fi) (location ca ?xc ?yc) (location ?fi ?x ?y) 
(adjacent ?xc ?yc ?x ?y) 

) ;The carrier can sense the shootwumpus action of a fighter. 
 
((B ca (CanSense fi (location ?o ?x ?y))) 

(location fi ?xi ?yi) (location ?o ?x ?y) 
(radius fi ?rfi) (inradius ?x ?y ?xi ?yi ?rfi) 

) ;The carrier believes the fighter is able to sense the location property of an 
    object. 
 
((B ca (CanSense fi (DO ?f (shootwumpus ?w)))) 

     (play-role fighter ?f) (≠ ?f fi) (location ca ?xc ?yc) (location fi ?xi ?yi)
     (location ?f ?x ?y) (radius ca ?rca) (inradius ?xi ?yi ?xc ?yc ?rca)  
     (inradius ?x ?y ?xc ?yc ?rca) (adjacent ?x ?y ?xi ?yi)) 

) ;The carrier believes the fighter is able to sense the shootwumpus action of  
    another fighter. 

Fig. 4.3. An Example of Observability. 

 

4.3.2. Semantics of Observability 

To give semantics to observability, we need to consider two perspectives: 1) an 

agent’s observability, which means we need to clarify relationships between what it 

can sense, what it actually senses, and what it believes from its sensing; 2) an agent’s 

belief about another agent’s observability, which means we need to clarify 

relationships between what it believes another agent can sense, what it believes another 

agent actually senses, and what it believes another agent believes from its sensing. 
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4.3.2.1. An Agent’s Observability 

Our notion of observability derives from Woolridge’s VSK logic [128]. Let 

Sense(a, ψ) denote the notion that agent a senses ψ4. Sensing ψ means determining the 

truth value of ψ, together with unification of any free variables in ψ. The Sense 

operator is similar to the S operator in the VSK model. The major differences are that, 

first, in the VSK model S leads to knowledge, Sa(ψ)→Ka(ψ), but we only model belief 

from observation (discussed further below), and agents should be allowed to believe 

different or even incorrect information. Second, instead of saying that the agent senses 

the true fact, it is more natural to say that if something is true, the agent will sense the 

true value, but also, if it is false, the agent will sense the false value. We model the 

Sense operator as follows: 

∀a, ψ, Sense(a, ψ) ≡ [ψ → Sa(ψ)] ∧ [¬ψ → Sa(¬ψ)]. 

Since (ψ ∨ ¬ψ) is an tautology, it follows that 

∀a, ψ, Sense(a, ψ) → [Sa(ψ) ∨ Sa(¬ψ)]. 

Next, we consider the relation between sensing something and believing it. We 

adopt an analogous assumption to the one that “seeing is believing”. While 

philosophers may entertain doubts because of the possibility of illusion, common sense 

indicates that, other things being equal, one should believe what one sees [5, 91]. The 

VSK model also suggests that Sa(ψ)→Ka(ψ) is the axiom adopted by a trusting agent (of 

                                                 
4 In our approach, each agent focuses on reasoning about current observation. Time is implicitly taken to 
be the time of the current step. 
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no illusions, no sensor fault etc.). When ψ is observed, we assume that the agent 

believes the truth value of ψ. This is formalized in the axiom below: 

∀a, ψ, Sense(a, ψ) → {[ψ → B(a, ψ)] ∧ [¬ψ → B(a, ¬ψ)]}, 

which says if ψ is true, agent a believes ψ; if ψ is false, agent a believes ¬ ψ. 

Finally, we model our observability expression as below: 

∀a, ψ, c, CanSense(a, ψ, c) 

≡ c → Sense(a, ψ) 

≡ c →{[ψ → S(a, ψ)] ∧ [¬ψ → S(a, ¬ψ)]}, 

which means that if the condition c holds, then agent a actually does sense the truth 

value of ψ. 

4.3.2.2. An Agent’s Belief about Another Agent’s Observability 

An agent’s belief about what another agent senses is based on the following 

axiom: 

∀a, b, ψ, c, B(a, CanSense(b, ψ, c)) ∧ B(a, c) → B(a, Sense (b, ψ)), 

which means that if agent a believes that agent b can sense ψ under condition c, and 

agent a believes c, then agent a believes that agent b senses ψ. Note that agent a 

evaluates condition c according to its own beliefs. 

One might wonder if agent a can infer the truth value of ψ when it knows that B 

can sense ψ because it can be easily shown that belief is transmissible between agents, 

i.e., B(a, B(b, ψ)) → B(a, ψ) or B(a, B(b, ¬ψ)) → B(a, ¬ψ).  However, we do not have 

such a strong statement of belief on the part of a.  In order to have the necessary 

condition given above, we would have to have the condition 
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∀a, b, ψ, B(a, Sense(b, ψ)) → {[ψ → B(a, B(b, ψ))] ∧ [¬ψ → B(a, B(b, 

¬ψ))]}. 

But, this condition is not necessarily true.  All that a’s belief that b can sense ψ implies 

is that b knows the value of ψ, which is weaker than the statement given above. 

4.4. Belief Maintenance 

We denote the agent who performs belief maintenance as self and the KB for 

self as KBself. Self’s observability is closely tied to its beliefs about what itself, and 

what other agents, can sense. The latter is particularly important because it decides the 

agent’s beliefs about others. In this case, the value of the thing that another agent might 

observe is not of immediate relevance. Only the fact of whether or not the other agent 

can make the observation. This is treated, again, with the Closed World Assumption. 

That is, an observability condition is given for the other agent. If self needs to know 

whether the other agent can sense something, it evaluates this condition. If it evaluates 

to true, it believes that the other agent can sense the thing. If it evaluates to false, it 

believes that the other agent cannot sense the thing. There is no unknown to consider 

because the Closed World Assumption is used throughout. False is represented, not 

explicitly, but by the absence of a true fact5. 

Ioerger [60] has described a belief maintenance system allowing self to 

maintain tuples about an agent’s (possibly a different agent than self) beliefs in the 

form <agent I value>, where value for I can have one of four values: true, false, 

unknown, and whether, and agent is what self believes to have the belief value 

                                                 
5 This is called Negation as Failure, a concept closely related to the Closed World Assumption [1].  



 73

expressed in the tuple. The value whether is of value for self’s belief about the agent’s 

belief; it means that the agent believes whether the value for I is true or false, but this 

value is unknown in KBself. While when the agent in the tuple is self, whether‘s 

meaning is a bit different; it means self believes the truth value of I and this value is 

known in KBself. 

As the version of MALLET we are using is based on values true or false, we do 

not need to maintain unknown or whether directly. With respect to self’s belief about 

another agent’s observabilities, we maintain only a fact that indicates the agent can 

sense the item in question, which indirectly means that the agent can sense whether, 

when the observability condition is satisfied with respect to self’s KB. 

In the following sub-sections, Section 4.4.1 introduces the concept of belief 

consistency and compatibility which is the core purpose of belief maintenance [28, 61]. 

Section 4.4.2 introduces the structure of KBself and how to construct dependencies 

among beliefs and how to make inference. Section 4.4.3 presents the overall updating 

function updateKB. Section 4.4.4 introduces self’s observability reasoning function 

reasonSelfObs. Section 4.4.5 introduces self’s belief about others’ observabilities 

reasoning function reasonSelfBel. Section 4.4.6 describes the low level belief updating 

function update which maintains belief consistency and compatibility. 

4.4.1. Belief Consistency and Compatibility 

Belief consistency and compatibility is the core purpose of belief maintenance 

[78, 135]. Belief can be classified in two types: 1) ground predicates p which evaluate 

to true or false, and 2) functions with arguments f(?x) where ?x denotes a set of 
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arguments6. f(?x) does not evaluate to true or false, but denotes some other value. For 

example, the function location(w1) can take on the value (1 1), meaning the location of 

W1 is (1 1). In JARE, functions are modeled as predicates in which the function name 

is converted to the predicate name and the argument list for the predicate includes not 

only the function arguments, but a list of arguments for the results of the function.  

Unification will provide the values for the results, if there are any, in which case the 

predicate evaluates to true; otherwise, the predicate evaluates to false. For example, 

location(w1) with arguments (?x ?y) is represented as (location w1 ?x ?y). 

Belief consistency means that no information and its negation are both believed 

[28]. Therefore the pair (p, ¬p) and (p(x), ¬p(x)) can not be believed together in KBself. 

However, belief maintenance should consider more general cases such as the 

following examples: 

• Some functions can only have one value at one time. For example, if 

location(w1) has the value (1 1), then it cannot have another value (2 2), 

because if w1 is on (1 1) it cannot be on anywhere else. 

• Some different predicates cannot be believed concurrently in KBself. For 

example, (clear x) and (on y x) cannot both be believed because if y is 

on x, then x cannot be clear. 

These examples represent constraints within single predicate or among multiple 

predicates. These constraints are normally domain dependent and cannot be resolved 

                                                 
6 We adopt JARE syntax that variables are indicated by symbols prefixed with a ‘?’, and constants are 
represented by symbols or numbers. 
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on a general level. Isozaki names this kind of constraint an incompatibility constraint 

and proposes a formula to represent it between two predicates (or within the same 

predicate) [61]: 

incomp(p(?x), q(?y), term1, term2) 

where term1∈?x and term2∈?y. Incomp means that a ground instance of p(?x) and a 

ground instance of q(?y) are incompatible if they are different and term1 is identical to 

term2. For example, 

incomp((location ?o1 ?x1 ?y1), (location ?o2 ?x2 ?y2), ?o1, ?o2), 

where (?x1≠?x2)∨( ?y1≠?y2), means that if an object is located on one place, it is not 

located on any other place. Another example, 

incomp((clear ?o1), (on ?o2 ?o3), ?o1, ?o3) 

means that if one object is on another object, the latter is not clear. To implement this 

idea, we define a function with the same name incomp(p, q) which will return true if 

two predicate instances p and q are incompatible. 

4.4.2. Inferring Agent Beliefs 

We use a backward-chaining theorem prover called JARE (Java Automated 

Reasoning Engine) [58] to handle belief inference. JARE achieves efficiency by 

avoiding re-computing references (which is used in forward-chaining inference) and by 

a little more restrictive representation (e.g. no templates). Rules in JARE are in Horn 

form which requires that the head of a rule must be a positive literal [102]. A rule is 

made out of one or more predicates (a rule containing a single predicate is often treated 

as a fact). The following is a JARE rule: 
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A∧B→C 

where C, the head, is called conclusion, and A and B, the body, is called antecedent. C 

is derived if both A and B are true. We also say that C is justified by A and B, and {A, 

B, A∧B→C} is a justification for C. Then C depends on A and B. Since A and B could 

be conclusions inferred from other rules, the actually antecedents on which C depends 

could be found by tracing back through A, B, their antecedents, their antecedents, and 

so on. In our implementation, we assume that no rule contains cycles7 and the body is 

made out of positive predicates8. Therefore, rules form a directed acyclic graph where 

nodes are the heads and directed arcs denoting the dependencies. 

KBself is initialized as three parts: 

• Facts, e.g., identities of objects (agent or non-agent), agents’ roles etc.. 

We assume these facts are commonly believed by all agents, and are 

certain truth which won’t be changed over time. 

• Observability rules (self’s and others’) (Fig. 4.3 presents several 

observability rules for the Multi-Agent Wumpus World). 

• rules which describe what are caused by beliefs generated through 

observation. The K axiom of the model of belief says that an agent’s 

belief is closed under deduction [31]. For example, if an agent observes 

                                                 
7 Assumption-based Truth Maintenance Systems (ATMS) is used to solve the problem that rules may 
contain cycles [26]. 
8 Non-monotonic logic is used to model the KB where the body of rule is made out of positive and 
negative predicates [102, 103]. 
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that the switch is on, it believes the light is on though it cannot directly 

observe this. 

The initial KBself is supposed to have no belief about the world or about other 

agents’ beliefs. These beliefs will be generated dynamically during the teamwork 

process, mainly by inferring the observability rules and the causation rules. The order 

of belief inference and the order of belief update by the beliefs derived from the 

inference are important because of the dependencies among the rules. We handle this 

by doing the inference first and then the update. Specifically, after self infers a rule, the 

belief derived from this rule is saved in a temporary place rather than be directly 

asserted to KBself. Then the order of inference does not matter because all rules share 

the same base on which the inference is made. But for clarity, we still make the 

inference in this order – self’s observability rules, others’ observability rules and 

causation rules. After all beliefs are derived (possibly from multiple justifications), 

they will be processed to guarantee that one belief only has one value. Finally, the 

update process starts and these beliefs are asserted to KBself. In next section, we 

introduce the process of the belief inference and the belief update in detail. 

4.4.3. An Overall Belief Maintenance Algorithm 

After a piece of information is inferred from KBself, it may not be asserted to 

KBself immediately, because there may be different values for this information 

generated from multiple sources and these values may contradict one another. Five 

sources generate such values: 1) self’s observation, i.e., belief derived from self’s 

observability rules; 2) others’ observation, i.e. belief derived from others’ observability 
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rules; 3) causation, i.e. belief derived from causation rules; 4) effects, i.e., conjuncts 

inferred from the effect of the action self performs; and 5) communication, i.e., 

messages other agents send to self by communication9. 

In any situation in which belief is acquired from multiple sources, conflicts may 

arise – in terms of inconsistency or incompatibility. For example, observation may 

produce p and causation may produce ¬p but we cannot omit either of them. A strategy 

is needed that prescribes how to maintain KBself in this case. Castelfranchi proposes 

that such a strategy should prescribe that more credible information should always be 

favored over less credible information [16]. Ioerger introduces multiple justification 

types for beliefs and places them in a preference ordering according to strength [60]. 

To define a strategy conforming to these ideas, we assume that each belief is associated 

with a priority that decreases in the order shown in Table 4.110. 

 

Table 4.1. Belief Strengths. 

Source Priority 
Self’s observation 5 
Others’ observation 4 
Effects 3 
Causation 2 
Communication 1 

 

                                                 
9 Effects and communication are not defined as rules in KBself. This is because that effects and 
communication may contain negative predicates but JARE does not allow the head of a rule to be 
negative. Though we can improve this by renaming ¬p/¬p(X) to notP/notP(X) and maintain the truth 
value of the pair, it would be highly inefficient. So effects and communication come from external 
sources but not from KBself. 
10 Belief persistence is handled separately in belief update session in order to maintain belief consistency 
and compatibility (see Section 4.4.6). 
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The rationale for this order is as follows11. An agent always believes what it senses and 

what other agents sense because we assume “seeing is believing”. The belief about 

effects of actions the agent performs is secondarily reliable by assuming the agent 

cannot deny the actions performed by itself. Last, the beliefs caused by observations 

override what the agent hears by assuming the agent trusts its own inference more than 

what others tell it. The truth value of a belief is always supported by the rule with the 

highest priority and whose antecedent is satisfied. 

One thing worth of mention is that there may be multiple equally preferred 

rules with the same strength. For example, an observable item could have multiple 

justifications from observation. In our implementation, the preference depends on the 

order in which the rules are applied, i.e. the newly generated value will override the old 

one, implying that the last rule has the highest priority. 

An algorithm for overall belief maintenance along with the observation process 

is shown in Fig. 4.4. It is executed independently by each agent, self, after the 

completion of each step in which self is involved, i.e., upon completion of an action. 

During an update cycle, self will sequentially perform: 

• At time t-1, self performed action. 

• Immediately after completion of the action at time t-1, self will do 

updateWorld by its last action. Basically, the environment simulation 

updates the environment KB after the action by self. 

                                                 
11 This is the order fitting our system and assumptions. Different orders may be applied for different 
problems. In our system, we never directly obtain a value from inference of others’ observation, because 
we only know that they can sense an item, not the value they sense.  However, in a more general setting 
this source of information may be possible; hence, we included it for completeness. 
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• Because self can infer the effect of its own action, it will keep the effect 

and the credit of the effect in a temporary location called infoList. Since 

there may be multiple conjunct inferred, each will be indexed in 

infoList. 

• Self will do observation and reason causation, keeping results and 

credits in infoList. 

• Self will check messages, keeping results and credits in infoList. 

• Then, for each piece of information in infoList, self will choose a value 

with the highest credit and do two things: 1) update its KB by this value, 

and 2) communicating this value, if so decided (this is not shown in Fig. 

4.4). 

• Loop back to next action. 

This algorithm maintains belief consistency by the fact that, when there might 

be conflict assertions, only the one with the highest credit will be asserted to KBself. 

The updateWorld function is simply a call to the environment telling it to 

update itself in accordance with the parameters provided. ReasonSelfObs infers self’s 

observability rules. ReasonSefBel infers self’s beliefs about others’ observabilities. The 

method update is a low level procedure for updating KBself. The next three sections 

describe the latter three functions in turn. 
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/* The algorithm is executed independently by each agent after the 
completion of each step in which the agent is involved, i.e., upon 
completion of an action. An action may just be a no-op (e.g., if the 
agent is waiting for a precondition to be true). 

The executing agent is denoted self.  
    Below, 

let KBself denote the knowledge base for the agent self. 
let KBenv denote objective truths about the environment. 

*/ 
updateKB(self, action, KBself){ 

infoList=null; 
 

updateWorld(self, action);         //notify the environment to update KBenv 
 

{par 
∀ I in the effect of action 

infoList ← (I, 3);            //the credit of effect is 3 
 

infoList ← reasonSelfObs(self, KBself); 
infoList ← reasonSelfBel(self, KBself); 
∀ I derived from causation rules 

infoList ← (I, 2); 
 

∀ coming message about I 
infoList ← (I, 1); 

}//end of par 
 

∀I∈ infoList 
let info be the value for I with the highest credit; 
update(KBself, info); 

} 

 

Fig. 4.4. An Overall Belief Maintenance Algorithm. 
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4.4.4. ReasonSelfObs: Reasoning Beliefs about Agent’s Own Observability 

The algorithm for inferring what an agent has observed, according to its 

observability rules, is given in Fig. 4.5. This algorithm builds beliefs in KBself by 

checking two things. 

 
reasonSelfObs(self, KBself){ 

list=null; 
 

∀ rule ∈ KBself of the form (CanSense self (property-name object args) 
cond) 

if KBenv |= cond 
if KBenv |= (property-name object args) 

list←((property-name object args), 3); 
else  

list←(¬(property-name object args), 3); 
 

∀ rule ∈ KBself of the form (CanSense self (DO doer (action-name args)) 
cond) 
 if KBenv |= cond 

if KBenv |= (DO doer (action-name args)) 
list←((action-name doer args), 3); 

else  
list←(¬(action-name doer args), 3); 
 

return list; 
} 

 
Fig. 4.5. An Algorithm of Reasoning Agent’s Observability. 

 

When evaluating observability of a property, (CanSense self (property-name 

object args) cond), self checks if KBenv entails cond. If so, and if this property holds in 

the environment, self adds (prop-name object args) and its credit to inforList. If the 
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property does not hold in the environment, self adds ¬(property-name object args) and 

its credit to infoList. 

In the case of (CanSense self (DO doer (action-name args)) cond) where 

doer≠self, self checks if KBenv entails cond as well. If so and if this action holds in the 

environment, self adds (action-name doer args) and its credit to inforList. If the action 

does not hold in the environment, self adds ¬(action-name doer args) and its credit to 

infoList. 

4.4.5. ReasonSelfBel: Reasoning Beliefs about Others’ Observabilities 

Fig. 4.6 introduces an algorithm for inferring what an agent can determine 

about what other agents can sense. The algorithm records which agents are believed to 

sense what. We still consider two cases. 

In the case of (B self (CanSense Agd (property-name object args)) cond), if 

KBself entails cond, self believes Agd senses the property and adds this belief and its 

credit to infoList. If KBself does not entail <cond>, self believes Agd does not sense the 

property and adds this belief and its credit to infoList. 

In the case of (B self (CanSense Agd (DO doer (action-name args))) cond), 

cond is evaluated with respect to KBself and self will update infoList in the similar way. 
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reasonSelfBel(self, KBself){ 

list = null; 
 

∀ rule ∈ KBself of the form (B self (CanSense Agd (property-name object 
args) cond)) 

if KBself |= cond 
list←((Sense Agd (property-name object args)), 3); 

  else 
list←¬(Sense Agd (property-name object args)); 

 
∀ rule ∈ KBself of the form (B self (CanSense Agd (DO doer (action-name 
args)) cond))  

if KBself |= cond 
list←((Sense Agd (action-name doer args)), 3); 

  else 
 list←(¬(Sense Agd (action-name doer args)), 3); 
 

return list; 
} 

 
Fig. 4.6. An Algorithm of Reasoning Others’ Observabilities. 

 

4.4.6. Update: Maintaining Belief Consistency and Compatibility 

When new information is to be asserted to KBself, it may inconsistent or 

incompatible with old ones. The function update, shown in Fig. 4.7, manages history 

and is responsible maintaining for consistent and compatible beliefs in KBself. The 

obvious assumption of this algorithm is that what is not changed during update is 

assumed to stay the same, i.e. persistence. Since the number of time steps could be 

infinite, self keeps only current beliefs in KBself, except that the most recent one is kept, 

even if it is not generated currently. Therefore self still believes some information, 
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even though self does not infer it from KBself or infer it from last action or being told it 

by others. 

Belief consistency and compatibility are maintained from two perspectives. If 

the assertion is a positive literal, it will be asserted to KBself if it is not already there; 

implying that the negated literal derived from the Closed World Assumption would be 

overridden by the addition of positive literal. Also all information which is 

incompatible with the assertion is retracted. If the assertion is a negative literal, the 

positive literal (if any) will be retracted from KBself. 

 

update(KBself, info){ 
if info is a positive literal p 

if KBself |= p 
assert(KBself, p); 

∀q ∋ incomp(p, q) 
retract(KBself, q); 

else //info is a negative literal ¬p 
if KBself |= p 

retract(KBself, p); 
∀q ∋ incomp(¬p, q) 

retract(KBself, q); 
} 

  

Fig. 4.7. A Belief Update Algorithm. 

 

4.5. OBPC: Observation-Based Proactive Communication 

The information worth exchanging comes from analysis of agents’ goals (e.g. 

preconditions of plans or actions that the agents are going to perform). If they do not 
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know a precondition, they cannot act. Therefore telling them proactively or they 

actively asking for it improves efficiency. 

Proactive Communication answers the following questions pertinent to agent 

proactivity during teamwork. First, when does an agent send the information to its 

teammates if it has a new piece of information (either from performing an action or 

observing)? A simple solution could be sending the information when requested. That 

is, the agent would only send the information after it has received a request from 

another agent. In our approach, the agent observes its teammates and commits to 

proactive tell once it realizes that one of the teammates needs the information to fulfill 

its goal and does not have it now. Meanwhile, if the agent needs some information, it 

does not passively wait for someone else to tell it; it asks for this information actively.  

Second, what information is sent in a session of information exchange? There 

are three kinds of information that can be communicated. One is the information 

explicitly needed by an agent to complete a given plan, i.e., conjuncts in a precondition 

of plans or actions that the agent is going to perform. The second is the information 

implicitly needed by the agent. For example, if agent a needs predicate p and knows p 

can be deduced from predicate q, even if the providing agent does not know p, it still 

can tell agent a about q once it has q, because it knows that agent a can deduce p from 

q. The third includes the information for synchronization among team members 

performing actions and joint actions. This research, however, deals only with agents 

communicating information that is explicitly needed. 
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We developed two observation-based communication protocols: O-Tell and O-

Ask. These protocols are used by each agent to decide whether to generate inter-agent 

communication when information exchange is desirable. The O-Tell and O-Ask 

protocols are based three types of knowledge. 

The first is information needers and providers. In order to find a list of agents 

who might know or need some information, we use information flow developed by 

DIARG [137]. DIARG infers the potential information needs by reasoning about the 

goals of the other agents based on the team plan used by the agents. To be specific, it 

analyzes the preconditions and effects of actions and plans and generates information 

flow which is a list of needers and a list of providers for every piece of information. An 

agent is a provider for the effects of any action/plan it is capable of performing. An 

agent is a needer for the precondition of any action/plan it needs to execute.  

The second is beliefs generated after observation. Agents take advantage of 

these beliefs to track other team members’ mental states and use beliefs of what can be 

observed to reduce the volume of communication. For example, if the provider 

believes that the needer senses I, the provider will not tell the needer; if the needer 

believes that a specific provider has I by observing the action performed by the 

provider, the needer will ask this provider, rather than ask all of them. 

The third is beliefs inferred from the effect of the action performed by the 

agent. The agent will tell these beliefs to the needer if it believes that the needer does 

not sense them. 
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Algorithms for deciding when and with whom to communicate for O-Ask and 

O-Tell are shown in Fig. 4.8. 

Considering the intractability of general belief reasoning [47], our algorithm 

deals with beliefs nested no more than one layer. Also the algorithm involves only two 

parts, i.e., sender and receiver. It does not consider the third party communication such 

as agent a asks b to ask c for some information. Therefore, the belief about if another 

agent senses an action executed by a third agent is not included. The algorithm is 

sufficient, thought, for our current study on proactive behaviors of agents, which 

focuses on peer-to-peer proactive communication among agents.  

 
 

/*O-Ask will be independently executed by each agent (self) when it needs the 
    value of information I. 
*/ 
O-Ask(self, I, KBself){ 
     if KBself |=I 

if ∃ Agp≠self, φ∈action ∋ (KBself |=(φ Agp args))∧(I∈ Prec(φ)∨I∈Efft(φ))
                        ask Agp for I; 
            else randomly select a provider 

            ask the provider for I; 
} 
 
/* Independently executed by each agent (self), after it observes I or produced I  
    as effect of an action. 
*/ 
O-Tell(self, I, KBself){ 
     ∀Agn ∈ needers 
             if KBself |= (Sense Agn I) 
                       tell Agn I; 
} 

 
Fig. 4.8. Observation-Based Proactive Communication. 
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For O-Ask, the needer requests the information from a provider who may know 

it. This provider may be explicitly determinable if its action that determines I is 

observed by the needer. If such agent cannot be found, the needer randomly chooses a 

provider from the provider list and asks the provider for I. 

For O-Tell, the provider tells the agents who need I. The needer(s) is(are) 

determined from the information flow. The provider’s beliefs about the needer’s 

sensing capabilities become the basis for this reasoning. The provider will tell I to the 

needer only if the provider does not believe the needer can sense I. The implication 

here is that communication will not go to the needer whom the provider believes can 

sense I. By this means, the communication load can be reduced by an agent’s belief 

about another agent. 

4.6. Summary 

This section has presented an approach to dealing with agent observability for 

improving performance and reducing inter-agent communication. Each OP-CAST 

agent is allowed to have some observability to sense the environment, and to watch 

what others are doing inside its detection range. Based on the observation, the agent 

updates its knowledge base and infers what others may sense at the current time. 

Reasoning about what others can sense allows agents to decide whether to distribute 

information to others. We have proposed a proactive communication mechanism to 

confer some advantage to related team members for realizing team interaction and 

cooperation proactively also. 
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CHAPTER V 

DYNAMIC INFORMATION PREDICTION 

5.1. Motivation and Overview 

To decide a communication policy (such as O-Ask or O-Tell), OBPC adopts the 

same method as the original CAST approach. It requires a domain expert to publish 

frequencies associated with information production or information need, and defines 

inflexible decision-making rules. Thus information with some specific frequency will 

be O-Telled and others will be O-Asked (see Section 4.5). Moreover, it only looks at 

the general frequency, i.e., for a piece of information, in spite of how many agents 

produce it or need it, there is only one frequency related to the information production 

or the information need. Obviously, this method is too rigid to handle dynamic and 

complex situations. 

We develop a more general way, called Dynamic Information Prediction (DIP), 

to deal with frequencies of information production or information need. For a piece of 

information, we take each needer and provider into account separately, and predict time 

points at which production or need occurs. Rather than relying on a domain expert to 

input such knowledge, DIP anticipates distributions of information production or need 

dynamically, by utilizing previous data about information production or need. 

We assume the time intervals for the production or need for a piece of 

information are random according to some unknown distributions. We also assume 

needers and providers keep a record of their own information production or need time 
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intervals. By acquiring history from others, the needer can estimate the distribution of 

time intervals during which an item of information will be produced by a given 

provider. Similarly, the provider can estimate the distribution of time intervals during 

which an item of information will be needed by a given needer. Agents make such 

estimations dynamically, by analyzing the trail of the list of time intervals. 

There are two statistical approaches to describe a probability distribution: 

parametric and non-parametric. The parametric approach utilizes a certain formula to 

model the probabilities. In some domains, obtaining an accurate model of a distribution 

requires complex knowledge acquisition from domain experts, or a complex learning 

process on the part of the agent. Hence, from a practical point of view, the parametric 

approach may be too complicated to support efficient online inference. Alternatively, 

the non-parametric approach does not require knowledge of how the probabilities are 

distributed. It assumes that the sampling distribution of collected data is analogous to 

the population distribution. This feature allows the Empirical Distribution Function 

(EDF) [15] to be used to approximate the distributions of information production and 

need. 

To sum up, the idea of DIP is to gather previous data on information production 

or information need opportunistically and use EDF to approximate their distributions. 

The following sections first introduce our rationale of choosing EDF, and then the 

mechanism of EDF, and considerations which make DIP applicable. 
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5.2. Considcertations of Statistical Models 

To predict the time at which an agent produces or needs a piece of information, 

we need to model the time interval X between the time at which the agent last produced 

or needed the information and the time at which the agent will produce or need the 

information next. In our framework, X is measured as the number of steps taken by the 

agent, and therefore is a discrete variable. 

Modeling this probability distribution brings a challenge. In principle, this 

distribution can be arbitrarily complex, and its structure may vary enormously from 

domain to domain, and even from information to information within the same domain. 

We first need to decide which approach, parametric or non-parametric, is more suitable 

to our problems and assumptions. 

Choosing an appropriate statistical model always depends on the assumptions 

we make about the variables and the objectives we wish to achieve. Some source 

distinguishes parametric and nonparametric on the basis that parametric make specific 

assumptions with regard to one or more of the population parameters that characterize 

the underlying distributions for which the test is employed, while nonparametric makes 

no such assumptions about population parameters [110]. 

Although we may approximate the discrete time variable using a continuous 

distribution, we restrict our discussion to discrete distributions here. Our problem is to 

model the time interval. Among commonly used discrete distributions, it is difficult to 

find one which fits into our problem directly. For instance, the Poisson distribution is 

often applied to counting the number of events in a certain time period, but not the time 
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interval itself. It also requires that the mean of the distribution equals the variance, 

which discourages the uses of Poisson distribution under many practical settings [98]. 

Although more complicated models may exist to approximate the distribution of a time 

interval, we want a direct approach, given the main objective of our study. 

An alternative non-parametric approach may accommodate a weaker 

assumption on how the random variable X is distributed.  By using a non-parametric 

approach, we do not need to restrict the data to a specific family of distribution, but 

assume the sampling distribution of collected data to be analogous to the population 

distribution.  For example, for an unknown distribution of P(X), if we have no other 

information, the entire sample will be the best estimate of the population as long as the 

current samples are randomly generated from P(X) [15].  

In our problem, we do not know much about X’s distribution and cannot make 

any distributional assumptions based on the current knowledge. Hence a non-

parametric approach can be applied, where we use the current sample set to 

approximate the true distribution. We propose to use the EDF [15] of X to approximate 

X’s distribution. The only assumption we make is that the sampling distribution of 

collected data is analogous to the population distribution. 

5.3. Empirical Distribution Function 

As will be shown in Chapter VI, given models of the information produced or 

needed that the agents experience during teamwork, the problem of information 

prediction is to determine the probabilities that an agent produces or needs an 

information item at a certain time point, or more precisely, the probability of such 
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production or need before that time. This corresponds to the cumulative probability that 

the information is produced or needed at certain time, Pr(X ≤ tj-tj-1), where tj is the 

certain time point and tj-1 is the last production or need time which is known. However, 

as will be seen in Chapter VI, under some circumstances tj is known and in others it is 

not. In the former case, the cumulative probability may be calculated directly. In the 

latter, one simple approach is to calculate the expected value of tj as an intermediate 

step. Then, the cumulative probability can be estimated from the expected value, Pr(X 

≤ E(X)), where E(X) is the expected value of X= tj – tj-1. However, Pr(X ≤ E(X)) is just 

a simple approximation to Pr(X ≤ tj - tj-1). A more accurate approach is to utilize the 

law of total probability, which is described by the formula as follow: 

Pr(X ≤ tj−tj-1) 

=∑∞

= −1jtτ
Pr(X≤tj−tj-1 | tj =τ)×Pr(tj=τ). 

This is the approach we take to calculate Pr(X ≤ tj−tj-1) when tj is unknown (refer to 

Appendix A for calculation details). In this section, we focus on how to determine the 

underlying distributions for X. 

Let {X1, …, Xk} be a collected sample, then the Cumulative Density Function 

(CDF) of X is estimated by [24]: 

CDF(X) = 
k

k}i1 ,XX:X{# ii ≤≤≤ , 

and Probability Mass Function (PMF) of X is estimated by [24]: 

PMF(X) = 
k

k}i1 ,XX:X{# ii ≤≤= . 
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For example, suppose there are 10 (then k = 10) sample data {20, 30, 24, 33, 

24, 40, 33, 30, 33, 24}, among which the number of 20 is 1, the number of 24 is 3, the 

number of 30 is 2, the number of 33 is 3 and the number of 40 is 1. Then CDF(24) = 

10
31+  = 40% and PMF(24) = 

10
3  = 30%. Fig. 5.1 shows CDF(X) and PMF(X). In our 

use of these formulae, they will be updated from time to time (described in Section 6.9) 

as additional data samples become available. Thus, we expect the distributions to 

become more accurate over the time in which they are used. 

Note that there are many value of X such that PMF()=0 in this example. This 

effect occurs because of a small sample size. One can deal with this situation in a 

couple of different ways. First, one might apply a smoothing function to the 

distribution and then use the smoothing function to estimate the probability for a given 

value of X. For example, the method called cubic spline uses a series of unique third 

degree polynomials to fit between sets of m points, m≥2, of the whole data points, with 

the constraints that the curve obtained is continuous and appears smooth [3]. 

Alternatively, one could simply use the discrete CDF and PMF produced by the 

equations above. The latter becomes increasing accurate as the number of samples 

increases. Whether one uses a smoothing function or not is irrelevant to the research 

discussed here. We simply use the fact that approximating CDF’s and PMF’s can be 

calculated from time to time as increasing history is accumulated. For simplicity, in our 

experiments, we just use the raw CDF and PMF produced.  
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Fig. 5.1. An Example of Using EDF. 

 

Based on the EDF, we can estimate the probability of the information 

production at a certain time tp and the probability of the information need at a certain 

time tn. For each of these, this approach can be formulated as: 

1. Initially collect a small amount of data x1, ..., xk. 

2. Calculate CDF(X). 
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3. When an additional value of X is collected and added to the data pool, 

CDF(X) will be adjusted when this process goes on. 

When this process is iterated for many times, the collected data will be closer to "true" 

(or population) distribution and the prediction will be more accurate12. 

Ultimately, the probability distributions computed by EDF will be used to 

calculate utility when some time parameters in the utility function are unknown (the 

utility is introduced in Section 6.4). 

5.4. Data Acquisition 

Applying EDF raises three questions: 1) What kind of previous data do agents 

want to gather and how to initialize the system? 2) How does the agent acquire 

previous data? 3) By which format the previous data will be conveyed? 

5.4.1. Source of History and System Initialization 

Agents can gather previous data on information production- and need-time 

intervals in various ways. They can use the data provided by domain experts, or 

historical data collected dynamically during the execution of a plan. Agents must 

expend extra effort, thus acquiring knowledge from the domain experts, to obtain the 

data by the first way. These efforts limit the system’s dynamic capabilities; therefore, 

we use the historical data, which can be gathered dynamically during the teamwork 

process. 

                                                 
12 A famous application of this theory in statistics is so called bootstrapping method, which makes 
statistical inference based on the re-sampling of current sample set [93]. 
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However, there may be a problem when using EDF at the beginning of 

teamwork, because agents have no sample data. One way of dealing with this problem 

might be to generate random numbers to initialize these times. However, this solution 

lacks regularity, so it may be impractical. Another way might be to develop a rule to 

guide agents at the beginning. For example, the rule could be that the provider and 

needer are obligated to communicate with each other and attach their historical data at 

the first several rounds of production and need rather than using DIP to predict needs 

and productions. However, this solution lacks flexibility and may create many 

messages which against the major goal of Proactive Communication. 

The solution we adopt is to run the system in a trial mode. We will collect data 

from previous test runs and use these data to initialize time intervals. By this way, 

agents are able to predict time points of productions or needs since the system starts. 

Gradually the initialized data will be extended and the prediction will be based mostly 

on the data from actual run. 

5.4.2. Acquisition of History 

Under the approach taken here, agents need to have a history of the production- 

or need- time intervals of others, so they can estimate distributions of the production or 

need. This raises the question of how to obtain these time intervals. Empirical data 

[134] show that the cost of a message may be approximated by C+K*size, where C is a 

base cost of sending a message, size is the message size in bytes, and K is a parameter 

which adjusts the effect of the message size to the message cost. Typically C is much 

larger than K and the cost for a small amount of additional information is almost 
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negligible, allowing the agents to attach historical information on their production- or 

need-time intervals to each message sent to the receiver. This suggests that the 

historical data can be sent opportunistically along with the information exchanged 

between providers and needers. We propose that needers attach a history of 

information need time intervals to every message they send; similarly, that providers 

attach a history of information production time intervals to every message they send. 

Agents certainly will not attach the whole history to every ask or tell message. They 

only attach time intervals from the last sent to the receiver to the latest one. These 

historical data will allow them to approximate the probability of a piece of information 

being needed or produced at certain time point by a specific needer or provider. 

5.4.3. Message Format to Convey History 

The message format is based on Knowledge Query and Manipulation Language 

(KQML) [37]. The syntax of KQML is based on a balanced parenthesis list. The initial 

element of the list is the performative and the remaining elements are the 

performative’s arguments including message content, sender, receiver, and historical 

data of information production or need. An example message ProactiveTelled about a 

wumpus w1’s location from the carrier Ca to the fighter F1 looks like this: 

((performative ProactiveTell) 

(message (location w1 27 58)) 

(sender Ca) 

(receiver F1) 

(data (27 38 40 33 47 39))) 
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The last pair in the example list contains lengths of time intervals of producing 

wumpus’ location information from the last one sent to the fighter to the most recently 

generated one. The sender maintains records of the last sent data regarding each of the  

receivers. The receiver will update its data list after receiving a new message. 

5.5. Important Issues 

Two issues require consideration to make DIP complete. In the following, we 

analyze them and propose some possible solutions. In Section 7.2.4, we investigate 

them further and apply some specific algorithms to experiments. 

5.5.1. Preventing the Provider from Having History Starvation 

During the teamwork process, it is possible that the provider may cease to 

receive need history updates, which occurs when the needer stops asking for the 

information. This case results from the essence of proactivity — agents always assist 

each other proactively, rather than passively waiting to be asked. For example, when 

proactivity is fully enabled, the needer may increasingly depend upon receiving 

information from proactive tells and the number of ask messages gradually decrease to 

zero, in which case the provider would receive no new historical data on need times. 

However, the EDF approach depends on the sample data to increase the accuracy of the 

approximation. If the provider ceases to receive historical data, the CDF and PMF will 

not be adjusted. In order to ensure that the EDF mechanism continues to function, we 

set a time threshold for the provider and for the needer. If neither hears from the other 

within the threshold, it must communicate with the other and attach its historical data. 
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5.5.2. Preventing Communication Deadlock 

Deadlock will result if both needer and provider wait indefinitely for 

communication from the other. Since when needing or producing an information item, 

an agent may either contact the other or wait for the other to contact it (see Section 6.2 

for detail), there is a possibility that they both decide to wait. In investigating this case, 

we found it similar to the history starvation case; thus, if agents do not get any 

information from others in a long time, we adopt the same approach of using a time 

threshold to prevent deadlock. 

5.6. Summary 

In DIP approach, agents are able to utilize previous data about information 

production and need. In order to provide CDF and PMF necessary for estimating the 

values of the utility function, we suggest transmitting data on the times of information 

production or need along with any messages that are sent among agents, and then using 

EDF methods to approximate CDF and PMF. The distributions calculated can help 

agents make better communication decisions in two ways: first, agents can proactively 

tell information to agents if they expect another agent to need it in the near future, 

thereby reducing the number of asks; second, agents can ask for needed information 

actively from specific providers if they do not expect a proactive tell in the near future. 
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CHAPTER VI 

DECISION-THEORETIC PROACTIVE COMMUNICATION 

6.1. Motivation and Overview 

As one has seen, for generating Proactive Communication, the relevance of 

information to another agent can be inferred by reasoning about plans and actions of 

the other agent. Specifically, preconditions of these plans and actions constitute the 

information relevant to the other agent, which is needed by the agent in order to 

execute its plans and actions. 

However determination of relevance is only one part of the requirement of 

Proactive Communication. The other part is to decide whether or not to proactively tell 

or actively ask for the information. Making communication decisions is difficult in that 

agents have different knowledge, and there are always unknown things existing on the 

needer’s and the provider’s sides. We develop agents’ communication decision-making 

based on estimation of the probability distribution introduced in last section Dynamic 

Information Prediction. The purpose of predicting information production or need time 

is to help agents decide whether or not to send messages to active needers or providers, 

rather than always sending to them. An agent becomes active when it is selected to 

participate in executing a team plan. However, in order to know which agents are 

active, the original CAST sends a significant number of extraneous messages to 

maintain the shared mental model, where agents share execution states of teamwork 

processes [11]. And, when there are multiple active providers, a needer will repeatedly 
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ask them until it gets a reply [137]. The drawback is that the needer must wait for a 

reply if the one being asked does not have the information at that moment. Also, even 

if another provider has told the needer proactively (after the ask), the one asked still 

needs to reply when it has the information, since it doesn’t know about the proactive 

tell. Hence the communication either takes longer or there is too much of it. Moreover, 

the original approach obeys a rigid rule, which says that information, which is needed 

more frequently than being produced, must be told proactively; otherwise it must be 

asked for actively. This rule explicitly states two policies, proactive tell and active ask, 

the original approach uses. It also implies a policy wait, i.e., for some information, 

agents have to wait until asked or told. However, information should not be 

communicated in such a strict way, and more options are desired to match reality. 

Additionally, communication involves more complex issues not covered in the 

original CAST approach. First, communication can be valuable if it assists agents with 

timely and the newest information; it also carries communication cost and risks such as 

those in a hostile environment. Not modeling this value, cost and risk will limit our 

application on most practical systems. Hence, communication should be subjected to 

careful cost-risk-value analysis. Second, since an agent is a member of the team and it 

will accomplish the plans with other team members, its utility depends not just on its 

own communication decision, but also on the decision of its teammates. To reconcile 

decision interactions in the team, an agent should have a method of estimating others’ 

decisions and considering how these decisions impact its own. Third, information 

changes dynamically in the environment, and the degree of use of the information may 
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be different too. For some information, agents must consume all changes (e.g., new 

enemy target identified), while for other information agents do not necessarily have to 

process each change (e.g., current location of friendly aircraft). Agents need to check 

every production of the first type information, while the check to the second type 

information depends on agents’ needs. A more comprehensive solution must be 

developed to deal with different types of information. 

In a word, a better communication solution is desired to reduce unnecessary 

messages between needers and providers, and to make decisions under uncertainty 

according to cost, risk and value of information the communication convey. 

We propose Decision-Theoretic Proactive Communication (DTPC), by which 

agents communicate in an optimal way using a decision-theoretic approach. The 

decision-theoretic approach concentrates on identifying the “optimal” policy [93], 

where the notion of “optimal” has a number of different meanings, the most common 

of which is “that which maximizes the utility,” in this case, of communication. We 

incorporated cost, risk and value into the decision-making and expand a set of policies 

that needer and provider will use. The decision-making generally involves computing 

the cost, risk and value of each policy, and choosing the one with maximum utility. 

Moreover, since communication involves needer and provider, and they keep 

interacting with each other during the teamwork process, their decisions may be 

interdependent. When making decisions, it is necessary for them to take the decisions 

of their counterparts into account and communicate in a way benefiting the team. These 

features are bases of DTPC. 
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By DTPC, agents are equipped with a set of communication policies from 

which they must choose when making decisions. To quantify agents’ decisions, we 

have developed a generic utility function that focuses on representing the information 

production and need of team members. After evaluating the utility of each policy, 

agents will identify the optimal policy, which maximizes the utility of communication. 

Two difficulties exist in agents’ decision-making. First, agents cannot compute 

exact values of the utility since some parameters cannot be known precisely. Hence, 

they calculate the utility function by using estimated values of these parameters. 

Second, agents’ decision-making is interdependent, so when evaluating a policy, agents 

must consider their counterparts’ decisions, which also need to be estimated. 

The following sections first define policies and time points for different 

situations of decision-making, followed by introductions to a generic utility function 

and multi-agent communication processes and finally a set of algorithms which handle 

the communication processes. 

6.2. Policies and Time Points 

We made the following assumptions about information production and need. 

• The time interval from one production of information I to the next is a 

discrete random variable. 

• A needer does not generate a new need for I until after the previous need 

has been satisfied. 

• The time at which a need occurs is the time at which the transition from 

no need for I to a point of time where there is such a need is made. 
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• The needs will be continued in the time interval through which the 

needer waits for a value to be obtained either by observation or being 

told by the provider. 

• If there is a need and a newly produced value is received, the value is 

immediately used. 

• Once a value for I is used by a needer, it may not be reused. 

• The time interval from the satisfaction of one need to the occurrence of 

the next need for I is a discrete random variable. 

The provider will face two situations when making decisions. In situation PA, it 

produces a new piece of information. In situation PB, it receives a request for a piece of 

information. The needer also has two situations to consider. In situation NA, it needs a 

piece of information. In situation NB, it receives a piece of information, which may be 

either a reply from the provider whom it has actively asked or a proactive tell from the 

provider. 

In order to make their communication decisions at each situation, agents need 

to consider the relationship between the time at which information is needed and the 

time at which it is produced. The various policies involve using the information 

produced at different times or satisfying needs at different times. Thus, to describe the 

range of possibilities encompassed by the different communication policies adequately, 

several different points in time must be defined. For clarity, we define sets of policies 

and sets of relevant points in time, for the needer and for the provider in different 
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situations. Any time an agent makes a decision, we assume it only chooses one policy 

and acts accordingly. 

For clarity, we assume the system consists of two agents. This is agent a, a 

provider, and agent b, a needer. 

6.2.1. Situation PA: Provider Produces a Value for I 

Fig. 6.1 shows situation PA. Let 0
,PaT  be the time at which agent a produces a 

value for I; we consider this to be the current time. Also let { 1
,PaT , 2

,PaT , …} denote the 

(ordered) set of times at which agent a will produce I in the future, which are unknown 

at the current time. There is additional information available to the provider. The 

provider knows the times of each of the values it has produced and which of these were 

sent to the needer. Let ls
PaT ,  be the time of the last value for I the provider sent to the 

needer. Let NbT ,  be the time of a need after ls
PaT , , which is (probably) unknown to the 

provider, too. It is possible, though, that some of the values for I the provider sent were 

unused. It is also possible that, in the time interval ( ls
PaT , , 0

,PaT ], the provider produced 

one or more value for I and did not send them to the needer. If there are any such 

values, let ns
PaT ,  be the largest time at which the provider generated a value for I that it 

did not send. The ordering constraints of these time points are as follows: 

ls
PaT , < ns

PaT , < 0
,PaT < 1

,PaT < 2
,PaT <…, 

ls
PaT , < NbT , . 
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For these time points unknown, as illustrated in Fig. 6.1, NbT ,  could be any time 

point after ls
PaT ,  and 1

,PaT  could be any time point after 0
,PaT . 

These time points will be used in utility function. To deal with the uncertainty 

brought by the unknown time points, we take advantage of two kinds of knowledge. 

First we know their low bound. For example, 1
,PaT  must be greater than 0

,PaT  and NbT ,  

must be greater than ls
PaT , . Second, we can approximate their distributions by EDF 

approach. By this way, we can deal with uncertainty. 
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Agent a has two policies to choose on this situation: 

ProactiveTell: The agent proactively provides I; 

Silence: The agent does not provide I. 

Fig. 6.1. Situation PA: Provider Produces I. 
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Agent a will either ProactiveTell the value just produced at 0
,PaT  to agent b or 

keep Silence. The difficulty of decision-making is that agent a may not know the exact 

time when the needer’s need arises, i.e. NbT , . Therefore, if agent a decides to 

ProactiveTell the just-produced value for I, then the value provided may not be the 

most current because new values may have been produced by the time agent b really 

needs I. However, if agent a decides to keep Silence, agent b may be unable to get the 

information in time if a need was already raised. Therefore, timeliness and currency13of 

the information provided should be a major consideration of decision-making. 

6.2.2. Situation PB: Provider Receives a Request about I 

Situation PB is shown in Fig. 6.2. Let Tb,q be the time at which agent b requests 

I; we consider this to be the current time. Let 0
,
q

PaT  be the latest production time, before 

the request time Tb,q, and let 1
,
q

PaT  be the next production time, which is unknown, 

following the request time Tb,q. Obviously, the order of these time points is: 

0
,
q

PaT  ≤ Tb,q< 1
,
q

PaT . 

                                                 
13 While timeliness and currency sound somewhat similar, there is a distinct difference.  Timeliness 
refers to the delay between a need arising and the need being fulfilled, while currency refers to whether 
one is using current or old information. 
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Agent a has two policies to choose on this situation: 

Reply: The agent provides most recent value for I; 

WaitUntilNext: The agent waits until next production of I and then 

provides I; 

Agent a will either Reply the value last produced at 0
,
q

PaT , or WaitUntilNext 

production time 1
,
q

PaT  and reply the value produced at 1
,
q

PaT . The major consideration is 

still the timeliness and the currency of information provided. The last produced value is 

timely but may lost currency if a new value will be produced soon, while the new value 

may not be timely. Again, the utility function should address these issues. 

Fig. 6.2.  Situation PB: Provider Receives a Request about I. 
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6.2.3. Situation NA: Needer Has a Request about I Arise 

Situation NA is shown in Fig. 6.3. Let 0
, NbT  be the time at which agent b’s most 

recent need for I arises; we consider this to be the current time. Let 0
,
a

PaT  be the time at 

which agent a most recently produced I and 1
,
a

PaT  be the time at which agent a produces 

I next. Let Tb,r be the time at which agent b most recently received a value for I from 

agent a. The relationships among these points are as followings: 

Tb,r≤ 0
,
a

PaT ≤ 0
, NbT < 1

,
a

PaT . 
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Agent b has three policies to choose on this situation: 

Silence: The agent does not ask for I and uses the most recent value it 

has; 

Fig. 6.3. Situation NA: Needer Has a Request about I Arise. 
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ActiveAsk: The agent actively asks for I; 

Wait: The agent waits to be told I proactively. 

If agent b ActiveAsks for the information, the information it uses is always the 

most recent. But this process costs more messages and brings high risk. If the needer 

Waits, it cannot get the timely information. If the needer keeps Silence, i.e., it uses the 

value last received at time Tb,r, this value may not be the most recent because it may be 

changed during the time interval [Tb,r, 0
,
a

PaT ]. Again, these considerations must be 

included in utility function. 

6.2.4. Situation NB: Needer Receives I 

Situation NB is shown in Fig. 6.4. In this situation, agent b receives a piece of 

information I, which may be either a reply from agent a whom it has ActiveAsked or a 

ProactiveTell from agent a. Agent b’s choice is deterministic, thus Accepts I. However, 

agent b may use I or not. If I is a reply to the ActiveAsk sent by agent b, agent b 

definitely will use I; if I is sent by the ProactiveTell, use of I  happens if agent b is 

Waiting for I or agent b will hold I and use it later with a Silence decision. Meanwhile, 

agent b will neither notify agent a about the acceptance of I nor the use of I. These 

uncertainties and unknown knowledge bring more difficulties to agent a’s estimation of 

the time of the need. 
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Agent b Agent a

 
Accept. 

 

 
 

In summation, Table 6.1 lists communication situations which an agent will 

face and policies which are available for these situations. 

 

Table 6.1. Situations and Policies. 

Situation Policy 
ProactiveTell 
Silence 

PA: provider produces I 
 

 
Reply 
WaitUntilNext 

PB: provider receives a request for I 

 
ActiveAsk 
Silence 

 
NA: needer has a need for I arise 

Wait 
  
NB: needer receives I Accept 

 

6.3. DTPC Model 

Part of decision-making is to evaluate each of the possible policies for each of 

the situations described above. We need to generalize the notion of situation slightly to 

Fig. 6.4.  Situation NB: Needer Receives I. 
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include the specific item of information I with respect to which it occurs. Let t be the 

time of occurrence of a situation, we denote a situation by St = (SU, I) for SU ∈ {PA, 

PB, NA, NB} and I ∈ set of information items. The policy, denoted δ, used to respond 

an situation St is also relevant. There are two time points closely related to information 

need and production: tn the time at which a need for I occurs, and tp the production time 

of a value for I which is provided for the need at tn. Because obtaining I may involve 

sending messages, these messages are also part of our model. Then, letting E denote a 

finite set of states, we define our model DTPC as: 

DTPC = <E, {St}, {δ}, {tn}, {tp}, M, U> 

where: 

 E = {e} is a finite set of states. Each state e = (εa, εb) where εj ∈ Ei, i = {a, 

b}, are the local states of the corresponding agents. 

 {St} is the set of possible situations occurring at t.  

 {δ} is a finite set of policies.  

 {tn}=N (the natural numbers) is the set of times at which a need may 

occur. 

 {tp}=N is the set of production times of I which are provided for the needs 

at {tn}. 

 M is the set of messages. A special message that belongs to M is the null 

message which is denoted by ϕ. This message is chosen by an agent that 

does not want to communicate to the other agents. 

 U is a utility function assigning a value to the use of a specific policy δ. 
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6.4. Utility Function 

We assume the information needer and provider have the same utility function; 

because as they are cooperative in a team, we consider the utility function to represent 

the utility gained by the team when a particular needer uses a particular item of 

information at a particular time. Consequently, needers and providers have the same 

utility function.   However, because the needer and provider each evaluate the utility 

function based upon their individual knowledge, they are likely to obtain different 

values for it.  In terms of our decision theoretic approach, we must therefore consider 

the evaluation of the utility function separately for the needer and provider. 

6.4.1. Defining the Utility Function 

The utility function is a mapping from agent’s internal states, the current 

situation, a communication policy associated with the situation, time points tn and tp 

and messages in M to a real number: 

U: e × St × δ × tn × tp × {m}→ ℜ  

where {m} is the set of messages used by the policy δ. 

Three terms are generally included in the utility function. The first is values 

gained from the information delivered. The uncertainties existing in the environment 

normally lead to the unfixed time durations of information production and need, which 

further lead to uncertainty in the value gained by communicating the information. The 

second term is the cost of sending a message. The third is the potential communication 

risk due to things like unwanted revelation of the information, such as being overheard 

by an enemy on a battlefield. We define utility as the difference between the value 
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gained by having the information, and the cost of sending the messages and the risk of 

communication: 

U(e, St, δ, tn, tp, {m})  

= V(St, δ, tn, tp) – C({m}) – R(e, St, δ).  

where V denotes a value function, C denotes a cost function, and R denotes a risk 

function. 

6.4.2. Identifying Information Production and Need Time in the Utility Function 

In the utility function U, for a given decision point involving situation St, the 

parameters e and {m} are fixed, when U is evaluated for a specific policy δ which is 

associated with St. On the other hand, parameters tn and tp vary for different policies and 

either or both of them may be unknown at the current time t. 

In Table 6.2, we identify tp and tn for different policies. P and N indicate 

policies for needer or provider; for example, P.ProactiveTell denotes provider’s policy 

ProactiveTell. To is a time cutoff which replaces the length of the time an agent may 

wait in case the communication deadlock (introduced in Section 5.5.2) occurs. Based 

on this, later in our algorithm of decision-making, a needer and provider pair is forced 

to communicate if they kept silent for a period of time To (see Section 6.8). 

For some policies, the time point used for a parameter depends upon the 

counterpart’s response, which is unknown to the decision maker. For example, if a 

needer ActiveAsks for I, it does not know whether the provider will Reply or 

WaitUntilNext; if the needer Waits, it does not know whether the provider will keep 

Silence or ProactiveTell. The needer, therefore, needs to find a way to estimate which 
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policy the provider will choose and how this choice impacts tp. To solve this problem, 

agents are asked to think as their counterparts do. We assume that both needer and 

provider know the other’s possible policies and estimation process. When making a 

decision, each will go through the estimation process of its counterpart to identify the 

policy the counterpart will choose. This process, of course, will be based on each one’s 

own information. The time point of the estimated policy will be used to fill in the 

parameters in Table 6.2. 

 

Table 6.2. Identifying Parameters for Policies. 

Policy           Parameter 
 tn tp 

P.ProactiveTell NbT ,  0
,PaT . 

   

P.Silence NbT ,  
A production time 
between [ 0

,PaT , 0
,PaT +To].  

   
P.Reply Tb,q 

0
,
q

PaT . 
   
P.WaitUntilNext Tb,q 

1
,
q

PaT . 
   
N.Silence 0

, NbT  Tb,r. 
   

0
,
a

PaT , if a Reply;  
N.ActiveAsk 

 
0
, NbT  1

,
a

PaT , if a WaitUntilNext. 
   

1
,
a

PaT , if a ProactiveTell; 
 
N.Wait 

 
0
, NbT  

A production time 
between [ 0

, NbT , 0
, NbT +To], 

if a Silence. 
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The precise estimation of values for the time points varies from one situation 

and policy to another. These will be developed in conjunction with the development of 

the evaluation formulae for the different situations and policies. 

In the next two sections, we define the cost and the value functions in the utility 

function. Particularly, we focus on analyzing tp and tn which are given values by the 

time points listed in Table 6.2, and the use of the distributions of tp and tn computed by 

EDF introduced in Section 5.2. We defer the risk function to the implementation, 

because risk normally is domain-dependent. For example, in the Multi-Agent Wumpus 

World, the risk of communication depends on the distance between wumpus and 

information sender and hearing radius of wumpus (refer to Section 7.2.3.1 for detail). 

6.5. Cost Function 

In cost function C, policy δ determines the number of messages to be sent. For 

example, policy ProactiveTell indicates one message to be sent while Silence means no 

message will be sent. The cost of sending the set of messages {m} is assumed to be: 

C({m}) =
⎩
⎨
⎧

×+
=

otherwiselen({m})kk
{m} if                          0

10

ϕ
 

where len({m}) is the length of {m}, and k0 and k1 are coefficients. 

6.6. Value Function 

We measure the value gained by having I by two factors: correctness of the 

information to the need and timeliness of the fulfillment of the need. The rationale for 

considering these two factors is that there are different things that can affect the value 

of a given policy. In terms of timeliness, there may be a value associated with how 
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quickly a need can be satisfied, i.e., the sooner, the better. In terms of correctness, there 

may be a value associated with using the most recent value for I. For example, if the 

information I used to satisfy a need at time tn was produced at an earlier time, t0, it is 

possible that there is a more recent value for I produced at some time after t0. However, 

since the information produced at time t0 is immediately available, using this 

information may still have some values, although less than the use of more recently 

produced information. The highest value should accrue from using the newest 

information. 

We measure the value gained by having I by two factors: currency of the 

information to the need and timeliness of the fulfillment of the need. The rationale for 

considering these two factors is that there are different things that can affect the value 

of a given policy. In terms of timeliness, there may be a value associated with how 

quickly a need can be satisfied, i.e., the sooner, the better. In terms of currency, there 

may be a value associated with using values other than the most recent for I. For 

example, if the information I used to satisfy a need at time tn was produced at an earlier 

time, t0, it is possible that there is a more recent value for I produced at some time after 

t0. However, since the information produced at time t0 is immediately available, using 

this information may still have some values, although less than that of the use of more 

recently produced information. 

A common payoff function for the case like our problem which has multiple 

factors is to make a linear combination of these factors [29]. Based on this, we define 

the value function in term of the probability of using the most recent information vs. 
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the payoff of using the old information (value for I may have changed since last 

update). 

V(St, δ, tn, tp)  

=Ts(tn, tp)×P(St, δ, tn, tp) + Tf(tn, tp)×(1−P(St, δ, tn, tp)), 

where Ts denotes the reward, in terms of timeliness, of successfully using the most 

recent information, Tf denotes the reward, of using other than the most recent 

information, and P denotes the probability of using the most recent information. 

We will define these three functions in a general way that encompasses a 

number of possible situations. Ts will be chosen to have a maximum value when 

information is immediately available and degrades as stale information is used. Tf will 

be chosen to reflect the value of using old information. P will be chosen to have a 

maximum value of 1 if information being used has not changed since the most recent 

production and have a minimum value of 0 if the information has changed. 

6.6.1. Timeliness Function 

In this section, we define Ts and Tf. First, the timeliness Ts of satisfying the 

need requires considerations of several cases: 

1. The needer uses a value it already has. This means that tp<tn, and the 

value should be maximum because the need is immediately satisfied. 

2. The needer asks a provider for a value and the provider returns a value it 

has previously obtained. This means that we can again consider tp<tn, 

the need is immediately satisfied, and again the value should be 

maximum.  
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3. The needer waits for a provider to proactively tell the information. In 

this case tp>tn and the need is not immediately satisfied. 

4. The needer asks a provider for the information and the provider waits 

until its next production of information to return a value. Again, in this 

case tp>tn, the need is not satisfied immediately, and one can expect a 

lower timeliness value. 

The considerations can all be taken into account if the timeliness component of 

the value function is maximum for tp ≤ tn and decreases as tp becomes greater than tn. 

This, in turn, can be handled by first defining a time difference function d: 

d(tp, tn)=max(0, tp–tn). 

We then define a non-increasing function fs: 

fs (x) s.t. 0<fs (y)≤fs (x) if y≥x. 

fs may take various forms. For example, it might decrease exponentially, or it 

might be constant for a length of time and zero thereafter, indicating that the 

information must be consumed in a finite length of time or it is useless. We leave fs 

unspecified for the high level development. In general, fs is required to have these 

properties:  

1. For cases 1& 2, fs is a max, (but the information may be stale, which is 

captured in the currency). 

2. For cases 3 & 4, the most recent value is used (so currency is a max), 

but there is degradation due to waiting. 
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Later, we determine a specific one in our experiments (see Section 7.2.3.3). Finally, we 

use fs to represent Ts: 

Ts(tn, tp) = fs(d(tp, tn)). 

Next we consider Tf, the reward of timeliness under the condition of using old 

information. In some circumstances, old information still has value. For example, if an 

item (say an enemy troop location) has not been processed, it may still contain valuable 

information (the enemy troop is not far away from the previously reported location), 

although this case might reduce to a more simplistic decision algorithm (always send I 

to a needer). Thus, at the highest level, we represent Tf by a function Tf = ff() that 

expresses the pertinent factors. There are many forms that ff could take for different 

types of I; this provides flexibility of defining Tf based on various focuses of different 

domains. For example, Tf can be a time discount function similar to Ts, if there is a 

value to use old information but the value decreases with the age of the information; or 

Tf can be a constant, implying that there is a fixed reward for using old information; or 

Tf can be zero if old information is completely useless for agents to make their further 

decision. 

6.6.2. Currency Function 

The general idea we will use for developing a model of currency is that value 

for I at time tp should not change between tp and the time it is used to satisfy the need at 

tn. Let tu be the time at which I is used by the needer for the need at time tn. It will be 

useful to note that tu = max(tp, tn), because if the value for I was produced before the 
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need arises, the value will not be used until the need arises, and if the value for I was 

produced after the need arises, the value will not be used until it is produced. 

We consider the probability that the value does not change in time interval (tp, 

tu] and use that as the basis for measuring currency. There are still difficulties, as we 

may not know tn and tp and consequently tu may be unknown too. However, from the 

EDF process, we do have probability mass functions on the times between successive 

occurrences of a need for I or production of new values for I. Using these distributions 

and the event time t as a reference point, we determine for each situation and policy 

estimates of the need and production times, and define a function P as: 

P(St, δ, tn, tp) = Pr( ¬∃τ∈Int(tp, tu] ∋ IP(τ) | St ∧ δ), 

where Int(tp, tu] denotes the interval between the two time points, noting that the time 

order is unspecified; IP(τ) denotes the production of a value for I at time τ. P is the 

conditional probability that no other value is produced during Int(tp, tu], conditional on 

a policy δ which is chosen in situation St at time t. For simplicity, we abbreviate this 

conditional event as NOPRODUCE(tp, tu), so P is abbreviated as: 

Pr(NOPRODUCE(tp, tu)). 

6.7. Calculating Probability of Currency 

The currency function needs extensive probability calculations which include 

estimating the production time tp and the need time tn. For different situations, agents’ 

knowledge of the various points in time tn and tp differ. In particular, in some situations 

a time is known exactly (e.g., the needer knows the time at which it needed a value) 

and in other situations, an agent can only estimate one or both of the times based upon 
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the known information. The knowledge of these time points is used in estimating the 

currency for each policy on each situation. We analyze them one by one below. 

6.7.1. Situation PA: Provider Produces a Value for I 

Recall that at the beginning of this section, we introduced a set of time points 

for each situation of decision-making. It is necessary to revisit them here. Fig. 6.5 

redraws the time points and their relations for situation PA. 

Last sent  
time 

Next production time 

Need time 

° t 

NbT ,

°
ls

PaT ,
0
,PaT

1
,PaT

Current 
time 

ns
PaT ,

Last not 
sent time 

 

Fig. 6.5. Time Points for Situation PA. 

 

In this situation, the provider just produced a value for I at time t= 0
,PaT . We denote a 

need for I at time tn as IN(tn) and the production of a value for I at time tp as IP(tp). The 

provider is making decisions on whether or not to provide IP( 0
,PaT ) to the needer. In 

order to identify tn, the time of the need in question, we observe first that tn > ls
PaT , .  

This is because if there were a need before ls
PaT , , the needer would either use a value it 

already had, or Wait or ActiveAsk, in which case IP( ls
PaT , ) could be either a 
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ProactiveTell or a response to the ActiveAsk. By any choice, the most recent need 

before ls
PaT ,  would be satisfied and hence tn > ls

PaT , .  Multiple needs may have arisen 

since ls
PaT , , the first of which might use the information supplied at ls

PaT ,  through use of 

the Silence policy.  Since we assume that the needer does not have a new need arise 

until after it has completed servicing a previous need, and, since we assume that there 

is only one provider, the frequency of new needs cannot exceed the frequency at which 

the provider provides values for I, though delay in satisfying a need could become 

large.  Hence, we assume that in evaluating currency for this case, we need only 

consider the first need that arises after ls
PaT , , we denote this time NbT ,  and take tn = NbT , . 

NbT ,  may be in the future and the time may be unknown to the provider, and we will 

have to consider the different policies that the needer might have made at time NbT , . 

As we shall see below, identifying tp is not quite straightforward. In particular, 

it is not always appropriate to take tp = 0
,PaT . We must consider two cases: 1) the 

provider uses policy ProactiveTell and 2) the provider uses policy Silence. 

6.7.1.1. PA – ProactiveTell Is Used 

In this case, IP( 0
,PaT ) will be provided for the need at NbT , , hence tp = 0

,PaT . The 

probability P is specified to: 

Pr(NOPRODUCE( 0
,PaT , tu)), 
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where tu is unknown because IP( 0
,PaT ) may or may not be used by the needer and 

depends on NbT ,  which is unknown. We then divide the problem into two sub-cases 

and tu will be identify in case by case analysis on late this section, 

Sub-case1: there is a need at 0
,PaT , i.e. NbT , ≤ 0

,PaT ; 

Sub-case2: there is not a need at 0
,PaT , i.e. 0

,PaT < NbT , . 

Based on the law of total probability [149], P can be evaluated as: 

Pr(NOPRODUCE( 0
,PaT , tu) | NbT , ≤ 0

,PaT ) × Pr( NbT , ≤ 0
,PaT ) +  

Pr(NOPRODUCE( 0
,PaT ,tu) | 0

,PaT < NbT , ) × Pr( 0
,PaT < NbT , ). 

This shows that we need the probability that NbT ,  occurs in each of the relevant 

intervals, and given that it does, we need to examine function P through each of the 

possible decisions the needer might make. Some of the needer’s decision, such as 

ActiveAsk, depends on the provider’s responding decisions, such as Reply or 

WaitUntilNext. For this case, we also need to evaluate the provider’s possible 

responding decisions. Thus the provider must estimate which policy the needer will 

choose from Silence, ActiveAsk and Wait and what the provider will response if 

ActiveAsk has been chosen by the needer. 

Pr( NbT , ≤ 0
,PaT ) and Pr( 0

,PaT < NbT , ) can be calculated because we known 0
,PaT  and 

distributions of the unknown time point, thus NbT , . Appendix A provides calculations 

to these two probabilities. 
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What left in P is Pr(NOPRODUCE( 0
,PaT , tu)) conditional on two sub-cases 

NbT , ≤ 0
,PaT  and 0

,PaT < NbT , . 

6.7.1.1.1. Sub-case1 NbT , ≤
0
,PaT  

In this case, the provider must consider each of the decisions the needer could 

make at NbT , , to estimate if the needer will use IP( 0
,PaT ). If the needer obtains a response 

either by an ActiveAsk or a Wait, the needer will immediately use IP( 0
,PaT ) and hence 

tu= 0
,PaT . Given tu= 0

,PaT =tp, obviously there no other value has been produced between tu 

and tp. Therefore the probability of NOPRODUCE equals 1 if the needer did not decide 

to keep Silence at NbT , .  However, if the needer kept Silence, it will use the last value 

for I sent at ls
PaT ,  by the provider. Then tu = ls

PaT ,  and hence there is another production 

between the time interval [tu, tp).  Thus, the needed probability reduces to 

Pr(NOPRODUCE( 0
,PaT , 0

,PaT ) | NbT , ≤ 0
,PaT )  

=1 – Pr(needer decides to keep Silence at NbT , ). 

Next we calculate Pr(needer decides to keep Silence at NbT , ). First the provider 

needs to estimate unknown NbT , . Though ls
PaT , < NbT ,  (see Section 6.7.1), the base for 

estimating NbT ,  varies and the provider may or may not know the base. For example, if 

the needer chose Silence for the most recent need before ls
PaT , , the base for estimating 

NbT ,  was the time at which the most recent need before ls
PaT ,  raised. Denote this time 
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1
,
−

NbT . In this case, the provider won’t know 1
,
−

NbT . While in the case that the needer 

ActiveAsk or Wait at the most recent need before ls
PaT , , this need can be satisfied by 

IP( ls
PaT , ), so in this case the base is ls

PaT ,  and the provider does know ls
PaT , . It can be seen 

that the unknown NbT ,  increases the uncertainty on predicting the needer’s decision 

makings.  

To seek a reasonable and computationally feasible solution, we take advantage 

of the average lengths of time between information productions or needs which can be 

obtained from EDF process. We use the average length of information production or 

need as approximations in the future. 

Let τn be the average length of time between needs of I by the needer. It is 

easily to get that 1
,
−

NbT  < ls
PaT ,  < NbT , . One could use the expected value of where ls

PaT ,  

would lie in the interval ( 1
,
−

NbT , NbT , ), which under reasonable assumptions would be 

half way in between them.  Then, we use ls
PaT ,  + τn/2 as an estimate for NbT , . In the 

current sub-case, though, we are considering NbT , ≤ 0
,PaT , and there is no guarantee that 

ls
PaT ,  + τn/2 ≤ 0

,PaT .  Thus, we will use 

NbT ,  = min( 0
,PaT , ls

PaT ,  + τn/2). 

To estimate the needer’s decision, the provider, using its own knowledge, will 

go through the needer’s decision process and choose a policy which has maximum 

utility. This evaluation can be calculated as follows: 

Pr(needer decides to keep Silence at NbT , ) 
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=Pr(U(e, NA, Silence, NbT , , ls
PaT , , {m}) > Max(U(e, NA, ActiveAsk, NbT , , 0

,PaT , {m}), 

U(e, NA, Wait, NbT , , 0
,PaT , {m}))). 

The solution to this will involve evaluating the utility function under each of the 

possible policies the needer might make at NbT , , the time the need arises.  The 

evaluation of all parts of the utility function except currency is straightforward.  In the 

case of currency, the needer must associate time tn and tp with the time NbT , .  

Fortunately, this is rather straightforward, given the conditions already known.  The 

evaluation of currency for the needer under the condition that a need has arisen is given 

in Section 6.7.3.  Since, as shown in Section 6.7.3, with substitutions for tp and tn, the 

expression for the utility function is deterministic, the utility can be determined for 

each possible policy. Having these utilities, the needer’s decision is deterministic, thus 

it will use the policy which has the max utility. Therefore the provider’s estimate of 

probabilities of the needer’s choices is computable. Moreover, since the needer will 

only choose one policy at one decision point, so these probabilities equal either 1 or 0. 

For example, if the utility of Silence is the highest, then Pr(needer decides to keep 

Silence at NbT , ) = 1; otherwise it equals 0. 

6.7.1.1.2. Sub-case 2 0
,PaT  < NbT ,  

In this case, the value provided is not immediately used. Occurrence of the use 

of IP( 0
,PaT ) depends upon the decision the needer will make at NbT ,  and the provider’s 
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responding decision at NbT , . Since combinations of cases must be considered, we 

consider distinct four events: 

∑ =

4

1n
Pr(NOPRODUCE( 0

,PaT ,tu) | 0
,PaT < NbT ,  ∧En) × Pr(En), 

where  En, n=1,..,4, denote the following events: 

E1: needer decides to Wait at NbT , ; 

E2: needer decides to keep Silence at NbT , ; 

E3: needer decides to ActiveAsk at NbT ,  ∧ provider decides to Reply at 

NbT , ; 

E4: needer decides to ActiveAsk at NbT ,  ∧ provider decides to 

WaitUntilNext at NbT , . 

We first consider Pr(NOPRODUCE( 0
,PaT ,tu) | 0

,PaT < NbT ,  ∧ En). Since these 

probabilities turn out to be zero for some cases, Pr(En) does not need to be calculated 

for these cases. 

6.1.1.1.2.1. Calculating Pr(NOPRODUCE( 0
,PaT ,tu) | 0

,PaT < NbT ,  ∧En) 

• E1:needer decides to Wait at NbT ,  

In this case, the needer will wait until the next time the provider 

sends it a value for I. Since 0
,PaT  < NbT , , the needer certainly will not use 

IP( 0
,PaT ) and then IP( 0

,PaT ) is not relevant. In other words, the needer will use 
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another production to fulfill the need raised at NbT , . Therefore the 

probability that no other value will be produced between tp and tu is zero. 

Pr(NOPRODUCE( 0
,PaT ,tu) | 0

,PaT < NbT ,  ∧ E1)=0. 

• E2: needer decides to keep Silence at NbT ,  

In this case, the needer will use the most recent value it has for I. 

So it will use IP( 0
,PaT ) when 0

,PaT  < NbT ,  < 1
,PaT : 

Pr(NOPRODUCE( 0
,PaT ,tu) | 0

,PaT < NbT ,  ∧E2) 

=Pr( 0
,PaT  < NbT ,  < 1

,PaT ). 

Pr( 0
,PaT  < NbT ,  < 1

,PaT ) is calculated in Appendix A. 

• E3: needer decides to ActiveAsk at NbT ,  ∧ provider decides to Reply at NbT , ; 

In this case, the needer will use the most recent value for I 

produced before NbT , , This case is similar to the last case E2, i.e. the needer 

will use IP( 0
,PaT ) when 0

,PaT  < NbT ,  < 1
,PaT . Therefore we have: 

Pr(NOPRODUCE( 0
,PaT ,tu) | 0

,PaT  < NbT ,  ∧ E3) 

=Pr( 0
,PaT  < NbT ,  < 1

,PaT ). 

Again Pr( 0
,PaT  < NbT ,  < 1

,PaT ) is calculated in Appendix A.  



 132

• E4: needer decides to ActiveAsk at NbT ,  ∧ provider decides to WaitUntilNext at 

NbT , . 

Since 0
,PaT < NbT , , the provider will reply the value for I at or after 

1
,PaT  and the needer will use this value. Then IP( 0

,PaT ) will not be used and 

hence it is not relevant.  

Pr(NOPRODUCE( 0
,PaT ,tu) | 0

,PaT  < NbT ,  ∧ E4) = 0. 

6.1.1.1.2.2. Calculating Pr(En) 

From the above analysis, only two probabilities Pr(E2) and Pr(E3) must be 

determined because the factors on the other event probabilities are zero. 

• Pr(E2): Pr(needer decides to keep Silence at NbT , ) 

Pr(needer decides to keep Silence at NbT , ) 

=Pr(U(e, NA, Silence, NbT , , tp, {m}) > Max(U(e, NA, ActiveAsk, NbT , , 

tp, {m}), U(e, NA, Wait, NbT , , tp, {m}))). 

where tp will be replaced, for a given policy, by the value that policy calls 

for.  

The time tp is important in predicting the needer’s decisions at NbT , . 

To estimate tp for each policy, the provider must predict its own decisions in 

the future. These decisions, in turn, closely depend on NbT , .  For example, 

in the case of a needer policy of δ = Silence, the needer will use the most 
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recent value for I it has. This value is the last value sent by the provider 

before NbT , . So the provider needs to predict the number of production 

times between 0
,PaT  and NbT , . The last sent value could be produced at any 

of these time points, so the provider also must estimate decisions it will 

make, ProactiveTell or Silence, on every production time.  Since NbT ,  is 

unknown, the length of time between 0
,PaT  and NbT ,  is undetermined and 

hence the number of production time in between is undetermined.  It can be 

see that the unknown NbT ,  and production time increases the uncertainty on 

predicting future decision makings.  As before, we could take advantage of 

the average lengths of time between information productions or needs 

which can be obtained from EDF process. 

In the following, we estimate NbT ,  and identify tp for each three 

possible policies. Once NbT ,  and tp are fixed, utility for every policy can be 

computed and then the needer’s decision can be estimated. 

We still use ls
PaT ,  + τn/2 as an estimate for NbT , . In the current sub-

case, though, we are considering NbT ,  > 0
,PaT , and there is no guarantee that 

ls
PaT ,  + τn/2 > 0

,PaT .  Thus, we will use  

NbT ,  = max( 0
,PaT +1, ls

PaT ,  + τn/2). 
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Let τp be the average length of time for producing a new value for I. 

We use the following estimation for a future production time i
PaT , : 

i
PaT ,  = 0

,PaT  + i × τp, i ≥1, 

Having these estimations, we can specify i and then fix tp for each policy. 

We consider three needer policies separately. 

Needer δ = Silence 

In this case, tp is the time of the last value for sent I before NbT , . 

Since 1
,PaT ≤ NbT , , the provider should not delivery a value for I produced 

before the most recent production time before NbT , , because otherwise this 

provided value is out-of-date for the need raises at NbT , . On this basis, we 

assume tp equals the most recent production time before NbT , . We define a 

function Z: 

Z = 
⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢ −

p

0
,

τ
Pab,N TT

. 

Z returns 0 or a positive integer, meaning the number of productions during 

NbT ,  and 1
,PaT . Let: 

tp = 0
,PaT  + Z × τp.     (6-1) 

Needer δ = ActiveAsk 
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In this case, tp depends upon the provider’s decision at NbT , . So the 

provider needs to predict its respondent decisions, Reply or WaitUntilNext, 

to the ActiveAsk received at NbT , .  

Pr(the provider decides to Reply at NbT , ) 

=Pr(U(e, PB, Reply, NbT , , tp, {m}) > U(e, PB, WaitUntilNext, 

NbT , , tp, {m})) 

where tp of Reply is the production time just before NbT , . It is exactly Eq. 

(6-1), i.e. tp = 0
,PaT  + Z × τp, and tp of WaitUntilNext is the production 

timejust after NbT , :  

tp= 0
,PaT  + (Z+1)×τp              (6-2) 

Having these estimations, Pr(the provider decides to Reply at NbT , ) can be 

calculated by computing the utility for each of the possible policies. 

Therefore the utility can be determined for each of the possible policies. 

Again since the provider will make one responding decision at one per 

request, so Pr(the provider decides to Reply at NbT , ) equals either 1 or 0. 

After estimating the provider’s responding decisions, tp can be fixed. 

Thus if the provider Reply, tp is calculated by Eq. (6-1); if the provider 

WaitUntilNext, t pos calculated by Eq. (6-2).  

Needer δ = Wait 
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In this case, tp is the next ProactiveTell time after NbT , . Since there 

is a need, the provider should not let the needer wait long, because 

otherwise the value for I provided is not timely to the need which has 

already risen. Therefore we assume the next ProactiveTell time is the next 

production time after NbT , . Thus, we use Eq. (6-2) as estimate for tp. Once tp 

is estimated, the provider is able to evaluate the utility function under each 

of the possible policies the needer might make at NbT , .  

From above analysis, one can see that, to calculate the probability of 

the needer’s single decision, the provider needs to compute utilities for all 

possible needer’s policies and provider’s responding policies. Then in the 

future if the probability for one needer’s policy can be computed, then the 

probability for other needer’s policies and the provider’s responding 

policies are also computable. 

• Pr(E3): Pr(needer decides to ActiveAsk at NbT ,  ∧ provider decides to Reply at 

NbT , ) 

Pr(needer decides to ActiveAsk at NbT ,  ∧ provider decides to Reply at 

NbT , ) 

=Pr(needer decides to ActiveAsk at NbT , )     

×Pr(provider decides to Reply at NbT ,  | needer decides to ActiveAsk at 

NbT , ) 
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In this equation, Pr(needer decides to ActiveAsk at NbT , ) is calculable. This 

is because in the last case E2 which computes Pr(needer decides to keep 

Silence at NbT , ), we calculate the utility for each of the needer’s possible 

policy: ActiveAsk, Silence and Wait. Based on this, Pr(needer decides to 

ActiveAsk at NbT , ) equals 1 if ActiveAsk has the maximum utility, or 0 

otherwise. The probability Pr(provider decides to Reply at NbT ,  | needer 

decides to ActiveAsk at NbT , ) is calculated in E2 the case of Needer 

δ=ActiveAsk. So this probability is computable and equals either 1 or 0. 

6.7.1.2. PA – Silence Is Used 

Above we presented the calculation of currency for policy ProactiveTell in 

situation PA, which is when a provider produces a value for I. This section we consider 

the other provider’s policy Silence in situation PA.  

In this case, the value for I at 0
,PaT  will not be provided proactively. tp thus 

depends upon the needer’s decision at tn and, if needed, the provider’s responding 

decision at tn. P equals: 

Pr(NOPRODUCE(tp, tu)), 

where tp and tu will be identified in two sub-cases: 

Sub-case1: there is a need at 0
,PaT , i.e. NbT , ≤ 0

,PaT ; 

Sub-case2: there is not a need at 0
,PaT , i.e. 0

,PaT < NbT , . 

P can be evaluated as: 
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Pr(NOPRODUCE(tp, tu) | NbT , ≤ 0
,PaT ) × Pr( NbT , ≤ 0

,PaT ) 

+Pr(NOPRODUCE(tp, tu) | 0
,PaT < NbT , ) × Pr( 0

,PaT < NbT , ). 

In this form, Pr( NbT , ≤ 0
,PaT ) and Pr( 1

,PaT < NbT , ) have been done in Appendix A. 

So we consider Pr(NOPRODUCE(tp, tu) for the two sub-cases Pr( NbT , ≤ 0
,PaT ) and 

Pr( 0
,PaT < NbT , ). 

6.7.1.2.1. Sub-case1 NbT , ≤
0
,PaT  

This case means that the needer must not decide to ActiveAsk at NbT , , because 

otherwise the provider would be obligated to provide the value at 0
,PaT  and could not 

choose Silence. Thus, the needer either decided to Wait, or keep Silence. If it decided to 

Wait, tp depends upon the decision the provider will make at the production time after 

0
,PaT . For example, if the provider decide to ProactiveTell at 1

,PaT , then tp= 1
,PaT , 

otherwise if the provider decide to keep Silence then tp again depends upon the 

provider’s decision at 2
,PaT  and so on. However, whatever tp would be, since the needer 

is waiting, it definitely will use the value produced at tp, i.e. tu = tp. Obviously there is 

no other value produced between tu and tp, so Pr(NOPRODUCE(tp, tu))=1. 

However, if the needer decided to keep Silence, it will use the value for I 

produced at ls
PaT , , then tp = ls

PaT ,  and tu = NbT , . Pr(NOPRODUCE( ls
PaT , , NbT , )) is equal to 

the probability that there is no values for I produced between ls
PaT ,  and NbT ,  that the 

provider did not send to the needer. We consider two cases. 
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If the provider knows that there were no values produced between the last one it 

sent to the needer and the current time, then 

Pr(NOPRODUCE( ls
PaT , , NbT , ) | NbT , ≤ 0

,PaT )=1. 

Otherwise, in order for there to have been at least one value for I produced and not sent 

out between ls
PaT ,  and 0

,PaT , NbT ,  must be less than ns
PaT ,  in the interval ( ls

PaT , , ns
PaT , ]. The 

provider can then compute: 

Pr(NOPRODUCE( ls
PaT , , NbT , ) | NbT , ≤ 0

,PaT ) 

=Pr( NbT ,  ∈ ( ls
PaT , , ns

PaT , ]) 

=CDFb,N( ns
PaT , – ls

PaT , –1). 

where CDFb,N means the cumulative density function of agent b’s need time interval. 

Since it is the provider doing the evaluation, the provider will use its estimate of the 

CDF based upon the information it has received from the needer over the past history 

to calculate this probability. 

6.7.1.2.2. Sub-case 2 Pr( 0
,PaT < NbT , ) 

In this case, tp depends upon the decision the needer will make at NbT ,  and the 

provider’s decision at NbT , . We consider the same combinations of cases that have been 

defined in the case ProactiveTell. 

∑ =

4

1n
Pr(NOPRODUCE(tp, tu) | 0

,PaT < NbT ,  ∧ En) × Pr(En). 

We first consider Pr(NOPRODUCE(tp, tu) | 0
,PaT < NbT ,  ∧ En) and then identify 

which Pr(En) needs to be determined. 
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• E1:needer decides to Wait at NbT ,  

In this case, tp is the next ProactiveTell time after NbT , , so tu = tp. 

There is no other production between tp and tu, and the probability equals 1: 

Pr(NOPRODUCE(tp, tu) | 0
,PaT < NbT ,  ∧ E1) = 1. 

• E2: needer decides to keep Silence at NbT ,  

In this case, tp is the production time of the most recent value for I 

the needer has.  So tu = NbT , . To determine tp, we can calculate Z, as in Eq. 

(6-1), to find the number of productions between 0
,PaT  and NbT , .  If Z = 0, 

meaning 0
,PaT  < NbT ,  < 1

,PaT , then tp = ls
PaT , .  Pr(NOPRODUCE( ls

PaT , , NbT , ) | 

0
,PaT < NbT ,  ∧ E1) = 0 because there is at least one production time, 0

,PaT , in 

between. If Z ≥ 1, meaning 1
,PaT ≤ NbT , , then Pr(NOPRODUCE(tp, NbT , ) | 

0
,PaT < NbT ,  ∧ E1) = 1, because tp is the most recent production time before 

NbT , . 

• E3: needer decides to ActiveAsk at NbT ,  ∧ provider decides to Reply at NbT ,  

In this case, tu= NbT ,  and tp is the most recent production time 

before NbT , . There is no other production between tp and tu: 

Pr(NOPRODUCE(tp, tu) | 0
,PaT < NbT ,  ∧ E3) = 1. 
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• E4: needer decides to ActiveAsk at NbT ,  ∧ provider decides to WaitUntilNext at 

NbT , . 

In this case, tp is the next production time after NbT , , and tu=tp. 

There is no other production between tp and tu: 

Pr(NOPRODUCE(tp, tu) | 0
,PaT < NbT ,  ∧ E4) = 1. 

From above analyses, either Pr(NOPRODUCE(tp, tu) | 0
,PaT < NbT ,  ∧ En)=1 for all 

En, or it equals 1 for all except for E2, in which case E2 = 0 (from the above argument); 

the choice depends on Z, which the provider can know. For the former case, 

∑ =

4

1n
Pr(NOPRODUCE(tp, tu) | 0

,PaT < NbT ,  ∧ En) × Pr(En)=1. For the latter, we need to 

calculate Pr(E2), Pr(needer decides to keep Silence at NbT , ). If Pr(E2)=1, meaning 

Pr(E1), Pr(E3) and Pr(E4) are all equal 0, then  

∑ =

4

1n
Pr(NOPRODUCE(tp, tu) | 0

,PaT < NbT ,  ∧ En) × Pr(En)=0.  

If Pr(E2)=0, meaning one of Pr(E1), Pr(E3) and Pr(E4) must equals 1, then 

∑ =

4

1n
Pr(NOPRODUCE(tp, tu) | 0

,PaT < NbT ,  ∧ En) × Pr(En)=1. 

The calculation of Pr(E2) is similar to what has been done in the previous case 

of ProactiveTell. NbT ,  is estimated to be max( 0
,PaT +1, ls

PaT ,  + τn/2)). tp is specified by 

considering each of the needer’s possible decisions at NbT , , Silence, Wait and 

ActiveAsk, and the provider’s responding  decisions, Reply and WaitUnitilNext, to 

ActiveAsk. There is only one difference between the previous case and the present one. 
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For the present case, since the provider won’t provide IP( 0
,PaT ), so for the case of 

needer’s δ= Silence policy, if 0
,PaT < NbT , < 1

,PaT , tp = ls
PaT ,  (tp = 0

,PaT  for the previous case). 

After estimating tp, the utility for each of the needer’s possible policies is determined 

and then the needer’s decision can be determined. 

6.7.2. Situation PB: Provider Receives a Request about I 

In this situation, the provider receives a request from the needer at time Tb,q. 

For clarity, Fig. 6.6 redraws time points for this situation below. 

Tb,q

t 

1
,
q

PaT

0
,
q

PaT

Last production time Current time

Next production time 

 

Fig. 6.6. Time Points for Situation PB. 

 

There is a need at the current time t = Tb,q, then tn = Tb,q. The provider will 

either Reply with the most recent value produced or WaitUntilNext production. Since 

there is a need, either value which is about to be provided will be used by the needer. P 

equals: 

Pr(NOPRODUCE(tp, tu)), 

where tp and tu will be identified in the policy being chosen. 
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In the case of Reply, the most recent value for I produced at 0
,
q

PaT  will be 

provided for the need at Tb,q. So tp = 0
,
q

PaT . Because there is a need, the needer definitely 

will use IP( 0
,
q

PaT ) when receives it, so tu = Tb,q. By definition the most recent value 

means no other value has been produced since Tb,q, hence there was no other value for I 

produced between 0
,
q

PaT  and Tb,q. Therefore: 

Pr(NOPRODUCE( 0
,
q

PaT , Tb,q)) = 1. 

In the case of WaitUntilNext, next value for I which will be produced at 1
,
q

PaT  

will be provided for the need at Tb,q. So tp = 1
,
q

PaT  and tu = 1
,
q

PaT . Therefore: 

Pr(NOPRODUCE( 1
,
q

PaT , 1
,
q

PaT )) = 1. 

Therefore currency function equals 1 for both policies, Reply and WaitUntilNext, in 

situation PB. 

6.7.3. Situation NA: Needer Has a Request about I Arise 

Fig. 6.7 shows time points for this situation. 

 

Most recent 
production time 

Tb,r 
t 

0
,NbT

1
,
a

PaT0
,
a

PaT

Last received time Current time 

Next production 
time 

 

Fig. 6.7. Time Points for Situation NA. 
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This is a need for I at the current time t = 0
, NbT , so tn = 0

, NbT . When the needer 

needs I at 0
, NbT , it has three policies to choose from: Silence, ActiveAsk and Wait. If the 

needer ActiveAsks the provider or Waits for a ProactiveTell from the provider, it will 

always use the most recent value for I. However, if the needer keeps Silence, i.e., it 

uses the value last received at time Tb,r, it is possible that the value for I has been 

changed since then.  We consider each of these sub-cases below. 

P equals: 

Pr(NOPRODUCE(tp, tu)), 

6.7.3.1. NA – ActiveAsk Is Used 

If ActiveAsk is chosen, the value for I provided for the need at 0
, NbT  will be 

either 0
,
a

PaT  or 1
,
a

PaT , depending on the provider’s response (Reply or WaitUntilNext). If 

the provider does Reply, it will send the most recent value it has produced, then tp = 

0
,
a

PaT . Since there is a need, the needer will immediately use IP( 0
,
a

PaT ) so tu= 0
, NbT . There 

was no other value produced between 0
,
a

PaT  and 0
, NbT . On the other hand, if the provider 

WaitUntilNexts, tp = 1
,
a

PaT  and tu = tp= 1
,
a

PaT . It is also the case that there has no value 

produced in the interim. Thus, in either case the probability for no other value 

produced between tp and tu is one: 

Pr(NOPRODUCE(tp, tu)) = 1. 
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6.7.3.2. NA – Silence Is Used 

When Silence is used, the most recent value for I that the needer has will be 

used for the need at 0
, NbT , so tp = Tb,r. This value will be used at 0

, NbT , then tu = 0
, NbT . 

The probability that no other value was produced between 0
, NbT  and Tb,r equals to the 

probability of Tb,r= 0
,
a

PaT , which means that Tb,r is the time at which the most recent 

value was produced. One can then compute: 

Pr(NOPRODUCE(tp, tu)) 

=Pr(Tb,r= 0
,
a

PaT ) 

=1–Pr(Tb,r< 0
,
a

PaT )14 

=1–Pr(Tb,r< 0
,
a

PaT ≤ 0
, NbT ) 

=1–CDFa,P( 0
, NbT –Tb,r–1) 

where CDFa,P means the cumulative density function of agent a’s production time 

interval. Since it is the needer doing the evaluation, the needer will use its estimate of 

the CDF based upon the information it has received from the provider over the history 

to calculate this probability. 

6.7.3.3. NA – Wait Is Used 

If Wait is adopted, tp is some production time of the value for I at which the 

provider will ProactiveTell in the future. This value will not be used until being 

produced, thus tu=tp. Obviously, there is no value produced between tp and tu: 

                                                 
14 Tb,r cannot be greater than 0

,
a

PaT  since the latter is the most recent production time. 
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Pr(NOPRODUCE(tp, tu)) = 1. 

6.7.4. Situation NB: Needer Receives a Value for I 

On this situation, the needer will Accept the value for I sent from the provider. 

The decision is deterministic, so we do not consider this case. 

6.8. Decision-Making Processes 

Figs. 6.8-6.11 show finite state diagrams representing the communication 

process of getting and telling (respectively) an information item. Each node represents 

a decision point. As one proceeds through the graph, the nodes represent alternating 

decisions by the needer and the provider. The nodes marked “e” are special in the sense 

that they represent the receipt of the information, or a timeout condition (explained 

below). The nodes marked “t” denoting a transfer from one node to another. For 

example, in situation PA of Fig. 6.8, agent a may receive an ActiveAsk from agent b 

when deciding to keep Silence to agent b. In such a case, the state will transfer to the 

start state of situation PB, the situation where a receives a request from agent b. In this 

case, agent a needs to update its data about agent b’s need time and decide if to Reply 

agent b right away or WaitUntilNext production. By either decision which a will make, 

agent b is able to receive an information item, so an “e” node is reached and the 

decision making ends. 

Since some of the decisions that can be made involving waiting an arbitrary 

length of time for another agent to do something, the possibility of infinite waits arises. 

To circumvent this, we use a heuristically chosen loop breaking algorithm. If a needer 

does not get the information during a time cut-off, the needer adopts policy ActiveAsk. 
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We choose the needer to do this, because it very likely that the needer has few chances 

to start communication if proactivity is fully explored. So letting the needer break time-

out can increase chances of sending the needer’s history data to the provider. 

 

0

1

2

e

a-b: ProactiveTell

a-b: Silence

b-a: Accept

b-a: Wait

b-a: Silence

e

e

b-a: ActiveAsk

Situation PA: Provider produces a new piece of information

a: provider        b: needer        e: end         t: transfer

t

 

 

 

0

ea-b: Reply

ea-b: WaitUntilNext

Situation PB: Provider receives a request for a piece of information

t

 

 

 

Fig. 6.8. Decision-Making Process of Provider in Situation PA. 

Fig. 6.9. Decision-Making Process of Provider in Situation PB. 
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e
b-a: ActiveAsk

b-a: Silence

b-a: Wait

a-b: Reply

a-b: WaitUntilNext

a-b: Silence

a-b: ProactiveTell

Situation NA: Needer needs a piece of information
 

 

 

0 b-a: Accept e

Situation NB: Needer receives a piece of information

t

 

 

Fig. 6.10. Decision-Making Process of Needer in Situation NA. 

Fig. 6.11. Decision-Making Process of Needer in Situation NB. 
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6.9. Decision-Theoretic Proactive Communication 

DTPC (Decision-Theoretic Proactive Communication) is the overall process for 

managing communication. It has three parts: an algorithm for selecting a policy, 

algorithms for providing information and algorithms for getting needed information.  

Fig. 6.12 shows the algorithm for selecting a policy. The identify function 

identifies parameters (tp and tn) that will be used appropriately, based on the values 

listed in Table 6.2. The evaluate function calculates utility of each policy. For each 

counterpart agent Agi, a policy δi with the maximum utility is added to policyList. By 

comparing each δi in policyList, a final `
iδ  with maximum utility is selected. 

 
 

/*self is an agent who makes the decision; 
   counterparts is an agent set about whom the decision is made; 
   I is information that communication conveyed. 
*/ 
selectPolicy(self, counterparts, I){ 
 policyList = null; 
 
 ∀ Agi ∈ counterparts 
   ∀ policy δi 
    identify(self, Agi, δi, I); 
    U(δi)=evaluate(self, Agi, δi, I); 
   select one δi with maximum U; 
   add δi to policyList; 
 
 select one `

iδ  with maximum U from policyList; 
 return `

iδ ; 
} 

 

 Fig. 6.12. A Policy Selection Algorithm. 
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Figs. 6.13 and 6.14 show algorithms for providing a piece of information to a 

needer, or getting a piece of information from a provider. Generally, agents select a 

policy that has maximum utility and act corresponding to that and their counterpart’s 

response. To is a time cutoff 15 used by needer to guarantees that the system does not go 

into a waiting forever state. 

Function updateSelfData updates the decision maker’s (provider or needer) 

information production or need time intervals. updateSelfData is executed when the 

decision maker produces/needs an information item. Function updateOtherData 

updates the decision maker’s knowledge about counterpart’s production or need time 

intervals which are from historical data (if any) attached in each message sent to the 

counterpart. Updating this data can help agents make better estimation for distributions 

of information production or need. 

                                                 
15 Of course, if desired, one could use a different cutoff for each situation. 
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/*Executed when provider is in situation PA at time t. 
   Let pendWUNList be a list of needers whose requests will be replied with 
   WaitUntilNext production. 
*/ 
provideNeededInfo(provider, needers, I, t){//needers is a needer set 
 updateSelfData(provider, I, t);  //update provider’s production time 
 
 if (pendWUNList != null)         //there is pending WaitUntilNext reply(s) 
   reply I to A0;                       //A0 is the first needer on pendWUNList; 
   updateOtherData(A0, I, t); 
   remove A0 from pendWUNList; 
   exit; 
 
 `

iδ  = selectPolicy(provider, needers, I); 
 switch( `

iδ ) 
   case ProactiveTell: 
       ProactiveTell needersi; 
       updateOtherData(needersi, I, t); 
       break; 
   case Silence: 

    Silence; 
       break; 
} 
 
/*Executed when provider is in situation PB at time t. 
*/ 
receiveRequest(provider, needer, I, t){ 
          //needer is a single agent who needs I 
 `

iδ  = selectPolicy(provider, needer, I); 
 switch( `

iδ ) 
   case Reply: 
       Reply needer; 
        updateOtherData(needer, I, t); 
       break; 
   case WaitUntilNext: 
        add needer to pendWUNList; 
          break; 
} 

 

Fig. 6.13. Algorithms about Providing Information. 
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/*Executed when needer is in situation NA at time t.*/ 
getNeededInfo(needer, providers, I, t){ 
 set time cutoff To; 
 waitTime = 0; 
 boolean obtained=FALSE, waiting=FALSE; 
 updateSelfData(needer,  I, t);   //update self need time 
  `

iδ  = selectPolicy(needer, providers, I); 
 switch( `

iδ ) 
     case Silence: 
         Silence;       //use most recent value it has 
         break; 
     case ActiveAsk: 
         ActiveAsk providersi; 
         if providersi sends Reply 

        receiveInfo(providersi, I, t);//transfer to situation NB 
     else          //provider chose WaitUntilNext 

               Wait;       
            waiting = TRUE; 
         break; 
     case Wait: 
         Wait; 
         waiting = TRUE; 
         break; 
 if (waiting) 
     while ((!obtained)&&(waitTime<To)) 
         waitTime++;  
         if providersi sends WaitUntilNext reply 

        receiveInfo(providersi, I, t+waitTime); 
              obtained=TRUE; 
         if a provider p Proactivetells I 

        receiveInfo(p, I, t+waitTime); 
        obtained=TRUE; 

     if (!obtained) 
         randomly select a provider q; 
         ActiveAsk q; 
} 
/*Executed when needer is in situation NB at time t.*/ 
receiveInfo(provider, I, t){ 
    updateOtherData(provider, I, t); 
} 

 

Fig. 6.14. Algorithms about Getting Needed Information. 
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6.10. Summary 

In this section, we have presented a method for achieving proactive 

communication using decision theory for determining the communication policy to be 

used. We have identified each situation that might (or might not) involve the exchange 

of information; we have identified the policies that could be selected. We have then 

introduced the general form of a utility function that can be used for the decision 

theoretic selection of the best policy. In order to do this, it is necessary to estimate the 

value of the utility function, as some of the independent variables cannot be precisely 

known by the evaluating agent. In addition, the decision-making process is 

interdependent between provider and needer, so estimation about each other’s decision 

is also necessary for evaluating these variables. 
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CHAPTER VII 

AN APPLICATION DOMAIN DESIGN AND EVALUATIONS 

This section describes the design for an application domain and the experiments 

used to evaluate the Proactive Communication approach. 

An applicable domain should meet following criteria: 

• Messages are allowed to be sent. 

• Communciation is assumed to have cost and risk. 

• The team has a common goal which can be accomplished by executing 

a set of team plans. There are information needs among the team. 

Agents need to know some information to execute these team plans. 

• There is uncertainty during teamwork. The uncertainty may be caused 

by agents holding incomplete knowledge about the time of information 

production and need and about the world. 

• The teamwork process is characterized by stochastic properties. For 

example, due to random moves of objects in the world, durations of plan 

executions are random variables. 

We have extended the classic Wumpus World problem [102] into a multi-agent 

version and used this as the application domain. Two evaluations were performed: a 

test of the effectiveness of observability, as the part of the overall approach; and a test 

of the effectiveness of the overall approach, which includes the empirical distribution 
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function method for predicting information production and need and the decision 

theoretic method on deciding a communication policy. 

7.1. Evaluation of Observability 

7.1.1. Multi-Agent Wumpus World 

For this evaluation, the world is 20 by 20 cells and has 20 wumpuses, 8 pits, 

and 20 piles of gold. 

The team is composed of 1 carrier and 3 fighters and is allowed to operate a 

fixed number of 150 steps. The team goal is to kill wumpuses and get the gold without 

being killed. The carrier is capable of finding wumpuses and picking up gold. We 

assume that the carrier is strong enough to carry all of the gold it finds. The fighters are 

capable of shooting wumpuses. 

Every agent can sense a stench (from adjacent wumpuses), a breeze (from 

adjacent pits), and glitter (from the same position) of gold. When a piece of gold is 

picked up, both the glitter and the gold disappear from its location. When a wumpus is 

killed, both the stench and the wumpus’ body are removed from the world. The 

environment simulation maintains object properties and agents’ actions. 

The agents may also have observabilities, while their observing radii may be 

different. Each agent has an individual knowledge base (KB) to save the beliefs it 

generates after observing the world and actions of other agents. The observabilities are 

encoded as rules in agents’ KB. The inference engine used is JARE [60]. 

The agents are randomly located in the world and know each other’s starting 

location. In the absence of any target information (wumpus or gold), all agents reason 
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about the world to determine their priority of potential movements. Basically, they 

move to locations not previously visited (when possible, though they may revisit a 

location if there are no reachable unvisited safe locations). If they are aware of a target 

location requiring action on their part (shoot wumpus or pick up gold), they move 

toward the target. In all cases, they avoid unsafe locations. 

If the fighter senses other wumpuses while it is on the way to kill the wumpus 

about which the carrier has told it, it will kill them first. This is because the fighter has 

a limited range of vision, so the wumpuses it senses must be close and can be killed 

quickly. 

7.1.2. Problem Analysis 

In ODBC, Proactive Communication has two primary protocols named O-Tell 

and O-Ask. These protocols are used by each agent to generate inter-agent 

communication when information exchange is desirable. 

Decisions about whether to use O-Tell or O-Ask (see Section 4.5) when 

observing an information item depends on the relative frequency of information need 

vs. production. For any piece of information I, we define two functions, fC and fN 

[135]. fC(I) returns the frequency with which I changes. fN(I) returns the frequency with 

which I is used by agents. We classify information into two types – static16 and 

dynamic. If fC(I)≤fN(I), I is considered static information; if fC(I)>fN(I), I is considered 

                                                 
16Here, static information includes not only information that never changes, but also information 
infrequently changed but frequently needed. 
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dynamic information. For static information we use O-Tell by providers, and for 

dynamic information we use O-Ask by needers17. 

In order to understand the Proactive Communication problem in the Multi-

Agent Wumpus World domain, we present the team’s plans, which are based on the 

team plans in [137], which were developed for the original CAST18. Fig. 7.1 shows the 

major part of the team plan: 

 

 
(plan killWumpus() 

(process 
(seq 

(agent-bind ?ca (constraint (play-role ?ca carrier))) 
(DO ?ca (findWumpus)) ; carrier is assigned 
(agent-bind ?fi (constraint ((play-role ?fi fighter) 

(closest-to-wumpus ?fi ?wumpusId)))) 
;fighter who is closest to wumpus is assigned 

(DO ?fi (startKill)) 
))) 

 

Fig. 7.1. An Example of Plans of the Multi-Agent Wumpus World. 

 

Each agent has a copy of the team plan and will evaluate the pre-cond during 

the plan execution. The evaluation is based on the agent’s own beliefs about the 

environment. The team plan does not explicitly state the communication that is to take 

place. Rather, the agents are to infer the necessary communication from their beliefs of 

the plan and the environment. 

                                                 
17In the next section 7.2, we address some statistical methods to calculate frequencies and hence will be 
able to provide more comprehensive proactive communication protocols. 
18 In the next experiment, we develop a new team plan for current CAST. 
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As one can infer from these plans, the key problems are: 

1) Which kind of information will be communicated? 

2) Who will need or produce the information? 

3) Which information will be O-Telled and which will be O-Asked? 

The answer to the first problem is that the conjunct that is part of the 

precondition of a plan or an action will be communicated in the team at the time when 

the conjunct is evaluated. For this example, the information is “wumpus location.” In 

this evaluation, we encoded a domain-dependent role constraint, closest-to-wumpus, 

for selecting the fighter closest to the wumpus found (see Fig. 7.1). The selected fighter 

will be assigned the startKill plan and will kill the wumpus after arriving at the 

wumpus’ location. Therefore an unknown conjunct that is part of a constraint (e.g., 

“fighter location”) is another piece of information which is to be exchanged. However 

this kind of domain constraint is too specific to be generalized. After developing 

Dynamic Information Prediction and Decision Theoretic Proactive Communication, we 

are able to remove it from the domain and let the carrier decide who can be committed 

on the fly. The capability will be presented in our next evaluation to the overall 

Proactive Communication approach (see Section 7.2). 

To determine who needs and who produces a given item of information, agents 

analyze the preconditions and effects of plans and actions, and generate a list of 

needers and a list of providers for every piece of information. The needers are agents 

who might need to know the information (e.g. the fighters), and the providers are 

agents who might know the information (e.g. the carrier and other fighters). 
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As to the third problem, the “wumpus location” is static information and the 

“fighter location” is dynamic information. Since the static information won’t often 

change, agents use O-Tell to impart the static information they just learned if they 

believe other agents will need it. For example, the carrier O-Tells the fighters the 

wumpus’ location. Agents use O-Ask to request dynamic information if they need it 

and believe other agents have it. For example, fighters O-Ask each other about their 

locations. 

7.1.3. Results and Analysis 

Our goal is to evaluate effectiveness of agents’ observabilities. Therefore we 

used two teams, a team has observability and a team does not have observability.  

We report three experiments. The first explores how observability reduces 

communication load and improves team performance in multi-agent teamwork. The 

second focuses on the relative contribution of each type of belief generated from 

observability to the successes of CAST-O as a whole. Finally, the third evaluates the 

impact of observability on changing communication load with increase of team size. 

7.1.3.1. Overall Effectiveness of Observability 

Two teams are defined in below. Except for the observability rules, the 

conditions of both teams were exactly the same. 

• Team A: The carrier can observe objects within a radius of 5 grid 

cells, and each fighter can sense objects within a radius of 3 grid 

cells. 
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• Team B: None of the agents have any sensing capabilities beyond 

the basic capabilities described at the beginning of the section. 

We use measures of performance which reflect the number of wumpuses killed, 

the amount of communication used and the gold picked up. In order to make 

comparisons easier, we have chosen to have decreasing values indicate improving 

performance, i.e., smaller numbers of communication messages are better. To maintain 

this uniformity with some parameters of interest, we use the quantity of wumpuses left 

alive rather than the number killed. The experiments were performed on 5 randomly 

generated worlds. The results are shown in Table 7.1. 

Table 7.1 shows that, as expected, Team A killed more wumpuses and found 

more gold than Team B. From other experiments, we have learned that the further the 

agents can, the more wumpuses they kill. It is interesting that the absolute number of 

communications is higher for Team A with observabilities than that of Team B, i.e., 

33.8 vs. 28.8 for O-Tell and 77.4 vs. 67.6 for O-Ask. The number of O-Tells in Team A  

were greater because the carrier, which is responsible for finding wumpuses and O-

Telling their locations to fighters, has further vision than that of the carrier in Team B. 

Hence the carrier in Team A can sense more wumpuses. This feature leads to more O-

Tells from the carrier to the fighters in Team A. The number of O-Tells can be reduced 

by the carrier’s beliefs about the fighters’ observability, i.e., if the carrier believes the 

fighters can sense the wumpus’ location, it will not O-Tell the fighters. However, since 

the fighters’ detection range is smaller than that of the carrier, the reduction cannot 

offset the number of extra O-Tells. The reason for the increased number of O-Asks in 



 161

Team A is that the more wumpuses team members find, the more likely it becomes that 

they send messages among themselves to decide who is closest to a particular wumpus. 

Although the number of the messages could be reduced by factors such as allowing the 

fighter to sense other fighters’ locations and to sense other fighters killing a wumpus, 

the increase cannot be totally offset because of the fighters’ short vision. Hence, it 

makes more sense to compare the average number of messages per wumpus killed. In 

these terms, the performance of Team A is much better than that of Team B, 2.23 vs. 

5.9 for O-Tell and 5.09 vs. 13.6 for O-Ask. Hence, our algorithms for managing the 

observability of agents have been effective. 

 

Table 7.1. Team Performance and Communication Amounts in Sample Runs. 

Team A T1 T2 T3 T4 T5 T6 
Run 1 4 8 82 32 5.12 2.00 
Run 2 5 9 76 35 5.06 2.33 
Run 3 6 6 72 38 5.14 2.71 
Run 4 5 7 80 32 5.33 2.13 
Run 5 4 6 77 32 4.81 2.00 

Average 4.8 7.2 77.4 33.8 5.09 2.23 
       

Team B T1 T2 T3 T4 T5 T6 
Run 1 14 14 72 30 12.00 5.00 
Run 2 16 16 62 27 15.5 6.75 
Run 3 16 14 62 27 15.5 6.75 
Run 4 14 15 72 30 12.00 5.00 
Run 5 15 14 70 30 14.00 6.00 

Average 15 14.6 67.6 28.8 13.6 5.90 

T1: number of wumpuses left alive 
T2: amount of gold left unfound 
T3: total number of O-Asks used 
T4: total number of O-Tells used 
T5: average number of O-Asks per wumpus killed 
T6: average number of O-Tells per wumpus killed 
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From this experiment, we learned two things. First, by introducing 

observabilities to agents, the amount of communication is increased slightly, because 

observability is a major means for an individual agent to obtain information about the 

environment and team members; the more information obtained by the agent, the more 

messages it conveys to help others. Second, observability can greatly decrease the 

number of communications when normalized by some measure of team performance, 

which, in this example, is the average number of communications per wumpus killed, 

denoted by ACPWK. 

7.1.3.2. Effectiveness of Different Perspectives of Observability  

The second experiment tested the contribution of different categories of belief 

generated from observability to the successful reduction of the communication. These 

beliefs are as follows:  

1) belief1: beliefs about an observed property. 

2) belief2: beliefs about an observed action whose pre-cond contains the 

information worth exchanging. 

3) belief3: beliefs about an observed action whose effect contains the 

information worth exchanging. 

4) belief4: beliefs about another agent sensing a property19. 

We test their contributions by combining them. We used Team A and Team B 

in this experiment and kept all conditions the same as those of the first experiment. We 

                                                 
19 Currently, our OBPC algorithms involve only two parts, i.e., sender and receiver. They do not 
consider the third party communication such as agent a asks b to ask c for some information. Therefore, 
belief about what another believes about an observed action executed by the third agent is not included. 
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used Team B as a control condition against which to evaluate the effectiveness of 

different combinations of observability with Team A. We named Team B, without any 

of these beliefs, combination 0, since it involves none of the four beliefs. For Team A, 

we tested another 4 combinations of these beliefs to show the effectiveness of each, in 

terms of ACPWK. These combinations are: 

0. Team B.  

1. Team A with each agent’s reasoning restricted to generating beliefs in 

category belief1. Then each agent believes properties it observes. 

2. Team A with each agent’s reasoning restricted to generating beliefs in 

categories belief1 and belief2. This allows the agent to reason what the 

doer believes the pre-cond of the observed action. This combination 

tests the effect of belief2.  

3. Team A with each agent’s reasoning restricted to generating beliefs in 

categories belief1, belief2 and belief3. Then the agent can reason what 

the doer believes the effect of the observed action. This combination 

tests how belief3 improves the situation. 

4. Team A with all the ability to reason for all four belief categories. Then 

the agent addtionlly believes that the others sense some properties. This 

combination tests the effect of belief4 and shows the effectiveness of the 

beliefs as a whole. 
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Each combination was run in the five randomly generated worlds. The average 

results of these runs are presented in Fig. 7.2, in which one bar shows ACPWK for one 

combination. 
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(b) O-Ask Protocol. 

Fig. 7.2. Average Communication per Killed Wumpus in Different Combinations. 
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The first case, agents’ belief1 (combination 1), is a major contributor to 

effective communication, for both O-Tell and O-Ask. As seen in (a), belief1 compared 

to combination 0 causes ACPWK to drop significantly for O-Tell, from 5.9 to 3.52. For 

O-Ask, in (b), ACPWK drops from 13.8 to 11.1.  

The second case, belief2 (combination 2), does not produce any further 

reduction and hence is not effective for O-Tell, but belief2 does produce improvement 

for O-Ask. For O-Tell, when a provider senses an action, meaning the doer believes the 

precondition of the action, so the provider won’t perform O-Tell. So for this example 

belief2 can be of little help in O-Tell. While for O-Ask, belief2 reduces ACPWK from 

11.1 to 9.36, because with belief2, a needer will know who has a piece of information 

explicitly. Then it can O-Ask without ambiguity. 

Third, for the similar reason that belief2 only works for O-Ask, belief3 

(combination 3) contributes little to O-Tell but further decreases ACPWK to 7.97 for 

O-Ask. 

Fourth, belief4 (combination 4) has a major effect on communications that 

applies to both protocols. It further drops ACPWK to 2.23 for O-Tell and to 5.39 for O-

Ask. Belief4 is particularly important for O-Tell. For example, if the carrier believes 

that the fighters sense a wumpus’ location, it will not tell them. 

This experiment examined the contribution of each belief deduced from 

observability to the overall effectiveness of communication. The result indicates three 

things. First, belief1 and belief4 have a strong effect on the efficiency of both O-Tell 

and O-Ask. Second, belief2 and belief3 have weak influence on the efficiency of O-
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Tell. Third, these beliefs work best together, because each of them provides a distinct 

way for agents to get information from the environment and other team members. 

Furthermore, they complement each other’s relative weaknesses, so using them 

together better serves the effectiveness of the communication as a whole. 

7.1.3.3. OBPC’s Contributions to Team Scalability 

We designed the third experiment to show how communication load changes 

with increased team size. O-Ask is directed to only one provider at certain time, while 

the O-Tell goes to all needers who do not have the information. So we assume that O-

Tell brings more communication into play than O-Ask, and then we chose to test the O-

Tell protocol. If the test results are good for O-Tell, we can expect that they are valid 

for O-Ask as well. 

We used the same sensing capabilities for Teams A and Team B as in the first 

experiment. However, we increased the number of team members by 1, 2 and 3, in two 

tests that we ran. In the first test, we increased the number of needers, (i.e. fighters,) 

and kept the same number of providers, (i.e. carriers). In the second test, we did the 

opposite. In each test, for each increment and each team, we ran the five randomly 

generated worlds and used the average value of ACPKW produced in each world. 

Fig. 7.3 shows the trend of ACPKW as a function of increasing team size. In 

(a), Team B has an obvious increase in ACPKW with increasing the team size. 

However, Team A the ACPKW remains the same. The trend can be attributed to two 

factors: first, the number of O-Tells is held down because if the carrier believes the 

fighters can sense the wumpus, the carrier does not perform O-Tell; second, the more 
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fighters there are, the more wumpuses will be killed, which enlarges the numerator of 

ACPKW. 
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(b) Providers Increment. 

Fig. 7.3. The Comparison of O-Tell with Different Team Sizes. 
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In (b), increasing the number of providers breaks the constant trend in Team A 

and shows an increased ACPWK. However, comparing this increase to that of Team B, 

it is a moderate number. In Team B, incrementing the number of providers almost 

doubled the number of O-Tells in every case. The communication load increased 

because different carriers duplicated the O-Tells of other carriers. For example, each 

carrier always provides the wumpus’ location to fighters when observing a wumpus. 

The carriers lack an effective way to predict when a piece of information is produced 

and by whom, which is one of main concerns for the empirical distribution function 

method for predicting information production and need and the decision theoretic 

method (see next Section 7.2). This experiment shows that ACPWK grows more 

slowly with increase of team size, in the team empowered with observability, which 

may indicate that observability will improve team scalability in some sense. 

7.2. Evaluation of Proactive Communication 

The experiments introduced in this section are overall evaluations of the 

Proactive Communication developed. We specify the form of utility function in the 

Multi-Agent Wumpus World domain. To show that Proactive Communication helps 

produce more effective interaction among agents in multi-agent teamwork, we design 

two other communication conditions, Always Tell and Always Ask. Experiments have 

been run under controlled by these three conditions. The results are presented that 

show the advantage of Proactive Communication in enhancing team performance as 

well as decreasing communication load. 
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To demonstrate Proactive Communication’s ability of handling complex 

problems, we adjusted the existing Multi-Agent Wumpus World by adding more 

uncertainties and flexibility into it, as described in the next section. 

7.2.1. Adjusted Multi-Agent Wumpus World 

The world is 20×20 and has 4 wumpuses. The team is still composed of 1 

carrier and 3 fighters. The team goal is to kill wumpuses. A complete MALLET team 

plan is given in Appendix B. The team is allowed to operate a fixed number of 5000 

steps. We let the agents’ observability region be an equilateral rhombus whose vertices 

are 7 (for carrier) or 1 (for fighters) in the X and Y directions from the agents’ location. 

We assume the agents know each other’s initial location. At each time step, the 

carrier makes a random safe move to an adjacent location not previously visited within 

the last 50 steps if possible. If there is no such location, the carrier will visit the least 

recently visited adjacent safe location.  At the start of a trail, each fighter remains at its 

initial location until it receives a wumpus location from the carrier.  Similarly, after 

killing a wumpus, a fighter will stay at the location where it killed a wumpus until it 

receives a new wumpus’ location from the carrier.  The carrier chooses the first fighter 

the carrier evaluates, if two or more fighters have the same utility. 

To facilitate estimating the time duration until the next information need (in this 

implementation, the time it takes for a fighter to kill a wumpus) and the next 

information production (the time of finding a wumpus), the fighters and carriers 

exchange information about the times at which they killed or found a wumpus.  

However, this exchange of information is included as part of tell or ask messages, and 
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is not sent separately.  For example, for each wumpus found, the carrier records the 

time at which the wumpus was found and attaches such historical data to messages sent 

to the fighters. Fighters attach the times at which they received wumpus locations and 

killed the corresponding wumpuses with each active-ask. In addition, the location of 

the sender is also included in messages sent. So the carrier knows the fighters’ present 

locations, which are the last wumpuses’ locations the carrier told the fighters, and the 

fighters know the carrier’s location (may be present or not) from the message sent by 

the carrier. Though the fighters may not have the carrier’s present location since the 

carrier keeps moving all the time, the carrier may frequently contact the fighters and 

attaches its location if proactivity is fully enabled. 

The wumpuses periodically jump to some other random location from time to 

time after their first appearance. There is no limit for how far they can jump (other than 

that they cannot jump outside of the world). The length of time they stay at their 

current locations is randomly generated from 1 to 40 steps (agents are assumed know 

this range). There is a new wumpus born at a randomly chosen location on the step 

after one has been killed, allowing us to maintain a constant number of wumpuses in 

the world. 

When a wumpus jumps before the fighter arrives at the wumpus’ location and 

kills it, we consider a new need to arise. The fighter will continue to move to the 

location at which it was told the wumpus was, and then stay at the wumpus’ location 

and make a new decision. 
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Each wumpus is assigned a hearing rhombus of radius 8 when it is generated. 

The wumpuses have a probability (the same for all wumpuses) of hearing sounds 

(messages) within their radius. A wumpus does not always hear messages because it 

does not always focus on hearing (e.g., it sleeps some). However, once a wumpus hears 

a message (sent either by a carrier to a fighter or vice versa), it will be alerted. If the 

message is from the carrier to a fighter, the wumpus can tell whether it has been 

identified. If the message is a request from a fighter to the carrier, the wumpus will 

focus on the coming reply from the carrier. But, if the wumpus has jumped before the 

time at which the reply is sent, we assume it no longer pays specific attention to the 

message emanating from a carrier within its hearing radius. Agents are assumed to 

know the wumpus’ hearing radius and the probability of hearing a message, but they 

may not know whether or not the message sender is within the wumpus’ hearing 

radius. The wumpus also has short sensing ability to an adjacent cell. Once a wumpus 

is alerted by a message and identifies itself as the target, it can sense the adjacent 

fighter and starts to fight with the fighter. The wumpus has a probability of winning the 

fight. Agents are also assumed to know this probability. One can see that, if more 

information has been sent, chances are greater that the fighters may be killed, and 

consequently fewer wumpuses will be killed in the limited length of time. Moreover, 

the game may be forced to end before the time limit if there are no fighters left. 

We assume that the wumpuses are distinguishable. This means that the carrier can 

determine whether it is sensing a wumpus for the second time (after a series of moves 

by the carrier) or is sensing a second wumpus. While the problem where the wumpuses 
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are indistinguishable is very interesting, it focuses more on the planning and reasoning 

required and obscures the principal issues of communication being addressed here. So 

we focus on the case in which the wumpuses are distinguishable in this 

implementation. 

7.2.2. Problem Analysis 

Information to be communicated in the team consists of conjuncts which are 

part of the precondition of a plan or an action and their value are unknown. For this 

example, the information is “wumpus location”. 

A list of needers and a list of providers for a given piece of information are 

generated by analyzing the preconditions and effects of plans and actions [135]. For 

this example, the provider is the carrier, and the needers are the fighters. We removed 

the domain-specific constraint which says the closest fighter will be assigned a found 

wumpus’ location (used by Yin [137]). Instead, the assignment is decided by utility 

function in determining communication policies. 

Challenges come from the problem of when the information will be provided or 

asked for. It is unnecessary that all needers be told about “wumpus location” when the 

location is discovered or that the provider always be asked about “wumpus location” 

when the location is needed. The decisions about whether or not to communicate 

depend on two kinds of knowledge: agents’ observabilities and time points at which the 

information is produced or needed. Observabilities are useful in the case that one agent 

can deduce others’ beliefs from what it has sensed. For example, if the carrier believes 

the fighter also can sense the wumpus’ location that was discovered by the carrier, the 
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carrier does not need to tell a fighter about this location, or if a fighter can find 

wumpuses by itself, the fighter does not need to ask the carrier for this information. 

However, knowing when the information is needed or produced is very important in 

the system where agents’ observabilities are limited. For example, in this domain, 

because of the fighters’ limited observabilities, it is very likely that the fighters have to 

obtain the “wumpus’ location” information via communication. The communication 

could be either the carrier proactively telling the information to the fighters, or the 

fighters actively requesting it from the carrier.  

However, knowing when the information is needed or produced is sometimes 

impossible, because the domain has uncertainties. The uncertainties come from two 

aspects. First, since the carrier moves randomly, and since the wumpuses appear 

randomly, the time duration needed for finding and killing the wumpuses would not be 

fixed and cannot be precisely calculated. Second, the agents’ decisions are not fixed 

and may vary in different situations. For example, the more up-to-date the information 

the fighters receive, the better their chance of locating the wumpuses. Nevertheless, 

since the wumpuses do not move before the next jump, a piece of old information may 

also be useful to the fighters, in the case that the fighters do not have the most recent 

one. 

7.2.3. Determining the Form of the Utility Function 

The utility function is composed of risk, cost, timeliness, and currency 

functions and those functions have been defined on a higher level in Section 6.4. In this 

implementation, they are given specific forms. 
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7.2.3.1. Risk Function 

Communication incurs risk in the Multi-Agent Wumpus World. The risk is 

defined as the potential loss of wumpuses that a fighter would kill resulting from the 

possibility that a fighter may be killed if a wumpus overhears the message delivered 

(no matter by a carrier to the fighter or by the fighter to a carrier). This is because only 

fighters are able to kill wumpuses and consequently if the wumpus has been alerted by 

the communication and kills a fighter, the loss of the fighter will seriously degrade the 

team’s ability to kill wumpuses in the future. On the other hand, because of the 

carrier’s large observability radius, it may sense wumpuses far enough away that there 

is a much lower chance of the carrier being killed; only if a wumpus is generated in the 

same cell as the carrier will the carrier be killed. The probability of this occurring is 

much lower than that of a message being overheard, and thus, we do not consider the 

possible loss of a carrier in the risk function. 

There are two cases to consider: 1) the wumpus overhears a carrier, and 2) the 

wumpus overhears a fighter. In the case that the carrier is the sender, the risk is directly 

associated with the message about wumpus whose location was found.20 However, in 

the case that a fighter is the sender, the message sent will not cause a risk directly, 

because the message is just a request and wumpuses are unable to tell who will be the 

target by hearing it. Instead, the risk is associated with the reply sent by the carrier to 

the request. Therefore, for both cases, the risk is associated with the messages sent by 

                                                 
20 Though multiple wumpuses may be discovered simultaneously, the carrier will make decisions 
regarding to each of their locations. Therefore at each decision point, we consider one wumpus 
discovered. 
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the carrier. The fighter who may be killed is the one to be told about the wumpus 

location and the wumpus that might kill the fighter is the one whose location was 

transmitted. Although unobserved wumpuses may hear the message as well, we assume 

they will not cause the risk since they are able to identify that they are not the target so 

they will not fight with the fighter. 

The risk function has been defined as R(e, St, δ) where e is the agent’s internal 

state, St is the agent’s situation at the time t of decision-making, δ is the policy under 

consideration (see Section 6.4.1). In this domain, we assume the risk of communication 

is associated with the number of steps left in a game, and two probabilities Prh and Prf: 

R = k × (5000 − t) × Prh × Prf     (7-1) 

where k is the number of wumpuses a fighter can kill per unit time, t is the number of 

steps passed, Prh is the probability that the wumpus hears the message sent by the 

carrier, and Prf is the probability that the wumpus can win against the fighter. 

To give a number to k for initial tests, we ran the system in a trial mode and k 

was estimated by the data collected from previous test runs21. We learned that the 

average number of wumpuses a fighter can kill per step is 0.01. We then set  

k=0.01. 

Regarding to Prf, we learned that if Prf is set to a number like 0.2, it is usually 

the case that all fighters died before the game ends at 5000 steps. We also learned that 

setting Prf to a low number such as 0.05 will limit the effect of risk factor. We thus set  

                                                 
21 It would be possible to obtain estimates for k dynamically as a game progresses, using EDF in a 
manner similar to that used for other aspects of the process. 
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Prf = 0.1. 

The last value to compute is Prh.  Computing Prh is more complex and dynamic 

than computing the other variables.  Suppose the area of the world is O, and rc and rf 

represent observable rhombus vertex distance from the carrier and the fighter, 

respectively. Further, we assume that the wumpus is able to hear messages sent by an 

agent within a rhombus with vertex distance of rw from the wumpus. However, the 

wumpus may or may not be paying attention to messages (e.g., it might be asleep). We 

are interested in the probability that the wumpus does hear and take action on a 

message it intercepts. We thus denote the probability that the wumpus “pays attention” 

to a message, given that it can hear the message, by Pra. We use Prr to denote the 

probability that an agent is within the hearing range rw. Then Prh, the probability of 

hearing a message, is the product of Prr, the probability that an agent is within the 

wumpus’ hearing range rw, and Pra, the probability that the wumpus pays attention to 

the message: 

Prh = Prr × Pra. 

There are two cases to consider for Pra: 1) the wumpus is “unalerted” by the 

request from the fighter, and consequently will not pay attention to the coming reply; 

and 2) the wumpus is “alerted” so will pay attention to the coming reply. For the 

“unalerted” status, since the wumpus may or may not focus on hearing at any time, we 

assume Pra is 0.1: 

Pra = 0.1. 
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One can expect that the consideration of Pra for the “alerted” status is more 

complex. Therefore in the form Prh=Prr×Pra, we focus on Prr and Pra for the “alerted” 

status. We consider rc < rw, which is our current setting22. We analyze Prh separately for 

the case that the carrier is proactively telling a message or that a message is a reply sent 

by the carrier regarding to a request from a fighter. Then the risk will take place for 

three of carrier’s policies: ProactiveTell, Reply and WaitUntilNext. 

Table 7.2 shows Prh, the probability that the wumpus hears the message sent by 

the carrier, for these policies (calculation details is presented in Appendix C). Once Prh 

is computed, risk can be easily computed by Eq. (7-1).  The difficulty is that there are 

two unknown parameters in this table, H and Dn. H is the length of time between the 

last time the carrier was the wumpus and the time the wumpus will jump.  Dn is the 

time between the time the carrier last saw the wumpus and the current time.  These 

parameters must be estimated. The methods of estimating these parameters are also 

given in Appendix C. 

 

 

 

 

 

 

                                                 
22 The calculation of Prh in rc ≥ rw would be simpler than the current setting, in that the carrier can 
explicitly calculate whether or not the wumpus is able to hear the message. So we only consider rc < rw in 
experiments. 
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Table 7.2. Prh in Risk Function for Different Policies. 

                                   Probability 
Policy 
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7.2.3.2. Cost Function 

We have defined the cost as the following form in Section 6.4: 

C({m})=
⎩
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where k0 and k1 are coefficients and {m} is a set of messages used by a policy. 

Empirical data shows that k0 is a base cost of sending a message and k1 is a parameter 

which adjusts the effect of the message size to the cost [134]. Typically, k0 is much 

larger than k1. Therefore, we assume that k1=0. Communication is generally considered 

to be cheap in the present time. Hence we also set k0=0. According to this, 
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C({m})=0. 

7.2.3.3. Timeliness Function 

At the abstract level, the timeliness is represented by two functions: fs, the value 

of timeliness under the condition that the most recently produced information is sent, 

and ff, the value of using old information (see Section 6.6.1 for detail). 

fs has been defined as a non-increasing function of a time difference d between 

tn, the time at which an information item is needed, and tp, the time at which the 

information provided is produced: 

fs(d(tn, tp)) 

where d=max(0, tp–tn). If the fighters are able to receive wumpuses’ locations as 

quickly as possible, they may catch more wumpuses before the wumpuses jump and 

kill them. Thus, the timeliness loss is the number of wumpuses a fighter can kill per 

unit time multiplied by the delay time. Accordingly, we assume the form of function fs 

in this example as: 

fs=
⎩
⎨
⎧

−
<

otherwise    )tk(t
t tif                    0

pn

np . 

The rationale for this form of timeliness is that the further in the future the value used 

will be produced, the more likely the more opportunity to kill wumpuses is lost while 

waiting.  

ff generally is domain dependent and can be determined on many different 

bases. In this domain, the wumpuses periodically jump to some other random location 

and the time duration of staying on one place is also random. Therefore, once a 



 180

wumpus jumps (meaning the value for I is changed), there is no gain for a fighter to 

chase the old wumpus’ location. Hence the value for communicating the old location is 

zero: 

ff = 0. 

7.2.3.4. Concurrency Function 

On the highest level, the currency has been defined as a probability function P: 

Pr( ¬∃  τ ∈ Int(tp, tu] ∋ IP(τ) | St ∧ δ), 

which means that no other value is produced between (tp, tu], conditional on a policy δ 

which is chosen by agents in the situation event St at time t (see Section 6.6.2). 

The currency function of this implementation is not exactly the same because of 

the unique characteristics of the domain. However, it rests on the same idea worked out 

in Section 6.6.2. At the highest level, P uses tu, which is the time at which IP(tp) is used 

by the needer. But we did not specify whether tu denotes when the use of IP(tp) begins 

or ends. In this domain, it is important for a fighter to arrive at a found wumpus’ 

location before the wumpus jumps. Therefore tu represents the end use of IP(tp). Hence 

in this domain, tu is the time at which the fighter arrives at the wumpus’ location. We 

assume P represents the probability that the wumpus does not jump between the time 

interval Int(tp, tu]: 

Pr( ¬∃  τ ∈ Int(tp, tu] ∋ wumpus jumps at τ | St ∧ δ). 

For simplicity, P is represented as: 

Pr(WNJ(tp, tu)), 
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where the event “wumpus not jump between Int(tp, tu]” is abbreviated as WNJ(tp, 

tu).Though the probability function P is computed on a general level in Section 6.7, 

Pr(WNJ(tp, tu)) must be reconsidered since it is a specific form for this domain. 

In the following sub-sections, we describe the general idea of computing 

Pr(WNJ(tp, tu)). 

7.2.3.4.1. General Ideas 

We need to determine the probability of a wumpus not jumping between tp, the 

time at which the wumpus location provided to the needer is produced, and tu, the time 

at which the fighter arrives at that location. This probability equals: 

Pr(WNJ(tp, tu))=Pr(tu−tp<J),                (7-2) 

where J denotes the difference between the time at which the value for I was produced 

and the time at which the wumpus jumps. J must conform to this constraint: 

J∈[1, 40−D0], 

where D0 (D0∈[1, 40]) denotes the length of time that the wumpus was in its current 

location before being sensed by the carrier. 

Eq. (7-2) depends upon a number of parameters, the obvious ones being D0, J, 

tu and tp.  However, it also depends upon Lw(tp), and Lf(tn), where Lw and Lf refer to the 

locations of the wumpus and the fighter respectively because these locations determine 

the distance between the fighter and the wumpus, and hence the time required for the 

fighter to move to the wumpus. In addition, for some possible values for Lw, there is a 

dependence upon the location of the carrier, Lc. Let t be the current time at which the 

evaluation is being performed. One important notational issue is that, rather than 
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referring to locations at specific times, Lw and Lc refer to locations at tp while Lf refers 

to the location at tn.  

Depending upon the communication policy for which Pr(tu−tp <J) is being 

calculated, several of the parameters are known. Nevertheless, in each case some 

parameters remain unknown. In some of these cases, the probability distributions of the 

values of unknown parameters can be obtained through the EDF methodology 

described in Section 5.3; in others, the probability distributions can be determined 

easily from the environment description. In a few cases, it is possible to make 

reasonable estimates of the distributions. Thus, we treat the unknown parameters as 

random variables and use the law of total probability to calculate E{Pr(tu−tp <J)} with 

respect to the unknown values: 

)lL ,lL ,lL ,τ t,τ tj,J d,Pr(D

)lL ,lL ,lL ,τ t,τ tj,J d,D | JtPr(t

ffwwcc2n1p0

ffwwcc2n1p0pu

lllττjd fwc21

=======×

=======<−

∑∑∑∑∑∑∑
      (7-3) 

The parameters all have discrete values. Some of the distributions are joint. Some of 

the random variables are independent, e.g., D0, and their distributions can be 

determined separately. Though theoretically, the time parameters have infinite ranges, 

in practice, the EDF distributions used as approximations will have only finite ranges.  

Some notes can be made regarding parameters in this expression. First of all, J 

has a relationship to D0, i.e., J ≤ 40-D0. The carrier can sometimes decide whether 

D0=0 or not by analyzing what it has observed. The carrier moves only one step every 

time. So a newly found wumpus should be on the edge of the carrier’s observability 
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radius. If this is not true, the carrier can then decide that this wumpus just jumped into 

the carrier’s observable area and hence D0=0. The judgment also can be made the other 

way around. If a found wumpus that is not on the edge suddenly disappears on current 

observation, the wumpus jumped, or if a found wumpus is not in the same position as a 

previous observation, the wumpus jumped. Remember, we assume wumpuses are 

distinguishable, so the carrier is able to track each wumpus’ position and often use this 

knowledge to deduce D0. 

Handling the case in which D0=0 is straightforward; the first summation in 

expression (7-3) simply drops out and d =0 is used in the rest of the equation. As this is 

a simple modification of the general result, we assume D0 ≠ 0 in the rest of our 

analysis. Therefore, the probability mass function for d in expression (7-3) is simply a 

constant equal to 1/40, and is independent of all of the other variables. J has a 

relationship to D0, i.e., J ≤ 40−D0; hence the mass function for j may be treated as 

1/(40−d), and it is then independent of all of the remaining variables. 

We can do statistical estimations for tn and tp based on their EDF distributions. 

As for Lc, Lf and Lw, determination of exact distributions is unduly computational 

complex because of the limited observability of agents and the random walk of agents. 

Hence we need to seek a reasonable and computationally feasible approximation. 

7.2.3.4.2. A Study of the General Case  

To elaborate the determination of the probability, we examine the most general 

case and analyze the process of calculating expression (7-3). This case covers all of the 
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situations, policies and sub-cases that will be considered later. All other cases are either 

subset of this case or variations that can be easily adapted from this one. 

The general case is that, the decision maker (either the carrier or the fighter) 

does not know Lw, Lc, and Lf. The estimation for Lw can base on Lc because the 

wumpus must be inside of the carrier’s observation area. Since Lc is also unknown (this 

happens even if the carrier itself is the decision maker as the carrier makes estimation 

to future decisions), the decision maker could use the most recent location of the carrier 

it knows and calculate the range of possible motions. The statistical estimations for tn 

and tp will be used to estimate this range. To estimate Lf (the fighter needs not do that 

since it does not need to estimate its own future decisions), the carrier can take 

advantage of wumpus locations sent to the fighter because the fighter won’t move 

before receiving a new location. Having estimations for Lw, Lc, and Lf, the distance 

between the wumpus and the fighter can be determined. Combining this distance with 

the knowledge about D0, J, tp and tn, expression (7-3) can be computed. 

Since either tn or tp may be unknown, depending upon whether it is the carrier 

or the fighter that is making a decision, the carrier may move between the last point at 

which its locations were known to the decision maker (either the carrier or the fighter) 

and the time tp. In order to calculate an approximation for the desired value, we will 

need to consider the range of possible motions from some known points in time. In 

order to be able to refer to these, we use the following notation: 

tcl = the most recent time at which the decision maker knows the location of the carrier. 
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Let σ be the length of time the carrier moves from the time tcl to tp, the time at 

which it finds the wumpus. The reason of introducing σ is that in some cases, Lc is 

unknown, so we need to estimate Lc, based on distance the carrier moved from a 

known time point tcl to tp. So σ must be greater than 0, i.e., 

σ = max(tp–tcl, 0).  

The actual values to be used for σ will vary with the situation, policy and decision 

maker being considered. However, once these values are known, the desired value can 

be approximated. 

Next we analyze the length of time it takes the fighter to move to the wumpus’ 

location. We denote this length of time as Dk. Dk is equal to the distance between the 

fighter and the wumpus, since the fighter moves one step toward the wumpus at each 

time step, 

Dk=|Xf−Xw|+|Yf−Yw| 

where Xf, Yf, Xw and Yw denote the x and y coordinate positions for the fighter and the 

wumpus (Lf = (Xf, Yf), Lw = (Xw, Yw)). Xf, Yf, Xw and Yw must conform to these 

constraints: 

1≤Xw≤20,    1≤Xf≤20, 

1≤Yw≤20,    1≤Yf≤20. 

Given a number of steps, j, after which the wumpus will jump, the fighter must 

also be able to reach the wumpus within j steps. As a first step in calculating Pr(tu−tp 

<J), we calculate the probability that given j and a wumpus location, Lw = (Xw, Yw), the 

fighter can reach the wumpus before it jumps (recall that the fighter does not move 
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without knowing a wumpus location). We define a function fm which indicates whether 

or not a fighter’s location Lf is within j steps from the Lw: 

fm(Xw, Yw, Xf, Yf, j) = 
⎩
⎨
⎧ ≤−+−

otherwise                                 0
j|YY| |XX| if    1 fwfw . 

To determine Dk, we need to know the wumpus’ location Lw which in some 

cases depends on the carrier‘s location Lc, since Lw must be inside the carrier’s 

observability area. This region is an equilateral rhombus whose vertices are 

observability radius rc in the X and Y directions from Lc; the area of this rhombus is 

2 2
cr +2 cr +1. We assume the wumpus will be randomly located in the observable area 

of the carrier23. Then, given the carrier’s location (Xc, Yc) at time tp, the probability that 

the wumpus is inside of the carrier’s observability range, and meanwhile can be 

reached by the fighter within j steps, is: 

Pw(Xc, Yc, j) 

=∑ ∑+

−=

−−+

−−−=

)rX ,20min(

)rX max(1,X

|))XX|(rY min(20,

|))XX|(rY max(1,Y
cc

ccw

cwcc

cwccw 1r22r
1

c
2
c ++

×fm(Xw, Yw, Xf, Yf, j). 

Next, we consider the effect of possible carrier’s motion. Since we know that at 

time tp, the carrier must be able to sense the wumpus, the wumpus must be located 

within the region to which the carrier could have moved from its last known location, 

denoted Lcl, extended by the observability region. Lc must be inside the region which is 

reachable from Lcl within σ steps. This region is also an equilateral rhombus whose 

radius is σ and center is Lcl, and its area is 2σ2+2σ+1. 

                                                 
23 While this is not precisely correct, it can be shown to be a good approximation. 
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We represent the probability that the carrier is at a location Lσ after σ steps 

from Lcl by Pr(Lσ). Then the probability that the carrier is within σ steps from (Xcl, 

Ycl), and the wumpus is inside of the carrier’s observability range and can be reached 

by the fighter within j steps is: 

Pc(Xcl, Ycl, j) 

=∑ ∑+

−=

−−+

−−−=

)σX ,20min(

σ)X max(1,X

|))XX|(σY min(20,

|))XX|(σY max(1,Y
cl

clc

clccl

clcclc
Pr(Lσ = (Xc, Yc))×Pw. 

Finally, combining all of these, with J, D0 as random variables,  

E{Pr(tu–tp<J)} 

=∑ ∑=

−

= −
×

40

1d

d40

1j d40
1

40
1

× 

∑ ∑+

−=

−−+
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)σX ,20min(
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|))XX|(σY min(20,

|))XX|(σY max(1,Y
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Pr(Lσ = (Xc, Yc))×  
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|))XX|(rY min(20,
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ccw

cwcc

cwccw 1r22r
1

c
2
c ++

×fm(Xw, Yw, Xf, Yf, j)   (7-4) 

In Eq. (7-4), though we use several layers of summation, the computational 

complexity is not as high as it appears because ranges of the variables are limited. In 

addition, in many of the sub-cases that must be evaluated, tn>tp, which means that 

information I was produced a while before the fighter needs it, will further increase the 

lower bound on the values of j that are possible, and this in turn, will decrease the 

upper bound on the range of possible values of d. Hence the range of the summations 

over j and d is further reduced. Moreover, in many of the sub-cases, one or more of the 

variables are known, and the expression can be reduced (we will consider these sub-
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cases separately in Section 7.2.4). However, Eq. (7-4) depends upon one unknown 

probability mass functions, Pr(Lσ = (Xc, Yc)). In order to use it, one must either 

determine this mass functions or approximate it in some way. 

Determining the exact value of these mass functions is difficult. In the absence 

of a theoretical solution, which we have not been able to find, there are several 

different ways of approaching the problem of determining values to use for these mass 

functions. For example, one could run a large number of Monte Carlo simulations to 

determine them. Alternatively, one can make some simplifying approximations. These 

will be considered in the next section. 

7.2.3.4.3. Approximations for Pr(Lσ) 

One probability mass function appears in Eq. (7-4), that is Pr(Lσ=(Xc, Yc)), the 

probability that the location to which the carrier might have moved is within σ steps 

from a known location. In the following, we propose two approximations for 

Pr(Lσ=(Xc, Yc)). 

7.2.3.4.3.1. General Approximation 

A trivially simple approximation would be that, having no information about 

the carrier’s location, we assume that the carrier is randomly placed in the area which is 

within σ steps to its location at tcl. In other words, Pr(Lσ=(Xc, Yc))=1/(2σ2+2σ+1), 

which means that all points inside of the area are reachable with equal probability. 

However, clearly the points further away are less likely to be reached than those closer 

to the carrier’s location at tcl, because the carrier’s motion conforms to random walk; 

we can take advantage of the nature of the random walk. 
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7.2.3.4.3.2. Simplified Approximation 

This assumption uses some results of random walk to generate a simple 

approximation to the probability Pr(Lσ = (Xc, Yc)). [126] shows that without our 

restriction of not revisiting a place, the average distance the carrier has gone within σ 

steps would be σ . Note that σ  will not be an integer. Then, one might use an area 

with a radius equal to the expected value of the distance of movement. Therefore, we 

will use σ  as the expected distance the wumpus will move in σ steps, and 

approximate the distribution by a constant within an equilateral rhombus whose 

vertices are σ  in the X and Y directions from the last wumpus location. That is, we 

could take Pr(Lσ = (Xc, Yc))=1/(2σ+2 σ +1). 

7.2.3.4.3.3. Finalizing Pr(Pσ) 

While the Simplified Approximation is still a coarse approximation, it is likely 

to be better than the General Approximation because it does capture, in some sense, the 

feature of random movement of carrier. Therefore we use Simplified Approximation. 

Using the Simplified Approximation, Eq. (7-4) is modified to: 

E{Pr(tu–tp<J)} 
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×fm(Xw, Yw, Xf, Yf, j)(7-5) 
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which needs three inputs: σ, Lcl and Lf. 

The general case will be referred frequently by later cases, so we abbreviate it 

as GenrealCase. Based on it, we can compute Pr(tu–tp<J) for each situation/policy 

combinations. In Appendix D, we study Pr(tu–tp<J) for each situation/policy 

combination needed to apply our decision theoretic model. For specific combinations, 

several variables have known or estimatable values, reducing the number of 

summations of Eq. (7-5), and the probability mass function usually take on a simple 

form. Moreover, the ranges of the summations are related in many cases, further 

reducing the complexity of the computation. 

7.2.4. EDF Implementation Issues 

In Section 5.5, we discussed implementation issues related to our EDF 

approach and proposed various possible solutions for each issue. In this section, we 

specify the solutions that are feasible in our domain. 

7.2.4.1. System Initialization 

We assume that needers have needs at the beginning of a trial, i.e., they are 

ready to fight wumpuses, but have no knowledge of wumpus locations (except in the 

low probability event that a wumpus is initially adjacent to a fighter). We ran the 

system in a trial mode and collected data of information production or need time 

intervals. We used these data to create initial values for the need and production 

intervals; these are replaced with EDF generated values when the agents begin to 

collect current data. Therefore agents are able to predict time points of productions or 

needs as soon as the system starts.  
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7.2.4.2. Preventing Having History Starvation and Communication Deadlock 

A fighter could wait a long time if the carrier’s estimate of the fighter’s need 

time is far off due to limited data. Communication also could be in deadlock if both 

needer and provider each wait for a message from the other. In both cases, agents need 

secondary decisions. Our approach is to set a time cutoff To=80 steps. If a fighter has 

being waiting beyond this time, it will send out a request to the carrier and attach its 

historical data. It is unnecessary for the carrier to initiate the contact or to make contact 

whenever the delay expires, because it is important that the carrier have the historical 

data about the fighter’s need, adjust its own prediction, and help the fighter proactively. 

7.2.5. Experiments 

We report two experiments. The first validates the systems development and 

the second evaluates the effectiveness of Proactive Communication. 

7.2.5.1. Comparison Conditions 

We will compare our approach, Proactive Communication, with other two 

approaches: Always Tell and Always Ask. All other settings are the same for each of 

the three test conditions except communication policies being used, which is described 

below. 

7.2.5.1.1. Always Tell Condition 

The different location for each distinguishable wumpus will be told when the 

carrier observes it. The carrier’s decision-making is based on each fighter’s last 

location. Initially, this is each fighter’s initial location. Later, it is the location of the 

last wumpus to which the fighter was directed. It will assign the wumpus to the nearest 
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fighter on that basis. The fighters do not issue communication throughout the game and 

will stay at the wumpuses’ locations if the wumpuses have jumped before the fighter’s 

arrival. If the fighters have more than one wumpus location, they will use the most 

recent one.  

7.2.5.1.2. Always Ask Condition 

Since we assume needers have needs at the beginning, all fighters will ask the 

carrier for wumpuses’ locations at the first step. After that, each fighter will send out a 

request once it finishes killing a wumpus about which the carrier told it. When the 

fighter arrives at the location told but does not sense the wumpus, it will ask the carrier 

again and stay at this position until it receives other information. 

Rules of the carrier’s reply are: 1) if the carrier has one request and one 

information item available, it will assign the information to that fighter who sent the 

request; 2) if the carrier has multiple requests and multiple information items, it will 

assign each location to the nearest requesting fighter; initially, each fighter’s location is 

its initial position, and later, it will be the location of the last wumpus it killed; 3) if the 

carrier has multiple requests and one information item, it will send that information 

item to the fighter that made the earliest request; 4) if the carrier has no information 

item available when it receives a request, the reply will be deferred to the time at which 

an item is produced; 5) if the carrier receives no request at the time of production, it 

will save this information and will provide it to the next request. If multiple 

information items are saved, the providing is based on the order from the most recent 

item to the old one. 
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7.2.5.1.3. Proactive Communication Condition 

For both carrier and fighters, decisions about communication policies depend 

on the utility of the policies. The carrier makes decisions every time it finds a different 

location for each distinguishable wumpus, whether or not this wumpus’ previous 

locations were sent. The fighters make decisions every time they finish killing the 

wumpuses about which the carrier told them. In the case that the fighters do not see the 

wumpuses when arriving at the locations indicated, a new need will raise and the 

fighters need to make new decisions at this time. 

7.2.5.2. Experiment Data 

The following data were collected from experiments: 

WK: the number of wumpuses killed; 

WF: the number of wumpuses found; 

WT: the total number of wumpuses generated; 

AL: the number of agents left alive; 

FK: the number of fighters killed; 

MT: the total number of messages exchanged; 

ST: the total number of steps a game runs before the end (the game may be 

forced to end before 5000 steps if all fighters died). 

7.2.5.3. Measurements 

We measure the effectiveness of Proactive Communication, Always Tell and 

Always Ask based on the elements listed in Table 7.3. 
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Table 7.3. Experiment Measurements. 

Measurement Formula Criterion 
Metric1 

1000
WK
FK

×  
The lower the better 

Metric2 Metric1 × MT The lower the better 
Metric3 AL × WK The higher the better 
Metric4 

MT
Metric3  

The higher the better 

 

We measured team performance from two aspects: loss and gain. Metric1 and 2 

regard the former and Metric3 and 4 regard the latter. 

Metric1 presents the loss ratio of FK (fighter killed) vs. WK (wumpus killed). 

Since FK may be much less than WK, we amplify the ratio 1000 times. We expect 

fewer fighters dead but more wumpus killed, so the lower Metric1, the better team 

performance. 

In Metric2, MT (message total) is added to Metric1 as a factor. Metric2 

combines effects of loss ratio and communication load. We expect the low loss ratio 

and the low communication load. So a low Metric2 is desirable for an effective team.  

Metric3 measures team performance from a gain aspect. It evaluates AL (agent 

alive) and WK (wumpus killed). Obviously high Metric3 means effectiveness.  

Metric4 adds MT (communication amount) to Metric3 as a numerator, meaning 

that we expect more alive agents and killed wumpuses, but less communications. 
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7.2.5.4. Experiment Basics 

We used three teams, Team PC (using Proactive Communication), Team AT 

(using Always Tell) and Team AA (using Always Ask). Except for the communication 

conditions, settings of all teams were exactly the same. 

We ran 30 randomly generated worlds under each condition. We use statistical 

t-test to test means of results for three teams. The t-test is often used to assess the 

equality of a pair of means by using the formula as follow [42]: 

s
mean2-mean1P =  

where s is a measure of variation, which has specific form for different types of tests 

[51]. We use unpaired t-test, where s is combination of standard deviations of two 

samples (detail about the combination can be found in [42]). 

7.2.5.5. System Developments Validation and Analysis 

Obviously WK, the number of wumpuses killed, is a key measurement. WK 

largely depends on WF, the number of wumpuses found by the carrier. WF in turn 

depends on the carrier’s observability, the fighter’s observability and WT, the total 

number of wumpuses which are generated during a game. Since the fighter has very 

limited observation radius (only 1), the large amount of WF is produced by the 

carrier’s observability. Since the carrier’s observability radius is the same for all three 

test conditions, WT becomes the prime element on deciding WF. In fact there are two 

way relations between WT and WF. On the one hand, the higher WT may lead to more 

WF. On the other hand, the higher WF is, the more wumpus locations will be told by 
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the carrier to the fighters, resulting in more wumpuses being killed by the fighters, and 

consequently more new wumpuses being generated, resulting in more WT. To present 

relations between WF and WT, and more important, to provide a fair test base for three 

teams, we validate WF and WT for each team and show they produce the same 

quantity of data.  We use the ratio WF/WT as the base for validation. The data is 

shown in Table 7.4. 

 

Table 7.4. Experiment Base Validations in Sample Runs. 

        
Data 
Team 

ST WF WT WF/WT(%) 

Team PC 5000 358 1146 31.29 
Team AT 4761 369 1167 31.59 
Team AA 4300 304 992 31.02 

 

Table 7.4 first gives us basic ideas about general performance of each team. 

Basically about one thousand wumpuses are generated for a 5000 steps game. Team 

PC is able to perform all games throughout 5000 steps; while the other two teams end 

the game earlier (especially for Team AA), meaning all fighters were dead before 5000 

steps. The cause for fighters’ early death is the communication risk. We will elaborate 

this point in next experiment. 

Another observation to Table 7.4 is that the value of WF/WT is about the same 

for three teams. Table 7.5 shows P value for two pair teams, PC vs. AT and PC vs. AA, 

with respect to WF/WT. By conventional criteria, their differences are considered to be 

not statistically significant. This validates system developments such as agents’ motion 
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rules, agents’ observability rules, rules about wumpuses’ random jumping, and rules 

about new wumpuses’ generation. Based on these, we can perform the further 

evaluation. 

 

Table 7.5. P Value with Respect to WF/WT. 

Team P Explanation 
PC vs. AT 0.3454 Not statistic different 
PC vs. AA 0.5700 Not statistic different 

 

 

7.2.5.6. Effectiveness Evaluation and Analysis 

This experiment explores how Proactive Communication reduces 

communication load and improves team performance in multi-agent teamwork. Fig. 7.4 

shows the effectiveness evaluation and the P value of the two pair teams, with respect 

to Metrics1, 2, 3 and 4. We expect Team PC to have lower values for Metric1 and 2, 

and higher values for Metric3 and 4.  

By studying Fig. 7.424, we find that, as our expectation, Team PC performs best 

, regarding Metric1, Metric2, and Metric4. The P values also show that the differences 

between the two pair teams are statistically significant. 

 

                                                 
24 The lines between the sample points should not be there, as the points are not interpolating values. The 
lines are only used to distinguish the data for each team. 



 198

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30 35

Runs

M
et

ric
1

Team PC Team AT Team AA
 

Average T-test 
PC 4.88 P Explanation 
AT 8.62 PC vs. AT 0.0298 Statistic different 

 
Metric1 

AA 15.16 PC vs. AA <0.0001 Extremely statistic different 
(a) Metric1. 

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 5 10 15 20 25 30 35

Runs

M
et

ric
3

Team PC Team AT Team AA
 

Average T-test 
PC 1252.09 P Explanation 
AT 2691.09 PC vs. AT 0.0004 Extremely statistic different 

 
Metric2 

AA 8422.00 PC vs. AA <0.0001 Extremely statistic different 
(b) Metric2. 

Fig. 7.4. Effectiveness Evaluation with Respect to Metric1-Metric4. 



 199

0

200

400

600

800

1000

1200

0 5 10 15 20 25 30 35

Runs

M
et

ric
3

Team PC Team AT Team AA
 

Average T-test 
PC 647.53 P Explanation 
AT 545.97 PC vs. AT 0.0710 Not quite statistic different 

 
Metric3 

AA 344.73 PC vs. AA <0.0001 Extremely statistic different 
(c) Metric3. 

0

0.5

1

1.5

2

2.5

3

3.5

4

0 5 10 15 20 25 30 35

Runs

M
et

ric
4

Team PC Team AT Team AA
 

Average T-test 
PC 2.43 P Explanation 
AT 1.43 PC vs. AT <0.0001 Extremely statistic different 

 
Metric4 

AA 0.48 PC vs. AA <0.0001 Extremely statistic different 
(d) Metric4. 

Fig. 7.4. Continued. 



 200

The results for Metric3 were not quite as good in that while Team PC has a 

very significantly better performance than Team AA, and its average metric is better 

than that of Team AT, the difference from AT is not quite statistically significant. The 

reason is that, by being always told about wumpuses locations, fighters of Team AT, 

are able to receive the most timely and the most recent items, allowing them to kill as 

many wumpuses as they can in a limited length of time, though they are exposed to 

greater risk and suffer some loss from this. To help understand these results, it is 

interested to take a close look to communication policies used by each team.  

By Always Asking for information at the time when needs occur, fighters are 

able to receive the most timely and the most recent items, allowing them to kill as 

many wumpuses as they can in a limited length of time. Moreover, carriers can track 

the exact locations of fighters, which are the locations of the wumpuses’ the fighters 

were last told. This ensures their choosing the fighter closest to the wumpus found 

every time. The disadvantage of Team AA is the possible high communication risk. 

Under the Always Ask condition, obtaining an information item by a fighter costs at 

least two messages (one ask and one reply). So Team AA would exchange the largest 

numbers of messages. When the fighter asks for a wumpus location, the chance of 

alerting the wumpus will be increased. This again increases the chance that the fighter 

is killed, and consequently, fewer wumpuses killed, and often ends the game ahead of 

time with all of the fighters being killed.  Hence, the Proactive Communication 

approach is better because of the better management of risk. 
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The Always Tell condition can almost guarantee a high degree of effectiveness 

in conveying timely and the most recent information as Always Ask does. The carrier 

is able to (without time delay) provide the latest wumpus location to fighters and then 

the fighters can use the most recent location to chase wumpuses. However, this 

approach also has a high communication risk, resulting in similar disadvantages to 

those of Always Ask. Therefore, the more wumpus locations provided; the more 

wumpuses will be alerted. Consequently, the chance that the fighter will be killed is 

increased over that of proactive communication, though not as much so as with active 

ask. 

Proactive Communication may not be able to deliver as timely as the other two 

conditions. Sometimes carriers must keep silence or fighters have to wait or use the old 

information, if the risk of communication exceeds its value. This keeps the team safe 

but brings two side effects: 1) fewer wumpus locations are told, compared to the 

number of wumpuses found; and 2) information exchange is delayed. Hence Team PC 

may not be able to kill as many wumpuses as the other two teams do. However, this 

could be compensated by minimizing the number of messages sent and the risk of 

fighters’ death. In fact, the death of a fighter is a heavy loss to the team. It will lead to 

the fewer wumpuses been killed, or even the forcefully end of the game. Proactive 

Communication wins on communication amount mainly because it sends the 

information only when it is needed, in spite of changes of the information. So Proactive 

Communication results in the fewest messages exchanged. 
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Based on above analysis, it makes more sense to compare the average number 

of wumpus killed per message. In this term, which is Metric4, the performance of 

Team PC is statistically better than those of Team AT and Team AA. Hence, our 

algorithms for managing Proactive Communication have been effective. 

7.3. Summary 

In this section, we have first conducted in-depth empirical evaluations in the 

Multi-Agent Wumpus World, comparing the relative numbers of O-Tell and O-Ask for 

agent teams with and without observability. We have also given specific forms of risk, 

cost, timeliness and currency functions in the Multi-Agent Wumpus World. We 

presented two experiments that validate the system developments and explore the 

effectiveness of operating teamwork under Proactive Communication.  The results of 

these experiments show that our approaches have improved the team performance. 
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CHAPTER VIII 

CONCLUSIONS AND FUTURE WORK 

8.1. Conclusions 

My long-term research goal is to understand intelligence and to build human 

knowledge into software agents to support decision-making, and to improve the 

productivity and adaptability of autonomous systems in complex and dynamic 

environments. Toward this goal, I have researched Proactive Communication in agent 

teamwork 

In Observation-Based Proactive Communication, we employed agents’ 

observabilities as major means for decreasing the volume of communication in a 

dynamic and partially observable environment [141]. We formally defined what is 

observable and under which conditions. The exploration of observability also carefully 

clarifies the relationships among what an agent can see, what it actually sees, and what 

it believes from its seeing. This, however, is not enough to allow inference of belief 

about other agents and use of this belief to track their mental states. We then defined 

agents’ beliefs about the observabilities of other agents. The amount of communication 

is reduced by agents’ using observation of the environment and beliefs of teammates’ 

observabilities to estimate the teammates’ beliefs without generating unnecessary 

messages. 

Decision-Theoretic Proactive Communication uses decision theory to enable 

agents to decide whether or not to engage in a communication act when less is known 
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about the domain and the results of their interaction with it, and communication may 

incur cost and risk. It allows agents to tell others proactively about a piece of 

information when producing it, or to ask actively for a piece of information when 

needing it [14, 141]. It formally includes the notion that the times at which an agent 

needs or produces a value for an item of information is random according to some 

(unknown) distributions. The idea of Dynamic Information Prediction is to develop 

techniques for estimating the distributions of information production or need and use 

these data to model utilities of each communication strategy available for agents on 

each situation of decision-making. The estimation serves proactive communication in 

two ways: first, agents can proactively tell up-to-date information to agents who need 

it; second, it helps on providing a more accurate and efficient way of communicating 

information than randomly selecting a receiver, or making the selection in a specific 

order, in that agents can dynamically issue communication at the right time to the right 

receivers without having to know all about the receivers. 

The decision-theoretic approach provides agents with an optimal way to fulfill 

their information needs under uncertainties, caused by incomplete information about 

the teamwork, the environment, and the potential value, cost and risk of information 

delivery. We developed a set of communication policies for agents in different 

situations. Since the various policies involve using the information produced at 

different times or satisfying needs at different times, we carefully studied different 

points in time, which describes the range of possibilities encompassed by the different 

strategies adequately. We analyzed parameters that should be included in the utility 
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function and recognized effects in determining the form of the value, the cost and the 

risk which compose the utility function. The distinguishing feature of the decision-

theoretic approach is that we focus on analyzing the information production and need 

of team members and use these data to capture the complex decision processes of 

information needer and provider. Moreover, this approach emphasizes decision 

interactions between the needer and provider, i.e. their decisions are interdependent, so 

they must consider the impact of their counterpart’s decisions upon their own. 

8.2. Future Work 

There are two aspects work we plan to do in the future. First we will enhance 

the current model by extending its functionalities. Then this model will be applied into 

several real applications. 

8.2.1. Extensions to This Research 

8.2.1.1. Extending the Current Model to Multiple Needers and Providers Model 

The current selectPolicy algorithm (see section 6.9) can well handle the one-to-

one model, i.e., there is one provider and one needer for an information item I25. In this 

case, agents consider interactions with their counterpart agents and make decisions. To 

deal with many-to-many model, which includes multiple needers and providers of an 

information item I, we did a straightforward extension to the one-to-one model. We 

assume agents still focus on interactions with their counterparts and consider only the 

number of counterparts is extended. 

                                                 
25 The system may still contain multiple agents. But for a piece of information, there is only one needer 
and one provider. 
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Extending the one-to-one model to the many-to-many model in a more 

complete way would require including complicated interactions among needers and 

providers. For a needer, it must monitor not only each provider, but also other needers. 

Thus, when making decision, the needer must estimate every provider's policy to the 

needer itself, every provider's policy to every other needer, and every other needer’s 

policy to every provider. Similar processes can occur to the provider. This extension of 

our work could take advantage of policies and utilities devised in current model and 

focus on developing feasible decision rules to coordinate time orders of multiple 

productions and needs.  

We would start with analyzing the case of multiple needers. When several 

needers want I, their needs for I are dynamically changed during teamwork. In many 

situations, every new value for I must be used and once it is used, it is unnecessary to 

use it again, such as location of an enemy target. Hence, except that the provider should 

pay attention to provide the unused I to needers who have needs, every needer also 

needs to watch when other needers’ needs raised and whether they have actively asked 

for I or have been told proactively. Therefore, when making a decision, a needer needs 

to consider the provider's decision in relation to the needer, the provider's decision 

relative to every other needer, and every other needer’s decision relative to the 

provider. 

In the case of multiple providers, a provider has the similar concerns to those of 

the needers above. In the situation where a provider produces I, it is possible that 

another provider also produced I recently and has sent I to the needer, by either 
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proactive tell or reply to the needer’s request. In this case, the provider may not provide 

I because the needer may not need I soon. Just as the needer can ask an arbitrary 

provider for I, an arbitrary provider can help the needer proactively. Thus, a provider 

needs to consider the needer's decision in relation to the provider, the needer's decision 

relative to every other provider, and every other provider’s decision relative to the 

needer. 

In the future, we still want to focus on decision interactions between the 

decision maker and its counterparts. In the many-to-many model, we can adjust the 

decision rule we will develop for the one-to-one model. We will add the counterpart 

agent as one parameter in the utility function. In the case of multiple providers, the 

needer will evaluate the utility function with respect to each provider, and then follow 

the strategy of the provider that yields the highest utility. However, when end states in 

the needers state diagram that call for additional reasoning are reached, the needer will 

re-evaluate the utility functions and possibly make a new decision, which may mean 

asking a different provider. However, the decision process will have to be extended 

because additional situations can occur, e.g., a needer might have received multiple 

proactive tells before its need arose. In the case of multiple needers, the provider will 

evaluate the utility function with respect to each needer, and then follow the strategy 

that has the maximum utility. 

8.2.1.2. Using Plan Recognition to Generate Information Flow 

Our present proactive communication algorithm analyzes preconditions and 

effects of actions and plans for which each agent is responsible in the teamwork. The 
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purpose of doing so is to determine potentially useful information flow among agents. 

Currently the information flow is generated offline. The problem of this approach is 

that the predicates of potential information needers or providers extracted by the offline 

algorithm may contain variables, and agents will bind actual values to these variables 

dynamically during the teamwork processes. For example, in the Multi-Agent Wumpus 

World, the offline algorithm only extracts that a fighter needs wumpus’ location, but 

cannot identify which fighter among three fighters. Our solution to this problem is to 

use the decision-theoretic proactive communication to estimate agents that would be 

most likely bound to a plan at the time of information production or need. 

Alternatively, we could make the recognition of information needers or 

providers more dynamic by doing plan recognition [69]. Agents can recognize the 

plans of other agents by observing actions of the other agents, and tracking the 

sequence of sub-goals on which they are working dynamically. Using this information 

together with the action an agent has most recently performed, the most likely 

information need or production of other agents could be dynamically estimated over a 

finite time horizon. Then we could send or ask other agents information only when 

they had just needed/produced the information, or if they are expected to need/produce 

the information in the near future. 

8.2.2. Future Directions 

8.2.2.1. Multi-Agent Learning 

Multi-agent learning supports learning from interaction with open-ended, 

dynamic environments that include multiple, autonomous data and knowledge sources. 
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Examples of such domains include data-driven collaborative knowledge discovery; 

distributed information networks for selective information retrieval; distribution of 

software and real-time audio/video streams; and distributed parallel processing. Multi-

agent learning methods would include design of algorithms for learning from 

heterogeneous data sources, distributed in time and space. As a consequence of the 

developments in technology that make it possible to accumulate large amount of data 

incrementally every day, in physically distributed, autonomous data repositories (e.g. 

bioinformatics), such algorithms seem to be the need of the hour.  Analogous to the 

work done here, decision theory and empirical distribution function analysis might be 

usable for analyzing data pattern of various applications and reducing communication 

among data sources and sinks. 

8.2.2.2. Distributed Information Networks for Selective Information Gathering 

There are many types of applications for which time-constrained and 

predictable response is required, which is closely related to my research; the most 

familiar are electronic trading systems, games, defense systems, and multimedia 

applications. There, time-critical applications depend on careful system design and 

timely resource allocation to deliver the required performance. For example, in an 

online E-Commerce system, stores that sell the same types of products consist of a 

multi-agent system over the Internet. Each agent (store) in such a system wants to 

charge a price that beats the other stores, but at the same time maintain maximum 

profits for the store over a period of time. The interaction among the stores can be 

modeled as a stochastic game. The agent’s price has to take into account the future 
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prices charged by other stores and potential loss resulting from that. Agents then need 

to monitor the prices charged by other stores continuously, learn about their price-

setting pattern, and modify their stores’ prices accordingly. Proactive Communication 

fits these requirements well and could support interaction analysis between two stores. 

8.2.2.3. Virtual Humans for Training 

Agents can be used to develop a foundation for efficacious training of complex 

performance. In Intelligent Team Training Systems, human team members are trained 

by putting them into a simulation, which allows them to perform and refine their team 

skills. The two types of agents which can be developed to assist team training are 

partner agents [113] and coaching agents [87, 132]. Coaching agents provide coaching 

feedback to trainees and their team based on the performance and the process of the 

team. Partner agents assist individual trainees by taking over the execution of some of 

the component tasks, allowing the trainee to concentrate on learning specific 

components, and assist team training by fulfilling the roles of some team members. 

Both types of agents require communication to achieve the desired team interactions. 

The agents should track the activities of the human trainee, reason about possible 

conflicts or constraints, establish certain parameters for performing joint actions, and 

provide or request any information needed by the human trainees to perform their 

tasks. However, this complex team cooperation behavior may involve much 

unnecessary message exchange because of introducing the human team members. 

Proactive Communication could provide desired interactions for humans and agents. 
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APPENDIX A 

CALCULATING PROBABILITIES 

In this appendix we calculate the probabilities, Pr( NbT , ≤ 0
,PaT ), Pr( 0

,PaT < NbT , ), 

and Pr( 0
,PaT  < NbT ,  < 1

,PaT ), used by the provider in Chapter VI for calculating the 

currency. 

• Pr( NbT , ≤ 0
,PaT ) 

First we need to decide the base from which the provider can estimate NbT , . 

There are two bases, depending on the needer’s decision for the need immediately 

before NbT , , i.e. the need raised at 1
,
−

NbT . If the needer chose Silence at 1
,
−

NbT , the base for 

estimating NbT ,  is 1
,
−

NbT ; if the needer ActiveAsk or Wait at 1
,
−

NbT , this need can be 

satisfied by IP( ls
PaT , ), so the base is ls

PaT , .  In this latter case, the calculation is 

straightforward, as the provider knows both values.   

Pr( NbT ,  ≤  0
,PaT ) 

=Pr( NbT , –( ls
PaT , ) ≤  0

,PaT –( ls
PaT , )) 

=CDFb,N( 0
,PaT – ls

PaT , ). 

In the former case, the provider knows ls
PaT ,  but not 1

,
−

NbT . It is easy to conclude 

that 1
,
−

NbT  < ls
PaT ,  < NbT , . To seek a reasonable and computationally feasible solution for 

deciding the base for NbT , , we used the expected value of where ls
PaT ,  would lie in the 

interval ( 1
,
−

NbT , NbT , ), which under reasonable assumptions would be half way in 
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between them. Then, we use ls
PaT , −τn/2 as an estimate for the base for NbT ,  (τn denotes 

the average length of time between needs of I and is defined in Section 6.7.1.1.1). 

Pr( NbT ,  ≤  0
,PaT ) 

=Pr( NbT , –( ls
PaT , − τn/2) ≤  0

,PaT –( ls
PaT , − τn/2)) 

=CDFb,N( 0
,PaT – ls

PaT , +τn/2). 

• Pr( 1
,PaT  ≤  NbT , ) 

Pr( 1
,PaT  ≤  NbT , ) 

=∑∞

= 1
,PaTτ

Pr( 1
,PaT ≤ NbT ,  | NbT , =τ)×Pr( NbT , =τ) 

=∑∞

= 1
,PaTτ

1×Pr( NbT , =τ) 

=∑∞

= 1
,PaTτ

PMFb,N(τ– ls
PaT , +τn/2) 

=1–CDFb,N( 1
,PaT – ls

PaT , +τn/2) 

=∑∞

+= 11 0
,PaTτ

Pr( 1
,PaT =τ1)×(1–CDFb,N(τ1– ls

PaT , +τn/2)) 

=∑∞

+= 11 0
,PaTτ

PMFa,P(τ1– 0
,PaT )×(1–CDFb,N(τ1– ls

PaT , +τn/2)). 

Though above equation involves infinite ∞, since the distributions are based on 

a finite number of measured values, therefore only a finite number of terms needed to 

be added. 

• Pr( 0
,PaT < NbT , < 1

,PaT ) 

Pr( 0
,PaT < NbT , < 1

,PaT ) 
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=1–Pr( NbT , ≤ 0
,PaT )–Pr( 1

,PaT ≤ NbT , ) 

=1–CDFb,N( 0
,PaT – ls

PaT , +τn/2)– 

∑∞

+= 11 0
,PaTτ

PMFa,P(τ1– 0
,PaT )×(1–CDFb,N(τ1– ls

PaT , +τn/2)). 

• Pr( 0
,PaT < NbT , ) 

Pr( 0
,PaT < NbT , ) = 1–Pr( NbT , ≤ 0

,PaT ) 

=1– CDFb,N( 0
,PaT – ls

PaT , +τn/2). 
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APPENDIX B  

MULTI-AGENT WUMPUS WORLD MALLET PLAN 

(plan wumpusgame(?ca ?f1 ?f2 ?f3) 

  (process 

    (par 

      (while (cond (goal killwumpus)) 

        (seq 

          (do ?ca (findWumpus ?ca)) 

          (do ?ca (retract (newKnow ?wumpusId ?x ?y))) 

        ) ;end seq 

      )   ;end while 

      (while (cond (goal killwumpus))   

        (do ?f1 (killWumpus ?f1))  

      ) ;end while  

      (while (cond (goal killwumpus))   

        (do ?f2 (killWumpus ?f2))  

      ) ;end while  

      (while (cond (goal killwumpus))   

        (do ?f3 (killWumpus ?f3))  

      ) ;end while  

    ) ;end par 

  )   ;end process 
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)     ;end plan 

(plan findWumpus(?ca) 

  (effects (newKnow ?wumpusId ?x ?y))    

  (process  

    (while (cond (not (newKnow ?wumpusId ?x ?y))) 

      (do ?ca (moveAndFindStep ?ca)) 

    )   ;end while 

  )     ;end process 

)       ;end plan 

(plan moveAndFindStep(?who) 

  (process 

     (seq 

        (do ?who (observe ?who))         

        (do ?who (move)) 

        (do ?who (nextstep ?who)) 

     )  ;end seq 

  )     ;end process 

)       ;end plan 

(plan observe(?who) 

  (process 

    (seq 

      (do ?who (see ?who))  ;see is an operator; when see is executed, 
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                                           ;all bound (canSeeNow ?who ?item ?x ?y) 

                                           ;will be asserted to KB of ?who 

      (do ?who (generateNewKnow ?who)) 

      (do ?who (updateMostRecentSeen ?who)) 

      (do ?who (retract (canSeeNow ?who ?anyitem ?anyx ?anyy))) 

    ) ;end seq 

  )   ;end process 

)     ;end plan 

(plan generateNewKnow(?who) 

  (process 

    (foreach (cond (canSeeNow ?who ?item ?x ?y)) 

      (if (cond (not (mostRecentSeen ?item ?x ?y)))    

        (seq 

          (do ?who (assert (mostRecentSeen ?item ?x ?y))) 

          (if (cond (wumpus ?item)) 

            (seq 

              (do ?who (assert (newKnow ?item ?x ?y))) 

              (do ?who (assert (unsafe ?x ?y))) 

            ) ;end seq   

          )   ;end inner if 

        )     ;end seq 

      ) ;end if 
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    )   ;end foreach         

  );end process 

)  ;end plan 

(plan updateMostRecentSeen(?who) 

  (process 

    (foreach (cond (mostRecentSeen ?anyLastItem ?anyLastx ?anyLasty))    

      (if (cond (not (canSeeNow ?who ?anyLastItem ?anyLastx ?anyLasty))) 

        (seq 

          (do ?who (retract (mostRecentSeen ?anyLastItem ?anyLastx ?anyLasty))) 

          (do ?who (retract (unsafe ?anyLastx ?anyLasty))) 

        );end seq 

      )  ;end if 

    )    ;end foreach        

  );end process 

)  ;end plan 

(plan killWumpus(?fi) 

  (process 

    (par 

      (while (cond (not (newKnow ?wumpusId ?x ?y))) 

        (seq  

          (do ?fi (noop)) 

          (do ?fi (nextstep ?fi)) 
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        );end seq 

      ) ;end while 

      (do ?fi (startKill ?fi)) 

    ) ;end par 

  )   ;end process 

)     ;end plan 

(plan startKill(?fi) 

  (pre-cond (newKnow ?wumpusId ?x ?y)) 

  (process     

    (seq         

      (do ?fi (moveToWumpus ?fi ?wumpusId ?x ?y))      

      (do ?fi (shootwumpus ?wumpusId ?x ?y)) 

      (do ?fi (retract (newKnow ?wumpusId ?x ?y))) 

      (do ?fi (nextstep ?fi)) 

    ) ;end seq     

  )   ;end process 

)     ;end plan 

(plan moveToWumpus(?fi ?wumpusId ?x ?y) 

  (process  

    (while (cond (notAdjacent ?fi ?wumpusId ?x ?y)) 

      (do ?fi (moveToStep ?fi ?x ?y)) 

    );end while 
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  )  ;end process 

)    ;end plan 

(plan moveToStep(?fi ?x ?y) 

  (process 

    (seq 

      (do ?fi (observe ?fi))         

      (do ?fi (moveto ?x ?y)) 

      (do ?fi (nextstep ?fi)) 

    )         ;end seq 

  )           ;end process 

)             ;end plan 
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APPENDIX C  

CALCULATING RISK IN MULTI-AGENT WUMPUS WORLD 

The risk function has been defined in Section 7.2.3.1 as 

R = k × (5000 − t) × Prh × Prf 

where k=0.01 is the number of wumpuses a fighter can kill per unit time, t is the 

number of steps passed, Prh is the probability that the wumpus overhears the message 

sent by the carrier, and Prf=0.1 is the probability that the wumpus can win against the 

fighter. 

The last value to compute is Prh, 

Prh = Prr × Pra, 

where Prr denotes the probability that an agent is within the wumpus’ hearing range rw, 

and Pra denotes the probability that the wumpus pays attention to the message.  

Prr must be calculated for all three of carrier’s policies: ProactiveTell, Reply 

and WaitUntilNext. 

There are two cases to consider for Pra. 

a The wumpus is “unalerted” so may or may not pay attention to the 

message: 

Pra = 0.1. 

When it is important to distinguish the alerted and unalerted 

conditions in the same expression, the “unalerted” case will be 

denoted by Pran; Pran will still have the value 0.1. 
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b The wumpus is “alerted” by the request send by the fighter so will 

pay attention to the coming reply. Calculating Pra in this case is 

more complex. However, it needs only be done for two of the three 

carrier’s policies, Reply and WaitUntilNext, as in the ProactiveTell 

case the wumpus is never alerted. 

Next we calculate Prh for three of carrier’s policies: ProactiveTell, Reply and 

WaitUntilNext. 

C.1. The Case That the Carrier Proactively Tells a Message 

Since rc<rw, the carrier is within the wumpus’ hearing range. Therefore Prr=1 

and Prh equals to Pra. Thus: 

Prh=Pra=0.1. 

C.2. The Case That the Carrier Replies a Request sent from a Fighter 

When the carrier receives a request, it must select one of the two policies 

identified in the general analysis (see Section 6.2.2), i.e., Reply with the location of the 

last wumpus sensed or WaitUntilNext time it finds a wumpus. Our analysis follows 

these two policies. 

C.2.1.   Policy – Reply Last Location Found 

As part of its decision process, the carrier needs to estimate the possible effect 

of a wumpus detecting that it has been found by using the risk function. There are 

multiple sub-cases to consider, depending upon whether or not the carrier can still 

sense the wumpus. The situation is complicated in that one must consider both the 

probability that the wumpus can hear the carrier and the probability that the wumpus 
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heard the request from the fighter. Fortunately, which case applies can be decided by 

the carrier because the fighter sends its location with the request and the carrier thus 

knows the locations of both the fighter and the wumpus, as well as the wumpus’ 

hearing range. 

To distinguish the situations of the wumpus hearing the carrier or the fighter, 

we add one subscript to Prh, Prr, and Pra to indicate the agent to which it refers; i.e., we 

use Prhc and Prhf respectively. We use Prrc and Prrf to denote the probability that the 

carrier or the fighter is within the hearing range of the wumpus, and use Prac and Praf to 

denote the probability that the wumpus pays attention to the message sent by the carrier 

or the fighter. Then, we have: 

Prhc=Prrc×Prac,                (C-1) 

Prhf=Prrf×Praf. 

C.2.1.1. Sub-Case 1 – Carrier Can Still Sense Wumpus 

If the carrier is still able to sense the last wumpus found at the time of replying, 

the carrier is within the wumpus’ hearing range. Therefore, Prrc=1, and we have 

Prhc=Prac. 

Prac is determined by Prhf, the probability that the wumpus heard the fighter’s request. 

Prac is give by the following relation: 

Prac=Pran×(1–Prhf)+1×Prhf. 

We have seen that Prhf=Prrf×Praf. Since we are considering the fighter who 

initializes the communication, the wumpus was “unalerted” at that moment and Praf 

was assumed to be 0.1. Since the fighter attached its location to the request, the carrier 
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knows the distance between the fighter and the wumpus. Therefore Prrf is decidable by 

the carrier. There are thus two further sub-cases to consider: 

a The fighter was within rw the wumpus hearing radius. In this case, 

Prrf=1, and therefore Prhf=Praf = 0.1. 

b The fighter was not within rw. In this case, the wumpus could not 

hear the fighter and therefore Prrf=0. Prhf=Prrf×Praf =0 × 0.1=0. 

Then the carrier will go back and use Prhf and Praf to decide Prhc. If Prhf=0.1 

(sub-case a), then Prhc = Praf×(1–Prhf)+1×Prhf = 0.1×(1–0.1)+1×0.1=0.19, and if Prhf=0 

(sub-case b), then Prhc= 0.1× (1–0)+1×0=0.1. 

C.2.1.2. Sub-Case 2 – Carrier Cannot Sense Wumpus 

If the carrier cannot sense wumpus at the time of evaluation, two further sub-

cases may arise:  

a The wumpus has stayed at the location last sensed by the carrier. 

b The wumpus has jumped since the carrier last saw it. 

Prhc can then be calculated as: 

(Prhc | WNJ)×Pr(WNJ|)+( Prhc | ¬WNJ)×(1–Pr(WNJ)), 

where WNJ means “wumpus not jump” in the interval between when the carrier last 

saw it and the present time, conditioned upon the fact that it has not jumped between 

when it first appeared in the location it was observed and the time last seen.  In the 

following, we will first consider Prhc for the two cases and then calculate Pr(WNJ). 

If the wumpus has not jumped, the carrier is able to determine whether or not it 

is within the wumpus’ hearing range. Prhc is then as calculated in Sub-case 1 above. 
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If the wumpus has jumped, we assume it no longer pays specific attention to a 

message emanating from a carrier within its hearing radius; it simply goes back to the 

“unalerted” status and hears the message with probability Prac=0.1; from Eq. (C-1), the 

problem then reduces to determining Prrc. The difficulty of determining Prrc is caused 

by the fact that the carrier cannot decide whether or not it is within the wumpus’ 

hearing range. Thus, we must estimate the probability that such is the case. If there is 

no other information available about the location, we assume that the wumpus is 

randomly placed in the area that is not observable at this moment. The area of the 

carrier’s observation rhombus is 2 2
cr +2 cr +1. So the area of possible wumpus location 

is O−(2 2
cr +2 cr +1). Since the carrier cannot sense the wumpus, the area in which the 

carrier cannot sense the wumpus but can be heard by the wumpus is approximated by 

(2 2
wr +2 wr +1)−(2 2

cr +2 cr +1) (recall that rw>rc). Therefore the probability that the carrier 

is within the hearing range of this wumpus is: 

Prrc= )1r22r(O
)1r22r()12r(2r

c
2
c

c
2
cw

2
w

−−−
−−−−− . 

Consequently we have: 

Prhc=Prrc×Prac= )1r22r(O
)1r22r()12r(2r

c
2
c

c
2
cw

2
w

−−−
−−−−− ×0.1. 

What is left, then, is to calculate Pr(WNJ). Let D0 be the time duration that the 

wumpus has stayed at this location before it was first sensed by the carrier, Ds be the 

length of time between when the carrier first saw this wumpus and when it last saw this 

wumpus, and Dn be the length of time between when the carrier last saw the wumpus 
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and the current time. The carrier knows Ds and Dn but not D0. Further, let H denote the 

time difference between when the carrier last saw the wumpus and the time at which 

the wumpus jumps. When a wumpus is created, a random variable, X, is given a value 

between 1 and 40 under a uniform distribution.  Then, recalling that our notation of 

WNJ implied a conditional probability, the probability that the wumpus did not jump 

during Dn is equal to: 

Pr(WNJ) = Pr(Dn<H| D0+Ds < X). 

H must conform to the following constraints: 

H∈[1, 40−D0−Ds], 

D0∈[1, 40−Ds], 

D0+Ds+Dn<40. 

We calculate the probability Pr(WNJ), with D0=d and H=h as the random variables: 

Pr(Dn<H | D0+Ds<X) 

=∑ −−−

=

1DD40

1d
ns Pr(D0=d) × Pr(Dn<H | D0+Ds<X ∧ D0=d) 

=∑ −−−

=

1DD40

1d
ns Pr(D0=d) × Pr(Dn+D0+Ds<H+D0+Ds | D0+Ds<X ∧ D0=d) 

 
But, H+D0+Ds = X, the random duration chosen for the next wumpus jump. Thus, 

 
Pr(Dn<H | D0+Ds<X) 

=∑ −−−

=

1DD40

1d
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sD40
1
−
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C.2.2.   Policy – Carrier Decides to Wait until Next Finding after Receiving 

Request 

In the case that the carrier will wait until the next time it finds a wumpus, 

though it does not know the wumpus’ location at this moment, the carrier can be sure 

that it will be inside of the wumpus’ hearing radius rw at the time of finding because rc 

< rw. Therefore the probability that the carrier is within the hearing range of the 

wumpus, Prrc, is one: 

Prrc = 1. 

Then since Prhc = Prrc×Prac, Prhc = Prac, the probability that the wumpus pays 

attention to the reply. Prac is again determined by Prhf, the probability that the wumpus 

heard the request sent by the fighter, by the form defined in Sub-case 1: 

Prac=Pran×(1–Prhf)+1×Prhf. 

As noted above Prhf=Prrf×Paf; hence the carrier needs to calculate 1) Prrf, the probability 

that the fighter was inside of the wumpus’ hearing radius rw at the time of sending the 

request, and 2) Praf, the probability that the wumpus pays attention to the request that is 

within its hearing range. For Prrf, the carrier will not know if the fighter is inside of rw, 

because the carrier does not know the wumpus’ location at this moment. The carrier 

can use a method similar to the one it uses to calculate Prrc in Sub-case 2 in Section 

C.2.1. Then Prrf = ((2rw
2–2rw–1)–(2rf

2–2rf–1))/(O–(2rf
2 –2rf–1)). Praf=0.1 because the 
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wumpus was in “unalerted” status at the time of the fighter sending the request. 

Therefore, in this case, 

Prhc 

=Prrc×Prac 

=1×Prac 

=Praf×(1–Prhf)+1×Prhf 

=0.1× 

(1–0.1×
)1r22r(O

)1r22r()12r(2r

f
2
f

f
2
fw

2
w

−−−
−−−−− )+ 

1×(0.1×
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2
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2
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2
w

−−−
−−−−− ) 

=0.1+0.09×
)1r22r(O

)1r22r()12r(2r

f
2
f

f
2
fw

2
w

−−−
−−−−− . 

In summation, risk will take place for three of carrier’s policies: ProactiveTell, 

Reply and WaitUntilNext. The following table shows Prh, the probability that the 

wumpus overhears the message sent by the carrier, for these policies. Once Prh is 

computed, risk can be easily computed. 
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                                  Probability 
Policy 

Prh 

ProactiveTell  0.1 
Fighter was 
within rw 

0.19 
 

Carrier 
still see 
wumpus Fighter was not 

within rw 
0.1 

 
 
Fighter was 
within rw 

0.19× E{Pr(Dn<J)}+ 

)1r22r(O
)1r22r()12r(2r

c
2
c

c
2
cw

2
w

−−−
−−−−− ×0.1× 

(1– E{Pr(Dn<J)}) 

 
 
 
 
 
Reply 

 
Carrier  
not see 
wumpus 

 
Fighter was not 
within rw 

0.1× E{Pr(Dn<J)}+ 

)1r22r(O
)1r22r()12r(2r

c
2
c

c
2
cw

2
w

−−−
−−−−− ×0.1× 

(1– E{Pr(Dn<J)}) 
 
WaitUntilNext 0.1+0.09×

)1r22r(O
)1r22r()12r(2r

f
2
f

f
2
fw

2
w

−−−
−−−−−  
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APPENDIX D  

CALCULATING PROBABILITY OF CORRECTNESS IN 

MULTI-AGENT WUMPUS WORLD 

The probability of currency, P, is shown in Section 7.2.3.4 to be 

Pr(tu–tp<J) 

where tu is the time at which the fighter arrives at wumpus’ location, tp is the time at 

which the carrier finds this wumpus, and J denotes the difference between the time at 

which the value for I was produced and the time at which the wumpus jumps. Since 

some parameters of P may be unknown, we compute the expected probability E{Pr(tu–

tp<J)}. 

In Section 7.2.3.4, we examine the GeneralCase and deduce Eq. (7-5) for 

calculating E{Pr(tu–tp<J)} in this case: 

E{Pr(tu–tp<J)} 

=∑ ∑=

−

= −
×
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1d
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1j d40
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40
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× 
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c ++

×fm(Xw, Yw, Xf, Yf, j) 

where σ = max(tp–tcl, 0) is the length of time the carrier moves from the time tcl to tp; tcl 

is the most recent time at which the decision maker knows the location of the carrier; 

Lcl=(Xcl , Ycl) is the carrier’s location last known by the decision maker; Lc=(Xc, Yc) is 
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the carrier’s location at time tp; Lw=(Xw, Yw) is the wumpus’s location at time tp; 

Lf=(Xf , Yf) is a fighter’s location at tn, the time at which the fighter needs a wumpus’ 

location; and rc is the observable rhombus vertex distance from the carrier. 

Based on the GeneralCase and Eq. (7-5), this appendix calculates E{Pr(tu–

tp<J)} for each situation/policy combination. 

D.1. Situation PA: The Carrier Finds a Wumpus’ Location – ProactiveTell 

In this case, tp= 0
,PaT , which is known to the carrier, and tn= NbT , , which is 

unknown. However, the value for I provided at time 0
,PaT , IP( 0

,PaT ), may not always be 

used for the need that arose at NbT ,  because the wumpus might jump before the fighter 

arrives at the wumpus’ location. P is specified as: 

Pr(tu– 0
,PaT <J), 

where tu, the time at which the fighter arrives at the wumpus’ location, will be specified 

later. This probability can be evaluated conditionally on two sub-cases: 

Pr(tu– 0
,PaT <J | NbT , ≤ 0

,PaT ) × Pr( NbT , ≤ 0
,PaT ) 

+ Pr(tu– 0
,PaT <J | 0

,PaT < NbT , ) × Pr( 0
,PaT < NbT , ). 

Pr( NbT , ≤ 0
,PaT ) and Pr( 0

,PaT < NbT , ) are calculated in Appendix A. Below we 

consider Pr(tu– 0
,PaT <J) for the two sub-cases. Since some variables of this probability 

are unknown, we calculate E{Pr(tu–tp<J)}. 
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D.1.1. Sub-case PT–1 NbT , ≤ 0
,PaT  

The carrier is the decision maker and t=tcl=tp= 0
,PaT . Thus, σ = max(0, tp – tcl) = 

0, and the two summations involving σ in Eq. (7-5) reduce to a single point. Also, since 

the carrier knows Lw, the summations over possible wumpus locations are irrelevant, 

leaving only the portions involving D0 (the length of time that the wumpus was in its 

current location before being sensed by the carrier), J and the fighter location. There 

are then two further sub-cases to consider: 1) the carrier senses the fighter at this 

moment, 0
,PaT , and 2) the carrier does not sense the fighter at 0

,PaT . 

In the first sub-case, Lf is known. Since there is a pending need (because in this 

case NbT , ≤ 0
,PaT ) and the location of the wumpus is being proactively told, the fighter 

will immediately use the information and start moving toward the wumpus. Hence, tu = 

0
,PaT  + Dk

26. Lf and Lw are known and hence Dk is known. In addition, since Dk is 

known, this puts a lower bound on the values of j27 that are possible, and this in turn, 

places an upper bound on the range of value of d that is possible. Hence, Eq. (7-5) 

reduces to: 

E{Pr(tu–tp<J)} 

=Pr( 0
,PaT +Dk– 0

,PaT <J) 

=Pr(Dk < J) 

                                                 
26 Recall that Dk is the distance the fighter must travel to reach the wumpus, and since the fighter moves 
one step per unit of time, Dk is also the time it take the fighter to reach the wumpus. 
27 Recall from Chapter VII that j and d are random variables representing J and D0, respectively. 
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We call this case SimpleCase, because E{Pr(tu–tp<J)} simply needs one input 

Dk. Having probabilities of d and j, E{Pr(tu–tp<J)} can be computed and then all other 

parameters in expression (7-3) are irrelevant. Therefore for any other case that Dk is 

known, it can be classified to the SimpleCase and the currency can be calculated with 

Eq. (D-1). 

If the carrier does not sense the fighter, Lf is unknown. However, it is still the 

case that the fighter will use the information as soon as it receives it. Thus, tu = 0
,PaT  + 

Dk. The fighter must have moved to the location of the last wumpus that the fighter 

killed. The last wumpus the fighter killed could be either a wumpus whose location 

was sent to the fighter by the carrier (which is not necessarily the last one told by the 

carrier), or a wumpus the fighter found itself. Since the carrier is much more likely to 

find a wumpus than the fighter, we ignore the latter case, and assume that, at tn, the 

fighter killed a wumpus whose location was sent by the carrier. However it would be 

hard for the carrier to know, among those wumpuses’ locations which have been sent 

to the fighter, which is the last wumpus the fighter killed. It could be the last one the 

carrier sent or some other one before the last one. Since we assumed that NbT ,  is the 

first need that arose after ls
PaT ,  (see Section 6.7.1), we assume the wumpus last killed is 

the one immediately before the last one the carrier told the fighter about at ls
PaT , . Hence 

Lf is approximated by the last wumpus location which the carrier sent it just before 
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ls
PaT , . Denote this as Lwl-1. So Lf = Lwl-1. By having estimation for Lf, Dk is known. This 

case is the SimpleCase and E(Pr(tu – tp < J)} can be calculated with Eq. (D-1). 

D.1.2. Sub-case PT–2 0
,PaT < NbT ,  

In this case, tu depends upon the decision the needer will make at NbT ,  and the 

provider’s response decision at NbT , . We consider combinations of cases. 

Pr(tu– 0
,PaT <J | 0

,PaT < NbT ,  ∧ En) × Pr(En), 

where En, n=1,..,4, denote the following events: 

E1: needer decides to Wait at NbT , ; 

E2: needer decides to keep Silence at NbT , ; 

E3: needer decides to ActiveAsk at NbT ,  ∧ provider decides to Reply at 

NbT , ; 

E4: needer decides to ActiveAsk at NbT ,  ∧ provider decides to 

WaitUntilNext at NbT , . 

Based on the analysis in Section 6.7.1.1.2, the needer won’t use IP( 0
,PaT ) for 

events E1 and E4. Hence we do not consider these cases. Specially in this domain the 

needer will not use IP( 0
,PaT ) given E3 either. This is because we are considering 

Proactivetell at 0
,PaT , so the only condition under which the provider will decide to 

reply at NbT ,  is NbT , = 1
,PaT . Therefore the needer won’t use IP( 0

,PaT ) for E3 and hence we 

also do not need to consider it. 
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Then the case left is E2. Here we first consider E(Pr(tu – tp < J)} for E2 and then 

compute Pr(E2). 

D.1.2.1. Calculating Pr(tu– 0
,PaT <J | 0

,PaT < NbT , ) ∧ E2) 

• PT–2 E2: needer decides to keep Silence at NbT ,  

In this case, tu = NbT ,  + Dk. Also t = tp = tcl = 0
,PaT  which is known, and tn= NbT ,  

which is unknown. Thus, σ = tp – tcl = 0, and the summations in Eq. (7-5) dealing with 

σ and carrier movement reduce to a single term. Also, since the wumpus location is 

known, the summations in Eq. (7-5) that deal with wumpus location reduce to a single 

term. Since tn > tp, the fighter is chasing a wumpus up until time NbT , . Either it is 

chasing a wumpus whose location was sent to it by the carrier, or it chasing a wumpus 

it found itself. Since the carrier is much more likely to find a wumpus than the fighter, 

we ignore the latter case, and assume that the fighter is chasing a wumpus whose 

location was sent to it by the carrier. With this assumption, what is needed, then, is 

some way to estimate the unknown time NbT , . 

From the information supplied by the fighter with active asks (and occasionally 

with the forced deadlock-breaking protocol), the carrier can determine the average 

time, τn, taken by the fighter to reach and kill a wumpus, measured from the time at 

which it received the wumpus location (which is not necessarily the time at which it 
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started chasing the wumpus). Thus, the carrier can estimate NbT ,  to be ls
PaT ,  + τn/228

 (see 

Section 6.7.1.1.1). In the current sub-case, though, we are considering NbT ,  > 0
,PaT , and 

there is no guarantee that ls
PaT ,  + τn/2 > 0

,PaT . Thus, we will use 

NbT ,  = max( 0
,PaT +1, ls

PaT ,  + τn/2). 

Since NbT , > 0
,PaT , NbT , – 0

,PaT  would be used to reduce the range of the 

summations over j and d, and the computation for Pr(tu – tp < J) reduces to: 

Pr(tu – tp < J) 

=∑ ++−−

=

)1Dt(t40

1d
kpn

40
1

×∑ −

++−= −
d40

1Dttj kpn d40
1            (D-2) 

We call this case ReducedSimpleCase because the difference between this case 

and the SimpleCase is that this case uses tn – tp to further reduce the ranges of 

summation. So for any later case if it knows Dk and tp, and tn>tp, we will classify it to 

ReducedSimpleCase. 

D.1.2.1.1. Calculating Pr(E2) 

• Pr(E2):Pr( needer decides to keep Silence at NbT , ) 

Pr(needer decides to keep Silence at NbT , ) 

=Pr(U(e, NA, Silence, NbT , , tp, {m}) > Max(U(e, NA, ActiveAsk, NbT , , tp, {m}), U(e, 

NA, Wait, NbT , , tp, {m}))), 

where tp will be replaced, for a given policy, by the value called for in that policy. 

                                                 
28 It would, of course, be theoretically possible to use the distribution obtained from EDF and add 
another level of summation to the expression for Pr(tu – tp <J). 
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The solution involves evaluating the utility function under each of the possible 

policies the needer might make at NbT , . The most difficult part is to determine the 

currency. Determinations of currency involve a set of parameters. As before, for an 

unknown NbT , , we use an estimate: 

NbT ,  = max( 0
,PaT +1, ls

PaT ,  + τn/2). 

Having this estimate, next we will specify all parameters which are need for Eq. (7-5) 

to calculate the currency. We consider three needer’s possible policies separately. 

Needer δ = Silence 

The evaluation of Silence for the needer under the condition that a need has 

arisen is given in Section D.2.4.6, which requires these inputs for calculating the 

currency: Dk, Ds, Dn, tn and tp. Since we are evaluating the carrier’s estimation for the 

fighter’s use of Silence at NbT , , the carrier needs to use its own knowledge to fill in 

these inputs. However the carrier‘s knowledge may be quite different from that of the 

fighter because of their different observabilities and motions. Moreover for the present 

case NbT ,  is in the future so the carrier is estimating the fighter’s future decisions, while 

in Section D.2.4.6, the needer considers using a previous value. This makes the carrier 

be unable to know some of the inputs for calculating the currency in Section D.2.4.6. 

For example, in Section D.2.4.6, Dk is known to the fighter because the fighter knows 

itself’s location Lf and the wumpus’s location Lw. However for the present case the 

carrier may has no way to know Lw if this location will be provided in the future. So 
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the carrier cannot use the form of Section D.2.4.6 to calculate the currency. Instead, it 

should consider tp and then decide which form of currency it can use. 

Let’s consider tp first. We estimate 1
,PaT  = 0

,PaT  + τP, where τP is the average 

length of time for producing a new value for I. Since we have an estimate for NbT ,  

( NbT ,  = max( 0
,PaT +1, ls

PaT ,  + τk/2)), then we are able to decide the order of 0
,PaT , 1

,PaT  and 

NbT , . We consider two cases: 1) 0
,PaT < NbT ,  < 1

,PaT  and 2) 1
,PaT ≤ NbT , . 

In the case of 0
,PaT < NbT ,  < 1

,PaT , tp = 0
,PaT  so the carrier knows Lw. As before Lf 

is approximated by the last wumpus location which the carrier sent. So the carrier 

knows Lf. Therefore Dk is known. This case is exactly the same with Sub-case PT-2 E2 

(ReducedSimpleCase), where the fighter also will use IP( 0
,PaT ). E{Pr(tu–tp<J)} will be 

estimated with the same form of Eq. (D-2). 

In the case of 1
,PaT ≤ NbT , , tp is the most recent production time before NbT , . We 

assume tp equals the most recent production time before tn (see Section 6.7.1.1.1.1 for 

rationale). Then we use Eq. (6-1) for tp. Thus tp= 0
,PaT +Z×τp where Z = 

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢ −

p

0
,

τ
Pab,N TT

) 

which returns 0 or an positive integer, meaning the number of productions during NbT ,  

and 1
,PaT . Therefore 

σ = max(0, tp–tcl) = tp – 0
,PaT  = 0

,PaT +Z×τp – 0
,PaT = Z×τp. 
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The carrier knows Lcl its current location at 0
,PaT . It also knows Lf which is assumed to 

be the last wumpus location which the carrier sent to the fighter. Since NbT , > 0
,PaT , 

NbT , – 0
,PaT  would be used to reduce the range of the summations over j and d. Then 

E{Pr(tu–tp <J)} can be approximated as the follows: 
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×fm(Xw, Yw, Xf, Yf, j)  (D-3). 

We call this case ReducedGeneralCase because besides requiring σ, Lcl and Lf as what 

the GeneralCase does, this case also uses tn – tp to reduce summations. For any later 

case which has the same requirement, we classify it to ReducedGeneralCase and the 

currency can be calculated with Eq. (D-3). 

Needer δ = Wait 

The evaluation of Wait for the needer is given in Section D.2.4.7, which 

requires these inputs for calculating the currency: σ, Lf and Lcl. Since there is a need, 

we assume tp is the next production time after 0
, NbT . Thus we can use Eq. (6-2) to 

estimate tp. Thus tp= 0
,PaT +(Z+1)×τp. Also since 0

,PaT  is the most recent time at which the 

carrier know is own location (in fact 0
,PaT  is the current time), so tcl = 0

,PaT , then: 
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σ = max(0, tp – tcl) = tp – 0
,PaT =(Z+1)×τp. 

Having estimations for σ, and knowing Lcl, its own location at 0
,PaT , which is 

the current time, and Lf, the last wumpus location which the carrier sent to the fighter, 

the carrier is able to calculate E{Pr(tu–tp<J)} with Eq. (7-5) of the GeneralCase. 

Needer δ = ActiveAsk 

In this case, tp depends on the carrier’s responding decision at NbT , . So the 

carrier needs to estimate whether it will Reply or WaitUntilNext at NbT , . The carrier 

needs to calculate Pr(provider decides to Reply at NbT , ) and Pr(provider decides to 

WaitUntilNext at NbT , ). It is enough to compute one of them because they are 

complement to each other. We choose Pr(carrier decides to Reply at NbT , ). 

Pr(provider decides to Reply at tn) 

=Pr(U(e, PB, Reply, NbT , , tp, {m}) > U(e, PB, WaitUntilNext, NbT , , tp, {m})), 

where tp will be replaced, for a given policy, by the value called for in that policy. 

If Provider δ = Reply, tp is the production time just before tn, and we use Eq. 

(6-1) to estimate tp. Thus tp= 0
,PaT +Z×τp. As before, Lf = Lwl-1. Since t < 0

,PaT  < NbT , , tcl = 

0
,PaT . Then: 

σ = max (0, tp – tcl) = Z×τp. 

Lcl is the carrier’s location at the current time 0
,PaT . Lf is approximated by the 

last wumpus location which the carrier sent to the fighter at time 0
,PaT . In conclusion, 
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the carrier uses estimated tp= 0
,PaT +Z×τp to calculate σ, uses its current location at 0

,PaT  

as Lcl, and uses the wumpus location provided to the fighter at 0
,PaT  to estimate Lf. 

Since 0
,PaT < NbT , , NbT ,  – 0

,PaT  would be used to reduce the range of the summations over 

j and d. This case is ReducedGeneralCase because it requires σ and Lcl and Lf as inputs 

and has tp<tn. E{Pr(tu–tp<J)} can be calculated with Eq. (D-3). 

If Provider δ = WaitUntilNext, tp is the production time just after 0
, NbT , we use 

Eq. (6-2) to estimate tp. Thus tp= 0
,PaT +(Z+1)×τp. Since t< 0

,PaT < NbT , , tcl = 0
,PaT . Then: 

σ = tp – tcl = (Z+1)×τp. 

Lcl is the carrier’s location at 0
,PaT  and Lf is approximated by Lwl, which is the 

wumpus location provided to the fighter at 0
,PaT . This case is the GeneralCase because 

it requires σ and Lcl and Lf as inputs. E{Pr(tu–tp<J)} can be calculated with Eq. (7-5).  

Once the currency for three possible policies can be computed, their utilities 

can be computed and then Pr(needer decides to keep Silence at NbT , ) is deterministic 

either 1 or 0. 

D.2. Situation PA: the carrier finds a wumpus’ location – Silence 

In this case,  

Pr(tu−tp < J), 

where tp may be before, equal to, or after 0
,PaT , depending upon decisions the agents 

make, and tu will be the time at which the fighter arrives at the wumpus’ location. This 

probability can be evaluated conditionally on two sub-cases: 
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Pr(tu−tp < J) × Pr( NbT , ≤ 0
,PaT ) 

+ Pr(tu−tp < J) × Pr( 0
,PaT < NbT , ) 

Pr( NbT , ≤ 0
,PaT ) and Pr( 0

,PaT < NbT , ) are calculated in Appendix A. We now 

consider E{Pr(tu−tp < J)} for two sub-cases. 

D.2.1. Sub-case PS–1 NbT , ≤ 0
,PaT  

In this case, the needer could not have chosen ActiveAsk because otherwise, the 

needer would have asked and the provider would be obligated to provide the value at 

0
,PaT  and could not choose Silence. Therefore the needer must be either Waiting for a 

proactive tell from the provider or keeping Silence, so we use IP( ls
PaT , ). We consider 

combinations of these two cases: 

∑ =

6

5n
Pr((tu−tp < J | NbT , ≤ 0

,PaT  ∧ En) × Pr(En), 

where En, n=5 and 6, denote the following events: 

E5: needer decides to Wait at NbT , ; 

E6: needer decides to keep Silence at NbT , . 

We first calculate E{Pr(tu−tp < J)} for E5 and E6 and then compute Pr(E5) and 

Pr(E6). 

D.2.1.1. Calculating E{Pr(tu−tp < J)} for E5 and E6 

• PS–1 E5: needer decides to Wait at NbT ,  
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In this case, we have t = tcl = 0
,PaT , and tn= NbT , , which is unknown. Since the 

carrier knows tcl, so Lcl is known. tp is the next ProactiveTell time, which will be at 

some future production time (not necessarily the next production time). Since by 

assumption there is a need at t, the fighter must have chased the wumpus whose 

location was most recently sent to it. This wumpus location was denoted by Lwl which 

is the wumpus’ location at time ls
PaT , . As before, we approximate Lf by Lwl. Since tp is 

the production time just after 0
, NbT , we use Eq. (6-2) to estimate tp. Thus 

tp= 0
,PaT +(Z+1)×τp. We approximate σ as: 

σ = tp – t = 0
,PaT +(Z+1)×τp. 

All of the parameters needed for evaluating Eq. (7-5) (the GeneralCase), σ, Lcl 

and Lf, are thus estimated and this equation can be used to estimate E{Pr(tu – tp < J)}. 

• PS–1 E6: needer decides to keep Silence at NbT ,   

In this case, t= tcl = 0
,PaT , tn= NbT , , which is unknown, and tp= ls

PaT , , the known 

time of the most recent value for I the needer has. ls
PaT ,  must be less than t, and must 

correspond to the time at which some previous proactive tell occurred. As an estimate, 

we will consider the two most recent wumpus locations sent to the fighter and assume 

that the fighter has just killed the next-to-last wumpus and is about to chase the most 

recent wumpus, whose location was sent. While this situation is not guaranteed, it is 

the most likely situation. We also take the wumpus location that will be sought to be 

Lw = Lwl, and hence it is known. Having this estimate for Lf and Lw, Dk turns out to be 
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a fixed number. Since tn>tp, we also need to consider unknown tn. Therefore tn – tp 

would be used to reduce the range of the summations over j and d. We approximate tn 

by 

NbT ,  = max( ls
PaT , +1, min( ls

PaT ,  + τn/2, 0
,PaT )). 

Since Dk and tp are known, and tn>tp, this is ReducedSimpleCase and then 

E{Pr(tu–tp<J)} can be estimated with Eq. (D-2). 

D.2.1.2. Calculating Pr(En) 

• Pr(E6): Pr(needer decides to keep Silence at NbT , ) 

Pr(needer decides to keep Silence at NbT , ) 

=Pr(U(e, NA, Silence, NbT , , ls
PaT , , {m}) > U(e, NA, Wait, NbT , , 

0
,PaT , {m}), 

where as before, we estimate NbT ,  = max( ls
PaT , +1, min( ls

PaT ,  + τn/2, 0
,PaT )).  We assume 

Lwl-1 is the wumpus’ location the carrier sent just before ls
PaT ,  and the carrier knows this 

time.  

The solution will involve (the provider) evaluating the utility function under 

each of the possible policies the needer might make at tn = NbT , . The evaluation of the 

utility function includes cost, timeliness and currency (risk is only associated with the 

carrier). Having tp and tn, determinations of cost and timeliness are straightforward. 

Next we consider the currency for each policy. 

Needer δ = Silence 
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The evaluation of Silence for the needer under the condition that a need has 

arisen is given in Section D.2.4.6, which requires the following inputs for calculating 

the currency: Dk, Ds, Dn, tn and tp. Since we are evaluating the carrier’s estimation for 

the needer’s use of Silence at tn, the carrier will use its own knowledge to fill in these 

inputs. Let’s consider these inputs one by one.  

Dk. Under our assumption, the fighter will be at Lwl-1 at time tn. This is also the 

time at which the fighter begins to chase the wumpus at Lwl, thus Lf = Lwl-1. We also 

take the wumpus location that will be sought to be Lw = Lwl, and hence Lw is known. 

Having this estimate for Lf and Lw, Dk turns out to be a fixed number.  

Ds and Dn. During the time interval [ ls
PaT , , tn], where tn = max( ls

PaT , +1, min( ls
PaT ,  

+ τn/2, 0
,PaT )), the carrier is able to determine Ds, the length of time between when the 

carrier first saw this wumpus and when it last saw this wumpus, and Dn, the time 

duration since the carrier last saw the wumpus. Having these inputs, the carrier is able 

to estimate the currency given in Section D.2.4.6. 

Needer δ = Wait 

The evaluation of Wait for the needer under the condition that a need has arisen 

is given in Section D.2.4.7, which requires the following inputs for calculating the 

currency: σ, Lf and Lcl. However, in this case, tp=tcl= 0
,PaT , and σ = max(0, tp−tcl) = 0. 

Since σ=0, the carrier did not move so Lcl is irrelevant. Also as before Lf is 

approximated by Lwl-1. Having estimations for Lf, this fits the form of Sub-case PT-1, 
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which also has σ=0. The currency will be estimated with the same form of Sub-case 

PT-1 (Eq. (D-1) for the SimpleCase). 

Once the currency for three possible policies can be computed, their utilities 

can be computed. Consequently the estimated needer’s decision is deterministic, thus 

the needer will choose a policy which has the max utility. So the probability that the 

needer will choose this policy is 1. Since the needer only can make one decision at a 

decision point, so the probability of choosing other policies is 0. Then Pr(needer 

decides to keep Silence at NbT , ) equals either 0 or 1. 

• Pr(E5): Pr(needer decides to Wait at NbT , ) 

The event E5 is complement of E6. Pr(E5)=1–Pr(E6). 

D.2.2. Sub-case PS–2 0
,PaT < NbT ,  

In this case, tp and tu depend upon the decision the needer will make at NbT ,  and 

the provider’s decision at NbT , . We consider combinations of cases: 

∑ =

10

7n
Pr(tu–tp <J | 0

,PaT < NbT ,  ∧ En) × Pr(En), 

where En, n=7,..,10, denote the following events: 

E7: needer decides to Wait at NbT , ; 

E8: needer decides to keep Silence at NbT , ; 

E9: needer decides to ActiveAsk at NbT ,  ∧ provider decides to Reply at 

NbT , ; 
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E10: needer decides to ActiveAsk at NbT ,  ∧ provider decides to 

WaitUntilNext at NbT , . 

Based on Section 6.7.1.2.2, IP(tp) will be used for all events. So we first must 

consider E{Pr(tu–tp <J)} for all events and then compute Pr(En). Generally these 

computations need parameters: tp and tcl to calculate σ=max(0, tp–tcl), Lcl the carrier’s 

most recent known location, and Lf the fighter’s location at time NbT , . 

D.2.2.1. Calculating E{Pr(tu–tp <J)} for E7-E10 

• PS–2 E7: needer decides to Wait at NbT ,  

This case is very similar to Sub-case PS–1 E5. Sub-case PS–1 E5 also requires 

that the needer be waiting when the need occurs. Sub-case PS–1 E5 uses Eq. (7-5) 

which requires three parameters: σ, Lcl and Lf. In order to calculate σ, the carrier needs 

tp and tcl. In the present case, tp can be estimated by the same way in Sub-case PS–1 E5: 

tp = 0
,PaT +(Z+1)×τP, and tcl equals to the current time 0

,PaT . Then Lcl is the carrier’s 

current location at 0
,PaT . As before Lf is approximated by Llw-1. Having σ, Lcl and Lf, 

this is GeneralCase and then Eq. (7-5) may be used for currency. 

• PS–2 E8: needer decides to keep Silence at NbT ,  

In this case, t= tcl = 0
,PaT . Since the carrier knows tcl, so Lcl is known. As before, 

Lf=Lwl-1. Since tp<tn, tn – tp would be used to reduce the range of the summations over j 

and d. As in Sub-case PS–2, E5, we approximate tn by 

NbT ,  = max( 0
,PaT +1, ls

PaT ,  + τn/2). 
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tp is the time at which the last wumpus’ location the carrier will have sent to the 

fighter (not necessarily ls
PaT , ). We use an estimation 1

,PaT = 0
,PaT +τP. Having estimations 

for tn and 1
,PaT , we are able to determine their order. If 0

,PaT <tn< 1
,PaT , tp = ls

PaT , ; 

otherwise we assume tp equals the most recent production time before tn: tp= 0
,PaT +Z×τP. 

If tp= ls
PaT , , this case is very similar to Sub-case PS–1 E6, the GeneralCase, 

which also required that the needer keep silence when the need occurred. The only 

difference in the present case is that the range of possible values for NbT ,  is different. 

Then, Eq. (7-5) may be used as in Sub-case PS–1 E6 with the revised value for NbT , . 

If tp = 0
,PaT +Z×τP, this case is the ReducedGeneralCase because it requires σ, 

Lcl and Lf, and has tp < tn.since tcl < 0
,PaT , then 

σ = tp – tcl = Z×τP+ 0
,PaT  – 0

,PaT  = Z×τP. 

E{Pr(tu–tp <J)} can be calculated with Eq. (D-3). 

• PS–2 E9: needer decides to ActiveAsk at NbT ,  ∧ provider decides to Reply at 

NbT ,  

In this case, tcl = t = 0
,PaT , and the carrier knows its own location Lcl. The fighter 

will be at Lwl-1 at time NbT , ; thus Lf = Lwl-1. Since tp<tn, tn – tp would be used to reduce 

the range of the summations over j and d. As in Sub-case PS–2 E7, we approximate tn 

by  

NbT ,  = max( 0
,PaT +1, ls

PaT ,  + τn/2). 
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tp could be either 0
,PaT  or some production time greater than 0

,PaT . Different 

values for tp will lead to σ equal to zero or not and this consequently will result in using 

different forms to calculate E{Pr(tu–tp <J)}. 

As before we use an estimation 1
,PaT  = 0

,PaT  + τP. Having estimations for tn and 

1
,PaT , we are able to determine their order.  If 0

,PaT  < tn < 1
,PaT , tp = 0

,PaT . This case is 

exactly the same with Sub-case PT-2 E2, where the fighter also will use IP(tp). Pr(tu–

tp<J) will be estimated with the same form of Eq. (7-5) in Sub-case PT-2 E2 (the 

GeneralCase). 

If 1
,PaT  ≤ tn, tp is the production time just before tn; we use Eq. (6-1) to estimate 

tp: tp= 0
,PaT +Z×τP. Then: 

σ = tp – tcl = Z×τP+ 0
,PaT  – 0

,PaT  = Z×τP. 

This case is ReducedGeneralCase because it requires σ, Lcl and Lf as inputs, and uses 

tn – tp to reduce summations. E{Pr(tu–tp<J)} will be estimated with Eq. (D-3). 

• PS–2 E10: needer decides to ActiveAsk at NbT ,  ∧ provider decides to 

WaitUntilNext at NbT ,  

In this case, tcl = t = 0
,PaT , and the carrier knows its own location Lcl. The fighter 

will be at Lwl-1 at time NbT , , thus Lf = Lwl-1. As in Sub-case PS–2, E7, we approximate tn 

by  

NbT ,  = max( 0
,PaT +1, ls

PaT ,  + τn/2). 
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The carrier will reply the next wumpus’ location found after tn. tp can be 

approximated by Eq. (6-2): tp= 0
,PaT +(Z+1)×τP. Then:  

σ = tp – tcl = 0
,PaT +(Z+1)×τP– 0

,PaT  = (Z+1)×τP. 

This case is GeneralCase because it requires σ, Lcl and Lf as inputs. Eq. (7-5) may be 

used for currency. 

D.2.2.2. Calculating Pr(En) 

We consider Pr(En) (n=7-10): 

E7: needer decides to Wait at NbT , ; 

E8: needer decides to keep Silence at NbT , ; 

E9: needer decides to ActiveAsk at NbT ,  ∧ provider decides to Reply at 

NbT , ; 

E10: needer decides to ActiveAsk at NbT ,  ∧ provider decides to 

WaitUntilNext at NbT , . 

These events cannot occur simultaneously. In order to estimate the needer’s 

decisions, the provider must compute utilities for all needer’s possible policies. Once 

the utilities can be computed, the estimated needer’s decision is deterministic, thus the 

needer will choose a policy which has the max utility. So the probability that the 

needer will choose this policy is 1. Since the needer only can make one decision at a 

decision point, so the probability of choosing other policies is 0. For example, if the 

utility of Silence is greater than that of Wait and ActiveAsk, then Pr(needer decides to 
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keep Silence at NbT , ) = 1 and Pr(needer decides to Wait at NbT , ) = 0 and Pr(needer 

decides to ActiveAsk at NbT , ) = 0. Therefore we can identify that Pr(En) is deterministic 

either 1 or 0. This means these probabilities are dependent with each other. For 

example, in order to compute Pr(E7) which is about policy Wait, we must also consider 

the other two possible policies Silence and ActiveAsk, and if  Pr(E7)=1 then the other 

two policies become impossible decision for the needer. Since consideration of the 

probability about one of the needer’s decisions includes evaluating utilities for all 

policies, here we only show the probability about one of the needer’s decisions and the 

probability about one of the provider’s responding decisions, and then the probabilities 

for all four events can be determined. We choose Pr(needer decides to keep Silence at 

NbT , ) and Pr(provider decides to Reply at NbT , ). 

In order to compute Pr(needer decides to Wait at NbT , ), again we need to 

compute utility for all Wait, Silence and ActiveAsk. This process is very similar to what 

has been done in Sub-case PT–2 where we computed Pr(needer decides to Wait at 

NbT , ) under the condition that NbT ,  > t. There is only one difference between Sub-case 

PT–2 and the present case. For the present case, since the provider won’t provide 

IP( 0
,PaT ), so for the case of needer’s δ= Silence, if 0

,PaT < NbT , < 1
,PaT , tp = ls

PaT ,  (tp = 0
,PaT  

for the previous case). Therefore in this case σ= max(0, tp – tcl) will be computed with 

tp = ls
PaT , . Except this difference, any other computation for this case is exactly the same 

with that of Sub-case PT–2. So Pr(needer decides to Wait at NbT , ) is computable. 
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In order to compute Pr(provider decides to Reply at NbT , ), again we need to 

compute utility for both Reply and WaitUntilNext. This process is exactly the same as 

Sub-case PT–2 needer δ=ActiveAsk, where we computed Pr(provider decides to Reply 

at NbT , ) under the condition that the needer ActiveAsks for I at tn and tn > t. So we can 

compute Pr(provider decides to Reply at NbT , ) with the same manner. 

D.3. Situation PB: the carrier receives a request from a fighter – Reply 

In this case, tn = t = Tb,q, tu = Tb,q+Dk and tp = 0
,
q

PaT , which is the latest 

production time before the request time, Tb,q. Also, tp < tn, and the carrier knows both 

of them. Because the carrier is assumed to reply with the last observed wumpus’ 

location, it also knows Lw. We presume that in addition to asking the carrier the 

location of the wumpus, the fighter will also tell the carrier its own location so that the 

carrier can use it as a point of reference. Therefore Lf is known, and hence Dk is 

determined. 

During the time interval (tp, t], the carrier may still be able to sense the wumpus 

some of the time. Therefore (tp, t] could be divided into two time durations: Ds, the 

length of time between the carrier’s first sight of this wumpus and its last sight of this 

wumpus, and Dn, the time duration from the carrier last saw the wumpus to the current 

time. Ds will decrease the hypothesis space of D0 from [1, 40] to [1, 40–Ds]. Dn, plus tn 

– tp, will increase the lower bound on the values of j and decrease the upper bound on 

the range of value of d. This case is similar to the ReducedSimpleCase because Dk and 

tp are known and tn>tp. E{Pr(tu–tp<J)} is calculated with 



 271

E{Pr(tx–tp<J)} 

=∑ +++−−−

=

1)DDt(tD40

1d
knpns

sD40
1
−

×∑ −−

+++−=

s

knpn

Dd40

1DDttJ
sDd40

1
−−

. 

D.4. Situation PB: the carrier receives a request from a fighter – WaitUntilNext 

In this case, since tp is a future time but tcl is the current time, so σ≠0. We need 

to use Eq. (7-5) to compute currency. Eq. (7-5) requires three parameters σ, Lcl and Lf. 

For this case, t = tcl = tn = Tb,q, tp = 1
,
q

PaT , and tu = 1
,
q

PaT +Dk; where 1
,
q

PaT  is the next 

production time following the request time, Tb,q. Since the carrier knows tcl, so Lcl is 

known. We presume that the fighter will attach its location to the request at Tb,q, so Lf 

is known. And σ = max(0, tp – tcl) = tp – Tb,q. We can use an estimation 

tp=max( 0
,
q

PaT +τP, Tb,q+1). Then: 

σ = tp – Tb,q =max( 0
,
q

PaT +τP, Tb,q+1) – Tb,q. 

This case is the GeneralCase because it needs σ, Lcl and Lf. Eq. (7-5) will be used for 

computing currency. 

D.5. Situation NA: the fighter needs a wumpus’ location – ActiveAsk 

In this case, tn= 0
, NbT . tp and tu depend upon the provider’s responding decision at 

0
, NbT . We consider the following expression which can be evaluated by considering two 

sub-cases: 

∑ =

12

11n
Pr(tu−tp<J | En) × Pr(En), 

where En, n=11 and 12, denote the following events: 
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E11: provider decides to Reply at 0
, NbT ; 

E12: provider decides to WaitUntilNext at 0
, NbT . 

Below we first consider Pr(tu−tp<J | En) and then Pr(En). 

D.5.1. Calculating E{Pr(tu−tp<J)} for E11 and E12 

• E11: provider decides to Reply at 0
, NbT  

In this case, the fighter is the decision maker. The fighter knows t = tn = 0
, NbT , 

but tp= 0
,
a

PaT  < tn and tp is unknown; 0
,
a

PaT  is the time at which the carrier most recently 

produced a wumpus’ location. 

The fighter will know a set of previous locations of the carrier, because we 

presume that, in addition to telling the fighter the location of the wumpus, the carrier 

also tells the fighter its own location. The most recent location of the carrier that the 

fighter knows is at time ls
PaT , , which denotes the time at which the carrier last sent a 

wumpus location to the fighter. Note that ls
PaT ,  must be less than tp, because the carrier 

will not choose Reply if no new wumpus’ location has been produced after ts. So tcl = 

Tb,r
29 and the fighter knows Lcl. As before we assume that tp is the most recent 

production time just before tn. Thus we estimate tp as tp = Tb,r+Z×τP, where Z = 

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢ −

p

rb,
0

τ
Tb,NT

. Then: 

σ = max(0, tp – tcl) = Z×τP+Tb,r–Tb,r = Z×τP. 

                                                 
29  Recall from Chapter VI that Tb,r is the most recent time at which the needer received a message from 
the carrier. 
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The fighter can obtain τP from the data about the average time between (new) 

wumpus findings sent from the carrier.  

This case is ReducedGeneralCase because it needs σ, Lcl and Lf, and has tp< tn.  

E{Pr(tu–tp<J)} will be calculated with Eq. (D-3). 

• E12: provider decides to WaitUntilNext at 0
, NbT  

In this case, t = tn = 0
, NbT , which is known, and tp = 1

,
a

PaT , the next time at which 

the carrier finds a wumpus, which is unknown. Thus we estimate tp by tp = (Z+1)×τP+ 

Tb,r. Then: 

σ = max(0, tp – tcl) = (Z+1)×τP+Tb,r–Tb,r = (Z+1)× τP. 

This case is the GeneralCase because it needs σ, Lcl and Lf. E{Pr(tu–tp<J)} will 

be calculated with Eq. (7-5). 

D.5.2. Calculating Pr(En) 

Next we consider Pr(E11) and Pr(E12), the needer’s estimate to the provider’s 

responding decision. 

• Pr(E11): Pr(provider decides to Reply at 0
, NbT ) 

Pr(provider decides to Reply at 0
, NbT ) 

=Pr(U(e, PB, Reply, 0
, NbT , tp, {m}) > U(e, PB, WaitUntilNext, 0

, NbT , tp, {m})), 

where tn= 0
, NbT  for both policies. 
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If provider δ = Reply, tp is the production time just before tn= 0
, NbT . We estimate 

tp as tp= Tb,r+Z×τP, where Z = 
⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢ −

p

rb,
0

τ
Tb,NT

.Since the fighter may not know the carrier’s 

location from the fighter’s limited observability. Hence, we use the location sent at 

time Tb,r.  If Z=0 which means that no new production after the last told, Pr(provider 

decides to Reply at 0
, NbT ) = 0, because the carrier won’t resend the last told. Otherwise 

σ = max(0, tp – tcl) = tp – tcl. Also the fighter knows its own location Lf at tn. Since tp<tn, 

tn – tp would be used to reduce the range of the summations over j and d. Therefore this 

case is ReducedGeneralCase because it needs σ, Lcl and Lf, and has tp<tn. Pr(tu–tp<J) 

can be estimated with Eq. (D-3). 

If provider δ = WaitUntilNext, tp is the production time just after 0
, NbT . We 

estimate tp as Tb,r+(Z+1)×τP, where Z = 
⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢ −

p

rb,
0

τ
Tb,NT

. Also σ = max(0, tp – tcl) = tp – tcl. 

Meanwhile the fighter knows its own location Lf at tn. This case is the GeneralCase 

because it needs σ, Lcl and Lf. Pr(tu–tp<J) can be estimated with Eq. (7-5). 

After computing the currency, the risk can be estimated using Table 2 and 

hence  Pr(provider decides to Reply at 0
, NbT ) be estimated to be either 1 or 0. 

• Pr(E12): Pr(provider decides to WaitUntilNext at 0
, NbT ) 

The event E12 is the complement of E11. So Pr(E12) = 1 – Pr(E11). 
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D.6. Situation NA: the fighter needs a wumpus’ location – Silence 

In this case, t=tn= 0
, NbT , tp=Tb,r, the time at which agent b most recently received 

a wumpus location, and tu= 0
, NbT +Dk. The fighter knows Lf and Lw; hence Dk is 

determined. Likewise, tp, and tn are known, hence all other variables including Lc, Lw 

and Lf are known. This fits the ReducedSimpleCase and we can calculate the 

concurrency with Eq. (D-2). 

D.7. Situation NA: the fighter needs a wumpus’ location – Wait 

In this case, tn= 0
, NbT . tp is the next ProactiveTell time after 0

, NbT . Since there is a 

need, we assume tp is the next production time after 0
, NbT . Thus we tp as Tb,r+(Z+1)×τP. 

Then: 

σ = max(0, tp – tcl) = (Z+1)×τP+ Tb,r – Tb,r = (Z+1)× τP. 

This case is the GeneralCase because it needs σ, Lcl and Lf. E{Pr(tu–tp<J)} can 

be estimated with Eq. (7-5). 

D.8. Situation NB: the fighter receives a wumpus’ location 

In this situation, the fighter will Accept the wumpus location received. The 

decision is deterministic, so we do not consider this case. 
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