

PROACTIVE COMMUNICATION IN MULTI-AGENT

TEAMWORK

A Dissertation

by

YU ZHANG

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

December 2005

Major Subject: Computer Science

PROACTIVE COMMUNICATION IN MULTI-AGENT

TEAMWORK

A Dissertation

by

YU ZHANG

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Richard A. Volz
Committee Members,

Wei Zhao
Thomas R. Ioerger
Yoonsuck Choe
Amarnath Banerjee

Head of Department, Valerie E. Taylor

December 2005

Major Subject: Computer Science

iii

ABSTRACT

Proactive Communication in Multi-Agent Teamwork. (December 2005)

Yu Zhang, B.S.; M.S., Central South University, China

Chair of Advisory Committee: Dr. Richard A. Volz

Sharing common goals and acting cooperatively are critical issues in multi-

agent teamwork. Traditionally, agents cooperate with each other by inferring others'

actions implicitly or explicitly, based on established norms for behavior or on

knowledge about the preferences or interests of others. This kind of cooperation either

requires that agents share a large amount of knowledge about the teamwork, which is

unrealistic in a distributed team, or requires high-frequency message exchange, which

weakens teamwork efficiency, especially for a team that may involve human members.

In this research, we designed and developed a new approach called Proactive

Communication, which helps to produce realistic behavior and interactions for multi-

agent teamwork. We emphasize that multi-agent teamwork is governed by the same

principles that underlie human cooperation. Psychological studies of human teamwork

have shown that members of an effective team often anticipate the needs of other

members and choose to assist them proactively. Human team members are also

naturally capable of observing the environment and others so they can establish certain

parameters for performing actions without communicating with others. Proactive

Communication endows agents with observabilities and enables agents use them to

track others’ mental states. Additionally, Proactive Communication uses statistical

iv

analysis of the information production and need of team members and uses these data

to capture the complex, interdependent decision processes between information needer

and provider. Since not all these data are known, we use their expected values with

respect to a dynamic estimation of distributions.

The approach was evaluated by running several sets of experiments on a Multi-

Agent Wumpus World application. The results showed that endowing agents with

observability decreased communication load as well as enhanced team performance.

The results also showed that with the support of dynamic distributions, estimation, and

decision-theoretic modeling, teamwork efficiency were improved.

v

DEDICATION

To my parents, Baojun and Peimei, who taught me that science is a question.

To my husband, Weihua Guan, who taught me that faith is a necessity.

vi

ACKNOWLEDGMENTS

Every time I read the acknowledgment sections of dissertations I came across, I

always thought about what I would be writing when it came to my own section. During

the interviews of my academic job hunting, the most frequently asked question is how I

will teach students. Plutarch once said “The mind is not a vessel to be filled, but a fire

to be kindled.” I am the firm believer in this and think the primary role of a teacher is

to kindle a fire in the mind of each student. I am very fortunate to have been offered the

opportunity to work with such good teachers. They not only fired my eager desire for

boundless knowledge but also showed me the short way by which I can reach the part

which is most interesting to me.

First and foremost among these teachers is my advisor, Dr. Richard Volz. His

devotion to his students, his vision and wisdom to help them avoid detours, his care in

teaching them science, rather than merely getting them through the program, his taking

great care in providing them what they need to do their research, and his ethical

standards combine to provide the best advisor I could ask for. Never did Dr. Volz show

anything but patience in responding to any of my questions (some were simple or even

silly). Rather than directly saying yes or no, his answers always convinced me that

everything needs more thought.

My committee members deserve many thanks for their advice and friendliness.

Dr. Wei Zhao made himself available to provide help and advice, and made sure that I

saw the big picture when it came to my research. Dr. Tom Ioerger has supplied me

with many useful resources and comments. He helped me bring different kinds of

vii

considerations to the research to make it more comprehensive. Dr. Yoonsuck Choe and

Dr. Amarnath Banerjee were helpful in pointing out limits of the approach I presented,

and deserve much credit for making me think about the research from completely fresh

perspectives.

I also would like to thank Dr. Dianxiang Xu, who worked with me on the

journal paper and provided many valuable comments about my research. Dr. John Yen,

Michael Miller, Sen Cao, Linli He, Maitreyi Nanjanath, Jonathan Whetzel, Jesse

Plymale, and Norman Ma, all provided help and made this serious research process full

of fun.

My family has been a source of strength and wisdom during my Ph.D. study.

For more than 5 years, I have not visited my parents, but they delivered their care and

encouragement to me at any chance they found. The help I got from Weihua, my

husband, is priceless. My greatest motivation has always been to be worthy of his love.

Finally, this research was supported in part by DoD MURI grant F49620-00-I-

326 administered through AFOSR.

viii

TABLE OF CONTENTS

 Page

ABSTRACT .. iii

DEDICATION .. v

ACKNOWLEDGMENTS... vi

TABLE OF CONTENTS .. viii

LIST OF FIGURES... xiii

LIST OF TABLES .. xv

CHAPTER

 I INTRODUCTION... 1

 1.1. Motivation .. 1
 1.2. Investigating Effective Communication..................................... 2
 1.2.1. Observability .. 3
 1.2.2. Proactivity .. 4
 1.2.3. Challenges .. 4
 1.3. Our Approach and Its Contributions .. 5
 1.4. Structure of the Dissertation... 7

 II RELATED WORK ... 9

 2.1. Teamwork as Represented by Artificial Intelligence................. 9
 2.1.1. Teamwork Theories.. 10
 2.1.2. Teamwork Systems .. 16
 2.2. Decision Making Models in Agent Research............................. 20
 2.2.1. Classic Decision Theory... 21
 2.2.2. Naturalistic Decision Making... 25
 2.3. Decision-Theoretic Modeling Communication.......................... 26
 2.3.1. Selective Communication .. 26
 2.3.2. Probabilistic Plan Recognition ... 27
 2.3.3. Game-Theoretic Recursive Modeling 28
 2.3.4. Optimal Communication among a Team 30
 2.3.5. Multi-Agent Markov Decision Process............................ 31
 2.3.6. Dec_POMDP_Com.. 31

ix

CHAPTER Page

 2.3.7. COM-MTDP .. 32
 2.4. Other Effective Communication Approaches 33
 2.4.1. Centralization Modeling... 33
 2.4.2. Comparative Reasoning ... 33
 2.4.3. Social Conventions... 34
 2.4.4. Focal Points .. 35
 2.5. Observability and Belief Maintenance 35
 2.5.1. Knowledge and Belief .. 36
 2.5.2. Visibility, Seeing, and Knowledge Logic 37
 2.5.3. Beliefs of Agents .. 38
 2.5.4. Seeing Is Believing... 39
 2.5.5. Nested Belief Reasoning .. 40
 2.5.6. Cooperation by Observation... 41
 2.6. Problem-Specific Prediction .. 41
 2.6.1. OVERSEER ... 41
 2.6.2. Successful Story Learning.. 42
 2.6.3. Regression Modeling.. 42
 2.7. Psychological Study of Shared Mental Model in Human

 Teamwork... 43
 2.8. Context of Work at TAMU .. 44
 2.8.1. TaskableAgents .. 45
 2.8.2. Collaborative Agents for Simulating Teamwork 47
 2.8.3. Proactive Information Exchange...................................... 48

 III PROACTIVE COMMUNICATION: AN OVERVIEW 52

 3.1. The OP-CAST Architecture ... 52
 3.2. Agent Execution Cycle... 54
 3.3. Proactive Communication .. 55
 3.3.1. Observation-Based Proactive Communication 56
 3.3.2. Dynamic Information Prediction...................................... 57
 3.3.3. Decision-Theoretic Proactive Communication 57
 3.4. Summary .. 58

 IV OBSERVATION-BASED PROACTIVE COMMUNICATION........... 59

 4.1. Motivation and Overview... 59
 4.2. Preliminaries... 61
 4.2.1. Plans ... 61
 4.2.2. Actions ... 62
 4.2.3. Environment and Properties ... 64
 4.2.4. Agent Beliefs.. 65

x

CHAPTER Page

 4.3. Agent Observability ... 67
 4.3.1. Syntax of Observability.. 67
 4.3.2. Semantics of Observability .. 69
 4.4. Belief Maintenance .. 72
 4.4.1. Belief Consistency and Compatibility.............................. 73
 4.4.2. Inferring Agent Beliefs... 75
 4.4.3. An Overall Belief Maintenance Algorithm...................... 77
 4.4.4. ReasonSelfObs: Reasoning Beliefs about Agent’s Own

 Observability .. 82
 4.4.5. ReasonSelfBel: Reasoning Beliefs about Others’

 Observabilities.. 83
 4.4.6. Update: Maintaining Belief Consistency and

 Compatibility.. 84
 4.5. OBPC: Observation-Based Proactive Communication.............. 85
 4.6. Summary .. 89

 V DYNAMIC INFORMATION PREDICTION .. 90

 5.1. Motivation and Overview... 90
 5.2. Considerations of Statistical Models.. 92
 5.3. Empirical Distribution Function... 93
 5.4. Data Acquisition... 97
 5.4.1. Source of History and System Initialization 97
 5.4.2. Acquisition of History.. 98
 5.4.3. Message Format to Convey History................................. 99
 5.5. Important Issues ... 100
 5.5.1. Preventing the Provider from Having History Starvation 100
 5.5.2. Preventing Communication Deadlock 101
 5.6. Summary .. 101

 VI DECISION-THEORETIC PROACTIVE COMMUNICATION 102

 6.1. Motivation and Overview... 102
 6.2. Policies and Time Points .. 105
 6.2.1. Situation PA: Provider Produces a Value for I 107
 6.2.2. Situation PB: Provider Receives a Request about I 109
 6.2.3. Situation NA: Needer Has a Request about I Arise 111
 6.2.4. Situation NB: Needer Receives I 112
 6.3. DTPC Model .. 113
 6.4. Utility Function .. 115
 6.4.1. Defining the Utility Function ... 115

xi

CHAPTER Page

 6.4.2. Identifying Information Production and Need Time in
 the Utility Function .. 116

 6.5. Cost Function ... 118
 6.6. Value Function ... 118
 6.6.1. Timeliness Function ... 120
 6.6.2. Currency Function.. 122
 6.7. Calculating Probability of Currency .. 123
 6.7.1. Situation PA: Provider Produces a Value for I 124
 6.7.2. Situation PB: Provider Receives a Request about I 142
 6.7.3. Situation NA: Needer Has a Request about I Arise 143
 6.7.4. Situation NB: Needer Receives a Value for I 146
 6.8. Decision-Making Processes ... 146
 6.9. Decision-Theoretic Proactive Communication 149
 6.10. Summary .. 153

 VII AN APPLICATION DOMAIN DESIGN AND EVALUATIONS.. 154

 7.1. Evaluation of Observability ... 155
 7.1.1. Multi-Agent Wumpus World ... 155
 7.1.2. Problem Analysis ... 156
 7.1.3. Results and Analysis .. 159
 7.2. Evaluation of Proactive Communication 168
 7.2.1. Adjusted Multi-Agent Wumpus World............................ 169
 7.2.2. Problem Analysis ... 172
 7.2.3. Determining the Form of the Utility Function 173
 7.2.4. EDF Implementation Issues ... 190
 7.2.5. Experiments.. 191
 7.3. Summary .. 202

 VIII CONCLUSIONS AND FUTURE WORK 203

 8.1. Conclusions .. 203
 8.2. Future Work ... 205
 8.2.1. Extensions to This Research .. 205
 8.2.2. Future Directions.. 208

REFERENCES.. 211

APPENDIX A ... 230

APPENDIX B ... 233

xii

 Page

APPENDIX C ... 239

APPENDIX D ... 248

VITA ... 276

xiii

LIST OF FIGURES

FIGURE Page

3.1. OP-CAST Architecture .. 53

3.2. Agent Execution Cycle... 55

4.1. An Example of the Plan ... 61

4.2. The Syntax of Observability .. 68

4.3. An Example of Observability... 69

4.4. An Overall Belief Maintenenance Algorithm .. 81

4.5. An Algorithm of Reasoning Agent’s Observability..................................... 82

4.6. An Algorithm of Reasoning Others’ Observabilities 84

4.7. A Belief Update Algorithm .. 85

4.8. Observation-Based Proactive Communication .. 88

5.1. An Example of Using EDF .. 96

6.1. Situation PA: Provider Produces I ... 108

6.2. Situation PB: Provider Receives a Request about I 110

6.3. Situation NA: Needer Has a Request about I Arise 111

6.4. Situation NB: Needer Receives I ... 113

6.5. Time Points for Situation PA ... 124

6.6. Time Points for Situation PB ... 142

6.7. Time Points for Situation NA... 143

6.8. Decision-Making Process of Provider in Situation PA................................ 147

6.9. Decision-Making Process of Provider in Situation PB 147

xiv

FIGURE Page

6.10. Decision-Making Process of Needer in Situation NA 148

6.11. Decision-Making Process of Needer in Situation NB................................ 148

6.12. A Policy Selection Algorithm .. 149

6.13. Algorithms about Providing Information... 151

6.14. Algorithms about Getting Needed Information ... 152

7.1. An Example of Plans of the Multi-Agent Wumpus World 157

7.2. Average Communication per Killed Wumpus in Different Combinations.. 164

7.3. The Comparison of O-Tell with Different Team Sizes 167

7.4. Effectiveness Evaluation with Respect to Metric1-Metric4 198

xv

LIST OF TABLES

TABLE Page

4.1. Belief Strengths .. 78

6.1. Situations and Policies ... 113

6.2. Identifying Parameters for Policies .. 117

7.1. Team Performance and Communication Amounts in Sample Runs............ 161

7.2. Prh in Risk Function for Different Policies .. 178

7.3. Experiment Measurements ... 194

7.4. Experiment Base Validations in Sample Runs... 196

7.5. P Value with Respect to WF/WT... 197

1

CHAPTER I

INTRODUCTION

1.1. Motivation

An agent is defined as a mapping from perceptions to actions [102]. It can be

achieved via hardware (e.g. robotics) or software systems. The agent resides in the

environment, behaves autonomously, purposively, and flexibly; it may have sensing,

adaptive, social, and emotional capabilities [127]. The capabilities of a single agent are

limited by its knowledge, its computing resources, and its perspective. Particularly,

when interdependent problems arise, agents in the system must coordinate with one

another to ensure that interdependent problems are properly managed. Thus, they form

multi-agent systems. In a multi-agent system, multiple agents that cooperate towards

the achievement of a joint goal are viewed as a team. Teamwork is a cooperative effort

by a team of agents to achieve a joint goal [121].

Sharing common goals and acting cooperatively are critical issues in multi-

agent teamwork [1, 13, 21, 90]. To date, control paradigms for cooperative teamwork

have allowed agents to communicate about their intentions, plans, and the relationships

between them [65, 97, 114, 115, 116, 119, 121]. Using communication, team members

can share common goals and coordinate their actions by distributing valuable

teamwork-related information. In order to do so, each of the team members should

track the activities of the others, reason about possible conflicts or constraints, establish

 This dissertation follows the style of Artificial Intelligence.

2

certain parameters for performing joint actions, and provide or ask for any information

that is needed to perform tasks. Existing solutions for the communication problem have

four major disadvantages:

• Agents share a large amount of knowledge about the teamwork, which

is unrealistic in a distributed team.

• Communication interactions are hard-coded in teamwork processes,

which is not universal.

• Cooperation processes involve high-frequency message exchange,

which weakens teamwork efficiency.

• Current solutions ignore communication risk, which is one of the most

important factors of agent decision-making.

Moreover, some researchers have found that communication, while a useful paradigm,

is expensive relative to local computation [2]. Therefore effective, universal, and

practical communication mechanisms are needed for helping agents produce effective

and realistic behaviors and interactions in teamwork.

1.2. Investigating Effective Communication

Most of the literature (see Section 2.2) reports on technologies empowering

agents from outside, such as teaching them to obey social conventions [111]. We

investigate this problem by bringing agent initiatives into play.

We investigate effective human team cooperation and incorporate the findings

into multi-agent teamwork. Humans are naturally capable of observing the

environment and others so they can establish certain parameters for performing actions

3

without communicating with others. A shared mental model [100, 118], one of the

major psychological underpinnings of teamwork, enables an effective human team to

anticipate information needs of teammates and offer the information [135]. We call this

ability proactivity. Therefore, effective team cooperation can be achieved, if agents are

able to observe the environment and each other, predict needs for teamwork-related

information and distribute such information proactively.

1.2.1. Observability

Observability is the ability to observe the environment and other agents, and

from it, make inferences about them. Although it has gained some attention [95, 68, 7,

59], observability in multi-agent teamwork has not been explored deeply. We argue

that the reasons for this might be threefold. First, from the team point of view,

observability is a capability of an individual agent, rather than of a whole team. It is

difficult to abstract a team’s observability based on every team member’s individual

observability. Second, since belief reasoning is theoretically intractable [47], the

process of an agent using its observability to reason about teammates’ beliefs becomes

highly complex. Third, agents lack an effective way to reason about others’

observabilities. However, in a dynamic, distributed teamwork environment, apart from

prior knowledge such as the team goal, observability is a major means for an individual

agent to obtain information. An agent with observability may produce effective

communication by observing the environment and its teammates and then estimating

their beliefs without generating unnecessary messages.

4

1.2.2. Proactivity

Proactivity is the ability to take initiative by exhibiting goal-directed behavior

[127]. Intelligent-agent researchers maintain that proactivity is one of the hallmarks of

agency [127]. Agents with proactivity can respond to external stimuli in a timely way,

and they can also prepare knowingly for some unexpected future [135]. Hence the

ability to anticipate the information needs of teammates and assist them proactively is

highly desirable. While an agent can anticipate certain information needs of teammates,

it may not always be able to predict all of their needs, especially if the team interacts

with a dynamic environment. Therefore, when an agent needs some information, it is

also necessary to anticipate the information production of teammates and ask for the

information actively. Hence, proactivity allows agents to proactively tell others about a

piece of information when producing it or to actively ask for a piece of information

when needing it. Proactivity may produce effective communication in three ways.

First, messages will be conveyed to agents when they need an information item, rather

than sending all information to them. Second, proactive tell can partially eliminate the

need to ask. Third, if there is no proactive tell, active ask may eliminate multiple

requests for information, i.e., only ask one time per need.

1.2.3. Challenges

The challenges in achieving effective communication in an agent team exist in

three aspects. First, the distributed nature of an agent team and the dynamic nature of

the world often make it infeasible for an agent to have complete and up-to-date

information about other teammates and the world. The resultant uncertainty may

5

seriously affect quality of communication among agents. Furthermore, agents have

different capabilities for solving the problems, such as different observabilities, which

lead to different abilities for obtaining information. This increases the difficulty of

deducing what others know and consequently what they need. Third, agents are

distributed in the world, so they do not realize each time at which a piece of

information is produced or needed by others. Therefore delivering a tell or ask to others

at the proper time becomes critical for a team.

1.3. Our Approach and Its Contributions

The goal of this research is to devise effective communication mechanisms,

enabling agent initiatives and dynamic cooperation in multi-agent teamwork. We

design and develop a new model called Proactive Communication, for supporting

realistic behavior and interactions in complex and dynamic domains. The central thesis

of this research is that

Proactive Communication captures and represents the complex,

interdependent communication decision-making processes among

agents, and achieves effective communication by giving agents the

capabilities of observability and proactivity. Observability helps agents

to monitor the environment and track teammates’ mental states.

Proactivity allows agents to act in anticipation of future information

productions or needs to tell or ask each other about teamwork-related

information.

6

Our approach endows agents with observability and proactivity via three

distinct but closely related perspectives:

• Observation-Based Proactive Communication (OBPC). It allows agents

to use their observabilities to track others’ mental states as well as

decreasing the communication load. Different from other observation

approaches, agents can observe not only the environment, but also

actions of others, and use this knowledge to decide which information

might be known by others and therefore does not need to be exchanged.

• Dynamic Information Prediction (DIP). It is a dynamic estimation of the

probability distributions of information productions or needs and the use

of these data to capture the complex internal processes of decision-

making regarding communication. The major feature distinguishing this

approach is that agents take advantage of their historical knowledge to

estimate the distributions of the information need and production times.

• Decision-Theoretic Proactive Communication (DTPC). It is a decision-

theoretic determination of communication strategies. During multi-agent

teamwork, agents should be able to deal with uncertainties, since they

may only have incomplete information about the teamwork, the

environment, and the potential value and cost of information delivery.

One way to deal with this problem is a decision-theoretical approach

[25]. Broadly speaking, the decision theory is a means of analyzing a

series of strategies in order to decide which should be taken, when it is

7

uncertain exactly what the result of taking the strategy will be [92].

However, departing from the traditional decision-theoretic approach,

DTPC emphasizes communication benefiting the team and focuses on

decision interactions between needer and provider, i.e., their decisions

are interdependent, so they must consider how their counterpart’s

decisions impact their own.

The major novel contribution of this research is the concentration on

interactions between agents and the emphasis of relations connecting them. This

feature makes communication benefit the team as well as enhancing agents’ ability to

take initiatives. Specifically, 1) we use agents’ observabilities to track team members’

mental states, so they can infer what the others know and when and therefore can

decrease the communication load; 2) we introduce an idea of dynamic information

prediction, which allows agents to anticipate coming information production or need

time based on historical knowledge; 3) we introduce an model that agents estimate

others decisions in the decision-theoretic communication, which empowers agents to

deal with communication interdependencies in team cooperation.

1.4. Structure of the Dissertation

This section introduces the motivation of this research and the overall idea of

our approaches and contributions. The rest of this dissertation is organized as the

following:

• In Chapter II, we review related work to this research.

8

• In Chapter III, we represent system architecture and agent execution

cycle, and give an overview to Proactive Communication and its three

components: OBPC, DIP and DTPC.

• In Chapter IV, we focus on OBPC. We 1) define syntax and semantics

to observability, and 2) develop algorithms for using observability to

decrease communication load.

• In Chapter V, we focus on DIP. We 1) introduce a statistical

approximation of distributions of information production and need, and

2) introduce the data acquisition process for performing the

approximation.

• In Chapter VI, we focus on DTPC. We 1) define communication

policies, which can be used by agents in different communication

situations, and time points relevant to information production and need,

2) define utility function which is used to evaluate each policy, 3)

introduce agent decision making processes and 4) develop algorithms

for decision-theoretic proactive communication.

• In Chapter VII, we 1) introduce criteria of applicable domain for

Proactive Communication, 2) design an application domain, 3) design

and analyze two sets of experiments we have run in the domain.

• Finally, in Chapter VIII, we conclude this dissertation and discuss some

future work.

9

CHAPTER II

RELATED WORK

This research is about communication in multi-agent teamwork and is built on

several areas of previous research. In this section, we review the literature of these

areas and the progress of the work at Texas A&M University (TAMU) that is the

foundation for this research, including teamwork theories and teamwork systems (see

Section 2.1); decision making models in agent research (see Section 2.2), decision-

theoretic modeling communication (see Section 2.3), other effective communication

approaches (see Section 2.4), observability and belief maintenance (see Section 2.5),

problem-specific prediction (see Section 2.6), psychological study of shared mental

models (see Section 2.7), and context of work at TAMU (see Section 2.8).

2.1. Teamwork as Represented by Artificial Intelligence

Recently, researchers have been interested in building teamwork in distributed

and dynamic domains, where each autonomous team member works cooperatively to

solve a part of a problem in parallel. However, a team of agents is more flexible and

efficient than a group of single agents only when a flexible and efficient means of

coordinating the agents exists. In many ways, the teamwork problem is similar to that

of parallel computing: doubling the number of processors used in a computation

usually will not double the speed with which the solution is found. The extra

processing power does not become an advantage until a sophisticated means of

cooperative processing is found. This challenge inspires many teamwork theories, such

10

as joint intention [20, 81], shared plan [44, 46], commitments and conventions [63, 64],

and planned team activity [70]. This section introduces these theories, followed by

three examples of teamwork system implementations.

2.1.1. Teamwork Theories

2.1.1.1. Joint Intention

Joint intention is one of the most important teamwork theories [20, 80, 81]. It

was developed based on individual intention, which is a logical formalization called

persistent goals [19]. Cohen and Levesque derived an operator, PGOAL, which

describes how an agent’s intentions are related to its beliefs, commitments, and actions.

An agent A has a persistent goal G, if all of the following are true: 1) A wants G to be

true at some point in the future; 2) A believes that G is not yet true; 3) A believes that

either G will be true or G will be impossible before it abandons its goal.

PGOALS are used to define intentions, in the form of the primitives INTEND1

and INTEND2. INTEND1 is defined as the persistent goal to perform a particular

action by an agent. In other words, intending to take an action is a kind of persistent

goal. Thus, intentions are future-directed. This is a near-approximation to present-

directed intention: the agent desires to have done an action immediately after believing

that it was about to do it, i.e. intentions are directed towards something happening next.

However, because INTEND1 is a commitment to perform a particular action, it does

not handle the case where the agent does not know what action it needs to perform to

bring about the goal. INTEND2 is defined as the persistent goal to have done some

11

actions to bring about the goal (this means the agent has a plan), and the agent would

not select these actions if they are thought not to lead to the goal.

Cohen and Levesque use their theory of persistent goals to build a theory of

joint intentions. Joint intentions are intended to clarify the relationships among belief,

desires, and intentions (BDI) for multiple agents [9, 10, 96]. Joint intentions are

developed on three levels. First, they define weak goals, which specify the conditions

under which an agent holds a goal, and the actions it must take if the goal is satisfied or

impossible. Second, they define joint persistent goals for multiple agents. Finally, they

define joint intentions in terms of weak goals and joint persistent goals. Joint intentions

are attractive because they are presented in an implementable framework. For example,

Jennings developed an implementation of joint intentions for industrial robots [65].

Joint intention theory imposes a strong “observant and proactive” requirement.

It uses mutual beliefs to form joint intentions. An agent who personally comes to

believe that a joint goal is either achieved, unachievable, or irrelevant, must commit to

let all other team members mutually believe that this is the case. While mutual belief,

being an infinite recursion about other agents’ beliefs, is undecidable in theory [47], a

computational approximation is required in practice [65, 97]. Thus, issues of

observation, prediction and proactive communication are raised for practical

implementations.

2.1.1.2. Shared Plan

Shared plan [44, 46] is another important teamwork theory. It was developed to

deal with collaborative activities among human-agent mixed teams. It considers team

12

collaboration not as a group of single agents patched together, but as an integrated

system that needs to be designed from beginning to end [43, 108]. As opposed to joint

intention, shared plan does not have joint conceptions. It assumes that each agent has

its own mental state (including intentions, capabilities, and commitments) and shares it

with others. The formal representation of these aspects of the mental states of team

members is called a Shared Plan. The shared part can guarantee teamwork, such as two

agents working together to perform an action.

Grosz and Kraus propose five types of plans: FIP for full individual plans

which means an individual agent has a full recipe for doing an action, PIP for partial

individual plans which means an individual agent only has partial knowledge of doing

an action, FSP for full shared Plans which means a group of agents has complete recipe

of some group activity, PSP for partial shared plans which means a group of agents

only has partial recipe of some group activity, and SP for shared plans which means a

group of agents has a certain level of belief in their abilities to perform group actions

[44]. The definitions of FSP and PSP only explicitly state some of the requisite

knowledge, others which are implicit produced from agents’ interactions form SP.

These plans are defined in terms of beliefs and intentions in agents’ mental

states. At the beginning, agents have only partial plans (individual or shared). By

reasoning individually, communicating with others, or observing the environment,

these partial plans are completed. In the special case where an agent finds that it cannot

perform an action, the whole group will revise its procedures.

13

The evolving process mentioned above obviously requires agents’ observation

and communication. Shared Plan theory touches the proactive communication problem

in other ways. First, as in joint intention, the theory requires that a group of agents must

have a mutual belief of a partial procedure in order to have a collaborative plan for an

action. Second, in several places the theory proposes that in collaborative activities,

participants not only do means-ends reasoning about their own mental states and

actions, they also reason about others’ mental states to support others’ actions better.

For example, the term Int.To (intending to) presents an agent’s intention to do an

action while the term Int.Th (intending that) presents an agent’s intention that some

propositions hold true [44]. Thus, Int.Th concerns how others’ intentions affect the

agent’s intention. Third, the theory requires agents to know that their teammates are

capable of carrying out their actions. Grosz [44] notes that agents must communicate

enough about their plans to convince teammates of their capabilities to carry out

actions. If agents can predict this requirement and tell it proactively, the process can be

simplified. Fourth, Grosz, in axiom A1, [44] points out that an agent cannot knowingly

hold conflicting intentions. Note that the axiom is not valid if the agent is unaware of

the conflict. Since some of these intentions involve others’ mental states, the

requirements for observation and proactive communication are the same to avoid such

conflicts.

2.1.1.3. Commitments and Conventions

Jennings emphasizes that coordination is a key property that guarantees better

multi-agent team performance [63, 64]. Without coordination, a multi-agent system can

14

become a collection of incohesive individuals. He developed a model of coordination,

whose two central concepts are (joint) commitment and (social) convention. Jennings

views a commitment as a promise to take a certain action, and conventions as rules for

monitoring these commitments. He argues that “all coordination mechanisms can

ultimately be reduced to joint commitments and their associated social conventions”

[63, 64].

Properties of commitments and conventions can be found in numerous sources

[9, 4, 8, 27, 36, 107, 109]. Commitments and conventions have been adopted widely in

solving multi-agent cooperation problems. In agent-oriented programming (AOP),

Shoham treats commitments as obligations of agents and uses commitment rules to

decide their actions [112]. The BDI model [10] uses commitments to direct an agent’s

actions and planning. In Reusable Task Structure-based Intelligent Network Agents

(RETSINA), [119] devises a complex negotiation protocol to force agents to agree on

their commitments and then to perform socially complex actions. In their collaborative

agent system (COLLAGEN), Rich and Sidner provide a set of conventions based on

principles underlying human collaboration for collaborative discourse between humans

and agents [97].

Jennings emphasizes that conventions are used to decide what information

needs to be tracked about agents, and how to track them. For instance, a convention

may require an agent to report to its teammates any changes it detects with respect to

the attainability of the team goal. This need to report raises the requirement of analysis

of communication needs before agents communicate with each other. Jennings also

15

gives an example of specific conventions for high- and low-bandwidth situations, in

which some knowledge is not communicated to all agents if the bandwidth is not

available. This raises the issue of the need of effective communication [63, 64].

Jennings does not explore deeply such problems as how conventions are selected or

what the tradeoffs and guarantees associated with the selection of particular

conventions are.

Our work provides a solution to effective communication. In our work, agents

use observation to deduce the amount of communication needed. Meanwhile, agents

can predict future information production and need by analyzing historical information

records. DTPC is a sophisticated process that guarantees agents choose the right rules

(conventions) by which to communicate.

2.1.1.4. Planned Team Activity

A group of Australian researchers propose planned team activity in the logical

and practical design of rational agents cooperating in a team [70]. They suggest that

joint plans (common to all team members) that specify the means of satisfying joint

goals are supplied in advance, rather than being generated by the agents. Their

argument is that the agents embedded in a dynamic environment can respond rapidly to

important events by adopting applicable plans. The joint plans are represented by

concepts of team skills and team members’ roles. These plans usually will be qualified

by preconditions that specify under what circumstances they are applicable. The plan

execution for each agent consists of the selection and hierarchical expansion of these

plans.

16

To achieve the planned team activity, common knowledge necessary for

coordination and synchronization of agents’ activities is imposed on the agents. The

common knowledge that includes mutual beliefs about the world and about each

other’s actions places strong requirements upon agents’ observation. Kinny et al.

propose that the common knowledge can be achieved alternatively by communication

between agents. This approach implies the need of effective communication. The

assumption that the plans of individual agents are known at compile time might

enhance the team’s proactivity by the possibility of reasoning in advance about which

team members potentially can achieve certain goals.

2.1.2. Teamwork Systems

2.1.2.1. STEAM

STEAM (Shell for TEAMwork) is a teamwork system built on joint-intention

theory. STEAM addresses two important issues of joint-intention theory: 1) There is no

practical method given for forming joint intentions; 2) A single agent's defection

automatically causes the failure of the entire group task. Tambe describes methods for

solving these two problems [121]. He solves the first problem, that of forming joint

intentions through communication. He frames the solution in terms of joint intention

itself. In order to synchronize a joint intention, the cooperating agents form weak

achievement goals to bring others into their plan. Agents who have accepted the joint

goal as their own form weak achievement goals. The same mechanisms that enforce

communication when plans break down under joint intentions are used here to ensure

synchronization when attempting to form a plan.

17

The second problem, what to do in case an individual agent defects from the

group, is more interesting. This case necessitates replanning—allowing a single

defector to cause the failure of the group as a whole is clearly unacceptable in robust

systems. To implement the replanning process, Tambe created a set of role-monitoring

constraints, which describe each agent's importance to the plan as a whole. The

constraints describe cases where one of the following apply: 1) AND-combination, the

actions of each member of a group of agents are vital to the achievement of the goal; 2)

OR-combination, the actions of any one of a set of agents would suffice to achieve the

goal; 3) Role dependency, one agent's actions depend on another agent's actions, such

that without the second agent, the first can not complete its role. When an agent defects

from a group action, the remaining agents invoke a repair action. Each examines the

dependency structure to see whether the remaining group can complete the plan; if so,

they continue. If the failure was in fact the result of a single agent's defection (Tambe

calls this situation a critical role failure), the agents reorganize and carry on with new

roles. If there is no possible reorganization that can complete the goal, then the goal

fails.

Another interesting feature of STEAM is selective communication, where

agents communicate only information with high utility to the completion of the plan.

Tambe and Rosenbloom proposed that agent-monitoring is a key capability required

for intelligent interaction [120]. Selective communication involves monitoring other

agents’s observable actions and inferring their high-level goals, plans, and behaviors.

Communication is generated based on monitoring and reasoning about the cost of

18

communication in deciding whether to communicate or not. However, Tambe’s work

focuses on establishing the joint intentions of team members in trying to achieve a joint

goal, but not on analyzing the information needs among team members in order to

provide information proactively, which is our focus. The differences between selective

communication and our approach are examined in greater detail Section 2.3.1.

The reliance on communication among agents in joint intention theory means

that the possible domains are limited, however. Joint-intention theory can not be used

when agents are unable to signal each other or to cooperate with agents that were not

designed with joint intention in mind. We want a system that can cooperate with agents

in general, not just those that were designed to cooperate with the present system,

another reason we use observation as well as communication for inter-agent

cooperation, thus agents do not need to communicate with each other about the

information which they can be seen by themselves or which they believe can see by

others.

2.1.2.2. GRATE*

GRATE* is an extended version of GRATE (Generic Rules and Agent model

Test-bed Environment) [63, 64]. In GRATE*, joint responsibility is built on joint

intention. GRATE* specifies that preconditions must be attained before collaboration

can guarantee that individuals behave together either when joint activity is progressing

satisfactorily or when it runs into difficulty. Like STEAM, it also requires agents to

agree on the team plans that are to be executed.

19

However, several simplifying assumptions used to approximate a formal

description of joint responsibility deprive GRATE* of scalability for dealing with more

general systems. First, GRATE* is used in industrial settings in which foolproof

communications can be assumed [65], and thus communication is the only way to track

agents. By comparison, we track agents by both communication and observation. We

also use observation and decision-theoretic proactive communication to decrease the

amount of communication. Second, Jennings supposes that agents are able to predict,

with a reasonable degree of accuracy, the time it will take to execute each of their

domain-level activities. In order to do so, each action recipe presents its starting time

and duration of the action. We argue that since agents are in a dynamic environment,

the starting time and duration of an action vary with a number of uncertain elements,

such as when an action’s precondition is attained. Thus, we need a prediction of

communication needs associated with preconditions and effects of an action, rather

than fixed action starting time and duration in action presentation. Third, GRATE*

maintains knowledge about other agents through acquaintances models, which are used

to keep track of what teammates’ capabilities are. However, the question of how much

knowledge should be used in these models is left unaddressed. In contrast, we use

observation to track teammates’ mental states, in order to reason about what they can

see and what they can infer from what they can see.

2.1.2.3. COLLAGEN

COLLAGEN (COLLaborative AGENt) [97] is a collaborative human user-

interface system that is built on shared-plan theory. In COLLAGEN, communication is

20

assumed to be reliable. However, from a human-usability perspective, limiting the

number of communications is still desirable. To address this issue, recent empirical

work by Lesh, Sidner and Rich [79] utilizes plan-recognition in COLLAGEN. The

focus of that work is on using the collaborative setting to make plan-recognition

tractable. For instance, ambiguities in plan-recognition may be resolved by asking the

user for clarification.

COLLAGEN includes observation as one kind of communication (another kind

is discourse) and assumes all agents’ and users’ actions are mutually observable

through a directed-manipulation graphical interface. We separate observation and

communication because observation involves a complex belief-maintenance process

and hence is the basis of communication decisions. Work on COLLAGEN did not

investigate how much knowledge must be maintained for effective collaborative

dialogue with the user. In contrast, we are able to provide such knowledge by

analyzing team plans, i.e., the preconditions and effects of plans. Furthermore,

analyzing the dialogue plans for risk points may allow systems such as COLLAGEN to

decide whether to use communication for clarification, regardless of plan-recognition

ambiguity.

2.2. Decision Making Models in Agent Research

Researchers in psychology, cognitive science and computer science have

generated a variety of computational models of decision making, oriented toward

understanding and modeling behaviors of human decision making, under situations

with risky, time pressure, high stakes and dynamic uncertainty settings [142, 72, 71,

21

86, 143, 144, 138, 18]. Perhaps the most familiar fields for AI are two: classic decision

theory and naturalistic decision-making. We introduce each of these models.

2.2.1. Classic Decision Theory

Classic Decision theory [93] is used to select an optimal action. It generally

includes four areas: 1) decision theory, 2) Bayesian probability theory, 3) Markov

decision process and 4) game theory.

2.2.1.1. Decision Theory

The assumption underlying decision theory is rationality, i.e. the decision

maker won’t intentionally select an action that is inferior to some other actions. The

theory requires that the decision maker specifies a set of possible actions, a complete

and mutually exclusive set of uncertain states, and a set of evaluative dimensions. The

decision maker then assesses the utility of each action based on the probability of each

uncertain state and the weight of each evaluative dimension. The theory enables

decision makers to calculate a utility reflecting the overall desirability of each action.

With the general decision-making procedure, the decision theoretic models vary. For

example, the basic model, maximization of expected utility (MEU) [102] consists of

summarizing the value of each potential outcome multiplied by the probability that the

outcome would in fact be obtained. This product sum is then compared with the

expected values for the other actions. The action that has the largest expected value is

the one that should be selected, called MEU. In the work [142], it summarizes other 14

types of decision theoretic models, including Maximization of Subject Expected Utility

(MSEU) which is the same model as MEU except that utility is substituted for dollar

22

value, Lexicographic (LEX) model which assumes that each option has attributes that

will promote valued outcomes, etc.. It can be seen that in addition to the assumption

about rationality described above, each of these decision theoretic models assumes that

the decision maker has preferences for the outcomes and that these preferences can be

measured, e.g. by a utility function.

Our decision-making is based on the same rationality consideration, thus the

decision maker will choose a communication policy with the maximum utility. We

handle the unknown random variables in the utility function by utilizing the Empirical

Distribution Function to estimate their probabilities.

2.2.1.2. Bayesian Probability Theory

Bayesian probability theory [92, 93] is used to draw inferences about situations.

It requires that decision maker to identity a set of states (e.g. weather condition of

Houston when the decision maker is in College Station). Then for each pair of states

the decision maker can establish whether the pair is independent or not. The decision

maker then can build a graph in which each node for a state and an arc points from

state A to state B if the latter depends on the former. The resulting graph is known as a

Bayesian network [93]. The Bayesian network provides a computational framework to

calculate the probabilities of preferences to the decision maker. The next steps are to

assess the probability that each hypothesis is true, identify all the potential observations

that might bear on those hypotheses in the future, and quantify the impact of each such

observation. Then as new observations occur, decision makers can use algorithms from

the theory, such as Bayesian rule, to updating probabilities in the hypotheses. The

23

decision making method in this theory is the same with that of the decision theory. For

each state, we calculate a utility for each state and we will prefer the state with the

highest MEU.

2.2.1.3. Markov Decision Processes (MDPs)

In essence an MDP is an iterative set of classical decision problems [102]. As

the Bayesian network, MDP is also represented by a graph in which one node denotes a

state. Performing an action in that state will result in a transition to one of a number of

states each connected to the first state, with some probability, and incurs some cost.

After a series of transitions a goal state may be reached, and the sequence of actions

executed to do this is known as a policy. Solving an MDP means to find a minimal cost

policy for moving from some initial state to a goal state [88]. A big problem of MDPs

is that, it unrealistically assumes that agent knows at every point what state it is in. This

means that it is possible to measure some aspect of the world and from this

measurement the agent can tell precisely what state the world is in. In reality, it is more

likely that from the measurement something there is still uncertain in the world. In such

case, the states of an MDP are replaced by the agent’s beliefs about those states, and

we have a partially observable MDP (POMDP) [88]. Because POMDP can capture so

many real problems, it is currently a hot topic in agent research, despite the fact that

they are intractable for all but the smallest problems.

Our problem also deals with partially observable environment. However,

different from POMDP, our agents make decisions based on not only data collected

from history, but also estimations of a sequence of future communication interactions

24

between information providers and needers. Different sequences will lead to different

values of communication policies to be chosen by the agents and the agents will choose

a best one with the maximum utility (meaning the minimum cost). To handle the

intractable problem occurring in decision-making processes, we use some

approximation to balance the quality of decisions with the complexity of computation.

While this is not exactly precise, it is shown to be a practical solution in our

experiments.

2.2.1.4. Game Theory

Game theory is a branch of economics that studies interactions between self-

interested agents. Perhaps the most compelling area that the game theory has been

applied on multi-agent systems is negotiation [76, 104, 48]. Game theoretic studies of

rational choice in multi-agent systems typically assumed that agents were allowed to

select the best strategy from the space of all possible strategies, by considering all

possible interactions. The search space of strategies and interactions that needs to be

considered has exponential growth, which means that the problem of finding an

optimal strategy is in general computationally intractable. The study of finding

efficient (polynomial time) algorithms for intractable problems in multi-agent

negotiations is an ongoing area of work [92].

In our system, agents share a common goal, and would therefore be willing to

assistant others. Therefore, decision-making strategies are different from that of the

game theory that contains self-interested agents. For example, in a team, agents help

each other to maximize utility for the whole team; while in a game, every agent acts in

25

the manner maximizing its own utility but minimizing utility for competitors. Many

human teams (including ours) involving joint decision-making as information

gathering and task allocations have the computation complexity problem. Again, we

use some approximations to balance the quality of decisions with the complexity of

computation.

2.2.2. Naturalistic Decision Making

Naturalistic decision directly relates to the way experienced people actually

make decisions in natural settings [142]. Comparing to the decision theory that is about

selecting an option, the naturalistic decision focuses on diagnostic decision-making

(situation assessment). Among many models developed under this field, recognition-

primed decision (RPD) model [72] is the most common one. The RPD model

emphasizes the recognition of situational dynamics as one of the key drivers in

selecting an action. The RPD model describes how decision makers can rely on their

experience to recognize situations and identify viable courses of action without

comparing the relative benefits or liabilities of multiple actions. The decision maker

first identifies the situation as familiar or typical. This recognition enables the decision

maker to know several important things, such as which goals to take, what to expect

and which actions typically work. The RPD model focuses attention on the importance

of situation awareness for successful decision making in field settings. For example,

[33] uses RPD to support human teams to make faster and better decisions when there

is not time for extensive reasoning.

26

RPD model requires the decision maker to have enough experience to assess

novel and dynamic environment it encounters. Also the process which enable

experienced decision maker to develop their situation awareness requires the designer

have completely understanding to domains; this tends to discourage the generic

problem solving across different domains. Therefore RPD has wide applications in

military training tasks, such as training with Tactical Decision Making Under Stress

(TADMUS) [18].

2.3. Decision-Theoretic Modeling Communication

Though growing up long before the concept of an intelligent agent was

conceived, decision-theoretic modeling has gained increasing interest as a technique

for communication in multi-agent systems.

2.3.1. Selective Communication

STEAM uses selective communication, by which agents communicate only

information with high utility [121]. The decision depends not only on the cost and

benefit of the communication, but also on the likelyhood that the information may be

already mutually belived. One of two communciation strategies will be chosen: C for

communicating and NC for not communicating. If C is selected, the team has a reward

for knowing the information but also has the cost for sending the information. If NC is

chosen, two outcomes are possible. There is some probability that the information was

already commonly known, in which case the team is given an extra penalty for

miscoordimation, besides the reward. Otherwise the team has the reward.

27

There are four major differences between STEAM and our approach. First,

STEAM focuses on establishing joint intentions of team members, but not on analyzing

the information production and need among team members in order to be able to

provide information proactively or ask for information actively, which is our focus.

Second, in STEAM, the decision to communicate is based on monitoring other team

members’ sensory capabilities and role constraints, while our model can dynamically

predict information production and need among agents based on collections of

historical data. Third, the communication strategies of STEAM are either to

communicate or not, while our model offers agents more realistic options and considers

the interdependency of their decisions. Fourth, STEAM does not include risk in

decision-making, while we consider the risk an important part in the utility function.

This is particularly necessary in hostile environments.

2.3.2. Probabilistic Plan Recognition

Huber and Durfee suggest using a probabilistic plan recognizer [53, 54], similar

to their 1993 work, to deduce the status of the commitments of other agents involved in

a joint plan. In fact, it is easier to reason about the commitments of other agents when

they are known to be following a joint plan than it is to reason about their plans when

there is no such basis of knowledge between the observing and the observed agents. All

an observing agent need do is compare the observed agent's current actions with the

current plan to determine the status of that agent's commitment. Huber and Durfee’s

system is called the University of Michigan Procedural Reasoning System (UM-PRS)

[54]; it is used for mapping plans, and for plan recognition by a Bayesian Net approach

28

given in [53] (see also [17] for an introduction to bayes nets, or [93] for a detailed

description). Huber and Durfee use no vision in their system, assuming that logical

predicates can be detected directly by the cooperating agents. Strategies such as plan

recognition normally have high computational complexity that weakens teamwork

efficiency. However, a major point of our work is that the underlying system interprets

team plans of the agents do some of the fundamental work for handling

communication. For example, by analyzing preconditions and effects of the team plans

and operators, we generate a set of information to be exchanged among the needers and

the providers.

2.3.3. Game-Theoretic Recursive Modeling

Because agents who have different knowledge and capabilities must work

together, they must communicate the right information to coordinate their actions.

Gmytrasiewicz et al. developed a rigorous approach for modeling the utility of

communication, based on decision and game-theoretic methods [39, 40]. The model is

called Recursive Modeling Method (RMM). An agent that is considering sending a

message should base its decision on an estimation of whether the message’s recursive

impact on the sender and receiver’s beliefs will improve the expected outcome of its

decisions [39, 40]. In this framework, an agent begins with a recursively elaborated set

of models about another agent. Using the probabilistic nature of these models, the

agent can compute the expected utility for the other agent’s alternative decisions. It

then models how exchanged information will influence the probabilities, and thus

affect the expected utilities of the other agent’s decision.

29

The common thing between our approach and RMM is that we both model a

message’s recursive impact on the receiver and the sender in turn by using the

decision-theoretic method. However, there are four major differences between our

approach and RMM. First, we focus on a multiple agent team cooperating to achieve a

common goal, while RMM is primarily suitable for two-player teams and considers

agents’ decision-making from the perspective of an individual agent in a self-interested

environment.

Second, RMM estimates a message’s recursive impact regarding to how this

message is relevant to the receiver’s goal. While in our model, relevance of a message

is inferred by reasoning about the goals of other agents (specifically, the preconditions

of these goals constitute the information relevance to other agents). We model the

impact regarding to timeliness and correctness of the information that is not considered

by RMM.

Third, RMM uses a decision tree containing probabilities of other agents’

actions and the probabilities are domain knowledge. However, obtaining these

probabilities when the environment is dynamic and not fully observable is difficult.

Our model, in contract, does not rely on pre-determined knowledge, but computes the

timeliness and correctness of the information based on possibly incomplete and

uncertain knowledge of other agents.

Fourth, RMM uses iterative deepening of RMM levels to detect convergence or

cycles. This makes it very costly and time consuming to compute a solution. If the

depth of a hierarchy is finite and complete, the model can traverse this hierarchy and

30

retrieve the best strategy to play. However, because this nested model can involve

many branches and extend to deep levels of recursion, so when there is a loop or when

there is not enough time to traverse the whole hierarchy, RMM may not be able to

return the optimal solution. Our approach makes decisions based on methods for

inexpensive approximation to balance the quality of decisions with the costs of making

them. While this is not exactly precise, it is shown to be a practical solution in our

experiments.

2.3.4. Optimal Communication among a Team

Bui, Kieronska and Venkatesh present a formal framework based on the game

theory with incomplete information for modeling the coordination and communication

problem among a team of collaborative agents; they also defined what optimal

communication means in this setting [11, 41]. The framework defines the notion of

team optimality (TOP) to be taken as the ideal solution to the team coordination

problem. Communication is considered to be an extended team problem where agents

are allowed to broadcast messages. Optimal communication then is defined as a

combination of communication strategies with maximal value and minimum cost. To

reduce computation complexity caused by unknown parameters in the utility function,

the framework uses domain-dependent assumptions to reduce hypothesis space. It also

assumes the probability distributions about the unknown parameters are given and

suggests these can be learned by the agents through their repeated interactions with the

environment and with one other. However it does not give the detail about the learning

process. We propose a solution that agents attach some relevant data to messages sent

31

to each other and use the practical EDF to model distributions of the unknown

parameters.

2.3.5. Multi-Agent Markov Decision Process

Xuan and Lesser present a multi-agent extension to Markov Decision Process

(MDP) to optimize both actions and communication [133]. They model communication

as an explicit action that incurs a cost. They describe how to model communication and

the cost of communication properly and define the optimality of combining

communication acts for a group of cooperative agents. However, their framework is

heuristic and does not consider communication risk in decision-making. To relieve

prohibitive computation complexity in the optimization problem, they use social

conventions. For example, one of the conventions they use is “no news is good news”.

If agents do not hear anything from others, they assume everything is fine and process

their work without communication. However, they need to negotiate a new plan if the

progress is not as intended. We are interested in the most comprehensive case where

cooperative agents must determine which message they should transmit, and when,

assuming that communication incurs a cost and a risk.

2.3.6. Dec_POMDP_Com

Decentralized Partially Observable MDP Communication (Dec_POMDP_Com)

[41] is a theoretic model for decentralized control of multiple decision-makers that

share a common set of objectives. Similar to the Multi-Agent MDP model,

Dec_POMDP_Com aims to find a joint policy that maximizes the expected utility over

the hypothesis that consists of policies of actions and policies of communications. The

32

difference between them is that to decrease computation, the former uses heuristic

social conventions while the latter uses a myopic greedy algorithm to approximate

optimal communication. For example, at the offline planning stage, a best policy is

specified and will be used throughout the rest processes. Our approach is more

dynamic in that, without using heuristic assumption or offline planning stage, the best

policy is always guaranteed at every time of decision-making. To deal with uncertainty,

we take advantage of history data of information production and need and use a

practical statistical analysis to approximate distributions of the information production

and need. This decreases the number of possible outcomes of unknown parameters in

the utility function to a finite set.

2.3.7. COM-MTDP

Communicative Multi-agent Team Decision Problem (COM-MTDP) [95]

offers a theoretic model that considers the uncertainties and costs in real world

scenarios, addressing some of the deficiencies of BDI systems. This model compares

complexity results when either free communication, no communication or general

communication is assumed. While the model accounts for the value and the cost of

communication, it does not consider the risk that we examine in our approach. The

authors applied a single case of communication, which allows an agent to send a single

message indicating that a certain goal has been achieved. Our work studies a more

general problem: the agents take advantage of the timing and frequency of information

production and need and are allowed to communicate (possibly) several times until

sending out or receiving a teamwork-related information item. We are interested in

33

problems where agents may act independently to perform their own tasks but may need

to exchange their information from time to time to coordinate in more efficient ways.

This includes each agent deciding when and what to communicate to whom.

Additionally, a single agent’s decision is not independent and needs to consider the

impact of its counterparts’ decisions.

2.4. Other Effective Communication Approaches

2.4.1. Centralization Modeling

In the contract net protocol [115], when an agent needs help from the others in

the group, it broadcasts a task-announcement message. The other agents evaluate their

resources and submit bids to the original agent. The original agent then evaluates these

bids and assigns the task to the most suitable one. The contract net protocol is

appropriate in a decentralized control regime where the agent does not know in

advance the other agents' information. With the generality of the broadcast, this

approach becomes inefficient in many cases. We propose to eliminate the broadcasting

of this communication with an assisted coordination approach [38]. In this approach, a

central manager agent tracks the overall status of the group; any agent wishing to locate

peers sends a message to the manager agent and receives the address of the peer agent.

Lashkari's collaborative framework [78] is another example of this approach.

2.4.2. Comparative Reasoning

Sugawara reports on the use of comparative reasoning and analysis techniques

for learning and specifying coordination rules for a system in which distributed agents

coordinate in diagnosing a faulty network [117]. The investigation is focused on

34

optimizing coordination rules to minimize inefficiency and redundancy in the agents’

coordinating messages. Upon detecting sub-optimal coordination (via a fault model),

the agents exchange information on their local views of the system and the problem-

solving activity, and construct a global view. They then compare the local view to the

global view to find critical values and attributes missing from the local view that gave

rise to the sub-optimal performance. These values and attributes are used in

constructing situation-specific rules that optimize coordination in particular situations.

For example, network-diagnosis agents may learn a rule that guides them to choose a

coordination strategy in which only one agent performs the diagnosis and shares its

result with the rest of the diagnosis agents.

2.4.3. Social Conventions

Shoham and Tennenholtz suggest that a society of agents adopt a set of

conventions [50, 111]. Each agent will obey these conventions and will be able to

assume that all others will obey them as well. On one hand, these rules will constrain

the plans available to the agents, but on the other, they will guarantee certain behaviors

on the part of other agents. This approach totally eliminates communication and uses

convention rules to guide agents’ actions. As an example, Shoham and Tennenholtz

present a number of traffic laws for a restricted domain of mobile robots. They show

how social conventions ensure that no collisions or deadlocks occur, and agents are

still allowed enough freedom to plan close to optimal paths.

35

2.4.4. Focal Points

In environments where communication is impossible, Fenster and Kraus

explore a coordination technique common to communication-free human interactions,

namely focal points [34, 75, 105]. This approach is based on the intuition that humans

are sometimes capable of sophisticated interaction with little communication, and that

it ought to be possible for agents to emulate this behavior. Focal points are based on the

naturalness and intuitiveness of certain objects (or solutions) in the world. Since agents

do not have the common sense needed to judge the naturalness and intuitiveness, the

designer endows them with an algorithm capable of identifying focal points to which

they adhere. They then develop a domain-independent algorithm and test it in

simulations of various instances of an abstract world. They find that given a problem

and a set of possible solutions from which the agents need to choose, focal points are

prominent solutions of the problem to which agents are drawn [34]. In most randomly

generated situations, there is more than a 90% probability that agents will make a

common choice.

2.5. Observability and Belief Maintenance

In a dynamic, distributed teamwork environment, apart from prior knowledge

such as the team goal, observability is a major means for an individual agent to obtain

information. An agent with observability may monitor its teammates by observing the

environment and their actions and then estimating their beliefs without generating

unnecessary messages. In what follows, we review literature about belief and belief

maintenance after observation.

36

2.5.1. Knowledge and Belief

In [112, 94], the internal state of an agent is called its mental state, and it is

represented by modal logic. One important modality in mental state is belief. Building

belief and the process of belief revision and update are very complex [74]. If we want

to introduce belief, we have to introduce knowledge first. Knowledge, belief, and the

relationship between them have been studied extensively in philosophy for a long

time.Most work in Artificial Intelligence (AI) on knowledge and belief has its origins

in the philosophical work of Hintikka [49]. Moore was an important early researcher

who introduced Hintikka’s ideas into AI [89]; the most comprehensive and up-to-date

discussion of knowledge and belief in computer science appears in [31].

Most formalization of knowledge and belief is expressed in modal logic. The

standard logic for knowledge, called the S5 system, contains the following axioms:

• K [Kϕ∧K(ϕ ⊃ ψ)] ⊃ Kψ

• T Kϕ ⊃ ϕ

• 4 Kϕ ⊃ KKϕ

• 5 ¬Kϕ ⊃ K¬Kϕ

The K axiom says that an agent’s knowledge is closed under deduction, while the T

axiom says that what the agent knows is true. Axiom 4 implies that the agent knows

what it knows, while axiom 5 says that it knows what it doesn’t know.

A logic of belief results from dropping the T axiom from S5 and using the

operator BEL instead of K. The derived system is called K45. In fact, the most

37

common logic of belief is a strengthening of K45 by the D axiom: BELϕ ⊃ ¬BEL¬ϕ

(the resulting system is called KD45). Intuitively, the D axiom ensures that the agent’s

belief is internally consistent.

2.5.2. Visibility, Seeing, and Knowledge Logic

In recent years, observability has been used widely to understand behaviors of

multi-agent systems. One study of particular interest is logic for visibility, seeing and

knowledge (VSK) [128, 129, 130, 131], which explores relationships between what is

true, visible, perceived, and known. The VSK logic is an extension of modal logic. The

semantics of the VSK logic is based on Kripke possible worlds [31]. A space of Kripke

structures (“worlds”) is defined, each of which encodes the instantaneous state of

environment plus the internal state local to each agent. Then several equivalence

relations are defined to capture the meaning of the modal operators. For example, for

each world, there is a relation, ~v, that determines what other worlds are

indistinguishable, and similarly for S and K. The content of what an agent sees or

knows is determined by these equivalence relations. For example, an agent is said to

know ϕ if ϕ is satisfied by all the worlds accessible from the current world.

Wooldridge goes on to prove some properties about the interrelations among

accessibility, sensibility and knowledge in this system, and he also offers a proof of the

theory with a guarantee of completeness [128]. Wooldridge also investigates a number

of interaction axioms among agents, such as under which conditions agent a sees

everything agent b sees, or agent b knows everything agent a sees [128].

38

However, there are three major issues regarding agent cooperation that are not

addressed in VSK logic: 1) the effects of actions play a major role in helping an agent

infer what others likely know, while there is no way to treat actions through

observation; 2) agents do not have an effective way to utilize their observation to

manage communication and 3) VSK models knowledge (from observation), but not

belief. Agents should be allowed to believe different or even incorrect things and

maintenance of multiple agents’ beliefs are a difficulty problem. Our approach uses

these issues and agents’ observations of the world to determine which information is

already believe by other agents, and therefore does not need to be communicated.

2.5.3. Beliefs of Agents

The VSK logic introduced in last section is basically suitable for describing and

reasoning about belief and observability of a single agent. In multi-agent systems,

agents are expected to not only reason about belief and observability of itself but also

of others.

Beliefs of Agents (BOA) is a multi-agent belief maintenance and reasoning

model, from both theoretical and practical aspects [101]. It is able to represent multiple

states of beliefs and justify beliefs with different strengths [60]. To achieve fast and

efficient reasoning, BOA implements multi-agent belief reasoning in a first-order logic

back-chainer by sacrifices some degree of expression (i.e. it does not handle things like

nested belief) [7].

39

Comparing with a multi-agent truth maintenance system which maintain the

integrity of observed and communicated information [28, 55, 84, 85], BOA answers

two difficulties that are not addressed by the later.

The first is resolving conflicting beliefs about a certain thing. In the multi-agent

truth maintenance system, a single agent is generally not free to change the status on its

own accord and must coordinate with the other agents so that they are all consistent on

the status of the information. However, agents may come to conflict beliefs about a

certain thing. For example, agent a may receives a message from agent b saying it is

raining now, but agent a currently does not observe the rain. BOA resolves this

problem by reasoning about the justification for the beliefs, including direct-

observation, observability, effects of actions, inferences, persistence and default

knowledge [60].

Second, the main purpose of reasoning about beliefs and observabilities is to

help agents assist each other. Typical a belief is a fact (proposition) with the value true

or false. BOA represents the fact that another agents belief is unknown (neither true nor

false) or whether (either true or false). Then agent a would provide a piece of

information to agent b if agent a believes agent b does not know the value for the

information; also agent a would ask about needed information from agent b if agent a

believes whether agent b know the truth value of the information.

2.5.4. Seeing Is Believing

The observability and reasoning of a single agent have received researchers’

attention for some time. Perception reasoning is one of these research directions [72,

40

73]. For example, “seeing is believing” has been adopted for perception-based belief

reasoning [25, 91]. These theories are intended to apply to perception in humans and to

perception in agents at the level of symbolic interface between a vision system and a

belief system. They give a logical analysis of perception and then consider when

perception should lead to change of belief. Similar work can be found in [122]. Van

Linder et al. describe different ways agents can acquire information: seeing, hearing,

and jumping (default reasoning) [82]. They also propose a classification of the

information that an agent processes according to credibility. Agents then can solve

various conflicts that may arise when acquiring information from different sources,

based on information credibility.

2.5.5. Nested Belief Reasoning

Isozaki and Katsuno [61] propose an algorithm for estimating others’ beliefs

from observation. An agent maintains its own belief by checking three factors: 1)

observation factor: if one observes a proposition now, one believes the proposition

now; 2) effects factor: if one has just observed an action, then one believes in all of its

effects, even if one has not yet observed them; 3) memory factor: if no new information

is available, one’s previous belief remains valid. An agent a can estimate agent b’s

belief at different times:

• b’s initial belief: agent a checks b’s observation factor at initial time;

• b’s belief at a time later than initial: agent a checks b’s observation

factor, effects factor, and memory factor at that time.

41

Isozaki and Katsuno [62] also propose a way to reason about nested beliefs

(which are one’s belief about what another believes) based on observation. However,

neither of their works represents the process of observation, i.e., what can be seen and

under which conditions.

2.5.6. Cooperation by Observation

Kuniyoshi, Rougeaux and Ishii [77] proposed a cooperation framework called

“cooperation by observation”. Its basic function is to allow minimal communication

supported by mutual observation of actions. Agents cooperate by using visual action-

recognization to classify task patterns. Their framework presents several standard

attentional templates, e.g. who monitors whom. They define a team attentional

structure as one in which all agents monitor each other. Viroli and Omicini [123]

devise a formal framework for observation that abstracts conditions that cause agents’

interactive behaviors. Kaminka and Tambe [67] use observation to monitor failed

social relationships between agents, but they do not give details about how agents’

belief about their teammates’ mental states are updated.

2.6. Problem-Specific Prediction

There are many learning techniques for problem-specific estimation. Here we

just name a few.

2.6.1. OVERSEER

Kaminka et al. propose OVERSEER, a statistical model for exploring plans

used by a team to predict team responses effectively during execution [68]. They

consider communication to be observable action (only to sender and receiver agents)

42

and use plan recognition to predict future observed messages. They assume that the

duration of a plan is an exponential random variable, and parameters in exponential

distribution can be acquired from domain experts or learned from previous runs.

However, they neither explain why the duration of a plan conforms to exponential

distribution, nor investigate the learning processes in depth. More detail of this work

can be found in [68] and [69].

2.6.2. Successful Story Learning

In a dynamic teamwork system, agents need to consider not only the dynamic

changes of the system, but also the actions of their teammates. Agents may have some

historical data for predicting the actions of others. Schmidhuber and Zhao [106]

consider a system with three self-interested agents. The agents learn evidence released

during the course of interaction and use a backtracking method called “successful-story

algorithm” to establish success histories of behavior, i.e. agents keep actions that have

been successful and remove actions that have failed. In this way, the successful

histories can be enforced despite interference from other agents.

2.6.3. Regression Modeling

Hu and Wellman [52] adopt regression methods for online derivation of

relations between other agents’ actions and their internal states. They find that

performance of an agent can be quite sensitive to its assumption about the policy of

other agents, and when there is substantial uncertainty about the other agents,

minimizing assumptions might be the best policy. Another example is Jensen,

Atighetchi and Lesser [66]. They investigated techniques for allowing agents to gain

43

statistical knowledge about non-local effects (NLEs) and found that a combination of

three simple learning techniques (empirical frequency distributions, deterministic

properties of schedules, and linear regression) can be surprisingly effective.

2.7. Psychological Study of Shared Mental Model in Human Teamwork

Teamwork is a collaborative activity with diverse knowledge resources and

distributed team formats. As a team increases in size, it is often difficult or impractical

to put all necessary information on a single agent. Furthermore, though today‘s

advanced telecommunications and collaboration technologies allow collaborations

within geographically distributed team members, coordination in a distributed, large-

scale team is still problematic because working from a distance brings increased

coordination overhead, communication overload and substantial delays [30]. Ioerger

presents an overview of current research of human teamwork, focusing on modeling

teamwork in human-behavior representation simulations in command-and-control

domains [59]. We review the human teamwork from psychological aspect focusing on

shared mental model.

Team psychology research literature suggests that mechanisms like shared

mental models aid coordination [12, 73, 99]. Shared mental models refer to organized

knowledge that members share about things like the task, each other, goals and

strategies [12]. A recent study of teamwork in a flight simulation task found that shared

mental models had a positive effect on team coordination, which improved

performance [83]. Studies of software teams have also found that their team members

need to acquire, share, and integrate substantial amounts of knowledge of the

44

application domain to ensure positive outcomes [23, 124]. Another study with software

requirement analysis teams found that teams that exhibited a “collective mind”, i.e., a

shared understanding of the group’s task and each other [125], were more coordinated

because members understood how their work contributed to group outcomes [22].

In this research, shared mental models is developed based on shared knowledge

about team structures and teamwork procedures, which help team members to form

accurate information and expectations about the task and each other. This is achieved

through observing the environment and teammates’ actions, predicting teammates’

information production and need, and communicating teamwork related information.

2.8. Context of Work at TAMU

The long-term research goal of the research group at TAMU is to develop an

intelligent-team training system (ITTS), which involves both humans and agents. By

playing vitual team-member roles, agents train humans and improve the humans’

teamwork skills. Previous work includes three parts:

1. TaskableAgents, a single agent architecture that provides adaptive task

decompositions.

2. CAST (Collaborative Agents for Simulating Teamwork), an architecture

for simulating multi-agent teamwork.

3. Various proactive information exchange algorithms with different

focuses on inter-agent communication.

45

2.8.1. TaskableAgents

TaskableAgents is a general single agent architecture which was originally

motivated by the purpose of simulating activities of staff officers in tactical operation

centers in Army combat simulations [139, 140, 57]. TaskableAgents is mainly

consisted of TRL (Task Representation Language) and APTE (Adaptive Protocol for

Task Execution), a task decomposition algorithm.

TRL provides descriptors for representing four fundamental types of

information: goals, tasks, methods, and operators [57]. Each descriptor starts with a

keyword, such as :TASK or :METHOD, a symbolic name, and a list of formal

parameters. The parameters allow arguments to be passed in when a task is invoked. In

TaskableAgents, greater emphasis is placed on encoding pre-determined tasks and

methods. This knowledge defines what to do under various circumstances by providing

procedural descriptions similar to high-level programming languages.

The tasks and goals assigned to an agent are carried out by the APTE algorithm

(Adaptive Protocol for Task Execution) for task decompositions [57]. Conceptually,

there are two phases to APTE. In the very first time step of the simulation, APTE takes

the top-level tasks given to the agent and expands them downward as a tree by: 1)

selecting appropriate methods for tasks, 2) instantiating the process networks for

selected methods, 3) identifying sub-tasks that could be taken in the initial situation,

and recursively expanding these sub-tasks further downward. Once the expansion is

down to the set of concrete operators, the execution takes the first step as selecting one

(perhaps based on priority or preference) and executes it. In every subsequent time

46

step, APTE must repair the task-decomposition tree. This partly involves marking the

action just taken and moving tokens forward in the next process. More importantly,

APTE also re-checks each of the termination conditions associated with the tasks and

methods in the current tree. If a termination condition has been reached (generally

indicating failure), APTE backtracks and tries to find another method that satisfies the

parent task. If a task at some level has successfully completed, then a step forward can

be taken to the parent process.

In TaskableAgents, agents communicate with each other through the use of

built-in TRL operators for sending messages. After being received, messages are stored

in a queue local to each agent. At regular intervals (between normal decision-making

cycles), all messages stored in an agent’s queue are emptied into its knowledge base.

The agent can then process the messages accordingly using message-handling methods

written in TRL [139, 140].

Different from the planning system that usually relies on goal-regression to

select sequences of actions, the TaskableAgents focuses on dynamically selecting and

managing tasks. It has two distinguishing features: 1) reasoning about how to select the

most appropriate method for any given task, and 2) being able to react to significant

changes in conditions and find alternative methods when necessary. TRL is expressive

enough to allow the specification of complex procedures for the agent to follow, and

the APTE algorithm enables flexible behavior in the form of reactivity to changes in

conditions.

47

2.8.2. Collaborative Agents for Simulating Teamwork

CAST is a multi-agent architecture that simulates and supports teamwork

involving both human and software agents [135, 137]. Motivated by psychological

studies about human teamwork demonstrating that intelligent team behaviors rely on

overlapping shared mental models among team members, CAST is based on the shared

mental model [118, 100], which states that, by default, all agents are assumed to share

common knowledge about the roles, capabilities and responsibilities in which they are

involved within the team, and that they believe all other agents have the same beliefs

[137]. This assumption reduces the amount of knowledge a team member should have

and simplifies the belief reasoning among agents. From a teamwork-theory

perspective, CAST is close to shared-plan theory. CAST starts with only partial

knowledge of the shared environment and the other participants and uses

communication and individual information-gathering to determine what the appropriate

action is, who should perform it, and so on.

Belief reasoning has been recognized as being intractable [47]. Consequently,

representing and updating agents’ mental states is a challenging problem. CAST deals

with this problem in two ways. First, we make a teamwork procedure (such as roles,

responsibilities, and plans), and all agents share it. This procedure is represented by

MALLET language (Multi-Agent Logic-based Language for Encoding Teamwork).

Second, it uses Petri Nets to model the team member’s plans, as a computational form

of a shared mental model.

48

MALLET is a team knowledge representation language [136]. The team

knowledge includes team structures (such as team members, agents, roles,

responsibilities, and capabilities) and teamwork processes (such as team goals, team

plans, and individual plans). In terms of a MALLET specification, members of a team

share a static portion of common knowledge described by MALLET. MALLET

assumes that a team has a set of goals to be achieved. Goals are achieved by assigning

a team of agents to plans and then invoking these plans, meaning that the agents are

ordered to achieve the goal. Each plan consists of a set of steps, each of which is either

a primitive operator (e.g., moveleft), or a composite operation (e.g., a sub-plan). Both

plans and operators have preconditions and effects associated with them. Each

precondition and effect is a conjunction of predicates. The difference between

operators and plans is that operators do not have any body. Plans are essentially

designed to describe processes which give plans a hierarchical structure. The processes

consist of invocation of operators, or arbitrary combinations using various constructs

such as sequential, parallel, branch, and iteration. The syntax of processes can be

defined recursively based on these constructs.

2.8.3. Proactive Information Exchange

Based on TaskableAgents and CAST, the research group at TAMU bore rich

fruits in proactive information exchange research. Three major algorithms are

developed with different focuses on inter-agent communication.

Team-to-Individual Plan Conversion (TIP-C) algorithm [6] is the first

attainment towards multi-agent communication. It takes plans written in a multi-agent

49

teamwork language (MALLET) and converts them to equivalent individual plans in a

single agent language (TRL). The algorithm analyzes agent responsibilities and

automatically inserts necessary and appropriate communication acts to the individual

plans and will still facilitate proper dynamic teamwork. These communication actions

can help to produce the complex team activities such as delegation of responsibilities,

carrying them out, and providing backup behavior.

Dynamic Inter-Agent Rule Generator (DIARG) algorithm is the preliminary

implementation of the idea of proactive information exchange [135]. It embeds in the

CAST kernel that enables CAST agents to decide on-the-fly how to provide

information proactively to teammates to assist their work. DIARG generates

communication in order to resolve ambiguity of responsibilities and to predict

information needs among agents and generate the necessary (proactive) communication

to fulfill these needs. DIARG includes two parts: offline and online. The offline part

analyzes the preconditions and effects of operators and generates an information flow

describing potential information needs. An information flow is defined as a three tuple

<info, providers, needers>, where info is the predicate name together with zero or more

arguments; providers is a list of agents who might know such information; and needers

is a list of agents who might need to know the information. The online part infers the

potential information needs by reasoning preconditions and effects of actions/plans and

generates information flow that is a list of needers and a list of providers for every

piece of information.

50

Proactive Information Exchange (PIEX) [60, 101] improves DIARG in two

important ways. First, unlike DIARG which is based on analyzing a static predicate

network, PIEX monitors teammates’ responsibilities and encodes them in a shared plan

[60]. Agents anticipate information needs based on these responsibilities; this is more

flexible than the offline information flow generated by DIARG. Second, PIEX includes

reasoning about other agents’ beliefs to reduce unnecessary message exchanges. It

provides belief justifications to resolve conflict beliefs. It is also able to represent

unknown and whether states for other’s beliefs. The communication becomes more

efficient by narrowing down the receivers of a message to those agents who does not

know the information, and narrowing down the provider for a message to those agents

who know whether the information is true or false.

Our research, Proactive Communication, is similar to PIEX in that both utilize

agents’ sensing capabilities to reduce what information must be sent. Agents will infer

some aspects of the mental states of other agents by observing the environment and the

actions of the other agents. This, together with reasoning about what others can see,

will allow an agent to decide when it does not need to send information to other agents

and whom to ask when it needs information, in a manner that reduces overall

communication.

Moreover, Proactive Communication provides a communication solution that

makes decisions under uncertainty according to cost, risk and the value of information

the communication conveys. DIARG requires a domain expert to publish frequencies

associated with information production and information need. It looks at the general

51

frequency, i.e., for a piece of information, in spite of how many agents produce it or

need it, there is only one frequency related to the information production or the

information need. Hence, this approach is too rigid to apply to different situations. For

agent communication, DIARG also imposes obeys a regular rule, which says that

information that is needed more frequently than it is produced must be told proactively;

otherwise it must be asked for actively. Proactive Communication develops a more

general way to deal with frequencies of information production or information need.

Also it uses the decision theory to guide agents to make optimal communication

decisions under dynamic situations.

52

CHAPTER III

PROACTIVE COMMUNICATION: AN OVERVIEW

In this section, we introduce our system archtecture and agent execution cycle,

and give an overview of Proactive Communciation mechanism. As discussed in

Section 2.8, this research is based on CAST [135]. We investigate how to add two

important capabilities humans use, observability and proactivity, to CAST agents in

order to emulate, as closely as possible, the principles used by humans to achieve

effective Proactive Communication.

3.1. The OP-CAST Architecture

We develop an OP-CAST architecture, as shown in Fig. 3.1, for Observant and

Proactive CAST, which is an extension of CAST. The extension is threefold:

• Giving agents observabilities and developing Observation-Based

Proactive Communication (OBPC) algorithms for reducing

communication load through agents’ observabilities.

• Developing Dynamic Information Prediction (DIP) methodology for

helping agents make communication decisions, by predicting

information production and needs among the agents dynamically.

• Developing Decision-Theoretical Proactive Communication (DTPC)

methodology by which agents communicate proactively by evaluating

cost, risk and value of communication in the decision-theoretical

approach.

53

CAST

Team Structure & Teamwork Procedure

KB

KB

KB

KB

KB

Environment

Proactive Communication

OBPC

DIP DTPC

Optimal Communication Strategy

Fig. 3.1. OP-CAST Architecture.

An agent team is composed of a set of agents. An environment simulation

provides an interface through which the agents interact with the environment. The team

members share the knowledge of teamwork processes as well as team structures,

controlled by CAST. Each agent has an individual knowledge base (KB) to specify its

beliefs to the environment and other agents. During plan execution, individual agents

observe the environment and their teammates’ behaviors1. Dotted circles in Fig. 3.1

indicate agents’ observability radiuses. Different agents have different radiuses and

their radiuses may overlap. Agents communicate with each other by exchanging

1 In this research, observation is not limited to vision; rather it means perception through sensors with
which the agents are equipped.

54

teamwork-related information2. The teamwork-related information and its provider and

needer are not chosen arbitrarily; they are specified by exploring team plans. Straight

lines in Fig. 3.1 connect information provider and needer and arrows show the

communication could occur in either direction3. Decisions about optimal

communication strategies are supported by Proactive Communication.

3.2. Agent Execution Cycle

Our system uses discretized time. At each time step, every agent has an

execution cycle, shown in Fig. 3.2:

• First they observe the environment and teammates’ actions and adjust

their own beliefs;

• If they produce or need some information, they will predict the

information need or production of others;

• They choose optimal communication strategies. The decision may be to

communicate or not at this time;

• They execute the strategy chosen;

• They act with teammates and the actions affect the environment and

enter the next time step.

2 There are two kinds of information that can be communicated. One is the information explicitly needed
by an agent to complete a given plan, i.e., conjuncts in a precondition of plans or operators that the agent
is going to perform. The other is the information implicitly needed by the agent. For example, if agent a
needs predicate p and knows p can be deduced from predicate q, even if the providing agent does not
know p, it still can tell agent a about q once it has q, because it knows that agent a can deduce p from q.
This research, however, deals only with agents communicating information that is explicitly needed.
3 This research, however, does not consider chaining communication, such as communicating via third-
party brokers.

55

Predict
Info. need

and production

Observe
Sense

Decide
Strategy

Communicate
Information

Act
Effect

Execution
Cycle

Fig. 3.2. Agent Execution Cycle.

3.3. Proactive Communication

Proactive Communication is a decision-theoretic communication mechanism to

choose the optimal communication strategy during multi-agent teamwork, by giving

agents the capabilities of observability and proactivity. Observability helps agents to

monitor the environment and track teammates’ mental states. Proactivity allows agents

to anticipate future needs or changes and tell or ask each other about teamwork-related

information. To achieve these objectives, we divide the problem into three pieces and

developed solutions for each.

56

3.3.1. Observation-Based Proactive Communication

To endow agents with observability, we express what an agent can see.

Additionally, successful teamwork requires interdependency among agents [45], which

suggests that agents should know something about others’ observabilities.

Consequently, we also express what an agent believes another agent can see. In order

to explain how agents use their observabilities to observe the environment and others

and how they reason about others’ observabilities, we clarify notions of:

• What an agent can see, what it actually sees, and what it believes from

its seeing.

• What an agent believes another agent can see, what it believes another

agent actually sees, and what it believes another agent believes from its

seeing.

The purpose of introducing observability is to reduce excessive communication,

but there are some fundamental issues to be addressed first. We define which kind of

information will be communicated, who needs it and who provides it, by reasoning

about team plans. We also develop two algorithms:

• To determine whether or not an agent having information should tell

another agent, based on its belief about what the other agent can see.

• To determine whether to ask some specific agent for needed

information, based on the needer’s belief about what the specific agent

can see.

OBPC is introduced in Chapter IV.

57

3.3.2. Dynamic Information Prediction

Agents need to know values of teamwork-related information. However, the

values of the information change in a dynamic environment. It is impossible for agents

to know all information at all times.

For a piece of information, we assume that the production time interval by an

agent and the need time interval by an agent are random according to some unknown

distributions. A key aspect of DIP is to estimate the time of information production and

need of teammates based on these distributions. As a basis for accomplishing this, we

have agents send a partial past history of the time intervals of their information

production or need when they send or ask for information. This additional information

can often be sent at modest cost and subsequently enables the receiving agent to make

predictions about the information production or need times of other agents. After

gathering previous data on information production and need opportunistically, we use a

practical Empirical Distribution Function (EDF) [15] to approximate the distributions

of information production and needs of other agents. The distributions are used in the

utility functions of communication strategies to help agents decide whether or not to

tell or ask for a piece of information. DIP is introduced in Chapter V.

3.3.3. Decision-Theoretic Proactive Communication

We develop a decision-theoretic approach to determine whether to proactively

tell (relative to the need for the information) a piece of information to one or more

other agents, and whether and which agent(s) to ask for a piece of information (relative

to the production of the information). We equipped agents with a set of communication

58

strategies for different decision-making situations. The utility (difference between cost,

risk and value) of the strategies allows agents to decide which one to apply. Since not

all parameters in the utility function are known, we approximate their distributions with

respect to the dynamic estimation of distributions of information production and need.

The utility function will be used to evaluate agents’ decisions and their estimations of

other agents’ responding decisions. Taking others’ decisions into account enables the

agents to deal with the decision interdependency of team cooperation and to

communicate in a way benefiting the whole team. DTPC is introduced in Chapter VI.

3.4. Summary

The OP-CAST agents are endowed with two capabilities to pursue realistic

behaviors and effective interactions: observability and proactivity. The first one

enables them to track teammates’ mental states and decrease the communication load,

and the second one allows them to estimate information production and need of

teammates, so they can assist teammates at the proper time. These capabilities are

encoded in three mechanisms we developed. OBPC formally defines agents’

observabilities and deduces extraneous communication by reasoning about the

observabilities. DIP estimates distributions of information production and need. The

distributions are used in capturing complex decision interdependency among agents.

DTPC provides agents an optimal communication strategy when they act in uncertain

and dynamic environments.

 59

CHAPTER IV

OBSERVATION-BASED PROACTIVE COMMUNICATION

4.1. Motivation and Overview

A major problem with CAST is that significant status information must be

communicated among agents, and there is no attempt to utilize agents’ sensing

capabilities to reduce the amount of information sent. A more realistic approach (from

a human perspective) is to give the agents sensing or observing capabilities. Although

partial observability of dynamic, multi-agent environments has gained much attention

[95, 68, 60], little work has been done to address how to process what is observable

and under which conditions; how an agent’s observability affects the individual’s

mental state and whole team performance; and how agents can communicate

proactively with each other in a partially observable environment.

To address these issues, we introduce an explicit treatment of an agent’s

observability that aims to achieve more effective communication among agents. We

employ the agent’s observability as the major means for individual agents to reason

about the environment and other team members. Agents will infer some aspects of the

beliefs of other agents by observing the environment and the actions of the other

agents. Together with reasoning about what others can sense, these inferences will

allow an agent to decide when it does not need to send information to other agents and

whom to ask when it needs information, in a manner that reduces overall

communication.

 60

We implement the following methods to achieve OBPC:

• Reasoning about what information each agent on a team will produce,

and thus, what information each agent can offer others. This is achieved

through: a) analysis of the effects of individual actions in the specified

team plans; b) analysis of observability specifications, indicating what

each agent can perceive about the environment and other agents, and

under which conditions.

• Reasoning about what information each agent will need in the process

of plan execution,through the analysis of the preconditions for

individual actions involved in team plans.

• Reasoning about whether an agent should act proactively when

producing some information. The decision is made in terms of: a) which

agent(s) needs this information; and b) whether or not the agent who

needs this information is able to obtain the information independently

by observing the environment and other agents’ actions.

• Reasoning about whether an agent should ask actively when needing

some information. The decision is made in terms of: a) which agent(s)

produces this information; and b) which agents are able to obtain the

information through observation.

The following sections first present preliminary contextual information. Then,

we introduce a representation of observability and algorithms for reasoning about it.

Finally we describe algorithms of OBPC.

 61

4.2. Preliminaries

In OP-CAST, the team members share the team knowledge represented in

MALLET, which provides descriptors for encoding knowledge about teamwork

processes (i.e. individual and team plans and operations), as well as specifications of

team structures (e.g., team members and roles) [136].

4.2.1. Plans

Plans are at the center of activity. They describe how individuals or teams can

go about achieving various goals. Each plan has a process consisting of a set of

operations, each of which is either a primitive operator, or a composite operation (e.g.,

a sub-plan). A DO statement is used to assign one or several agents to carry out

specific operators or sub-plans. Fig. 4.1 is an example plan for the multi-agent version

of Wumpus World (refer to Chapter VII for details; a complete version of Multi-Agent

Wumpus World MALLET plan is attached in Appendix B).

(plan startKill(?fi)
 (pre-cond (newKnow ?wumpusId ?x ?y))
 (process
 (seq
 (DO ?fi (moveToWumpus ?fi ?wumpusId ?x ?y))
 (DO ?fi (shootWumpus ?wumpusId))
 (DO ?fi (retract (newKnow ?wumpusId ?x ?y)))
 (DO ?fi (nextStep ?fi))
)
)
)

Fig. 4.1. An Example of the Plan.

 62

StartKill is an individual plan for a fighter agent ?fi. The plan has a

precondition which must be satisfied by the fighter before it tries to execute this plan,

i.e. the fighter must know the location of a newly found wumpus. MoveToWumpus is

an individual sub-plan by which the fighter will move to an adjacent location to the

wumpus. ShootWumpus is an individual operator specified as follows:

(ioper shootWumpus (?wumpusId)

(effects (dead ?wumpusId)))

The effect of this operation will be automatically asserted to the fighter’s KB

after execution (Section 4.4.5 elaborates an algorithm for updating KB). After

shootWumpus is executed, this wumpus’ id and location will be retracted from the

fighter’s KB so that the fighter will not kill the same (dead) wumpus at next step.

4.2.2. Actions

MALLET operators are defined based on standard STRIPS (STanford Research

Institute Problem Solver) operators [35], i.e. as discrete state transitions with

preconditions and effects, which are logical conjunctions. Using STRIPS

representation is important because we want to reason about precondition and effect to

make communication decisions (see Section 4.5). MALLET has three forms of action:

individual action, team action and joint action [32].

We view the world in terms of discrete state transitions and assume actions are

instantaneous operations, i.e. they are performed instantaneously. An individual action

is the execution of an instantiated operator in a DO statement. It is represented as:

<action> ::= (DO <doer> (<operator-name> <args>*)),

 63

where <doer> is the agent assigned to the action and <operator-name> and <args>

correspond to the name and arguments of the operator. Team action is very similar to

individual actions except that <doer> denotes a list of agents involved and these agents

must perform the action simultaneously [32]. We assume that precondition of an

action, individual action or team action, must be believed by <doer> before the action

can be performed and the effect must be believed after the action is performed. If the

precondition is not believed by <doer>, then Proactive Communication will be

implicitly considered (see Chapter VI). Fig. 4.1 illustrates the example of invoking the

shootWumpus action.

Joint action uses a descriptor joint-do. It includes a list of DO statements and

specifies three different joint types: AND, OR or XOR. For the type AND, each

individual DO action must be executed by the corresponding individual agent before

the complementation of the joint activity, which requires all involved agents acting

simultaneously. For an OR, at least one DO must be executed by the corresponding

individual agent while for an XOR, only one DO needs to be executed. Below is an

example type AND joint action:

(joint-do AND (?ag1 ?ag2)

(DO ?ag1 (liftTable))

(DO ?ag2 (cleanCarpet)))

which requires two agents ?ag1 and ?ag2 to cooperate to do a clean operation.

Comparing team action with joint action, they are in common on that all agents

involved must perform the action simultaneously. The difference between the two is

 64

that, for the team action, the agents evaluate exactly the same precondition before the

action, perform exactly the same action, and apply exactly the same effect after the

action; while for the joint-action, the agents only perform the action they are assigned,

hence they will only evaluate precondition of that action, perform that action and apply

effect of that action.

Our approach focuses on observing individual actions. The ideas can be

extended to team actions and joint actions, which essentially are the collection of

simultaneous individual actions performed by individual agents.

4.2.3. Environment and Properties

Another important setting for agent teamwork is environment. The environment

is composed of objects. Each object has properties. A property is a predicate

represented as follows:

<property> ::= (<property-name> <object> <args>*)

<object> ::= <agent>|<non-agent>,

where <object> could be either agent or non-agent, and <args> is a list of arguments

describing the property. Sample properties in the Multi-Agent Wumpus World are as

follows:

(location ?o ?x ?y),

(dead ?wumpusId).

The environment evolves from the state at one time to the state at the next time with an

action possibly being taken during the time interval, saving only the current

environment state.

 65

During a teamwork process, the environment simulation provides an interface

through which the agents can observe properties and their teammates’ actions. We treat

the environment as a knowledge base (KB) denoting objective truths of the world.

Since actions are domain-dependent, when agents perform the actions, they send a

signal to the environment KB. Thus, the actions will be added to the environment KB

as a fact. We assume the environment KB is accessible to all agents. Then, the actions

can be sensed by those whose observability permits them at the time the actions are

performed.

4.2.4. Agent Beliefs

Each agent maintains beliefs about the environment and about other agents in

its own KB. These beliefs are used at the time when the agent evaluates precondition of

plans or actions it is involved. At that time, an attempt is made to match each conjunct

of the precondition to the agent’s KB via unification, using variables for any or all of

the arguments. Unification will provide values for the free variables that make the

conjunct true. If there are no such values, then the value for the conjunct is false.

The version of MALLET used in this work is based upon the Closed World

Assumption that assumes that anything that is not true is false [56]. A limitation of this

assumption is that, there is nothing in the language to distinguish between false and

unknown, which are other two important states for belief [60]. For example, suppose an

agent cannot prove a precondition I from its KB, then what the precondition would be

evaluated to, not I or unknown? This problem will occur frequently, since in many

 66

domains, not everything can be inferred from observability. Therefore, proper handling

of false beliefs and unknown beliefs is important.

The version of MALLET used in this work avoids this problem by defining

wait semantics for preconditions. That is, if a precondition evaluates to false, the agent

waits (possibly indefinitely) for the precondition to become true. This, of course, could

lead to some branches of a parallel process (or even an entire plan) being blocked

forever. Proactive Communication algorithms can recognize this situation and invoke

communication decision processes to determine what information, if any, is exchanged.

From the perspective of MALLET, then, there is not a need to distinguish in the KB of

an agent between false and unknown with regard to the value for an information item I

used in any precondition.

It still would be better if a more general approach were used. Newer versions of

MALLET consider alternative semantics for preconditions, such as failing upon false

preconditions, waiting for a maximum length of time and then fail, or trying to achieve

the precondition by invoking a planner [32]. Except for the first and last cases, it still is

left to the Proactive Communication algorithms to determine whether or not to

communicate when a precondition evaluation fails, and thus would not impact the work

presented here in a significant way.

For effect of plans or actions in which the agent is involved, all conjuncts are

treated as positive facts, with the interpretation that not I means to remove I from the

agent’s KB.

 67

4.3. Agent Observability

We define the syntax of observability and give semantics to this observability.

4.3.1. Syntax of Observability

To represent agent observability, we define a meta-predicate CanSense which

takes three arguments:

CanSense(<observer> <observable> <cond>)

where <observer> specifies the agent doing the observing, <observable> identifies

what is to be observed, and <cond> specifies the conditions under which the

<observer> can sense the <observable>.

Successful teamwork requires interdependency among the agents [44]. This

suggests that an agent should know at least some things about what other team

members can sense. However, an agent may not know for sure that another agent can

sense some things. Rather, an agent may only believe that another agent can sense

something. We then use

B(<believer> CanSense(<observer> <observable> <cond>))

to mean that one agent believes another agent can sense something under certain

conditions. Belief is denoted by the modal operator B and for its semantics, we adopt

the axioms K, D, 4, 5 in modal logic [31].

The syntax we use for observability is given in Fig. 4.2.

 68

<observability> ::= (CanSense <viewing>)*
 (B <believer> (CanSense <viewing>))*
<viewing> ::= <observer><observable> <cond>*
<believer> ::= <agent>
<observer> ::= <agent>
<observable> ::= <property>|<action>
<cond> ::= <property>
<property> ::= (<property-name> <object>* <args>*)
<action> ::= (DO <doer> (<operator-name> <args>*))
<object> ::= <agent>|<non-agent>
<doer> ::= <agent>

Fig. 4.2. The Syntax of Observability.

For example, the observability specification for a carrier in the Multi-Agent

Wumpus World is shown in Fig. 4.3, where ca, rca, fi, rfi represent the carrier,

carrier’s detection radius, fighter and fighter’s detection radius, respectively.

An agent has two kinds of knowledge, shared team knowledge, encoded in

MALLET, and individual knowledge, contained in its KB. The syntax of observability

can be used either as rules in an agent’s KB [141], or as capability incorporated into

MALLET. In this research, we encode observability as rules in agents’ KBs.

 69

((CanSense ca (location ?o ?x ?y))
(location ca ?xc ?yc) (location ?o ?x ?y)
(radius ca ?rca) (inradius ?x ?y ?xc ?yc ?rca)

) ;The carrier can sense the location property of an object.

((CanSense ca (DO ?fi (shootwumpus ?w)))

(play-role fighter ?fi) (location ca ?xc ?yc) (location ?fi ?x ?y)
(adjacent ?xc ?yc ?x ?y)

) ;The carrier can sense the shootwumpus action of a fighter.

((B ca (CanSense fi (location ?o ?x ?y)))

(location fi ?xi ?yi) (location ?o ?x ?y)
(radius fi ?rfi) (inradius ?x ?y ?xi ?yi ?rfi)

) ;The carrier believes the fighter is able to sense the location property of an
 object.

((B ca (CanSense fi (DO ?f (shootwumpus ?w))))

 (play-role fighter ?f) (≠ ?f fi) (location ca ?xc ?yc) (location fi ?xi ?yi)
 (location ?f ?x ?y) (radius ca ?rca) (inradius ?xi ?yi ?xc ?yc ?rca)
 (inradius ?x ?y ?xc ?yc ?rca) (adjacent ?x ?y ?xi ?yi))

) ;The carrier believes the fighter is able to sense the shootwumpus action of
 another fighter.

Fig. 4.3. An Example of Observability.

4.3.2. Semantics of Observability

To give semantics to observability, we need to consider two perspectives: 1) an

agent’s observability, which means we need to clarify relationships between what it

can sense, what it actually senses, and what it believes from its sensing; 2) an agent’s

belief about another agent’s observability, which means we need to clarify

relationships between what it believes another agent can sense, what it believes another

agent actually senses, and what it believes another agent believes from its sensing.

 70

4.3.2.1. An Agent’s Observability

Our notion of observability derives from Woolridge’s VSK logic [128]. Let

Sense(a, ψ) denote the notion that agent a senses ψ4. Sensing ψ means determining the

truth value of ψ, together with unification of any free variables in ψ. The Sense

operator is similar to the S operator in the VSK model. The major differences are that,

first, in the VSK model S leads to knowledge, Sa(ψ)→Ka(ψ), but we only model belief

from observation (discussed further below), and agents should be allowed to believe

different or even incorrect information. Second, instead of saying that the agent senses

the true fact, it is more natural to say that if something is true, the agent will sense the

true value, but also, if it is false, the agent will sense the false value. We model the

Sense operator as follows:

∀a, ψ, Sense(a, ψ) ≡ [ψ → Sa(ψ)] ∧ [¬ψ → Sa(¬ψ)].

Since (ψ ∨ ¬ψ) is an tautology, it follows that

∀a, ψ, Sense(a, ψ) → [Sa(ψ) ∨ Sa(¬ψ)].

Next, we consider the relation between sensing something and believing it. We

adopt an analogous assumption to the one that “seeing is believing”. While

philosophers may entertain doubts because of the possibility of illusion, common sense

indicates that, other things being equal, one should believe what one sees [5, 91]. The

VSK model also suggests that Sa(ψ)→Ka(ψ) is the axiom adopted by a trusting agent (of

4 In our approach, each agent focuses on reasoning about current observation. Time is implicitly taken to
be the time of the current step.

 71

no illusions, no sensor fault etc.). When ψ is observed, we assume that the agent

believes the truth value of ψ. This is formalized in the axiom below:

∀a, ψ, Sense(a, ψ) → {[ψ → B(a, ψ)] ∧ [¬ψ → B(a, ¬ψ)]},

which says if ψ is true, agent a believes ψ; if ψ is false, agent a believes ¬ ψ.

Finally, we model our observability expression as below:

∀a, ψ, c, CanSense(a, ψ, c)

≡ c → Sense(a, ψ)

≡ c →{[ψ → S(a, ψ)] ∧ [¬ψ → S(a, ¬ψ)]},

which means that if the condition c holds, then agent a actually does sense the truth

value of ψ.

4.3.2.2. An Agent’s Belief about Another Agent’s Observability

An agent’s belief about what another agent senses is based on the following

axiom:

∀a, b, ψ, c, B(a, CanSense(b, ψ, c)) ∧ B(a, c) → B(a, Sense (b, ψ)),

which means that if agent a believes that agent b can sense ψ under condition c, and

agent a believes c, then agent a believes that agent b senses ψ. Note that agent a

evaluates condition c according to its own beliefs.

One might wonder if agent a can infer the truth value of ψ when it knows that B

can sense ψ because it can be easily shown that belief is transmissible between agents,

i.e., B(a, B(b, ψ)) → B(a, ψ) or B(a, B(b, ¬ψ)) → B(a, ¬ψ). However, we do not have

such a strong statement of belief on the part of a. In order to have the necessary

condition given above, we would have to have the condition

 72

∀a, b, ψ, B(a, Sense(b, ψ)) → {[ψ → B(a, B(b, ψ))] ∧ [¬ψ → B(a, B(b,

¬ψ))]}.

But, this condition is not necessarily true. All that a’s belief that b can sense ψ implies

is that b knows the value of ψ, which is weaker than the statement given above.

4.4. Belief Maintenance

We denote the agent who performs belief maintenance as self and the KB for

self as KBself. Self’s observability is closely tied to its beliefs about what itself, and

what other agents, can sense. The latter is particularly important because it decides the

agent’s beliefs about others. In this case, the value of the thing that another agent might

observe is not of immediate relevance. Only the fact of whether or not the other agent

can make the observation. This is treated, again, with the Closed World Assumption.

That is, an observability condition is given for the other agent. If self needs to know

whether the other agent can sense something, it evaluates this condition. If it evaluates

to true, it believes that the other agent can sense the thing. If it evaluates to false, it

believes that the other agent cannot sense the thing. There is no unknown to consider

because the Closed World Assumption is used throughout. False is represented, not

explicitly, but by the absence of a true fact5.

Ioerger [60] has described a belief maintenance system allowing self to

maintain tuples about an agent’s (possibly a different agent than self) beliefs in the

form <agent I value>, where value for I can have one of four values: true, false,

unknown, and whether, and agent is what self believes to have the belief value

5 This is called Negation as Failure, a concept closely related to the Closed World Assumption [1].

 73

expressed in the tuple. The value whether is of value for self’s belief about the agent’s

belief; it means that the agent believes whether the value for I is true or false, but this

value is unknown in KBself. While when the agent in the tuple is self, whether‘s

meaning is a bit different; it means self believes the truth value of I and this value is

known in KBself.

As the version of MALLET we are using is based on values true or false, we do

not need to maintain unknown or whether directly. With respect to self’s belief about

another agent’s observabilities, we maintain only a fact that indicates the agent can

sense the item in question, which indirectly means that the agent can sense whether,

when the observability condition is satisfied with respect to self’s KB.

In the following sub-sections, Section 4.4.1 introduces the concept of belief

consistency and compatibility which is the core purpose of belief maintenance [28, 61].

Section 4.4.2 introduces the structure of KBself and how to construct dependencies

among beliefs and how to make inference. Section 4.4.3 presents the overall updating

function updateKB. Section 4.4.4 introduces self’s observability reasoning function

reasonSelfObs. Section 4.4.5 introduces self’s belief about others’ observabilities

reasoning function reasonSelfBel. Section 4.4.6 describes the low level belief updating

function update which maintains belief consistency and compatibility.

4.4.1. Belief Consistency and Compatibility

Belief consistency and compatibility is the core purpose of belief maintenance

[78, 135]. Belief can be classified in two types: 1) ground predicates p which evaluate

to true or false, and 2) functions with arguments f(?x) where ?x denotes a set of

 74

arguments6. f(?x) does not evaluate to true or false, but denotes some other value. For

example, the function location(w1) can take on the value (1 1), meaning the location of

W1 is (1 1). In JARE, functions are modeled as predicates in which the function name

is converted to the predicate name and the argument list for the predicate includes not

only the function arguments, but a list of arguments for the results of the function.

Unification will provide the values for the results, if there are any, in which case the

predicate evaluates to true; otherwise, the predicate evaluates to false. For example,

location(w1) with arguments (?x ?y) is represented as (location w1 ?x ?y).

Belief consistency means that no information and its negation are both believed

[28]. Therefore the pair (p, ¬p) and (p(x), ¬p(x)) can not be believed together in KBself.

However, belief maintenance should consider more general cases such as the

following examples:

• Some functions can only have one value at one time. For example, if

location(w1) has the value (1 1), then it cannot have another value (2 2),

because if w1 is on (1 1) it cannot be on anywhere else.

• Some different predicates cannot be believed concurrently in KBself. For

example, (clear x) and (on y x) cannot both be believed because if y is

on x, then x cannot be clear.

These examples represent constraints within single predicate or among multiple

predicates. These constraints are normally domain dependent and cannot be resolved

6 We adopt JARE syntax that variables are indicated by symbols prefixed with a ‘?’, and constants are
represented by symbols or numbers.

 75

on a general level. Isozaki names this kind of constraint an incompatibility constraint

and proposes a formula to represent it between two predicates (or within the same

predicate) [61]:

incomp(p(?x), q(?y), term1, term2)

where term1∈?x and term2∈?y. Incomp means that a ground instance of p(?x) and a

ground instance of q(?y) are incompatible if they are different and term1 is identical to

term2. For example,

incomp((location ?o1 ?x1 ?y1), (location ?o2 ?x2 ?y2), ?o1, ?o2),

where (?x1≠?x2)∨(?y1≠?y2), means that if an object is located on one place, it is not

located on any other place. Another example,

incomp((clear ?o1), (on ?o2 ?o3), ?o1, ?o3)

means that if one object is on another object, the latter is not clear. To implement this

idea, we define a function with the same name incomp(p, q) which will return true if

two predicate instances p and q are incompatible.

4.4.2. Inferring Agent Beliefs

We use a backward-chaining theorem prover called JARE (Java Automated

Reasoning Engine) [58] to handle belief inference. JARE achieves efficiency by

avoiding re-computing references (which is used in forward-chaining inference) and by

a little more restrictive representation (e.g. no templates). Rules in JARE are in Horn

form which requires that the head of a rule must be a positive literal [102]. A rule is

made out of one or more predicates (a rule containing a single predicate is often treated

as a fact). The following is a JARE rule:

 76

A∧B→C

where C, the head, is called conclusion, and A and B, the body, is called antecedent. C

is derived if both A and B are true. We also say that C is justified by A and B, and {A,

B, A∧B→C} is a justification for C. Then C depends on A and B. Since A and B could

be conclusions inferred from other rules, the actually antecedents on which C depends

could be found by tracing back through A, B, their antecedents, their antecedents, and

so on. In our implementation, we assume that no rule contains cycles7 and the body is

made out of positive predicates8. Therefore, rules form a directed acyclic graph where

nodes are the heads and directed arcs denoting the dependencies.

KBself is initialized as three parts:

• Facts, e.g., identities of objects (agent or non-agent), agents’ roles etc..

We assume these facts are commonly believed by all agents, and are

certain truth which won’t be changed over time.

• Observability rules (self’s and others’) (Fig. 4.3 presents several

observability rules for the Multi-Agent Wumpus World).

• rules which describe what are caused by beliefs generated through

observation. The K axiom of the model of belief says that an agent’s

belief is closed under deduction [31]. For example, if an agent observes

7 Assumption-based Truth Maintenance Systems (ATMS) is used to solve the problem that rules may
contain cycles [26].
8 Non-monotonic logic is used to model the KB where the body of rule is made out of positive and
negative predicates [102, 103].

 77

that the switch is on, it believes the light is on though it cannot directly

observe this.

The initial KBself is supposed to have no belief about the world or about other

agents’ beliefs. These beliefs will be generated dynamically during the teamwork

process, mainly by inferring the observability rules and the causation rules. The order

of belief inference and the order of belief update by the beliefs derived from the

inference are important because of the dependencies among the rules. We handle this

by doing the inference first and then the update. Specifically, after self infers a rule, the

belief derived from this rule is saved in a temporary place rather than be directly

asserted to KBself. Then the order of inference does not matter because all rules share

the same base on which the inference is made. But for clarity, we still make the

inference in this order – self’s observability rules, others’ observability rules and

causation rules. After all beliefs are derived (possibly from multiple justifications),

they will be processed to guarantee that one belief only has one value. Finally, the

update process starts and these beliefs are asserted to KBself. In next section, we

introduce the process of the belief inference and the belief update in detail.

4.4.3. An Overall Belief Maintenance Algorithm

After a piece of information is inferred from KBself, it may not be asserted to

KBself immediately, because there may be different values for this information

generated from multiple sources and these values may contradict one another. Five

sources generate such values: 1) self’s observation, i.e., belief derived from self’s

observability rules; 2) others’ observation, i.e. belief derived from others’ observability

 78

rules; 3) causation, i.e. belief derived from causation rules; 4) effects, i.e., conjuncts

inferred from the effect of the action self performs; and 5) communication, i.e.,

messages other agents send to self by communication9.

In any situation in which belief is acquired from multiple sources, conflicts may

arise – in terms of inconsistency or incompatibility. For example, observation may

produce p and causation may produce ¬p but we cannot omit either of them. A strategy

is needed that prescribes how to maintain KBself in this case. Castelfranchi proposes

that such a strategy should prescribe that more credible information should always be

favored over less credible information [16]. Ioerger introduces multiple justification

types for beliefs and places them in a preference ordering according to strength [60].

To define a strategy conforming to these ideas, we assume that each belief is associated

with a priority that decreases in the order shown in Table 4.110.

Table 4.1. Belief Strengths.

Source Priority
Self’s observation 5
Others’ observation 4
Effects 3
Causation 2
Communication 1

9 Effects and communication are not defined as rules in KBself. This is because that effects and
communication may contain negative predicates but JARE does not allow the head of a rule to be
negative. Though we can improve this by renaming ¬p/¬p(X) to notP/notP(X) and maintain the truth
value of the pair, it would be highly inefficient. So effects and communication come from external
sources but not from KBself.
10 Belief persistence is handled separately in belief update session in order to maintain belief consistency
and compatibility (see Section 4.4.6).

 79

The rationale for this order is as follows11. An agent always believes what it senses and

what other agents sense because we assume “seeing is believing”. The belief about

effects of actions the agent performs is secondarily reliable by assuming the agent

cannot deny the actions performed by itself. Last, the beliefs caused by observations

override what the agent hears by assuming the agent trusts its own inference more than

what others tell it. The truth value of a belief is always supported by the rule with the

highest priority and whose antecedent is satisfied.

One thing worth of mention is that there may be multiple equally preferred

rules with the same strength. For example, an observable item could have multiple

justifications from observation. In our implementation, the preference depends on the

order in which the rules are applied, i.e. the newly generated value will override the old

one, implying that the last rule has the highest priority.

An algorithm for overall belief maintenance along with the observation process

is shown in Fig. 4.4. It is executed independently by each agent, self, after the

completion of each step in which self is involved, i.e., upon completion of an action.

During an update cycle, self will sequentially perform:

• At time t-1, self performed action.

• Immediately after completion of the action at time t-1, self will do

updateWorld by its last action. Basically, the environment simulation

updates the environment KB after the action by self.

11 This is the order fitting our system and assumptions. Different orders may be applied for different
problems. In our system, we never directly obtain a value from inference of others’ observation, because
we only know that they can sense an item, not the value they sense. However, in a more general setting
this source of information may be possible; hence, we included it for completeness.

 80

• Because self can infer the effect of its own action, it will keep the effect

and the credit of the effect in a temporary location called infoList. Since

there may be multiple conjunct inferred, each will be indexed in

infoList.

• Self will do observation and reason causation, keeping results and

credits in infoList.

• Self will check messages, keeping results and credits in infoList.

• Then, for each piece of information in infoList, self will choose a value

with the highest credit and do two things: 1) update its KB by this value,

and 2) communicating this value, if so decided (this is not shown in Fig.

4.4).

• Loop back to next action.

This algorithm maintains belief consistency by the fact that, when there might

be conflict assertions, only the one with the highest credit will be asserted to KBself.

The updateWorld function is simply a call to the environment telling it to

update itself in accordance with the parameters provided. ReasonSelfObs infers self’s

observability rules. ReasonSefBel infers self’s beliefs about others’ observabilities. The

method update is a low level procedure for updating KBself. The next three sections

describe the latter three functions in turn.

 81

/* The algorithm is executed independently by each agent after the
completion of each step in which the agent is involved, i.e., upon
completion of an action. An action may just be a no-op (e.g., if the
agent is waiting for a precondition to be true).

The executing agent is denoted self.
 Below,

let KBself denote the knowledge base for the agent self.
let KBenv denote objective truths about the environment.

*/
updateKB(self, action, KBself){

infoList=null;

updateWorld(self, action); //notify the environment to update KBenv

{par
∀ I in the effect of action

infoList ← (I, 3); //the credit of effect is 3

infoList ← reasonSelfObs(self, KBself);
infoList ← reasonSelfBel(self, KBself);
∀ I derived from causation rules

infoList ← (I, 2);

∀ coming message about I
infoList ← (I, 1);

}//end of par

∀I∈ infoList
let info be the value for I with the highest credit;
update(KBself, info);

}

Fig. 4.4. An Overall Belief Maintenance Algorithm.

 82

4.4.4. ReasonSelfObs: Reasoning Beliefs about Agent’s Own Observability

The algorithm for inferring what an agent has observed, according to its

observability rules, is given in Fig. 4.5. This algorithm builds beliefs in KBself by

checking two things.

reasonSelfObs(self, KBself){

list=null;

∀ rule ∈ KBself of the form (CanSense self (property-name object args)
cond)

if KBenv |= cond
if KBenv |= (property-name object args)

list←((property-name object args), 3);
else

list←(¬(property-name object args), 3);

∀ rule ∈ KBself of the form (CanSense self (DO doer (action-name args))
cond)
 if KBenv |= cond

if KBenv |= (DO doer (action-name args))
list←((action-name doer args), 3);

else
list←(¬(action-name doer args), 3);

return list;
}

Fig. 4.5. An Algorithm of Reasoning Agent’s Observability.

When evaluating observability of a property, (CanSense self (property-name

object args) cond), self checks if KBenv entails cond. If so, and if this property holds in

the environment, self adds (prop-name object args) and its credit to inforList. If the

 83

property does not hold in the environment, self adds ¬(property-name object args) and

its credit to infoList.

In the case of (CanSense self (DO doer (action-name args)) cond) where

doer≠self, self checks if KBenv entails cond as well. If so and if this action holds in the

environment, self adds (action-name doer args) and its credit to inforList. If the action

does not hold in the environment, self adds ¬(action-name doer args) and its credit to

infoList.

4.4.5. ReasonSelfBel: Reasoning Beliefs about Others’ Observabilities

Fig. 4.6 introduces an algorithm for inferring what an agent can determine

about what other agents can sense. The algorithm records which agents are believed to

sense what. We still consider two cases.

In the case of (B self (CanSense Agd (property-name object args)) cond), if

KBself entails cond, self believes Agd senses the property and adds this belief and its

credit to infoList. If KBself does not entail <cond>, self believes Agd does not sense the

property and adds this belief and its credit to infoList.

In the case of (B self (CanSense Agd (DO doer (action-name args))) cond),

cond is evaluated with respect to KBself and self will update infoList in the similar way.

 84

reasonSelfBel(self, KBself){

list = null;

∀ rule ∈ KBself of the form (B self (CanSense Agd (property-name object
args) cond))

if KBself |= cond
list←((Sense Agd (property-name object args)), 3);

 else
list←¬(Sense Agd (property-name object args));

∀ rule ∈ KBself of the form (B self (CanSense Agd (DO doer (action-name
args)) cond))

if KBself |= cond
list←((Sense Agd (action-name doer args)), 3);

 else
 list←(¬(Sense Agd (action-name doer args)), 3);

return list;
}

Fig. 4.6. An Algorithm of Reasoning Others’ Observabilities.

4.4.6. Update: Maintaining Belief Consistency and Compatibility

When new information is to be asserted to KBself, it may inconsistent or

incompatible with old ones. The function update, shown in Fig. 4.7, manages history

and is responsible maintaining for consistent and compatible beliefs in KBself. The

obvious assumption of this algorithm is that what is not changed during update is

assumed to stay the same, i.e. persistence. Since the number of time steps could be

infinite, self keeps only current beliefs in KBself, except that the most recent one is kept,

even if it is not generated currently. Therefore self still believes some information,

 85

even though self does not infer it from KBself or infer it from last action or being told it

by others.

Belief consistency and compatibility are maintained from two perspectives. If

the assertion is a positive literal, it will be asserted to KBself if it is not already there;

implying that the negated literal derived from the Closed World Assumption would be

overridden by the addition of positive literal. Also all information which is

incompatible with the assertion is retracted. If the assertion is a negative literal, the

positive literal (if any) will be retracted from KBself.

update(KBself, info){
if info is a positive literal p

if KBself |= p
assert(KBself, p);

∀q ∋ incomp(p, q)
retract(KBself, q);

else //info is a negative literal ¬p
if KBself |= p

retract(KBself, p);
∀q ∋ incomp(¬p, q)

retract(KBself, q);
}

Fig. 4.7. A Belief Update Algorithm.

4.5. OBPC: Observation-Based Proactive Communication

The information worth exchanging comes from analysis of agents’ goals (e.g.

preconditions of plans or actions that the agents are going to perform). If they do not

 86

know a precondition, they cannot act. Therefore telling them proactively or they

actively asking for it improves efficiency.

Proactive Communication answers the following questions pertinent to agent

proactivity during teamwork. First, when does an agent send the information to its

teammates if it has a new piece of information (either from performing an action or

observing)? A simple solution could be sending the information when requested. That

is, the agent would only send the information after it has received a request from

another agent. In our approach, the agent observes its teammates and commits to

proactive tell once it realizes that one of the teammates needs the information to fulfill

its goal and does not have it now. Meanwhile, if the agent needs some information, it

does not passively wait for someone else to tell it; it asks for this information actively.

Second, what information is sent in a session of information exchange? There

are three kinds of information that can be communicated. One is the information

explicitly needed by an agent to complete a given plan, i.e., conjuncts in a precondition

of plans or actions that the agent is going to perform. The second is the information

implicitly needed by the agent. For example, if agent a needs predicate p and knows p

can be deduced from predicate q, even if the providing agent does not know p, it still

can tell agent a about q once it has q, because it knows that agent a can deduce p from

q. The third includes the information for synchronization among team members

performing actions and joint actions. This research, however, deals only with agents

communicating information that is explicitly needed.

 87

We developed two observation-based communication protocols: O-Tell and O-

Ask. These protocols are used by each agent to decide whether to generate inter-agent

communication when information exchange is desirable. The O-Tell and O-Ask

protocols are based three types of knowledge.

The first is information needers and providers. In order to find a list of agents

who might know or need some information, we use information flow developed by

DIARG [137]. DIARG infers the potential information needs by reasoning about the

goals of the other agents based on the team plan used by the agents. To be specific, it

analyzes the preconditions and effects of actions and plans and generates information

flow which is a list of needers and a list of providers for every piece of information. An

agent is a provider for the effects of any action/plan it is capable of performing. An

agent is a needer for the precondition of any action/plan it needs to execute.

The second is beliefs generated after observation. Agents take advantage of

these beliefs to track other team members’ mental states and use beliefs of what can be

observed to reduce the volume of communication. For example, if the provider

believes that the needer senses I, the provider will not tell the needer; if the needer

believes that a specific provider has I by observing the action performed by the

provider, the needer will ask this provider, rather than ask all of them.

The third is beliefs inferred from the effect of the action performed by the

agent. The agent will tell these beliefs to the needer if it believes that the needer does

not sense them.

 88

Algorithms for deciding when and with whom to communicate for O-Ask and

O-Tell are shown in Fig. 4.8.

Considering the intractability of general belief reasoning [47], our algorithm

deals with beliefs nested no more than one layer. Also the algorithm involves only two

parts, i.e., sender and receiver. It does not consider the third party communication such

as agent a asks b to ask c for some information. Therefore, the belief about if another

agent senses an action executed by a third agent is not included. The algorithm is

sufficient, thought, for our current study on proactive behaviors of agents, which

focuses on peer-to-peer proactive communication among agents.

/*O-Ask will be independently executed by each agent (self) when it needs the
 value of information I.
*/
O-Ask(self, I, KBself){
 if KBself |=I

if ∃ Agp≠self, φ∈action ∋ (KBself |=(φ Agp args))∧(I∈ Prec(φ)∨I∈Efft(φ))
 ask Agp for I;
 else randomly select a provider

 ask the provider for I;
}

/* Independently executed by each agent (self), after it observes I or produced I
 as effect of an action.
*/
O-Tell(self, I, KBself){
 ∀Agn ∈ needers
 if KBself |= (Sense Agn I)
 tell Agn I;
}

Fig. 4.8. Observation-Based Proactive Communication.

 89

For O-Ask, the needer requests the information from a provider who may know

it. This provider may be explicitly determinable if its action that determines I is

observed by the needer. If such agent cannot be found, the needer randomly chooses a

provider from the provider list and asks the provider for I.

For O-Tell, the provider tells the agents who need I. The needer(s) is(are)

determined from the information flow. The provider’s beliefs about the needer’s

sensing capabilities become the basis for this reasoning. The provider will tell I to the

needer only if the provider does not believe the needer can sense I. The implication

here is that communication will not go to the needer whom the provider believes can

sense I. By this means, the communication load can be reduced by an agent’s belief

about another agent.

4.6. Summary

This section has presented an approach to dealing with agent observability for

improving performance and reducing inter-agent communication. Each OP-CAST

agent is allowed to have some observability to sense the environment, and to watch

what others are doing inside its detection range. Based on the observation, the agent

updates its knowledge base and infers what others may sense at the current time.

Reasoning about what others can sense allows agents to decide whether to distribute

information to others. We have proposed a proactive communication mechanism to

confer some advantage to related team members for realizing team interaction and

cooperation proactively also.

 90

CHAPTER V

DYNAMIC INFORMATION PREDICTION

5.1. Motivation and Overview

To decide a communication policy (such as O-Ask or O-Tell), OBPC adopts the

same method as the original CAST approach. It requires a domain expert to publish

frequencies associated with information production or information need, and defines

inflexible decision-making rules. Thus information with some specific frequency will

be O-Telled and others will be O-Asked (see Section 4.5). Moreover, it only looks at

the general frequency, i.e., for a piece of information, in spite of how many agents

produce it or need it, there is only one frequency related to the information production

or the information need. Obviously, this method is too rigid to handle dynamic and

complex situations.

We develop a more general way, called Dynamic Information Prediction (DIP),

to deal with frequencies of information production or information need. For a piece of

information, we take each needer and provider into account separately, and predict time

points at which production or need occurs. Rather than relying on a domain expert to

input such knowledge, DIP anticipates distributions of information production or need

dynamically, by utilizing previous data about information production or need.

We assume the time intervals for the production or need for a piece of

information are random according to some unknown distributions. We also assume

needers and providers keep a record of their own information production or need time

 91

intervals. By acquiring history from others, the needer can estimate the distribution of

time intervals during which an item of information will be produced by a given

provider. Similarly, the provider can estimate the distribution of time intervals during

which an item of information will be needed by a given needer. Agents make such

estimations dynamically, by analyzing the trail of the list of time intervals.

There are two statistical approaches to describe a probability distribution:

parametric and non-parametric. The parametric approach utilizes a certain formula to

model the probabilities. In some domains, obtaining an accurate model of a distribution

requires complex knowledge acquisition from domain experts, or a complex learning

process on the part of the agent. Hence, from a practical point of view, the parametric

approach may be too complicated to support efficient online inference. Alternatively,

the non-parametric approach does not require knowledge of how the probabilities are

distributed. It assumes that the sampling distribution of collected data is analogous to

the population distribution. This feature allows the Empirical Distribution Function

(EDF) [15] to be used to approximate the distributions of information production and

need.

To sum up, the idea of DIP is to gather previous data on information production

or information need opportunistically and use EDF to approximate their distributions.

The following sections first introduce our rationale of choosing EDF, and then the

mechanism of EDF, and considerations which make DIP applicable.

 92

5.2. Considcertations of Statistical Models

To predict the time at which an agent produces or needs a piece of information,

we need to model the time interval X between the time at which the agent last produced

or needed the information and the time at which the agent will produce or need the

information next. In our framework, X is measured as the number of steps taken by the

agent, and therefore is a discrete variable.

Modeling this probability distribution brings a challenge. In principle, this

distribution can be arbitrarily complex, and its structure may vary enormously from

domain to domain, and even from information to information within the same domain.

We first need to decide which approach, parametric or non-parametric, is more suitable

to our problems and assumptions.

Choosing an appropriate statistical model always depends on the assumptions

we make about the variables and the objectives we wish to achieve. Some source

distinguishes parametric and nonparametric on the basis that parametric make specific

assumptions with regard to one or more of the population parameters that characterize

the underlying distributions for which the test is employed, while nonparametric makes

no such assumptions about population parameters [110].

Although we may approximate the discrete time variable using a continuous

distribution, we restrict our discussion to discrete distributions here. Our problem is to

model the time interval. Among commonly used discrete distributions, it is difficult to

find one which fits into our problem directly. For instance, the Poisson distribution is

often applied to counting the number of events in a certain time period, but not the time

 93

interval itself. It also requires that the mean of the distribution equals the variance,

which discourages the uses of Poisson distribution under many practical settings [98].

Although more complicated models may exist to approximate the distribution of a time

interval, we want a direct approach, given the main objective of our study.

An alternative non-parametric approach may accommodate a weaker

assumption on how the random variable X is distributed. By using a non-parametric

approach, we do not need to restrict the data to a specific family of distribution, but

assume the sampling distribution of collected data to be analogous to the population

distribution. For example, for an unknown distribution of P(X), if we have no other

information, the entire sample will be the best estimate of the population as long as the

current samples are randomly generated from P(X) [15].

In our problem, we do not know much about X’s distribution and cannot make

any distributional assumptions based on the current knowledge. Hence a non-

parametric approach can be applied, where we use the current sample set to

approximate the true distribution. We propose to use the EDF [15] of X to approximate

X’s distribution. The only assumption we make is that the sampling distribution of

collected data is analogous to the population distribution.

5.3. Empirical Distribution Function

As will be shown in Chapter VI, given models of the information produced or

needed that the agents experience during teamwork, the problem of information

prediction is to determine the probabilities that an agent produces or needs an

information item at a certain time point, or more precisely, the probability of such

 94

production or need before that time. This corresponds to the cumulative probability that

the information is produced or needed at certain time, Pr(X ≤ tj-tj-1), where tj is the

certain time point and tj-1 is the last production or need time which is known. However,

as will be seen in Chapter VI, under some circumstances tj is known and in others it is

not. In the former case, the cumulative probability may be calculated directly. In the

latter, one simple approach is to calculate the expected value of tj as an intermediate

step. Then, the cumulative probability can be estimated from the expected value, Pr(X

≤ E(X)), where E(X) is the expected value of X= tj – tj-1. However, Pr(X ≤ E(X)) is just

a simple approximation to Pr(X ≤ tj - tj-1). A more accurate approach is to utilize the

law of total probability, which is described by the formula as follow:

Pr(X ≤ tj−tj-1)

=∑∞

= −1jtτ
Pr(X≤tj−tj-1 | tj =τ)×Pr(tj=τ).

This is the approach we take to calculate Pr(X ≤ tj−tj-1) when tj is unknown (refer to

Appendix A for calculation details). In this section, we focus on how to determine the

underlying distributions for X.

Let {X1, …, Xk} be a collected sample, then the Cumulative Density Function

(CDF) of X is estimated by [24]:

CDF(X) =
k

k}i1 ,XX:X{# ii ≤≤≤ ,

and Probability Mass Function (PMF) of X is estimated by [24]:

PMF(X) =
k

k}i1 ,XX:X{# ii ≤≤= .

 95

For example, suppose there are 10 (then k = 10) sample data {20, 30, 24, 33,

24, 40, 33, 30, 33, 24}, among which the number of 20 is 1, the number of 24 is 3, the

number of 30 is 2, the number of 33 is 3 and the number of 40 is 1. Then CDF(24) =

10
31+ = 40% and PMF(24) =

10
3 = 30%. Fig. 5.1 shows CDF(X) and PMF(X). In our

use of these formulae, they will be updated from time to time (described in Section 6.9)

as additional data samples become available. Thus, we expect the distributions to

become more accurate over the time in which they are used.

Note that there are many value of X such that PMF()=0 in this example. This

effect occurs because of a small sample size. One can deal with this situation in a

couple of different ways. First, one might apply a smoothing function to the

distribution and then use the smoothing function to estimate the probability for a given

value of X. For example, the method called cubic spline uses a series of unique third

degree polynomials to fit between sets of m points, m≥2, of the whole data points, with

the constraints that the curve obtained is continuous and appears smooth [3].

Alternatively, one could simply use the discrete CDF and PMF produced by the

equations above. The latter becomes increasing accurate as the number of samples

increases. Whether one uses a smoothing function or not is irrelevant to the research

discussed here. We simply use the fact that approximating CDF’s and PMF’s can be

calculated from time to time as increasing history is accumulated. For simplicity, in our

experiments, we just use the raw CDF and PMF produced.

 96

0 20 24 30 33 40 X

CDF

1.00
0.90

0.60
0.40

0.10

PMF

1.00
0.90

0.60
0.40

0.10

0 20 24 30 33 40 X

Fig. 5.1. An Example of Using EDF.

Based on the EDF, we can estimate the probability of the information

production at a certain time tp and the probability of the information need at a certain

time tn. For each of these, this approach can be formulated as:

1. Initially collect a small amount of data x1, ..., xk.

2. Calculate CDF(X).

 97

3. When an additional value of X is collected and added to the data pool,

CDF(X) will be adjusted when this process goes on.

When this process is iterated for many times, the collected data will be closer to "true"

(or population) distribution and the prediction will be more accurate12.

Ultimately, the probability distributions computed by EDF will be used to

calculate utility when some time parameters in the utility function are unknown (the

utility is introduced in Section 6.4).

5.4. Data Acquisition

Applying EDF raises three questions: 1) What kind of previous data do agents

want to gather and how to initialize the system? 2) How does the agent acquire

previous data? 3) By which format the previous data will be conveyed?

5.4.1. Source of History and System Initialization

Agents can gather previous data on information production- and need-time

intervals in various ways. They can use the data provided by domain experts, or

historical data collected dynamically during the execution of a plan. Agents must

expend extra effort, thus acquiring knowledge from the domain experts, to obtain the

data by the first way. These efforts limit the system’s dynamic capabilities; therefore,

we use the historical data, which can be gathered dynamically during the teamwork

process.

12 A famous application of this theory in statistics is so called bootstrapping method, which makes
statistical inference based on the re-sampling of current sample set [93].

 98

However, there may be a problem when using EDF at the beginning of

teamwork, because agents have no sample data. One way of dealing with this problem

might be to generate random numbers to initialize these times. However, this solution

lacks regularity, so it may be impractical. Another way might be to develop a rule to

guide agents at the beginning. For example, the rule could be that the provider and

needer are obligated to communicate with each other and attach their historical data at

the first several rounds of production and need rather than using DIP to predict needs

and productions. However, this solution lacks flexibility and may create many

messages which against the major goal of Proactive Communication.

The solution we adopt is to run the system in a trial mode. We will collect data

from previous test runs and use these data to initialize time intervals. By this way,

agents are able to predict time points of productions or needs since the system starts.

Gradually the initialized data will be extended and the prediction will be based mostly

on the data from actual run.

5.4.2. Acquisition of History

Under the approach taken here, agents need to have a history of the production-

or need- time intervals of others, so they can estimate distributions of the production or

need. This raises the question of how to obtain these time intervals. Empirical data

[134] show that the cost of a message may be approximated by C+K*size, where C is a

base cost of sending a message, size is the message size in bytes, and K is a parameter

which adjusts the effect of the message size to the message cost. Typically C is much

larger than K and the cost for a small amount of additional information is almost

 99

negligible, allowing the agents to attach historical information on their production- or

need-time intervals to each message sent to the receiver. This suggests that the

historical data can be sent opportunistically along with the information exchanged

between providers and needers. We propose that needers attach a history of

information need time intervals to every message they send; similarly, that providers

attach a history of information production time intervals to every message they send.

Agents certainly will not attach the whole history to every ask or tell message. They

only attach time intervals from the last sent to the receiver to the latest one. These

historical data will allow them to approximate the probability of a piece of information

being needed or produced at certain time point by a specific needer or provider.

5.4.3. Message Format to Convey History

The message format is based on Knowledge Query and Manipulation Language

(KQML) [37]. The syntax of KQML is based on a balanced parenthesis list. The initial

element of the list is the performative and the remaining elements are the

performative’s arguments including message content, sender, receiver, and historical

data of information production or need. An example message ProactiveTelled about a

wumpus w1’s location from the carrier Ca to the fighter F1 looks like this:

((performative ProactiveTell)

(message (location w1 27 58))

(sender Ca)

(receiver F1)

(data (27 38 40 33 47 39)))

 100

The last pair in the example list contains lengths of time intervals of producing

wumpus’ location information from the last one sent to the fighter to the most recently

generated one. The sender maintains records of the last sent data regarding each of the

receivers. The receiver will update its data list after receiving a new message.

5.5. Important Issues

Two issues require consideration to make DIP complete. In the following, we

analyze them and propose some possible solutions. In Section 7.2.4, we investigate

them further and apply some specific algorithms to experiments.

5.5.1. Preventing the Provider from Having History Starvation

During the teamwork process, it is possible that the provider may cease to

receive need history updates, which occurs when the needer stops asking for the

information. This case results from the essence of proactivity — agents always assist

each other proactively, rather than passively waiting to be asked. For example, when

proactivity is fully enabled, the needer may increasingly depend upon receiving

information from proactive tells and the number of ask messages gradually decrease to

zero, in which case the provider would receive no new historical data on need times.

However, the EDF approach depends on the sample data to increase the accuracy of the

approximation. If the provider ceases to receive historical data, the CDF and PMF will

not be adjusted. In order to ensure that the EDF mechanism continues to function, we

set a time threshold for the provider and for the needer. If neither hears from the other

within the threshold, it must communicate with the other and attach its historical data.

 101

5.5.2. Preventing Communication Deadlock

Deadlock will result if both needer and provider wait indefinitely for

communication from the other. Since when needing or producing an information item,

an agent may either contact the other or wait for the other to contact it (see Section 6.2

for detail), there is a possibility that they both decide to wait. In investigating this case,

we found it similar to the history starvation case; thus, if agents do not get any

information from others in a long time, we adopt the same approach of using a time

threshold to prevent deadlock.

5.6. Summary

In DIP approach, agents are able to utilize previous data about information

production and need. In order to provide CDF and PMF necessary for estimating the

values of the utility function, we suggest transmitting data on the times of information

production or need along with any messages that are sent among agents, and then using

EDF methods to approximate CDF and PMF. The distributions calculated can help

agents make better communication decisions in two ways: first, agents can proactively

tell information to agents if they expect another agent to need it in the near future,

thereby reducing the number of asks; second, agents can ask for needed information

actively from specific providers if they do not expect a proactive tell in the near future.

 102

CHAPTER VI

DECISION-THEORETIC PROACTIVE COMMUNICATION

6.1. Motivation and Overview

As one has seen, for generating Proactive Communication, the relevance of

information to another agent can be inferred by reasoning about plans and actions of

the other agent. Specifically, preconditions of these plans and actions constitute the

information relevant to the other agent, which is needed by the agent in order to

execute its plans and actions.

However determination of relevance is only one part of the requirement of

Proactive Communication. The other part is to decide whether or not to proactively tell

or actively ask for the information. Making communication decisions is difficult in that

agents have different knowledge, and there are always unknown things existing on the

needer’s and the provider’s sides. We develop agents’ communication decision-making

based on estimation of the probability distribution introduced in last section Dynamic

Information Prediction. The purpose of predicting information production or need time

is to help agents decide whether or not to send messages to active needers or providers,

rather than always sending to them. An agent becomes active when it is selected to

participate in executing a team plan. However, in order to know which agents are

active, the original CAST sends a significant number of extraneous messages to

maintain the shared mental model, where agents share execution states of teamwork

processes [11]. And, when there are multiple active providers, a needer will repeatedly

 103

ask them until it gets a reply [137]. The drawback is that the needer must wait for a

reply if the one being asked does not have the information at that moment. Also, even

if another provider has told the needer proactively (after the ask), the one asked still

needs to reply when it has the information, since it doesn’t know about the proactive

tell. Hence the communication either takes longer or there is too much of it. Moreover,

the original approach obeys a rigid rule, which says that information, which is needed

more frequently than being produced, must be told proactively; otherwise it must be

asked for actively. This rule explicitly states two policies, proactive tell and active ask,

the original approach uses. It also implies a policy wait, i.e., for some information,

agents have to wait until asked or told. However, information should not be

communicated in such a strict way, and more options are desired to match reality.

Additionally, communication involves more complex issues not covered in the

original CAST approach. First, communication can be valuable if it assists agents with

timely and the newest information; it also carries communication cost and risks such as

those in a hostile environment. Not modeling this value, cost and risk will limit our

application on most practical systems. Hence, communication should be subjected to

careful cost-risk-value analysis. Second, since an agent is a member of the team and it

will accomplish the plans with other team members, its utility depends not just on its

own communication decision, but also on the decision of its teammates. To reconcile

decision interactions in the team, an agent should have a method of estimating others’

decisions and considering how these decisions impact its own. Third, information

changes dynamically in the environment, and the degree of use of the information may

 104

be different too. For some information, agents must consume all changes (e.g., new

enemy target identified), while for other information agents do not necessarily have to

process each change (e.g., current location of friendly aircraft). Agents need to check

every production of the first type information, while the check to the second type

information depends on agents’ needs. A more comprehensive solution must be

developed to deal with different types of information.

In a word, a better communication solution is desired to reduce unnecessary

messages between needers and providers, and to make decisions under uncertainty

according to cost, risk and value of information the communication convey.

We propose Decision-Theoretic Proactive Communication (DTPC), by which

agents communicate in an optimal way using a decision-theoretic approach. The

decision-theoretic approach concentrates on identifying the “optimal” policy [93],

where the notion of “optimal” has a number of different meanings, the most common

of which is “that which maximizes the utility,” in this case, of communication. We

incorporated cost, risk and value into the decision-making and expand a set of policies

that needer and provider will use. The decision-making generally involves computing

the cost, risk and value of each policy, and choosing the one with maximum utility.

Moreover, since communication involves needer and provider, and they keep

interacting with each other during the teamwork process, their decisions may be

interdependent. When making decisions, it is necessary for them to take the decisions

of their counterparts into account and communicate in a way benefiting the team. These

features are bases of DTPC.

 105

By DTPC, agents are equipped with a set of communication policies from

which they must choose when making decisions. To quantify agents’ decisions, we

have developed a generic utility function that focuses on representing the information

production and need of team members. After evaluating the utility of each policy,

agents will identify the optimal policy, which maximizes the utility of communication.

Two difficulties exist in agents’ decision-making. First, agents cannot compute

exact values of the utility since some parameters cannot be known precisely. Hence,

they calculate the utility function by using estimated values of these parameters.

Second, agents’ decision-making is interdependent, so when evaluating a policy, agents

must consider their counterparts’ decisions, which also need to be estimated.

The following sections first define policies and time points for different

situations of decision-making, followed by introductions to a generic utility function

and multi-agent communication processes and finally a set of algorithms which handle

the communication processes.

6.2. Policies and Time Points

We made the following assumptions about information production and need.

• The time interval from one production of information I to the next is a

discrete random variable.

• A needer does not generate a new need for I until after the previous need

has been satisfied.

• The time at which a need occurs is the time at which the transition from

no need for I to a point of time where there is such a need is made.

 106

• The needs will be continued in the time interval through which the

needer waits for a value to be obtained either by observation or being

told by the provider.

• If there is a need and a newly produced value is received, the value is

immediately used.

• Once a value for I is used by a needer, it may not be reused.

• The time interval from the satisfaction of one need to the occurrence of

the next need for I is a discrete random variable.

The provider will face two situations when making decisions. In situation PA, it

produces a new piece of information. In situation PB, it receives a request for a piece of

information. The needer also has two situations to consider. In situation NA, it needs a

piece of information. In situation NB, it receives a piece of information, which may be

either a reply from the provider whom it has actively asked or a proactive tell from the

provider.

In order to make their communication decisions at each situation, agents need

to consider the relationship between the time at which information is needed and the

time at which it is produced. The various policies involve using the information

produced at different times or satisfying needs at different times. Thus, to describe the

range of possibilities encompassed by the different communication policies adequately,

several different points in time must be defined. For clarity, we define sets of policies

and sets of relevant points in time, for the needer and for the provider in different

 107

situations. Any time an agent makes a decision, we assume it only chooses one policy

and acts accordingly.

For clarity, we assume the system consists of two agents. This is agent a, a

provider, and agent b, a needer.

6.2.1. Situation PA: Provider Produces a Value for I

Fig. 6.1 shows situation PA. Let 0
,PaT be the time at which agent a produces a

value for I; we consider this to be the current time. Also let { 1
,PaT , 2

,PaT , …} denote the

(ordered) set of times at which agent a will produce I in the future, which are unknown

at the current time. There is additional information available to the provider. The

provider knows the times of each of the values it has produced and which of these were

sent to the needer. Let ls
PaT , be the time of the last value for I the provider sent to the

needer. Let NbT , be the time of a need after ls
PaT , , which is (probably) unknown to the

provider, too. It is possible, though, that some of the values for I the provider sent were

unused. It is also possible that, in the time interval (ls
PaT , , 0

,PaT], the provider produced

one or more value for I and did not send them to the needer. If there are any such

values, let ns
PaT , be the largest time at which the provider generated a value for I that it

did not send. The ordering constraints of these time points are as follows:

ls
PaT , < ns

PaT , < 0
,PaT < 1

,PaT < 2
,PaT <…,

ls
PaT , < NbT , .

 108

For these time points unknown, as illustrated in Fig. 6.1, NbT , could be any time

point after ls
PaT , and 1

,PaT could be any time point after 0
,PaT .

These time points will be used in utility function. To deal with the uncertainty

brought by the unknown time points, we take advantage of two kinds of knowledge.

First we know their low bound. For example, 1
,PaT must be greater than 0

,PaT and NbT ,

must be greater than ls
PaT , . Second, we can approximate their distributions by EDF

approach. By this way, we can deal with uncertainty.

Need time

°

Agent a
Agent b

Unknown

t °

Last send
time

Current
time

ProactiveTell?
Silence?

ls
PaT ,

NbT ,

0
,PaT

1
,PaT

Next production
time

Known ns
PaT ,

Last not
send time

Agent a has two policies to choose on this situation:

ProactiveTell: The agent proactively provides I;

Silence: The agent does not provide I.

Fig. 6.1. Situation PA: Provider Produces I.

 109

Agent a will either ProactiveTell the value just produced at 0
,PaT to agent b or

keep Silence. The difficulty of decision-making is that agent a may not know the exact

time when the needer’s need arises, i.e. NbT , . Therefore, if agent a decides to

ProactiveTell the just-produced value for I, then the value provided may not be the

most current because new values may have been produced by the time agent b really

needs I. However, if agent a decides to keep Silence, agent b may be unable to get the

information in time if a need was already raised. Therefore, timeliness and currency13of

the information provided should be a major consideration of decision-making.

6.2.2. Situation PB: Provider Receives a Request about I

Situation PB is shown in Fig. 6.2. Let Tb,q be the time at which agent b requests

I; we consider this to be the current time. Let 0
,
q

PaT be the latest production time, before

the request time Tb,q, and let 1
,
q

PaT be the next production time, which is unknown,

following the request time Tb,q. Obviously, the order of these time points is:

0
,
q

PaT ≤ Tb,q< 1
,
q

PaT .

13 While timeliness and currency sound somewhat similar, there is a distinct difference. Timeliness
refers to the delay between a need arising and the need being fulfilled, while currency refers to whether
one is using current or old information.

 110

°

Agent b
Agent a

Unknown

t

Last production
time

Next production
time

Reply?
WaitUntilNext?

Current
time

Known qbT ,

1
,
q

PaT

0
,
q

PaT

Agent a has two policies to choose on this situation:

Reply: The agent provides most recent value for I;

WaitUntilNext: The agent waits until next production of I and then

provides I;

Agent a will either Reply the value last produced at 0
,
q

PaT , or WaitUntilNext

production time 1
,
q

PaT and reply the value produced at 1
,
q

PaT . The major consideration is

still the timeliness and the currency of information provided. The last produced value is

timely but may lost currency if a new value will be produced soon, while the new value

may not be timely. Again, the utility function should address these issues.

Fig. 6.2. Situation PB: Provider Receives a Request about I.

 111

6.2.3. Situation NA: Needer Has a Request about I Arise

Situation NA is shown in Fig. 6.3. Let 0
, NbT be the time at which agent b’s most

recent need for I arises; we consider this to be the current time. Let 0
,
a

PaT be the time at

which agent a most recently produced I and 1
,
a

PaT be the time at which agent a produces

I next. Let Tb,r be the time at which agent b most recently received a value for I from

agent a. The relationships among these points are as followings:

Tb,r≤ 0
,
a

PaT ≤ 0
, NbT < 1

,
a

PaT .

Agent a
Agent b Unknown

t

Production time
b last received

Most recent
production time

ActiveAsk?
Wait?

Silence?

Current
time

Known 0
,NbTrbT ,

0
,
a

PaT 1
,
a

PaT

Next production
time

Agent b has three policies to choose on this situation:

Silence: The agent does not ask for I and uses the most recent value it

has;

Fig. 6.3. Situation NA: Needer Has a Request about I Arise.

 112

ActiveAsk: The agent actively asks for I;

Wait: The agent waits to be told I proactively.

If agent b ActiveAsks for the information, the information it uses is always the

most recent. But this process costs more messages and brings high risk. If the needer

Waits, it cannot get the timely information. If the needer keeps Silence, i.e., it uses the

value last received at time Tb,r, this value may not be the most recent because it may be

changed during the time interval [Tb,r, 0
,
a

PaT]. Again, these considerations must be

included in utility function.

6.2.4. Situation NB: Needer Receives I

Situation NB is shown in Fig. 6.4. In this situation, agent b receives a piece of

information I, which may be either a reply from agent a whom it has ActiveAsked or a

ProactiveTell from agent a. Agent b’s choice is deterministic, thus Accepts I. However,

agent b may use I or not. If I is a reply to the ActiveAsk sent by agent b, agent b

definitely will use I; if I is sent by the ProactiveTell, use of I happens if agent b is

Waiting for I or agent b will hold I and use it later with a Silence decision. Meanwhile,

agent b will neither notify agent a about the acceptance of I nor the use of I. These

uncertainties and unknown knowledge bring more difficulties to agent a’s estimation of

the time of the need.

 113

Agent b Agent a

Accept.

In summation, Table 6.1 lists communication situations which an agent will

face and policies which are available for these situations.

Table 6.1. Situations and Policies.

Situation Policy
ProactiveTell
Silence

PA: provider produces I

Reply
WaitUntilNext

PB: provider receives a request for I

ActiveAsk
Silence

NA: needer has a need for I arise

Wait

NB: needer receives I Accept

6.3. DTPC Model

Part of decision-making is to evaluate each of the possible policies for each of

the situations described above. We need to generalize the notion of situation slightly to

Fig. 6.4. Situation NB: Needer Receives I.

 114

include the specific item of information I with respect to which it occurs. Let t be the

time of occurrence of a situation, we denote a situation by St = (SU, I) for SU ∈ {PA,

PB, NA, NB} and I ∈ set of information items. The policy, denoted δ, used to respond

an situation St is also relevant. There are two time points closely related to information

need and production: tn the time at which a need for I occurs, and tp the production time

of a value for I which is provided for the need at tn. Because obtaining I may involve

sending messages, these messages are also part of our model. Then, letting E denote a

finite set of states, we define our model DTPC as:

DTPC = <E, {St}, {δ}, {tn}, {tp}, M, U>

where:

 E = {e} is a finite set of states. Each state e = (εa, εb) where εj ∈ Ei, i = {a,

b}, are the local states of the corresponding agents.

 {St} is the set of possible situations occurring at t.

 {δ} is a finite set of policies.

 {tn}=N (the natural numbers) is the set of times at which a need may

occur.

 {tp}=N is the set of production times of I which are provided for the needs

at {tn}.

 M is the set of messages. A special message that belongs to M is the null

message which is denoted by ϕ. This message is chosen by an agent that

does not want to communicate to the other agents.

 U is a utility function assigning a value to the use of a specific policy δ.

 115

6.4. Utility Function

We assume the information needer and provider have the same utility function;

because as they are cooperative in a team, we consider the utility function to represent

the utility gained by the team when a particular needer uses a particular item of

information at a particular time. Consequently, needers and providers have the same

utility function. However, because the needer and provider each evaluate the utility

function based upon their individual knowledge, they are likely to obtain different

values for it. In terms of our decision theoretic approach, we must therefore consider

the evaluation of the utility function separately for the needer and provider.

6.4.1. Defining the Utility Function

The utility function is a mapping from agent’s internal states, the current

situation, a communication policy associated with the situation, time points tn and tp

and messages in M to a real number:

U: e × St × δ × tn × tp × {m}→ ℜ

where {m} is the set of messages used by the policy δ.

Three terms are generally included in the utility function. The first is values

gained from the information delivered. The uncertainties existing in the environment

normally lead to the unfixed time durations of information production and need, which

further lead to uncertainty in the value gained by communicating the information. The

second term is the cost of sending a message. The third is the potential communication

risk due to things like unwanted revelation of the information, such as being overheard

by an enemy on a battlefield. We define utility as the difference between the value

 116

gained by having the information, and the cost of sending the messages and the risk of

communication:

U(e, St, δ, tn, tp, {m})

= V(St, δ, tn, tp) – C({m}) – R(e, St, δ).

where V denotes a value function, C denotes a cost function, and R denotes a risk

function.

6.4.2. Identifying Information Production and Need Time in the Utility Function

In the utility function U, for a given decision point involving situation St, the

parameters e and {m} are fixed, when U is evaluated for a specific policy δ which is

associated with St. On the other hand, parameters tn and tp vary for different policies and

either or both of them may be unknown at the current time t.

In Table 6.2, we identify tp and tn for different policies. P and N indicate

policies for needer or provider; for example, P.ProactiveTell denotes provider’s policy

ProactiveTell. To is a time cutoff which replaces the length of the time an agent may

wait in case the communication deadlock (introduced in Section 5.5.2) occurs. Based

on this, later in our algorithm of decision-making, a needer and provider pair is forced

to communicate if they kept silent for a period of time To (see Section 6.8).

For some policies, the time point used for a parameter depends upon the

counterpart’s response, which is unknown to the decision maker. For example, if a

needer ActiveAsks for I, it does not know whether the provider will Reply or

WaitUntilNext; if the needer Waits, it does not know whether the provider will keep

Silence or ProactiveTell. The needer, therefore, needs to find a way to estimate which

 117

policy the provider will choose and how this choice impacts tp. To solve this problem,

agents are asked to think as their counterparts do. We assume that both needer and

provider know the other’s possible policies and estimation process. When making a

decision, each will go through the estimation process of its counterpart to identify the

policy the counterpart will choose. This process, of course, will be based on each one’s

own information. The time point of the estimated policy will be used to fill in the

parameters in Table 6.2.

Table 6.2. Identifying Parameters for Policies.

Policy Parameter
 tn tp

P.ProactiveTell NbT , 0
,PaT .

P.Silence NbT ,
A production time
between [0

,PaT , 0
,PaT +To].

P.Reply Tb,q

0
,
q

PaT .

P.WaitUntilNext Tb,q

1
,
q

PaT .

N.Silence 0

, NbT Tb,r.

0
,
a

PaT , if a Reply;
N.ActiveAsk

0
, NbT 1

,
a

PaT , if a WaitUntilNext.

1
,
a

PaT , if a ProactiveTell;

N.Wait

0
, NbT

A production time
between [0

, NbT , 0
, NbT +To],

if a Silence.

 118

The precise estimation of values for the time points varies from one situation

and policy to another. These will be developed in conjunction with the development of

the evaluation formulae for the different situations and policies.

In the next two sections, we define the cost and the value functions in the utility

function. Particularly, we focus on analyzing tp and tn which are given values by the

time points listed in Table 6.2, and the use of the distributions of tp and tn computed by

EDF introduced in Section 5.2. We defer the risk function to the implementation,

because risk normally is domain-dependent. For example, in the Multi-Agent Wumpus

World, the risk of communication depends on the distance between wumpus and

information sender and hearing radius of wumpus (refer to Section 7.2.3.1 for detail).

6.5. Cost Function

In cost function C, policy δ determines the number of messages to be sent. For

example, policy ProactiveTell indicates one message to be sent while Silence means no

message will be sent. The cost of sending the set of messages {m} is assumed to be:

C({m}) =
⎩
⎨
⎧

×+
=

otherwiselen({m})kk
{m} if 0

10

ϕ

where len({m}) is the length of {m}, and k0 and k1 are coefficients.

6.6. Value Function

We measure the value gained by having I by two factors: correctness of the

information to the need and timeliness of the fulfillment of the need. The rationale for

considering these two factors is that there are different things that can affect the value

of a given policy. In terms of timeliness, there may be a value associated with how

 119

quickly a need can be satisfied, i.e., the sooner, the better. In terms of correctness, there

may be a value associated with using the most recent value for I. For example, if the

information I used to satisfy a need at time tn was produced at an earlier time, t0, it is

possible that there is a more recent value for I produced at some time after t0. However,

since the information produced at time t0 is immediately available, using this

information may still have some values, although less than the use of more recently

produced information. The highest value should accrue from using the newest

information.

We measure the value gained by having I by two factors: currency of the

information to the need and timeliness of the fulfillment of the need. The rationale for

considering these two factors is that there are different things that can affect the value

of a given policy. In terms of timeliness, there may be a value associated with how

quickly a need can be satisfied, i.e., the sooner, the better. In terms of currency, there

may be a value associated with using values other than the most recent for I. For

example, if the information I used to satisfy a need at time tn was produced at an earlier

time, t0, it is possible that there is a more recent value for I produced at some time after

t0. However, since the information produced at time t0 is immediately available, using

this information may still have some values, although less than that of the use of more

recently produced information.

A common payoff function for the case like our problem which has multiple

factors is to make a linear combination of these factors [29]. Based on this, we define

the value function in term of the probability of using the most recent information vs.

 120

the payoff of using the old information (value for I may have changed since last

update).

V(St, δ, tn, tp)

=Ts(tn, tp)×P(St, δ, tn, tp) + Tf(tn, tp)×(1−P(St, δ, tn, tp)),

where Ts denotes the reward, in terms of timeliness, of successfully using the most

recent information, Tf denotes the reward, of using other than the most recent

information, and P denotes the probability of using the most recent information.

We will define these three functions in a general way that encompasses a

number of possible situations. Ts will be chosen to have a maximum value when

information is immediately available and degrades as stale information is used. Tf will

be chosen to reflect the value of using old information. P will be chosen to have a

maximum value of 1 if information being used has not changed since the most recent

production and have a minimum value of 0 if the information has changed.

6.6.1. Timeliness Function

In this section, we define Ts and Tf. First, the timeliness Ts of satisfying the

need requires considerations of several cases:

1. The needer uses a value it already has. This means that tp<tn, and the

value should be maximum because the need is immediately satisfied.

2. The needer asks a provider for a value and the provider returns a value it

has previously obtained. This means that we can again consider tp<tn,

the need is immediately satisfied, and again the value should be

maximum.

 121

3. The needer waits for a provider to proactively tell the information. In

this case tp>tn and the need is not immediately satisfied.

4. The needer asks a provider for the information and the provider waits

until its next production of information to return a value. Again, in this

case tp>tn, the need is not satisfied immediately, and one can expect a

lower timeliness value.

The considerations can all be taken into account if the timeliness component of

the value function is maximum for tp ≤ tn and decreases as tp becomes greater than tn.

This, in turn, can be handled by first defining a time difference function d:

d(tp, tn)=max(0, tp–tn).

We then define a non-increasing function fs:

fs (x) s.t. 0<fs (y)≤fs (x) if y≥x.

fs may take various forms. For example, it might decrease exponentially, or it

might be constant for a length of time and zero thereafter, indicating that the

information must be consumed in a finite length of time or it is useless. We leave fs

unspecified for the high level development. In general, fs is required to have these

properties:

1. For cases 1& 2, fs is a max, (but the information may be stale, which is

captured in the currency).

2. For cases 3 & 4, the most recent value is used (so currency is a max),

but there is degradation due to waiting.

 122

Later, we determine a specific one in our experiments (see Section 7.2.3.3). Finally, we

use fs to represent Ts:

Ts(tn, tp) = fs(d(tp, tn)).

Next we consider Tf, the reward of timeliness under the condition of using old

information. In some circumstances, old information still has value. For example, if an

item (say an enemy troop location) has not been processed, it may still contain valuable

information (the enemy troop is not far away from the previously reported location),

although this case might reduce to a more simplistic decision algorithm (always send I

to a needer). Thus, at the highest level, we represent Tf by a function Tf = ff() that

expresses the pertinent factors. There are many forms that ff could take for different

types of I; this provides flexibility of defining Tf based on various focuses of different

domains. For example, Tf can be a time discount function similar to Ts, if there is a

value to use old information but the value decreases with the age of the information; or

Tf can be a constant, implying that there is a fixed reward for using old information; or

Tf can be zero if old information is completely useless for agents to make their further

decision.

6.6.2. Currency Function

The general idea we will use for developing a model of currency is that value

for I at time tp should not change between tp and the time it is used to satisfy the need at

tn. Let tu be the time at which I is used by the needer for the need at time tn. It will be

useful to note that tu = max(tp, tn), because if the value for I was produced before the

 123

need arises, the value will not be used until the need arises, and if the value for I was

produced after the need arises, the value will not be used until it is produced.

We consider the probability that the value does not change in time interval (tp,

tu] and use that as the basis for measuring currency. There are still difficulties, as we

may not know tn and tp and consequently tu may be unknown too. However, from the

EDF process, we do have probability mass functions on the times between successive

occurrences of a need for I or production of new values for I. Using these distributions

and the event time t as a reference point, we determine for each situation and policy

estimates of the need and production times, and define a function P as:

P(St, δ, tn, tp) = Pr(¬∃τ∈Int(tp, tu] ∋ IP(τ) | St ∧ δ),

where Int(tp, tu] denotes the interval between the two time points, noting that the time

order is unspecified; IP(τ) denotes the production of a value for I at time τ. P is the

conditional probability that no other value is produced during Int(tp, tu], conditional on

a policy δ which is chosen in situation St at time t. For simplicity, we abbreviate this

conditional event as NOPRODUCE(tp, tu), so P is abbreviated as:

Pr(NOPRODUCE(tp, tu)).

6.7. Calculating Probability of Currency

The currency function needs extensive probability calculations which include

estimating the production time tp and the need time tn. For different situations, agents’

knowledge of the various points in time tn and tp differ. In particular, in some situations

a time is known exactly (e.g., the needer knows the time at which it needed a value)

and in other situations, an agent can only estimate one or both of the times based upon

 124

the known information. The knowledge of these time points is used in estimating the

currency for each policy on each situation. We analyze them one by one below.

6.7.1. Situation PA: Provider Produces a Value for I

Recall that at the beginning of this section, we introduced a set of time points

for each situation of decision-making. It is necessary to revisit them here. Fig. 6.5

redraws the time points and their relations for situation PA.

Last sent
time

Next production time

Need time

° t

NbT ,

°
ls

PaT ,
0
,PaT

1
,PaT

Current
time

ns
PaT ,

Last not
sent time

Fig. 6.5. Time Points for Situation PA.

In this situation, the provider just produced a value for I at time t= 0
,PaT . We denote a

need for I at time tn as IN(tn) and the production of a value for I at time tp as IP(tp). The

provider is making decisions on whether or not to provide IP(0
,PaT) to the needer. In

order to identify tn, the time of the need in question, we observe first that tn > ls
PaT , .

This is because if there were a need before ls
PaT , , the needer would either use a value it

already had, or Wait or ActiveAsk, in which case IP(ls
PaT ,) could be either a

 125

ProactiveTell or a response to the ActiveAsk. By any choice, the most recent need

before ls
PaT , would be satisfied and hence tn > ls

PaT , . Multiple needs may have arisen

since ls
PaT , , the first of which might use the information supplied at ls

PaT , through use of

the Silence policy. Since we assume that the needer does not have a new need arise

until after it has completed servicing a previous need, and, since we assume that there

is only one provider, the frequency of new needs cannot exceed the frequency at which

the provider provides values for I, though delay in satisfying a need could become

large. Hence, we assume that in evaluating currency for this case, we need only

consider the first need that arises after ls
PaT , , we denote this time NbT , and take tn = NbT , .

NbT , may be in the future and the time may be unknown to the provider, and we will

have to consider the different policies that the needer might have made at time NbT , .

As we shall see below, identifying tp is not quite straightforward. In particular,

it is not always appropriate to take tp = 0
,PaT . We must consider two cases: 1) the

provider uses policy ProactiveTell and 2) the provider uses policy Silence.

6.7.1.1. PA – ProactiveTell Is Used

In this case, IP(0
,PaT) will be provided for the need at NbT , , hence tp = 0

,PaT . The

probability P is specified to:

Pr(NOPRODUCE(0
,PaT , tu)),

 126

where tu is unknown because IP(0
,PaT) may or may not be used by the needer and

depends on NbT , which is unknown. We then divide the problem into two sub-cases

and tu will be identify in case by case analysis on late this section,

Sub-case1: there is a need at 0
,PaT , i.e. NbT , ≤ 0

,PaT ;

Sub-case2: there is not a need at 0
,PaT , i.e. 0

,PaT < NbT , .

Based on the law of total probability [149], P can be evaluated as:

Pr(NOPRODUCE(0
,PaT , tu) | NbT , ≤ 0

,PaT) × Pr(NbT , ≤ 0
,PaT) +

Pr(NOPRODUCE(0
,PaT ,tu) | 0

,PaT < NbT ,) × Pr(0
,PaT < NbT ,).

This shows that we need the probability that NbT , occurs in each of the relevant

intervals, and given that it does, we need to examine function P through each of the

possible decisions the needer might make. Some of the needer’s decision, such as

ActiveAsk, depends on the provider’s responding decisions, such as Reply or

WaitUntilNext. For this case, we also need to evaluate the provider’s possible

responding decisions. Thus the provider must estimate which policy the needer will

choose from Silence, ActiveAsk and Wait and what the provider will response if

ActiveAsk has been chosen by the needer.

Pr(NbT , ≤ 0
,PaT) and Pr(0

,PaT < NbT ,) can be calculated because we known 0
,PaT and

distributions of the unknown time point, thus NbT , . Appendix A provides calculations

to these two probabilities.

 127

What left in P is Pr(NOPRODUCE(0
,PaT , tu)) conditional on two sub-cases

NbT , ≤ 0
,PaT and 0

,PaT < NbT , .

6.7.1.1.1. Sub-case1 NbT , ≤
0
,PaT

In this case, the provider must consider each of the decisions the needer could

make at NbT , , to estimate if the needer will use IP(0
,PaT). If the needer obtains a response

either by an ActiveAsk or a Wait, the needer will immediately use IP(0
,PaT) and hence

tu= 0
,PaT . Given tu= 0

,PaT =tp, obviously there no other value has been produced between tu

and tp. Therefore the probability of NOPRODUCE equals 1 if the needer did not decide

to keep Silence at NbT , . However, if the needer kept Silence, it will use the last value

for I sent at ls
PaT , by the provider. Then tu = ls

PaT , and hence there is another production

between the time interval [tu, tp). Thus, the needed probability reduces to

Pr(NOPRODUCE(0
,PaT , 0

,PaT) | NbT , ≤ 0
,PaT)

=1 – Pr(needer decides to keep Silence at NbT ,).

Next we calculate Pr(needer decides to keep Silence at NbT ,). First the provider

needs to estimate unknown NbT , . Though ls
PaT , < NbT , (see Section 6.7.1), the base for

estimating NbT , varies and the provider may or may not know the base. For example, if

the needer chose Silence for the most recent need before ls
PaT , , the base for estimating

NbT , was the time at which the most recent need before ls
PaT , raised. Denote this time

 128

1
,
−

NbT . In this case, the provider won’t know 1
,
−

NbT . While in the case that the needer

ActiveAsk or Wait at the most recent need before ls
PaT , , this need can be satisfied by

IP(ls
PaT ,), so in this case the base is ls

PaT , and the provider does know ls
PaT , . It can be seen

that the unknown NbT , increases the uncertainty on predicting the needer’s decision

makings.

To seek a reasonable and computationally feasible solution, we take advantage

of the average lengths of time between information productions or needs which can be

obtained from EDF process. We use the average length of information production or

need as approximations in the future.

Let τn be the average length of time between needs of I by the needer. It is

easily to get that 1
,
−

NbT < ls
PaT , < NbT , . One could use the expected value of where ls

PaT ,

would lie in the interval (1
,
−

NbT , NbT ,), which under reasonable assumptions would be

half way in between them. Then, we use ls
PaT , + τn/2 as an estimate for NbT , . In the

current sub-case, though, we are considering NbT , ≤ 0
,PaT , and there is no guarantee that

ls
PaT , + τn/2 ≤ 0

,PaT . Thus, we will use

NbT , = min(0
,PaT , ls

PaT , + τn/2).

To estimate the needer’s decision, the provider, using its own knowledge, will

go through the needer’s decision process and choose a policy which has maximum

utility. This evaluation can be calculated as follows:

Pr(needer decides to keep Silence at NbT ,)

 129

=Pr(U(e, NA, Silence, NbT , , ls
PaT , , {m}) > Max(U(e, NA, ActiveAsk, NbT , , 0

,PaT , {m}),

U(e, NA, Wait, NbT , , 0
,PaT , {m}))).

The solution to this will involve evaluating the utility function under each of the

possible policies the needer might make at NbT , , the time the need arises. The

evaluation of all parts of the utility function except currency is straightforward. In the

case of currency, the needer must associate time tn and tp with the time NbT , .

Fortunately, this is rather straightforward, given the conditions already known. The

evaluation of currency for the needer under the condition that a need has arisen is given

in Section 6.7.3. Since, as shown in Section 6.7.3, with substitutions for tp and tn, the

expression for the utility function is deterministic, the utility can be determined for

each possible policy. Having these utilities, the needer’s decision is deterministic, thus

it will use the policy which has the max utility. Therefore the provider’s estimate of

probabilities of the needer’s choices is computable. Moreover, since the needer will

only choose one policy at one decision point, so these probabilities equal either 1 or 0.

For example, if the utility of Silence is the highest, then Pr(needer decides to keep

Silence at NbT ,) = 1; otherwise it equals 0.

6.7.1.1.2. Sub-case 2 0
,PaT < NbT ,

In this case, the value provided is not immediately used. Occurrence of the use

of IP(0
,PaT) depends upon the decision the needer will make at NbT , and the provider’s

 130

responding decision at NbT , . Since combinations of cases must be considered, we

consider distinct four events:

∑ =

4

1n
Pr(NOPRODUCE(0

,PaT ,tu) | 0
,PaT < NbT , ∧En) × Pr(En),

where En, n=1,..,4, denote the following events:

E1: needer decides to Wait at NbT , ;

E2: needer decides to keep Silence at NbT , ;

E3: needer decides to ActiveAsk at NbT , ∧ provider decides to Reply at

NbT , ;

E4: needer decides to ActiveAsk at NbT , ∧ provider decides to

WaitUntilNext at NbT , .

We first consider Pr(NOPRODUCE(0
,PaT ,tu) | 0

,PaT < NbT , ∧ En). Since these

probabilities turn out to be zero for some cases, Pr(En) does not need to be calculated

for these cases.

6.1.1.1.2.1. Calculating Pr(NOPRODUCE(0
,PaT ,tu) | 0

,PaT < NbT , ∧En)

• E1:needer decides to Wait at NbT ,

In this case, the needer will wait until the next time the provider

sends it a value for I. Since 0
,PaT < NbT , , the needer certainly will not use

IP(0
,PaT) and then IP(0

,PaT) is not relevant. In other words, the needer will use

 131

another production to fulfill the need raised at NbT , . Therefore the

probability that no other value will be produced between tp and tu is zero.

Pr(NOPRODUCE(0
,PaT ,tu) | 0

,PaT < NbT , ∧ E1)=0.

• E2: needer decides to keep Silence at NbT ,

In this case, the needer will use the most recent value it has for I.

So it will use IP(0
,PaT) when 0

,PaT < NbT , < 1
,PaT :

Pr(NOPRODUCE(0
,PaT ,tu) | 0

,PaT < NbT , ∧E2)

=Pr(0
,PaT < NbT , < 1

,PaT).

Pr(0
,PaT < NbT , < 1

,PaT) is calculated in Appendix A.

• E3: needer decides to ActiveAsk at NbT , ∧ provider decides to Reply at NbT , ;

In this case, the needer will use the most recent value for I

produced before NbT , , This case is similar to the last case E2, i.e. the needer

will use IP(0
,PaT) when 0

,PaT < NbT , < 1
,PaT . Therefore we have:

Pr(NOPRODUCE(0
,PaT ,tu) | 0

,PaT < NbT , ∧ E3)

=Pr(0
,PaT < NbT , < 1

,PaT).

Again Pr(0
,PaT < NbT , < 1

,PaT) is calculated in Appendix A.

 132

• E4: needer decides to ActiveAsk at NbT , ∧ provider decides to WaitUntilNext at

NbT , .

Since 0
,PaT < NbT , , the provider will reply the value for I at or after

1
,PaT and the needer will use this value. Then IP(0

,PaT) will not be used and

hence it is not relevant.

Pr(NOPRODUCE(0
,PaT ,tu) | 0

,PaT < NbT , ∧ E4) = 0.

6.1.1.1.2.2. Calculating Pr(En)

From the above analysis, only two probabilities Pr(E2) and Pr(E3) must be

determined because the factors on the other event probabilities are zero.

• Pr(E2): Pr(needer decides to keep Silence at NbT ,)

Pr(needer decides to keep Silence at NbT ,)

=Pr(U(e, NA, Silence, NbT , , tp, {m}) > Max(U(e, NA, ActiveAsk, NbT , ,

tp, {m}), U(e, NA, Wait, NbT , , tp, {m}))).

where tp will be replaced, for a given policy, by the value that policy calls

for.

The time tp is important in predicting the needer’s decisions at NbT , .

To estimate tp for each policy, the provider must predict its own decisions in

the future. These decisions, in turn, closely depend on NbT , . For example,

in the case of a needer policy of δ = Silence, the needer will use the most

 133

recent value for I it has. This value is the last value sent by the provider

before NbT , . So the provider needs to predict the number of production

times between 0
,PaT and NbT , . The last sent value could be produced at any

of these time points, so the provider also must estimate decisions it will

make, ProactiveTell or Silence, on every production time. Since NbT , is

unknown, the length of time between 0
,PaT and NbT , is undetermined and

hence the number of production time in between is undetermined. It can be

see that the unknown NbT , and production time increases the uncertainty on

predicting future decision makings. As before, we could take advantage of

the average lengths of time between information productions or needs

which can be obtained from EDF process.

In the following, we estimate NbT , and identify tp for each three

possible policies. Once NbT , and tp are fixed, utility for every policy can be

computed and then the needer’s decision can be estimated.

We still use ls
PaT , + τn/2 as an estimate for NbT , . In the current sub-

case, though, we are considering NbT , > 0
,PaT , and there is no guarantee that

ls
PaT , + τn/2 > 0

,PaT . Thus, we will use

NbT , = max(0
,PaT +1, ls

PaT , + τn/2).

 134

Let τp be the average length of time for producing a new value for I.

We use the following estimation for a future production time i
PaT , :

i
PaT , = 0

,PaT + i × τp, i ≥1,

Having these estimations, we can specify i and then fix tp for each policy.

We consider three needer policies separately.

Needer δ = Silence

In this case, tp is the time of the last value for sent I before NbT , .

Since 1
,PaT ≤ NbT , , the provider should not delivery a value for I produced

before the most recent production time before NbT , , because otherwise this

provided value is out-of-date for the need raises at NbT , . On this basis, we

assume tp equals the most recent production time before NbT , . We define a

function Z:

Z =
⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢ −

p

0
,

τ
Pab,N TT

.

Z returns 0 or a positive integer, meaning the number of productions during

NbT , and 1
,PaT . Let:

tp = 0
,PaT + Z × τp. (6-1)

Needer δ = ActiveAsk

 135

In this case, tp depends upon the provider’s decision at NbT , . So the

provider needs to predict its respondent decisions, Reply or WaitUntilNext,

to the ActiveAsk received at NbT , .

Pr(the provider decides to Reply at NbT ,)

=Pr(U(e, PB, Reply, NbT , , tp, {m}) > U(e, PB, WaitUntilNext,

NbT , , tp, {m}))

where tp of Reply is the production time just before NbT , . It is exactly Eq.

(6-1), i.e. tp = 0
,PaT + Z × τp, and tp of WaitUntilNext is the production

timejust after NbT , :

tp= 0
,PaT + (Z+1)×τp (6-2)

Having these estimations, Pr(the provider decides to Reply at NbT ,) can be

calculated by computing the utility for each of the possible policies.

Therefore the utility can be determined for each of the possible policies.

Again since the provider will make one responding decision at one per

request, so Pr(the provider decides to Reply at NbT ,) equals either 1 or 0.

After estimating the provider’s responding decisions, tp can be fixed.

Thus if the provider Reply, tp is calculated by Eq. (6-1); if the provider

WaitUntilNext, t pos calculated by Eq. (6-2).

Needer δ = Wait

 136

In this case, tp is the next ProactiveTell time after NbT , . Since there

is a need, the provider should not let the needer wait long, because

otherwise the value for I provided is not timely to the need which has

already risen. Therefore we assume the next ProactiveTell time is the next

production time after NbT , . Thus, we use Eq. (6-2) as estimate for tp. Once tp

is estimated, the provider is able to evaluate the utility function under each

of the possible policies the needer might make at NbT , .

From above analysis, one can see that, to calculate the probability of

the needer’s single decision, the provider needs to compute utilities for all

possible needer’s policies and provider’s responding policies. Then in the

future if the probability for one needer’s policy can be computed, then the

probability for other needer’s policies and the provider’s responding

policies are also computable.

• Pr(E3): Pr(needer decides to ActiveAsk at NbT , ∧ provider decides to Reply at

NbT ,)

Pr(needer decides to ActiveAsk at NbT , ∧ provider decides to Reply at

NbT ,)

=Pr(needer decides to ActiveAsk at NbT ,)

×Pr(provider decides to Reply at NbT , | needer decides to ActiveAsk at

NbT ,)

 137

In this equation, Pr(needer decides to ActiveAsk at NbT ,) is calculable. This

is because in the last case E2 which computes Pr(needer decides to keep

Silence at NbT ,), we calculate the utility for each of the needer’s possible

policy: ActiveAsk, Silence and Wait. Based on this, Pr(needer decides to

ActiveAsk at NbT ,) equals 1 if ActiveAsk has the maximum utility, or 0

otherwise. The probability Pr(provider decides to Reply at NbT , | needer

decides to ActiveAsk at NbT ,) is calculated in E2 the case of Needer

δ=ActiveAsk. So this probability is computable and equals either 1 or 0.

6.7.1.2. PA – Silence Is Used

Above we presented the calculation of currency for policy ProactiveTell in

situation PA, which is when a provider produces a value for I. This section we consider

the other provider’s policy Silence in situation PA.

In this case, the value for I at 0
,PaT will not be provided proactively. tp thus

depends upon the needer’s decision at tn and, if needed, the provider’s responding

decision at tn. P equals:

Pr(NOPRODUCE(tp, tu)),

where tp and tu will be identified in two sub-cases:

Sub-case1: there is a need at 0
,PaT , i.e. NbT , ≤ 0

,PaT ;

Sub-case2: there is not a need at 0
,PaT , i.e. 0

,PaT < NbT , .

P can be evaluated as:

 138

Pr(NOPRODUCE(tp, tu) | NbT , ≤ 0
,PaT) × Pr(NbT , ≤ 0

,PaT)

+Pr(NOPRODUCE(tp, tu) | 0
,PaT < NbT ,) × Pr(0

,PaT < NbT ,).

In this form, Pr(NbT , ≤ 0
,PaT) and Pr(1

,PaT < NbT ,) have been done in Appendix A.

So we consider Pr(NOPRODUCE(tp, tu) for the two sub-cases Pr(NbT , ≤ 0
,PaT) and

Pr(0
,PaT < NbT ,).

6.7.1.2.1. Sub-case1 NbT , ≤
0
,PaT

This case means that the needer must not decide to ActiveAsk at NbT , , because

otherwise the provider would be obligated to provide the value at 0
,PaT and could not

choose Silence. Thus, the needer either decided to Wait, or keep Silence. If it decided to

Wait, tp depends upon the decision the provider will make at the production time after

0
,PaT . For example, if the provider decide to ProactiveTell at 1

,PaT , then tp= 1
,PaT ,

otherwise if the provider decide to keep Silence then tp again depends upon the

provider’s decision at 2
,PaT and so on. However, whatever tp would be, since the needer

is waiting, it definitely will use the value produced at tp, i.e. tu = tp. Obviously there is

no other value produced between tu and tp, so Pr(NOPRODUCE(tp, tu))=1.

However, if the needer decided to keep Silence, it will use the value for I

produced at ls
PaT , , then tp = ls

PaT , and tu = NbT , . Pr(NOPRODUCE(ls
PaT , , NbT ,)) is equal to

the probability that there is no values for I produced between ls
PaT , and NbT , that the

provider did not send to the needer. We consider two cases.

 139

If the provider knows that there were no values produced between the last one it

sent to the needer and the current time, then

Pr(NOPRODUCE(ls
PaT , , NbT ,) | NbT , ≤ 0

,PaT)=1.

Otherwise, in order for there to have been at least one value for I produced and not sent

out between ls
PaT , and 0

,PaT , NbT , must be less than ns
PaT , in the interval (ls

PaT , , ns
PaT ,]. The

provider can then compute:

Pr(NOPRODUCE(ls
PaT , , NbT ,) | NbT , ≤ 0

,PaT)

=Pr(NbT , ∈ (ls
PaT , , ns

PaT ,])

=CDFb,N(ns
PaT , – ls

PaT , –1).

where CDFb,N means the cumulative density function of agent b’s need time interval.

Since it is the provider doing the evaluation, the provider will use its estimate of the

CDF based upon the information it has received from the needer over the past history

to calculate this probability.

6.7.1.2.2. Sub-case 2 Pr(0
,PaT < NbT ,)

In this case, tp depends upon the decision the needer will make at NbT , and the

provider’s decision at NbT , . We consider the same combinations of cases that have been

defined in the case ProactiveTell.

∑ =

4

1n
Pr(NOPRODUCE(tp, tu) | 0

,PaT < NbT , ∧ En) × Pr(En).

We first consider Pr(NOPRODUCE(tp, tu) | 0
,PaT < NbT , ∧ En) and then identify

which Pr(En) needs to be determined.

 140

• E1:needer decides to Wait at NbT ,

In this case, tp is the next ProactiveTell time after NbT , , so tu = tp.

There is no other production between tp and tu, and the probability equals 1:

Pr(NOPRODUCE(tp, tu) | 0
,PaT < NbT , ∧ E1) = 1.

• E2: needer decides to keep Silence at NbT ,

In this case, tp is the production time of the most recent value for I

the needer has. So tu = NbT , . To determine tp, we can calculate Z, as in Eq.

(6-1), to find the number of productions between 0
,PaT and NbT , . If Z = 0,

meaning 0
,PaT < NbT , < 1

,PaT , then tp = ls
PaT , . Pr(NOPRODUCE(ls

PaT , , NbT ,) |

0
,PaT < NbT , ∧ E1) = 0 because there is at least one production time, 0

,PaT , in

between. If Z ≥ 1, meaning 1
,PaT ≤ NbT , , then Pr(NOPRODUCE(tp, NbT ,) |

0
,PaT < NbT , ∧ E1) = 1, because tp is the most recent production time before

NbT , .

• E3: needer decides to ActiveAsk at NbT , ∧ provider decides to Reply at NbT ,

In this case, tu= NbT , and tp is the most recent production time

before NbT , . There is no other production between tp and tu:

Pr(NOPRODUCE(tp, tu) | 0
,PaT < NbT , ∧ E3) = 1.

 141

• E4: needer decides to ActiveAsk at NbT , ∧ provider decides to WaitUntilNext at

NbT , .

In this case, tp is the next production time after NbT , , and tu=tp.

There is no other production between tp and tu:

Pr(NOPRODUCE(tp, tu) | 0
,PaT < NbT , ∧ E4) = 1.

From above analyses, either Pr(NOPRODUCE(tp, tu) | 0
,PaT < NbT , ∧ En)=1 for all

En, or it equals 1 for all except for E2, in which case E2 = 0 (from the above argument);

the choice depends on Z, which the provider can know. For the former case,

∑ =

4

1n
Pr(NOPRODUCE(tp, tu) | 0

,PaT < NbT , ∧ En) × Pr(En)=1. For the latter, we need to

calculate Pr(E2), Pr(needer decides to keep Silence at NbT ,). If Pr(E2)=1, meaning

Pr(E1), Pr(E3) and Pr(E4) are all equal 0, then

∑ =

4

1n
Pr(NOPRODUCE(tp, tu) | 0

,PaT < NbT , ∧ En) × Pr(En)=0.

If Pr(E2)=0, meaning one of Pr(E1), Pr(E3) and Pr(E4) must equals 1, then

∑ =

4

1n
Pr(NOPRODUCE(tp, tu) | 0

,PaT < NbT , ∧ En) × Pr(En)=1.

The calculation of Pr(E2) is similar to what has been done in the previous case

of ProactiveTell. NbT , is estimated to be max(0
,PaT +1, ls

PaT , + τn/2)). tp is specified by

considering each of the needer’s possible decisions at NbT , , Silence, Wait and

ActiveAsk, and the provider’s responding decisions, Reply and WaitUnitilNext, to

ActiveAsk. There is only one difference between the previous case and the present one.

 142

For the present case, since the provider won’t provide IP(0
,PaT), so for the case of

needer’s δ= Silence policy, if 0
,PaT < NbT , < 1

,PaT , tp = ls
PaT , (tp = 0

,PaT for the previous case).

After estimating tp, the utility for each of the needer’s possible policies is determined

and then the needer’s decision can be determined.

6.7.2. Situation PB: Provider Receives a Request about I

In this situation, the provider receives a request from the needer at time Tb,q.

For clarity, Fig. 6.6 redraws time points for this situation below.

Tb,q

t

1
,
q

PaT

0
,
q

PaT

Last production time Current time

Next production time

Fig. 6.6. Time Points for Situation PB.

There is a need at the current time t = Tb,q, then tn = Tb,q. The provider will

either Reply with the most recent value produced or WaitUntilNext production. Since

there is a need, either value which is about to be provided will be used by the needer. P

equals:

Pr(NOPRODUCE(tp, tu)),

where tp and tu will be identified in the policy being chosen.

 143

In the case of Reply, the most recent value for I produced at 0
,
q

PaT will be

provided for the need at Tb,q. So tp = 0
,
q

PaT . Because there is a need, the needer definitely

will use IP(0
,
q

PaT) when receives it, so tu = Tb,q. By definition the most recent value

means no other value has been produced since Tb,q, hence there was no other value for I

produced between 0
,
q

PaT and Tb,q. Therefore:

Pr(NOPRODUCE(0
,
q

PaT , Tb,q)) = 1.

In the case of WaitUntilNext, next value for I which will be produced at 1
,
q

PaT

will be provided for the need at Tb,q. So tp = 1
,
q

PaT and tu = 1
,
q

PaT . Therefore:

Pr(NOPRODUCE(1
,
q

PaT , 1
,
q

PaT)) = 1.

Therefore currency function equals 1 for both policies, Reply and WaitUntilNext, in

situation PB.

6.7.3. Situation NA: Needer Has a Request about I Arise

Fig. 6.7 shows time points for this situation.

Most recent
production time

Tb,r
t

0
,NbT

1
,
a

PaT0
,
a

PaT

Last received time Current time

Next production
time

Fig. 6.7. Time Points for Situation NA.

 144

This is a need for I at the current time t = 0
, NbT , so tn = 0

, NbT . When the needer

needs I at 0
, NbT , it has three policies to choose from: Silence, ActiveAsk and Wait. If the

needer ActiveAsks the provider or Waits for a ProactiveTell from the provider, it will

always use the most recent value for I. However, if the needer keeps Silence, i.e., it

uses the value last received at time Tb,r, it is possible that the value for I has been

changed since then. We consider each of these sub-cases below.

P equals:

Pr(NOPRODUCE(tp, tu)),

6.7.3.1. NA – ActiveAsk Is Used

If ActiveAsk is chosen, the value for I provided for the need at 0
, NbT will be

either 0
,
a

PaT or 1
,
a

PaT , depending on the provider’s response (Reply or WaitUntilNext). If

the provider does Reply, it will send the most recent value it has produced, then tp =

0
,
a

PaT . Since there is a need, the needer will immediately use IP(0
,
a

PaT) so tu= 0
, NbT . There

was no other value produced between 0
,
a

PaT and 0
, NbT . On the other hand, if the provider

WaitUntilNexts, tp = 1
,
a

PaT and tu = tp= 1
,
a

PaT . It is also the case that there has no value

produced in the interim. Thus, in either case the probability for no other value

produced between tp and tu is one:

Pr(NOPRODUCE(tp, tu)) = 1.

 145

6.7.3.2. NA – Silence Is Used

When Silence is used, the most recent value for I that the needer has will be

used for the need at 0
, NbT , so tp = Tb,r. This value will be used at 0

, NbT , then tu = 0
, NbT .

The probability that no other value was produced between 0
, NbT and Tb,r equals to the

probability of Tb,r= 0
,
a

PaT , which means that Tb,r is the time at which the most recent

value was produced. One can then compute:

Pr(NOPRODUCE(tp, tu))

=Pr(Tb,r= 0
,
a

PaT)

=1–Pr(Tb,r< 0
,
a

PaT)14

=1–Pr(Tb,r< 0
,
a

PaT ≤ 0
, NbT)

=1–CDFa,P(0
, NbT –Tb,r–1)

where CDFa,P means the cumulative density function of agent a’s production time

interval. Since it is the needer doing the evaluation, the needer will use its estimate of

the CDF based upon the information it has received from the provider over the history

to calculate this probability.

6.7.3.3. NA – Wait Is Used

If Wait is adopted, tp is some production time of the value for I at which the

provider will ProactiveTell in the future. This value will not be used until being

produced, thus tu=tp. Obviously, there is no value produced between tp and tu:

14 Tb,r cannot be greater than 0

,
a

PaT since the latter is the most recent production time.

 146

Pr(NOPRODUCE(tp, tu)) = 1.

6.7.4. Situation NB: Needer Receives a Value for I

On this situation, the needer will Accept the value for I sent from the provider.

The decision is deterministic, so we do not consider this case.

6.8. Decision-Making Processes

Figs. 6.8-6.11 show finite state diagrams representing the communication

process of getting and telling (respectively) an information item. Each node represents

a decision point. As one proceeds through the graph, the nodes represent alternating

decisions by the needer and the provider. The nodes marked “e” are special in the sense

that they represent the receipt of the information, or a timeout condition (explained

below). The nodes marked “t” denoting a transfer from one node to another. For

example, in situation PA of Fig. 6.8, agent a may receive an ActiveAsk from agent b

when deciding to keep Silence to agent b. In such a case, the state will transfer to the

start state of situation PB, the situation where a receives a request from agent b. In this

case, agent a needs to update its data about agent b’s need time and decide if to Reply

agent b right away or WaitUntilNext production. By either decision which a will make,

agent b is able to receive an information item, so an “e” node is reached and the

decision making ends.

Since some of the decisions that can be made involving waiting an arbitrary

length of time for another agent to do something, the possibility of infinite waits arises.

To circumvent this, we use a heuristically chosen loop breaking algorithm. If a needer

does not get the information during a time cut-off, the needer adopts policy ActiveAsk.

 147

We choose the needer to do this, because it very likely that the needer has few chances

to start communication if proactivity is fully explored. So letting the needer break time-

out can increase chances of sending the needer’s history data to the provider.

0

1

2

e

a-b: ProactiveTell

a-b: Silence

b-a: Accept

b-a: Wait

b-a: Silence

e

e

b-a: ActiveAsk

Situation PA: Provider produces a new piece of information

a: provider b: needer e: end t: transfer

t

0

ea-b: Reply

ea-b: WaitUntilNext

Situation PB: Provider receives a request for a piece of information

t

Fig. 6.8. Decision-Making Process of Provider in Situation PA.

Fig. 6.9. Decision-Making Process of Provider in Situation PB.

 148

0
1

e

t

t

2
e

e
b-a: ActiveAsk

b-a: Silence

b-a: Wait

a-b: Reply

a-b: WaitUntilNext

a-b: Silence

a-b: ProactiveTell

Situation NA: Needer needs a piece of information

0 b-a: Accept e

Situation NB: Needer receives a piece of information

t

Fig. 6.10. Decision-Making Process of Needer in Situation NA.

Fig. 6.11. Decision-Making Process of Needer in Situation NB.

 149

6.9. Decision-Theoretic Proactive Communication

DTPC (Decision-Theoretic Proactive Communication) is the overall process for

managing communication. It has three parts: an algorithm for selecting a policy,

algorithms for providing information and algorithms for getting needed information.

Fig. 6.12 shows the algorithm for selecting a policy. The identify function

identifies parameters (tp and tn) that will be used appropriately, based on the values

listed in Table 6.2. The evaluate function calculates utility of each policy. For each

counterpart agent Agi, a policy δi with the maximum utility is added to policyList. By

comparing each δi in policyList, a final `
iδ with maximum utility is selected.

/*self is an agent who makes the decision;
 counterparts is an agent set about whom the decision is made;
 I is information that communication conveyed.
*/
selectPolicy(self, counterparts, I){
 policyList = null;

 ∀ Agi ∈ counterparts
 ∀ policy δi
 identify(self, Agi, δi, I);
 U(δi)=evaluate(self, Agi, δi, I);
 select one δi with maximum U;
 add δi to policyList;

 select one `

iδ with maximum U from policyList;
 return `

iδ ;
}

 Fig. 6.12. A Policy Selection Algorithm.

 150

Figs. 6.13 and 6.14 show algorithms for providing a piece of information to a

needer, or getting a piece of information from a provider. Generally, agents select a

policy that has maximum utility and act corresponding to that and their counterpart’s

response. To is a time cutoff 15 used by needer to guarantees that the system does not go

into a waiting forever state.

Function updateSelfData updates the decision maker’s (provider or needer)

information production or need time intervals. updateSelfData is executed when the

decision maker produces/needs an information item. Function updateOtherData

updates the decision maker’s knowledge about counterpart’s production or need time

intervals which are from historical data (if any) attached in each message sent to the

counterpart. Updating this data can help agents make better estimation for distributions

of information production or need.

15 Of course, if desired, one could use a different cutoff for each situation.

 151

/*Executed when provider is in situation PA at time t.
 Let pendWUNList be a list of needers whose requests will be replied with
 WaitUntilNext production.
*/
provideNeededInfo(provider, needers, I, t){//needers is a needer set
 updateSelfData(provider, I, t); //update provider’s production time

 if (pendWUNList != null) //there is pending WaitUntilNext reply(s)
 reply I to A0; //A0 is the first needer on pendWUNList;
 updateOtherData(A0, I, t);
 remove A0 from pendWUNList;
 exit;

 `

iδ = selectPolicy(provider, needers, I);
 switch(`

iδ)
 case ProactiveTell:
 ProactiveTell needersi;
 updateOtherData(needersi, I, t);
 break;
 case Silence:

 Silence;
 break;
}

/*Executed when provider is in situation PB at time t.
*/
receiveRequest(provider, needer, I, t){
 //needer is a single agent who needs I
 `

iδ = selectPolicy(provider, needer, I);
 switch(`

iδ)
 case Reply:
 Reply needer;
 updateOtherData(needer, I, t);
 break;
 case WaitUntilNext:
 add needer to pendWUNList;
 break;
}

Fig. 6.13. Algorithms about Providing Information.

 152

/*Executed when needer is in situation NA at time t.*/
getNeededInfo(needer, providers, I, t){
 set time cutoff To;
 waitTime = 0;
 boolean obtained=FALSE, waiting=FALSE;
 updateSelfData(needer, I, t); //update self need time
 `

iδ = selectPolicy(needer, providers, I);
 switch(`

iδ)
 case Silence:
 Silence; //use most recent value it has
 break;
 case ActiveAsk:
 ActiveAsk providersi;
 if providersi sends Reply

 receiveInfo(providersi, I, t);//transfer to situation NB
 else //provider chose WaitUntilNext

 Wait;
 waiting = TRUE;
 break;
 case Wait:
 Wait;
 waiting = TRUE;
 break;
 if (waiting)
 while ((!obtained)&&(waitTime<To))
 waitTime++;
 if providersi sends WaitUntilNext reply

 receiveInfo(providersi, I, t+waitTime);
 obtained=TRUE;
 if a provider p Proactivetells I

 receiveInfo(p, I, t+waitTime);
 obtained=TRUE;

 if (!obtained)
 randomly select a provider q;
 ActiveAsk q;
}
/*Executed when needer is in situation NB at time t.*/
receiveInfo(provider, I, t){
 updateOtherData(provider, I, t);
}

Fig. 6.14. Algorithms about Getting Needed Information.

 153

6.10. Summary

In this section, we have presented a method for achieving proactive

communication using decision theory for determining the communication policy to be

used. We have identified each situation that might (or might not) involve the exchange

of information; we have identified the policies that could be selected. We have then

introduced the general form of a utility function that can be used for the decision

theoretic selection of the best policy. In order to do this, it is necessary to estimate the

value of the utility function, as some of the independent variables cannot be precisely

known by the evaluating agent. In addition, the decision-making process is

interdependent between provider and needer, so estimation about each other’s decision

is also necessary for evaluating these variables.

 154

CHAPTER VII

AN APPLICATION DOMAIN DESIGN AND EVALUATIONS

This section describes the design for an application domain and the experiments

used to evaluate the Proactive Communication approach.

An applicable domain should meet following criteria:

• Messages are allowed to be sent.

• Communciation is assumed to have cost and risk.

• The team has a common goal which can be accomplished by executing

a set of team plans. There are information needs among the team.

Agents need to know some information to execute these team plans.

• There is uncertainty during teamwork. The uncertainty may be caused

by agents holding incomplete knowledge about the time of information

production and need and about the world.

• The teamwork process is characterized by stochastic properties. For

example, due to random moves of objects in the world, durations of plan

executions are random variables.

We have extended the classic Wumpus World problem [102] into a multi-agent

version and used this as the application domain. Two evaluations were performed: a

test of the effectiveness of observability, as the part of the overall approach; and a test

of the effectiveness of the overall approach, which includes the empirical distribution

 155

function method for predicting information production and need and the decision

theoretic method on deciding a communication policy.

7.1. Evaluation of Observability

7.1.1. Multi-Agent Wumpus World

For this evaluation, the world is 20 by 20 cells and has 20 wumpuses, 8 pits,

and 20 piles of gold.

The team is composed of 1 carrier and 3 fighters and is allowed to operate a

fixed number of 150 steps. The team goal is to kill wumpuses and get the gold without

being killed. The carrier is capable of finding wumpuses and picking up gold. We

assume that the carrier is strong enough to carry all of the gold it finds. The fighters are

capable of shooting wumpuses.

Every agent can sense a stench (from adjacent wumpuses), a breeze (from

adjacent pits), and glitter (from the same position) of gold. When a piece of gold is

picked up, both the glitter and the gold disappear from its location. When a wumpus is

killed, both the stench and the wumpus’ body are removed from the world. The

environment simulation maintains object properties and agents’ actions.

The agents may also have observabilities, while their observing radii may be

different. Each agent has an individual knowledge base (KB) to save the beliefs it

generates after observing the world and actions of other agents. The observabilities are

encoded as rules in agents’ KB. The inference engine used is JARE [60].

The agents are randomly located in the world and know each other’s starting

location. In the absence of any target information (wumpus or gold), all agents reason

 156

about the world to determine their priority of potential movements. Basically, they

move to locations not previously visited (when possible, though they may revisit a

location if there are no reachable unvisited safe locations). If they are aware of a target

location requiring action on their part (shoot wumpus or pick up gold), they move

toward the target. In all cases, they avoid unsafe locations.

If the fighter senses other wumpuses while it is on the way to kill the wumpus

about which the carrier has told it, it will kill them first. This is because the fighter has

a limited range of vision, so the wumpuses it senses must be close and can be killed

quickly.

7.1.2. Problem Analysis

In ODBC, Proactive Communication has two primary protocols named O-Tell

and O-Ask. These protocols are used by each agent to generate inter-agent

communication when information exchange is desirable.

Decisions about whether to use O-Tell or O-Ask (see Section 4.5) when

observing an information item depends on the relative frequency of information need

vs. production. For any piece of information I, we define two functions, fC and fN

[135]. fC(I) returns the frequency with which I changes. fN(I) returns the frequency with

which I is used by agents. We classify information into two types – static16 and

dynamic. If fC(I)≤fN(I), I is considered static information; if fC(I)>fN(I), I is considered

16Here, static information includes not only information that never changes, but also information
infrequently changed but frequently needed.

 157

dynamic information. For static information we use O-Tell by providers, and for

dynamic information we use O-Ask by needers17.

In order to understand the Proactive Communication problem in the Multi-

Agent Wumpus World domain, we present the team’s plans, which are based on the

team plans in [137], which were developed for the original CAST18. Fig. 7.1 shows the

major part of the team plan:

(plan killWumpus()

(process
(seq

(agent-bind ?ca (constraint (play-role ?ca carrier)))
(DO ?ca (findWumpus)) ; carrier is assigned
(agent-bind ?fi (constraint ((play-role ?fi fighter)

(closest-to-wumpus ?fi ?wumpusId))))
;fighter who is closest to wumpus is assigned

(DO ?fi (startKill))
)))

Fig. 7.1. An Example of Plans of the Multi-Agent Wumpus World.

Each agent has a copy of the team plan and will evaluate the pre-cond during

the plan execution. The evaluation is based on the agent’s own beliefs about the

environment. The team plan does not explicitly state the communication that is to take

place. Rather, the agents are to infer the necessary communication from their beliefs of

the plan and the environment.

17In the next section 7.2, we address some statistical methods to calculate frequencies and hence will be
able to provide more comprehensive proactive communication protocols.
18 In the next experiment, we develop a new team plan for current CAST.

 158

As one can infer from these plans, the key problems are:

1) Which kind of information will be communicated?

2) Who will need or produce the information?

3) Which information will be O-Telled and which will be O-Asked?

The answer to the first problem is that the conjunct that is part of the

precondition of a plan or an action will be communicated in the team at the time when

the conjunct is evaluated. For this example, the information is “wumpus location.” In

this evaluation, we encoded a domain-dependent role constraint, closest-to-wumpus,

for selecting the fighter closest to the wumpus found (see Fig. 7.1). The selected fighter

will be assigned the startKill plan and will kill the wumpus after arriving at the

wumpus’ location. Therefore an unknown conjunct that is part of a constraint (e.g.,

“fighter location”) is another piece of information which is to be exchanged. However

this kind of domain constraint is too specific to be generalized. After developing

Dynamic Information Prediction and Decision Theoretic Proactive Communication, we

are able to remove it from the domain and let the carrier decide who can be committed

on the fly. The capability will be presented in our next evaluation to the overall

Proactive Communication approach (see Section 7.2).

To determine who needs and who produces a given item of information, agents

analyze the preconditions and effects of plans and actions, and generate a list of

needers and a list of providers for every piece of information. The needers are agents

who might need to know the information (e.g. the fighters), and the providers are

agents who might know the information (e.g. the carrier and other fighters).

 159

As to the third problem, the “wumpus location” is static information and the

“fighter location” is dynamic information. Since the static information won’t often

change, agents use O-Tell to impart the static information they just learned if they

believe other agents will need it. For example, the carrier O-Tells the fighters the

wumpus’ location. Agents use O-Ask to request dynamic information if they need it

and believe other agents have it. For example, fighters O-Ask each other about their

locations.

7.1.3. Results and Analysis

Our goal is to evaluate effectiveness of agents’ observabilities. Therefore we

used two teams, a team has observability and a team does not have observability.

We report three experiments. The first explores how observability reduces

communication load and improves team performance in multi-agent teamwork. The

second focuses on the relative contribution of each type of belief generated from

observability to the successes of CAST-O as a whole. Finally, the third evaluates the

impact of observability on changing communication load with increase of team size.

7.1.3.1. Overall Effectiveness of Observability

Two teams are defined in below. Except for the observability rules, the

conditions of both teams were exactly the same.

• Team A: The carrier can observe objects within a radius of 5 grid

cells, and each fighter can sense objects within a radius of 3 grid

cells.

 160

• Team B: None of the agents have any sensing capabilities beyond

the basic capabilities described at the beginning of the section.

We use measures of performance which reflect the number of wumpuses killed,

the amount of communication used and the gold picked up. In order to make

comparisons easier, we have chosen to have decreasing values indicate improving

performance, i.e., smaller numbers of communication messages are better. To maintain

this uniformity with some parameters of interest, we use the quantity of wumpuses left

alive rather than the number killed. The experiments were performed on 5 randomly

generated worlds. The results are shown in Table 7.1.

Table 7.1 shows that, as expected, Team A killed more wumpuses and found

more gold than Team B. From other experiments, we have learned that the further the

agents can, the more wumpuses they kill. It is interesting that the absolute number of

communications is higher for Team A with observabilities than that of Team B, i.e.,

33.8 vs. 28.8 for O-Tell and 77.4 vs. 67.6 for O-Ask. The number of O-Tells in Team A

were greater because the carrier, which is responsible for finding wumpuses and O-

Telling their locations to fighters, has further vision than that of the carrier in Team B.

Hence the carrier in Team A can sense more wumpuses. This feature leads to more O-

Tells from the carrier to the fighters in Team A. The number of O-Tells can be reduced

by the carrier’s beliefs about the fighters’ observability, i.e., if the carrier believes the

fighters can sense the wumpus’ location, it will not O-Tell the fighters. However, since

the fighters’ detection range is smaller than that of the carrier, the reduction cannot

offset the number of extra O-Tells. The reason for the increased number of O-Asks in

 161

Team A is that the more wumpuses team members find, the more likely it becomes that

they send messages among themselves to decide who is closest to a particular wumpus.

Although the number of the messages could be reduced by factors such as allowing the

fighter to sense other fighters’ locations and to sense other fighters killing a wumpus,

the increase cannot be totally offset because of the fighters’ short vision. Hence, it

makes more sense to compare the average number of messages per wumpus killed. In

these terms, the performance of Team A is much better than that of Team B, 2.23 vs.

5.9 for O-Tell and 5.09 vs. 13.6 for O-Ask. Hence, our algorithms for managing the

observability of agents have been effective.

Table 7.1. Team Performance and Communication Amounts in Sample Runs.

Team A T1 T2 T3 T4 T5 T6
Run 1 4 8 82 32 5.12 2.00
Run 2 5 9 76 35 5.06 2.33
Run 3 6 6 72 38 5.14 2.71
Run 4 5 7 80 32 5.33 2.13
Run 5 4 6 77 32 4.81 2.00

Average 4.8 7.2 77.4 33.8 5.09 2.23

Team B T1 T2 T3 T4 T5 T6
Run 1 14 14 72 30 12.00 5.00
Run 2 16 16 62 27 15.5 6.75
Run 3 16 14 62 27 15.5 6.75
Run 4 14 15 72 30 12.00 5.00
Run 5 15 14 70 30 14.00 6.00

Average 15 14.6 67.6 28.8 13.6 5.90

T1: number of wumpuses left alive
T2: amount of gold left unfound
T3: total number of O-Asks used
T4: total number of O-Tells used
T5: average number of O-Asks per wumpus killed
T6: average number of O-Tells per wumpus killed

 162

From this experiment, we learned two things. First, by introducing

observabilities to agents, the amount of communication is increased slightly, because

observability is a major means for an individual agent to obtain information about the

environment and team members; the more information obtained by the agent, the more

messages it conveys to help others. Second, observability can greatly decrease the

number of communications when normalized by some measure of team performance,

which, in this example, is the average number of communications per wumpus killed,

denoted by ACPWK.

7.1.3.2. Effectiveness of Different Perspectives of Observability

The second experiment tested the contribution of different categories of belief

generated from observability to the successful reduction of the communication. These

beliefs are as follows:

1) belief1: beliefs about an observed property.

2) belief2: beliefs about an observed action whose pre-cond contains the

information worth exchanging.

3) belief3: beliefs about an observed action whose effect contains the

information worth exchanging.

4) belief4: beliefs about another agent sensing a property19.

We test their contributions by combining them. We used Team A and Team B

in this experiment and kept all conditions the same as those of the first experiment. We

19 Currently, our OBPC algorithms involve only two parts, i.e., sender and receiver. They do not
consider the third party communication such as agent a asks b to ask c for some information. Therefore,
belief about what another believes about an observed action executed by the third agent is not included.

 163

used Team B as a control condition against which to evaluate the effectiveness of

different combinations of observability with Team A. We named Team B, without any

of these beliefs, combination 0, since it involves none of the four beliefs. For Team A,

we tested another 4 combinations of these beliefs to show the effectiveness of each, in

terms of ACPWK. These combinations are:

0. Team B.

1. Team A with each agent’s reasoning restricted to generating beliefs in

category belief1. Then each agent believes properties it observes.

2. Team A with each agent’s reasoning restricted to generating beliefs in

categories belief1 and belief2. This allows the agent to reason what the

doer believes the pre-cond of the observed action. This combination

tests the effect of belief2.

3. Team A with each agent’s reasoning restricted to generating beliefs in

categories belief1, belief2 and belief3. Then the agent can reason what

the doer believes the effect of the observed action. This combination

tests how belief3 improves the situation.

4. Team A with all the ability to reason for all four belief categories. Then

the agent addtionlly believes that the others sense some properties. This

combination tests the effect of belief4 and shows the effectiveness of the

beliefs as a whole.

 164

Each combination was run in the five randomly generated worlds. The average

results of these runs are presented in Fig. 7.2, in which one bar shows ACPWK for one

combination.

5.9

3.52 3.52 3.52

2.23

0

2

4

6

8

0 1 2 3 4

Combination

A
ve

ra
ge

 O
-T

el
l p

er
 k

ill
ed

 w
um

pu
s

(a) O-Tell protocol.

13.8

11.1

9.36
7.97

5.39

0

5

10

15

0 1 2 3 4

Combination

A
ve

ra
ge

 O
-T

el
l p

er
 k

ill
ed

 w
um

pu
s

(b) O-Ask Protocol.

Fig. 7.2. Average Communication per Killed Wumpus in Different Combinations.

 165

The first case, agents’ belief1 (combination 1), is a major contributor to

effective communication, for both O-Tell and O-Ask. As seen in (a), belief1 compared

to combination 0 causes ACPWK to drop significantly for O-Tell, from 5.9 to 3.52. For

O-Ask, in (b), ACPWK drops from 13.8 to 11.1.

The second case, belief2 (combination 2), does not produce any further

reduction and hence is not effective for O-Tell, but belief2 does produce improvement

for O-Ask. For O-Tell, when a provider senses an action, meaning the doer believes the

precondition of the action, so the provider won’t perform O-Tell. So for this example

belief2 can be of little help in O-Tell. While for O-Ask, belief2 reduces ACPWK from

11.1 to 9.36, because with belief2, a needer will know who has a piece of information

explicitly. Then it can O-Ask without ambiguity.

Third, for the similar reason that belief2 only works for O-Ask, belief3

(combination 3) contributes little to O-Tell but further decreases ACPWK to 7.97 for

O-Ask.

Fourth, belief4 (combination 4) has a major effect on communications that

applies to both protocols. It further drops ACPWK to 2.23 for O-Tell and to 5.39 for O-

Ask. Belief4 is particularly important for O-Tell. For example, if the carrier believes

that the fighters sense a wumpus’ location, it will not tell them.

This experiment examined the contribution of each belief deduced from

observability to the overall effectiveness of communication. The result indicates three

things. First, belief1 and belief4 have a strong effect on the efficiency of both O-Tell

and O-Ask. Second, belief2 and belief3 have weak influence on the efficiency of O-

 166

Tell. Third, these beliefs work best together, because each of them provides a distinct

way for agents to get information from the environment and other team members.

Furthermore, they complement each other’s relative weaknesses, so using them

together better serves the effectiveness of the communication as a whole.

7.1.3.3. OBPC’s Contributions to Team Scalability

We designed the third experiment to show how communication load changes

with increased team size. O-Ask is directed to only one provider at certain time, while

the O-Tell goes to all needers who do not have the information. So we assume that O-

Tell brings more communication into play than O-Ask, and then we chose to test the O-

Tell protocol. If the test results are good for O-Tell, we can expect that they are valid

for O-Ask as well.

We used the same sensing capabilities for Teams A and Team B as in the first

experiment. However, we increased the number of team members by 1, 2 and 3, in two

tests that we ran. In the first test, we increased the number of needers, (i.e. fighters,)

and kept the same number of providers, (i.e. carriers). In the second test, we did the

opposite. In each test, for each increment and each team, we ran the five randomly

generated worlds and used the average value of ACPKW produced in each world.

Fig. 7.3 shows the trend of ACPKW as a function of increasing team size. In

(a), Team B has an obvious increase in ACPKW with increasing the team size.

However, Team A the ACPKW remains the same. The trend can be attributed to two

factors: first, the number of O-Tells is held down because if the carrier believes the

fighters can sense the wumpus, the carrier does not perform O-Tell; second, the more

 167

fighters there are, the more wumpuses will be killed, which enlarges the numerator of

ACPKW.

0
1
2
3
4
5
6
7
8
9

1 2 3 4 5

Team size presented by number of needers

Av
er

ag
e

O
-T

el
l p

er
 k

ille
d

w
um

pu
s

Team A Team B

(a) Needers Increment.

0

5

10

15

20

25

1 2 3 4 5

Team size presented by number of providers

Av
er

ag
e

O
-T

el
l p

er
 k

ille
d

w
um

pu
s

Team A Team B

(b) Providers Increment.

Fig. 7.3. The Comparison of O-Tell with Different Team Sizes.

 168

In (b), increasing the number of providers breaks the constant trend in Team A

and shows an increased ACPWK. However, comparing this increase to that of Team B,

it is a moderate number. In Team B, incrementing the number of providers almost

doubled the number of O-Tells in every case. The communication load increased

because different carriers duplicated the O-Tells of other carriers. For example, each

carrier always provides the wumpus’ location to fighters when observing a wumpus.

The carriers lack an effective way to predict when a piece of information is produced

and by whom, which is one of main concerns for the empirical distribution function

method for predicting information production and need and the decision theoretic

method (see next Section 7.2). This experiment shows that ACPWK grows more

slowly with increase of team size, in the team empowered with observability, which

may indicate that observability will improve team scalability in some sense.

7.2. Evaluation of Proactive Communication

The experiments introduced in this section are overall evaluations of the

Proactive Communication developed. We specify the form of utility function in the

Multi-Agent Wumpus World domain. To show that Proactive Communication helps

produce more effective interaction among agents in multi-agent teamwork, we design

two other communication conditions, Always Tell and Always Ask. Experiments have

been run under controlled by these three conditions. The results are presented that

show the advantage of Proactive Communication in enhancing team performance as

well as decreasing communication load.

 169

To demonstrate Proactive Communication’s ability of handling complex

problems, we adjusted the existing Multi-Agent Wumpus World by adding more

uncertainties and flexibility into it, as described in the next section.

7.2.1. Adjusted Multi-Agent Wumpus World

The world is 20×20 and has 4 wumpuses. The team is still composed of 1

carrier and 3 fighters. The team goal is to kill wumpuses. A complete MALLET team

plan is given in Appendix B. The team is allowed to operate a fixed number of 5000

steps. We let the agents’ observability region be an equilateral rhombus whose vertices

are 7 (for carrier) or 1 (for fighters) in the X and Y directions from the agents’ location.

We assume the agents know each other’s initial location. At each time step, the

carrier makes a random safe move to an adjacent location not previously visited within

the last 50 steps if possible. If there is no such location, the carrier will visit the least

recently visited adjacent safe location. At the start of a trail, each fighter remains at its

initial location until it receives a wumpus location from the carrier. Similarly, after

killing a wumpus, a fighter will stay at the location where it killed a wumpus until it

receives a new wumpus’ location from the carrier. The carrier chooses the first fighter

the carrier evaluates, if two or more fighters have the same utility.

To facilitate estimating the time duration until the next information need (in this

implementation, the time it takes for a fighter to kill a wumpus) and the next

information production (the time of finding a wumpus), the fighters and carriers

exchange information about the times at which they killed or found a wumpus.

However, this exchange of information is included as part of tell or ask messages, and

 170

is not sent separately. For example, for each wumpus found, the carrier records the

time at which the wumpus was found and attaches such historical data to messages sent

to the fighters. Fighters attach the times at which they received wumpus locations and

killed the corresponding wumpuses with each active-ask. In addition, the location of

the sender is also included in messages sent. So the carrier knows the fighters’ present

locations, which are the last wumpuses’ locations the carrier told the fighters, and the

fighters know the carrier’s location (may be present or not) from the message sent by

the carrier. Though the fighters may not have the carrier’s present location since the

carrier keeps moving all the time, the carrier may frequently contact the fighters and

attaches its location if proactivity is fully enabled.

The wumpuses periodically jump to some other random location from time to

time after their first appearance. There is no limit for how far they can jump (other than

that they cannot jump outside of the world). The length of time they stay at their

current locations is randomly generated from 1 to 40 steps (agents are assumed know

this range). There is a new wumpus born at a randomly chosen location on the step

after one has been killed, allowing us to maintain a constant number of wumpuses in

the world.

When a wumpus jumps before the fighter arrives at the wumpus’ location and

kills it, we consider a new need to arise. The fighter will continue to move to the

location at which it was told the wumpus was, and then stay at the wumpus’ location

and make a new decision.

 171

Each wumpus is assigned a hearing rhombus of radius 8 when it is generated.

The wumpuses have a probability (the same for all wumpuses) of hearing sounds

(messages) within their radius. A wumpus does not always hear messages because it

does not always focus on hearing (e.g., it sleeps some). However, once a wumpus hears

a message (sent either by a carrier to a fighter or vice versa), it will be alerted. If the

message is from the carrier to a fighter, the wumpus can tell whether it has been

identified. If the message is a request from a fighter to the carrier, the wumpus will

focus on the coming reply from the carrier. But, if the wumpus has jumped before the

time at which the reply is sent, we assume it no longer pays specific attention to the

message emanating from a carrier within its hearing radius. Agents are assumed to

know the wumpus’ hearing radius and the probability of hearing a message, but they

may not know whether or not the message sender is within the wumpus’ hearing

radius. The wumpus also has short sensing ability to an adjacent cell. Once a wumpus

is alerted by a message and identifies itself as the target, it can sense the adjacent

fighter and starts to fight with the fighter. The wumpus has a probability of winning the

fight. Agents are also assumed to know this probability. One can see that, if more

information has been sent, chances are greater that the fighters may be killed, and

consequently fewer wumpuses will be killed in the limited length of time. Moreover,

the game may be forced to end before the time limit if there are no fighters left.

We assume that the wumpuses are distinguishable. This means that the carrier can

determine whether it is sensing a wumpus for the second time (after a series of moves

by the carrier) or is sensing a second wumpus. While the problem where the wumpuses

 172

are indistinguishable is very interesting, it focuses more on the planning and reasoning

required and obscures the principal issues of communication being addressed here. So

we focus on the case in which the wumpuses are distinguishable in this

implementation.

7.2.2. Problem Analysis

Information to be communicated in the team consists of conjuncts which are

part of the precondition of a plan or an action and their value are unknown. For this

example, the information is “wumpus location”.

A list of needers and a list of providers for a given piece of information are

generated by analyzing the preconditions and effects of plans and actions [135]. For

this example, the provider is the carrier, and the needers are the fighters. We removed

the domain-specific constraint which says the closest fighter will be assigned a found

wumpus’ location (used by Yin [137]). Instead, the assignment is decided by utility

function in determining communication policies.

Challenges come from the problem of when the information will be provided or

asked for. It is unnecessary that all needers be told about “wumpus location” when the

location is discovered or that the provider always be asked about “wumpus location”

when the location is needed. The decisions about whether or not to communicate

depend on two kinds of knowledge: agents’ observabilities and time points at which the

information is produced or needed. Observabilities are useful in the case that one agent

can deduce others’ beliefs from what it has sensed. For example, if the carrier believes

the fighter also can sense the wumpus’ location that was discovered by the carrier, the

 173

carrier does not need to tell a fighter about this location, or if a fighter can find

wumpuses by itself, the fighter does not need to ask the carrier for this information.

However, knowing when the information is needed or produced is very important in

the system where agents’ observabilities are limited. For example, in this domain,

because of the fighters’ limited observabilities, it is very likely that the fighters have to

obtain the “wumpus’ location” information via communication. The communication

could be either the carrier proactively telling the information to the fighters, or the

fighters actively requesting it from the carrier.

However, knowing when the information is needed or produced is sometimes

impossible, because the domain has uncertainties. The uncertainties come from two

aspects. First, since the carrier moves randomly, and since the wumpuses appear

randomly, the time duration needed for finding and killing the wumpuses would not be

fixed and cannot be precisely calculated. Second, the agents’ decisions are not fixed

and may vary in different situations. For example, the more up-to-date the information

the fighters receive, the better their chance of locating the wumpuses. Nevertheless,

since the wumpuses do not move before the next jump, a piece of old information may

also be useful to the fighters, in the case that the fighters do not have the most recent

one.

7.2.3. Determining the Form of the Utility Function

The utility function is composed of risk, cost, timeliness, and currency

functions and those functions have been defined on a higher level in Section 6.4. In this

implementation, they are given specific forms.

 174

7.2.3.1. Risk Function

Communication incurs risk in the Multi-Agent Wumpus World. The risk is

defined as the potential loss of wumpuses that a fighter would kill resulting from the

possibility that a fighter may be killed if a wumpus overhears the message delivered

(no matter by a carrier to the fighter or by the fighter to a carrier). This is because only

fighters are able to kill wumpuses and consequently if the wumpus has been alerted by

the communication and kills a fighter, the loss of the fighter will seriously degrade the

team’s ability to kill wumpuses in the future. On the other hand, because of the

carrier’s large observability radius, it may sense wumpuses far enough away that there

is a much lower chance of the carrier being killed; only if a wumpus is generated in the

same cell as the carrier will the carrier be killed. The probability of this occurring is

much lower than that of a message being overheard, and thus, we do not consider the

possible loss of a carrier in the risk function.

There are two cases to consider: 1) the wumpus overhears a carrier, and 2) the

wumpus overhears a fighter. In the case that the carrier is the sender, the risk is directly

associated with the message about wumpus whose location was found.20 However, in

the case that a fighter is the sender, the message sent will not cause a risk directly,

because the message is just a request and wumpuses are unable to tell who will be the

target by hearing it. Instead, the risk is associated with the reply sent by the carrier to

the request. Therefore, for both cases, the risk is associated with the messages sent by

20 Though multiple wumpuses may be discovered simultaneously, the carrier will make decisions
regarding to each of their locations. Therefore at each decision point, we consider one wumpus
discovered.

 175

the carrier. The fighter who may be killed is the one to be told about the wumpus

location and the wumpus that might kill the fighter is the one whose location was

transmitted. Although unobserved wumpuses may hear the message as well, we assume

they will not cause the risk since they are able to identify that they are not the target so

they will not fight with the fighter.

The risk function has been defined as R(e, St, δ) where e is the agent’s internal

state, St is the agent’s situation at the time t of decision-making, δ is the policy under

consideration (see Section 6.4.1). In this domain, we assume the risk of communication

is associated with the number of steps left in a game, and two probabilities Prh and Prf:

R = k × (5000 − t) × Prh × Prf (7-1)

where k is the number of wumpuses a fighter can kill per unit time, t is the number of

steps passed, Prh is the probability that the wumpus hears the message sent by the

carrier, and Prf is the probability that the wumpus can win against the fighter.

To give a number to k for initial tests, we ran the system in a trial mode and k

was estimated by the data collected from previous test runs21. We learned that the

average number of wumpuses a fighter can kill per step is 0.01. We then set

k=0.01.

Regarding to Prf, we learned that if Prf is set to a number like 0.2, it is usually

the case that all fighters died before the game ends at 5000 steps. We also learned that

setting Prf to a low number such as 0.05 will limit the effect of risk factor. We thus set

21 It would be possible to obtain estimates for k dynamically as a game progresses, using EDF in a
manner similar to that used for other aspects of the process.

 176

Prf = 0.1.

The last value to compute is Prh. Computing Prh is more complex and dynamic

than computing the other variables. Suppose the area of the world is O, and rc and rf

represent observable rhombus vertex distance from the carrier and the fighter,

respectively. Further, we assume that the wumpus is able to hear messages sent by an

agent within a rhombus with vertex distance of rw from the wumpus. However, the

wumpus may or may not be paying attention to messages (e.g., it might be asleep). We

are interested in the probability that the wumpus does hear and take action on a

message it intercepts. We thus denote the probability that the wumpus “pays attention”

to a message, given that it can hear the message, by Pra. We use Prr to denote the

probability that an agent is within the hearing range rw. Then Prh, the probability of

hearing a message, is the product of Prr, the probability that an agent is within the

wumpus’ hearing range rw, and Pra, the probability that the wumpus pays attention to

the message:

Prh = Prr × Pra.

There are two cases to consider for Pra: 1) the wumpus is “unalerted” by the

request from the fighter, and consequently will not pay attention to the coming reply;

and 2) the wumpus is “alerted” so will pay attention to the coming reply. For the

“unalerted” status, since the wumpus may or may not focus on hearing at any time, we

assume Pra is 0.1:

Pra = 0.1.

 177

One can expect that the consideration of Pra for the “alerted” status is more

complex. Therefore in the form Prh=Prr×Pra, we focus on Prr and Pra for the “alerted”

status. We consider rc < rw, which is our current setting22. We analyze Prh separately for

the case that the carrier is proactively telling a message or that a message is a reply sent

by the carrier regarding to a request from a fighter. Then the risk will take place for

three of carrier’s policies: ProactiveTell, Reply and WaitUntilNext.

Table 7.2 shows Prh, the probability that the wumpus hears the message sent by

the carrier, for these policies (calculation details is presented in Appendix C). Once Prh

is computed, risk can be easily computed by Eq. (7-1). The difficulty is that there are

two unknown parameters in this table, H and Dn. H is the length of time between the

last time the carrier was the wumpus and the time the wumpus will jump. Dn is the

time between the time the carrier last saw the wumpus and the current time. These

parameters must be estimated. The methods of estimating these parameters are also

given in Appendix C.

22 The calculation of Prh in rc ≥ rw would be simpler than the current setting, in that the carrier can
explicitly calculate whether or not the wumpus is able to hear the message. So we only consider rc < rw in
experiments.

 178

Table 7.2. Prh in Risk Function for Different Policies.

 Probability
Policy

Prh

ProactiveTell 0.1
Fighter was
within rw

0.19

Carrier
still see
wumpus Fighter was not

within rw
0.1

Fighter was
within rw

0.19× E{Pr(Dn<J)}+

)1r22r(O
)1r22r()12r(2r

c
2
c

c
2
cw

2
w

−−−
−−−−− ×0.1×

(1– E{Pr(Dn<J)})

Reply

Carrier
not see
wumpus

Fighter was not
within rw

0.1× E{Pr(Dn<J)}+

)1r22r(O
)1r22r()12r(2r

c
2
c

c
2
cw

2
w

−−−
−−−−− ×0.1×

(1– E{Pr(Dn<J)})

WaitUntilNext 0.1+0.09×

)1r22r(O
)1r22r()12r(2r

f
2
f

f
2
fw

2
w

−−−
−−−−−

7.2.3.2. Cost Function

We have defined the cost as the following form in Section 6.4:

C({m})=
⎩
⎨
⎧

×+
=

otherwiselen({m})kk
{m} if 0

10

ϕ

where k0 and k1 are coefficients and {m} is a set of messages used by a policy.

Empirical data shows that k0 is a base cost of sending a message and k1 is a parameter

which adjusts the effect of the message size to the cost [134]. Typically, k0 is much

larger than k1. Therefore, we assume that k1=0. Communication is generally considered

to be cheap in the present time. Hence we also set k0=0. According to this,

 179

C({m})=0.

7.2.3.3. Timeliness Function

At the abstract level, the timeliness is represented by two functions: fs, the value

of timeliness under the condition that the most recently produced information is sent,

and ff, the value of using old information (see Section 6.6.1 for detail).

fs has been defined as a non-increasing function of a time difference d between

tn, the time at which an information item is needed, and tp, the time at which the

information provided is produced:

fs(d(tn, tp))

where d=max(0, tp–tn). If the fighters are able to receive wumpuses’ locations as

quickly as possible, they may catch more wumpuses before the wumpuses jump and

kill them. Thus, the timeliness loss is the number of wumpuses a fighter can kill per

unit time multiplied by the delay time. Accordingly, we assume the form of function fs

in this example as:

fs=
⎩
⎨
⎧

−
<

otherwise)tk(t
t tif 0

pn

np .

The rationale for this form of timeliness is that the further in the future the value used

will be produced, the more likely the more opportunity to kill wumpuses is lost while

waiting.

ff generally is domain dependent and can be determined on many different

bases. In this domain, the wumpuses periodically jump to some other random location

and the time duration of staying on one place is also random. Therefore, once a

 180

wumpus jumps (meaning the value for I is changed), there is no gain for a fighter to

chase the old wumpus’ location. Hence the value for communicating the old location is

zero:

ff = 0.

7.2.3.4. Concurrency Function

On the highest level, the currency has been defined as a probability function P:

Pr(¬∃ τ ∈ Int(tp, tu] ∋ IP(τ) | St ∧ δ),

which means that no other value is produced between (tp, tu], conditional on a policy δ

which is chosen by agents in the situation event St at time t (see Section 6.6.2).

The currency function of this implementation is not exactly the same because of

the unique characteristics of the domain. However, it rests on the same idea worked out

in Section 6.6.2. At the highest level, P uses tu, which is the time at which IP(tp) is used

by the needer. But we did not specify whether tu denotes when the use of IP(tp) begins

or ends. In this domain, it is important for a fighter to arrive at a found wumpus’

location before the wumpus jumps. Therefore tu represents the end use of IP(tp). Hence

in this domain, tu is the time at which the fighter arrives at the wumpus’ location. We

assume P represents the probability that the wumpus does not jump between the time

interval Int(tp, tu]:

Pr(¬∃ τ ∈ Int(tp, tu] ∋ wumpus jumps at τ | St ∧ δ).

For simplicity, P is represented as:

Pr(WNJ(tp, tu)),

 181

where the event “wumpus not jump between Int(tp, tu]” is abbreviated as WNJ(tp,

tu).Though the probability function P is computed on a general level in Section 6.7,

Pr(WNJ(tp, tu)) must be reconsidered since it is a specific form for this domain.

In the following sub-sections, we describe the general idea of computing

Pr(WNJ(tp, tu)).

7.2.3.4.1. General Ideas

We need to determine the probability of a wumpus not jumping between tp, the

time at which the wumpus location provided to the needer is produced, and tu, the time

at which the fighter arrives at that location. This probability equals:

Pr(WNJ(tp, tu))=Pr(tu−tp<J), (7-2)

where J denotes the difference between the time at which the value for I was produced

and the time at which the wumpus jumps. J must conform to this constraint:

J∈[1, 40−D0],

where D0 (D0∈[1, 40]) denotes the length of time that the wumpus was in its current

location before being sensed by the carrier.

Eq. (7-2) depends upon a number of parameters, the obvious ones being D0, J,

tu and tp. However, it also depends upon Lw(tp), and Lf(tn), where Lw and Lf refer to the

locations of the wumpus and the fighter respectively because these locations determine

the distance between the fighter and the wumpus, and hence the time required for the

fighter to move to the wumpus. In addition, for some possible values for Lw, there is a

dependence upon the location of the carrier, Lc. Let t be the current time at which the

evaluation is being performed. One important notational issue is that, rather than

 182

referring to locations at specific times, Lw and Lc refer to locations at tp while Lf refers

to the location at tn.

Depending upon the communication policy for which Pr(tu−tp <J) is being

calculated, several of the parameters are known. Nevertheless, in each case some

parameters remain unknown. In some of these cases, the probability distributions of the

values of unknown parameters can be obtained through the EDF methodology

described in Section 5.3; in others, the probability distributions can be determined

easily from the environment description. In a few cases, it is possible to make

reasonable estimates of the distributions. Thus, we treat the unknown parameters as

random variables and use the law of total probability to calculate E{Pr(tu−tp <J)} with

respect to the unknown values:

)lL ,lL ,lL ,τ t,τ tj,J d,Pr(D

)lL ,lL ,lL ,τ t,τ tj,J d,D | JtPr(t

ffwwcc2n1p0

ffwwcc2n1p0pu

lllττjd fwc21

=======×

=======<−

∑∑∑∑∑∑∑
 (7-3)

The parameters all have discrete values. Some of the distributions are joint. Some of

the random variables are independent, e.g., D0, and their distributions can be

determined separately. Though theoretically, the time parameters have infinite ranges,

in practice, the EDF distributions used as approximations will have only finite ranges.

Some notes can be made regarding parameters in this expression. First of all, J

has a relationship to D0, i.e., J ≤ 40-D0. The carrier can sometimes decide whether

D0=0 or not by analyzing what it has observed. The carrier moves only one step every

time. So a newly found wumpus should be on the edge of the carrier’s observability

 183

radius. If this is not true, the carrier can then decide that this wumpus just jumped into

the carrier’s observable area and hence D0=0. The judgment also can be made the other

way around. If a found wumpus that is not on the edge suddenly disappears on current

observation, the wumpus jumped, or if a found wumpus is not in the same position as a

previous observation, the wumpus jumped. Remember, we assume wumpuses are

distinguishable, so the carrier is able to track each wumpus’ position and often use this

knowledge to deduce D0.

Handling the case in which D0=0 is straightforward; the first summation in

expression (7-3) simply drops out and d =0 is used in the rest of the equation. As this is

a simple modification of the general result, we assume D0 ≠ 0 in the rest of our

analysis. Therefore, the probability mass function for d in expression (7-3) is simply a

constant equal to 1/40, and is independent of all of the other variables. J has a

relationship to D0, i.e., J ≤ 40−D0; hence the mass function for j may be treated as

1/(40−d), and it is then independent of all of the remaining variables.

We can do statistical estimations for tn and tp based on their EDF distributions.

As for Lc, Lf and Lw, determination of exact distributions is unduly computational

complex because of the limited observability of agents and the random walk of agents.

Hence we need to seek a reasonable and computationally feasible approximation.

7.2.3.4.2. A Study of the General Case

To elaborate the determination of the probability, we examine the most general

case and analyze the process of calculating expression (7-3). This case covers all of the

 184

situations, policies and sub-cases that will be considered later. All other cases are either

subset of this case or variations that can be easily adapted from this one.

The general case is that, the decision maker (either the carrier or the fighter)

does not know Lw, Lc, and Lf. The estimation for Lw can base on Lc because the

wumpus must be inside of the carrier’s observation area. Since Lc is also unknown (this

happens even if the carrier itself is the decision maker as the carrier makes estimation

to future decisions), the decision maker could use the most recent location of the carrier

it knows and calculate the range of possible motions. The statistical estimations for tn

and tp will be used to estimate this range. To estimate Lf (the fighter needs not do that

since it does not need to estimate its own future decisions), the carrier can take

advantage of wumpus locations sent to the fighter because the fighter won’t move

before receiving a new location. Having estimations for Lw, Lc, and Lf, the distance

between the wumpus and the fighter can be determined. Combining this distance with

the knowledge about D0, J, tp and tn, expression (7-3) can be computed.

Since either tn or tp may be unknown, depending upon whether it is the carrier

or the fighter that is making a decision, the carrier may move between the last point at

which its locations were known to the decision maker (either the carrier or the fighter)

and the time tp. In order to calculate an approximation for the desired value, we will

need to consider the range of possible motions from some known points in time. In

order to be able to refer to these, we use the following notation:

tcl = the most recent time at which the decision maker knows the location of the carrier.

 185

Let σ be the length of time the carrier moves from the time tcl to tp, the time at

which it finds the wumpus. The reason of introducing σ is that in some cases, Lc is

unknown, so we need to estimate Lc, based on distance the carrier moved from a

known time point tcl to tp. So σ must be greater than 0, i.e.,

σ = max(tp–tcl, 0).

The actual values to be used for σ will vary with the situation, policy and decision

maker being considered. However, once these values are known, the desired value can

be approximated.

Next we analyze the length of time it takes the fighter to move to the wumpus’

location. We denote this length of time as Dk. Dk is equal to the distance between the

fighter and the wumpus, since the fighter moves one step toward the wumpus at each

time step,

Dk=|Xf−Xw|+|Yf−Yw|

where Xf, Yf, Xw and Yw denote the x and y coordinate positions for the fighter and the

wumpus (Lf = (Xf, Yf), Lw = (Xw, Yw)). Xf, Yf, Xw and Yw must conform to these

constraints:

1≤Xw≤20, 1≤Xf≤20,

1≤Yw≤20, 1≤Yf≤20.

Given a number of steps, j, after which the wumpus will jump, the fighter must

also be able to reach the wumpus within j steps. As a first step in calculating Pr(tu−tp

<J), we calculate the probability that given j and a wumpus location, Lw = (Xw, Yw), the

fighter can reach the wumpus before it jumps (recall that the fighter does not move

 186

without knowing a wumpus location). We define a function fm which indicates whether

or not a fighter’s location Lf is within j steps from the Lw:

fm(Xw, Yw, Xf, Yf, j) =
⎩
⎨
⎧ ≤−+−

otherwise 0
j|YY| |XX| if 1 fwfw .

To determine Dk, we need to know the wumpus’ location Lw which in some

cases depends on the carrier‘s location Lc, since Lw must be inside the carrier’s

observability area. This region is an equilateral rhombus whose vertices are

observability radius rc in the X and Y directions from Lc; the area of this rhombus is

2 2
cr +2 cr +1. We assume the wumpus will be randomly located in the observable area

of the carrier23. Then, given the carrier’s location (Xc, Yc) at time tp, the probability that

the wumpus is inside of the carrier’s observability range, and meanwhile can be

reached by the fighter within j steps, is:

Pw(Xc, Yc, j)

=∑ ∑+

−=

−−+

−−−=

)rX ,20min(

)rX max(1,X

|))XX|(rY min(20,

|))XX|(rY max(1,Y
cc

ccw

cwcc

cwccw 1r22r
1

c
2
c ++

×fm(Xw, Yw, Xf, Yf, j).

Next, we consider the effect of possible carrier’s motion. Since we know that at

time tp, the carrier must be able to sense the wumpus, the wumpus must be located

within the region to which the carrier could have moved from its last known location,

denoted Lcl, extended by the observability region. Lc must be inside the region which is

reachable from Lcl within σ steps. This region is also an equilateral rhombus whose

radius is σ and center is Lcl, and its area is 2σ2+2σ+1.

23 While this is not precisely correct, it can be shown to be a good approximation.

 187

We represent the probability that the carrier is at a location Lσ after σ steps

from Lcl by Pr(Lσ). Then the probability that the carrier is within σ steps from (Xcl,

Ycl), and the wumpus is inside of the carrier’s observability range and can be reached

by the fighter within j steps is:

Pc(Xcl, Ycl, j)

=∑ ∑+

−=

−−+

−−−=

)σX ,20min(

σ)X max(1,X

|))XX|(σY min(20,

|))XX|(σY max(1,Y
cl

clc

clccl

clcclc
Pr(Lσ = (Xc, Yc))×Pw.

Finally, combining all of these, with J, D0 as random variables,

E{Pr(tu–tp<J)}

=∑ ∑=

−

= −
×

40

1d

d40

1j d40
1

40
1

×

∑ ∑+

−=

−−+

−−−=

)σX ,20min(

σ)X max(1,X

|))XX|(σY min(20,

|))XX|(σY max(1,Y
cl

clc

clccl

clcclc
Pr(Lσ = (Xc, Yc))×

∑ ∑+

−=

−−+

−−−=

)rX ,20min(

)rX max(1,X

|))XX|(rY min(20,

|))XX|(rY max(1,Y
cc

ccw

cwcc

cwccw 1r22r
1

c
2
c ++

×fm(Xw, Yw, Xf, Yf, j) (7-4)

In Eq. (7-4), though we use several layers of summation, the computational

complexity is not as high as it appears because ranges of the variables are limited. In

addition, in many of the sub-cases that must be evaluated, tn>tp, which means that

information I was produced a while before the fighter needs it, will further increase the

lower bound on the values of j that are possible, and this in turn, will decrease the

upper bound on the range of possible values of d. Hence the range of the summations

over j and d is further reduced. Moreover, in many of the sub-cases, one or more of the

variables are known, and the expression can be reduced (we will consider these sub-

 188

cases separately in Section 7.2.4). However, Eq. (7-4) depends upon one unknown

probability mass functions, Pr(Lσ = (Xc, Yc)). In order to use it, one must either

determine this mass functions or approximate it in some way.

Determining the exact value of these mass functions is difficult. In the absence

of a theoretical solution, which we have not been able to find, there are several

different ways of approaching the problem of determining values to use for these mass

functions. For example, one could run a large number of Monte Carlo simulations to

determine them. Alternatively, one can make some simplifying approximations. These

will be considered in the next section.

7.2.3.4.3. Approximations for Pr(Lσ)

One probability mass function appears in Eq. (7-4), that is Pr(Lσ=(Xc, Yc)), the

probability that the location to which the carrier might have moved is within σ steps

from a known location. In the following, we propose two approximations for

Pr(Lσ=(Xc, Yc)).

7.2.3.4.3.1. General Approximation

A trivially simple approximation would be that, having no information about

the carrier’s location, we assume that the carrier is randomly placed in the area which is

within σ steps to its location at tcl. In other words, Pr(Lσ=(Xc, Yc))=1/(2σ2+2σ+1),

which means that all points inside of the area are reachable with equal probability.

However, clearly the points further away are less likely to be reached than those closer

to the carrier’s location at tcl, because the carrier’s motion conforms to random walk;

we can take advantage of the nature of the random walk.

 189

7.2.3.4.3.2. Simplified Approximation

This assumption uses some results of random walk to generate a simple

approximation to the probability Pr(Lσ = (Xc, Yc)). [126] shows that without our

restriction of not revisiting a place, the average distance the carrier has gone within σ

steps would be σ . Note that σ will not be an integer. Then, one might use an area

with a radius equal to the expected value of the distance of movement. Therefore, we

will use σ as the expected distance the wumpus will move in σ steps, and

approximate the distribution by a constant within an equilateral rhombus whose

vertices are σ in the X and Y directions from the last wumpus location. That is, we

could take Pr(Lσ = (Xc, Yc))=1/(2σ+2 σ +1).

7.2.3.4.3.3. Finalizing Pr(Pσ)

While the Simplified Approximation is still a coarse approximation, it is likely

to be better than the General Approximation because it does capture, in some sense, the

feature of random movement of carrier. Therefore we use Simplified Approximation.

Using the Simplified Approximation, Eq. (7-4) is modified to:

E{Pr(tu–tp<J)}

=∑ ∑=

−

= −
×

40

1d

d40

1j d40
1

40
1

×

∑ ∑+

−=

−−+

−−−=

)σX ,20min(

)σX max(1,X

|))XX|σ(Y min(20,

|))XX|σ(Y max(1,Y
cl

clc

clccl

clcclc 1σ22σ
1

++
×

∑ ∑+

−=

−−+

−−−=

)rX ,20min(

)rX max(1,X

|))XX|(rY min(20,

|))XX|(rY max(1,Y
cc

ccw

cwcc

cwccw 1r22r
1

c
2
c ++

×fm(Xw, Yw, Xf, Yf, j)(7-5)

 190

which needs three inputs: σ, Lcl and Lf.

The general case will be referred frequently by later cases, so we abbreviate it

as GenrealCase. Based on it, we can compute Pr(tu–tp<J) for each situation/policy

combinations. In Appendix D, we study Pr(tu–tp<J) for each situation/policy

combination needed to apply our decision theoretic model. For specific combinations,

several variables have known or estimatable values, reducing the number of

summations of Eq. (7-5), and the probability mass function usually take on a simple

form. Moreover, the ranges of the summations are related in many cases, further

reducing the complexity of the computation.

7.2.4. EDF Implementation Issues

In Section 5.5, we discussed implementation issues related to our EDF

approach and proposed various possible solutions for each issue. In this section, we

specify the solutions that are feasible in our domain.

7.2.4.1. System Initialization

We assume that needers have needs at the beginning of a trial, i.e., they are

ready to fight wumpuses, but have no knowledge of wumpus locations (except in the

low probability event that a wumpus is initially adjacent to a fighter). We ran the

system in a trial mode and collected data of information production or need time

intervals. We used these data to create initial values for the need and production

intervals; these are replaced with EDF generated values when the agents begin to

collect current data. Therefore agents are able to predict time points of productions or

needs as soon as the system starts.

 191

7.2.4.2. Preventing Having History Starvation and Communication Deadlock

A fighter could wait a long time if the carrier’s estimate of the fighter’s need

time is far off due to limited data. Communication also could be in deadlock if both

needer and provider each wait for a message from the other. In both cases, agents need

secondary decisions. Our approach is to set a time cutoff To=80 steps. If a fighter has

being waiting beyond this time, it will send out a request to the carrier and attach its

historical data. It is unnecessary for the carrier to initiate the contact or to make contact

whenever the delay expires, because it is important that the carrier have the historical

data about the fighter’s need, adjust its own prediction, and help the fighter proactively.

7.2.5. Experiments

We report two experiments. The first validates the systems development and

the second evaluates the effectiveness of Proactive Communication.

7.2.5.1. Comparison Conditions

We will compare our approach, Proactive Communication, with other two

approaches: Always Tell and Always Ask. All other settings are the same for each of

the three test conditions except communication policies being used, which is described

below.

7.2.5.1.1. Always Tell Condition

The different location for each distinguishable wumpus will be told when the

carrier observes it. The carrier’s decision-making is based on each fighter’s last

location. Initially, this is each fighter’s initial location. Later, it is the location of the

last wumpus to which the fighter was directed. It will assign the wumpus to the nearest

 192

fighter on that basis. The fighters do not issue communication throughout the game and

will stay at the wumpuses’ locations if the wumpuses have jumped before the fighter’s

arrival. If the fighters have more than one wumpus location, they will use the most

recent one.

7.2.5.1.2. Always Ask Condition

Since we assume needers have needs at the beginning, all fighters will ask the

carrier for wumpuses’ locations at the first step. After that, each fighter will send out a

request once it finishes killing a wumpus about which the carrier told it. When the

fighter arrives at the location told but does not sense the wumpus, it will ask the carrier

again and stay at this position until it receives other information.

Rules of the carrier’s reply are: 1) if the carrier has one request and one

information item available, it will assign the information to that fighter who sent the

request; 2) if the carrier has multiple requests and multiple information items, it will

assign each location to the nearest requesting fighter; initially, each fighter’s location is

its initial position, and later, it will be the location of the last wumpus it killed; 3) if the

carrier has multiple requests and one information item, it will send that information

item to the fighter that made the earliest request; 4) if the carrier has no information

item available when it receives a request, the reply will be deferred to the time at which

an item is produced; 5) if the carrier receives no request at the time of production, it

will save this information and will provide it to the next request. If multiple

information items are saved, the providing is based on the order from the most recent

item to the old one.

 193

7.2.5.1.3. Proactive Communication Condition

For both carrier and fighters, decisions about communication policies depend

on the utility of the policies. The carrier makes decisions every time it finds a different

location for each distinguishable wumpus, whether or not this wumpus’ previous

locations were sent. The fighters make decisions every time they finish killing the

wumpuses about which the carrier told them. In the case that the fighters do not see the

wumpuses when arriving at the locations indicated, a new need will raise and the

fighters need to make new decisions at this time.

7.2.5.2. Experiment Data

The following data were collected from experiments:

WK: the number of wumpuses killed;

WF: the number of wumpuses found;

WT: the total number of wumpuses generated;

AL: the number of agents left alive;

FK: the number of fighters killed;

MT: the total number of messages exchanged;

ST: the total number of steps a game runs before the end (the game may be

forced to end before 5000 steps if all fighters died).

7.2.5.3. Measurements

We measure the effectiveness of Proactive Communication, Always Tell and

Always Ask based on the elements listed in Table 7.3.

 194

Table 7.3. Experiment Measurements.

Measurement Formula Criterion
Metric1

1000
WK
FK

×
The lower the better

Metric2 Metric1 × MT The lower the better
Metric3 AL × WK The higher the better
Metric4

MT
Metric3

The higher the better

We measured team performance from two aspects: loss and gain. Metric1 and 2

regard the former and Metric3 and 4 regard the latter.

Metric1 presents the loss ratio of FK (fighter killed) vs. WK (wumpus killed).

Since FK may be much less than WK, we amplify the ratio 1000 times. We expect

fewer fighters dead but more wumpus killed, so the lower Metric1, the better team

performance.

In Metric2, MT (message total) is added to Metric1 as a factor. Metric2

combines effects of loss ratio and communication load. We expect the low loss ratio

and the low communication load. So a low Metric2 is desirable for an effective team.

Metric3 measures team performance from a gain aspect. It evaluates AL (agent

alive) and WK (wumpus killed). Obviously high Metric3 means effectiveness.

Metric4 adds MT (communication amount) to Metric3 as a numerator, meaning

that we expect more alive agents and killed wumpuses, but less communications.

 195

7.2.5.4. Experiment Basics

We used three teams, Team PC (using Proactive Communication), Team AT

(using Always Tell) and Team AA (using Always Ask). Except for the communication

conditions, settings of all teams were exactly the same.

We ran 30 randomly generated worlds under each condition. We use statistical

t-test to test means of results for three teams. The t-test is often used to assess the

equality of a pair of means by using the formula as follow [42]:

s
mean2-mean1P =

where s is a measure of variation, which has specific form for different types of tests

[51]. We use unpaired t-test, where s is combination of standard deviations of two

samples (detail about the combination can be found in [42]).

7.2.5.5. System Developments Validation and Analysis

Obviously WK, the number of wumpuses killed, is a key measurement. WK

largely depends on WF, the number of wumpuses found by the carrier. WF in turn

depends on the carrier’s observability, the fighter’s observability and WT, the total

number of wumpuses which are generated during a game. Since the fighter has very

limited observation radius (only 1), the large amount of WF is produced by the

carrier’s observability. Since the carrier’s observability radius is the same for all three

test conditions, WT becomes the prime element on deciding WF. In fact there are two

way relations between WT and WF. On the one hand, the higher WT may lead to more

WF. On the other hand, the higher WF is, the more wumpus locations will be told by

 196

the carrier to the fighters, resulting in more wumpuses being killed by the fighters, and

consequently more new wumpuses being generated, resulting in more WT. To present

relations between WF and WT, and more important, to provide a fair test base for three

teams, we validate WF and WT for each team and show they produce the same

quantity of data. We use the ratio WF/WT as the base for validation. The data is

shown in Table 7.4.

Table 7.4. Experiment Base Validations in Sample Runs.

Data
Team

ST WF WT WF/WT(%)

Team PC 5000 358 1146 31.29
Team AT 4761 369 1167 31.59
Team AA 4300 304 992 31.02

Table 7.4 first gives us basic ideas about general performance of each team.

Basically about one thousand wumpuses are generated for a 5000 steps game. Team

PC is able to perform all games throughout 5000 steps; while the other two teams end

the game earlier (especially for Team AA), meaning all fighters were dead before 5000

steps. The cause for fighters’ early death is the communication risk. We will elaborate

this point in next experiment.

Another observation to Table 7.4 is that the value of WF/WT is about the same

for three teams. Table 7.5 shows P value for two pair teams, PC vs. AT and PC vs. AA,

with respect to WF/WT. By conventional criteria, their differences are considered to be

not statistically significant. This validates system developments such as agents’ motion

 197

rules, agents’ observability rules, rules about wumpuses’ random jumping, and rules

about new wumpuses’ generation. Based on these, we can perform the further

evaluation.

Table 7.5. P Value with Respect to WF/WT.

Team P Explanation
PC vs. AT 0.3454 Not statistic different
PC vs. AA 0.5700 Not statistic different

7.2.5.6. Effectiveness Evaluation and Analysis

This experiment explores how Proactive Communication reduces

communication load and improves team performance in multi-agent teamwork. Fig. 7.4

shows the effectiveness evaluation and the P value of the two pair teams, with respect

to Metrics1, 2, 3 and 4. We expect Team PC to have lower values for Metric1 and 2,

and higher values for Metric3 and 4.

By studying Fig. 7.424, we find that, as our expectation, Team PC performs best

, regarding Metric1, Metric2, and Metric4. The P values also show that the differences

between the two pair teams are statistically significant.

24 The lines between the sample points should not be there, as the points are not interpolating values. The
lines are only used to distinguish the data for each team.

 198

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30 35

Runs

M
et

ric
1

Team PC Team AT Team AA

Average T-test
PC 4.88 P Explanation
AT 8.62 PC vs. AT 0.0298 Statistic different

Metric1

AA 15.16 PC vs. AA <0.0001 Extremely statistic different
(a) Metric1.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 5 10 15 20 25 30 35

Runs

M
et

ric
3

Team PC Team AT Team AA

Average T-test
PC 1252.09 P Explanation
AT 2691.09 PC vs. AT 0.0004 Extremely statistic different

Metric2

AA 8422.00 PC vs. AA <0.0001 Extremely statistic different
(b) Metric2.

Fig. 7.4. Effectiveness Evaluation with Respect to Metric1-Metric4.

 199

0

200

400

600

800

1000

1200

0 5 10 15 20 25 30 35

Runs

M
et

ric
3

Team PC Team AT Team AA

Average T-test
PC 647.53 P Explanation
AT 545.97 PC vs. AT 0.0710 Not quite statistic different

Metric3

AA 344.73 PC vs. AA <0.0001 Extremely statistic different
(c) Metric3.

0

0.5

1

1.5

2

2.5

3

3.5

4

0 5 10 15 20 25 30 35

Runs

M
et

ric
4

Team PC Team AT Team AA

Average T-test
PC 2.43 P Explanation
AT 1.43 PC vs. AT <0.0001 Extremely statistic different

Metric4

AA 0.48 PC vs. AA <0.0001 Extremely statistic different
(d) Metric4.

Fig. 7.4. Continued.

 200

The results for Metric3 were not quite as good in that while Team PC has a

very significantly better performance than Team AA, and its average metric is better

than that of Team AT, the difference from AT is not quite statistically significant. The

reason is that, by being always told about wumpuses locations, fighters of Team AT,

are able to receive the most timely and the most recent items, allowing them to kill as

many wumpuses as they can in a limited length of time, though they are exposed to

greater risk and suffer some loss from this. To help understand these results, it is

interested to take a close look to communication policies used by each team.

By Always Asking for information at the time when needs occur, fighters are

able to receive the most timely and the most recent items, allowing them to kill as

many wumpuses as they can in a limited length of time. Moreover, carriers can track

the exact locations of fighters, which are the locations of the wumpuses’ the fighters

were last told. This ensures their choosing the fighter closest to the wumpus found

every time. The disadvantage of Team AA is the possible high communication risk.

Under the Always Ask condition, obtaining an information item by a fighter costs at

least two messages (one ask and one reply). So Team AA would exchange the largest

numbers of messages. When the fighter asks for a wumpus location, the chance of

alerting the wumpus will be increased. This again increases the chance that the fighter

is killed, and consequently, fewer wumpuses killed, and often ends the game ahead of

time with all of the fighters being killed. Hence, the Proactive Communication

approach is better because of the better management of risk.

 201

The Always Tell condition can almost guarantee a high degree of effectiveness

in conveying timely and the most recent information as Always Ask does. The carrier

is able to (without time delay) provide the latest wumpus location to fighters and then

the fighters can use the most recent location to chase wumpuses. However, this

approach also has a high communication risk, resulting in similar disadvantages to

those of Always Ask. Therefore, the more wumpus locations provided; the more

wumpuses will be alerted. Consequently, the chance that the fighter will be killed is

increased over that of proactive communication, though not as much so as with active

ask.

Proactive Communication may not be able to deliver as timely as the other two

conditions. Sometimes carriers must keep silence or fighters have to wait or use the old

information, if the risk of communication exceeds its value. This keeps the team safe

but brings two side effects: 1) fewer wumpus locations are told, compared to the

number of wumpuses found; and 2) information exchange is delayed. Hence Team PC

may not be able to kill as many wumpuses as the other two teams do. However, this

could be compensated by minimizing the number of messages sent and the risk of

fighters’ death. In fact, the death of a fighter is a heavy loss to the team. It will lead to

the fewer wumpuses been killed, or even the forcefully end of the game. Proactive

Communication wins on communication amount mainly because it sends the

information only when it is needed, in spite of changes of the information. So Proactive

Communication results in the fewest messages exchanged.

 202

Based on above analysis, it makes more sense to compare the average number

of wumpus killed per message. In this term, which is Metric4, the performance of

Team PC is statistically better than those of Team AT and Team AA. Hence, our

algorithms for managing Proactive Communication have been effective.

7.3. Summary

In this section, we have first conducted in-depth empirical evaluations in the

Multi-Agent Wumpus World, comparing the relative numbers of O-Tell and O-Ask for

agent teams with and without observability. We have also given specific forms of risk,

cost, timeliness and currency functions in the Multi-Agent Wumpus World. We

presented two experiments that validate the system developments and explore the

effectiveness of operating teamwork under Proactive Communication. The results of

these experiments show that our approaches have improved the team performance.

 203

CHAPTER VIII

CONCLUSIONS AND FUTURE WORK

8.1. Conclusions

My long-term research goal is to understand intelligence and to build human

knowledge into software agents to support decision-making, and to improve the

productivity and adaptability of autonomous systems in complex and dynamic

environments. Toward this goal, I have researched Proactive Communication in agent

teamwork

In Observation-Based Proactive Communication, we employed agents’

observabilities as major means for decreasing the volume of communication in a

dynamic and partially observable environment [141]. We formally defined what is

observable and under which conditions. The exploration of observability also carefully

clarifies the relationships among what an agent can see, what it actually sees, and what

it believes from its seeing. This, however, is not enough to allow inference of belief

about other agents and use of this belief to track their mental states. We then defined

agents’ beliefs about the observabilities of other agents. The amount of communication

is reduced by agents’ using observation of the environment and beliefs of teammates’

observabilities to estimate the teammates’ beliefs without generating unnecessary

messages.

Decision-Theoretic Proactive Communication uses decision theory to enable

agents to decide whether or not to engage in a communication act when less is known

 204

about the domain and the results of their interaction with it, and communication may

incur cost and risk. It allows agents to tell others proactively about a piece of

information when producing it, or to ask actively for a piece of information when

needing it [14, 141]. It formally includes the notion that the times at which an agent

needs or produces a value for an item of information is random according to some

(unknown) distributions. The idea of Dynamic Information Prediction is to develop

techniques for estimating the distributions of information production or need and use

these data to model utilities of each communication strategy available for agents on

each situation of decision-making. The estimation serves proactive communication in

two ways: first, agents can proactively tell up-to-date information to agents who need

it; second, it helps on providing a more accurate and efficient way of communicating

information than randomly selecting a receiver, or making the selection in a specific

order, in that agents can dynamically issue communication at the right time to the right

receivers without having to know all about the receivers.

The decision-theoretic approach provides agents with an optimal way to fulfill

their information needs under uncertainties, caused by incomplete information about

the teamwork, the environment, and the potential value, cost and risk of information

delivery. We developed a set of communication policies for agents in different

situations. Since the various policies involve using the information produced at

different times or satisfying needs at different times, we carefully studied different

points in time, which describes the range of possibilities encompassed by the different

strategies adequately. We analyzed parameters that should be included in the utility

 205

function and recognized effects in determining the form of the value, the cost and the

risk which compose the utility function. The distinguishing feature of the decision-

theoretic approach is that we focus on analyzing the information production and need

of team members and use these data to capture the complex decision processes of

information needer and provider. Moreover, this approach emphasizes decision

interactions between the needer and provider, i.e. their decisions are interdependent, so

they must consider the impact of their counterpart’s decisions upon their own.

8.2. Future Work

There are two aspects work we plan to do in the future. First we will enhance

the current model by extending its functionalities. Then this model will be applied into

several real applications.

8.2.1. Extensions to This Research

8.2.1.1. Extending the Current Model to Multiple Needers and Providers Model

The current selectPolicy algorithm (see section 6.9) can well handle the one-to-

one model, i.e., there is one provider and one needer for an information item I25. In this

case, agents consider interactions with their counterpart agents and make decisions. To

deal with many-to-many model, which includes multiple needers and providers of an

information item I, we did a straightforward extension to the one-to-one model. We

assume agents still focus on interactions with their counterparts and consider only the

number of counterparts is extended.

25 The system may still contain multiple agents. But for a piece of information, there is only one needer
and one provider.

 206

Extending the one-to-one model to the many-to-many model in a more

complete way would require including complicated interactions among needers and

providers. For a needer, it must monitor not only each provider, but also other needers.

Thus, when making decision, the needer must estimate every provider's policy to the

needer itself, every provider's policy to every other needer, and every other needer’s

policy to every provider. Similar processes can occur to the provider. This extension of

our work could take advantage of policies and utilities devised in current model and

focus on developing feasible decision rules to coordinate time orders of multiple

productions and needs.

We would start with analyzing the case of multiple needers. When several

needers want I, their needs for I are dynamically changed during teamwork. In many

situations, every new value for I must be used and once it is used, it is unnecessary to

use it again, such as location of an enemy target. Hence, except that the provider should

pay attention to provide the unused I to needers who have needs, every needer also

needs to watch when other needers’ needs raised and whether they have actively asked

for I or have been told proactively. Therefore, when making a decision, a needer needs

to consider the provider's decision in relation to the needer, the provider's decision

relative to every other needer, and every other needer’s decision relative to the

provider.

In the case of multiple providers, a provider has the similar concerns to those of

the needers above. In the situation where a provider produces I, it is possible that

another provider also produced I recently and has sent I to the needer, by either

 207

proactive tell or reply to the needer’s request. In this case, the provider may not provide

I because the needer may not need I soon. Just as the needer can ask an arbitrary

provider for I, an arbitrary provider can help the needer proactively. Thus, a provider

needs to consider the needer's decision in relation to the provider, the needer's decision

relative to every other provider, and every other provider’s decision relative to the

needer.

In the future, we still want to focus on decision interactions between the

decision maker and its counterparts. In the many-to-many model, we can adjust the

decision rule we will develop for the one-to-one model. We will add the counterpart

agent as one parameter in the utility function. In the case of multiple providers, the

needer will evaluate the utility function with respect to each provider, and then follow

the strategy of the provider that yields the highest utility. However, when end states in

the needers state diagram that call for additional reasoning are reached, the needer will

re-evaluate the utility functions and possibly make a new decision, which may mean

asking a different provider. However, the decision process will have to be extended

because additional situations can occur, e.g., a needer might have received multiple

proactive tells before its need arose. In the case of multiple needers, the provider will

evaluate the utility function with respect to each needer, and then follow the strategy

that has the maximum utility.

8.2.1.2. Using Plan Recognition to Generate Information Flow

Our present proactive communication algorithm analyzes preconditions and

effects of actions and plans for which each agent is responsible in the teamwork. The

 208

purpose of doing so is to determine potentially useful information flow among agents.

Currently the information flow is generated offline. The problem of this approach is

that the predicates of potential information needers or providers extracted by the offline

algorithm may contain variables, and agents will bind actual values to these variables

dynamically during the teamwork processes. For example, in the Multi-Agent Wumpus

World, the offline algorithm only extracts that a fighter needs wumpus’ location, but

cannot identify which fighter among three fighters. Our solution to this problem is to

use the decision-theoretic proactive communication to estimate agents that would be

most likely bound to a plan at the time of information production or need.

Alternatively, we could make the recognition of information needers or

providers more dynamic by doing plan recognition [69]. Agents can recognize the

plans of other agents by observing actions of the other agents, and tracking the

sequence of sub-goals on which they are working dynamically. Using this information

together with the action an agent has most recently performed, the most likely

information need or production of other agents could be dynamically estimated over a

finite time horizon. Then we could send or ask other agents information only when

they had just needed/produced the information, or if they are expected to need/produce

the information in the near future.

8.2.2. Future Directions

8.2.2.1. Multi-Agent Learning

Multi-agent learning supports learning from interaction with open-ended,

dynamic environments that include multiple, autonomous data and knowledge sources.

 209

Examples of such domains include data-driven collaborative knowledge discovery;

distributed information networks for selective information retrieval; distribution of

software and real-time audio/video streams; and distributed parallel processing. Multi-

agent learning methods would include design of algorithms for learning from

heterogeneous data sources, distributed in time and space. As a consequence of the

developments in technology that make it possible to accumulate large amount of data

incrementally every day, in physically distributed, autonomous data repositories (e.g.

bioinformatics), such algorithms seem to be the need of the hour. Analogous to the

work done here, decision theory and empirical distribution function analysis might be

usable for analyzing data pattern of various applications and reducing communication

among data sources and sinks.

8.2.2.2. Distributed Information Networks for Selective Information Gathering

There are many types of applications for which time-constrained and

predictable response is required, which is closely related to my research; the most

familiar are electronic trading systems, games, defense systems, and multimedia

applications. There, time-critical applications depend on careful system design and

timely resource allocation to deliver the required performance. For example, in an

online E-Commerce system, stores that sell the same types of products consist of a

multi-agent system over the Internet. Each agent (store) in such a system wants to

charge a price that beats the other stores, but at the same time maintain maximum

profits for the store over a period of time. The interaction among the stores can be

modeled as a stochastic game. The agent’s price has to take into account the future

 210

prices charged by other stores and potential loss resulting from that. Agents then need

to monitor the prices charged by other stores continuously, learn about their price-

setting pattern, and modify their stores’ prices accordingly. Proactive Communication

fits these requirements well and could support interaction analysis between two stores.

8.2.2.3. Virtual Humans for Training

Agents can be used to develop a foundation for efficacious training of complex

performance. In Intelligent Team Training Systems, human team members are trained

by putting them into a simulation, which allows them to perform and refine their team

skills. The two types of agents which can be developed to assist team training are

partner agents [113] and coaching agents [87, 132]. Coaching agents provide coaching

feedback to trainees and their team based on the performance and the process of the

team. Partner agents assist individual trainees by taking over the execution of some of

the component tasks, allowing the trainee to concentrate on learning specific

components, and assist team training by fulfilling the roles of some team members.

Both types of agents require communication to achieve the desired team interactions.

The agents should track the activities of the human trainee, reason about possible

conflicts or constraints, establish certain parameters for performing joint actions, and

provide or request any information needed by the human trainees to perform their

tasks. However, this complex team cooperation behavior may involve much

unnecessary message exchange because of introducing the human team members.

Proactive Communication could provide desired interactions for humans and agents.

 211

REFERENCES

[1] J. Anderson, C. Boyle, A. Corbett, M. Lewis, Cognitive modeling and

intelligent tutoring, Artificial Intelligence 42 (1990) 7-49.

[2] T. Balch, R. Arkin, Communication in reactive multi-agent robotic systems,

Autonomous Robots 1 (1994) 27-53.

[3] R. Bartels, J. Beatty, B. Barsky, Hermite and Cubic Spline Interpolation,

Morgan Kaufmann, New York, 1998.

[4] H. Becker, Notes on the concept of commitment, American Journal of

Sociology 66 (1960) 32-40.

[5] J. Bell, S. Huang, Seeing is believing, in: Proceedings of the Conference of

Common Sense (CS-98), London, United Kingdom, 1998, pp. 321-327.

[6] K. Biggers, Automatic generation of communication and teamwork within

multi-agent teams. M.S. Thesis, Department of Computer Science, Texas A&M

University, College Station, Texas, 2001.

[7] A. Binas, T. Ioerger, Multi-agent belief reasoning in a first-order logic back-

chainer, Technical Report TSSTI-TR-10-04, Training System Science and

Technology Initiative, Texas A&M University, College Station, Texas, 2004.

[8] A. Bond, Commitment: some DAI insights from symbolic interactionist

society, in: Proceedings of the 9th Workshop on DAI (DAI-89), Bellevue,

Washington, 1989, pp. 239-261.

[9] M. Bratman, Intention, Plans, and Practical Reasons, Harvard University Press,

Cambridge, Massachusetts, 1987.

 212

[10] M. Bratman, D. Israel, M. Pollack, Plans and resources bounded practical

reasoning, Computational Intelligence 4 (1988) 349-355.

[11] H. Bui, D. Kieronska, S. Venkatesh, Optimal communication among team

members, in: Lecture Notes in Artificial Intelligence, vol. 1342, 1997, pp. 116-

126.

[12] J. Cannon-Bowers, E. Salas, S. Converse, Shared mental models in expert team

decision-making, in: J. Castellan (Ed.), In Individual and Group Decision-

Making: Current Issues, Lawrence Erlbaum Associates, Mahwah, New Jersey,

1993, pp. 221-246.

[13] J. Cannon-Bowers, E. Salas, A framework for developing team performance

measures in training, in: M. Brannick, E. Salas, C. Prince (Eds.), Team

Performance Assessment and Measurement: Theory, Research and

Applications, Lawrence Erlbaum Associates, Mahwah, New Jersey, 1997, pp.

45-62.

[14] S. Cao, R. Volz, T. Ioerger, Y. Zhang, J. Yen, Role-based and agent-oriented

teamwork modeling, in: Proceedings of the International Conference on

Artificial Intelligence (ICAI-02), Las Vegas, Nevada, 2002, pp. 1190-1196.

[15] G. Casella, R. Berger, Statistical Inference, Duxbury Press, Belmont,

California, 1990.

[16] C. Castelfranchi, Guarantees for autonomy in cognitive agent architecture, in:

W. Jennings (Ed.), Intelligence Agents, Springer-Verlag, New York, 1996, pp.

56-70.

 213

[17] E. Charniak, Bayesian networks without tears, AI Magazine 12 (1991) 50-63.

[18] M. Cohen, J. Freeman, B. Thompson, Critical thinking skills in tactical decision

making: a model and a training strategy, in: J. Cannon-Bowers, E. Salas (Eds.),

Decision Making Under Stress: Implications for Training and Simulation,

American Psychological Association, Washington, D.C., 1997, pp. 155-189.

[19] P. Cohen, H. Levesque, Intention is choice with commitment, Artificial

Intelligence 42 (1990) 213-261.

[20] P. Cohen, H. Levesque, Teamwork, Nous (Special Issue on Cognitive Science

and Artificial Intelligence) 25 (1991) 487-512.

[21] J. Cremer, J. Kearney, Y. Papelis, R. Romano, The software architecture for

scenario control in the Iowa driving simulator, in: Proceedings of the 4th

Computer Generated Forces and Behavioral Representation Conference

(CGFBRC-94), Orlando, Florida, 1994, pp. 213-218.

[22] K. Crowston, E. Kammerer, Coordination and collective mind in software

requirements development, Journal of IBM Systems 37 (1998) 227-245.

[23] B. Curtis, H. Krasner, N. Iscoe, Field study of the software design process for

large systems, Comm. ACM 31 (11) (1988) 1268-1286.

[24] R. D'Agostino, M. Stephens, Goodness-of-Fit Techniques, Marcel Dekker, New

York, 1986.

[25] E. Davis, Solutions to a paradox of perception with limited acuity, in:

Proceedings of the 1st International Conference on Knowledge Representation

and Reasoning (KRR-89), Toronto, Canada, 1989, pp. 79-82.

 214

[26] J. de Kleer, An assumption-based truth maintenance system, Artificial

Intelligence 28 (1986) 127-162.

[27] D. Dennett, The Intentional Stance, MIT Press, Cambridge, Massachusetts,

1987.

[28] J. Doyle, A truth maintenance system, Artificial Intelligence 12 (1979) 231-

272.

[29] D. Ellsberg, Risk, ambiguity and the savage axioms. Quarterly Journal of

Economics 75 (1961) 643-669.

[30] J. Espinosa, K. Carley, R. Kraut, F. Lerch, S. Fussell (Eds.), The Effect of

Shared Mental Models and Knowledge Distribution on Asynchronous Team

Coordination and Performance: Empirical Evidence from Management Teams,

Carnegie Mellon University Press, Pittsburgh, Pennsylvania, 2001.

[31] R. Fagin, J. Halpern, Reasoning about knowledge and probability, Journal of

the ACM 39(1994) 328-396.

[32] X. Fan, J. Yen, M. Miller, R. Volz, The semantics of MALLET - an agent

teamwork encoding language, in: Proceedings of the 4th International Joint

Conference on Autonomous Agents and Multi Agent Systems Workshop on

Declarative Agent Languages and Technologies (DALT-04), New York, 2004,

pp. 69-91.

[33] X. Fan, S. Sun, J. Yen, M. McNeese, Extending recognition-primed decision

model for human-agent collaboration, in: Proceedings of the 4th International

 215

Joint Conference on Autonomous Agents and Multi Agent Systems (AAMAS-

05), Utrecht, The Netherlands, 2005, pp. 334-341.

[34] M. Fenster, S. Kraus, J. Rosenschein, Coordination without communication:

experimental validation of focal point techniques, in: Proceedings of the 1st

International Conference on Multi-Agent Systems (ICMAS-95), San Francisco,

California, 1995, pp. 102-108.

[35] R. Fikes, N. Nilsson, STRIPS: a new approach to the application of theorem

proving to problem solving, Artificial Intelligence 2 (1971) 189-208.

[36] R. Fikes, A commitment-based framework for describing informal cooperative

work, Cognitive Science 6 (1982) 331-347.

[37] T. Finin, Y. Labrou, J. Mayfield, KQML as a communication language, in: J.

Bradshaw (Ed.), Software Agents, AAAI, Menlo Park, California, 1997, pp.

291-316.

[38] M. Genesereth, S. Ketchpel, Software agents, Comm. ACM, 37 (7) (1984) 48-

53.

[39] P. Gmytrasiewicz, E. Durfee, D. Wehe, A decision-theoretic approach to

coordinating multi-agent interactions, in: Proceedings of the 12th International

Joint Conference on Artificial Intelligence (IJCAI-91), Sydney, Australia, 1991,

pp. 62-68.

[40] P. Gmytrasiewicz, E. Surfee, Rational coordination in multi-agent

environments, Autonomous Agents and Multi-Agent Systems 3 (2000) 319-

350.

 216

[41] C. Goldman, S. Ziberstein, Optimizing information exchange in cooperative

multi-agent systems, in: Proceedings of the 2nd International Joint Conference

on Autonomous Agents and Multi-Agent Systems (AAMAS-03), Melbourne,

Australia, 2003, pp. 137-144.

[42] W. Gosset, The probable error of a mean, Biometrika 6 (1908) 1-25.

[43] B. Grosz, C. Sidner, Plans for discourse, in: P. Cohen, J. Morgan, M. Pollack

(Eds.), Intentions in Communication, MIT Press, Cambridge, Massachusetts,

1990, pp. 417-443.

[44] B. Grosz, S. Kraus, Collaborative plans for complex group actions, Artificial

Intelligence 86 (1996) 269-357.

[45] B. Grosz, Collaborative systems, AI Magazine 17 (1996) 67-85.

[46] B. Grosz, S. Kraus, Planning and acting together, AI Magazine 20 (1999) 23-

34.

[47] J. Halpern, Y. Moses, A guide to completeness and complexity for modal logics

of knowledge and belief, Artificial Intelligence 54 (1992) 319-379.

[48] L. He, T. Ioerger, Combining bundle search with buyer coalition formation in

electronic markets: a distributed approach through explicit negotiation, in:

Proceedings of the 6th International Conference on Electronic Commerce

(ICEC-04), Delft, The Netherlands, 2004, pp. 95-104.

[49] J. Hintikka, Knowledge and Belief, Cornell University Press, New York, 1962.

[50] C. Hoare, An axiomatic basis for computer programming, Comm. ACM 12 (10)

(1969) 576-580.

 217

[51] P. Hoel, Introduction to Mathematical Statistics, John Wiley & Sons, New

York, 1984

[52] J. Hu, M. Wellman, Online learning about other agents in a dynamic multi-

agent system, in: Proceedings of the 2nd International Conference on

Autonomous Agents (Agents-98), Minneapolis, Minnesota, 1998, pp. 239-246.

[53] M. Huber, E. Durfee, Deciding when to commit to action during observation-

based coordination, in: Proceedings of the 1st International Conference on

Multi-Agent Systems (ICMAS-95), San Francisco, California, 1995, pp. 163-

170.

[54] M. Huber, E. Durfee, On acting together: without communication, in:

Proceedings of the AAAI Spring Symposium on Representing Mental States

and Mechanisms, Stanford, California, 1995, pp. 60-71.

[55] M. Huhns, D. Bridgeland, Multi-agent truth maintenance, IEEE Transactions

on Systems, Man and Cybernetics 21 (1991) 1437-1445.

[56] U. Hustadt, Do we need the closed world assumption in knowledge

representation, in: Proceedings of the 1st Workshop of Knowledge

Representation Meets Databases (KRDB-94), Saarbrucken, Germany, 1994, pp.

24-26.

[57] T. Ioerger, R. Volz, J. Yen, Modeling cooperative, reactive behaviors on the

battlefield using intelligent agents, in: Proceedings of the 9th Conference on

Computer Generated Forces (CGF-00), Orlando, Florida, 2000, pp. 13-23.

[58] T. Ioerger, JARE Menu, Available at http://jare.sourceforge.net, 2001.

 218

[59] T. Ioerger, Literature review: modeling teamwork as part of human behavior

representation, Technical Report TSSTI-TR-10-03, Training System Science

and Technology Initiative, Texas A&M University, College Station, Texas,

2003.

[60] T. Ioerger, Reasoning about beliefs, observability, and information exchange in

teamwork, in: Proceedings of the 17th International Conference of the Florida

Artificial Intelligence Research Society (FLAIRS-04), Miami Beach, Florida,

2004, pp. 23-31.

[61] H. Isozaki, H. Katsuno, A semantic characterization of an algorithm for

estimating others' beliefs from observation, in: Proceedings of the 13th National

Conference on Artificial Intelligence (AAAI-96), Menlo Park, California, 1996,

pp. 543-549.

[62] H. Isozaki, H. Katsuno, Observability-based nested belief computation for

multi-agent systems and its formalization, in: Lecture Notes in Intelligent

Agent, vol. 1757, 2000, pp. 27-41.

[63] N. Jennings, Commitments and conventions: the foundation of coordination in

multi-agent systems, Knowledge Engineering Review 8 (1993) 223-250.

[64] N. Jennings, L. Varga, R. Aarnts, J. Fuchs, P. Skarek, Transforming standalone

expert systems into a community of cooperating agents, Engineering

Applications of AI 6 (1993) 317-331.

[65] N. Jennings, Controlling cooperative problem-solving in industrial multi-agent

systems using joint intentions, Artificial Intelligence 75 (1995) 195-240.

 219

[66] D. Jensen, M. Atighetchi, V. Lesser, Learning quantitative knowledge for

multi-agent coordination, in: Proceedings of the National Conference on

Artificial Intelligence (AAAI-99), Orlando, Florida, 1999, pp. 24-31.

[67] G. Kaminka, M. Tambe, Robust agent teams via socially-attentive monitoring,

Journal of Artificial Intelligence Research 12 (2000) 105-147.

[68] G. Kaminka, D. Pynadath, M. Tambe, Monitoring deployed agent teams, in:

Proceedings of the International Conference on Autonomous Agents (Agents-

01), Quebec, Canada, 2001, pp. 308-315.

[69] G. Kaminka, M. Tambe, Monitoring teams by overhearing: a multi-agent plan-

recognition approach, Journal of Artificial Intelligence Research 17(2002) 83-

135.

[70] D. Kinny, M. Ljungberg, A. Rao, G. Tidhar, E. Werner, E. Sonenberg, Planned

team activity, in: Proceedings of the 4th European Workshop on Modeling

Autonomous Agents in a Multi-Agent World (MAAMAW-92), Viterbo, Italy,

1992, pp. 226-256.

[71] G. Klein, Recognition-primed decisions, Advances in Man-Machine Systems

Research 5 (1989) 47–92.

[72] G. Klein, J. Orasanu, R. Calderwood, C. Zsambok, Decision Making in Action:

Models and Methods, Ablex Publishing Corporation, Norwood, New Jersey,

1993.

[73] R. Klimoski, S. Mohamed, Team mental model: construct or methaphor,

Journal of Management 20 (1994) 403-437.

 220

[74] K. Konologe, A Deduction Model of Belief, Morgan Kaufmann, New York,

1986.

[75] S. Kraus, J. Rosenschein, The role of representation in interaction: discovering

focal points among alternative solutions, ACM SIGOIS Bulletin 13 (1992) 12-

25.

[76] S. Kraus, Negotiation and cooperation in multi-agent environments, Artificial

Intelligence 94 (1997) 79-98.

[77] Y. Kuniyoshi, S. Rougeaux, M. Ishii, Cooperation by observation: the

framework and basic task patterns, in: Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA-94), San Diego, California,

1994, pp. 767-774.

[78] Y. Lashkari, M. Metral, P. Maes, Collaborative interface in agents, in:

Proceedings of the 12th National Conference on Artificial Intelligence (AAAI-

94), Seattle, Washington, 1994, pp. 444-449.

[79] N. Lesh, C. Rich, C. Sidner, Using plan recognition in human-computer

collaboration, in: Proceedings of the 7th International Conference on User

Modeling (UM-99), Banff, Canada, 1999, pp. 23-32.

[80] H. Levesque, A logic of implicit and explicit belief, in: Proceedings of the

National Conference on Artificial Intelligence (AAAI-84), Austin, Texas, 1984,

pp. 198-202.

 221

[81] H. Levesque, P. Cohen, J. Nunes, On Acting Together, in: Proceedings of the

National Conference on Artificial Intelligence (AAAI-90), Boston,

Massachusetts, 1990, pp. 94-99.

[82] B. Linder, W. Hoek, J. Meyer, Seeing is believing - and so hearing and

jumping, in: Lecture Notes in Artificial Intelligence, vol. 992, 1995, pp. 402-

413.

[83] J. Mathieu, G. Goodwin, T. Heffner, E. Salas, J. Cannon-Bowers, The influence

of shared mental models on team process and performance, Journal of Applied

Psychology 85 (2000) 273-283.

[84] M. Mazer, Reasoning about knowledge to understand distributed AI systems,

IEEE Transactions on Systems, Man and Cybernetics 21 (1991) 1333-1346.

[85] D. McAllester, A three valued truth maintenance system, AI Memo 473, MIT

Artificial Intelligence Laboratory, MIT, Cambridge, Massachusetts, 1978.

[86] B. Mellers, A. Schwartz, A. Cooke, Judgment and decision making, Annual

Review of Psychology 49 (1998) 447–478.

[87] M. Miller, J. Yin, T. Ioerger, J. Yen, R. Volz, Training teams with collaborative

agents, in: Proceedings of the 5th International Conference on Intelligent

Tutoring Systems (ITS-00), Quebec, Canada, 2000, pp. 63-72.

[88] G. Monahan, A survey of partially observable Markov decision processes:

theory, models, and algorithms, Management Science 28 (1982) 1-16.

[89] R. Moore, Reasoning about Knowledge and Action, MIT Press, Cambridge,

Massachusetts, 1980.

 222

[90] B. Morgan, Measurement of team behaviors in a Navy environment, Naval

Training Systems Center, Orlando, Florida, 1986.

[91] D. Musto, K. Konolige, Reasoning about perception, in: Proceedings of the

AAAI Spring Symposium on Reasoning about Mental States (RMS-93),

Stanford, California, 1993, pp. 90-95.

[92] S. Parsons, M. Wooldridge, Game theory and decision theory in multi-agent

systems, in: Proceedings of the 1st Autonomous Agents and Multi-Agent

Systems (AAMAS-02), Bologna, Italy, 2002, pp. 243-254.

[93] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible

Inference, Morgan Kaufmann, New York, 1988.

[94] J. Pollack, Knowledge and Justification, Princeton University Press, Princeton,

New Jersey, 1974.

[95] D. Pynadath, M. Tambe, Multi-agent teamwork: analyzing the optimality and

complexity of key theories and models, in: Proceedings of the 1st Autonomous

Agents and Multi-Agent Systems Conference (AAMAS-02), Bologna, Italy,

2002, pp. 873-880.

[96] A. Rao, M. Georgeff, BDI agents: from theory to practice, in: Proceedings of

the 1st International Conference on Multi-Agent Systems (ICMAS-95), San

Francisco, California, 1995, pp. 312-319.

[97] C. Rich, C. Sidner, COLLAGEN: when agents collaborate with people, in:

Proceedings of the 1st International Conference on Autonomous Agents

(Agents-97), Marina del Rey, California, 1997, pp. 284-291.

 223

[98] S. Ross, Stochastic Processes, Wiley, Alameda, California, 1996.

[99] W. Rouse, N. Morris, On looking into the black box: prospects and limits in the

search for mental models, Psychological Bulletin 100 (1986) 349-363.

[100] W. Rouse, J. Cannon-Bowers, E. Salas, The role of mental model in team

performance in complex systems, IEEE Transactions on Systems, Man, and

Cybernetics 22 (1992) 1296-1308.

[101] R. Rozich, A practical method for proactive information exchange within multi-

agent teams, M.S. Thesis, Department of Computer Science, Texas A&M

University, College Station, Texas, 2003.

[102] S. Russell, P. Norvig, Artificial Intelligence A Modern Approach, Prentice

Hall, Upper Saddle River, New Jersey, 1995.

[103] C. Sakama, K. Inoue, Prioritized logic programming and application to

commonsense reasoning, Artificial Intelligence 123 (2000) 185–222.

[104] T. Sandholm, Distributed rational decision making, in: G. Weiss (Ed.), Multi-

Agent Systems, MIT Press, Cambridge, Massachusetts, 1999, pp. 201-258.

[105] T. Schelling, The Strategy of Conflict, Oxford University Press, Oxford, United

Kingdom, 1963.

[106] J. Schmidhuber, J. Zhao, Multi-agent learning with the success-story algorithm,

in: G. Weiss and J. Gerhard (Eds.), Distributed Artificial Intelligence Meets

Machine Learning: Learning in Multi-Agent Environment, Springer, New

York, 1996, pp. 82-93.

 224

[107] J. Searle, Internationality: An Essay in the Philosophy of Mind, Cambridge

University Press, Cambridge, United Kingdom, 1983.

[108] J. Searle, Collective intentions and actions, in: P. Cohen, J. Morgan, M. Pollack

(Eds.), Intentions in Communication, MIT Press, Cambridge, Massachusetts,

1990, pp. 401-415.

[109] S. Sen, E. Durfee, The role of commitment in cooperative negotiation,

International Journal on Intelligent and Cooperative Information Systems 3

(1994) 67-81.

[110] D. Sheskin, Handbook of Parametric and Nonparametric Statistical Procedures,

Chapman & Hall / CRC, Oxford, United Kingdom, 2004.

[111] Y. Shoham, M. Tennenholtz, On the synthesis of useful social laws for artificial

agents societies (preliminary report), in: Proceedings of the National

Conference on Artificial Intelligence (AAAI-92), San Jose, California, 1992,

276-281.

[112] Y. Shoham, Agent-oriented programming, Artificial Intelligence 60 (1993) 51-

92.

[113] J. Sims, Use of partner agents in training systems for complex tasks, M.S.

Thesis, Department of Computer Science, Texas A&M University, College

Station, Texas, 2002.

[114] I. Smith, P. Cohen, Toward a semantics for an agent communications language

based on speech-acts, in: Proceedings of the National Conference of Artificial

Intelligence (AAAI-96), Menlo Park, California, 1996, pp. 24-31.

 225

[115] R. Smith, The contract net protocol: high-level communication and control in a

distributed problem solver, IEEE Transactions on Computers 29 (1980) 1104-

1113.

[116] P. Stone, M. Veloso, Task decomposition, dynamic role assignment, and low-

bandwidth communication for real-time strategic teamwork, Artificial

Intelligence 110 (1999) 241-273.

[117] T. Sugawara, V. Lesser, Learning to improve coordinated actions in

cooperative distributed problem-solving environments, Machine Learning 33

(1988) 129-153.

[118] K. Sycara, C. Lewis, Forming shared mental models, in: Proceedings of the

13th Annual Meeting of the Cognitive Science Society (CSS-91), Chicago,

Illinois, 1991, pp. 400-405.

[119] K. Sycara, M. Paolucci, M. Velsen, J. Giampapa, The RETSINA MAS

infrastructure, Autonomous Agents and Multi-Agent Systems 7 (2003) 29-48.

[120] M. Tambe, P. Rosenbloom, RESC: an approach for real-time dynamic agent

tracking, in: Proceedings of the International Joint Conference on Artificial

Intelligence (IJCAI-95), Quebec, Canada, 1995, pp. 103-111.

[121] M. Tambe, Towards flexible teamwork, Journal of Artificial Intelligence

Research 7 (1997) 83-124.

[122] A. Val, Y. Shoham, Qualitative reasoning about perception and belief, in:

Proceedings of the 15th International Joint Conference on Artificial Intelligence

(IJCAI-97), Nagoya, Japan, 1997, pp. 508-513.

 226

[123] M. Viroli, A. Omicini, An observation approach to the semantics of agent

communication languages, Applied Artificial Intelligence 16 (2002) 775-793.

[124] D. Walz, J. Elam, B. Curtis, Inside a software design team: knowledge

acquisition, sharing, and integration, Comm. ACM 36 (10) (1993) 63-77.

[125] K. Weick, The collapse of sensemaking in organizations: the Mann Gulch

disaster, Administrative Science Quarterly 38 (1993) 628-652.

[126] E. Weisstein, Random Walk: 2-dimensional, Mathworld - A Wolfram Web

Resource, Available at http://mathworld.wolfram.com, 2005.

[127] M. Wooldridge, N. Jennings, Intelligent agents: theory and practice,

Knowledge Engineering Review 10 (1995) 115-152.

[128] M. Wooldridge, A. Lomuscio, Reasoning about visibility, perception and

knowledge, in: Lecture Notes in Artificial Intelligence, vol. 1757, 2000, pp. 1-

12.

[129] M. Wooldridge, A. Lomuscio, A logic of visibility, perception and knowledge:

completeness and correspondence results, in: Proceedings of the 3rd

International Conference on Pure and Applied Practical Reasoning (PAPR-00),

London, United Kingdom, 2000, pp. 23-31.

 [130] M. Wooldridge, A. Lomuscio, Multi-agent VSK logic, in: Proceedings of the

17th European Workshop on Logics in AI (ELAI-00), London, United

Kingdom, 2000, pp. 300-312.

[131] M. Wooldridge, A. Lomuscio, A computationally grounded logic of visibility,

perception and knowledge, Logic Journal of the ZGPL 9 (2001) 257-272.

 227

[132] D. Xu, M. Miller, R. Volz, T. Ioerger, Collaborative agents for C2 teamwork

simulation, in: Proceedings of the International Conference on Artificial

Intelligence (ICAI-03), Las Vegas, Nevada, 2003, pp. 723-729.

[133] P. Xuan, V. Lesser, S. Zilberstein, Communication decisions in multi-agent

cooperation: model and experiments, in: Proceedings of the 5th International

Conference on Autonomous Agents (Agents-01), Quebec, Canada, 2001, pp.

616-623.

[134] B. Yang, Performance Measurement in ADEPT/JxA, M.S. Thesis, Department

of Computer Science, Texas A&M University, College Station, Texas, 1998.

[135] J. Yen, J. Yin, T. Ioerger, M. Miller, D. Xu, R. Volz, CAST: collaborative

agents for simulating teamwork, in: Proceedings of the 17th International Joint

Conference on Artificial Intelligence (IJCAI-01), Seattle, Washington, 2001,

pp. 1135-1144.

[136] J. Yin, M. Miller, T. Ioerger, J. Yen, R. Volz, A knowledge-based approach for

designing intelligent team training systems, in: Proceedings of the 4th

International Conference on Autonomous Agents (Agents-00), Barcelona,

Spain, 2000, pp. 427-434.

[137] J. Yin, A multi-agent framework for simulating proactive teamwork, Ph.D.

Dissertation, Department of Computer Science, Texas A&M University,

College Station, Texas, 2001.

[138] W. Zachary, J. Ryder, J. Hicinbothom, Cognitive task analysis and modeling of

decision making in complex environments, in: J. Cannon-Bowers, E. Salas

 228

(Eds.), Decision Making Under Stress: Implications for Training and

Simulation, American Psychological Association, Washington, D.C., 1997, pp.

315-344.

[139] Y. Zhang, K. Biggers, L. He, S. Reddy, D. Sepulvado, J. Yen, T. Ioerger, A

distributed intelligent agent architecture for simulating aggregate-level behavior

and interactions on the battlefield, in: Proceedings of the 5th World Multi-

Conference on Systemics, Cybernetics, and Informatics (SCI-01), Orlando,

Florida, 2001, pp. 58-63.

[140] Y. Zhang, L. He, K. Biggers, J. Yen, T. Ioerger, Simulating teamwork and

information-flow in tactical operations centers using multi-agent systems, in:

Proceedings of the 10th Conference on Computer Generated Forces (CGF-01),

Norfolk, Virginia, 2001, pp. 529-539.

[141] Y. Zhang, R. Volz, T. Ioerger, S. Cao, J. Yen, Proactive information exchange

during team cooperation, in: Proceedings of the International Conference on

Artificial Intelligence (ICAI-02), Las Vegas, Nevada, 2002, pp. 341-346.

[142] C. Zsambok, L. Beach, G. Klein, A literature review of analytical and

naturalistic decision making, Technical Report, Naval Command, Control and

Ocean Surveillance Center, San Diego, California, 1992.

[143] C. Zsambok, G. Klein, Naturalistic Decision Making, Lawrence Erlbaum

Associates, Mahwah, New Jersey, 1997.

 229

[144] C. Zsambok, Naturalistic decision making: where are we now, in: C. Zsambok,

G. Klein (Eds.), Naturalistic Decision Making, Lawrence Erlbaum Associates,

Mahwah, New Jersey, 1997, pp. 3-16.

 230

APPENDIX A

CALCULATING PROBABILITIES

In this appendix we calculate the probabilities, Pr(NbT , ≤ 0
,PaT), Pr(0

,PaT < NbT ,),

and Pr(0
,PaT < NbT , < 1

,PaT), used by the provider in Chapter VI for calculating the

currency.

• Pr(NbT , ≤ 0
,PaT)

First we need to decide the base from which the provider can estimate NbT , .

There are two bases, depending on the needer’s decision for the need immediately

before NbT , , i.e. the need raised at 1
,
−

NbT . If the needer chose Silence at 1
,
−

NbT , the base for

estimating NbT , is 1
,
−

NbT ; if the needer ActiveAsk or Wait at 1
,
−

NbT , this need can be

satisfied by IP(ls
PaT ,), so the base is ls

PaT , . In this latter case, the calculation is

straightforward, as the provider knows both values.

Pr(NbT , ≤ 0
,PaT)

=Pr(NbT , –(ls
PaT ,) ≤ 0

,PaT –(ls
PaT ,))

=CDFb,N(0
,PaT – ls

PaT ,).

In the former case, the provider knows ls
PaT , but not 1

,
−

NbT . It is easy to conclude

that 1
,
−

NbT < ls
PaT , < NbT , . To seek a reasonable and computationally feasible solution for

deciding the base for NbT , , we used the expected value of where ls
PaT , would lie in the

interval (1
,
−

NbT , NbT ,), which under reasonable assumptions would be half way in

 231

between them. Then, we use ls
PaT , −τn/2 as an estimate for the base for NbT , (τn denotes

the average length of time between needs of I and is defined in Section 6.7.1.1.1).

Pr(NbT , ≤ 0
,PaT)

=Pr(NbT , –(ls
PaT , − τn/2) ≤ 0

,PaT –(ls
PaT , − τn/2))

=CDFb,N(0
,PaT – ls

PaT , +τn/2).

• Pr(1
,PaT ≤ NbT ,)

Pr(1
,PaT ≤ NbT ,)

=∑∞

= 1
,PaTτ

Pr(1
,PaT ≤ NbT , | NbT , =τ)×Pr(NbT , =τ)

=∑∞

= 1
,PaTτ

1×Pr(NbT , =τ)

=∑∞

= 1
,PaTτ

PMFb,N(τ– ls
PaT , +τn/2)

=1–CDFb,N(1
,PaT – ls

PaT , +τn/2)

=∑∞

+= 11 0
,PaTτ

Pr(1
,PaT =τ1)×(1–CDFb,N(τ1– ls

PaT , +τn/2))

=∑∞

+= 11 0
,PaTτ

PMFa,P(τ1– 0
,PaT)×(1–CDFb,N(τ1– ls

PaT , +τn/2)).

Though above equation involves infinite ∞, since the distributions are based on

a finite number of measured values, therefore only a finite number of terms needed to

be added.

• Pr(0
,PaT < NbT , < 1

,PaT)

Pr(0
,PaT < NbT , < 1

,PaT)

 232

=1–Pr(NbT , ≤ 0
,PaT)–Pr(1

,PaT ≤ NbT ,)

=1–CDFb,N(0
,PaT – ls

PaT , +τn/2)–

∑∞

+= 11 0
,PaTτ

PMFa,P(τ1– 0
,PaT)×(1–CDFb,N(τ1– ls

PaT , +τn/2)).

• Pr(0
,PaT < NbT ,)

Pr(0
,PaT < NbT ,) = 1–Pr(NbT , ≤ 0

,PaT)

=1– CDFb,N(0
,PaT – ls

PaT , +τn/2).

 233

APPENDIX B

MULTI-AGENT WUMPUS WORLD MALLET PLAN

(plan wumpusgame(?ca ?f1 ?f2 ?f3)

 (process

 (par

 (while (cond (goal killwumpus))

 (seq

 (do ?ca (findWumpus ?ca))

 (do ?ca (retract (newKnow ?wumpusId ?x ?y)))

) ;end seq

) ;end while

 (while (cond (goal killwumpus))

 (do ?f1 (killWumpus ?f1))

) ;end while

 (while (cond (goal killwumpus))

 (do ?f2 (killWumpus ?f2))

) ;end while

 (while (cond (goal killwumpus))

 (do ?f3 (killWumpus ?f3))

) ;end while

) ;end par

) ;end process

 234

) ;end plan

(plan findWumpus(?ca)

 (effects (newKnow ?wumpusId ?x ?y))

 (process

 (while (cond (not (newKnow ?wumpusId ?x ?y)))

 (do ?ca (moveAndFindStep ?ca))

) ;end while

) ;end process

) ;end plan

(plan moveAndFindStep(?who)

 (process

 (seq

 (do ?who (observe ?who))

 (do ?who (move))

 (do ?who (nextstep ?who))

) ;end seq

) ;end process

) ;end plan

(plan observe(?who)

 (process

 (seq

 (do ?who (see ?who)) ;see is an operator; when see is executed,

 235

 ;all bound (canSeeNow ?who ?item ?x ?y)

 ;will be asserted to KB of ?who

 (do ?who (generateNewKnow ?who))

 (do ?who (updateMostRecentSeen ?who))

 (do ?who (retract (canSeeNow ?who ?anyitem ?anyx ?anyy)))

) ;end seq

) ;end process

) ;end plan

(plan generateNewKnow(?who)

 (process

 (foreach (cond (canSeeNow ?who ?item ?x ?y))

 (if (cond (not (mostRecentSeen ?item ?x ?y)))

 (seq

 (do ?who (assert (mostRecentSeen ?item ?x ?y)))

 (if (cond (wumpus ?item))

 (seq

 (do ?who (assert (newKnow ?item ?x ?y)))

 (do ?who (assert (unsafe ?x ?y)))

) ;end seq

) ;end inner if

) ;end seq

) ;end if

 236

) ;end foreach

);end process

) ;end plan

(plan updateMostRecentSeen(?who)

 (process

 (foreach (cond (mostRecentSeen ?anyLastItem ?anyLastx ?anyLasty))

 (if (cond (not (canSeeNow ?who ?anyLastItem ?anyLastx ?anyLasty)))

 (seq

 (do ?who (retract (mostRecentSeen ?anyLastItem ?anyLastx ?anyLasty)))

 (do ?who (retract (unsafe ?anyLastx ?anyLasty)))

);end seq

) ;end if

) ;end foreach

);end process

) ;end plan

(plan killWumpus(?fi)

 (process

 (par

 (while (cond (not (newKnow ?wumpusId ?x ?y)))

 (seq

 (do ?fi (noop))

 (do ?fi (nextstep ?fi))

 237

);end seq

) ;end while

 (do ?fi (startKill ?fi))

) ;end par

) ;end process

) ;end plan

(plan startKill(?fi)

 (pre-cond (newKnow ?wumpusId ?x ?y))

 (process

 (seq

 (do ?fi (moveToWumpus ?fi ?wumpusId ?x ?y))

 (do ?fi (shootwumpus ?wumpusId ?x ?y))

 (do ?fi (retract (newKnow ?wumpusId ?x ?y)))

 (do ?fi (nextstep ?fi))

) ;end seq

) ;end process

) ;end plan

(plan moveToWumpus(?fi ?wumpusId ?x ?y)

 (process

 (while (cond (notAdjacent ?fi ?wumpusId ?x ?y))

 (do ?fi (moveToStep ?fi ?x ?y))

);end while

 238

) ;end process

) ;end plan

(plan moveToStep(?fi ?x ?y)

 (process

 (seq

 (do ?fi (observe ?fi))

 (do ?fi (moveto ?x ?y))

 (do ?fi (nextstep ?fi))

) ;end seq

) ;end process

) ;end plan

 239

APPENDIX C

CALCULATING RISK IN MULTI-AGENT WUMPUS WORLD

The risk function has been defined in Section 7.2.3.1 as

R = k × (5000 − t) × Prh × Prf

where k=0.01 is the number of wumpuses a fighter can kill per unit time, t is the

number of steps passed, Prh is the probability that the wumpus overhears the message

sent by the carrier, and Prf=0.1 is the probability that the wumpus can win against the

fighter.

The last value to compute is Prh,

Prh = Prr × Pra,

where Prr denotes the probability that an agent is within the wumpus’ hearing range rw,

and Pra denotes the probability that the wumpus pays attention to the message.

Prr must be calculated for all three of carrier’s policies: ProactiveTell, Reply

and WaitUntilNext.

There are two cases to consider for Pra.

a The wumpus is “unalerted” so may or may not pay attention to the

message:

Pra = 0.1.

When it is important to distinguish the alerted and unalerted

conditions in the same expression, the “unalerted” case will be

denoted by Pran; Pran will still have the value 0.1.

 240

b The wumpus is “alerted” by the request send by the fighter so will

pay attention to the coming reply. Calculating Pra in this case is

more complex. However, it needs only be done for two of the three

carrier’s policies, Reply and WaitUntilNext, as in the ProactiveTell

case the wumpus is never alerted.

Next we calculate Prh for three of carrier’s policies: ProactiveTell, Reply and

WaitUntilNext.

C.1. The Case That the Carrier Proactively Tells a Message

Since rc<rw, the carrier is within the wumpus’ hearing range. Therefore Prr=1

and Prh equals to Pra. Thus:

Prh=Pra=0.1.

C.2. The Case That the Carrier Replies a Request sent from a Fighter

When the carrier receives a request, it must select one of the two policies

identified in the general analysis (see Section 6.2.2), i.e., Reply with the location of the

last wumpus sensed or WaitUntilNext time it finds a wumpus. Our analysis follows

these two policies.

C.2.1. Policy – Reply Last Location Found

As part of its decision process, the carrier needs to estimate the possible effect

of a wumpus detecting that it has been found by using the risk function. There are

multiple sub-cases to consider, depending upon whether or not the carrier can still

sense the wumpus. The situation is complicated in that one must consider both the

probability that the wumpus can hear the carrier and the probability that the wumpus

 241

heard the request from the fighter. Fortunately, which case applies can be decided by

the carrier because the fighter sends its location with the request and the carrier thus

knows the locations of both the fighter and the wumpus, as well as the wumpus’

hearing range.

To distinguish the situations of the wumpus hearing the carrier or the fighter,

we add one subscript to Prh, Prr, and Pra to indicate the agent to which it refers; i.e., we

use Prhc and Prhf respectively. We use Prrc and Prrf to denote the probability that the

carrier or the fighter is within the hearing range of the wumpus, and use Prac and Praf to

denote the probability that the wumpus pays attention to the message sent by the carrier

or the fighter. Then, we have:

Prhc=Prrc×Prac, (C-1)

Prhf=Prrf×Praf.

C.2.1.1. Sub-Case 1 – Carrier Can Still Sense Wumpus

If the carrier is still able to sense the last wumpus found at the time of replying,

the carrier is within the wumpus’ hearing range. Therefore, Prrc=1, and we have

Prhc=Prac.

Prac is determined by Prhf, the probability that the wumpus heard the fighter’s request.

Prac is give by the following relation:

Prac=Pran×(1–Prhf)+1×Prhf.

We have seen that Prhf=Prrf×Praf. Since we are considering the fighter who

initializes the communication, the wumpus was “unalerted” at that moment and Praf

was assumed to be 0.1. Since the fighter attached its location to the request, the carrier

 242

knows the distance between the fighter and the wumpus. Therefore Prrf is decidable by

the carrier. There are thus two further sub-cases to consider:

a The fighter was within rw the wumpus hearing radius. In this case,

Prrf=1, and therefore Prhf=Praf = 0.1.

b The fighter was not within rw. In this case, the wumpus could not

hear the fighter and therefore Prrf=0. Prhf=Prrf×Praf =0 × 0.1=0.

Then the carrier will go back and use Prhf and Praf to decide Prhc. If Prhf=0.1

(sub-case a), then Prhc = Praf×(1–Prhf)+1×Prhf = 0.1×(1–0.1)+1×0.1=0.19, and if Prhf=0

(sub-case b), then Prhc= 0.1× (1–0)+1×0=0.1.

C.2.1.2. Sub-Case 2 – Carrier Cannot Sense Wumpus

If the carrier cannot sense wumpus at the time of evaluation, two further sub-

cases may arise:

a The wumpus has stayed at the location last sensed by the carrier.

b The wumpus has jumped since the carrier last saw it.

Prhc can then be calculated as:

(Prhc | WNJ)×Pr(WNJ|)+(Prhc | ¬WNJ)×(1–Pr(WNJ)),

where WNJ means “wumpus not jump” in the interval between when the carrier last

saw it and the present time, conditioned upon the fact that it has not jumped between

when it first appeared in the location it was observed and the time last seen. In the

following, we will first consider Prhc for the two cases and then calculate Pr(WNJ).

If the wumpus has not jumped, the carrier is able to determine whether or not it

is within the wumpus’ hearing range. Prhc is then as calculated in Sub-case 1 above.

 243

If the wumpus has jumped, we assume it no longer pays specific attention to a

message emanating from a carrier within its hearing radius; it simply goes back to the

“unalerted” status and hears the message with probability Prac=0.1; from Eq. (C-1), the

problem then reduces to determining Prrc. The difficulty of determining Prrc is caused

by the fact that the carrier cannot decide whether or not it is within the wumpus’

hearing range. Thus, we must estimate the probability that such is the case. If there is

no other information available about the location, we assume that the wumpus is

randomly placed in the area that is not observable at this moment. The area of the

carrier’s observation rhombus is 2 2
cr +2 cr +1. So the area of possible wumpus location

is O−(2 2
cr +2 cr +1). Since the carrier cannot sense the wumpus, the area in which the

carrier cannot sense the wumpus but can be heard by the wumpus is approximated by

(2 2
wr +2 wr +1)−(2 2

cr +2 cr +1) (recall that rw>rc). Therefore the probability that the carrier

is within the hearing range of this wumpus is:

Prrc=)1r22r(O
)1r22r()12r(2r

c
2
c

c
2
cw

2
w

−−−
−−−−− .

Consequently we have:

Prhc=Prrc×Prac=)1r22r(O
)1r22r()12r(2r

c
2
c

c
2
cw

2
w

−−−
−−−−− ×0.1.

What is left, then, is to calculate Pr(WNJ). Let D0 be the time duration that the

wumpus has stayed at this location before it was first sensed by the carrier, Ds be the

length of time between when the carrier first saw this wumpus and when it last saw this

wumpus, and Dn be the length of time between when the carrier last saw the wumpus

 244

and the current time. The carrier knows Ds and Dn but not D0. Further, let H denote the

time difference between when the carrier last saw the wumpus and the time at which

the wumpus jumps. When a wumpus is created, a random variable, X, is given a value

between 1 and 40 under a uniform distribution. Then, recalling that our notation of

WNJ implied a conditional probability, the probability that the wumpus did not jump

during Dn is equal to:

Pr(WNJ) = Pr(Dn<H| D0+Ds < X).

H must conform to the following constraints:

H∈[1, 40−D0−Ds],

D0∈[1, 40−Ds],

D0+Ds+Dn<40.

We calculate the probability Pr(WNJ), with D0=d and H=h as the random variables:

Pr(Dn<H | D0+Ds<X)

=∑ −−−

=

1DD40

1d
ns Pr(D0=d) × Pr(Dn<H | D0+Ds<X ∧ D0=d)

=∑ −−−

=

1DD40

1d
ns Pr(D0=d) × Pr(Dn+D0+Ds<H+D0+Ds | D0+Ds<X ∧ D0=d)

But, H+D0+Ds = X, the random duration chosen for the next wumpus jump. Thus,

Pr(Dn<H | D0+Ds<X)

=∑ −−−

=

1DD40

1d
ns

sD40
1
−

 × Pr(Dn+D0+Ds<X | D0+Ds<X ∧ D0=d)

=∑ −−−

=

1DD40

1d
ns

sD40
1
−

 ×
d)D|XDPr(D

d)D|XDDPr(D

0s0

0s0n

=<+
=<++

 245

=∑ −−−

=

1DD40

1d
ns

sD40
1
−

 ×
40

)Dd(D40 sn ++− ×
)D(d40

40

s+−

=∑ −−−

=

1DD40

1d
ns

sD40
1
−

 ×
)D(d40

)Dd(D40

s

sn

+−
++− .

C.2.2. Policy – Carrier Decides to Wait until Next Finding after Receiving

Request

In the case that the carrier will wait until the next time it finds a wumpus,

though it does not know the wumpus’ location at this moment, the carrier can be sure

that it will be inside of the wumpus’ hearing radius rw at the time of finding because rc

< rw. Therefore the probability that the carrier is within the hearing range of the

wumpus, Prrc, is one:

Prrc = 1.

Then since Prhc = Prrc×Prac, Prhc = Prac, the probability that the wumpus pays

attention to the reply. Prac is again determined by Prhf, the probability that the wumpus

heard the request sent by the fighter, by the form defined in Sub-case 1:

Prac=Pran×(1–Prhf)+1×Prhf.

As noted above Prhf=Prrf×Paf; hence the carrier needs to calculate 1) Prrf, the probability

that the fighter was inside of the wumpus’ hearing radius rw at the time of sending the

request, and 2) Praf, the probability that the wumpus pays attention to the request that is

within its hearing range. For Prrf, the carrier will not know if the fighter is inside of rw,

because the carrier does not know the wumpus’ location at this moment. The carrier

can use a method similar to the one it uses to calculate Prrc in Sub-case 2 in Section

C.2.1. Then Prrf = ((2rw
2–2rw–1)–(2rf

2–2rf–1))/(O–(2rf
2 –2rf–1)). Praf=0.1 because the

 246

wumpus was in “unalerted” status at the time of the fighter sending the request.

Therefore, in this case,

Prhc

=Prrc×Prac

=1×Prac

=Praf×(1–Prhf)+1×Prhf

=0.1×

(1–0.1×
)1r22r(O

)1r22r()12r(2r

f
2
f

f
2
fw

2
w

−−−
−−−−−)+

1×(0.1×
)1r22r(O

)1r22r()12r(2r

f
2
f

f
2
fw

2
w

−−−
−−−−−)

=0.1+0.09×
)1r22r(O

)1r22r()12r(2r

f
2
f

f
2
fw

2
w

−−−
−−−−− .

In summation, risk will take place for three of carrier’s policies: ProactiveTell,

Reply and WaitUntilNext. The following table shows Prh, the probability that the

wumpus overhears the message sent by the carrier, for these policies. Once Prh is

computed, risk can be easily computed.

 247

 Probability
Policy

Prh

ProactiveTell 0.1
Fighter was
within rw

0.19

Carrier
still see
wumpus Fighter was not

within rw
0.1

Fighter was
within rw

0.19× E{Pr(Dn<J)}+

)1r22r(O
)1r22r()12r(2r

c
2
c

c
2
cw

2
w

−−−
−−−−− ×0.1×

(1– E{Pr(Dn<J)})

Reply

Carrier
not see
wumpus

Fighter was not
within rw

0.1× E{Pr(Dn<J)}+

)1r22r(O
)1r22r()12r(2r

c
2
c

c
2
cw

2
w

−−−
−−−−− ×0.1×

(1– E{Pr(Dn<J)})

WaitUntilNext 0.1+0.09×

)1r22r(O
)1r22r()12r(2r

f
2
f

f
2
fw

2
w

−−−
−−−−−

 248

APPENDIX D

CALCULATING PROBABILITY OF CORRECTNESS IN

MULTI-AGENT WUMPUS WORLD

The probability of currency, P, is shown in Section 7.2.3.4 to be

Pr(tu–tp<J)

where tu is the time at which the fighter arrives at wumpus’ location, tp is the time at

which the carrier finds this wumpus, and J denotes the difference between the time at

which the value for I was produced and the time at which the wumpus jumps. Since

some parameters of P may be unknown, we compute the expected probability E{Pr(tu–

tp<J)}.

In Section 7.2.3.4, we examine the GeneralCase and deduce Eq. (7-5) for

calculating E{Pr(tu–tp<J)} in this case:

E{Pr(tu–tp<J)}

=∑ ∑=

−

= −
×

40

1d

d40

1j d40
1

40
1

×

∑ ∑+

−=

−−+

−−−=

)σX ,20min(

)σX max(1,X

|))XX|σ(Y min(20,

|))XX|σ(Y max(1,Y
cl

clc

clccl

clcclc 1σ22σ
1

++
×

∑ ∑+

−=

−−+

−−−=

)rX ,20min(

)rX max(1,X

|))XX|(rY min(20,

|))XX|(rY max(1,Y
cc

ccw

cwcc

cwccw 1r22r
1

c
2
c ++

×fm(Xw, Yw, Xf, Yf, j)

where σ = max(tp–tcl, 0) is the length of time the carrier moves from the time tcl to tp; tcl

is the most recent time at which the decision maker knows the location of the carrier;

Lcl=(Xcl , Ycl) is the carrier’s location last known by the decision maker; Lc=(Xc, Yc) is

 249

the carrier’s location at time tp; Lw=(Xw, Yw) is the wumpus’s location at time tp;

Lf=(Xf , Yf) is a fighter’s location at tn, the time at which the fighter needs a wumpus’

location; and rc is the observable rhombus vertex distance from the carrier.

Based on the GeneralCase and Eq. (7-5), this appendix calculates E{Pr(tu–

tp<J)} for each situation/policy combination.

D.1. Situation PA: The Carrier Finds a Wumpus’ Location – ProactiveTell

In this case, tp= 0
,PaT , which is known to the carrier, and tn= NbT , , which is

unknown. However, the value for I provided at time 0
,PaT , IP(0

,PaT), may not always be

used for the need that arose at NbT , because the wumpus might jump before the fighter

arrives at the wumpus’ location. P is specified as:

Pr(tu– 0
,PaT <J),

where tu, the time at which the fighter arrives at the wumpus’ location, will be specified

later. This probability can be evaluated conditionally on two sub-cases:

Pr(tu– 0
,PaT <J | NbT , ≤ 0

,PaT) × Pr(NbT , ≤ 0
,PaT)

+ Pr(tu– 0
,PaT <J | 0

,PaT < NbT ,) × Pr(0
,PaT < NbT ,).

Pr(NbT , ≤ 0
,PaT) and Pr(0

,PaT < NbT ,) are calculated in Appendix A. Below we

consider Pr(tu– 0
,PaT <J) for the two sub-cases. Since some variables of this probability

are unknown, we calculate E{Pr(tu–tp<J)}.

 250

D.1.1. Sub-case PT–1 NbT , ≤ 0
,PaT

The carrier is the decision maker and t=tcl=tp= 0
,PaT . Thus, σ = max(0, tp – tcl) =

0, and the two summations involving σ in Eq. (7-5) reduce to a single point. Also, since

the carrier knows Lw, the summations over possible wumpus locations are irrelevant,

leaving only the portions involving D0 (the length of time that the wumpus was in its

current location before being sensed by the carrier), J and the fighter location. There

are then two further sub-cases to consider: 1) the carrier senses the fighter at this

moment, 0
,PaT , and 2) the carrier does not sense the fighter at 0

,PaT .

In the first sub-case, Lf is known. Since there is a pending need (because in this

case NbT , ≤ 0
,PaT) and the location of the wumpus is being proactively told, the fighter

will immediately use the information and start moving toward the wumpus. Hence, tu =

0
,PaT + Dk

26. Lf and Lw are known and hence Dk is known. In addition, since Dk is

known, this puts a lower bound on the values of j27 that are possible, and this in turn,

places an upper bound on the range of value of d that is possible. Hence, Eq. (7-5)

reduces to:

E{Pr(tu–tp<J)}

=Pr(0
,PaT +Dk– 0

,PaT <J)

=Pr(Dk < J)

26 Recall that Dk is the distance the fighter must travel to reach the wumpus, and since the fighter moves
one step per unit of time, Dk is also the time it take the fighter to reach the wumpus.
27 Recall from Chapter VII that j and d are random variables representing J and D0, respectively.

 251

=∑ ∑−

=

−

+= −
×

1D-40

1d

d40

1Dj
k

k d40
1

40
1 (D-1)

We call this case SimpleCase, because E{Pr(tu–tp<J)} simply needs one input

Dk. Having probabilities of d and j, E{Pr(tu–tp<J)} can be computed and then all other

parameters in expression (7-3) are irrelevant. Therefore for any other case that Dk is

known, it can be classified to the SimpleCase and the currency can be calculated with

Eq. (D-1).

If the carrier does not sense the fighter, Lf is unknown. However, it is still the

case that the fighter will use the information as soon as it receives it. Thus, tu = 0
,PaT +

Dk. The fighter must have moved to the location of the last wumpus that the fighter

killed. The last wumpus the fighter killed could be either a wumpus whose location

was sent to the fighter by the carrier (which is not necessarily the last one told by the

carrier), or a wumpus the fighter found itself. Since the carrier is much more likely to

find a wumpus than the fighter, we ignore the latter case, and assume that, at tn, the

fighter killed a wumpus whose location was sent by the carrier. However it would be

hard for the carrier to know, among those wumpuses’ locations which have been sent

to the fighter, which is the last wumpus the fighter killed. It could be the last one the

carrier sent or some other one before the last one. Since we assumed that NbT , is the

first need that arose after ls
PaT , (see Section 6.7.1), we assume the wumpus last killed is

the one immediately before the last one the carrier told the fighter about at ls
PaT , . Hence

Lf is approximated by the last wumpus location which the carrier sent it just before

 252

ls
PaT , . Denote this as Lwl-1. So Lf = Lwl-1. By having estimation for Lf, Dk is known. This

case is the SimpleCase and E(Pr(tu – tp < J)} can be calculated with Eq. (D-1).

D.1.2. Sub-case PT–2 0
,PaT < NbT ,

In this case, tu depends upon the decision the needer will make at NbT , and the

provider’s response decision at NbT , . We consider combinations of cases.

Pr(tu– 0
,PaT <J | 0

,PaT < NbT , ∧ En) × Pr(En),

where En, n=1,..,4, denote the following events:

E1: needer decides to Wait at NbT , ;

E2: needer decides to keep Silence at NbT , ;

E3: needer decides to ActiveAsk at NbT , ∧ provider decides to Reply at

NbT , ;

E4: needer decides to ActiveAsk at NbT , ∧ provider decides to

WaitUntilNext at NbT , .

Based on the analysis in Section 6.7.1.1.2, the needer won’t use IP(0
,PaT) for

events E1 and E4. Hence we do not consider these cases. Specially in this domain the

needer will not use IP(0
,PaT) given E3 either. This is because we are considering

Proactivetell at 0
,PaT , so the only condition under which the provider will decide to

reply at NbT , is NbT , = 1
,PaT . Therefore the needer won’t use IP(0

,PaT) for E3 and hence we

also do not need to consider it.

 253

Then the case left is E2. Here we first consider E(Pr(tu – tp < J)} for E2 and then

compute Pr(E2).

D.1.2.1. Calculating Pr(tu– 0
,PaT <J | 0

,PaT < NbT ,) ∧ E2)

• PT–2 E2: needer decides to keep Silence at NbT ,

In this case, tu = NbT , + Dk. Also t = tp = tcl = 0
,PaT which is known, and tn= NbT ,

which is unknown. Thus, σ = tp – tcl = 0, and the summations in Eq. (7-5) dealing with

σ and carrier movement reduce to a single term. Also, since the wumpus location is

known, the summations in Eq. (7-5) that deal with wumpus location reduce to a single

term. Since tn > tp, the fighter is chasing a wumpus up until time NbT , . Either it is

chasing a wumpus whose location was sent to it by the carrier, or it chasing a wumpus

it found itself. Since the carrier is much more likely to find a wumpus than the fighter,

we ignore the latter case, and assume that the fighter is chasing a wumpus whose

location was sent to it by the carrier. With this assumption, what is needed, then, is

some way to estimate the unknown time NbT , .

From the information supplied by the fighter with active asks (and occasionally

with the forced deadlock-breaking protocol), the carrier can determine the average

time, τn, taken by the fighter to reach and kill a wumpus, measured from the time at

which it received the wumpus location (which is not necessarily the time at which it

 254

started chasing the wumpus). Thus, the carrier can estimate NbT , to be ls
PaT , + τn/228

 (see

Section 6.7.1.1.1). In the current sub-case, though, we are considering NbT , > 0
,PaT , and

there is no guarantee that ls
PaT , + τn/2 > 0

,PaT . Thus, we will use

NbT , = max(0
,PaT +1, ls

PaT , + τn/2).

Since NbT , > 0
,PaT , NbT , – 0

,PaT would be used to reduce the range of the

summations over j and d, and the computation for Pr(tu – tp < J) reduces to:

Pr(tu – tp < J)

=∑ ++−−

=

)1Dt(t40

1d
kpn

40
1

×∑ −

++−= −
d40

1Dttj kpn d40
1 (D-2)

We call this case ReducedSimpleCase because the difference between this case

and the SimpleCase is that this case uses tn – tp to further reduce the ranges of

summation. So for any later case if it knows Dk and tp, and tn>tp, we will classify it to

ReducedSimpleCase.

D.1.2.1.1. Calculating Pr(E2)

• Pr(E2):Pr(needer decides to keep Silence at NbT ,)

Pr(needer decides to keep Silence at NbT ,)

=Pr(U(e, NA, Silence, NbT , , tp, {m}) > Max(U(e, NA, ActiveAsk, NbT , , tp, {m}), U(e,

NA, Wait, NbT , , tp, {m}))),

where tp will be replaced, for a given policy, by the value called for in that policy.

28 It would, of course, be theoretically possible to use the distribution obtained from EDF and add
another level of summation to the expression for Pr(tu – tp <J).

 255

The solution involves evaluating the utility function under each of the possible

policies the needer might make at NbT , . The most difficult part is to determine the

currency. Determinations of currency involve a set of parameters. As before, for an

unknown NbT , , we use an estimate:

NbT , = max(0
,PaT +1, ls

PaT , + τn/2).

Having this estimate, next we will specify all parameters which are need for Eq. (7-5)

to calculate the currency. We consider three needer’s possible policies separately.

Needer δ = Silence

The evaluation of Silence for the needer under the condition that a need has

arisen is given in Section D.2.4.6, which requires these inputs for calculating the

currency: Dk, Ds, Dn, tn and tp. Since we are evaluating the carrier’s estimation for the

fighter’s use of Silence at NbT , , the carrier needs to use its own knowledge to fill in

these inputs. However the carrier‘s knowledge may be quite different from that of the

fighter because of their different observabilities and motions. Moreover for the present

case NbT , is in the future so the carrier is estimating the fighter’s future decisions, while

in Section D.2.4.6, the needer considers using a previous value. This makes the carrier

be unable to know some of the inputs for calculating the currency in Section D.2.4.6.

For example, in Section D.2.4.6, Dk is known to the fighter because the fighter knows

itself’s location Lf and the wumpus’s location Lw. However for the present case the

carrier may has no way to know Lw if this location will be provided in the future. So

 256

the carrier cannot use the form of Section D.2.4.6 to calculate the currency. Instead, it

should consider tp and then decide which form of currency it can use.

Let’s consider tp first. We estimate 1
,PaT = 0

,PaT + τP, where τP is the average

length of time for producing a new value for I. Since we have an estimate for NbT ,

(NbT , = max(0
,PaT +1, ls

PaT , + τk/2)), then we are able to decide the order of 0
,PaT , 1

,PaT and

NbT , . We consider two cases: 1) 0
,PaT < NbT , < 1

,PaT and 2) 1
,PaT ≤ NbT , .

In the case of 0
,PaT < NbT , < 1

,PaT , tp = 0
,PaT so the carrier knows Lw. As before Lf

is approximated by the last wumpus location which the carrier sent. So the carrier

knows Lf. Therefore Dk is known. This case is exactly the same with Sub-case PT-2 E2

(ReducedSimpleCase), where the fighter also will use IP(0
,PaT). E{Pr(tu–tp<J)} will be

estimated with the same form of Eq. (D-2).

In the case of 1
,PaT ≤ NbT , , tp is the most recent production time before NbT , . We

assume tp equals the most recent production time before tn (see Section 6.7.1.1.1.1 for

rationale). Then we use Eq. (6-1) for tp. Thus tp= 0
,PaT +Z×τp where Z =

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢ −

p

0
,

τ
Pab,N TT

)

which returns 0 or an positive integer, meaning the number of productions during NbT ,

and 1
,PaT . Therefore

σ = max(0, tp–tcl) = tp – 0
,PaT = 0

,PaT +Z×τp – 0
,PaT = Z×τp.

 257

The carrier knows Lcl its current location at 0
,PaT . It also knows Lf which is assumed to

be the last wumpus location which the carrier sent to the fighter. Since NbT , > 0
,PaT ,

NbT , – 0
,PaT would be used to reduce the range of the summations over j and d. Then

E{Pr(tu–tp <J)} can be approximated as the follows:

E{Pr(tu–tp<J)}

=∑ ∑+−−

=

−

+−= −
×

1)t(t40

1d

d40

1ttj
pn

pn d40
1

40
1

×

∑ ∑+

−=

−−+

−−−=

)σX ,20min(

)σX max(1,X

|))XX|σ(Y min(20,

|))XX|σ(Y max(1,Y
cl

clc

clccl

clcclc 1σ22σ
1

++
×

∑ ∑+

−=

−−+

−−−=

)rX ,20min(

)rX max(1,X

|))XX|(rY min(20,

|))XX|(rY max(1,Y
cc

ccw

cwcc

cwccw 1r22r
1

c
2
c ++

×fm(Xw, Yw, Xf, Yf, j) (D-3).

We call this case ReducedGeneralCase because besides requiring σ, Lcl and Lf as what

the GeneralCase does, this case also uses tn – tp to reduce summations. For any later

case which has the same requirement, we classify it to ReducedGeneralCase and the

currency can be calculated with Eq. (D-3).

Needer δ = Wait

The evaluation of Wait for the needer is given in Section D.2.4.7, which

requires these inputs for calculating the currency: σ, Lf and Lcl. Since there is a need,

we assume tp is the next production time after 0
, NbT . Thus we can use Eq. (6-2) to

estimate tp. Thus tp= 0
,PaT +(Z+1)×τp. Also since 0

,PaT is the most recent time at which the

carrier know is own location (in fact 0
,PaT is the current time), so tcl = 0

,PaT , then:

 258

σ = max(0, tp – tcl) = tp – 0
,PaT =(Z+1)×τp.

Having estimations for σ, and knowing Lcl, its own location at 0
,PaT , which is

the current time, and Lf, the last wumpus location which the carrier sent to the fighter,

the carrier is able to calculate E{Pr(tu–tp<J)} with Eq. (7-5) of the GeneralCase.

Needer δ = ActiveAsk

In this case, tp depends on the carrier’s responding decision at NbT , . So the

carrier needs to estimate whether it will Reply or WaitUntilNext at NbT , . The carrier

needs to calculate Pr(provider decides to Reply at NbT ,) and Pr(provider decides to

WaitUntilNext at NbT ,). It is enough to compute one of them because they are

complement to each other. We choose Pr(carrier decides to Reply at NbT ,).

Pr(provider decides to Reply at tn)

=Pr(U(e, PB, Reply, NbT , , tp, {m}) > U(e, PB, WaitUntilNext, NbT , , tp, {m})),

where tp will be replaced, for a given policy, by the value called for in that policy.

If Provider δ = Reply, tp is the production time just before tn, and we use Eq.

(6-1) to estimate tp. Thus tp= 0
,PaT +Z×τp. As before, Lf = Lwl-1. Since t < 0

,PaT < NbT , , tcl =

0
,PaT . Then:

σ = max (0, tp – tcl) = Z×τp.

Lcl is the carrier’s location at the current time 0
,PaT . Lf is approximated by the

last wumpus location which the carrier sent to the fighter at time 0
,PaT . In conclusion,

 259

the carrier uses estimated tp= 0
,PaT +Z×τp to calculate σ, uses its current location at 0

,PaT

as Lcl, and uses the wumpus location provided to the fighter at 0
,PaT to estimate Lf.

Since 0
,PaT < NbT , , NbT , – 0

,PaT would be used to reduce the range of the summations over

j and d. This case is ReducedGeneralCase because it requires σ and Lcl and Lf as inputs

and has tp<tn. E{Pr(tu–tp<J)} can be calculated with Eq. (D-3).

If Provider δ = WaitUntilNext, tp is the production time just after 0
, NbT , we use

Eq. (6-2) to estimate tp. Thus tp= 0
,PaT +(Z+1)×τp. Since t< 0

,PaT < NbT , , tcl = 0
,PaT . Then:

σ = tp – tcl = (Z+1)×τp.

Lcl is the carrier’s location at 0
,PaT and Lf is approximated by Lwl, which is the

wumpus location provided to the fighter at 0
,PaT . This case is the GeneralCase because

it requires σ and Lcl and Lf as inputs. E{Pr(tu–tp<J)} can be calculated with Eq. (7-5).

Once the currency for three possible policies can be computed, their utilities

can be computed and then Pr(needer decides to keep Silence at NbT ,) is deterministic

either 1 or 0.

D.2. Situation PA: the carrier finds a wumpus’ location – Silence

In this case,

Pr(tu−tp < J),

where tp may be before, equal to, or after 0
,PaT , depending upon decisions the agents

make, and tu will be the time at which the fighter arrives at the wumpus’ location. This

probability can be evaluated conditionally on two sub-cases:

 260

Pr(tu−tp < J) × Pr(NbT , ≤ 0
,PaT)

+ Pr(tu−tp < J) × Pr(0
,PaT < NbT ,)

Pr(NbT , ≤ 0
,PaT) and Pr(0

,PaT < NbT ,) are calculated in Appendix A. We now

consider E{Pr(tu−tp < J)} for two sub-cases.

D.2.1. Sub-case PS–1 NbT , ≤ 0
,PaT

In this case, the needer could not have chosen ActiveAsk because otherwise, the

needer would have asked and the provider would be obligated to provide the value at

0
,PaT and could not choose Silence. Therefore the needer must be either Waiting for a

proactive tell from the provider or keeping Silence, so we use IP(ls
PaT ,). We consider

combinations of these two cases:

∑ =

6

5n
Pr((tu−tp < J | NbT , ≤ 0

,PaT ∧ En) × Pr(En),

where En, n=5 and 6, denote the following events:

E5: needer decides to Wait at NbT , ;

E6: needer decides to keep Silence at NbT , .

We first calculate E{Pr(tu−tp < J)} for E5 and E6 and then compute Pr(E5) and

Pr(E6).

D.2.1.1. Calculating E{Pr(tu−tp < J)} for E5 and E6

• PS–1 E5: needer decides to Wait at NbT ,

 261

In this case, we have t = tcl = 0
,PaT , and tn= NbT , , which is unknown. Since the

carrier knows tcl, so Lcl is known. tp is the next ProactiveTell time, which will be at

some future production time (not necessarily the next production time). Since by

assumption there is a need at t, the fighter must have chased the wumpus whose

location was most recently sent to it. This wumpus location was denoted by Lwl which

is the wumpus’ location at time ls
PaT , . As before, we approximate Lf by Lwl. Since tp is

the production time just after 0
, NbT , we use Eq. (6-2) to estimate tp. Thus

tp= 0
,PaT +(Z+1)×τp. We approximate σ as:

σ = tp – t = 0
,PaT +(Z+1)×τp.

All of the parameters needed for evaluating Eq. (7-5) (the GeneralCase), σ, Lcl

and Lf, are thus estimated and this equation can be used to estimate E{Pr(tu – tp < J)}.

• PS–1 E6: needer decides to keep Silence at NbT ,

In this case, t= tcl = 0
,PaT , tn= NbT , , which is unknown, and tp= ls

PaT , , the known

time of the most recent value for I the needer has. ls
PaT , must be less than t, and must

correspond to the time at which some previous proactive tell occurred. As an estimate,

we will consider the two most recent wumpus locations sent to the fighter and assume

that the fighter has just killed the next-to-last wumpus and is about to chase the most

recent wumpus, whose location was sent. While this situation is not guaranteed, it is

the most likely situation. We also take the wumpus location that will be sought to be

Lw = Lwl, and hence it is known. Having this estimate for Lf and Lw, Dk turns out to be

 262

a fixed number. Since tn>tp, we also need to consider unknown tn. Therefore tn – tp

would be used to reduce the range of the summations over j and d. We approximate tn

by

NbT , = max(ls
PaT , +1, min(ls

PaT , + τn/2, 0
,PaT)).

Since Dk and tp are known, and tn>tp, this is ReducedSimpleCase and then

E{Pr(tu–tp<J)} can be estimated with Eq. (D-2).

D.2.1.2. Calculating Pr(En)

• Pr(E6): Pr(needer decides to keep Silence at NbT ,)

Pr(needer decides to keep Silence at NbT ,)

=Pr(U(e, NA, Silence, NbT , , ls
PaT , , {m}) > U(e, NA, Wait, NbT , ,

0
,PaT , {m}),

where as before, we estimate NbT , = max(ls
PaT , +1, min(ls

PaT , + τn/2, 0
,PaT)). We assume

Lwl-1 is the wumpus’ location the carrier sent just before ls
PaT , and the carrier knows this

time.

The solution will involve (the provider) evaluating the utility function under

each of the possible policies the needer might make at tn = NbT , . The evaluation of the

utility function includes cost, timeliness and currency (risk is only associated with the

carrier). Having tp and tn, determinations of cost and timeliness are straightforward.

Next we consider the currency for each policy.

Needer δ = Silence

 263

The evaluation of Silence for the needer under the condition that a need has

arisen is given in Section D.2.4.6, which requires the following inputs for calculating

the currency: Dk, Ds, Dn, tn and tp. Since we are evaluating the carrier’s estimation for

the needer’s use of Silence at tn, the carrier will use its own knowledge to fill in these

inputs. Let’s consider these inputs one by one.

Dk. Under our assumption, the fighter will be at Lwl-1 at time tn. This is also the

time at which the fighter begins to chase the wumpus at Lwl, thus Lf = Lwl-1. We also

take the wumpus location that will be sought to be Lw = Lwl, and hence Lw is known.

Having this estimate for Lf and Lw, Dk turns out to be a fixed number.

Ds and Dn. During the time interval [ls
PaT , , tn], where tn = max(ls

PaT , +1, min(ls
PaT ,

+ τn/2, 0
,PaT)), the carrier is able to determine Ds, the length of time between when the

carrier first saw this wumpus and when it last saw this wumpus, and Dn, the time

duration since the carrier last saw the wumpus. Having these inputs, the carrier is able

to estimate the currency given in Section D.2.4.6.

Needer δ = Wait

The evaluation of Wait for the needer under the condition that a need has arisen

is given in Section D.2.4.7, which requires the following inputs for calculating the

currency: σ, Lf and Lcl. However, in this case, tp=tcl= 0
,PaT , and σ = max(0, tp−tcl) = 0.

Since σ=0, the carrier did not move so Lcl is irrelevant. Also as before Lf is

approximated by Lwl-1. Having estimations for Lf, this fits the form of Sub-case PT-1,

 264

which also has σ=0. The currency will be estimated with the same form of Sub-case

PT-1 (Eq. (D-1) for the SimpleCase).

Once the currency for three possible policies can be computed, their utilities

can be computed. Consequently the estimated needer’s decision is deterministic, thus

the needer will choose a policy which has the max utility. So the probability that the

needer will choose this policy is 1. Since the needer only can make one decision at a

decision point, so the probability of choosing other policies is 0. Then Pr(needer

decides to keep Silence at NbT ,) equals either 0 or 1.

• Pr(E5): Pr(needer decides to Wait at NbT ,)

The event E5 is complement of E6. Pr(E5)=1–Pr(E6).

D.2.2. Sub-case PS–2 0
,PaT < NbT ,

In this case, tp and tu depend upon the decision the needer will make at NbT , and

the provider’s decision at NbT , . We consider combinations of cases:

∑ =

10

7n
Pr(tu–tp <J | 0

,PaT < NbT , ∧ En) × Pr(En),

where En, n=7,..,10, denote the following events:

E7: needer decides to Wait at NbT , ;

E8: needer decides to keep Silence at NbT , ;

E9: needer decides to ActiveAsk at NbT , ∧ provider decides to Reply at

NbT , ;

 265

E10: needer decides to ActiveAsk at NbT , ∧ provider decides to

WaitUntilNext at NbT , .

Based on Section 6.7.1.2.2, IP(tp) will be used for all events. So we first must

consider E{Pr(tu–tp <J)} for all events and then compute Pr(En). Generally these

computations need parameters: tp and tcl to calculate σ=max(0, tp–tcl), Lcl the carrier’s

most recent known location, and Lf the fighter’s location at time NbT , .

D.2.2.1. Calculating E{Pr(tu–tp <J)} for E7-E10

• PS–2 E7: needer decides to Wait at NbT ,

This case is very similar to Sub-case PS–1 E5. Sub-case PS–1 E5 also requires

that the needer be waiting when the need occurs. Sub-case PS–1 E5 uses Eq. (7-5)

which requires three parameters: σ, Lcl and Lf. In order to calculate σ, the carrier needs

tp and tcl. In the present case, tp can be estimated by the same way in Sub-case PS–1 E5:

tp = 0
,PaT +(Z+1)×τP, and tcl equals to the current time 0

,PaT . Then Lcl is the carrier’s

current location at 0
,PaT . As before Lf is approximated by Llw-1. Having σ, Lcl and Lf,

this is GeneralCase and then Eq. (7-5) may be used for currency.

• PS–2 E8: needer decides to keep Silence at NbT ,

In this case, t= tcl = 0
,PaT . Since the carrier knows tcl, so Lcl is known. As before,

Lf=Lwl-1. Since tp<tn, tn – tp would be used to reduce the range of the summations over j

and d. As in Sub-case PS–2, E5, we approximate tn by

NbT , = max(0
,PaT +1, ls

PaT , + τn/2).

 266

tp is the time at which the last wumpus’ location the carrier will have sent to the

fighter (not necessarily ls
PaT ,). We use an estimation 1

,PaT = 0
,PaT +τP. Having estimations

for tn and 1
,PaT , we are able to determine their order. If 0

,PaT <tn< 1
,PaT , tp = ls

PaT , ;

otherwise we assume tp equals the most recent production time before tn: tp= 0
,PaT +Z×τP.

If tp= ls
PaT , , this case is very similar to Sub-case PS–1 E6, the GeneralCase,

which also required that the needer keep silence when the need occurred. The only

difference in the present case is that the range of possible values for NbT , is different.

Then, Eq. (7-5) may be used as in Sub-case PS–1 E6 with the revised value for NbT , .

If tp = 0
,PaT +Z×τP, this case is the ReducedGeneralCase because it requires σ,

Lcl and Lf, and has tp < tn.since tcl < 0
,PaT , then

σ = tp – tcl = Z×τP+ 0
,PaT – 0

,PaT = Z×τP.

E{Pr(tu–tp <J)} can be calculated with Eq. (D-3).

• PS–2 E9: needer decides to ActiveAsk at NbT , ∧ provider decides to Reply at

NbT ,

In this case, tcl = t = 0
,PaT , and the carrier knows its own location Lcl. The fighter

will be at Lwl-1 at time NbT , ; thus Lf = Lwl-1. Since tp<tn, tn – tp would be used to reduce

the range of the summations over j and d. As in Sub-case PS–2 E7, we approximate tn

by

NbT , = max(0
,PaT +1, ls

PaT , + τn/2).

 267

tp could be either 0
,PaT or some production time greater than 0

,PaT . Different

values for tp will lead to σ equal to zero or not and this consequently will result in using

different forms to calculate E{Pr(tu–tp <J)}.

As before we use an estimation 1
,PaT = 0

,PaT + τP. Having estimations for tn and

1
,PaT , we are able to determine their order. If 0

,PaT < tn < 1
,PaT , tp = 0

,PaT . This case is

exactly the same with Sub-case PT-2 E2, where the fighter also will use IP(tp). Pr(tu–

tp<J) will be estimated with the same form of Eq. (7-5) in Sub-case PT-2 E2 (the

GeneralCase).

If 1
,PaT ≤ tn, tp is the production time just before tn; we use Eq. (6-1) to estimate

tp: tp= 0
,PaT +Z×τP. Then:

σ = tp – tcl = Z×τP+ 0
,PaT – 0

,PaT = Z×τP.

This case is ReducedGeneralCase because it requires σ, Lcl and Lf as inputs, and uses

tn – tp to reduce summations. E{Pr(tu–tp<J)} will be estimated with Eq. (D-3).

• PS–2 E10: needer decides to ActiveAsk at NbT , ∧ provider decides to

WaitUntilNext at NbT ,

In this case, tcl = t = 0
,PaT , and the carrier knows its own location Lcl. The fighter

will be at Lwl-1 at time NbT , , thus Lf = Lwl-1. As in Sub-case PS–2, E7, we approximate tn

by

NbT , = max(0
,PaT +1, ls

PaT , + τn/2).

 268

The carrier will reply the next wumpus’ location found after tn. tp can be

approximated by Eq. (6-2): tp= 0
,PaT +(Z+1)×τP. Then:

σ = tp – tcl = 0
,PaT +(Z+1)×τP– 0

,PaT = (Z+1)×τP.

This case is GeneralCase because it requires σ, Lcl and Lf as inputs. Eq. (7-5) may be

used for currency.

D.2.2.2. Calculating Pr(En)

We consider Pr(En) (n=7-10):

E7: needer decides to Wait at NbT , ;

E8: needer decides to keep Silence at NbT , ;

E9: needer decides to ActiveAsk at NbT , ∧ provider decides to Reply at

NbT , ;

E10: needer decides to ActiveAsk at NbT , ∧ provider decides to

WaitUntilNext at NbT , .

These events cannot occur simultaneously. In order to estimate the needer’s

decisions, the provider must compute utilities for all needer’s possible policies. Once

the utilities can be computed, the estimated needer’s decision is deterministic, thus the

needer will choose a policy which has the max utility. So the probability that the

needer will choose this policy is 1. Since the needer only can make one decision at a

decision point, so the probability of choosing other policies is 0. For example, if the

utility of Silence is greater than that of Wait and ActiveAsk, then Pr(needer decides to

 269

keep Silence at NbT ,) = 1 and Pr(needer decides to Wait at NbT ,) = 0 and Pr(needer

decides to ActiveAsk at NbT ,) = 0. Therefore we can identify that Pr(En) is deterministic

either 1 or 0. This means these probabilities are dependent with each other. For

example, in order to compute Pr(E7) which is about policy Wait, we must also consider

the other two possible policies Silence and ActiveAsk, and if Pr(E7)=1 then the other

two policies become impossible decision for the needer. Since consideration of the

probability about one of the needer’s decisions includes evaluating utilities for all

policies, here we only show the probability about one of the needer’s decisions and the

probability about one of the provider’s responding decisions, and then the probabilities

for all four events can be determined. We choose Pr(needer decides to keep Silence at

NbT ,) and Pr(provider decides to Reply at NbT ,).

In order to compute Pr(needer decides to Wait at NbT ,), again we need to

compute utility for all Wait, Silence and ActiveAsk. This process is very similar to what

has been done in Sub-case PT–2 where we computed Pr(needer decides to Wait at

NbT ,) under the condition that NbT , > t. There is only one difference between Sub-case

PT–2 and the present case. For the present case, since the provider won’t provide

IP(0
,PaT), so for the case of needer’s δ= Silence, if 0

,PaT < NbT , < 1
,PaT , tp = ls

PaT , (tp = 0
,PaT

for the previous case). Therefore in this case σ= max(0, tp – tcl) will be computed with

tp = ls
PaT , . Except this difference, any other computation for this case is exactly the same

with that of Sub-case PT–2. So Pr(needer decides to Wait at NbT ,) is computable.

 270

In order to compute Pr(provider decides to Reply at NbT ,), again we need to

compute utility for both Reply and WaitUntilNext. This process is exactly the same as

Sub-case PT–2 needer δ=ActiveAsk, where we computed Pr(provider decides to Reply

at NbT ,) under the condition that the needer ActiveAsks for I at tn and tn > t. So we can

compute Pr(provider decides to Reply at NbT ,) with the same manner.

D.3. Situation PB: the carrier receives a request from a fighter – Reply

In this case, tn = t = Tb,q, tu = Tb,q+Dk and tp = 0
,
q

PaT , which is the latest

production time before the request time, Tb,q. Also, tp < tn, and the carrier knows both

of them. Because the carrier is assumed to reply with the last observed wumpus’

location, it also knows Lw. We presume that in addition to asking the carrier the

location of the wumpus, the fighter will also tell the carrier its own location so that the

carrier can use it as a point of reference. Therefore Lf is known, and hence Dk is

determined.

During the time interval (tp, t], the carrier may still be able to sense the wumpus

some of the time. Therefore (tp, t] could be divided into two time durations: Ds, the

length of time between the carrier’s first sight of this wumpus and its last sight of this

wumpus, and Dn, the time duration from the carrier last saw the wumpus to the current

time. Ds will decrease the hypothesis space of D0 from [1, 40] to [1, 40–Ds]. Dn, plus tn

– tp, will increase the lower bound on the values of j and decrease the upper bound on

the range of value of d. This case is similar to the ReducedSimpleCase because Dk and

tp are known and tn>tp. E{Pr(tu–tp<J)} is calculated with

 271

E{Pr(tx–tp<J)}

=∑ +++−−−

=

1)DDt(tD40

1d
knpns

sD40
1
−

×∑ −−

+++−=

s

knpn

Dd40

1DDttJ
sDd40

1
−−

.

D.4. Situation PB: the carrier receives a request from a fighter – WaitUntilNext

In this case, since tp is a future time but tcl is the current time, so σ≠0. We need

to use Eq. (7-5) to compute currency. Eq. (7-5) requires three parameters σ, Lcl and Lf.

For this case, t = tcl = tn = Tb,q, tp = 1
,
q

PaT , and tu = 1
,
q

PaT +Dk; where 1
,
q

PaT is the next

production time following the request time, Tb,q. Since the carrier knows tcl, so Lcl is

known. We presume that the fighter will attach its location to the request at Tb,q, so Lf

is known. And σ = max(0, tp – tcl) = tp – Tb,q. We can use an estimation

tp=max(0
,
q

PaT +τP, Tb,q+1). Then:

σ = tp – Tb,q =max(0
,
q

PaT +τP, Tb,q+1) – Tb,q.

This case is the GeneralCase because it needs σ, Lcl and Lf. Eq. (7-5) will be used for

computing currency.

D.5. Situation NA: the fighter needs a wumpus’ location – ActiveAsk

In this case, tn= 0
, NbT . tp and tu depend upon the provider’s responding decision at

0
, NbT . We consider the following expression which can be evaluated by considering two

sub-cases:

∑ =

12

11n
Pr(tu−tp<J | En) × Pr(En),

where En, n=11 and 12, denote the following events:

 272

E11: provider decides to Reply at 0
, NbT ;

E12: provider decides to WaitUntilNext at 0
, NbT .

Below we first consider Pr(tu−tp<J | En) and then Pr(En).

D.5.1. Calculating E{Pr(tu−tp<J)} for E11 and E12

• E11: provider decides to Reply at 0
, NbT

In this case, the fighter is the decision maker. The fighter knows t = tn = 0
, NbT ,

but tp= 0
,
a

PaT < tn and tp is unknown; 0
,
a

PaT is the time at which the carrier most recently

produced a wumpus’ location.

The fighter will know a set of previous locations of the carrier, because we

presume that, in addition to telling the fighter the location of the wumpus, the carrier

also tells the fighter its own location. The most recent location of the carrier that the

fighter knows is at time ls
PaT , , which denotes the time at which the carrier last sent a

wumpus location to the fighter. Note that ls
PaT , must be less than tp, because the carrier

will not choose Reply if no new wumpus’ location has been produced after ts. So tcl =

Tb,r
29 and the fighter knows Lcl. As before we assume that tp is the most recent

production time just before tn. Thus we estimate tp as tp = Tb,r+Z×τP, where Z =

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢ −

p

rb,
0

τ
Tb,NT

. Then:

σ = max(0, tp – tcl) = Z×τP+Tb,r–Tb,r = Z×τP.

29 Recall from Chapter VI that Tb,r is the most recent time at which the needer received a message from
the carrier.

 273

The fighter can obtain τP from the data about the average time between (new)

wumpus findings sent from the carrier.

This case is ReducedGeneralCase because it needs σ, Lcl and Lf, and has tp< tn.

E{Pr(tu–tp<J)} will be calculated with Eq. (D-3).

• E12: provider decides to WaitUntilNext at 0
, NbT

In this case, t = tn = 0
, NbT , which is known, and tp = 1

,
a

PaT , the next time at which

the carrier finds a wumpus, which is unknown. Thus we estimate tp by tp = (Z+1)×τP+

Tb,r. Then:

σ = max(0, tp – tcl) = (Z+1)×τP+Tb,r–Tb,r = (Z+1)× τP.

This case is the GeneralCase because it needs σ, Lcl and Lf. E{Pr(tu–tp<J)} will

be calculated with Eq. (7-5).

D.5.2. Calculating Pr(En)

Next we consider Pr(E11) and Pr(E12), the needer’s estimate to the provider’s

responding decision.

• Pr(E11): Pr(provider decides to Reply at 0
, NbT)

Pr(provider decides to Reply at 0
, NbT)

=Pr(U(e, PB, Reply, 0
, NbT , tp, {m}) > U(e, PB, WaitUntilNext, 0

, NbT , tp, {m})),

where tn= 0
, NbT for both policies.

 274

If provider δ = Reply, tp is the production time just before tn= 0
, NbT . We estimate

tp as tp= Tb,r+Z×τP, where Z =
⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢ −

p

rb,
0

τ
Tb,NT

.Since the fighter may not know the carrier’s

location from the fighter’s limited observability. Hence, we use the location sent at

time Tb,r. If Z=0 which means that no new production after the last told, Pr(provider

decides to Reply at 0
, NbT) = 0, because the carrier won’t resend the last told. Otherwise

σ = max(0, tp – tcl) = tp – tcl. Also the fighter knows its own location Lf at tn. Since tp<tn,

tn – tp would be used to reduce the range of the summations over j and d. Therefore this

case is ReducedGeneralCase because it needs σ, Lcl and Lf, and has tp<tn. Pr(tu–tp<J)

can be estimated with Eq. (D-3).

If provider δ = WaitUntilNext, tp is the production time just after 0
, NbT . We

estimate tp as Tb,r+(Z+1)×τP, where Z =
⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢ −

p

rb,
0

τ
Tb,NT

. Also σ = max(0, tp – tcl) = tp – tcl.

Meanwhile the fighter knows its own location Lf at tn. This case is the GeneralCase

because it needs σ, Lcl and Lf. Pr(tu–tp<J) can be estimated with Eq. (7-5).

After computing the currency, the risk can be estimated using Table 2 and

hence Pr(provider decides to Reply at 0
, NbT) be estimated to be either 1 or 0.

• Pr(E12): Pr(provider decides to WaitUntilNext at 0
, NbT)

The event E12 is the complement of E11. So Pr(E12) = 1 – Pr(E11).

 275

D.6. Situation NA: the fighter needs a wumpus’ location – Silence

In this case, t=tn= 0
, NbT , tp=Tb,r, the time at which agent b most recently received

a wumpus location, and tu= 0
, NbT +Dk. The fighter knows Lf and Lw; hence Dk is

determined. Likewise, tp, and tn are known, hence all other variables including Lc, Lw

and Lf are known. This fits the ReducedSimpleCase and we can calculate the

concurrency with Eq. (D-2).

D.7. Situation NA: the fighter needs a wumpus’ location – Wait

In this case, tn= 0
, NbT . tp is the next ProactiveTell time after 0

, NbT . Since there is a

need, we assume tp is the next production time after 0
, NbT . Thus we tp as Tb,r+(Z+1)×τP.

Then:

σ = max(0, tp – tcl) = (Z+1)×τP+ Tb,r – Tb,r = (Z+1)× τP.

This case is the GeneralCase because it needs σ, Lcl and Lf. E{Pr(tu–tp<J)} can

be estimated with Eq. (7-5).

D.8. Situation NB: the fighter receives a wumpus’ location

In this situation, the fighter will Accept the wumpus location received. The

decision is deterministic, so we do not consider this case.

 276

VITA

Yu Zhang received a B.S. and a M.S., both in computer science, from Central

South University, P.R.China in 1995 and 1998 respectively, and a Ph.D in computer

science from Texas A&M University in December 2005.

She has been employed as a research assistant in the Department of Computer

Science at Texas A&M University from 1999 to fall 2003 and 2004. During the fall of

2003, she was a lecturer of an undergraduate core course, CPSC206 Programming in

C, for the same department.

She has over 10 papers published in journals and refereed conferences during

her study at Texas A&M University. Her research interests include distributed

intelligent systems, uncertainty in AI, machine learning, human-computer interaction,

knowledge representation and modeling, and robotics automation and tele-operation.

She currently is an assistant professor in the Department of Computer Science at

Trinity University. She can be reached at:

Yu Zhang
Department of Computer Science
Trinity University
San Antonio, TX 78212-7200.

	INTRODUCTION
	1.1. Motivation
	1.2. Investigating Effective Communication
	1.2.1. Observability
	1.2.2. Proactivity
	1.2.3. Challenges

	1.3. Our Approach and Its Contributions
	1.4. Structure of the Dissertation
	RELATED WORK
	2.1. Teamwork as Represented by Artificial Intelligence
	2.1.1. Teamwork Theories
	2.1.1.1. Joint Intention
	2.1.1.2. Shared Plan
	2.1.1.3. Commitments and Conventions
	2.1.1.4. Planned Team Activity

	2.1.2. Teamwork Systems
	2.1.2.1. STEAM
	2.1.2.2. GRATE*
	2.1.2.3. COLLAGEN

	2.2. Decision Making Models in Agent Research
	2.2.1. Classic Decision Theory
	2.2.1.1. Decision Theory
	2.2.1.2. Bayesian Probability Theory
	2.2.1.3. Markov Decision Processes (MDPs)
	2.2.1.4. Game Theory

	2.2.2. Naturalistic Decision Making

	2.3. Decision-Theoretic Modeling Communication
	2.3.1. Selective Communication
	2.3.2. Probabilistic Plan Recognition
	2.3.3. Game-Theoretic Recursive Modeling
	2.3.4. Optimal Communication among a Team
	2.3.5. Multi-Agent Markov Decision Process
	2.3.6. Dec_POMDP_Com
	2.3.7. COM-MTDP

	2.4. Other Effective Communication Approaches
	2.4.1. Centralization Modeling
	2.4.2. Comparative Reasoning
	2.4.3. Social Conventions
	2.4.4. Focal Points

	2.5. Observability and Belief Maintenance
	2.5.1. Knowledge and Belief
	2.5.2. Visibility, Seeing, and Knowledge Logic
	2.5.3. Beliefs of Agents
	2.5.4. Seeing Is Believing
	2.5.5. Nested Belief Reasoning
	2.5.6. Cooperation by Observation

	2.6. Problem-Specific Prediction
	2.6.1. OVERSEER
	2.6.2. Successful Story Learning
	2.6.3. Regression Modeling

	2.7. Psychological Study of Shared Mental Model in Human Teamwork
	2.8. Context of Work at TAMU
	2.8.1. TaskableAgents
	2.8.2. Collaborative Agents for Simulating Teamwork
	2.8.3. Proactive Information Exchange

	PROACTIVE COMMUNICATION: AN OVERVIEW
	3.1. The OP-CAST Architecture
	3.2. Agent Execution Cycle
	3.3. Proactive Communication
	3.3.1. Observation-Based Proactive Communication
	3.3.2. Dynamic Information Prediction
	3.3.3. Decision-Theoretic Proactive Communication

	3.4. Summary

	OBSERVATION-BASED PROACTIVE COMMUNICATION
	4.1. Motivation and Overview
	4.2. Preliminaries
	4.2.1. Plans
	4.2.2. Actions
	4.2.3. Environment and Properties
	4.2.4. Agent Beliefs

	4.3. Agent Observability
	4.3.1. Syntax of Observability
	4.3.2. Semantics of Observability
	4.3.2.1. An Agent’s Observability
	4.3.2.2. An Agent’s Belief about Another Agent’s Observability

	4.4. Belief Maintenance
	4.4.1. Belief Consistency and Compatibility
	4.4.2. Inferring Agent Beliefs
	4.4.3. An Overall Belief Maintenance Algorithm
	4.4.4. ReasonSelfObs: Reasoning Beliefs about Agent’s Own Observability
	4.4.5. ReasonSelfBel: Reasoning Beliefs about Others’ Observabilities
	4.4.6. Update: Maintaining Belief Consistency and Compatibility

	4.5. OBPC: Observation-Based Proactive Communication
	4.6. Summary

	DYNAMIC INFORMATION PREDICTION
	5.1. Motivation and Overview
	5.2. Considcertations of Statistical Models
	5.3. Empirical Distribution Function
	5.4. Data Acquisition
	5.4.1. Source of History and System Initialization
	5.4.2. Acquisition of History
	5.4.3. Message Format to Convey History

	5.5. Important Issues
	5.5.1. Preventing the Provider from Having History Starvation
	5.5.2. Preventing Communication Deadlock

	5.6. Summary

	DECISION-THEORETIC PROACTIVE COMMUNICATION
	6.1. Motivation and Overview
	6.2. Policies and Time Points
	6.2.1. Situation PA: Provider Produces a Value for I
	6.2.2. Situation PB: Provider Receives a Request about I
	6.2.3. Situation NA: Needer Has a Request about I Arise
	6.2.4. Situation NB: Needer Receives I

	6.3. DTPC Model
	6.4. Utility Function
	6.4.1. Defining the Utility Function
	6.4.2. Identifying Information Production and Need Time in the Utility Function

	6.5. Cost Function
	6.6. Value Function
	6.6.1. Timeliness Function
	6.6.2. Currency Function

	6.7. Calculating Probability of Currency
	6.7.1. Situation PA: Provider Produces a Value for I
	6.7.1.1. PA – ProactiveTell Is Used
	6.7.1.1.1. Sub-case1 ≤
	6.7.1.1.2. Sub-case 2 <
	6.1.1.1.2.1. Calculating Pr(NOPRODUCE(,tu) | < (En)
	6.1.1.1.2.2. Calculating Pr(En)

	6.7.1.2. PA – Silence Is Used
	6.7.1.2.1. Sub-case1 ≤
	6.7.1.2.2. Sub-case 2 Pr(<)

	6.7.2. Situation PB: Provider Receives a Request about I
	6.7.3. Situation NA: Needer Has a Request about I Arise
	6.7.3.1. NA – ActiveAsk Is Used
	6.7.3.2. NA – Silence Is Used
	6.7.3.3. NA – Wait Is Used

	6.7.4. Situation NB: Needer Receives a Value for I

	6.8. Decision-Making Processes
	6.9. Decision-Theoretic Proactive Communication
	6.10. Summary

	AN APPLICATION DOMAIN DESIGN AND EVALUATIONS
	7.1. Evaluation of Observability
	7.1.1. Multi-Agent Wumpus World
	7.1.2. Problem Analysis
	7.1.3. Results and Analysis
	7.1.3.1. Overall Effectiveness of Observability
	7.1.3.2. Effectiveness of Different Perspectives of Observability
	7.1.3.3. OBPC’s Contributions to Team Scalability

	7.2. Evaluation of Proactive Communication
	7.2.1. Adjusted Multi-Agent Wumpus World
	7.2.2. Problem Analysis
	7.2.3. Determining the Form of the Utility Function
	7.2.3.1. Risk Function
	
	7.2.3.2. Cost Function
	7.2.3.3. Timeliness Function
	7.2.3.4. Concurrency Function
	7.2.3.4.1. General Ideas
	7.2.3.4.2. A Study of the General Case
	7.2.3.4.3. Approximations for Pr(L()

	7.2.4. EDF Implementation Issues
	7.2.5. Experiments
	7.2.5.1. Comparison Conditions

	7.2.5.2. Experiment Data
	7.2.5.3. Measurements
	7.2.5.4. Experiment Basics
	7.2.5.5. System Developments Validation and Analysis
	
	7.2.5.6. Effectiveness Evaluation and Analysis

	7.3. Summary

	CONCLUSIONS AND FUTURE WORK
	8.1. Conclusions
	8.2. Future Work
	8.2.1. Extensions to This Research
	8.2.2. Future Directions

	C.1. The Case That the Carrier Proactively Tells a Message
	C.2. The Case That the Carrier Replies a Request sent from a Fighter
	D.1. Situation PA: The Carrier Finds a Wumpus’ Location – ProactiveTell
	D.1.1. Sub-case PT–1 ≤
	D.1.2. Sub-case PT–2 <
	D.1.2.1. Calculating Pr(tu– <J | <) (E2)
	D.1.2.1.1. Calculating Pr(E2)

	D.2. Situation PA: the carrier finds a wumpus’ location – Silence
	D.2.1. Sub-case PS–1 ≤
	D.2.1.1. Calculating E{Pr(tu(tp < J)} for E5 and E6
	D.2.1.2. Calculating Pr(En)
	D.2.2. Sub-case PS–2 <
	D.2.2.1. Calculating E{Pr(tu–tp <J)} for E7-E10
	D.2.2.2. Calculating Pr(En)

	D.3. Situation PB: the carrier receives a request from a fighter – Reply
	D.4. Situation PB: the carrier receives a request from a fighter – WaitUntilNext
	D.5. Situation NA: the fighter needs a wumpus’ location – ActiveAsk
	D.5.1. Calculating E{Pr(tu(tp<J)} for E11 and E12
	D.5.2. Calculating Pr(En)

	D.6. Situation NA: the fighter needs a wumpus’ location – Silence
	D.7. Situation NA: the fighter needs a wumpus’ location – Wait
	D.8. Situation NB: the fighter receives a wumpus’ location

