KINETIC ISOTOPE EFFECTS, DYNAMIC EFFECTS, AND

MECHANISTIC STUDIES OF ORGANIC REACTIONS

A Dissertation
by
ZHIHONG WANG
Submitted to the Office of Graduate Studies of Texas A\&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY

December 2005

Major Subject: Chemistry

KINETIC ISOTOPE EFFECTS, DYNAMIC EFFECTS, AND MECHANISTIC STUDIES OF ORGANIC REACTIONS

A Dissertation
by
ZHIHONG WANG

Submitted to the Office of Graduate Studies of Texas A\&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY

Approved by:
Chair of Committee, Daniel A. Singleton
Committee Members, David E. Bergbreiter
Kevin Burgess
Jerry Tsai
Head of Department, Michael P. Rosynek

December 2005

Major Subject: Chemistry

ABSTRACT
Kinetic Isotope Effects, Dynamic Effects, and Mechanistic Studies of
Organic Reactions. (December 2005)
Zhihong Wang, B.S., Nankai University;
M.S., Nankai University
Chair of Advisory Committee: Dr. Daniel A. Singleton

Several organic reactions that could potentially involve coarctate transition states were investigated by a combination of experimental and theoretical studies.

In the thermal fragmentation of $\Delta-1,3,4$-oxadiazolines, the mechanism supported by kinetic isotope effects and theoretical calculations is a three-step process that does not demonstrate any special stabilization in coarctate transition states. Rather than undergoing a direct coarctate conversion to product, the mechanism avoids coarctate steps. The last step is a concerted coarctate reaction, but being concerted may be viewed as being enforced by the necessity to avoid high-energy intermediates.

In the deoxygenation of epoxides with dichlorocarbene, the stabilization from the transition state aromaticity is not great enough to compete with the preference for asynchronous bonding changes. KIEs and calculations suggested that the reaction occurs in a concerted manner but with a highly asynchronous early transition state with much more $\mathrm{C}_{\alpha}-\mathrm{O}$ bond breaking than $\mathrm{C}_{\beta}-\mathrm{O}$ bond breaking.

In the Shi epoxidation, a large β-olefinic ${ }^{13} \mathrm{C}$ isotope effect and small α-carbon isotope effect indicated an asynchronous transition state with more advanced formation of the $\mathrm{C}-\mathrm{O}$ bond to the β-olefinic carbon. The calculated lowest-energy transition structures are generally those in which the differential formation of the incipient $\mathrm{C}-\mathrm{O}$ bonds, the "asynchronicity," resembles that of an unhindered model, and the imposition of greater or less asynchronicity leads to higher barriers. In reactions of cis-disubstituted and terminal alkenes using Shi's oxazolidinone catalyst, the asynchronicity of the epoxidation transition state leads to increased steric interaction with the oxazolidinone when a π-conjugating substituent is distal to the oxazolidinone but decreased steric interaction when the π-conjugating substituent is proximal to the oxazolidinone.

Dynamic effects were studied in Diels-Alder reaction between acrolein and methyl vinyl ketone. This reaction yields two products in a ratio of 3.0 ± 0.5. Theoretical studies shows that only one transition structure is involved in the formation of both. Quasiclassical trajectory calculations on an MP2 surface give a prediction of a product ratio of $45: 14(3.2: 1)$, which is in good agreement with the experimental observation.

ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor, Dr. Singleton, for his guidance and support throughout the course of this research, and for inspiring me with his enthusiasm and erudition.

I would like to thank my committee members, Dr. Bergbreiter, Dr. Burgess, and Dr. Tsai for their precious time and advice.

My thanks also go to all Singleton group members for their selfless help and friendship. I also need to thank all my friends in Texas A\&M University for making my time here a great experience.

Finally, my deepest appreciation goes to my parents who have always supported and encouraged me in the journey of my life, and the love of my life for always giving me hope when I feel weak and lost.

TABLE OF CONTENTS

Page
ABSTRACT iii
ACKNOWLEDGMENTS v
TABLE OF CONTENTS vi
LIST OF FIGURES ix
LIST OF TABLES xii
CHAPTER
I INTRODUCTION 1
Kinetic Isotope Effects - Fundamental Theory 2
Statistical Thermodynamic Expressions for Isotope Effects 8
Kinetic Isotope Effects Prediction from Calculational Information 10
Measurement of Kinetic Isotope Effects 11
Kinetic Isotope Effects from Experimental Data 15
Coarctate Transition State Theory 19
II ISOTOPE EFFECTS AND THE MECHANISM OF FRAGMENTATION OF EPOXY IMINO-1,3,4- OXADIAZOLINES 27
Introduction 27
Results and Discussions 30
Experimental ${ }^{13} \mathrm{C}$ kinetic isotope effects 30
Calculational studies 33
Conclusion 39

CHAPTER
 Page

III ISOTOPE EFFECTS AND THE MECHANISM OF DEOXYGENATIONOF EPOXIDES WITH DICHLOROCARBENE 40
Introduction 40
Results and Discussions 43
Experimental ${ }^{13} \mathrm{C}$ kinetic isotope effects 43
Calculation studies 46
Conclusion 51
IV ISOTOPE EFFECTS AND THE NATURE OF ENANTIOSELECTIVITY IN THE SHI EPOXIDATION. THE IMPORTANCE OF ASYNCHRONICITY 52
Introduction 52
Results and Discussions 57
Experimental isotope effects 57
Theoretical calculations 59
Cis-alkenes and terminal alkenes 71
Conclusions 76
V DYNAMIC CONTROL OF PRODUCT SELECTIVITY IN A DIELS-ALDER REACTION 79
Introduction 79
Results and Discussion 86
Kinetic studies and simulations 86
Theoretical studies 86
Theoretical studies: dynamics 92
Conclusions 95
CHAPTER Page
VI EXPERIMENTAL SECTION 96
General Procedures 96
Fragmentation of Epoxy Inimo-1,3,4-oxadiazolines 97
NMR Measurements 98
Deoxygenation of Epoxides with Dichlorocarbene 101
NMR Measurements 102
Shi Epoxidation of Trans- β-methylstyrene 104
NMR Measurements 105
Diels-Alder Reaction Between Acrolein and Methyl Vinyl Ketone. 107
Calculational studies on the B3LYP/6-31G* Energy surface 109
VII CONCLUSIONS 112
REFERENCES 115
APPENDIX 127
VITA 286

LIST OF FIGURES

FIGURE1 The origin of primary isotope effects, using C-H / C-D as example.5
2 The origin of normal secondary isotope effects 7
3 The origin of inverse secondary isotope effects 7
4 The relationship between fraction of reaction F, ratio of isotopic ratios $\mathrm{R} / \mathrm{R}_{0}$, and KIEs 18
5 Topologies of the electron shifts in organic reactions. 20
6 Formal description of complex reactions with coarctate transition states 21
7 Examples of complex reactions with coarctate transition states 22
8 Topological transformation of cyclopentadienyl anion into the transition state of the cyclopropylcarbene fragmentation 23
9 Oxirane fragmentation of phenylimino oxadiazoline and the proposed coarctate transition state 28
10 Thermolysis of 2-phenylimino- Δ^{3}-1,3,4-oxadiazoline (2) 30
11 X-ray structure of the major diastereomer of 2 31
12 Experimental ${ }^{13} \mathrm{C} \operatorname{KIEs}\left(\mathrm{k}_{12 \mathrm{C}} / \mathrm{k}_{13 \mathrm{C}}\right)$ for the fragmentation of $\mathbf{2}$ at $145-150{ }^{\circ} \mathrm{C}$ 32
13 Predicted mechanism for the fragmentation of computational model 4 34
14 Transition state in the formation of epoxy ketone 12 from 4 35
15 (a) Predicted ${ }^{13} \mathrm{C}$ KIEs based on the $\mathrm{mPW} 1 \mathrm{~K} / 6-31+\mathrm{G}(\mathrm{d}, \mathrm{p})$ version of transition structure 5. (b) Predicted ${ }^{13} \mathrm{C}$ KIEs based on the B3LYP/6-31+G(d,p) version transition structure 5 39
FIGURE Page
16 Alternative intermediates in the fragmentation of 8 39
17 Addition of dichlorocarbene to oxirane and the proposed coarctate transition state 41
18 The ylide pathway of addition of dichlorocarbene to oxirane 42
19 Deoxygenation of styrene oxide 43
20 (a) Experimental ${ }^{13} \mathrm{C}$ KIEs $\left(\mathrm{k}_{12 \mathrm{C}} / \mathrm{k}_{13 \mathrm{c}}\right)$ for the deoxygenation of styrene oxide at $40^{\circ} \mathrm{C}$. Standard deviations in the last digit from four determinations are shown in parentheses. (b) Predicted ${ }^{13} \mathrm{C}$ KIEs based on transition structure 20 45
21 Structure of transition state 20-22 in deoxygenation of styrene oxide with dichlorocarbene 47
22 More O'Ferrall-Jencks diagram for the deoxygenation of styrene oxide with dichlorocarbene 49
23 Structure transition state 23 and 24 in deoxygenation of cis-2,3- dimethyloxirane with dichlorocarbene. 51
24 Asymmetric epoxidation catalyzed by Shi's catalyst 54
25 Proposed transition states in Shi epoxidation 55
26 Experimental and predicted ${ }^{13} \mathrm{C}$ KIEs $\left(\mathrm{k}_{12 \mathrm{C}} / \mathrm{k}_{13 \mathrm{C}}\right)$ for the epoxidation of 27 catalyzed by 25 at $0{ }^{\circ} \mathrm{C}$. 59
27 Calculated structures of conformers of dioxirane 29 61
28 Calculated transition structures 34-41 for the epoxidation of $\mathbf{2 7}$ by $\mathbf{2 9}$ 63
29 Calculated transition structure 52 of epoxidation of 27 with trihydroxy DMDO 69
30 Calculated transition structures for the epoxidation of styrene by the dioxirane derived from 26b 74
FIGURE Page
31 Calculated transition structures 29 and $\mathbf{3 0}$ for the epoxidation of 1-phenylcyclohexane by the dioxirane derived from 26b 77
32 A typical potential energy profile 79
33 An example of 3-dimensional potential energy surface. 80
34 Some examples of reactions proposed to involve dynamic effects 82
35 Bifurcating surfaces in which dynamic effects would control selectivity.... 84
36 Diels-Alder reaction between acrolein and methyl vinyl ketone 85
37 Calculational geometries of transition structure 71 using different calculational methods 88
38 Calculational geometries of transition structure 72 using different calculational methods 90
39 Qualitative B3LYP/6-31G* energy surface in Diels-Alder reaction between acrolein and methyl vinyl ketone 91
40 MP2/6-31G* energy surface in Diels-Alder reaction between acrolein and methyl vinyl ketone 94

LIST OF TABLES

TABLE Page
1 Calculational results of energies of species $\mathbf{4}$ to $\mathbf{1 0}$ 33
2 Comparison of experimental and predicted KIEs 37
3 Calculational results of energies in the deoxygenation of styrene oxide 46
4 Relative energies in $\mathrm{kcal} / \mathrm{mol}$ of conformers of dioxirane 29 60
5 Relative energies in $\mathrm{kcal} / \mathrm{mol}$ of transition structures 34-51 62
6 Experimental and predicted ${ }^{13} \mathrm{C}$ kinetic isotope effects $\left(\mathrm{k}_{12} / \mathrm{k}_{13}, 273{ }^{\circ} \mathrm{C}\right)$ for the epoxidation of 27 65
7 Relative energies in $\mathrm{kcal} / \mathrm{mol}$ of transition structures 56-59 73
8 Relative energies of possible combinations for the Diels-Alder transition structures in $\mathrm{kcal} / \mathrm{mol}$ 89
9 Relative energies of chemically important species in Diels-Alder reaction between acrolein and methyl vinyl ketone in $\mathrm{kcal} / \mathrm{mol}$ 92
10 Average ${ }^{13} \mathrm{C}$ integrations for α, β-epoxy phenylinimo- $1,3,4$ - oxadiazoline, with standard deviations (in parentheses). 99
$11 \mathrm{R} / \mathrm{R}_{\mathrm{O}}$ for ${ }^{13} \mathrm{C}$ for α, β-epoxy phenylinimo-1,3,4-oxadiazoline 100
$12{ }^{13} \mathrm{C}$ KIEs for α, β-epoxy phenylinimo-1,3,4-oxadiazoline 101
13 Average ${ }^{13} \mathrm{C}$ integrations for styrene oxide, with standard deviations (in parentheses). 103
$14 \mathrm{R} / \mathrm{R}_{\mathrm{O}}$ for ${ }^{13} \mathrm{C}$ for styrene oxide 103
$15{ }^{13} \mathrm{C}$ KIEs for styrene oxide 104
16 Average ${ }^{13} \mathrm{C}$ integrations for trans- β-methylstyrene, with standard deviations (in parentheses) 106
TABLE
$17 \mathrm{R} / \mathrm{R}_{\mathrm{O}}$ for ${ }^{13} \mathrm{C}$ for trans- β-methylstyrene.. 107
$18{ }^{13}$ C KIEs for trans- β-methylstyrene... 107
19 Rate constants in Diels-Alder reaction between acrolein and methyl vinyl ketone108

20 Relative energies in $\mathrm{kcal} / \mathrm{mol}$ of geometries with fixed distance.................... 109

CHAPTER I

INTRODUCTION

A central focus of physical organic chemistry is the mechanistic investigation of organic reactions. The detailed understanding of reaction mechanisms not only enriches fundamental knowledge, but also allows the rational improvement of reactions and inspires new reactions as well.

In the process of studying mechanisms, chemists seek to obtain the structures and properties of intermediates and transition states. Various types of modern techniques have been developed and employed in the detection of intermediates with short lifetimes, providing information on their physical and chemical properties. ${ }^{1}$ However, the more elusive chemical species, the transition states, are still beyond direct observations. Thus, subtle probes are used in the investigation of these species.

Kinetic isotope effects (KIEs) have been established as an effective tool for the mechanistic studies of organic reactions. ${ }^{2}$ When measured at high precision, KIEs coupled with appropriate theoretical models provide a sensitive probe to characterize transition state structures. ${ }^{3-5}$ This dissertation focuses on mechanistic studies using this methodology.

This dissertation follows the style and format of The Journal of the American Chemical Society.

Kinetic Isotope Effects - Fundamental Theory

The term isotope effect refers to the difference in chemical or physical properties between chemical species that differ only in their isotopic composition. Those species can be stable atoms, molecules, ions, reactive intermediates, or species with no significant lifetime, such as transition states. Among the chemical and physical properties, equilibrium constants and rate constants are of special interest to physical organic chemists. Ratios of equilibrium constants provide equilibrium isotope effects (EIEs), while kinetic isotope effects are obtained from ratios of rate constants.

Isotope effects for various kinds of atoms have been investigated; however, the most common isotopic substitution is deuretium(D) for hydrogen(H). If we have two isotopomers XH and XD involved in the same equilibrium, as in equation 1 and 2, the EIE is conventionally defined as the equilibrium constant for the lighter isotopomer divided by the equilibrium constant for the heavier isotopomer, as shown in equation 3 .

$$
\begin{align*}
\mathrm{XH}+\mathrm{Y} & \stackrel{\mathrm{~K}_{\mathrm{H}}}{\rightleftharpoons} \mathrm{X}+\mathrm{YH} \tag{1}\\
\mathrm{XD}+\mathrm{Y} & \stackrel{\mathrm{~K}_{\mathrm{D}}}{\rightleftharpoons} \mathrm{X}+\mathrm{YD} \tag{2}\\
\mathrm{EIE} & =\frac{\mathrm{K}_{\mathrm{H}}}{\mathrm{~K}_{\mathrm{D}}} \tag{3}
\end{align*}
$$

Similarly, when we have two isotopomers undergoing the same kind of reaction, as in equation 4 and 5, the KIE is conventionally presented as the rate constant for the lighter isotopomer divided by the rate constant for the heavier isotopomer, as shown in equation 6 .

$$
\begin{align*}
& \mathrm{XH}+\mathrm{Y} \xrightarrow{\mathrm{k}_{\mathrm{H}}} \mathrm{X}+\mathrm{YH} \tag{4}\\
& \mathrm{XD}+\mathrm{Y} \xrightarrow{\mathrm{k}_{\mathrm{D}}} \mathrm{X}+\mathrm{YD} \tag{5}\\
& \mathrm{KIE}=\frac{\mathrm{k}_{\mathrm{H}}}{\mathrm{k}_{\mathrm{D}}} \tag{6}
\end{align*}
$$

Isotopic substitution in reactants is the simplest possible change that can be made in a chemical reaction. The resulting isotope effect can reflect the difference in the nature of the bonding to the labeled atom and the chemical environment around it. However, isotopic substitution does not, to a very close approximation, affect the potential energy surface that the reaction path traverses. This fact greatly simplifies the prediction of isotopic rate ratios by avoiding the difficulty of calculating electronic energies to a high level of accuracy.

Since isotopomers react along approximately identical paths on the same potential energy surface, the difference in measured equilibrium constants or rate constants are attributed to the change in mass, which consequently changes the frequencies of vibrational modes, thereby affecting their zero-point energy (ZPE), as shown in equation 7 and 8.

$$
\begin{align*}
& \begin{array}{l}
v=\frac{1}{2 \pi} \sqrt{\frac{\mathrm{k}}{\mu}} \\
v=\text { frequency } \\
\mathrm{k}
\end{array}=\text { force constant } \tag{7}\\
& \mu=\text { reduced mass of system } \\
& \text { ZPE }=\frac{1}{2} \text { hv }
\end{align*}
$$

In the most common way, isotope effects are categorized as primary isotope effects or secondary isotope effects. A primary deuterium isotope effect occurs when the $\mathrm{C}-\mathrm{H}$ or C-D bond breaks in the rate-determining step of a chemical reaction. Similarly, a primary carbon isotope effect occurs when the ${ }^{12} \mathrm{C}-\mathrm{R}$ or ${ }^{13} \mathrm{C}-\mathrm{R}$ bond breaks in the ratedetermining step. In the simplified model, when a $\mathrm{C}-\mathrm{H}(\mathrm{C}-\mathrm{D})$ bond is broken, the stretching vibration of the reactants is converted to translational motion over the barrier, and the zero-point energy disappears for that particular degree of freedom. Consequently, the difference in rates primarily arises from the difference in the zeropoint energy of the reactants. The C-H bond breaking starts out at a higher zero-point energy, which thus requires a lower activation energy to react and leads to a ratio of $\mathrm{k}_{\mathrm{H}} / \mathrm{k}_{\mathrm{D}}$ greater than 1 . This is then further categorized as a 'normal isotope' effect. Figure 1 illustrates this.

An alternative way to understand isotope effects is that the heavy isotope will concentrate at the site where it is bound more strongly and has larger force constant. For a kinetic effect this means that deuterium will prefer the reactant, where the force constant is higher, and hydrogen will prefer the transition state, where the force constant is lower. Thus the hydrogen compound will react faster, which, consistent with the ZPE explanation, gives rise to a normal primary isotope effect. The typical range for primary deuterium isotope effects is 2-7 while primary ${ }^{13} \mathrm{C}$ isotope effects fall between 1.01 and 1.05. The magnitude of the primary KIE is frequently used as a measure of the degree of bond forming or breaking in the transition state.

Figure 1. The origin of primary isotope effects, using C-H / C-D as example.

Secondary isotope effects are observed in reactions in which the isotopic substitution is at a bond not being broken. In general, the farther the isotopic substitution is from the reacting center, the lower the magnitude of the isotope effects. Secondary isotope effects arise from differences in the changes of force constants from the reactants to the transition state, which thus leads to the difference in zero-point energy. In a reaction in which an H / D is bound to an sp^{3}-hybridized carbon in the reactant and this carbon rehybridizes toward sp^{2} at transition state, the $\mathrm{C}-\mathrm{H} / \mathrm{D}$ bending force constants decrease on going from reactant to transition state. The zero-point energy difference in the transition state is smaller than that in the reactant, thus the activation energy for the H-compound is lower than the activation energy for the D-compound. Consequently $\mathrm{k}_{\mathrm{H}} / \mathrm{k}_{\mathrm{D}}$ is greater than 1 . The magnitude of this type of KIE is smaller than the magnitude for primary isotope effects, and these KIEs are called normal secondary isotope effects.

Alternatively, in a reaction in which an H / D is bound to an sp^{2}-hybridized carbon in the reactant and this carbon rehybridizes toward sp^{3} at transition state, the $\mathrm{C}-\mathrm{H} / \mathrm{D}$ bending force constants increase on going from reactant to transition state. The zero-point energy difference in the transition state is larger than that in the reactant, thus the activation energy for the H-compound is higher than the activation energy for the D-compound, and consequently $\mathrm{k}_{\mathrm{H}} / \mathrm{k}_{\mathrm{D}}$ is less than 1 . This is termed an 'inverse' secondary isotope effect. Figures 2 and 3 illustrate the normal and inverse secondary isotope effects respectively. Typical inverse secondary deuterium isotope effects fall between 0.8 and 1.0 while normal secondary isotope effects have a typical range of 1 and 1.25 .

Normal secondary KIEs are often associated with a less sterically restricted transition state while inverse secondary KIEs suggest a more sterically restricted transition state.

Figure 2 The origin of normal secondary isotope effects.

Figure 3 The origin of inverse secondary isotope effects.

Statistical Thermodynamic Expressions for Isotope Effects

Statistical thermodynamics describe the equilibrium constant K and the rate constant k in terms of partition functions Q and energy difference. The equilibrium constant K is related to the energy difference between reactants and products, while the rate constant k is related to the energy difference between reactants and transition state.

Although in principle transition-state theory permits one to predict absolute rates from the properties of the reactants and the transition state, in practice it is much easier and safer to predict relative rates. Thus the ratios of partition function are usually used to describe EIEs and KIEs. In the case in which the reactant R is substituted by its isotopic isomer R^{*}, the equilibrium isotope effect and the kinetic isotope effect are given in the following equation 9 and $10 .{ }^{6}$

$$
\begin{align*}
& \text { EIE }=\mathrm{K} / \mathrm{K}^{*}=\left(\mathrm{Q}_{\mathrm{P}} / \mathrm{Q}_{\mathrm{P}}{ }^{*}\right) /\left(\mathrm{Q}_{\mathrm{R}} / \mathrm{Q}_{\mathrm{R}}{ }^{*}\right) \tag{9}\\
& \mathrm{KIE}=\mathrm{k} / \mathrm{k}^{*}=\left(\mathrm{Q}_{\mathrm{TS}} / \mathrm{Q}_{\mathrm{TS}} *\right) /\left(\mathrm{Q}_{\mathrm{R}} / \mathrm{Q}_{\mathrm{R}}{ }^{*}\right) \tag{10}
\end{align*}
$$

where Q's are the molecular partition functions for reactants, products, and transition states, and K^{*} and k^{*} represent the equilibrium constant and rate constant for the isotopic isomer R^{*}.

The partition functions are divided into several items and evaluated within the rigid rotor, harmonic oscillator approximations. The separate items are represented in the following expressions, equation 11,12 , and $13 .{ }^{7}$

$$
\begin{equation*}
\left(\mathrm{Q} / \mathrm{Q}^{*}\right)_{\text {trans }} \cdot\left(\mathrm{Q} / \mathrm{Q}^{*}\right)_{\text {rot }}=\left(\mathrm{M} / \mathrm{M}^{*}\right)^{3 / 2} \cdot \prod_{\mathrm{i}=1}^{\mathrm{n}_{\mathrm{rot}}}\left(\mathrm{I}_{\mathrm{i}} / \mathrm{I}_{\mathrm{i}}{ }^{*}\right)^{1 / 2}=\mathrm{MMI} \tag{11}
\end{equation*}
$$

$$
\begin{align*}
& \left.\left(\mathrm{Q} / \mathrm{Q}^{*}\right)_{\mathrm{vib}}=\left\{\underset{\mathrm{i}=1}{\mathrm{n}_{\mathrm{vib}}} \underset{\mathrm{i}=1}{\exp _{\mathrm{vib}}} \mathrm{u}_{\mathrm{i}} / 2\right)\right\} \cdot\left\{\prod_{\mathrm{i}=1}\left(1-\mathrm{e}^{-\mathrm{ui} *}\right) /\left(1-\mathrm{e}^{-\mathrm{ui}}\right)\right\}=\mathrm{ZPE} \cdot \mathrm{EXP} \tag{12}\\
& \left(\mathrm{Q} / \mathrm{Q}^{*}\right)_{\text {elect }}=1 \tag{13}
\end{align*}
$$

where \quad MMI: the mass-moment of inertia term ZPE: the zero-point energy contribution

EXC: the vibration excitation term
$\mathrm{M}=$ molecular mass
$I_{i}=i^{\text {th }}$ moment of inertia
$\mathrm{u}_{\mathrm{i}}=\mathrm{h} \mathrm{v}_{\mathrm{i}} / \mathrm{kT}$
$v_{i}=$ frequency of the $i^{\text {th }}$ vibrational mode
$\Delta u i=u_{i}-\mathrm{u}_{\mathrm{i}}{ }^{*}$
$\mathrm{n}_{\mathrm{rot}}=$ number of rotational degrees of freedom
$\mathrm{n}_{\text {vib }}=$ number of vibrational degrees of freedom
k: Boltzmann constant
h: Planck's constant
T : temperature in Kelvin
Here the number of rotational degrees of freedom is 2 for linear and 3 for non-linear species. The number of vibrational degrees of freedom is $3 \mathrm{~N}-5$ for linear and $3 \mathrm{~N}-6$ for non-linear N -atom molecules, $3 \mathrm{~N}-6$ for linear and $3 \mathrm{~N}-7$ for non-linear N -atom transition states since the reaction coordinate frequency has been removed.

Substitution of equation 11-13 into equation 9-10 gives the primary expression of isotope effects in equation 14:

$$
\begin{equation*}
\mathrm{IE}=\mathrm{MMI} \cdot \mathrm{ZPE} \cdot \mathrm{EXC} \tag{14}
\end{equation*}
$$

MMI represents the mass and structural difference of the isotopic isomer, whereas ZPE and EXC represent vibrational contribution, which depend on mass and structural difference and force constant change between reactants and products or transition state. Stern and Wolfsberg have proposed that mass and structural differences alone do not lead to measurable isotope effects, but the isotope effects are sensitive probes of bonding and force constant changes during the chemical reactions.

Alternative equations 15 and 16 are also commonly employed:

$$
\begin{align*}
& \mathrm{EIE}=\mathrm{VP} \cdot \mathrm{ZPE} \cdot \mathrm{EXC} \tag{15}\\
& \mathrm{KIE}=\left(\mathrm{u}_{\mathrm{L}} / \mathrm{u}_{\mathrm{L}}^{*}\right) \cdot(\mathrm{VP} \cdot \mathrm{ZPE} \cdot \mathrm{EXC})=\mathrm{RXC} \cdot \mathrm{VP} \cdot \mathrm{ZPE} \cdot \mathrm{EXC} \tag{16}
\end{align*}
$$

where vibrational frequency product ratio is expressed in equation 17 :

$$
\mathrm{VP}=\prod_{\mathrm{i}=1}^{\mathrm{n}_{\mathrm{vib}}}\left(\mathrm{u}_{\mathrm{i}} / \mathrm{u}_{\mathrm{i}}^{*}\right)
$$

RXC : reaction coordinate contribution
u_{L} and $u_{L}{ }^{*}$: frequencies along the reaction coordinate

Kinetic Isotope Effects Prediction from Calculational Information

The calculational prediction of KIEs is based on the statistical explanation of isotope effects. $A b$ initio or DFT calculations provide information on the structures and
frequencies of the reactants and transition state, which allows accurate KIEs prediction provided that the calculational model is accurate.

Since Bigeleisen's seminal work, ${ }^{6}$ theoretical studies on the evaluation of the isotope effects have been reported ${ }^{7,8}$ and several programs have been developed for predicting isotope effects. ${ }^{9}$ In 1989, Saunders and co-workers developed the program Quiver, which calculates reduced partition function ratios and KIE values from force constants and geometry. ${ }^{10}$ The expression of the partition function ratio is given in equation 30, 31 and 32 . Frequencies are usually scaled to cancel off the deviation from the harmonic oscillator assumption, and a tunneling correction is usually applied. ${ }^{11}$

$$
\begin{gather*}
\left(\mathrm{S}_{2} / \mathrm{S}_{1}\right) \mathrm{f}_{\mathrm{GS}}=\prod_{\mathrm{i}}^{3 \mathrm{~N}-6}\left\{\frac{\mathrm{u}_{\mathrm{i}(2)}}{\mathrm{u}_{\mathrm{i}(1)}} \times \frac{\operatorname{EXP}\left[(1 / 2) \mathrm{u}_{\mathrm{i}(1)}\right]}{\operatorname{EXP}\left[(1 / 2) \mathrm{u}_{\mathrm{i}(2)}\right]} \times \frac{1-\operatorname{EXP}\left(-\mathrm{u}_{\mathrm{i}(1)}\right)}{1-\operatorname{EXP}\left(-\mathrm{u}_{\mathrm{i}(2)}\right)}\right\} \tag{18}\\
\left(\mathrm{S}_{2} / \mathrm{S}_{1}\right) \mathrm{f}_{\mathrm{TS}}=\prod_{\mathrm{i}}^{3 \mathrm{~N}^{\ddagger}-6}\left\{\frac{\mathrm{u}_{\mathrm{i}^{\ddagger}(2)}^{u_{i(1)}}}{\mathrm{u}_{\mathrm{i}}} \times \frac{\operatorname{EXP}\left[(1 / 2){\left.\mathrm{u}_{\mathrm{i}}{ }^{\ddagger}(1)\right]}_{\operatorname{EXP}\left[(1 / 2) \mathrm{u}_{\mathrm{i}(2)}\right]} \times \frac{1-\operatorname{EXP}\left(-\mathrm{u}_{\mathrm{i}}{ }^{\ddagger}(1)\right)}{1-\operatorname{EXP}\left(-\mathrm{u}_{\mathrm{i}(2))}\right)}\right\}}{\mathrm{KIE}_{\mathrm{TST}}=\frac{v_{\mathrm{L}(1)}^{\ddagger}}{v_{\mathrm{L}(2)}^{\ddagger}} \times \frac{\left(\mathrm{S}_{2} / \mathrm{S}_{1}\right) \mathrm{f}_{\mathrm{GS}}}{\left(\mathrm{~S}_{2} / \mathrm{S}_{1}\right) \mathrm{f}_{\mathrm{TS}}}}\right. \tag{19}
\end{gather*}
$$

Measurement of Kinetic Isotope Effects

Measurement of KIE can be obtained in two ways - non-competitively or competitively. Non-competitive measurement involves determining the rate constants of isotopic substrates separately, then using equation 6 to get the KIE value. It is more
likely to introduce errors when this method is used since it is extremely hard to make sure that the two reactions are under exactly the same conditions, and this method requires highly enriched heavier isotopomers. Thus the method is usually used only in the deuterium isotope effect measurement because such KIEs are relatively large.

In a competitive technique, both the isotopic substrates are subjected to the same reaction conditions in the same reaction flask. In this way, the labeled reactant and the ordinary reactant will react in qualitatively identical ways, but quantitatively at different rates. As the reaction goes on, the isotopomer that reacts faster is enriched in the product while the isotopomer that reacts slower is enriched in the reactant. Then the KIE can be calculated from the change of isotopic composition and the conversion. This method is often preferred in KIE studies since it secures exactly the same reaction conditions for the reactions, and partially cancels experimental errors. Another advantage of the competitive technique is that it reveals rate differences when the nonisotopic reagent is formed gradually as it is consumed and provides a way to investigate some 'hidden' reaction steps, which cannot be detected by non-competitive method.

Competitive techniques require an accurate and precise measurement if the ratio of labeled and unlabeled materials. Three techniques are commonly used in this measurement.

Scintillation counting has been used as an easy and reliable tool in the measurement of the isotopic ratio of radioactive isotopes such as tritium and ${ }^{14} \mathrm{C}$, in which cases the radioactivity is related to the concentration of the radioactive isotope. ${ }^{12,13}$ However, this method requires the arduous synthesis of specifically labeled substrates and requires
extremely high purification, since the scintillation counting is highly sensitive to impurities. These disadvantages limited the application of the scintillation counting method.

The second method of measuring isotopmer ratios is mass spectroscopy. It is usually necessary to convert the substance of interest into small molecules such as CO_{2} and N_{2} to get information on small KIEs, since fragmentation might cause isotopic fractionation. ${ }^{14}$ If the reactant or product has only one carbon or nitrogen, the isotope ratio can be measured in high precision at natural abundance with mass spectrometer in the form of CO_{2} and $\mathrm{N}_{2} .{ }^{15}$ However, organic compounds with only one carbon atom are very rare and selective degradation of most organic compounds is not practical. As a result, the mass spectroscopy technique in the determination of isotopic ratio is also limited.

A disadvantage of both scintillation counting and mass spectroscopy is that only one site of isotopic substitution can be measured at a time. Again, these techniques require highly labor-intensive synthesis or degradation at a specific site in the molecule. On the other hand, NMR provides a technique that can determine the isotopic ratio at different sites all at the same time. It has been realized for almost two decades that natural abundance deuterium NMR spectroscopy is a powerful and convenient tool for the estimation of deuterium kinetic isotope effects in organic reactions. ${ }^{16}$ It was also pointed out that this technique has the further advantage that primary and secondary KIEs of different types can be measured simultaneously. ${ }^{17}$

The NMR methodology employed in this dissertation was developed by Singleton and co-workers. ${ }^{4,5}$ This method uses ${ }^{2} \mathrm{H}$ or ${ }^{13} \mathrm{C}$ at natural abundance, thus saving the chemists from the arduous synthetic work on labeled starting materials. Typically, a reaction of interest is taken to a high conversion, usually 85 to 95%, and the unreacted starting material is recovered from the system and carefully purified. High precision NMR spectra are obtained and compared to spectra of a standard sample, which contains starting material that has not been subjected to the reaction conditions. An alternative is to run the reaction to a low conversion and compare NMR spectra of the separated product with those of product from a complete conversion reaction. An atom or group which is distant from the reaction site is usually selected as an internal standard, assuming that the isotopic composition on that atom or group does not change in the reaction, which gives $\mathrm{KIE}=1$. The changes in the isotopic composition on other atoms are obtained from comparing the integration change to that of the internal standard. The isotopic ratio change $\mathrm{R} / \mathrm{R}_{0}$ is then used along with the conversion to derive the KIEs.

To get reliable results, both the recovered and the standard sample need to be prepared identically. Also the NMR spectra of both samples are taken consecutively with the same acquisition parameters. The NMR data processing also requires consistency to minimize both random and systematic errors. Another requirement for this method is considerably high concentration of the sample solution to provide signal-to-noise ratio high enough for acceptable precision. The high-concentration requirement sometimes can be the major limitation of this technique. The low solubility of the compounds and the difficulty to recover highly purified starting material will probably cause a lot of
extra work or even the failure of the project. The difficulty in obtaining a large amount of starting material for the reaction may also be a problem due to the requirement of high conversion.

The NMR methodology for the isotopic ratio determination can find its application in various isotopic atoms, such as ${ }^{2} \mathrm{H},{ }^{13} \mathrm{C},{ }^{17} \mathrm{O}$, and ${ }^{15} \mathrm{~N}$. When applied with more strict NMR acquisition and data processing conditions, this technique can also be used in the measurement of intramolecular KIEs. ${ }^{5 d}$ Coupled with appropriate calculations, intermolecular as well as intramolecular KIEs provide a great amount of information on the mechanistic details of the reaction, especially of the transition state in the rate limiting step. ${ }^{5}$

Kinetic Isotope Effects from Experimental Data

In most typical cases, studies on intermolecular competitive KIEs are standard. ${ }^{18}$ When two isotopic molecules \mathbf{A} and \mathbf{B} with concentration a and b undergo analogous irreversible reactions as follows, then the reaction rates are expressed as equation 21 and 22 and the rate constant ratio can be obtained as in equation 23.

$$
\begin{align*}
& \mathrm{A}_{(1)}+\mathrm{B} \xrightarrow{\mathrm{k}_{1}} \mathrm{P}_{(1)} \\
& \mathrm{A}_{(2)}+\mathrm{B} \xrightarrow{\mathrm{k}_{1}} \mathrm{P}_{(2)} \\
& -\frac{\mathrm{da}_{1}}{\mathrm{dt}}=\mathrm{k}_{1} \mathrm{a}_{1} \mathrm{~b} \tag{21}\\
& -\frac{\mathrm{da}_{2}}{\mathrm{dt}}=\mathrm{k}_{2} \mathrm{a}_{2} \mathrm{~b} \tag{22}
\end{align*}
$$

$$
\begin{equation*}
\frac{\mathrm{k}_{1}}{\mathrm{k}_{2}}=\frac{\log \left(\frac{\mathrm{a}_{1}}{\mathrm{a}_{1}{ }^{0}}\right)}{\log \left(\frac{\mathrm{a}_{2}}{\mathrm{a}_{2}{ }^{0}}\right)} \tag{23}
\end{equation*}
$$

In the expression of KIEs, the fraction of reaction, F , is introduced and defined as $a_{1} / a_{1}{ }^{0}=1-F_{1}$. Thus equation 20 becomes equation 24 and equation 25 is derived.

$$
\begin{align*}
& \frac{\mathrm{k}_{1}}{\mathrm{k}_{2}}=\frac{\log \left(1-\mathrm{F}_{1}\right)}{\log \left(1-\mathrm{F}_{2}\right)} \tag{24}\\
& \mathrm{F}_{2}=1-\left(1-\mathrm{F}_{1}\right)^{\mathrm{k}_{2} / \mathrm{k}_{1}} \tag{25}
\end{align*}
$$

When the isotopic reactions are experimentally analyzed by NMR or other techniques, the direct ratio of the isotopic molecules is given as $\mathrm{a}_{2}{ }^{0} / \mathrm{a}_{1}{ }^{0}=\mathrm{R}_{0}$ and $\mathrm{a}_{2} / \mathrm{a}_{1}=$ R, and equation 20 and 21 are solved as equation 26 , or alternatively, 27 .

$$
\begin{align*}
& \frac{\mathrm{k}_{1}}{\mathrm{k}_{2}}=\frac{\log \left(1-\mathrm{F}_{1}\right)}{\log \left[\left(1-\mathrm{F}_{1}\right) \mathrm{R} / \mathrm{R}_{0}\right]} \tag{26}\\
& \mathrm{R} / \mathrm{R}_{0}=(1-\mathrm{F})^{(1 / \mathrm{KIE}-1)} \tag{27}
\end{align*}
$$

In the cases of most competitive KIE measurements, the isotopic ratio is very small, and F_{1} can be replaced by the overall reaction conversion F with negligible change in the KIE results. Error analysis on equation 23 gives the partial derivatives, in equation 28 and $29,{ }^{19}$ which indicates that for the relatively low precision of NMR integrations, the uncertainty in the KIE decreases greatly as F increases. ${ }^{4}$ Figure 4 shows the relationship between the fraction of reaction, F, and the isotopic ratio R / R_{0}.

When the isotopic ratio of the product is used instead of that of the recovered starting material, equations 26,28 , and 29 are replaced by equations 30,31 , and 32 .

$$
\begin{gather*}
\frac{\mathrm{k}_{1}}{\mathrm{k}_{2}}=\frac{\log \left(1-\mathrm{F}_{1}\right)}{\log \left[1-\left(\mathrm{F}_{1} \mathrm{R}_{\mathrm{p}} / \mathrm{R}_{0}\right)\right]} \tag{30}\\
\frac{\partial\left(\mathrm{k}_{1} / \mathrm{k}_{2}\right)}{\partial\left(\mathrm{R}_{\mathrm{p}} / \mathrm{R}_{0}\right)}=\frac{\mathrm{F}_{1}}{1-\left(\mathrm{F}_{1} \mathrm{R}_{\mathrm{p}} / \mathrm{R}_{0}\right)} \mathrm{X} \frac{\ln \left(1-\mathrm{F}_{1}\right)}{\left.\ln ^{2} 1-\left(\mathrm{F}_{1} \mathrm{R}_{\mathrm{p}} / \mathrm{R}_{0}\right)\right]} \tag{31}\\
\left.\partial \mathrm{F}_{1} / \mathrm{k}_{2}\right) \tag{32}\\
\ln ^{2\left[1-\left(\mathrm{F}_{1} \mathrm{R}_{\mathrm{p}} / \mathrm{R}_{0}\right)\right]}
\end{gather*}
$$

Figure 4. The relationship between fraction of reaction F , ratio of isotopic ratios $\mathrm{R} / \mathrm{R}_{0}$, and KIEs.

Coarctate Transition State Theory

The tremendous amount and the intrinsic complexity of organic reactions have inspired chemists to create many systems of classification of organic reactions, categorizing reactions by different view angles.

Conventionally, organic reactions are classified into two categories in a topological way: linear reactions and cyclic reactions. Described in the simplified valence bond (VB) notation, the bond breaking and forming in a single-step reaction is represented by a sequence of arrows that indicate the electron shift. Most organic reactions can be described by a linear sequence of electron-pushing arrows, and thus fall into the linear reaction category. When the electron-pushing arrows form a cycle, the reaction is classified as cyclic reaction; and it is called a pericyclic reaction if the electron shifts are concerted.

Complementary to the conventional definition of linear and cyclic reactions, the concept of 'Complex reactions' was introduced in 1994. ${ }^{20}$ Based on the computational studies on the classification of more than 80,000 organic reactions from reaction databases, Herges proposed that there are three major topologies of electron redistribution in single-step reactions, as shown in Figure 5. He named the third class as complex reactions with 'coarctate' transition states, from the Latin 'coarctare', meaning to compress or contract. The major feature of this type of reactions is that at one or more atoms, two bonds are made and two bonds are broken at the same time.
reaction category
topology of electron shifts
example
linear
cyclic
"complex"
"coarctate"

Figure 5 Topologies of the electron shifts in organic reactions. ${ }^{20}$

Two assumptions are made to describe reactions with coarctate transition states. First, the reactions are concerted; and second, the transition states are stabilized by conjugation, similar to pericyclic reactions.

As illustrated in Figure 6, reactions with coarctate transition states are formally described as a linear subsystem bounded at both ends by 'terminators'. Thus the linear succession of bond making and breaking is also finished by those 'terminators'. The atoms where two bonds are broken and made correspond to 'coarctations'. The terminators can be atoms with a lone pair that is formed or removed in the course of reactions, or a cyclic shift of electrons over several atoms. The length of the linear subsystem is also variable, however, the length n cannot be zero. According to this definition, complex reactions with $\mathrm{n}=0$ are pericyclic reactions. In principle, any combination of different terminators and length of linear subsystem is possible. In most
cases, the length $\mathrm{n}=1$, or $\mathrm{n}=2$, and terminators contain lone pairs or three- and fivemembered rings. Some topologically typical examples are shown in Figure 7.

Figure 6 Formal description of complex reactions with coarctate transition states.

The coarctate transition states are formally treated with the Dewar-Zimmerman topological method on the aromaticity of transition state. Similar to the transition states in pericyclic reactions, coarctate transition states follow the same rules of aromaticity. Hückel systems with an even number (including zero) of negative overlaps (nodes) are aromatic with $4 n+2$ electrons and antiaromatic with $4 n$ electrons. An odd number of negative overlaps indicate a system with Möbius topology that is aromatic with 4 n electrons and antiaromatic with $4 \mathrm{n}+2$ electrons.

Figure 7 Examples of complex reactions with coarctate transition states.

In a simplified way, a coarctate transition state can be viewed as a topological transformation of a system in a pericyclic reaction, by compressing two particular orbitals together to give a set of two p orbitals at the center, at which two bonds are broken and made simultaneously. The two p orbitals are orthogonal to each other but not to the remaining orbitals. The transition states of complex reactions are formally derived from pericyclic reactions by constriction, which is the origin of these types of transition states being termed 'coarctate'. Since the orbital overlap is still cyclic, coarctate transition states take advantage of the same kind of stabilization as pericyclic transition states. An example is shown in Figure 8, illustrating the transformation. When the center 3 and 5 of the cyclopentadienyl anion are brought together with their basic orbitals orthogonal to
each other, the orbital basis is transformed into the transition state of the cyclopropylcarbene fragmentation.

Figure 8 Topological transformation of cyclopentadienyl anion into the transition state of the cyclopropylcarbene fragmentation.

Two notations are formally used to categorize complex reactions. The first notation counts atoms, which is expressed in the general form $t-q-t^{\prime}$, where t and t^{\prime} indicate the number of atoms in both terminators and q gives the number of atoms in the coarctation. The second notation is electron-counting and has the general form $\left[n+p \chi+n^{\prime}\right]$, where n
and n^{\prime} give the number of mobile electrons in each terminator and p indicates the number of mobile electrons in the coarctations. The Greek symbol χ is employed to depict that there are two orthogonal basis orbitals located at these atoms. The latter gives information about the electronic structure of the transition state.

Mathematically, there are thousands of possibilities, even from the combination of just less than ten electrons. However, most of those mathematical possibilities are not chemically feasible. In the investigation of known reactions, comparing with his conceivable models, Herges derived the following rules of complex reactions. ${ }^{20}$

1. Complex reactions are less probable as more bonds (and atoms) are involved in the transition state.
2. Breaking and making single bonds, especially C-C bonds, are less favorable than shifting double or triple bonds.
3. Hydrogen is by far the easiest group to be transferred. Oxygen in epoxidation reactions is the only exception.
4. Atoms with sp^{3}-hybridization do not react with each other.
5. All known reactions are thermodynamically highly favorable. They either start from extremely unstable educts, such as carbenes or nitrenes, or form small and stable products, such as nitrogen, carbon dioxide, or compounds with $\mathrm{C} \equiv \mathrm{N}$ triple bonds.
6. No examples of a complex reaction with a 4-ring terminator were found, even though such reactions are conceivable.

As is well-known, along with pericyclic reactions, some reactions can be considered as pseudopericyclic, which means the cyclic delocalization of electrons in the transition state is disconnected because the orbitals involved in the delocalized system are orthogonal at some specific atomic center. ${ }^{21}$ In analogy, some reactions can be considered as pseudocoarctate, when the disconnections occur in coarctate transition states. ${ }^{22}$

Theoretical tools are employed to gain further insight into the electronic structure of the coarctate/pseudocoarctate transition states and comparison to pericyclic/ pseudopericyclic transition states, among which the anisotropy of induced current density (ACID) method has been proven to be powerful for distinguishing between pericyclic/pseudopericyclic and coarctate/pseudocoarctate topologies. ${ }^{23}$ The ACID scalar field can be interpreted as the density of delocalized electrons, and thus the ACID boundary surface can provide a continuous picture for the electron delocalization, which is cyclic for pericyclic transition states and not cyclic for coarctate transition states. Disconnection in the continuous systems of the ACID boundary surface is characteristic for pseudopericyclic and pseudocoarctate systems. Another method that has been used in the theoretical studies is the electron localization function (ELF), which provides a measure of the local pairing for the mobile electron flow and comparison between coarctate transition states and pseudocoarctate transition states. ${ }^{24}$

Since the concept of coarctate transition states was proposed, it has been employed in the descriptions and explanations of reaction mechanisms ${ }^{25}$ and prediction of new reactions. ${ }^{26}$ However, there are also calculational results suggesting some of the
reactions classified as coarctate actually do not involve the bond forming and breaking needed for the electron flow to form coarctate transition states. ${ }^{27}$

Most of the above-mentioned works are pure theoretical studies. Calculational results suggest the coarctate transition states as the lowest-energy pathway in those reactions. However, coarctate transition states usually need a highly organized system to fulfill the geometric requirements to line up the orbitals, which might make the pathway entropically disfavored and lead the reaction to go through other pathways in which intermediates with moderate energy are involved. Few experimental results have been provided to support that those reactions truly occur via coarctate transition states, or to rule out the other possible pathways. Since the concept of coarctate transition states has been more and more widely accepted, it is necessary to investigate this type of reactions experimentally to provide evidence for or against the theory before it eventually gets published in textbooks. Experimental KIE investigation coupled with theoretical studies provides a reliable method to do the work.

CHAPTER II

ISOTOPE EFFECTS AND THE MECHANISM OF FRAGMENTATION OF EPOXY IMINO-1,3,4-OXADIAZOLINES*

Introduction

To experimentally study complex reactions with coarctate transition states, we started with the prototype reaction that Herges has continually used as an example, the thermal fragmentation of epoxy imino-1,3,4-oxadiazolines.

Thermolysis of Δ^{3}-1,3,4-oxidiazolin-2-one $\mathbf{1 a}$ and 2-phenylimino- Δ^{3}-1,3,4oxidiazoline 1b yields an alkyne, a ketone and carbon dioxide, or an alkynone and phenyl isocyanate, and nitrogen. This reaction was originally introduced by MacAlpine and Warkentin as an alternative method for the conversion of α, β-epoxyketones to alkynones and alkynals. ${ }^{28}$ The method found applications in some synthesis and degradations of natural products. ${ }^{29}$ Warkentin later suggested that the ketone formation occurs via a concerted mechanism. ${ }^{30}$

In his 1994 paper introducing the novel ideal of coarctate transition state, Herges explained the mechanism of the thermal fragmentation of epoxy imino-1,3,4-

[^0]oxadiazolines from a new aspect, the oxirane fragmentation via an coarctate transition state, as shown in Figure 9. ${ }^{20}$

1a $X=0$
1b $X=N R^{\prime}$

Figure 9 Oxirane fragmentation of phenylimino oxadiazoline and the proposed coarctate transition state

Scrutinizing the known reactions that are classified as coarctate reactions, it was found that all known coarctate reactions are thermodynamically favorable. They either start from extremely unstable adducts, such as carbenes or nitrenes, or form small and stable products such as nitrogen, carbon dioxide, or compounds with nitrile functionality.

Most of the fragmentation reactions with three-membered ring terminators occur by elimination of a ketone from an epoxide. When $\mathrm{N} \equiv \mathrm{N}$ or $\mathrm{C} \equiv \mathrm{N}$ moieties exist in the molecule, the fragmentation should be highly thermodynamically favorable. Thus
oxirane fragmentations are often presented as typical examples for coarctate reactions. In a topological way, these reactions are categorized as $4-2-2$ or $[4+4 \chi+2]$ systems, which comprise ten electrons and are thermochemically allowed due to Hückel aromaticity in the transition states.

Another fact that inspired Herges was that MacAlpine and Warkentin found that the fragmentation of oxirane-substituted oxadiazolone is observed only when the oxadiazole ring and the oxirane ring are placed in a coplanar conformation by a spiro bridge. Provided a concerted mechanism is assumed, the stereochemistry can be explained by a topological analysis of the transition states. With ten mobile electrons, the reactions are thermochemically allowed by Hückel aromaticity in transition states. Oxirane and oxadiazole rings are fixed in a coplanar geometry to suit the overlap of the orbital basis and an optimal stabilization of the transition states is obtained.

However, the coarctate transition state does not look convincingly feasible in one way. As pointed out as the first rule of the complex reactions, complex reactions are less probable as more bonds and atoms are involved in the transition state. In this intriguing reaction, a total of five σ-bonds in the reactant are broken to afford five new π-bonds in the products. Thus arises the important question whether the transition state aromaticity of the coarctate reaction is sufficient to overcome this disfavor. To get detailed information on the mechanism of this reaction, we carried out a combined experimental and theoretical study.

Results and Discussions

Experimental ${ }^{13} \mathbf{C}$ kinetic isotope effects. The 2-phenylimino- Δ^{3}-1,3,4oxadiazoline 2 derived from isophorone oxide, as shown in Figure 10, was chosen for study because it was previously found to afford relatively high yields of fragmentation products. ${ }^{28}$ A significant complication with this molecule, however, is that its synthesis by oxidation of the semicarbazone of isophorone oxide affords an approximately $2: 1$ mixture of diastereomers. The minor isomer was found to interfere with the determination of KIEs below, so that 2 had to be purified by a tedious chromatography. This limited the scale at which 2 could be studied, negatively affecting the precision of the KIEs obtained. The stereochemistry of the major isomer 2 was predicted by calculation and verified by x-ray crystallography, as shown in Figure 11.

Figure 10. Thermolysis of 2-phenylimino- Δ^{3}-1,3,4-oxadiazoline (2).

The ${ }^{13} \mathrm{C}$ KIEs for fragmentation of 2 were determined combinatorially by NMR methodology at natural abundance. ${ }^{4}$ Three reactions of 2 in diphenyl ether at $145-150$ ${ }^{\circ} \mathrm{C}$ were taken to $65 \%, 70 \%$, and 84% conversion, and the starting 2 was recovered by
flash chromatography followed by recrystallization in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexanes. The samples of recovered 2 were analyzed by ${ }^{13} \mathrm{C}$ NMR, along with standard samples that had not been subjected to the reaction conditions. The change in isotopic composition in each position was determined relative to the carbon of the methyl substituent on the epoxide ring, ${ }^{31}$ with the assumption that isotopic fractionation of this carbon was negligible. From the percentage conversions and the changes in isotopic composition, the KIEs were calculated as previously described. ${ }^{4}$

Figure 11. X-ray structure of the major diastereomer of 2.

Figure 12 shows the average KIEs from the three independent determinations. The uncertainties in the KIEs are larger than normal, due to the limited scale and limited solubility of 2 in NMR determinations. Nonetheless, the KIEs end up acceptably reliable in their basic observations. Significant ${ }^{13}$ C KIEs were observed in the C-2 and

C-5 ring carbons of the 1,3,4-oxadiazoline, and their magnitude is consistent with a primary carbon KIE. This suggests that these carbons are undergoing a σ-bonding change in the transition state for the rate-limiting step. In contrast, the remaining KIEs are smaller, mainly within experimental error of unity. The absence of a significant ${ }^{13} \mathrm{C}$ KIE at the quaternary epoxide carbon in particular suggests that the epoxide ring is not undergoing fragmentation in the rate-limiting step. Overall, these KIEs qualitatively support a transition state in which the 1,3,4-oxadiazoline is fragmenting but not the remainder of the molecule.

Figure 12. Experimental ${ }^{13} \mathrm{C}$ KIEs $\left(\mathrm{k}_{12 \mathrm{C}} / \mathrm{k}_{13 \mathrm{C}}\right)$ for the fragmentation of 2 at $145-150{ }^{\circ} \mathrm{C}$. Standard deviations from three independent determinations are shown in parentheses.

Calculational Studies

Theoretical calculations were used to interpret these results in greater detail and to explore the complete reaction mechanism. The fragmentation of the calculational model 4 was explored in both B3LYP and mPW1 ${ }^{32}$ calculations, employing a $6-31 \mathrm{G}^{*}$ basis set to survey the potential energy surface and reoptimizing important stationary points with a $6-31+G(d, p)$ basis set. The energies with ZPE of mechanism-related species 4 to 10 are listed in Table 1.

Table 1. Calculational results of energies of species 4 to 10.

Species	Relative energy	Relative energy
	B3LYP/6-31+G(d,p) $(\mathrm{kcal} / \mathrm{mol})$	MPW1K/6-31+G(d,p) (kcal/mol)
$\mathbf{4}$	0.0	0.0
$\mathbf{5}$	32.4	44.4
$\mathbf{6}$	1.6	15.4
$\mathbf{7}$	29.6	46.1
$\mathbf{8}$	21.9	38.9
$\mathbf{9}$	22.0	44.5
$\mathbf{1 0}$	-31.5	-6.8

Extensive efforts failed to locate a transition structure that directly affords the ultimate product 3. Instead, two fragmentation processes were identified, and because of two distinct conformations in the 6-membered ring, a total of four fragmentation
transition structures were located, and the transition state with lowest energy is considered in the energetic profile of the reaction, which is shown in Figure 13.

$$
4 \mathrm{E}_{\text {rel }}=0 \quad 5 \mathrm{E}_{\text {rel }}=32.4 \quad \mathbf{6} \mathrm{E}_{\text {rel }}=1.6
$$

$$
7 \mathrm{E}_{\text {rel }}=29.6 \quad \mathbf{8} \mathrm{E}_{\text {rel }}=21.9
$$

Figure 13. Predicted mechanism for the fragmentation of computational model 4. Relative energies (B3LYP/6-31+G(d,p) + zpe) are shown in $\mathrm{kcal} / \mathrm{mol}$ and select distances are shown in \AA. Distance in brackets refer to structures located in mPW1K/6$31+G(d, p)$ calculations.

The calculationally favored fragmentation affords the diazo epoxide 6 and isocyanic acid via transition structure 5. The predicted barrier is $32.4 \mathrm{kcal} / \mathrm{mol}$ (B3LYP/6-31+G(d,p) + zpe), which is consistent with a unimolecular reaction that occurs over the course of about an hour at $150^{\circ} \mathrm{C}$. The mPW1K-predicted barrier for fragmentation via 5 is $44.4 \mathrm{kcal} / \mathrm{mol}$. This is too high; since this fragmentation may be viewed as a pericyclic process (a retro 1,3-dipolar cycloaddition) and since RHF calculations greatly overpredict the barrier for pericyclic reactions, it may be that the hybrid mPW1K calculation ${ }^{32}$ mixes in too much RHF character for an accurate barrier prediction in this reaction.

The alternative fragmentation process located affords an epoxy ketone (12), N_{2}, and hydrogen isocyanide via transition structure 11, as shown in Figure 14. The barrier in this case is predicted to be $3.6 \mathrm{kcal} / \mathrm{mol}$ higher than the barrier for formation of the diazo epoxide 6.

Figure 14. Transition state in the formation of epoxy ketone 12 from 4.

The experimental relevance of transition structure 5 was gauged by comparison of predicted isotope effects based on 5 with the experimental KIEs. The KIEs for 5 were predicted from the scaled theoretical vibrational frequencies ${ }^{18}$ using conventional transition state theory by the method of Bigeleisen and Mayer. ${ }^{15}$ Tunneling corrections were applied using the one-dimensional infinite parabolic barrier model. ${ }^{19}$ Such KIE predictions including a one-dimensional tunneling correction have proven highly accurate in reactions not involving hydrogen transfer, so long as the calculation accurately depicts the mechanism and transition state geometry. ${ }^{3}$

16 a

16 b

Figure 15. (a) Predicted ${ }^{13} \mathrm{C}$ KIEs based on the $\mathrm{mPW} 1 \mathrm{~K} / 6-31+\mathrm{G}(\mathrm{d}, \mathrm{p})$ version of transition structure 5. (b) Predicted ${ }^{13} \mathrm{C}$ KIEs based on the B3LYP/6-31+G(d,p) version transition structure 5.

The results for the mPW1K and B3LYP versions of 5 are shown in Figures 15a and 15 b respectively and are compared with experimental results, listed in Table 2. It is apparent that the predicted KIEs are quite similar in pattern to those observed experimentally. Considering the limited precision of the experimental KIEs, the agreement between predicted and experimental KIEs is in fact excellent. This supports the qualitative interpretation of the isotope effects above and the approximate accuracy of 5. Little difference is seen between the mPW1K and B3LYP predictions, and one cannot tell which transition structure geometry is more accurate.

Table 2. Comparison of experimental and predicted KIEs.

	Experimental	B3LYP predicted	MPW1K predicted
	KIEs	KIEs	KIEs
C-2	$1.026(8)$	1.029	1.020
C-5	$1.012(4)$	1.011	1.009
C-6	$1.006(4)$	1.006	1.005
C-8	$0.999(6)$	1.002	1.002
C-9	$1.001(1)$	1.001	1.001
C-10	$1.002(5)$	1.002	1.002
	$1.003(3)$	1.004	1.003

The remainder of the reaction mechanism for the calculational model involves the conversion of diazo epoxide 6 into heptynone 10. This conversion itself could
potentially occur by a concerted coarctate process in which loss of the N_{2} is accompanied by fragmentation of the epoxide. Instead, the calculations predict a twostep mechanism in which $\mathbf{6}$ first loses N_{2} via transition structure $\mathbf{7}$ to afford carbene 8, which fragments via transition structure 9 to afford 10. Although no concerted transition structure for conversion of $\mathbf{6}$ to $\mathbf{1 0}$ could be located, it should be noted that the barrier for the second step on the B3LYP surface is predicted to be very low - only about 0.15 $\mathrm{kcal} / \mathrm{mol}$. Under these circumstances, a very small error in the potential energy surface can make the difference between stepwise and concerted mechanisms. The mPW1K mechanism more strongly favors the stepwise process, as the barrier for fragmentation of 8 goes up to $5.5 \mathrm{kcal} / \mathrm{mol}$. High-level single-point energies $(\operatorname{CCSD}(\mathrm{T}) / 6$ $31+\mathrm{G}(\mathrm{d}, \mathrm{p}) / / \mathrm{B} 3 \mathrm{LYP} / 6-31+\mathrm{G}(\mathrm{d}, \mathrm{p})$) predict an even larger barrier of $14.0 \mathrm{kcal} / \mathrm{mol}$ for fragmentation of $\mathbf{8} .^{33}$ This large spread in the theoretical predictions is disconcerting but none of the calculations support a concerted coarctate conversion of $\mathbf{6}$ to $\mathbf{1 0}$. Unfortunately the experimental KIEs can have no bearing on this issue.

In the conversion of $\mathbf{8}$ to $\mathbf{1 0}$, the α-epoxide carbon is transformed into the terminal acetylenic carbon, breaking two σ-bonds and forming two new π-bonds. Thus, this is a concerted coarctate reaction in itself. Alternative two-step mechanisms may be considered for this conversion, as in the fragmentation of $\mathbf{1 3}$ via $\mathbf{1 4 - 1 7}$ in Figure 16, but in each case the intermediate would be expected to be very high in energy. Because of this, such a very simple coarctate reaction has no choice but to proceed by a concerted mechanism. This does not tell us anything about the degree to which transition state aromaticity stabilizes the coarctate transition state.

Figure 16. Alternative intermediates in the fragmentation of 8.

Conclusion

In summary, the theoretically predicted and KIE-supported mechanism for these reactions must face a choice between a concerted coarctate reaction and multi-step process three times. At the stage of 4 , where the concerted reaction would be very complicated, the stepwise process is favored. At the stage of the diazo epoxide 6, the stepwise process again appears to be favored. The preference for a stepwise mechanism going on from 6 is less pronounced and less certain, but there is still no sign of a transition state aromaticity effect favoring a concerted coarctate process. The last step in the mechanism, going on from $\mathbf{8}$, is a concerted coarctate reaction, but this may be viewed as being enforced by the necessity to avoid high-energy intermediates. Overall, the example here does not appear to demonstrate any special stabilization in coarctate transition states.

CHAPTER III

ISOTOPE EFFECTS AND THE MECHANISM OF

DEOXYGENATION OF EPOXIDES WITH DICHLOROCARBENE*

Introduction

As discussed before, complex reactions with coarctate transition states usually either start from extremely unstable adducts, such as carbenes or nitrenes, or form small and stable products such as nitrogen, carbon dioxide, or compounds with nitrile functionality to become thermodynamically favored. In the last chapter, the thermal fragmentation of $\Delta-1,3,4$-oxadiazolines was discussed in which small and stable products are formed. Though it is suggested that in that particular case, aromatic stabilization in the transition state is not enough to overcome the energy barrier to reorganize the orbitals of so many atoms involved in the transition state and thus the reaction occurs in a stepwise way. In this chapter, an example will be examined in which an unstable adduct, a carbene, is involved.

Complex reactions involving singlet carbenes are the most thoroughly investigated among the coarctate reactions. The original example, the carbene additions to bicyclobutanes to afford 1,4-pentadiene supported the calculation by Jones, Jr. et al., ${ }^{34}$

[^1]suggesting that carbenes attack from above the three-membered ring without steric hinderance, and that the transition states involve either a lone pair or empty p orbital at the carbene centers to form the aromatic system (a Hückel system with the lone pair and a Möbius system with the empty p orbital).

Similarly, there are no steric problems to be expected during the attack of the carbenes from above the ring in the cases of oxiranes and aziridines. The deoxygenation of epoxides with carbenes has been suggested to be a possible concerted reaction via coarctate transition states, as shown in Figure 17. ${ }^{20}$

Figure 17. Addition of dichlorocarbene to oxirane and the proposed coarctate transition state.

Deoxygenation of epoxides to olefins is often required in structural and synthetic work and can be used to deprotect the epoxides in the protection of double bonds.

Various methods for this transformation have been developed. Most deoxygenation methods involve metal such as lithium in THF ${ }^{35}$ or organometallic compounds ${ }^{36}$ such as metallocenes. ${ }^{37}$ Mechanisms for these reactions have been proposed to involve metallaoxetanes ${ }^{38}$ or radicals. ${ }^{39}$ Reagents without metal moiety have also been exploited such as methyltriphenoxyphosphonium iodide ${ }^{40}$ and triphenyl phosphine. ${ }^{41}$

A very attractive reaction, which has been chosen for study here is the deoxygenation of epoxides by singlet carbene, since simple reagents are used, and an interesting mechanistic aspect, the presence of a coarctate transition state, could be involved. A possible mechanism other than a complex reaction with coarctate transition state was proposed for this deoxygenation and similar reactions, ${ }^{42-44}$ suggesting the concerted decomposition of an oxygen ylide as a plausible pathway to interpret the stereospecific deoxygenation, as shown in Figure 18. ${ }^{42}$ However, an attempt to observe such an ylide has not been successful ${ }^{44}$ and later computational studies have suggested that a concerted process that does not involve ylide intermediates should play a dominant role in such oxygen abstraction reactions. ${ }^{45}$

Figure 18. The ylide pathway of addition of dichlorocarbene to oxirane.

The proposed mechanism via coarctate transition states is still challenged since the coarctate transition state theory is only substantially meaningful if the reactions are both concerted and involve nearly synchronous transition states. Recent theoretical studies have suggested that oxirane undergoes a concerted deoxygenation by reaction with a CH_{2} carbene via an asynchronous four-center transition state. ${ }^{46}$ Additionally, a similar reaction, the fragmentation of aziridines, was found to proceed via a ylide intermediate and does not follow a complex mechanism. ${ }^{47}$

To obtain detailed mechanistic information on this reaction, KIEs studies were employed to distinguish rate-limiting formation of an ylide versus a rate-limiting deoxygenation process, and to act as a gauge of the asynchronicity of the breaking of the two $\mathrm{C}-\mathrm{O}$ bonds.

Results and Discussions

Experimental ${ }^{13} \mathbf{C}$ kinetic isotope effects. To use KIEs as a gauge of the asynchronicity of the breaking of the two $\mathrm{C}-\mathrm{O}$ bonds, an unsymmetrically substituted epoxide is required, as a symmetrical epoxide will lead to symmetrical isotope effects due to averaging. Therefore, the deoxygenation of styrene oxide 18 with dichlorocarbene was chosen for study, as shown in Figure 19.

Figure 19. Deoxygenation of styrene oxide.

Previous deoxygenation of $\mathbf{1 8}$ using phase-transfer / emulsifying conditions had been plagued by the side reaction of basic hydrolysis of the epoxide. ${ }^{42}$ The use of solid KOH , with no discrete aqueous phase, and 18 -crown- 6 as the phase transfer catalyst appears to alleviate this problem. Under these conditions, no phenylethylene glycol could be observed, and the formation of 19 was nearly quantitative based on NMR analysis versus an internal standard.

The ${ }^{13} \mathrm{C}$ KIEs for deoxygenation of $\mathbf{1 8}$ were studied by NMR methodology at natural abundance. ${ }^{4}$ A total of four reactions of $\mathbf{1 8}$ at $40{ }^{\circ} \mathrm{C}$ were taken to $72-82 \%$ conversion, and the starting 18 was recovered by an aqueous workup followed by flash chromatography and microdistillation. The ${ }^{13} \mathrm{C}$ NMR of the samples of recovered 18 was analyzed along with standard samples that had not been subjected to the reaction conditions. The change in isotopic composition in each position was determined relative to the para aromatic carbon, with the assumption that isotopic fractionation of this carbon was negligible. From the percentage conversions and the changes in isotopic composition, the KIEs were calculated as previously described. ${ }^{4}$

Figure 20a shows the average KIEs from the four independent determinations. A substantial normal $(>1){ }^{13} \mathrm{C}$ KIE was observed at the epoxide carbon adjacent to the aromatic ring $\left(\mathrm{C}_{\alpha}\right)$. In contrast, the KIE at the distal carbon $\left(\mathrm{C}_{\beta}\right)$ is surprisingly inverse (<1). The KIEs for the aromatic ring carbons are within experimental error of unity.

(a)

(b)

Figure 20. (a) Experimental ${ }^{13} \mathrm{C}$ KIEs $\left(\mathrm{k}_{12 \mathrm{C}} / \mathrm{k}_{13 \mathrm{c}}\right)$ for the deoxygenation of styrene oxide at $40^{\circ} \mathrm{C}$. Standard deviations in the last digit from four determinations are shown in parentheses. (b) Predicted ${ }^{13} \mathrm{C}$ KIEs based on transition structure 20.

If the deoxygenation involved rate-limiting formation of an epoxide-carbene ylide complex, the C_{α} and $\mathrm{C}_{\beta}{ }^{13} \mathrm{C}$ KIEs would be near unity. The observation of a substantial C_{α} KIE rules this out - an ylide may still be involved but it is not kinetically important. The standard qualitative interpretation of the C_{α} KIE is that the $\mathrm{C}_{\alpha}-\mathrm{O}$ bond is being broken in the rate-limiting step. However, the inverse C_{β} KIE suggests that the $\mathrm{C}_{\beta}-\mathrm{O}$ bond has got stronger at the transition state than it was in the starting material. Together, these results are indicative of a transition state that would be best described as a ringopening process rather than a synchronous deoxygenation. This does not rule out a formally concerted deoxygenation, but the two $\mathrm{C}-\mathrm{O}$ bonds are clearly breaking in different stages of the process.

Calculation Studies

Theoretical calculations were used to interpret these results in greater detail. The deoxygenation of 18 with dichlorocarbene was studied in B3LYP calculations employing a $6-311++G(2 d, p)$ basis set. Three transition structures $\mathbf{2 0 - 2 2}$ were located, two with the carbene attacking the epoxide oxygen anti to the phenyl group and one syn to the phenyl group. The best of these structures 20 in Figure 21 is $5.5 \mathrm{kcal} / \mathrm{mol}$ (including zpe) above separate starting materials. Structure 20 notably places the lone pair of the carbene moiety anti to the breaking $\mathrm{C}_{\alpha}-\mathrm{O}$ bond. This is favored by 4.3 $\mathrm{kcal} / \mathrm{mol}$ over the second best structure in which the carbene lone pair is syn to the breaking $\mathrm{C}_{\alpha}-\mathrm{O}$ bond. Similar results were obtained in B3LYP, mPW1PW91 and MP2 calculations employing smaller basis sets, as listed in Table 3.

Table 3. Calculational results of energies in the deoxygenation of styrene oxide.

	$\mathrm{B} 3 \mathrm{LYP} /$	$\mathrm{B} 3 \mathrm{LYP} /$	$\mathrm{mPW} 1 \mathrm{PW} 91 /$	$\mathrm{MP2/}$
	$6-31 \mathrm{G}^{*}$	$6-311++\mathrm{G}(2 \mathrm{~d}, \mathrm{p})$	$6-31 \mathrm{G}^{*}$	$6-31 \mathrm{G}^{*}$
Starting materials	0.0	0.0	0.0	0.0
TS 20	1.9	5.5	3.6	-2.0
TS 21	7.2	9.8	9.7	14.4
TS 22	7.1	10.8		
Styrene	-83.2	-81.2		
Product 19	-140.8	-129.4		

Figure 21. Structure of transition state 20-22 in deoxygenation of styrene oxide with dichlorocarbene. Distances are measured in \AA.

As expected from the isotope effects, transition structure $\mathbf{2 0}$ is undergoing cleavage of the $\mathrm{C}_{\alpha}-\mathrm{O}$ bond but not the $\mathrm{C}_{\beta}-\mathrm{O}$ bond. To test the consistency of this transition structure with the experimental isotope effects, the KIEs for $\mathbf{2 0}$ were predicted from the scaled theoretical vibrational frequencies ${ }^{18}$ using conventional transition state theory by the method of Bigeleisen and Mayer. ${ }^{15}$ Tunneling corrections were applied using the one-dimensional infinite parabolic barrier model. ${ }^{19}$ Such KIE predictions including a one-dimensional tunneling correction have proven highly accurate in reactions not involving hydrogen transfer, so long as the calculation accurately depicts the mechanism and transition state geometry. ${ }^{3}$

The predicted KIEs are shown in Figure 20b. It is apparent that the predicted KIEs are quite similar in pattern to those observed experimentally. This supports the qualitative interpretation of the isotope effects and the approximate accuracy of 20. Since some degree of charge buildup at the transition state would be stabilized in solution, the gas phase structure 20 cannot be expected to be perfectly accurate. Considering this limitation of the calculations, the agreement between predicted and experimental KIEs is in fact very good.

No stationary point corresponding to an ylide geometry could be located in these calculations. A very loose epoxide $-\mathrm{CCl}_{2}$ complex with an $\mathrm{O}-\mathrm{C}$ distance of $2.60 \AA$ was found on the potential energy surface, but the energy of this complex is only 1.6 $\mathrm{kcal} / \mathrm{mol}$ below separate reactants and its free energy is $7.2 \mathrm{kcal} / \mathrm{mol}$ above reactants at standard state. Such a complex is unlikely to be a minimum on the free-energy surface and is mechanistically irrelevant.

When the steepest-descent reaction path in mass-weight coordinates is followed onward from 20, the $\mathrm{C}_{\alpha}-\mathrm{O}$ bond distance increases rapidly to $>2 \AA$ while the $\mathrm{C}_{\beta}-\mathrm{O}$ distance at first stays below $1.5 \AA$. However, there is ultimately no barrier to dissociation of the products, phosgene and styrene, which are downhill from 20 by 86.8 $\mathrm{kcal} / \mathrm{mol}$, so the $\mathrm{C}_{\boldsymbol{\beta}}-\mathrm{O}$ bond breaks without there being an intermediate. The deoxygenation is thus overall a formally concerted process, with very asynchronous transition state.

A More O'Ferrall-Jencks diagram, Figure 22, provides a clear way to understand reactions with such a process. ${ }^{48}$ The transition state is early and breakage of the two $\mathrm{C}-\mathrm{O}$
bonds is highly asynchronous. The reaction path starts out in a direction that would lead to the intermediate at the adjacent corner of the diagram. However, some time after the transition state, the reaction path avoids the high-energy intermediate (either a diradical or a zwitterion) by curving toward the extremely stable products. We note that if a synchronous coarctate transition state were substantially stabilized by transition-state aromaticity, the reaction path would be expected to pass in some degree toward the middle of the More O'Ferrall-Jencks diagram. However, based on the isotope effects and the calculational predictions, this is not the case.

$+$

$\mathrm{O}=\mathrm{CCl}_{2}$

Figure 22. More O'Ferrall-Jencks diagram for the deoxygenation of styrene oxide with dichlorocarbene.

It is shown clearly here that deoxygenation of unsymmetrical olefins occurs via highly asynchronous transition states, which arise the question whether the deoxygenation of symmetrical olefins have similar transition state. As described above, this question cannot be addressed well experimentally with isotope effects. However, calculations suggest that the preference for an asynchronous pathway is general. Transition structure 23 shown in Figure 23 was located for the deoxygenation of cis-2,3dimethyloxirane in B3LYP/6-311++G(2d,p) calculations. The barrier in this reaction is predicted to be $6.2 \mathrm{kcal} / \mathrm{mol}, 0.7 \mathrm{kcal} / \mathrm{mol}$ higher than with $\mathbf{1 8}$. The transition structure is somewhat later, but it is still very early. As was true in 20, 23 places the lone pair of the carbene moiety anti to the breaking $\mathrm{C}-\mathrm{O}$ bond. This arrangement is reminiscent of the anomeric effect and may be viewed as maximizing overlap between the lone pair and the σ^{*} orbital of the breaking $\mathrm{C}-\mathrm{O}$ bond, stabilizing the transition state. An alternative transition structure in which the lone pair is syn to the breaking bond 24 was 9.5 $\mathrm{kcal} / \mathrm{mol}$ higher in energy. The stabilizing effect of the anti lone pair appears to enforce asynchronicity in the reaction, as the lone pair can only aid in breaking one of the two $\mathrm{C}-\mathrm{O}$ bonds.

Figure 23. Structure transition state 23 and 24 in deoxygenation of cis-2,3dimethyloxirane with dichlorocarbene.

Conclusion

In the deoxygenation of epoxides with dichlorocarbene, the stabilization from the transition state aromaticity in coarctate transition state is not great enough to compete with the preference for asynchronous bonding changes. The theoretically predicted and KIE-supported mechanism suggests that the reaction occurs in a concerted manner but with a highly asynchronous early transition state with much more $\mathrm{C}_{\alpha}-\mathrm{O}$ bond breaking than $\mathrm{C}_{\beta}-\mathrm{O}$ bond breaking. The reaction pathway is not influenced by transition state aromaticity.

CHAPTER IV

ISOTOPE EFFECTS AND THE NATURE OF
 ENANTIOSELECTIVITY IN THE SHI EPOXIDATION. THE IMPORTANCE OF ASYNCHRONICITY*

Introduction

Another highly plausible example under 2-1-2 category is epoxidations with dioxiranes. These reactions, as one of several widely accepted methods of asymmetric epoxidations of prochiral alkenes, provide substantial applications in the synthesis of functionalized optically active organic substances. ${ }^{49}$ A detailed mapping of the transition structures of these reactions is needed to understand the source of chiral discrimination and to design even more effective catalysts. A great deal of effort has been made on the mechanistic study on this type of reactions.

Computational studies by Houk ${ }^{50}$ provided synchronous transition state with spiro geometry, which is very similar to that in epoxidations by performic acid. The transition structure is located in a relatively shallow flat minima with a distortion energy of only $2.4 \mathrm{kcal} / \mathrm{mol}$. This synchronous transition structure was proposed to involve a dominant $\mathrm{S}_{\mathrm{N}} 2$ character in the oxygen transfer from dioxirane to ethylene. Unsymmetric

[^2]substitution on the reactants, either on alkenes or on the dioxiranes, lead to asynchronous transition states, with the substituted groups on the carbon with the longer C-O bonds. Calculation at higher levels by Bach also supported the symmetrical transition states in the case of ethylene. ${ }^{51}$

Although a molecule-induced homolysis has once been suggested as a possible process in the dimethyldioxirane epoxidation of alkenes, ${ }^{52}$ experimental results that no dioxolanes were observed rendered a homolysis pathway to be extremely unlikely. ${ }^{53}$

To gain more experimental information on the mechanism of the epoxidation of alkenes, we chose the Shi epoxidation as a model.

The rational control of enantioselectivity in a reaction can require a comprehensive knowledge of the reaction mechanism and a detailed geometry of the selectivitydetermining transition state. This presents new challenges in efforts to understand chemical reactions. Classical mechanistic tools provide a qualitative picture but usually supply too little detail. The contrasting great detail provided by theoretical calculations has made them an integral tool in studying mechanisms. However, a purely calculational approach faces diverse limitations, particularly for enantioselective reactions. Added to the usual uncertainty as to whether a given theoretical approach is sufficient to represent the basic experimental reaction in solution, most enantioselective reactions involve large chemical systems. This limits the level of applicable theoretical methodology and can greatly increase the conformational complexity of the reaction. For a calculational study leading to a series of transition state conformers, the reliability of the relative energies will be uncertain and it may be unclear whether the best
conformer has been found. Under such circumstances, it is very difficult to confidently analyze the nature of the enantioselectivity in a reaction.

Enantioselective oxidations of alkenes provide diverse versatile entries into optically active products. Recent advances in the epoxidation of unfunctionalized alkenes have been particularly impressive. ${ }^{54,55}$ Shi and coworkers have developed one of the most promising of these methodologies. ${ }^{55-58}$ In the Shi enantioselective epoxidation shown in Figure 24, a chiral ketone derived from fructose, such as 25, catalyzes the oxidation of alkenes with Oxone ${ }^{\mathrm{TM}}$ (potassium peroxymonosulfate) as the most common stoichiometric oxidant. An example is the epoxidation of trans- β-methylstyrene 27 to afford the $(+)-(R, R)$ epoxide 28 . The original catalyst 25 is most effective with transdisubstituted alkenes and trisubstituted alkenes, while the oxazolidinone 26a has been found to be effective with cis and terminal alkenes. ${ }^{57,58}$ The active oxidants are thought to be dioxiranes such as 29, as shown in Figure 25.

25

27

28

Figure 24. Asymmetric epoxidation catalyzed by Shi's catalyst.

29-chair

30^{\ddagger} (spiro)

32^{\ddagger}

29-boat

31^{\ddagger} (planar)

33^{\ddagger}

Figure 25. Proposed transition states in Shi epoxidation.

Shi has developed explanations of the enantioselectivity in these reactions based on diverse observations. Shi's model for understanding these reactions starts with a chair conformation of 29 and has the alkene approach the least-hindered equatorial oxygen of the dioxirane. The observed major products can then result from the spiro transition state 30 in which the substituents on a trans-disubstituted or trisubstituted alkene are positioned to avoid a steric interaction with the dioxolane c ring. The spiro transition state leading to the minor enantiomer is thought to be sterically unfeasible; instead, the planar transition state 31 is thought to be the main source of the minor enantiomer. For the reactions of cis-disubstituted and terminal alkenes catalyzed by $\mathbf{2 6}$, Shi has proposed that the enantioselectivity results from a preference for a π-conjugating substituent $\left(\mathrm{R}_{\pi}\right)$ to be oriented proximal to the oxazolidinone c ring, as in 32, as opposed to having the π conjugating substituent away from the oxazolidinone, as in $33 .{ }^{57,58}$ The origin of this preference has been unclear, though some observations have suggested an attractive interaction between π-conjugating substituents and substituents on the oxazolidinone. ${ }^{55}$

Theoretical studies of epoxidations mediated by dioxiranes have focused on simple model reactions. ${ }^{59-62}$ These studies have consistently supported a preference for a spiro transition state, as had been deduced from experimental observations. ${ }^{52}$ MP2 and CASSCF calculations favor a transition state for oxidation of ethylene in which there is differential formation of the incipient $\mathrm{C}-\mathrm{O}$ bonds, describable as highly "asynchronous," but B3LYP and several high-level $a b$ initio calculations favor essentially synchronous formation of the two new $\mathrm{C}-\mathrm{O}$ bonds. ${ }^{59,}{ }^{60}$ In an in-depth study of the reaction of the
parent dioxirane with ethylene, Bach ultimately concluded that the potential energy surface is very soft and that an unsymmetrical transition structure is slightly favored. ${ }^{60}$

For such a large system as the Shi epoxidation, the theoretical approach is effectively limited to DFT methods with a moderate basis set, and here the geometry optimizations are carried out using B3LYP calculations with a $6-31 \mathrm{G}^{*}$ basis set. Considering the diverging predictions of high-level $a b$ initio calculations, the accuracy of the calculational approach cannot be asserted on theoretical grounds alone. In addition, the use of a single-reference method such as B3LYP for epoxidation calculations has recently been criticized. ${ }^{63}$ The reasonable application of these calculations will require validation, and we accomplish this here using kinetic isotope effects (KIEs).

Results and Discussion

Experimental Isotope Effects. The prototypical enantioselective epoxidation of 27 catalyzed by 25 was chosen for study. Shi and coworkers have reported that epoxidations of $\mathbf{2 7}$ mediated by $30 \% 25$ afforded the $(+)-(\mathrm{R}, \mathrm{R})$ epoxide 28 in up to 95.7% ee at $-10^{\circ} \mathrm{C} .{ }^{56 \mathrm{~b}}$ The epoxidations here using 20% of 25 at $0^{\circ} \mathrm{C}$ afforded at least
92% of the $(+)-(R, R)$ enantiomer with an approximately quantitative formation of product.

The ${ }^{13} \mathrm{C}$ KIEs for epoxidation of 27 were determined combinatorially by NMR methodology at natural abundance. ${ }^{4}$ Two reactions of 27 were taken to 83% and 93% conversion, and the unreacted 27 was recovered by an extractive workup followed by flash chromatography. The samples of recovered 27 were analyzed by ${ }^{13} \mathrm{C}$ NMR, along with standard samples that had not been subjected to the reaction conditions. The change in isotopic composition in each position was determined relative to the meta carbons of the phenyl ring, ${ }^{64}$ with the assumption that isotopic fractionation of this position was negligible. From the percentage conversions and the changes in isotopic composition, the KIEs were calculated as previously described. 4

The results are shown in Figure 26. The independent sets of ${ }^{13} \mathrm{C}$ KIEs agree within the standard deviation of the measurements, with the exception of the para-carbon's KIEs. Such a minor disagreement could simply be the result of random error. Only the C_{β} and C_{α} KIEs differ significantly from unity, with a relatively large C_{β} isotope effect and a much smaller KIE at C_{α}. These KIEs qualitatively indicate a significantly asynchronous transition state for the epoxidation, with more advanced formation of the incipient $\mathrm{C}_{\beta}-\mathrm{O}$ bond than the $\mathrm{C}_{\alpha}-\mathrm{O}$ bond. A more quantitative interpretation of these KIEs will be possible with the aid of theoretical calculations

Figure 26. Experimental and predicted ${ }^{13} \mathrm{C} \operatorname{KIEs}\left(\mathrm{k}_{12 \mathrm{C}} / \mathrm{k}_{13 \mathrm{C}}\right)$ for the epoxidation of 27 catalyzed by 25 at $0{ }^{\circ} \mathrm{C}$. The two sets of experimental KIEs refer to two independent experiments, and standard deviations in the last digit from six determinations are shown in parentheses. The predicted ${ }^{13} \mathrm{C}$ KIEs are shown in italics and brackets, and are based on transition structure 34.

Theoretical Calculations. The theoretical study of this reaction is complicated by the size of the system, the possible involvement of several conformations of 29, and the many possible orientations for approach of the alkene. The conformations of 29 were first studied by carrying out a molecular dynamics search for conformers using an MM2 force field. Candidate structures were then optimized using B3LYP calculations with a 6-31G* basis set, and single-point energies using a $6-311+G^{* *}$ basis set were obtained for each optimized structure. A total of 6 conformers of 29 were identified for further study, arising from the combination of a chair and two boat conformations for the pyran b ring with two conformers each in the spiro dioxolane ring (ring c). The calculated structures of conformers 29 a-f are shown in Figure 27 and the energies are listed in

Table 4. Interestingly, 29-boat is predicted to be only $2.3 \mathrm{kcal} / \mathrm{mol}$ above 29 -chair (B3LYP/6-311+G**//B3LYP/6-31G* + zpe), so its reactive importance cannot be readily dismissed.

Table 4. Relative energies in kcal/mol of conformers of dioxirane 29.

	B3LYP/ $6-31 G^{*}$	B3LYP/ $6-311+G^{* *}$	B3LYP/ $6-311+\mathrm{G}^{* *}$ zpe from $6-31 \mathrm{G}^{*}$
29-a-chair	0.0	0.0	0.0
29-b	0.2	0.0	0.1
29-c-boat	1.7	2.5	2.3
29-d	2.2	3.1	2.7
29-e	4.1	4.2	3.8
29-f	4.7	5.1	4.6

A variety of combinations of the six conformers of 29 with intuitively rational possibilities for approach of the alkene were then explored in B3LYP/6-31G* calculations in a search for transition structures and shown in Figure 27. In this way, a total of 18 epoxidation transition structures were located. The eight structures, 34-41, that were predicted to be lowest in energy are shown in Figure 28; the energies of all the 18 transition structures, 34-51, are listed in Table 5. It should be noted that a great many possibilities were left unexplored - we estimate that a total of 66 transition structures might have been located. The 18 structures located all lie within about $8 \mathrm{kcal} / \mathrm{mol}$ range,
and it would be difficult to argue convincingly from theory alone that the best transition structure had been found.

29-a-chair

29-d

29-b

29-е

29-c-boat

29-f

Figure 27. Calculated structures of conformers of dioxirane 29.

Table 5. Relative energies in $\mathrm{kcal} / \mathrm{mol}$ of transition structures 34-51.

	$\begin{aligned} & \hline \text { B3LYP/ } \\ & 6-31 G^{*} \end{aligned}$	$\begin{gathered} \text { B3LYP/ } \\ 6-311+G^{* *} \end{gathered}$	$\begin{gathered} \hline \text { B3LYP/ } \\ 6-311+\mathrm{G}^{* *} \\ + \text { zpe from } \\ 6-31 \mathrm{G}^{*} \\ \hline \end{gathered}$
Starting materials	0.0	0.0	0.0
Transition structure 34	10.6	10.7	11.2
Transition structure 35	11.8	11.8	12.4
Transition structure 36	13.0	13.9	13.9
Transition structure 37	13.2	14.1	14.2
Transition structure 38	13.4	14.4	14.6
Transition structure 39	13.5	13.4	14.0
Transition structure 40	13.6	13.7	14.2
Transition structure 41	14.3	15.2	15.4
Transition structure 42	14.8		
Transition structure 43	14.9		
Transition structure 44	15.1		
Transition structure 45	15.2		
Transition structure 46	15.9		
Transition structure 47	16.0		
Transition structure 48	17.3		
Transition structure 49	17.3		
Transition structure 50	18.1		
Transition structure 51	18.7		

Figure 28. Calculated transition structures 34-41 for the epoxidation of 27 by 29. Most hydrogens have been removed for clarity. Energies are B3LYP/6-311+G**//B3LYP/6$31 \mathrm{G}^{*}+$ zpe reaction barriers in $\mathrm{kcal} / \mathrm{mol}$.

38^{\ddagger}

$$
\mathrm{E}_{\text {rel }}=14.6
$$

40^{\ddagger}

Erel $=14.2$

39^{\ddagger}
$E_{\text {rel }}=14.0$

41^{\ddagger}

Erel $=15.4$

Figure 28. Contimued

To evaluate the experimental relevance of these structures and interpret the observed isotope effects, ${ }^{13} \mathrm{C}$ KIEs were predicted for each of the transition structures. These predictions used the scaled theoretical vibrational frequencies ${ }^{18}$ in conventional transition state theory by the method of Bigeleisen and Mayer. ${ }^{15}$ Tunneling corrections were applied using a one-dimensional infinite parabolic barrier model. ${ }^{19}$ Such KIE predictions including a one-dimensional tunneling correction have proven highly accurate in reactions not involving hydrogen transfer, so long as the calculation accurately depicts the mechanism and transition state geometry. ${ }^{3}$ The KIEs based on the lowest-energy transition structure 34 are shown in Figure 26, and the predicted KIEs for the remaining transition structures are shown in Table 6.

Table 6. Experimental and predicted ${ }^{13} \mathrm{C}$ kinetic isotope effects $\left(\mathrm{k}_{12} / \mathrm{k}_{13}, 273{ }^{\circ} \mathrm{C}\right)$ for the epoxidation of 27.

	C_{β}	C_{α}	CH_{3}	Cipso	Cortho	$\mathrm{C}_{\text {para }}$
Experimental						
Exp. 1	1.022(2)	$1.005(1)$	1.002(2)	0.999(2)	1.001(1)	0.998(2)
Exp. 2	1.020(2)	1.006(2)	1.001(2)	$1.001(2)$	1.001(2)	1.001(1)
Predicted						
34	1.022	1.006	0.998	1.001	1.000	1.000
35	1.020	1.009	0.999	1.000	1.000	1.000

Table 6. Continued.

$\mathbf{3 6}$	1.022	1.005	0.998	1.001	1.000	1.000
$\mathbf{3 7}$	1.020	1.005	0.998	1.001	1.000	1.000
$\mathbf{3 8}$	1.018	1.008	0.999	1.000	1.000	1.000
$\mathbf{3 9}$	1.029	1.006	0.997	1.002	1.000	1.000
$\mathbf{4 0}$	1.029	1.006	0.997	1.002	1.000	1.000
$\mathbf{4 1}$	1.027	1.005	0.997	1.001	1.000	1.000
$\mathbf{4 2}$	1.025	1.007	0.997	1.001	1.000	1.000
$\mathbf{4 3}$	1.036	1.005	0.997	1.002	1.000	1.000
$\mathbf{4 4}$	1.026	1.007	0.997	1.001	1.000	1.000
$\mathbf{4 5}$	1.028	1.003	0.998	1.001	1.000	1.000
$\mathbf{4 6}$	1.031	1.004	0.999	1.001	1.000	1.000
$\mathbf{4 7}$	1.014	1.017	0.999	0.999	1.000	1.000
$\mathbf{4 8}$	1.026	1.006	0.997	1.001	1.000	1.000
$\mathbf{4 9}$	1.027	1.007	0.997	1.001	1.000	1.000
$\mathbf{4 5}$	1.023	1.009	0.998	1.001	1.000	1.000

The agreement between the experimental and predicted KIEs is striking. With the exception of the β-methyl group, all of the predicted isotope effects are within the uncertainty of the experimental measurement. The agreement of experiment and theory for C_{β} and C_{α} in particular supports the accuracy of the calculations with regard to the asynchronicity of the oxygen transfer. Notably, the comparison of experimental and predicted KIEs also excludes most of the calculated transition structures, as 15 of the 18 transition structures lead to KIE predictions for C_{β} and/or C_{α} that are outside of experimental error. For example, structure 35 has a relatively short $\mathrm{C}_{\alpha}-\mathrm{O}$ distance of $2.18 \AA$ and its predicted C_{α} KIE of 1.009 is too large. Only structures 34, 36, and 37 lead to accurate KIE predictions. The C_{β} and C_{α} KIEs appear to be very sensitive functions of the asynchronicity - there is a consistent structural trend in the predicted isotope effects in which shorter $\mathrm{C}_{\beta^{-}-\mathrm{O}}$ or $\mathrm{C}_{\alpha}-\mathrm{O}$ distances in the transition structures are associated with larger predicted ${ }^{13} \mathrm{C}$ KIEs. The asynchronicity varies greatly among the diverse structures, and only 34, 36, and 37 appear to approximate the actual asynchronicity well.

The two lowest-energy transition structures $\mathbf{3 4}$ and $\mathbf{3 5}$ were re-optimized using a 6$31+\mathrm{G}^{* *}$ basis set. This led to a very slight (0.01 to $0.03 \AA$) lengthening of the $\mathrm{C}_{\beta}-\mathrm{O}$ and $\mathrm{C}_{\alpha}-\mathrm{O}$ distances but otherwise the geometries are changed little. The predicted barriers with these fully-optimized structures are 11.4 and $12.7 \mathrm{kcal} / \mathrm{mol}$, very close to the single-point barriers in Figure 28. The predicted KIEs for 34 changed in each case by less than 0.0004 .

Given the experimental support for the approximate accuracy of the calculational methodology, the nature of structural effects impacting the enantioselectivity can now be considered. It should be noted for further consideration that the asynchronicity in 34, 36, and $\mathbf{3 7}$ closely resembles that found in transition structure 52 (shown in Figure 29) for reaction of 27 with a trihydroxy analog of dimethyldioxirane. Considering 52 as a model for an unhindered epoxidation, the asynchronicity in 52 may be considered as the "natural" asynchronicity. In this case, the unsymmetrical alkene 27 favors having a longer partial C--O bond adjacent to the phenyl group. With a simple symmetrically substituted alkene such as trans-2-butene, the natural asynchronicity is very low - the predicted transition structure has nearly equal C--O distances for the olefinic carbons. When compared to $\mathbf{5 2}$, the alkenyl moieties of $\mathbf{3 4}, \mathbf{3 6}$, and 37 are slightly pushed away from the dioxolane c ring, but otherwise the chiral environment of 29 allows the natural asynchronicity in these structures. In the other transition structures, 29 imposes "unnatural" asynchronicity. Any transition state is inherently flexible, and epoxidations with dioxiranes are thought to involve a particularly soft potential energy surface, ${ }^{60}$ but departure from the natural transition state geometry necessarily imparts an energy cost. This idea provides a simple intuitive framework for understanding effects on the selectivity in these reactions.

Figure 29. Calculated transition structure 52 of epoxidation of 27 with trihydroxy DMDO.

Structures 34-38 would afford the major enantiomeric product while $\mathbf{3 9 - 4 1}$ would afford the minor enantiomer. All of the structures giving the major enantiomer are spiro and place a hydrogen toward the most hindered quadrant containing the dioxolane c ring. This supports Shi's previous analysis. ${ }^{55}$ A surprising result, however, is the substantial preference for structure $\mathbf{3 4}$ over $\mathbf{3 5}$. This results from the asynchronicity of the transition structures. In 34, the phenyl group of 27 is positioned toward the α hydrogen on the pyran ring, but since the phenyl group is adjacent to the relatively long incipient $\mathrm{C}_{\alpha}-\mathrm{O}$ bond, there is little steric interaction. In 35, the methyl group of $\mathbf{2 7}$ is positioned toward the α hydrogen on the pyran ring. Since the methyl group is adjacent to the relatively
short $\mathrm{C}_{\beta}-\mathrm{O}$ bond, an unfavorable methyl/ H steric interaction results. To minimize this interaction, $\mathbf{3 5}$ is less asynchronous than "natural," and this is disfavored.

The transition structures 39-41 leading to the opposite enantiomer are neither spiro nor planar; rather, the plane of the incipient epoxide ring is twisted at roughly 45° from the plane of the dioxirane, and the asynchronicity of the transition structures is increased. The combination of the twisting and greater asynchronicity has the effect of minimizing a steric interaction of the phenyl group with the methyls of the dioxolane c ring. An alternative transition structure in which the methyl and phenyl groups of 39 are exchanged in position is $2.5 \mathrm{kcal} / \mathrm{mol}$ higher in energy; this structure has the same problem as 34 in that the natural asynchronicity, with a short $\mathrm{C}_{\beta^{--}}$O bond, would greatly increase steric interaction with the dioxolane. Structure 40 differs from 39 only by the conformation of the dioxolane c ring, while 41 has a boat conformation in the pyran ring. The boat transition structures 36 and 37 are sterically similar to 34 and are higher in energy by amounts that mainly reflect the ground-state boat/chair energy difference in 29.

The asynchronicity effect that disfavors transition structure 35 in the epoxidation of 27 has no outward consequence since the major enantiomer can be formed via 34 . In other cases, however, this effect appears to have an impact. One interesting observation is that the ee for 53 is relatively low while a higher ee is obtained with 54 and a very high ee is observed with $55 .{ }^{56 \mathrm{~b}}$ This trend may be understood by considering the facility of formation of the major enantiomer. ${ }^{65}$ In the case of 53 , the asynchronicity would be such that a relatively short $\mathrm{C}_{\beta^{-}-\mathrm{O}}$ bond would be favored at the transition state, but this
would force the trans methyl group into a sterically bad position (identical to that in 35). In 54, the asynchronicity of the transition state should be decreased, decreasing the steric interaction with the trans methyl group. In 55, a phenyl group is forced toward the

53 (76\% ee)

54 (87% ee)

55 (97\% ee)
pyran ring but, as in $\mathbf{3 4}$, the adjacent incipient C--O bond would be long at the transition state and there would little steric interaction between the phenyl group and the pyran.

Cis-Alkenes and Terminal Alkenes. The major enantiomeric product in the reaction of trans-disubstituted or trisubstituted alkenes catalyzed by 25 arises from a spiro transition state transferring the equatorial oxygen, as Shi has proposed. ${ }^{55}$ However, when this model is applied to epoxidations of cis-disubstituted and terminal alkenes using 26b, the two transition states 32 and 33 affording opposite enantiomers would seem equally good. Why would the predominant product arise from 32 in which the π conjugating substituent is oriented proximal to the oxazolidinone ring?

We first sought to find out if this preference could be reproduced in a calculational model. This was not obvious - if the preference arises from an attractive interaction due to a dispersion force, such interactions are not well reproduced by DFT calculations. To examine this issue, transition structures were located for the epoxidation of styrene and cis- β-methylstyrene with the dioxirane derived from $\mathbf{2 6 b}(\mathrm{R}=\mathrm{CHO})$. Our studies with these alkenes were limited to the chair conformation of the dioxirane and reaction of the
equatorial oxygen, as in the Shi conception. This is an incomplete examination, but based on the results with $\mathbf{2 5}$, it should be sufficient to identify the major effects on the stereochemistry.

The four lowest-energy transition structures 56-59 located for the epoxidation of styrene catalyzed by 26b are shown in Figure 30. The relative energies are listed in Table 7. The lowest-energy transition structure 56 corresponds to 32 and would afford the observed major product. The predicted preference for the major enantiomer, at 1.4 $\mathrm{kcal} / \mathrm{mol}$, fits well with the experimental product ratio of approximately 9:1.5. Transition structure 57, corresponding to 33, would afford the minor enantiomeric product, as would the alternative transition structure 59. Interestingly, 59, which places the phenyl group in what would be expected to be the most sterically hindered position toward the oxazolidinone ring, is similar in energy to 57 and 58. (A transition structure analogous to $\mathbf{5 9}$ for the reaction of $\mathbf{2 7}$ with $\mathbf{2 9}$ was prohibitively high in energy.) Another surprise is that 58 , corresponding to the best transition structure 34 when 25 was the catalyst, is predicted to be significantly higher in energy than 56.

The calculations correctly predict the major enantiomeric product, but the qualitative understanding of the enantioselectivity is a more difficult and subtle issue. One apparent contributing factor to the preference for 56 over 57 and 58 is that the asynchronicity of the transition structures in 57 and 58 forces an olefinic hydrogen into a steric interaction with the oxazolidinone ring. Model calculations using ethylene and oxazolidinone suggest that the minimum-energy distance for interaction of an olefinic hydrogen with the ring oxygen of oxazolidinone is about $2.8 \AA$. This is approximately
what is found in 56, but in 57 and 58 the H--O distance is too short (Figure 30). As is normal for steric interactions, the effect is distributed into other distortions in the transition structures. For example, the approach of the alkene in 57 and 58 is "pushed" away from the oxazolidinone, so that the $\mathrm{C}_{\beta^{--O}--\mathrm{O}}$ angle in each is 166°. For comparison, the $\mathrm{C}_{\beta}-\mathrm{O}-\mathrm{O}$ angle is only 160° in both 56 and in an unstrained model (analogous to 52, only using styrene instead of 27). The "reversed" asynchronicity in 59 compared to $\mathbf{5 7}$ and 58, as well as a twist of the transition state away from spiro by about 45°, minimizes the steric interaction of the phenyl group with the oxazolidinone. As a result, the phenyl/oxazolidinone steric interaction in $\mathbf{5 9}$ seems to have no more direct effect than the hydrogen/oxazolidinone interaction in 57 and 58.

Table 7. Relative energies in $\mathrm{kcal} / \mathrm{mol}$ of transition structures 56-59.

	B3LYP/ $6-31 G^{*}$	B3LYP/ $6-311+G^{* *}$	B3LYP/ $6-311+\mathrm{G}^{* *}$ zpe from $6-31 \mathrm{G}^{*}$
Starting materials	0.0	0.0	0.0
Transition structure 56	4.7	5.1	5.9
Transition structure 57	7.5	7.0	7.4
Transition structure 58	6.8	6.5	7.1
Transition structure 59	7.2	6.6	7.3

Figure 30. Calculated transition structures for the epoxidation of styrene by the dioxirane derived from 26b. Most hydrogens have been removed for clarity. Energies are B3LYP/6-311+G**//B3LYP/6-31G* + zpe reaction barriers in $\mathrm{kcal} / \mathrm{mol}$.

Another factor that appears to be contributing to the preference for 56 and the relatively low energy of 59 is a dipolar interaction. Epoxidation with dioxiranes is an electrophilic process, and there is a partial positive charge developed in the styrene moiety at the transition state. For example, the total Mulliken charge in the styrenyl part of 56 is 0.33 . There is a dipole associated with the oxazolidinone ring, and this dipole would be oriented so as to stabilize 56 and 59 relative to 57 and 58 . In 59 in particular, the partially positive phenyl ring is approaching the partially negative oxazolidinone oxygens.

Consideration of the factors affecting the stability of 56-59 aids in the understanding of enantioselectivity in related reactions. Shi has made the interesting observation that 1-phenylcyclohexene (60) affords high selectivity for the (R, R) product 61 with 25 as catalyst but low selectivity for the opposite enantiomer 62 with 26 as catalyst. ${ }^{55}$ Additionally, substituents on the oxazolidinone nitrogen have a significant impact on the enantioselectivity. With 25, a transition structure similar to 34 should be heavily favored, as was true with 55 above. With 26a as catalyst, however, transition structures analogous to 56 and 57 would be precluded because they place the cyclohexenyl ring in an unfavorable position toward the pyran. The expected lowestenergy transition structures would be analogs of 58 and 59.

Based on this prescription, transition structures 63 and 64 were located for the epoxidation of phenylcyclohexene catalyzed by 26b. The calculated structures and the relative energies are shown in Figure 31. The preferred transition structure 64 would afford 63, and the small preference for $\mathbf{6 4}$ over $\mathbf{6 3}$ of $0.2 \mathrm{kcal} / \mathrm{mol}$ is well consistent with experimental observations. The structures of $\mathbf{6 3}$ and $\mathbf{6 4}$ support the ideas discussed with 56-59. Although the phenyl group of $\mathbf{6 3}$ is well positioned to avoid steric interactions, the asynchronicity of the transition structure appears to push the olefinic hydrogen of 63 too close to the oxazolidinone. In contrast, the asynchronicity of $\mathbf{6 4}$ minimizes steric interactions between the phenyl group and the oxazolidinone. An additional interesting effect in $\mathbf{6 4}$ is that the phenyl group is twisted away from of conjugation with the olefin by 28°, compared with $0^{\circ}-10^{\circ}$ with $56-59$. It would seem that for the epoxidation of this trisubstituted alkene, activation by conjugation with the phenyl group is of decreased importance, allowing the phenyl group to twist so as to minimize steric interactions. Because the phenyl group in $\mathbf{6 4}$ is still pushed up against the oxazolidinone ring, the relatively large effect of substituents on the nitrogen is understandable. It should be noted that aside from the impact of asynchronicity on steric interactions, the basic analysis here is quite similar to the qualitative analysis described by Shi. ${ }^{55}$

Figure 31. Calculated transition structures 29 and 30 for the epoxidation of 1phenylcyclohexane by the dioxirane derived from 26b. Most hydrogens have been removed for clarity. Energies are B3LYP/6-311+G**//B3LYP/6-31G* + zpe reaction barriers in $\mathrm{kcal} / \mathrm{mol}$.

Conclusions

The potential energy surface for the epoxidation of alkenes with dioxiranes is thought to be very soft. ${ }^{60}$ Under these circumstances, even very high level calculations cannot unambiguously decide between synchronous and asynchronous transition states for reactions of simple alkenes with simple dioxiranes, and the adequacy of a DFT method applied to a large enantioselective reaction cannot be assured theoretically. However, the calculated ${ }^{13} \mathrm{C}$ KIEs for diverse epoxidation transition structures suggest that the observed isotope effects should be a very sensitive measure of the transition state geometry. The experimental KIEs match well with those predicted for the lowestenergy theoretical transition structure 34. This supports the approximate accuracy of $\mathbf{3 4}$
and by implication supports the applicability of B3LYP/6-31G* calculations to these reactions. Multi-reference methods appear unnecessary here for geometrically accurate transition structures. ${ }^{60,63}$

The transition state for epoxidation of trans- β-methylstyrene catalyzed by 25 is asynchronous with a shorter incipient $\mathrm{C}_{\beta}-\mathrm{O}$ bond at the transition state. This asynchronicity approximates that in an unstrained model, and the asynchronicity of such unsymmetrical reactants is expected to have consequences. High enantioselectivity should be promoted when the major enantiomer can arise by a transition state for which the catalyst allows the natural asynchronicity. In contrast, when the natural asynchronicity of the epoxidation is hindered by the catalyst, as in the case of 53 , the enantioselectivity will likely be lowered.

The asynchronicity of transition states for unsymmetrical reactants has a significant impact on steric interactions at the transition state. Asynchronicity in the "wrong" direction, as in 57,58 , and $\mathbf{6 3}$, increases steric interactions, while asynchronicity in the right direction decreases them, as in $\mathbf{5 6}, \mathbf{5 9}$, and $\mathbf{6 4}$. The consideration of such an effect of asynchronicity is necessary to understand the significant preference for π-conjugating substituents to be proximal to the oxazolidinone of $26 \mathbf{a}$ in literature observations. Overall, the asynchronicity of transition states for epoxidations by dioxiranes must be considered carefully in efforts to understand enantioselectivity in these reactions.

CHAPTER V

DYNAMIC CONTROL OF PRODUCT SELECTIVITY IN A DIELS-ALDER REACTION

Introduction

Transition state theory, as one of the fundamental ideas in chemistry, ubiquitously implicitly assumed in explaining the rates and selectivities of organic reactions. This is true, for example, whenever organic chemists discuss reactions in terms of a twodimensional potential energy profile of the kind shown in Figure 32.

Figure 32. A typical potential energy profile.

Such graphs have been helpful in understanding the thermochemistry and kinetics of reactions. However, they can be misleading in some circumstances. The principal
problem comes from compressing the structural changes that occur during a reaction into a single reaction coordinate. In reality, a unimolecular reaction of an N -atom nonlinear reactant has $3 \mathrm{~N}-6$ degrees of freedom, thus requires $3 \mathrm{~N}-6$ geometrical coordinates to fully describe the structural changes during the reaction. So a 3N-5 dimensional hypersurface is needed to depict the potential energy as a function of molecular structure. However, it is impossible to draw the 3N-5 dimensional hypersurface. Thus physical organic chemists choose the one most important structural change and depict potential energy surface in a 2-dimensional way, as shown in Figure 32. This misses some important possible complications. By depicting the potential energy surface in a 3dimensional way, like in Figure 33, we will be able to understand these complications.

Figure 33. An example of 3-dimensional potential energy surface.

The 2-dimensional reaction coordinate paradigm governs the usual understanding of organic selectivity. If a reaction produces two products, the ratio of those products would be explained in terms of differing energetic barriers along their respective mechanistic pathways. Even when there is no enthalpic barrier, reactivity and selectivity can be discussed in terms of free-energy barriers. Complications such as tunneling, ${ }^{19}$ recrossing ${ }^{66}$ and variational transition state ${ }^{67}$ effects are well recognized, but the control of rates and selectivity by barriers is employed as an intrinsic assumption in the interpretation of experimental observations.

Dynamic effects are the exceptions. For some reactions, the products ratio or stereochemistry is difficult to explain in terms of energetic barriers. Most of those cases occur when the intermediate is formed with kinetic energy that far exceeds the energy needed to traverse the barrier to products, or when a high-energy intermediate, such as a biradical, resides on an energy plateau in the potential energy profile. In such cases, explicit consideration of the detailed motions and momenta of the atoms aids in understanding the experimental results. ${ }^{68}$ Figure 34 shows some examples of reactions which have been explained to have dynamic effects. ${ }^{69-72}$ Most of those reactions involve high-energy biradical intermediates and the stereochemistry and the product distribution are explained as the results from a non-statistical distribution of atomic motions.

(a)

(c)

(b)

(d)

Figure 34. Some examples of reactions proposed to involve dynamic effects.

Dynamic effects can not only affect reactions involving high-energy intermediates, but also can play an important role in ordinary organic reactions in solution. ${ }^{73}$ The circumstance of such dynamic effects is when a reaction involves a bifurcating energy surface.

Stationary points are usually the places of the interest when potential energy surfaces are investigated. A stationary point is a place where the partial first derivatives of the potential energy with respect to all geometrical coordinates are simultaneously zero. Two common classes of features on the potential energy surface meet this criterion: minima and transition states. While the minima have all of the partial second derivatives positive, the transition states has one and only one partial second derivative negative and all other partial second derivatives positive.

The potential energy surface in the vicinity of a transition state usually follows the steepest descent path down to a single reactant in one direction and a single product or an intermediate in the other direction. However, a transition state may sometimes be shared by more than one reactants or products; for an example, when there is a valleyridge inflection point (VRI). ${ }^{74} \mathrm{~A}$ VRI point is adjacent to two transition states and the partial second derivative for VRI is zero. On such a surface with a VRI point, reactants that pass through a rate-limiting transition state can proceed to two distinguishable products without barrier, even though there is an energetic barrier for the conversion of one product to another. However, transition state theory cannot predict the product ratio in a reaction that occurs via a VRI. Thus dynamic trajectory studies are needed.

If the surface is symmetrical, the minimum-energy path (MEP) bifurcates to afford equally two equivalent products. If the energy surface is not symmetrical, the MEP may not bifurcate but there may still be trajectories that lead to each product. Figure 35 illustrates the symmetrical and the unsymmetrical potential energy surfaces.

Figure 35. Bifurcating surfaces in which dynamic effects would control selectivity. (a) The surface is symmetrical and the MEP bifurcates at a second transition state. Real trajectories would tend to diverge from the MEP in the area of the VRI. (b) The surface is unsymmetrical and the MEP does not bifurcate. However, some possible trajectories afford a product not on the MEP.

We discuss here the effect of dynamic effects on such a surface in understanding the role selectivity of a Diels-Alder reaction.

The 77-year old Diels-Alder reactions are among the most important ring-forming process in chemistry, ${ }^{75}$ and the regio-, stereo- and enantioselectivity have been extensively studied. When a Diels-Alder reaction is carried out between two components that have similar 4-electron π systems, role selectivity, the selection of which component
acts as the diene versus dienophile in the reaction, can be an important consideration. The reaction we chose here is the Diels-Alder reaction between acrolein (65) and methyl vinyl ketone (66), as shown in Figure $36,{ }^{76}$ which gives two cross products 67 and 68, as well as two dimerization products $\mathbf{6 9}$ and 70. In product 67, acrolein acts as a diene, while in 68, methyl vinyl ketone acts as a diene.

Figure 36. Diels-Alder reaction between acrolein and methyl vinyl ketone.

The normal assumption would be that the role selectivity would be controlled by the energetic difference between the two separate transition state leading to 67 and 68 respectively. However, theoretical studies by Caramella and coworkers suggested that for the regiospecific dimerization of methacrolein the $4+2$ and $2+4$ cycloaddition paths merge, the transition structure has a C_{2}-symmetry and the energy surface looks like that of figure $35(\mathrm{a}) .{ }^{77}$ At the rate-limiting transition state, it has not decided yet which molecule would act as the diene and which as dienophile in the product. However, in the dimerization of methacrolein, the two products are identical and not experimentally differentiatable. Thus we turn our attention to the less symmetrical reaction, reaction between $\mathbf{6 5}$ and 66.

Results and Discussion

Kinetic studies and simulations. The reaction between acrolein and methyl vinyl ketone goes very slowly at temperatures even as high as $100^{\circ} \mathrm{C}$. Taking into consideration the low boiling points of the reactants, all the reactions for kinetic studies were done in sealed tubes at temperatures between 100 and $220^{\circ} \mathrm{C}$. The concentration of the products was determined with NMR and GC, by comparing to the internal standard 1,2-dimethoxyethane. With the assumption that all Diels-Alder reactions occur in second order and the rearrangement from minor cross product to major cross product is first order, kinetic simulation was then done to determine the rate constants since the formation of the four products affect one another and minor cross product 68 converts to major cross product 67 under thermal conditions, which makes it impractical to measure the individual rate constants separately. Due to the fact that all the four products have a similar structural frame, which leads to similar chemical shifts and partial overlap in NMR, the concentrations and derived rates are subject to considerable uncertainty.

Seven independent sets of kinetic studies and simulations at different temperature in the range between 100 and $220{ }^{\circ} \mathrm{C}$ shows the ratio between the rate constant of the formation of major cross product and the rate constant of the formation of minor cross product at 3.0 ± 0.5

Theoretical studies. Calculational studies by Caramella and coworkers have suggested a bifurcating energy surface and the possible influence of dynamic effects in the dimerization of methacrolein. ${ }^{77}$ To investigate the similar Diels-Alder reaction
between acrolein and methyl vinyl ketone, a thorough theoretical investigation was carried out.

A variety of transition structures were located for cycloaddition of acrolein and methyl vinyl ketone. First, both acrolein and methyl vinyl ketone can act as diene. Second, the dienophile can adopt s-cis or s-trans geometry. And both endo and exo approach need to be considered. Thus eight transition structures were expected. However, only seven transition structures were located, and the relative energies are listed in Table 8. Among those transition structures, the endo transition structure with acrolein as diene and s-cis methyl vinyl ketone as dienophile (71) has lowest energy. Most of other transition structures are considerably higher in energy than 71 and not likely to contribute in the formation of product. Only the exo one with acrolein as diene and s-cis methyl vinyl ketone is in an energetic range that could slightly contribute to the formation of products, however, this transition structure leads to the same inclination in role selectivity.

A key intriguing result was that even though there are two cross products formed in the reaction, only one low-energy cycloaddition transition structure could be found. Geometries of this transition structure 71 at different theoretical levels are illustrated in Figure 37. As shown in all the cases, the formation of $\mathrm{C}-\mathrm{O}_{\text {acrolein }}$ bond is more developed than the formation of $\mathrm{C}-\mathrm{O}_{\mathrm{mvk}}$ bond. However, the difference in the degree of bond formation varies with the method used in the calculation. Structures from B3LYP and mPW 1 K calculations are all considerably unsymmetrical, with the difference between C $\mathrm{O}_{\text {acrolein }}$ distance and $\mathrm{C}-\mathrm{O}_{\mathrm{mvk}}$ distance at $0.668,0.790$, and $0.739 \AA$ respectively. On the
contrary, MP2 geometry is only slightly unsymmetrical, with the difference between C$\mathrm{O}_{\text {acrolein }}$ distance and $\mathrm{C}-\mathrm{O}_{\mathrm{mvk}}$ distance at $0.098 \AA$.

71a
B3LYP/6-31G*

71c
$\mathrm{mPW} 1 \mathrm{~K} / 6-31 \mathrm{G}^{*}$

71b
B3LYP/6-31+G*
71d
MP2/6-31G*

Figure 37. Calculational geometries of transition structure 71 using different calculational methods.

Table 8. Relative energies of possible combinations for the Diels-Alder transition structures in $\mathrm{kcal} / \mathrm{mol}$.

	B3LYP/6-31G*	CCSD(T)/6-31G*
TS 71, Ac as diene, MVK cis, endo	0.0	0.0
Ac as diene, MVK cis, exo	1.3	2.5
Ac as diene, MVK trans, endo	5.6	6.9
Ac as diene, MVK trans, exo	5.8	7.2
MVK as diene, Ac cis, exo	3.2	4.5
MVK as diene, Ac trans, endo	4.8	7.0
MVK as diene, Ac trans, exo	5.7	7.8

Another important geometry is the transition structure in the step that converts the minor cross product to the major cross product. This is formally a [3,3]-sigmatropic rearrangement and similar to Cope rearrangement. Geometries of transition structure for this conversion (72) are shown in Figure 38. The relative energies of all chemically important species at various calculational levels are listed in Table 9.

72a
B3LYP/6-31G*

72c
mPW1K/6-31G*

72b
B3LYP/6-31+G*

72d
MP2/6-31G*

Figure 38. Calculational geometries of transition structure 72 using different calculational methods.

Table 9. Relative energies of chemically important species in Diels-Alder reaction between acrolein and methyl vinyl ketone in $\mathrm{kcal} / \mathrm{mol}$.

	B3LYP	B3LYP	CCSD(T)/	$\mathrm{mPW} 1 \mathrm{~K} /$	MP2/
	$/ 6-31 \mathrm{G}^{*}$	$/ 6-31+\mathrm{G}^{*}$	$6-31 \mathrm{G}^{*}$	$6-31 \mathrm{G}^{*}$	$6-31 \mathrm{G}^{*}$
Starting materials	0.0	0.0	0.0	0.0	0.0
TS 71	19.5	22.7	17.7	20.8	10.6
Product 67	-30.7	-15.0	-28.3	-31.0	-25.9
Product 68	-28.8	-13.2	-26.0	-28.9	-24.2
TS 72	8.2	23.8	16.1	21.1	7.4

Figure 39. Qualitative B3LYP/6-31G* energy surface in Diels-Alder reaction between acrolein and methyl vinyl ketone.

To get a full view of the energy surface, series of calculations were carried out with an array of fixed C-C distance between the two carbon atoms that close the ring in the products. For each C-C distance, a second array of $\mathrm{C}-\mathrm{O}_{\text {acrolein }}$ distance is fixed. A qualitative 3-dimensional energy surface (Figure 39) was obtained form the resulting energy values.

Theoretical studies: dynamics. It has been reported before that a single transition state could give rise to two compounds in organic reactions. ${ }^{69 e}$, ${ }^{78}$ Since only one transition structure is involved in the formation of both products in the Diels-Alder reaction between acrolein and methyl vinyl ketone, the selectivity between the two products cannot be explained with energetic difference in the reaction pathways. Thus the ratio of products is not associated with barrier but determined by momenta of atoms and dynamic calculations are needed to understand the role selectivity in the reaction.

Structure 71 was used as the starting point for quasiclassical direct dynamic trajectories on the B3LYP/6-31G* energy surface. The trajectories were initiated by giving each mode a random sign for its initial velocity, along with an initial energy based on a random Boltzmann sampling of vibrational levels at 353.15 K , including zero-point energy. One-fs steps were taken until either product or starting material was formed. The formation of product was judged by a $\mathrm{C}-\mathrm{O}_{\text {acrolein }}$ or $\mathrm{C}-\mathrm{O}_{\mathrm{mvk}}$ distance less than $1.6 \AA$, while the formation of starting material was judged by a C-C distance larger than 2.2 Å.

Dynamic calculations on the B3LYP/6-31G* energy surface gives a ratio of 214:14 between the major and the minor cross product. This is not surprising due to the large difference between $\mathrm{C}-\mathrm{O}_{\text {acrolein }}$ distance and $\mathrm{C}-\mathrm{O}_{\text {mvk }}$ distance at $0.668 \AA$. However, it is far from the experimental observation of a ratio of 3.0 ± 0.5, which indicates B3LYP/6$31 G^{*}$ energy surface may not be able to represent the reality in the reaction. The B3LYP/6-31+G* and mPW1K/6-31G* transition structures are expected to give similar results in dynamic calculations since they also have large difference in C-O distances.

As mentioned above, the MP2 calculational structures are considerably different from the B3LYP and mPW1K calculational structures. The MP2 calculation predicted much lower barrier for cycloaddition and a [3,3]-sigmatropic transition structure lower in energy than the Diels-Alder transition structure. The MP2 calculation has been proved to provide better prediction in the Clainsen rearrangement, ${ }^{79}$ which has similarity with the [3,3]-sigmatropic rearrangement here. The MP2 Diels-Alder transition structure is only slightly unsymmetrical, which could rationally lead to much smaller ratio between the major and the minor cross product. However, the full exploration of MP2 energy surface is precluded due to the limited calculational capacity. Thus a qualitative surface is built with the relative energies of all the chemically important species involved, as shown in Figure 40. Dynamic calculations on the MP2/6-31G* energy surface showed a ratio of $45: 14$ (3.2:1), which is in good agreement with the experimental observation of 3.0 ± 0.5 and verifies the reflection of reality by MP2 calculations.

Figure 40. MP2/6-31G* energy surface in Diels-Alder reaction between acrolein and methyl vinyl ketone.

An unexpected experimental observation is the high rate constants and the low activation energy in the conversion of minor cross product to the major product. Kinetic studies and simulations suggest an activation energy of about $15 \mathrm{kcal} / \mathrm{mol}$, which is just about the half of the calculational barrier of $31.6 \mathrm{kcal} / \mathrm{mol}$. This could be the result of some unpredicted catalytic process or the further reaction of the minor product with components in the reaction system.

Conclusion

Diels-Alder reaction between acrolein and methyl vinyl ketone provides two cross products, one with acrolein as diene, the other with methyl vinyl ketone as diene, in a ratio of 3.0 ± 0.5. Theoretical studies show that only one low-energy transition structure
is involved in the formation of both products and that the role selectivity cannot be explained by energetic barriers. Dynamic calculations on B3LYP energy surface predict a product ratio of $214: 14$, indicating that B3LYP calculation may not reflect the reality in the reaction. Dynamic calculations on MP2 surface give a prediction of a product ratio of $45: 14$ (3.2:1), which is in good agreement with the experimental observation. Overall, dynamic effects successfully predicted the role selectivity in the Diels-Alder reaction between acrolein and methyl vinyl ketone, which cannot be explained with transition state theory.

CHAPTER VI

EXPERIMENTAL SECTION

General Procedures

Proton NMR spectra were recorded on Varian XL-300 or Mercury 300 spectrometer. ${ }^{13} \mathrm{C}$ spectra for KIE determinations were recorded on Varian-400, Unity 500 , or Inova 500 spectrometer. T1 values for each sample were determined by the inversion-recovery method to avoid integration errors from paramagnetic impurities in the sample. ${ }^{13} \mathrm{C}$ integrations were determined numerically using a constant region for each peak that was about 5 times the peak width at half height on either side of the peak. A zero-order baseline was generally applied but in no case was a first order correction employed. KIEs and errors were calculated using equation 33-36 based on the isotopic enrichment and reaction conversion.

$$
\begin{gather*}
\mathrm{KIE}_{\text {calcd }}=\frac{\ln (1-\mathrm{F})}{\ln \left[(1-F) \mathrm{R} / \mathrm{R}_{0}\right]} \tag{33}\\
\Delta \mathrm{KIE}_{F}=\frac{\partial \mathrm{KIE}}{\partial F} \Delta F=\frac{-\ln \left(\mathrm{R} / \mathrm{R}_{0}\right)}{(1-F) \ln ^{2}\left[(1-F) \mathrm{R} / \mathrm{R}_{0}\right]} \Delta F \tag{34}\\
\Delta \mathrm{KIE}_{R}=\frac{\partial \mathrm{KIE}}{\partial\left(\mathrm{R} / \mathrm{R}_{0}\right)} \Delta\left(\mathrm{R} / \mathrm{R}_{0}\right)=\frac{-\ln (1-F)}{\left(\mathrm{R} / \mathrm{R}_{0}\right) \ln ^{2}\left[(1-F) \mathrm{R} / \mathrm{R}_{0}\right]} \Delta\left(\mathrm{R} / \mathrm{R}_{0}\right) . \tag{35}\\
\Delta \mathrm{KIE}=\mathrm{KIE} *\left(\left(\Delta \mathrm{KIER}_{\mathrm{R}} / \mathrm{KIE}\right)^{2}+(\Delta \mathrm{KIEF} / \mathrm{KIE})^{2}\right)^{1 / 2} \tag{36}
\end{gather*}
$$

All calculational structures and energies were obtained using standard procedures in Gaussian $98{ }^{80}$ or Gaussian03. ${ }^{81}$ Vibrational frequency analyses were carried out on all stationary points. The structures were all first located by density functional theory calculations employed Becke3LYP ${ }^{82}$ method implemented in Gaussian with $6-31 \mathrm{G}^{*}$ basis set. B3LYP calculations with larger basis sets, mPW1K calculations, ${ }^{32} \operatorname{CCSD}(\mathrm{~T})$ single point energy calculations, and MP2 calculations were carried out when necessary, starting with B3LYP/6-31G* calculated structures. Semiclassical trajectory calculations were carried out according previously described method. ${ }^{73 a}$

Fragmentation of Epoxy Inimo-1,3,4-oxadiazolines

Epoxy imino-1,3,4-oxadizoline diastereomers were synthesized by literature method. ${ }^{28}$ The diastereomers were separated by flash column eluted with $6: 4$ mixture of dichloromethane/hexanes. A $10 \times 5 \mathrm{~cm}$ column and 3 L of eluting solvents were used for the separation of 1 g of diastereomers. Column chromatography was then followed by a recrystallization in 5:1 hexanes/dichloromethane to yield pure major isomer. The structure of major diastereomer was determined by X-ray crystalgraphy.

To $2.00 \mathrm{~g}(7 \mathrm{mmol})$ of α, β-epoxy phenylinimo-1,3,4-oxadiazoline (2), 50 mL of diphenyl ether, and $1.00 \mathrm{~g}(5 \mathrm{mmol})$ of dibenzyl ether (internal standard) were added and stirred at $145-150{ }^{\circ} \mathrm{C}$ for 1 h . A conversion at $65 \pm 1 \%$ was determined with NMR by comparing the signal of tertiary proton on the epoxide ring at 2.70 ppm to the methylene signal in the internal standard at 4.55 ppm . Unreacted α, β-epoxy phenylinimo-1,3,4oxadiazoline was then recovered by a flash column eluted with a $1: 1$ mixture of
hexane/dichloromethane, followed by recyrstallization at $-20{ }^{\circ} \mathrm{C}$ from $5: 1$ hexane/dichloromethane. By analogous procedure, two other reactions were taken to conversions of $70 \pm 1 \%$, and $84 \pm 1 \%$ respectively.

NMR Measurements. All samples were prepared using a constant 150 mg of 2-phenylimino- Δ^{3}-1,3,4-oxidiazoline (2) in 5 mm NMR tubes filled with CDCl_{3} to a constant height of 5.0 cm . The ${ }^{13} \mathrm{C}$ spectra were recorded at 125.70 MHz using inverse gated decoupling, 60 s delays between calibrated $\pi / 2$ pulses, and a 6.560 s acquisition time to collect 262144 points. Integrations were numerically determined using a constant integration region for each peak. A zero-order baseline correction was generally applied, but no first-order correction was applied. Four or five spectra were recorded for each sample of recovered 2-phenylimino- Δ^{3}-1,3,4-oxidiazoline along with samples of 2-phenylimino- Δ^{3} - $1,3,4$-oxidiazoline which were not subjected to the reaction conditions.

For the ${ }^{13} \mathrm{C}$ spectra of α, β-epoxy 2-phenylinimo-1,3,4-oxadiazoline the integrations of the oxirane substitutent methyl carbons $\left(\mathrm{C}_{8}\right)$ were set at 1000 . The average integrations and standard deviations (in parentheses) for the other carbons are shown in Table 10 along with the number of spectra recorded for each sample (n).

The values for R / R_{0}, calculated as the ratio of average integrations in Table 10 relative to the standard sample, are shown in Table 11. The standard deviations were calculated from the formula:

$$
\Delta \mathrm{R} / \mathrm{R}_{0}=\mathrm{R} / \mathrm{R}_{0} \times\left((\Delta \text { IntSample } / \text { IntSample })^{2}+(\Delta \text { IntStandard } / \text { IntStandard })^{2}\right)^{1 / 2}
$$

Table 10. Average ${ }^{13} \mathrm{C}$ integrations for α, β-epoxy phenylinimo-1,3,4-oxadiazoline, with standard deviations (in parentheses).

\% conversion	C_{1}	C_{2}	C_{3}	C_{4}	C_{5}	C_{6}	C_{7}	n
		1043.4	1040.3	1037.9	1032.5	1042.0	985.9	1015.4
	(5.6)	(2.3)	(2.9)	(3.1)	(5.7)	(3.6)	(5.0)	
Standard	1068.7	1057.6	1048.4	1038.1	1042.8	994.6	1016.5	5
Samp1 $65 \pm 1 \%$	(2.0)	(3.4)	(5.1)	(2.5)	(3.7)	(4.9)	(4.2)	
	1088.9	1053.1	1063.7	1050.5	1058.0	999.3	1029.3	4
Standard	(3.5)	(0.9)	(5.1)	(2.1)	(3.6)	(3.4)	(3.5)	
	1134.2	1064.6	1066.5	1041.9	1065.4	998.5	1031.8	4
Samp2 70 $\pm 1 \%$	(5.7)	(1.7)	(5.2)	(5.1)	(4.2)	(3.3)	(3.5)	
	1088.9	1053.1	1063.7	1050.5	1058.0	999.3	1029.3	4
Standard	(3.5)	(0.9)	(5.1)	(2.1)	(3.6)	(3.4)	(3.5)	
	1125.8	1073.4	1072.6	1049.1	1060.3	998.3	1029.4	4
Samp3 84 $\pm 1 \%$	(3.5)	(1.8)	(1.3)	(1.8)	(3.6)	(3.3)	(2.3)	
		C_{9}	C_{10}	C_{11}	C_{12}	C_{13}	C_{14}	n
\% conversion	C_{8}							
Standard	1000	1029.8	987.3	959.2	2079.3	2065.7	1016.2	5
		(4.4)	(1.4)	(5.0)	(5.9)	(9.2)	(2.5)	
Samp1 65 $\pm 1 \%$	1000	1026.1	984.7	977.2	2088.7	2101.5	1019.2	5
		(4.4)	(4.2)	(4.8)	(11.5)	(9.2)	(2.9)	
Standard	1000	1009.6	1006.6	1044.3	2106.2	2125.5	1036.8	4
		(4.8)	(2.8)	(3.9)	(7.2)	(5.4)	(3.6)	
Samp2 70 $\pm 1 \%$	1000	1010.8	1010.4	1046.6	2100.1	2143.4	1037.5	4
		(2.8)	(5.2)	(3.9)	(9.3)	(4.3)	(2.0)	
Standard	1000	1009.6	1006.6	1044.3	2106.2	2125.5	1036.8	4
Samp3 84 $\pm 1 \%$	1000	(4.8)	(2.8)	(3.9)	(7.2)	(5.4)	(3.6)	
		1012.5	1006.2	1044.8	2098.2	2130.9	1031.6	4
(2.0)	(4.6)	(3.9)	(4.3)	(2.2)	(3.1)			

Table 11. $\mathrm{R} / \mathrm{R}_{\mathrm{O}}$ for ${ }^{13} \mathrm{C}$ for α, β-epoxy phenylinimo-1,3,4-oxadiazoline.

	C_{1}	C_{2}	C_{3}	C_{4}	C_{5}	C_{6}	C_{7}
$65 \pm 1 \% \mathrm{R} / \mathrm{R}_{\mathrm{O}}$	1.024	1.017	1.010	1.005	1.001	1.009	1.001
Stand dev	0.006	0.004	0.006	0.004	0.007	0.006	0.006
$70 \pm 1 \% \mathrm{R} / \mathrm{R}_{\mathrm{O}}$	1.042	1.011	0.999	0.992	1.007	0.999	1.002
Stand dev	0.006	0.002	0.007	0.005	0.005	0.005	0.005
$84 \pm 1 \% \mathrm{R} / \mathrm{R}_{\mathrm{O}}$	1.034	1.029	1.005	0.999	1.002	0.999	1.000
Stand dev	0.005	0.002	0.005	0.003	0.005	0.005	0.004
	C_{9}	C_{10}	C_{11}	C_{12}	C_{13}	C_{14}	
$65 \pm 1 \% \mathrm{R} / \mathrm{R}_{\mathrm{O}}$	0.996	0.997	1.019	1.005	1.017	1.003	
Stand dev	0.006	0.004	0.007	0.006	0.006	0.004	
$70 \pm 1 \% \mathrm{R} / \mathrm{R}_{\mathrm{O}}$	1.001	1.004	1.002	0.997	1.008	1.001	
Stand dev	0.006	0.006	0.005	0.006	0.003	0.004	
$84 \pm 1 \% \mathrm{R} / \mathrm{R}_{\mathrm{O}}$	1.003	1.000	1.000	0.996	1.003	0.995	
Stand dev	0.005	0.005	0.005	0.004	0.003	0.005	

The ${ }^{13} \mathrm{C}$ KIEs for α, β-epoxy 2-phenylinimo-1,3,4-oxadiazoline were then calculated from eq. 33 , with the standard deviations calculated from eq. 34,35 , and 36 and the results are listed in Table 12.

Table 12. ${ }^{13} \mathrm{C}$ KIEs for α, β-epoxy phenylinimo-1,3,4-oxadiazoline.

	C_{1}	C_{2}	C_{3}	C_{4}	C_{5}	C_{6}	C_{7}
$65 \pm 1 \% \mathrm{R} / \mathrm{R}_{\mathrm{O}}$	$1.023(6)$	$1.016(4)$	$1.010(5)$	$1.005(4)$	$1.001(6)$	$1.008(6)$	$1.001(6)$
$70 \pm 1 \% \mathrm{R} / \mathrm{R}_{\mathrm{O}}$	$1.035(5)$	$1.009(2)$	$1.002(6)$	$0.993(4)$	$1.006(4)$	$0.999(4)$	$1.002(4)$
$84 \pm 1 \% \mathrm{R} / \mathrm{R}_{\mathrm{O}}$	$1.019(3)$	$1.011(1)$	$1.005(3)$	$0.999(1)$	$1.001(3)$	$0.999(3)$	$1.000(2)$
	C_{9}	C_{10}	C_{11}	C_{12}	C_{13}	C_{14}	
$65 \pm 1 \% \mathrm{R} / \mathrm{R}_{\mathrm{O}}$	$0.997(6)$	$0.998(4)$	$1.018(7)$	$1.004(6)$	$1.017(6)$	$1.003(4)$	
$70 \pm 1 \% \mathrm{R} / \mathrm{R}_{\mathrm{O}}$	$1.001(5)$	$1.003(5)$	$1.002(4)$	$0.998(5)$	$1.007(3)$	$1.001(3)$	
$84 \pm 1 \% \mathrm{R} / \mathrm{R}_{\mathrm{O}}$	$1.002(3)$	$1.000(3)$	$1.000(3)$	$0.998(2)$	$1.001(2)$	$0.997(2)$	

Deoxygenation of Epoxides with Dichlorocarbene

A mixture of $7.20 \mathrm{~g}(60 \mathrm{mmol})$ of styrene oxide, 120 mL of benzene, $0.32 \mathrm{~g}(1.2$ mmol) of 18 -crown-6 and $1.00 \mathrm{~g}(5 \mathrm{mmol})$ of dibenzyl ether (internal standard) was mechanically stirred at $40{ }^{\circ} \mathrm{C}$ for 10 min . Then 96 mL of CHCl_{3} was added dropwise over a 2-h period in which 112 g of powdered solid KOH was added in three portions. The reaction mixture was stirred at $40{ }^{\circ} \mathrm{C}$ for another 18 h before being quenched by addition of 1 L of water. The resulting mixture was then extracted with three $100-\mathrm{mL}$ portions of hexane and the combined organic layers were washed with three $30-\mathrm{mL}$ portions of brine. The solvent was removed under vacuum to give a colorless liquid. A conversion at $72 \pm 1 \%$ was determined with NMR by comparing the tertiary proton on the epoxide ring at 3.84 ppm to the methylene signal in the internal standard at 4.55 ppm .

Unreacted styrene oxide was recovered by a chromatography on a $30 \times 2.5 \mathrm{~cm}$ silica gel column eluted with a 9:1 mixture of hexane/dichloromethane followed by a microdistillation.

By this general procedure, three other reactions were taken to conversions of, $80 \pm 1 \%, 78 \pm 1 \%$, and $80 \pm 1 \%$ respectively.

NMR Measurements. All samples were prepared using a constant 730 mg of styrene oxide 18 in 5 mm NMR tubes filled with CDCl_{3} to a constant height of 5.0 cm . The ${ }^{13} \mathrm{C}$ spectra were recorded at 100.58 MHz using inverse gated decoupling, 110 s delays between calibrated $\pi / 2$ pulses, and a 10.073 s acquisition time to collect 262144 points. Integrations were numerically determined using a constant integration region for each peak. A zero-order baseline correction was generally applied, but no first-order correction was applied. Six spectra were recorded for each sample of recovered styrene oxide along with samples of styrene oxide, which were not subjected to the reaction conditions.

For the ${ }^{13} \mathrm{C}$ spectra of styrene oxide the integrations of the para aromatic carbons (C6) were set at 1000. The average integrations and standard deviations (in parentheses) for the other carbons are shown in Table 13 along with the number of spectra recorded for each sample (n).

Table 13. Average ${ }^{13} \mathrm{C}$ integrations for styrene oxide, with standard deviations (in parentheses).

| \% conversion | C_{1} | C_{2} | C_{3} | $\mathrm{C}_{4,8}$ | $\mathrm{C}_{5,7}$ | C_{6} | n |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | | |
| Standard | 981.4 | 970.7 | 988.4 | 2005.9 | 1992.3 | 1000 | 6 |
| | (2.1) | (2.5) | (0.5) | (3.5) | (2.1) | | |
| Samp1 $80 \pm 1 \%$ | 969.5 | 993.2 | 991.7 | 2003.1 | 1993.0 | 1000 | 6 |
| | (0.6) | (0.8) | (1.5) | (3.1) | (4.1) | | |
| Standard | 1024.1 | 976.6 | 1049.9 | 1967.8 | 1973.7 | 1000 | 6 |
| | (1.6) | (2.3) | (3.8) | (2.5) | (7.9) | | |
| Samp2 72 $\pm 1 \%$ | 1018.3 | 999.1 | 1055.6 | 1977.1 | 1969.4 | 1000 | 6 |
| | (1.9) | (2.5) | (3.7) | (5.3) | (4.9) | | |
| Standard | 973.1 | 975.3 | 931.3 | 1989.0 | 1976.5 | 1000 | 6 |
| | (2.0) | (2.0) | (1.4) | (2.7) | (4.8) | | |
| Samp3 78 $\pm 1 \%$ | 963.6 | 995.8 | 930.0 | 1985.2 | 1989.7 | 1000 | 6 |
| | (2.2) | (3.5) | (4.0) | (3.5) | (3.5) | | |
| Standard | 983.1 | 985.6 | 942.9 | 2017.4 | 2012.3 | 1000 | 6 |
| | (2.5) | (1.2) | (1.0) | (1.7) | (2.1) | | |
| Samp4 $82 \pm 1 \%$ | 977.0 | 1013.9 | 939.0 | 2005.3 | 2025.6 | 1000 | 6 |
| | (1.4) | (0.9) | (1.2) | (1.4) | (1.6) | | |

Table 14. $\mathrm{R} / \mathrm{R}_{\mathrm{O}}$ for ${ }^{13} \mathrm{C}$ for styrene oxide.

	C_{1}	C_{2}	C_{3}	$\mathrm{C}_{4,8}$	$\mathrm{C} 5,7$
$80 \pm 1 \% \mathrm{R} / \mathrm{R}_{\mathrm{O}}$	0.988	1.023	1.003	0.999	1.000
$72 \pm 1 \% \mathrm{R} / \mathrm{R}_{\mathrm{O}}$	0.994	1.023	1.005	1.005	0.998
$78 \pm 1 \% \mathrm{R} / \mathrm{R}_{\mathrm{O}}$	0.990	1.021	0.999	0.998	1.007
$82 \pm 1 \% \mathrm{R} / \mathrm{R}_{\mathrm{O}}$	0.991	1.031	0.996	0.994	1.007

The values for $\mathrm{R} / \mathrm{R}_{\mathrm{O}}$, calculated as the ratio of average integrations in Table 13 relative to the standard sample, are shown in Table 14. The standard deviations were calculated using the same equation as shown before.

The ${ }^{13}$ C KIEs for styrene oxide were then calculated from eq. 33, with the standard deviations calculated from eq. 34,35 , and 36 and the results are listed in Table 15.

Table 15. ${ }^{13} \mathrm{C}$ KIEs for styrene oxide.

	C_{1}	C_{2}	C_{3}	$\mathrm{C}_{4,8}$	$\mathrm{C}_{5,7}$
Samp1 80 $\pm 1 \%$	$0.993(1)$	$1.014(2)$	$1.002(1)$	$0.999(1)$	$1.000(1)$
Samp2 72 $\pm 1 \%$	$0.996(2)$	$1.018(3)$	$1.004(4)$	$1.004(2)$	$0.998(4)$
Samp3 78 $\pm 1 \%$	$0.994(2)$	$1.014(3)$	$0.999(3)$	$0.999(1)$	$1.004(2)$
Samp4 82 $\pm 1 \%$	$0.995(2)$	$1.018(1)$	$0.998(1)$	$0.997(1)$	$1.004(1)$

Shi Epoxidation of Trans- β-methylstyrene

All glassware used for the reaction was placed in a newly made base bath for at least 12 h , then rinsed with double distilled water for ten times and $4 \times 10^{-3} \mathrm{M}$ Na_{2} (EDTA) solution for three times. A mixture of $3.54 \mathrm{~g}(30 \mathrm{mmol})$ of trans- β methylstyrene (27), 0.41 g (3 mmol) of 1,4-dimethoxybenzene (internal standard), 450 mL of 1:2 mixture of acetonitrile and dimethoxymethane, 300 mL of buffer solution (0.05 M solution of $\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \bullet 10 \mathrm{H}_{2} \mathrm{O}$ in $4 \times 10^{-3} \mathrm{M}$ aqueous Na_{2} (EDTA)), $0.34 \mathrm{~g}(1$
mmol) of tetrabutylammonium hydrogen sulfate (phase transfer catalyst), and 1.55 g (6 $\mathrm{mmol})$ of 25 was cooled in an ice bath, and solutions of $50 \mathrm{~g}(81 \mathrm{mmol})$ of Oxone ${ }^{\mathrm{TM}}$ in 390 mL of $4 \times 10^{-3} \mathrm{M}$ aqueous $\mathrm{Na}_{2}($ EDTA $)$ and 390 mL of $0.89 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}$ were added dropwise separately and simultaneously over a period of 1.5 h . The reaction mixture was then stirred for another 30 min before the reaction was quenched by addition of 1 L of water. The resulting mixture was extracted with three portions of 100 mL of pentane and the combined organic layers were washed with three portions of 100 mL of brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under vacuum and a conversion at $83 \pm 1 \%$ was determined based on the ${ }^{1} \mathrm{H}$ NMR integration of olefin protons in trans- β methylstyrene (at $\delta 6.15$ and $\delta 6.37$) versus the methoxy signal in the internal standard. The unreacted 27 was then recovered by chromatography on a $40 \times 4 \mathrm{~cm}$ silica gel column eluted with a $95: 5$ mixture of hexane/dichloromethane, affording 495 mg of 27. By this procedure, another analogous reaction was taken to $93 \pm 1 \%$ conversion, and afforded 220 mg of recovered 27.

NMR Measurements. All samples were prepared using a constant 220 mg of 27 in 5 mm NMR tubes filled with CDCl_{3} to a constant height of 5.0 cm . The ${ }^{13} \mathrm{C}$ spectra were recorded at 125.70 MHz using inverse gated decoupling, 110 s delays between calibrated $\pi / 2$ pulses, and a 6.560 s acquisition time to collect 262144 points. Integrations were numerically determined using a constant integration region for each peak. A zero-order baseline correction was generally applied, but no first-order correction was applied. Six spectra were recorded for each sample of recovered trans- β-methylstyrene along with samples of trans- β-methylstyrene, which were not subjected to the reaction conditions.

For the ${ }^{13} \mathrm{C}$ spectra of trans- β-methylstyrene, the integrations of the meta aromatic carbons $\left(\mathrm{C}_{\text {meta }}\right)$ were set at 2000. The average integrations and standard deviations (in parentheses) for the other carbons are shown in Table 16 along with the number of spectra recorded for each sample (n).

Table 16. Average ${ }^{13} \mathrm{C}$ integrations for trans- β-methylstyrene, with standard deviations (in parentheses).

\% conversion	C_{α}	C_{β}	$\mathrm{C}_{\text {ipso }}$	$\mathrm{C}_{\text {ortho }}$	$\mathrm{C}_{\text {meta }}$	$\mathrm{C}_{\text {para }}$	$\mathrm{C}_{\text {methyl }}$	n
Standard	983.7	1012.0	954.2	2014.4	2000	1007.1	948.7	6
	(1.5)	(1.5)	(1.8)	(2.4)		(1.5)	(1.6)	
$83 \pm 1 \%$	993.0	1051.8	952.6	2019.2	2000	1004.0	952.0	6
	(2.0)	(1.9)	(2.0)	(2.7)		(2.6)	(2.7)	
Standard	976.9	1042.1	945.2	2011.7	2000	99.1	944.1	6
	(3.1)	(1.7)	(3.1)	(5.0)		(3.6)	(2.1)	
$93 \pm 1 \%$	992.6	1096.6	948.0	2019.5	2000	1001.4	947.8	6
	(3.2)	(2.5)	(3.3)	(6.4)		(3.8)	(3.6)	

The values for $\mathrm{R} / \mathrm{R}_{\mathrm{O}}$, calculated as the ratio of average integrations in Table 16 relative to the standard sample, are shown in Table 17. The standard deviations were calculated using the same equation as shown before.

The ${ }^{13}$ C KIEs for trans- β-methylstyrene were then calculated from eq. 33 , with the standard deviations calculated from eq. 34, 35, and 36 and the results are listed in Table 18.

Table 17. $\mathrm{R} / \mathrm{R}_{\mathrm{O}}$ for ${ }^{13} \mathrm{C}$ for trans- β-methylstyrene.

	C_{α}	C_{β}	$\mathrm{C}_{\text {ipso }}$	$\mathrm{C}_{\text {ortho }}$	$\mathrm{C}_{\text {meta }}$	$\mathrm{C}_{\text {para }}$	$\mathrm{C}_{\text {methyl }}$
$83 \pm 1 \% \mathrm{R} / \mathrm{R}_{\mathrm{O}}$	1.009	1.039	0.998	1.002	1	0.997	1.004
Stand dev	0.003	0.002	0.003	0.002	0.000	0.001	0.003
$93 \pm 1 \% \mathrm{R} / \mathrm{R}_{\mathrm{O}}$	1.016	1.052	1.003	1.004	1	1.002	1.004
Stand dev	0.004	0.003	0.004	0.003	0.000	0.004	0.004

Table 18. ${ }^{13} \mathrm{C}$ KIEs for trans- β-methylstyrene.

	C_{α}	C_{β}	$\mathrm{C}_{\text {ipso }}$	$\mathrm{C}_{\text {ortho }}$	$\mathrm{C}_{\text {meta }}$	$\mathrm{C}_{\text {para }}$	$\mathrm{C}_{\text {methyl }}$
$83 \pm 1 \%$	$1.005(1)$	$1.022(2)$	$0.999(2)$	$1.001(1)$	1	$0.998(2)$	$1.002(2)$
$93 \pm 1 \%$	$1.006(2)$	$1.020(2)$	$1.001(2)$	$1.001(2)$	1	$1.001(2)$	$1.001(2)$

Diels-Alder Reaction between Acrolein and Methyl Vinyl Ketone

Diels-Alder reactions between acrolein and methyl vinyl ketone were carried out at $100{ }^{\circ} \mathrm{C}$ in sealed tubes. A solution containing $2.5 \mathrm{ml}(2.1 \mathrm{~g}, 37 \mathrm{mmol})$ of acrolein, 1.2 $\mathrm{ml}(1.0 \mathrm{~g}, 14 \mathrm{mmol})$ of methyl vinyl ketone, $1.5 \mathrm{ml}(1.3 \mathrm{~g}, 14 \mathrm{mmol})$ of ethylene glycol dimethyl ether and 1.5 ml of benzene was divided into 20 portions in sealed tubes. Fifteen tubes were placed in a oil bath to start and three tubes were taken out of the oil bath and the concentration of products were measured by NMR and GC at $4 \mathrm{~h}, 8 \mathrm{~h}, 16 \mathrm{~h}$,

32 h , and 64 h respectively. Similar reactions at $120^{\circ} \mathrm{C}, 140^{\circ} \mathrm{C}, 160^{\circ} \mathrm{C}, 180^{\circ} \mathrm{C}, 200^{\circ} \mathrm{C}$, and $220^{\circ} \mathrm{C}$ were carried out in analogous way but with shorter reaction time.

Kinetic simulations were done with an Excel spreadsheet by numerically integrating assumed rate equations with bimolecular kinetics in the cycloadditions and unimolecular kinetics in the $[3,3]$-sigmatropic rearrangement. The rate constants were adjusted to get a least-squares best fit of the predicted concentration of products and reactants to the measured values. Due to the fact that all the four products have a similar structural frame, which leads to similar chemical shifts and partial overlap in NMR, the concentrations and derived rates are subject to considerable uncertainty. The resulting rate constants are listed in Table 19.

Table 19. Rate constants in Diels-Alder reaction between acrolein and methyl vinyl ketone.

$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	$\mathrm{k}_{\text {major }}\left(\mathrm{s}^{-1}\right)$	$\mathrm{k}_{\text {minor }}\left(\mathrm{s}^{-1}\right)$	$\mathrm{k}_{\text {Cope }}\left(\mathrm{s}^{-1}\right)$	$\mathrm{k}_{\text {acdimer }}\left(\mathrm{s}^{-1}\right)$	$\mathrm{k}_{\text {mvkdimer }}\left(\mathrm{s}^{-1}\right)$
100	6.2×10^{-7}	2.7×10^{-7}	6.8×10^{-6}	1.3×10^{-7}	2.7×10^{-7}
120	2.4×10^{-6}	1.0×10^{-6}	1.5×10^{-5}	6.3×10^{-7}	1.1×10^{-6}
140	7.1×10^{-6}	3.0×10^{-6}	2.9×10^{-5}	1.6×10^{-6}	4.1×10^{-6}
160	2.3×10^{-5}	7.9×10^{-6}	6.2×10^{-5}	5.3×10^{-6}	9.0×10^{-6}
180	9.6×10^{-5}	2.7×10^{-5}	1.4×10^{-4}	7.9×10^{-6}	6.3×10^{-5}
200	2.3×10^{-4}	8.5×10^{-5}	4.5×10^{-4}	1.6×10^{-5}	2.0×10^{-4}
220	4.3×10^{-4}	1.5×10^{-4}	6.2×10^{-4}	3.5×10^{-5}	3.2×10^{-4}

Calculational studies on the B3LYP/6-31G* energy surface. Series of

 calculations were carried out with the C-C distance between the two carbon atoms that close the ring in the products fixed at 1.7 to $2.6 \AA$. For each C-C distance, a second array of C-O $\mathrm{O}_{\text {acrolein }}$ distance is fixed at 1.4 to $3.0 \AA$. The resulting energies are listed in Table 20.Table 20. Relative energies in $\mathrm{kcal} / \mathrm{mol}$ of geometries with fixed distance.

	C-C distance (\AA)				
$\mathrm{C}-\mathrm{O}_{\text {acrolein }}$ distance	1.7	1.8	1.9	2.0	2.1
3.0	42.9	36.3	16.7	18.2	20.5
2.9	41.9		16.8		20.4
2.8	40.6	16.4	16.9	18.3	20.3
2.7	38.9		17.0		20.0
2.6	36.8	16.6	17.0	18.0	19.6
2.5	34.1		16.9		19.0
2.4	30.9	17.0	16.8	17.2	18.2
2.3	26.9		16.8		17.2
2.2	22.3	18.3	16.9	16.1	16.0
2.1	17.0		17.3		14.7
2.0	11.2	21.4	18.2	15.4	13.6
1.9	5.4		19.8		12.9
1.8	0.0	27.8	22.4	17.3	13.1

Table 20. Continued

	C-C distance (\AA)				
$\mathrm{C}-\mathrm{O}_{\text {acrolein }}$ distance	1.7	1.8	1.9	2.0	2.1
1.7	38.7		25.7		14.2
1.6	44.8	38.4	29.1		15.7
1.5	49.1		35.0		16.5
1.4	49.4		35.5		15.2
C-C distance (\AA)					
$\begin{gathered} \hline \mathrm{C}-\mathrm{O}_{\text {acrolein }} \\ \text { distance } \end{gathered}$	2.2	2.3	2.4	2.5	2.6
3.0	22.9	25.2	27.4	52.8	54.4
2.9		25.0		53.5	
2.8	22.6	24.7	26.8	52.1	53.6
2.7		24.2		51.4	
2.6	21.6	23.5	25.4	50.5	52.0
2.5		22.6		49.4	
2.4	19.7	21.4	22.9	47.8	49.1
2.3		19.7		45.8	
2.2	16.6	17.6	18.8	43.3	44.3
2.1		15.1		40.3	
2.0	12.7	12.4	12.7	36.6	37.2
1.9		9.8		32.7	
1.8	9.8	7.5	6.1	28.8	28.3

Table 20. Continued

		C-C distance (\AA)			
C-O acrolein distance	2.2	2.3	2.4	2.5	2.6
1.7	6.2		25.4		
1.6	10.2	5.6	2.0	22.8	20.8
1.5		5.0		20.4	
1.4		2.5		16.5	

CHAPTER VII

CONCLUSIONS

Kinetic isotope effects (KIEs) can be used as a subtle probe in the mechanistic studies of organic reactions. Several reactions that potentially involve coarctate transition states have been investigated by KIEs combined with theoretical studies.

In the thermal fragmentation of $\Delta-1,3,4$-oxadiazolines, the KIEs and theoretical predictions supported a stepwise mechanism. At the stage of reactant, where the concerted reaction would be very complicated, the stepwise process is favored. At the stage of the diazo epoxide, the stepwise process again appears to be favored. The preference for a stepwise mechanism going on from diazo expoxide is less pronounced and less certain, but there is still no sign of a transition state aromaticity effect favoring a concerted coarctate process. The last step in the mechanism, going on from carbene, is a concerted coarctate reaction, but this may be viewed as being enforced by the necessity to avoid high-energy intermediates. Overall, the example here does not appear to demonstrate any special stabilization in coarctate transition states.

In the deoxygenation of epoxides with dichlorocarbene, the stabilization from the transition state aromaticity in coarctate transition state is not great enough to compete with the preference for asynchronous bonding changes. The theoretically predicted and KIE-supported mechanism suggests that the reaction occurs in a concerted manner but with a highly asynchronous early transition state with much more $\mathrm{C}_{\alpha}-\mathrm{O}$ bond breaking
than $\mathrm{C}_{\beta}-\mathrm{O}$ bond breaking. The reaction pathway is not influenced by transition state aromaticity.

In the Shi epoxidations, the observation of a large β olefinic ${ }^{13} \mathrm{C}$ isotope effect and small α carbon isotope effect is indicative of an asynchronous transition state with more advanced formation of the $\mathrm{C}-\mathrm{O}$ bond to the β olefinic carbon. By varying the catalyst conformation and alkene orientation, diverse transition structure geometries were located calculationally, and the lowest-energy structure leads to an accurate prediction of the isotope effects. Given this support for the accuracy of the calculations employed, the nature of enantioselectivity in this and related epoxidations is considered. The lowestenergy transition structures are generally those in which the differential formation of the incipient $\mathrm{C}-\mathrm{O}$ bonds, the "asynchronicity," resembles that of an unhindered model, and the imposition of greater or less asynchronicity leads to higher barriers. In reactions of cis-disubstituted and terminal alkenes using Shi's oxazolidinone catalyst, the asynchronicity of the epoxidation transition state leads to increased steric interaction with the oxazolidinone when a π-conjugating substituent is distal to the oxazolidinone but decreased steric interaction when the π-conjugating substituent is proximal to the oxazolidinone. Overall, the asynchronicity of the transition state must be considered carefully to understand the enantioselectivity.

Diels-Alder reaction between acrolein and methyl vinyl ketone provides two cross products, one with acrolein as diene, the other with methyl vinyl ketone as diene, in a ratio of 3.0 ± 0.5. Theoretical studies show that only one low-energy transition structure is involved in the formation of both products and that the role selectivity cannot be
explained by energetic barriers. Dynamic calculations on B3LYP energy surface predict a product ratio of $214: 14$, indicating that B3LYP calculation may not reflect the reality in the reaction. Dynamic calculations on MP2 surface give a prediction of a product ratio of $45: 14$ (3.2:1), which is in good agreement with the experimental observation. Overall, dynamic effects successfully predicted the role selectivity in the Diels-Alder reaction between acrolein and methyl vinyl ketone, which cannot be explained with transition state theory.

REFERENCES

1. For recent development in the study of reactive intermediates, see: Moss, R. A.; Platz, M. S.; Jones, M. Jr., Eds., Reactive Intermediate Chemistry, John Wiley \& Sons, Inc.: Hoboken, New Jersey, 2004.
2. For recent examples of KIE applications on mechanistic studies, see: (a) Yip, V. L. Y.; Varrot, A.; Davies, G. J.; Rajan, S. S.; Yang, X.; Thompson, J.; Anderson, W. F.; Withers, S. G. J. Am. Chem. Soc. 2004, 126, 8354. (b) Lloyd-Jones, G. C.; Slatford, P. A. J. Am. Chem. Soc. 2004, 126, 2690. (c) Kumar, D.; de Visser, S. P.; Shaik, S. J. Am. Chem. Soc. 2005, 127, 8204. (d) Klain, O.; Agnuilar-Parrila, F.; Lopes, J. M.; Jagerovic, N.; Elguero, J.; Limbach, H. J. Am. Chem. Soc. 2004, 126, 11718. (e) Humphry,T.; Forconi, M.; Williams, N. H.; Hengge, A. C. J. Am. Chem. Soc. 2004, 126, 11864. (f) Fan, F.; Gadda, G. J. Am. Chem. Soc. 2005, 127, 2067. (g) Cohen, R.; Graves, C. R.; Nguyen, S. T.; Martin, J. M. L.; Ratner, M. A. J. Am. Chem. Soc. 2004, 126, 14796. (h) Casey, C. P.; Johnson, J. B. J. Am. Chem. Soc. 2005, 127, 1883. (i) Onyido, I.; Swierczek, K.; Purcell, J.; Hengge, A. C. J. Am. Chem. Soc. 2005, 127, 7703. (j) Dahlen, A.; Hilmersson, G. J. Am. Chem. Soc. 2005, 127, 8340.
3. (a). Houk, K. N.; Gustafson, S. M.;Black, K. A. J. Am. Chem. Soc. 1992, 114, 8565. (b). Storer, J. W.; Raimondi, L.; Houk, K. N. J. Am. Chem. Soc. 1994, 116, 9675. (c). Wiest, O.; Black, K. A.; Houk, K. N. J. Am. Chem. Soc. 1994, 116, 10336. (d). Wiest, O.; Houk, K. N.; Black, K. A.; Thomas B. J. Am. Chem. Soc. 1995, 117, 8594.
4. Singleton, D. A.; Thomas, A. A. J. Am. Chem. Soc. 1995, 117, 9357.
5. (a). Beno, B. R.; Houk, K. N.; Singleton, D. A. J. Am. Chem. Soc. 1996, 118, 9984. (b). Singleton, D. A.; Merrigan, S. R.; Liu, J.; Houk, K. N. J. Am. Chem. Soc. 1997, 119, 3385. (c). DelMonte, A. J.; Haller, J.; Houk, K. N.; Sharpless, K. B.; Singleton, D. A.; Strassner, T.; Thomas, A. A. J. Am. Chem. Soc. 1997, 119, 9907. (d). Singleton, D. A.; Szymanski, M. J. J. Am. Chem. Soc. 1999, 121, 9455. (e). Singleton, D. A.; Hang, C. J. Am. Chem. Soc. 1999, 121, 11885. (f). Merrigan, S. R.; Singleton, D. A. Org. Lett. 1999, 1, 327. (g). Singleton, D. A.; Merrigan, S. R.; Kim, B. J.; Beak, P.; Phillips, L. M.; Lee, J. K. J. Am. Chem. Soc. 2000, 122, 3296. (h). Singleton, D. A.; Merrigan, S. R. J. Am. Chem. Soc. 2000, 122, 11035. (i). Saettel, N. J.; Wiest, O.; Singleton, D. A.; Meyer, M. P. J. Am. Chem. Soc. 2002, 124, 11552. (j). Singleton, D. A.; Nowlan, D. T., III; Jahed, N.; Matyjaszewski, K. Macromolecules, 2003, 36, 8609. (k). Vo, L. K.; Singleton, D. A. Org. Lett. 2004, 6, 2496. (1). Ussing, B. R.; Singleton, D. A. J. Am. Chem. Soc. 2005, 127, 2888. (m). Nowlan, D. T., III; Singleton, D. A. J. Am. Chem. Soc. 2005, 127, 6190.
6. (a). Bigeleisen, J.; Mayer, M. G. J. Chem. Phys. 1947, 261. (b). Bigeleisen, J. J. Chem. Phys. 1949, 675
7. Stern, M. J.; Wolfsberg, M. J. Chem. Phys., 1966, 45, 2618.
8. (a). Wolfsberg, M. Acc. Chem. Res. 1972, 5, 225.
9. (a). Schachtschneider, J. H.; Snyder, R. G. Spectrochim. Acta 1963, 19, 117. (b). Wolfsberg, M.; Stern, M. Pure Appl. Chem. 1964, 8, 225. (c). Wolfsberg, M.; Stern, M. Pure Appl. Chem. 1964, 8, 235. (d). Goldstein, M. J.; Thayer, G. L., Jr. J. Am. Chem. Soc. 1965, 87, 1933. (e). Seltzer, S.; Myonakis, S. M. Jr. J. Am. Chem. Soc. 1967, 89, 6584. (f). Stern, M.; Wolfsberg, M. J. Chem. Phys. 1966,

45, 4105. (g). Gwinn, W. D. J. Chem. Phys. 1971, 55, 477. (h). Hartshorn, S. R.; Shiner, V. J., Jr. J. Am. Chem. Soc. 1972, 94, 9002.
10. Saunders, M.; Laidig, K. E.; Wolfsberg, M. J. Am. Chem. Soc. 1989, 111, 8989.
11. Bell, R. P. The Tunnel Effect in Chemistry, Chapman \& Hall: London, 1980, pp 60-63.
12. Neame, K. D.; Homewood, C. A. Liquid Scintillation Counting, Wiley-Halsted: New York, 1974.
13. (a). Hasan, T.; Sims, L. B.; Fry, A. J. Am. Chem. Soc. 1983, 105, 3967. (b). Shine, H. J.; Kupczyk-Subotkowska, L.; Subotkowski, W. J. Am. Chem. Soc. 1985, 107, 6674. (c). Kupczyk-Subotkowska, L.; Saunders, W. H. Jr.; Shine, H. J.; Subotkowski, W. J. Am. Chem. Soc. 1993, 115, 5957.
14. Coleman, D. C.; Fry, B. Eds., Carbon Isotope Techniques, Academic Press, Inc.: San Diego, California, 1991, pp 155-171.
15. (a). Rao, M.; Barlow, P. N.; Pryor, A. N.; Paneth, P.; O’Leary, M. H.; Quinn, D. M.; Huskey, W. P. J. Am. Chem. Soc. 1993, 115, 11676. (b). Paneth, P.; O’Leary, M. H. J. Am. Chem. Soc. 1991, 113, 1691. (c). Marlier, J. F.; Dopke, N. C.; Johustone, K. R.; Wirdzig, T. J. J. Am. Chem. Soc. 1999, 121, 4356.
16. Pascal, R. A., Jr.; Baum, M. W.; Wagner, C. K.; Rodgers, L. R.; Huang, D. S. J. Am. Chem. Soc. 1986, 108, 6477.
17. Zhang, B. L. Magn. Reson. Chem. 1988, 26, 955.
18. For more details and other types of KIE analysis, see: Melander, L.; Saunders, W. H., Jr. Reaction Rates of Isotopic Molecules; Wiley-Interscience: New York, 1980, pp 95-102.
19. Melander, L.; Saunders, W. H., Jr. Reaction Rates of Isotopic Molecules; WileyInterscience: New York, 1980, pp 319-322.
20. (a). Herges, R. Angew. Chem., Int. Ed. Engl. 1994, 33, 255. (b). Herges, R. J. Chem. Comput. Sci. 1994, 34, 91.
21. Ross, J. A.; Seiders, R. P.; Lemal, D. M. J. Am. Chem. Soc. 1976, 98, 4325.
22. Birney, D. M. J. Am. Chem. Soc. 2000, 122. 10917.
23. (a). Herges, R.; Papafilippopoulos, A. Angew. Chem., Int. Ed. 2001, 40, 4671. (b). Herges, R.; Geuenich, D. J. Phys. Chem. A 2001, 105, 3214.(c). Kimball, D. B.; Weakley, T. J. R.; Herges, R.; Haley, M. M. J. Am. Chem. Soc. 2002, 124, 13463.
24. Cárdenas, C.; Chamorro, E.; Notario, R. J. Phys. Chem. A 2005, 109, 4352.
25. (a). Deubel, D. V.; Sundermeyer, J.; Frenking, G. J. Am. Chem. Soc. 2000, 122, 10101. (b). Deubel, D. V. J. Phys. Chem. A 2001, 105, 4765. (c). Kimball, D. B.; Herges, R.; Haley, M. M. J. Am. Chem. Soc. 2002, 124, 1572. (d). Shirtcliff, L. D.; Weakley, T. J. R.; Haley, M. M. J. Org. Chem. 2004, 69, 6979.
26. (a). Berger, C.; Bresler, C.; Dilger, U.; Geuenich, D.; Herges, R.; Röttele, H.; Schröder, G. Angew. Chem., Int. Ed. 1998, 37, 1850. (b). Berger, C.; Dieterich, S.; Dilger, U.; Geuenich, D.; Helios, H.; Herges, R.; Kirchmer, P.; Röttele, H.;

Schröder, G. Angew. Chem., Int. Ed. 1998, 37, 1854. (c). Herges, R.; Geuenich, D.; Bucher, G.; Tönshoff, C. Chem. Eur. J. 2000, 6, 1224.
27. Freccero, M.; Gandolfi, R.; Sarzi-Amadè.; Rastelli, A. J. Org. Chem. 2004, 69, 7479.
28. MacAlpine, G. A.; Warkentin, J. Can. J. Chem. 1978, 56, 308.
29. (a). Gil, S.; Lázaro, M. A.; Mestres, R.; Millan, F.; Parra, M. Syn. Commun. 1995, 25, 351. (b). Fehr, C.; Ohloff G. Helv. Chim. Acta 1979, 62, 2655. (c). Boar. R. B.; Jones, S.; Patel, A. C. J. Chem. Soc. Perkin I 1982, 513.
30. Paine, A. J.; Warkentin, J. J. Can. J. Chem. 1979, 57, 2681.
31. This methyl group was chosen because its signal was at the upfield end of the spectrum, well separated from the remaining carbons.
32. Lynch, B. J.; Fast, P. L.; Harris, M.; Truhlar, D. G. J. Phys. Chem. A 2000, 104, 4811.
33. For the fragmentation of cyclopropyl carbene to afford ethylene plus acetylene, B3LYP calculations again appear to underpredict the barrier. The predicted B3LYP/6-31+G(d,p) (+ zpe) barrier in this case is $12.6 \mathrm{kcal} / \mathrm{mol}$, while the $\operatorname{CCSD}(\mathrm{T}) / 6-311+\mathrm{G}(\mathrm{d}, \mathrm{p}) / / \mathrm{B} 3 \mathrm{LYP} / 6-31+\mathrm{G}(\mathrm{d}, \mathrm{p})$ barrier is $17.5 \mathrm{kcal} / \mathrm{mol}$.
34. Jackson, J. E.; Mock, G. B.; Tetef, M. L.; Zheng, G. X.; Jones, Jr., M. Tetrahedron 1985, 41, 1453.
35. (a). Fujisawa, T.; Sugimoto, K.; Ohta, H. Chem. Lett. 1974, 8, 883. (b). Gladysz, J. A.; Fulcher, J. G.; Togashi, S. J. Org. Chem. 1976, 41, 3647. (c). Alper, H.; Des Roches, D. Tetrahedron Lett. 1977, 48, 4155. (d). Matsubara, S.; Nonaka, T.; Okuta, Y.; Kanemoto, S.; Oshima, K.; Nozaki, H. Bull. Chem. Soc. Jap. 1985, 58, 1480. (e). Moloy, K. G. Inorg. Chem. 1988, 27, 677.
36. Guruduff, K. N.; Ravindranath, B. Tetrahedron Lett. 1980, 51, 1173.
37. (a). Whinnery, L. L., Jr.; Henling, L. M.; Bercaw, J. E. J. Am. Chem. Soc. 1991,113, 7575. (b). Rosenblum, M.; Saidi, M. R.; Madhavarao, M. Tetrahedron Lett. 1975, 46, 4009.
38. (a). Sharpless, K. B.; Teranichi, A. Y.; Bäckvall, J. E. J. Am. Chem. Soc. 1977, 99, 3120. (b). Bäckvall, J. E.; Böckman, F.; Blomberg, M. R. A. J. Am. Chem. Soc. 1992,114, 534.
39. (a). RajanBabu, T. V.; Nugent, W. A.; Beattie, M. S. J. Am. Chem. Soc. 1990, 112, 6408 (b). Mahesh, M.; Murphy, J. A.; Wessel, H. P. J. Org. Chem. 2005, 70, 4118.
40. Yamada, K.; Goto, S.; Nagase, H.; Kyotani, Y.; Hirata, Y. J. Org. Chem. 1978, 43, 2076.
41. Arterbum, J. B.; Liu, M.; Perry, M. C. Helv. Chim. Acta 2002, 85, 3225.
42. Tabushi, I.; Kuroda, Y. Tetrahedron 1976, 32, 977.
43. (a). Wittig, G.; Schlosser, M. Tetrahedron 1962, 18, 1023. (b). Mannfov, G. G.; Berdnikov, E. A.; Samuilov, Y. D. Russ. J. Org. Chem. 2001, 37, 339.
44. Shields, C. J.; Schuster, G. B. Tetrahedron Lett. 1987, 28, 853.
45. Su, M. D.; Chu, S. Y. Chem. Eur. J. 2000, 6, 3777.
46. Su, M. D. J. Phys. Chem. A 2002, 106, 9563.
47. Hata, Y.; Watanabe, M. Tetrahedron Lett. 1972, 13, 3827.
48. (a). More O'Ferrall, R. A. J. Chem. Soc. B 1970, 274. (b). Jencks, W. P. Chem. Rev. 1972, 72, 705.
49. . (a). Curci, R.; Detomaso, A.; Prencipe, T.; Carpenter, G. B. J. Am. Chem. Soc. 1994, 116, 8112. (b). Yan, D.; Wong, M. K.; Yip, Y. C.; Wang, X. C.; Tang, M. W.; Zheng, J. H.; Cheung, K. K. J. Am. Chem. Soc. 1998, 120, 5943.
50. Houk, K. N.; Liu, J.; DeMello, N. C.; Condroski, K. R. J. Am. Chem. Soc. 1997, 119, 10147.
51. Bach, R. D.; Glukhovtsev, M. N.; Gonzalez, C.; Marquez, M.; Estévez, C. M.; Baboul, A. G.; Schlegel, H. B. J. Phys. Chem. A 1997, 101, 6092.
52. Bravo, A.; Fontana, F.; Fronza, G.; Minichi, F.; Zhao, L. J. Org. Chem. 1998, 63, 254.
53. Liu, J.; Houk, K. N. J. Org. Chem. 1998, 63, 8565.
54. (a) Jacobsen, E. N.; Zhang, W.; Muci, A. R.; Ecker, J. R.; Deng, L. J. Am. Chem. Soc. 1991, 113, 7063. (b) Denmark, S. E.; Wu, Z. Synlett 1999, 847. (c) Bonini,
C.; Righi, G. Tetrahedron 2002, 58, 4981. (d) Yang, D. Accounts Chem. Res. 2004, 37, 497.
55. Shi, Y. Accounts Chem. Res. 2004, 37, 488.
56. (a) Tu, Y.; Wang, Z. -X.; Shi, Y. J. Am. Chem. Soc. 1996, 118, 9806. (b) Wang, Z. -X.; Tu, Y.; Frohn, M.; Zhang, J. -R.; Shi, Y. J. Am. Chem. Soc. 1997, 119, 11224.
57. Tian, H.; She, Z.; Shu, L.; Yu, H.; Shi, Y. J. Am. Chem. Soc. 2000, 122, 11551.
58. Tian, H.; She, Z.; Xu, J.; Shi, Y. Org. Lett. 2001, 3, 1929.
59. (a) Bach, R. D.; Glukhovtsev, M. N.; Gonzalez, C.; Marquez, M.; Estevez, C. M.; Baboul, A. G.; Schlegel, H. B. J. Phys. Chem. A 1997, 101, 6092. (b) Houk, K. N.; Liu, J.; DeMello, N. C.; Condroski, K. R. J. Am. Chem. Soc. 1997, 119, 10147. (c) Crehuet, R.; Anglada, J. M.; Cremer, D.; Bofill, J. M. J. Phys. Chem. A 2002, 106, 3917. (d) Bach, R. D.; Dmitrenko, O.; Adam, W.; Schambony, S. J. Am. Chem. Soc. 2003, 125, 924.
60. Dmitrenko, O.; Bach, R. D. J. Phys. Chem. A 2004, 108, 6886.
61. For a study of epoxidations with fluorinated dioxiranes, see: Armstrong, A.; Washington, I.; Houk, K. N. J. Am. Chem. Soc. 2000, 122, 6297.
62. (a) Baumstark, A. L.; McCloskey, C. J. Tetrahedron Lett. 1987, 28, 3311. (b) Yang, D.; Wang, X. -C.; Wong, M. -K.; Yip, Y. -C.; Tang, M. -W. J. Am. Chem. Soc. 1996, 118, 11311.
63. (a) Okovytyy, S.; Gorb, L.; Leszczynski, J. Tetrahedron Lett. 2002, 43, 4215. (b) For a strong countering study, see: Bach, R. D.; Dmitrenko, O. J. Phys. Chem. A 2003, 107, 4300.
64. The meta carbon of 27 is more separate from other peaks in the ${ }^{13} \mathrm{C}$ NMR than the para carbon, and its use as standard gives lower variance in the isotope effects than when the para carbon is used as standard. Both meta and para carbons are calculationally predicted to exhibit a ${ }^{13} \mathrm{C}$ KIE of unity, and each exhibit ${ }^{13} \mathrm{C}$ KIEs within experimental error of unity relative to the other.
65. Of course, the observed ee depends equally on the facility of formation of the minor enantiomer, but this is less obviously affected by the substitution patterns in 53-55.
66. (a). Yarkony, D. R. Acc. Chem. Res. 1998, 31, 511. (b). Klessinger, M. Pure Appl. Chem. 1997, 69, 773. (c). Bernardi F.; Olivucci M.; Robb, M. A. Chem. Soc. Rev. 1996, 321. (d). Robb, M. A.; Bernardi F.; Olivucci M. Pure Appl. Chem. 1995, 67, 783.
67. (a). Truhlar, D G.; Garrett, B. C. Annu. Rev. Phys. Chem. 1984, 35, 159. (b). Pechukas, P. Annu. Rev. Phys. Chem. 1981, 32, 159. (c). Truhlar, D G.; Garrett, B. C. Acc. Chem. Res. 1980, 13, 440. (d). Miller, W. H. J. Chem. Phys. 1976, 65, 2216.
68. (a). Carpenter, B. K. Angew. Chem. Int. Ed. 1998, 37, 3340. (b) Carpenter, B. K. Acc. Chem. Res. 1992, 25, 520.
69. (a). Carpenter, B. K. J. Am. Chem. Soc. 1995, 117, 6336. (b). Reyes, M. B.; Carpenter, B. K. J. Am. Chem. Soc. 2000, 122, 10163. (c). Reyes, M. B.;

Lobkovsky, E. B.; Carpenter, B. K. J. Am. Chem. Soc. 2002, 124, 641. (d). Carpenter, B. K. J. Am. Chem. Soc. 1996, 118, 10329. (e). Debbert, S. L.; Carpenter, B. K.; Hrovat, D. A.; Borden, W. T. J. Am. Chem. Soc. 2002, 124, 7896.
70. (a). Doubleday, C. Jr.; Bolton, K.; Hase, W. L. J. Am. Chem. Soc. 1997, 119, 5251. (b). Doubleday, C.; Nendel, M.; Houk, K. N.; Thweatt, D.; Page, M. J. Am. Chem. Soc. 1999, 121, 4720. (c). Doubleday, C. J. Chem. Phys. 2001, 105, 6333. (d). Doubleday, C. Jr.; Bolton, K.; Hase, W. L. J. Chem. Phys. A 1998, 102, 3648. (e). Doubleday, C.; Li, G.; Hase, W. L. Phys. Chem. Chem. Phys. 2002, 4, 304.
71. Jarz, A. A.; Gajewski, J.; Davidson, E. R. J. Am. Chem. Soc. 1999, 121, 6928.
72. Kless, A.; Nendel, M.; Wilsey, S.; Houk, K. N. J. Am. Chem. Soc. 1999, 121, 4524.
73. (a). Singleton, D. A.; Hang, C.; Szymanski, M. J.; Greenwald, E. E. J. Am. Chem. Soc. 2003, 125, 1176. (b). Bekele, T.; Christian, C. F.; Lipton, M. A.; Singleton, D. A. J. Am. Chem. Soc. 2005, 127, 9216. (c). Singleton, D. A.; Hang, C.; Szymanski, M. J.; Meyer, M. P.; Leach, A. G.; Kuwata, K. T.; Chen, J. S.; Greer, A.; Foote, C. S.; Houk, K. N. J. Am. Chem. Soc. 2003, 125, 1319. (d). Ussing, B. R.; Singleton, D. A. J. Am. Chem. Soc. 2005, 127, 2888.
74. Metiu, H.; Ross, J.; Silbey, R.; George, T. F. J. Chem. Phys. 1974, 61, 3200
75. For some recent examples of applications of Diels-Alder reaction in total synthesis, see: (a). Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew. Chem., Int. Ed. 2005 44, 4442. (b). Nicolaou, K. C.; Safina, B. S.; Zak, M.; Lee, S. H.;

Nevalainen, M.; Bella, M.; Estrada, A. A.; Funke, C.; Zecri, F. J.; Bulat, S. J. Am. Chem. Soc. 2005, 127, 11159. (c). Hamasaki, A.; Zimpleman, J. M.; Hwang, I.; Boger, D. L. J. Am. Chem. Soc. 2005, 127, 10767. (d). Hong, R.; Chen, Y.; Deng, L. Angew. Chem., Int. Ed. 2005 44, 3478. (e). Padwa, A.; Ginn, J. D. J. Org. Chem. 2005, 70, 5197. (f). Sammakia, T.; Johns, D. M.; Kim, G.; Berliner, M. A. J. Am. Chem. Soc. 2005, 127, 6504. (g). Nattrass, G. L.; Diez, E.; McLachlan, M. M.; Dixon, D. J.; Ley, S. V. Angew. Chem., Int. Ed. 2005 44, 580. (h). Gao, X.; Hall, D. G. J. Am. Chem. Soc. 2005, 127, 1628.
76. Ibrahim, N.; Eggimann, T.; Dixon, E. A.; Wieser, H. Tetrahedron, 1990, 46, 1603.
77. Toma, L.; Romano, S.; Quadrelli, P.; Caramella, P. Tetrahedron Lett. 2001, 42, 5077.
78. (a). Yamataka, H.; Aida, M.; Dupuis, M. Chem. Phys. Lett. 1999, 300, 583. (b). Bakken, V.; Danovich, D.; Shaik, S.; Schlegel, H. B. J. Am. Chem. Soc. 2001, 123, 130. (c). Yanai, T.; Taketsugu, T.; Hirao, K. J. Chem. Phys. 1997, 107, 1137.
79. Meyer, M. P.; DelMonte, A. J.; Singleton, D. A. J. Am. Chem. Soc. 1999, 121, 10865.
80. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Salvador, P.; Dannenberg, J. J.; Malick, D. K.;

Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, revision A.11; Gaussian, Inc.: Pittsburgh, PA, 2001.
81. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Salvador, P.; Dannenberg, J. J.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 03, revision A.11; Gaussian, Inc.: Pittsburgh, PA, 2003.
82. (a). Becke, A. D. J. Chem. Phys. 1993, 98, 5648. (b). Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.

APPENDIX

CALCULATIONAL STRUCTURES AND ENERGIES

Terms:

B3: Becke 3-parameter exchange model
RB: Restricted Becke
HF: Hartree-Fock
LYP: Lee-Yang-Parr gradient-corrected functionals
mPW1K: modified Perdew-Wang 1-parameter model for kinetics
RmPW: Restricted modified Perdew-Wang model
PW91: Perdew-Wang 1991 gradient-corrected functionals
MP2: Möller-Plesset second-order perturbation
RHF: Restricted Hartree-Fock

$$
H N=C=O
$$

B3LYP/6-31G*
$\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-168.677509863$

Zero-point correction=
Thermal correction to Energy=
Thermal correction to Enthalpy=
0.021292 (Hartree/Particle)
0.024548
0.025493

Thermal correction to Gibbs Free Energy $=\quad-0.001627$
Sum of electronic and zero-point Energies= -168.656217
Sum of electronic and thermal Energies=
-168.652961
Sum of electronic and thermal Enthalpies=
-168.652017
Sum of electronic and thermal Free Energies=

	E (Thermal)	CV	S
	KCAL/MOL	CAL/MOL-KELVIN	CAL/MOL-KELVIN
TOTAL	15.404	8.864	57.078

O,0,0.9780834162,0.4888365542,0.5359351196
C, $0,0.0363674869,-0.0027937876,0.0353549526$
$\mathrm{N}, 0,-0.9420835709,-0.3802117309,-0.5859671133$
$\mathrm{H}, 0,-1.4482872544,-1.2324475919,-0.3978408793$
mPW1K/6-31G*
$\mathrm{E}($ RmPW + HF-PW91 $)=-168.613933554$

Zero-point correction $=$	0.021960 (Hartree/Particle)
Thermal correction to Energy $=$	0.025198
Thermal correction to Enthalpy $=$	0.026142
Thermal correction to Gibbs Free Energy=	-0.000887
Sum of electronic and zero-point Energies $=$	-168.591973
Sum of electronic and thermal Energies $=$	-168.588736
Sum of electronic and thermal Enthalpies $=$	-168.587792
Sum of electronic and thermal Free Energies= $=$	-168.614820

	E (Thermal)	CV	S	
	KCAL/MOL	CAL/MOL-KELVIN	CAL/MOL-KELVIN	
TOTAL	15.812	8.795	56.887	

O,0,0.9685220358,0.4884830058,0.5270704241
C,0,0.0372377087,0.0027748025,0.0322569898
N,0,-0.931377396,-0.3858306946,-0.5717167144
$\mathrm{H}, 0,-1.4519607664,-1.2236979994,-0.4080883306$

B3LYP/6-31+G**
 $\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-168.691277783$

Zero-point correction= 0.021194 (Hartree/Particle)
Thermal correction to Energy= 0.024462
Thermal correction to Enthalpy= 0.025406
Thermal correction to Gibbs Free Energy $=\quad-0.001711$
Sum of electronic and zero-point Energies $=\quad-168.670084$
Sum of electronic and thermal Energies $=\quad-168.666816$
Sum of electronic and thermal Enthalpies $=\quad-168.665872$
Sum of electronic and thermal Free Energies $=\quad-168.692988$

	E (Thermal $)$	CV	S
	$\mathrm{KCal} / \mathrm{Mol}$	$\mathrm{Cal} / \mathrm{Mol}-$ Kelvin	Cal/Mol-Kelvin
Total	15.350	8.936	57.072

O,0,0.9784866175,0.4934970962,0.5325546707
C, $0,0.036652203,-0.0025613361,0.035727573$
$\mathrm{N}, 0,-0.9413068648,-0.3856501816,-0.5811015929$
H,0,-1.4586581042,-1.233057481,-0.4070916532
mPW1K/6-31+G**
$E($ RmPW + HF-PW91 $)=-168.620197115$

Zero-point correction=	0.021994 (Hartree/Particle)
Thermal correction to Energy $=$	0.025235
Thermal correction to Enthalpy $=$	0.026179
Thermal correction to Gibbs Free Energy $=$	-0.000857
Sum of electronic and zero-point Energies=	-168.598203
Sum of electronic and thermal Energies=	-168.594962
Sum of electronic and thermal Enthalpies $=$	-168.594018
Sum of electronic and thermal Free Energies $=$	-168.621054

	E (Thermal $)$	CV	S
	$\mathrm{KCal} / \mathrm{Mol}$	$\mathrm{Cal} /$ Mol-Kelvin	Cal/Mol-Kelvin
Total	15.835	8.807	56.902

O,0,0.968320719,0.4872418636,0.5278460824
C,0,0.0370041647,0.0030620124,0.0318179864
N,0,-0.9313974763,-0.3847971856,-0.5725405418
H, $,--1.4488084068,-1.2227266842,-0.4058927844$
N_{2}
B3LYP/6-31G*
$\mathrm{E}($ RB+HF-LYP $)=-109.524125196$
Zero-point correction $=\quad 0.005599$ (Hartree/Particle)
Thermal correction to Energy= $\quad 0.007960$
Thermal correction to Enthalpy= 0.008904
Thermal correction to Gibbs Free Energy $=\quad-0.012851$
Sum of electronic and zero-point Energies $=\quad-109.518530$
Sum of electronic and thermal Energies $=\quad-109.516170$
Sum of electronic and thermal Enthalpies $=\quad-109.515225$
Sum of electronic and thermal Free Energies $=\quad-109.536980$

	E (Thermal)	CV	S
	KCAL/MOL	CAL/MOL-KELVIN	CAL/MOL-KELVIN
TOTAL	4.995	4.970	45.786
N, $0,0.2884086738,-0.4410356919,-0.1668572068 ~$			
N, $0,-0.2884086738,0.4410356919,0.1668572068 ~$			

mPW1K/6-31G*
$\mathrm{E}($ RmPW + HF-PW91 $)=-109.478692485$

Sum of electronic and thermal Enthalpies $=$	-109.470809
Sum of electronic and thermal Free Energies $=$	-109.492541

	E (Thermal)	CV	S	
	KCal/Mol	Cal/Mol-Kelvin	Cal/Mol-Kelvin	
Total	5.175	4.969	45.740	
	0			
$\mathrm{~N}, 0,0.2850920806,-0.4359637559,-0.1649380196$				
$\mathrm{~N}, 0,-0.2850920806,0.4359637559,0.1649380196$				

Iminooxadiazoline oxirane 4

```
B3LYP/6-31G*
E(RB+HF-LYP) = -626.094322624
```

Zero-point correction $=$	0.194236 (Hartree/Particle)
Thermal correction to Energy $=$	0.205143
Thermal correction to Enthalpy $=$	0.206087
Thermal correction to Gibbs Free Energy=	0.157689
Sum of electronic and zero-point Energies $=$	-625.900087
Sum of electronic and thermal Energies=	-625.889180
Sum of electronic and thermal Enthalpies $=$	-625.888235
Sum of electronic and thermal Free Energies=	-625.936633

	E (Thermal)	CV	S	
TOTAL	KCAL/MOL	CAL/MOL-KELVIN	CAL/MOL-KELVIN	
	128.729	43.142	101.862	

C,0,-2.2026532843,-0.1645723845,-1.4319531441
С,0,-2.0433888879,-0.3946051645,0.0698771057
С, $0,-0.7305753666,-0.1983974616,0.7209914886$
C, $0,0.4981033643,0.1838342353,-0.085476159$
C,0,0.137646016,0.8642464091,-1.4074396192
C,0,-0.8748422515,0.0160071437,-2.189119801
O,0,1.3596502506,1.0158239488,0.7051757789
C,0,2.5239036688,0.3302217604,0.893032801
$\mathrm{N}, 0,2.4202330304,-0.9492498565,0.2143852731$
$\mathrm{N}, 0,1.3048671274,-1.040914711,-0.3319634503$
$\mathrm{N}, 0,3.556684036,0.6770197107,1.528084384$
O,0,-1.7339162736,0.811663494,0.8147145095
C,0,-3.0720687097,-1.284745049,0.7315323055
Н,0,-0.5070577556,-0.7192845172,1.6541121781
Н,0,-4.0833688177,-0.9129710047,0.5283199565

```
H,0,-2.9275912239,-1.3065567546,1.8155145117
H,0,-3.0041230561,-2.3084456761,0.3459929833
H,0,1.055911302,1.0157242406,-1.9850390462
H,0,-0.2765398635,1.8482316356,-1.1645868053
H,0,-1.0657444363,0.4797748838,-3.1633056336
H,0,-0.4297376827,-0.9656054682,-2.3876906441
H,0,-2.7582328665,-1.0035672527,-1.8668665492
H,0,-2.8351521156,0.7246301293,-1.5515527791
H,0,3.4365280484,1.6082473057,1.9337662082
```

mPW1K/6-31G*
$\mathrm{E}($ RmPW + HF-PW91 $)=-625.921783278$

Zero-point correction $=$	0.201226 (Hartree/Particle)
Thermal correction to Energy $=$	0.211765
Thermal correction to Enthalpy $=$	0.212709
Thermal correction to Gibbs Free Energy=	0.164963
Sum of electronic and zero-point Energies $=$	-625.720557
Sum of electronic and thermal Energies=	-625.710019
Sum of electronic and thermal Enthalpies $=$	-625.709074
Sum of electronic and thermal Free Energies=	-625.756820

	E (Thermal)	CV	S	
	KCAL/MOL	CAL/MOL-KELVIN	CAL/MOL-KELVIN	
TOTAL	132.884	41.373	100.490	

[^3]```
H,0,-0.2766757863,1.8335025263,-1.1481538715
H,0,-1.049946757,0.4694803662,-3.1349119276
H,0,-0.4237598783,-0.966274981,-2.357249098
H,0,-2.7376578264,-0.9896001684,-1.8457273255
H,0,-2.8036868559,0.7298084777,-1.5338938944
H,0,3.4016271343,1.5967742121,1.9123042452
B3LYP/6-31+G**
E(RB+HF-LYP) = -626.133702369
Zero-point correction= 0.193107 (Hartree/Particle)
Thermal correction to Energy= 0.204057
Thermal correction to Enthalpy= 0.205001
Thermal correction to Gibbs Free Energy= 0.156525
Sum of electronic and zero-point Energies= -625.940595
Sum of electronic and thermal Energies= -625.929645
Sum of electronic and thermal Enthalpies= -625.928701
Sum of electronic and thermal Free Energies= -625.977177
\begin{tabular}{cccl}
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 128.048 & 43.425 & 102.027
\end{tabular}
C,0,-2.2074428431,-0.1569660792,-1.4301756936
C,0,-2.0459760621,-0.3957845751,0.0695600368
C,0,-0.7302740288,-0.2039341886,0.7192967681
C,0,0.4981878655,0.1789251934,-0.088848333
C,0,0.1426117973,0.8541142934,-1.4150063293
C,0,-0.8813890425,0.0156170584,-2.1927012566
O,0,1.3592474816,1.0170658571,0.7012804543
C,0,2.5254376581,0.336570159,0.895268638
N,0,2.4251110146,-0.9465375756,0.2218786307
N,0,1.3107156383,-1.0439701831,-0.3245993713
N,0,3.5549191971,0.6918114112,1.5316158294
O,0,-1.7326145454,0.8079197843,0.8212673438
C,0,-3.0742489827,-1.288813882,0.7269074038
H,0,-0.5062069078,-0.7284295546,1.649782487
H,0,-4.0841936432,-0.914239996,0.5252655443
H,0,-2.9291502623,-1.318078782,1.8099206365
H,0,-3.0050471551,-2.3088010065,0.3334619662
H,0,1.0610576057,0.9909619395,-1.9951486893
H,0,-0.2579375815,1.8445797191,-1.1766743849
H,0,-1.0733992945,0.485963895,-3.1629191073
H,0,-0.4467347344,-0.9686491714,-2.3992396968
```

H,0,-2.7703305266,-0.9904695479,-1.8645084509
H,0,-2.8337534506,0.7371776771,-1.543026347
H,0,3.4359733405,1.6226062532,1.9346306312
mPW1K/6-31+G**
$\mathrm{E}($ RmPW + HF-PW91 $)=-625.945153322$

| Zero-point correction= | 0.200546 (Hartree/Particle) |
| :--- | :---: |
| Thermal correction to Energy= $=$ | 0.211105 |
| Thermal correction to Enthalpy $=$ | 0.212049 |
| Thermal correction to Gibbs Free Energy= | 0.164271 |
| Sum of electronic and zero-point Energies= | -625.744608 |
| Sum of electronic and thermal Energies= | -625.734049 |
| Sum of electronic and thermal Enthalpies $=$ | -625.733104 |
| Sum of electronic and thermal Free Energies= | -625.780882 |


|  | E (Thermal) | CV | S |
| :--- | :---: | :---: | :--- |
|  | $\mathrm{KCal} / \mathrm{Mol}$ | Cal/Mol-Kelvin | Cal/Mol-Kelvin |
| Total | 132.470 | 41.518 | 100.557 |

C, $0,-2.178934828,-0.1602255333,-1.4160947156$
С, $0,-2.0224688683,-0.3873519164,0.0712547612$
С, $0,-0.7218126482,-0.2000899981,0.7179225868$
C,0,0.495413393,0.1815117791,-0.0816890893
C, $0,0.1351894659,0.8566442826,-1.3889412789$
С, $0,-0.8630155662,0.0126373203,-2.1637240658$
O,0,1.3465669126,0.998758106,0.6963901681
C, $0,2.4962143892,0.3278601584,0.8790698255$
$\mathrm{N}, 0,2.392457234,-0.9362241942,0.2057152159$
$\mathrm{N}, 0,1.288814418,-1.0234342383,-0.3269785957$
$\mathrm{N}, 0,3.5175899634,0.6755779752,1.5068567095$
O,0,-1.7101443377,0.7933210691,0.8050918043
C,0,-3.0439114543,-1.269671656,0.7235992177
Н, $0,-0.502616767,-0.7202470128,1.6446363869$
H,0,-4.0465343954,-0.8989813972,0.5153944129
H,0,-2.9041365364,-1.2884502926,1.8010089201
H,0,-2.9712132552,-2.2859368876,0.3411190971
H,0,1.0484668946,1.0119984757,-1.9610479102
H,0,-0.2795912454,1.832672683,-1.1436117729
H,0,-1.0493189299,0.4698144061,-3.1339603031
H,0,-0.4211592235,-0.9643335842,-2.3565750509
$\mathrm{H}, 0,-2.7341511465,-0.9933328474,-1.8445172284$
H,0,-2.8046774501,0.7256653465,-1.5335524672
H,0,3.4014768497,1.5951742903,1.9117133805

Alternative structure A of Iminooxadiazoline oxirane (with methyl group on imine)


```
Н,-2.4572157596,-1.4294580962,-2.0984983077
H,-2.9342977596,0.2619699038,-2.0419023077
```

Alternative structure B of Iminooxadiazoline oxirane (with methyl group on imine)

## B3LYP/6-31G* <br> $\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-665.405558882$

| Zero-point correction $=$ | 0.221869 (Hartree/Particle) |
| :--- | :---: |
| Thermal correction to Energy $=$ | 0.234672 |
| Thermal correction to Enthalpy $=$ | 0.235617 |
| Thermal correction to Gibbs Free Energy= | 0.182364 |
| Sum of electronic and zero-point Energies $=$ | -665.183690 |
| Sum of electronic and thermal Energies= | -665.170886 |
| Sum of electronic and thermal Enthalpies $=$ | -665.169942 |
| Sum of electronic and thermal Free Energies= | -665.223194 |


|  | E (Thermal) | CV | S |
| :---: | :---: | :---: | :--- |
|  | $\mathrm{KCal} / \mathrm{Mol}$ | $\mathrm{Cal} /$ Mol-Kelvin | Cal/Mol-Kelvin |
| Total | 147.259 | 48.789 | 112.079 |

C,3.3129314808,1.7996617308,2.0123448558
C,2.2469404808,0.1617277308,0.7159238558
N,1.0255414808,1.2051582692,0.5097611442
N,3.2756114808,0.5046337308,1.3538568558
N,2.1411364808,-1.1130682692,0.0382428558
C,-1.0076385192,-0.3593762692,0.5446258558
C,-3.3485115192,-1.4489252692,0.5591988558
О,1.0806694808,0.8554907308,0.5237998558
C,-2.3212125192,-0.5579992692,-0.1038041442
C,-0.1438785192,0.7007167308,0.5855391442
C, $0.2206954808,0.0228357308,-0.2631671442$
C,-1.1565795192,-0.1484452692,-2.3650721442
O,-2.0130375192,0.6491907308,0.6391908558
C,-2.4831665192,-0.3300052692,-1.6058991442
Н,4.1507874808,2.3753507308,1.6011558558
H,3.5279654808,1.6426657308,3.0758688558
H,2.3933084808,2.3891697308,1.9163978558
Н,-0.7828575192,-0.8794732692,1.4780298558
H,-4.3604175192,-1.0784452692,0.3560528558
H,-3.2035875192,-1.4698182692,1.6431958558
H,-3.2797725192,-.4729382692,0.1744718558
Н,0.7734164808,0.8515117308,-2.1650841442

```
H,-0.5575255192,1.6854627308,-1.3442291442
H,-1.3496835192,0.3146977308,-3.3392021442
H,-0.7107555192,-1.1297372692,-2.5636711442
H,-3.0384875192,-1.1702722692,-2.0390691442
H,-3.1169545192,0.5583807308,-1.7258831442
```

Alternative structure C of Iminooxadiazoline oxirane (with methyl group on imine)

```
B3LYP/6-31G*
E(RB+HF-LYP})=-665.40387616
```

Zero-point correction=
Thermal correction to Energy=
Thermal correction to Enthalpy=
Thermal correction to Gibbs Free Energy=
Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies=
Sum of electronic and thermal Enthalpies=
Sum of electronic and thermal Free Energies=
0.221625 (Hartree/Particle)
0.234420
0.235364
0.182106
-665.182251
-665.169456
-665.168512
-665.221770

|  | E (Thermal) | CV | S |
| :---: | :---: | :---: | :--- |
|  | $\mathrm{KCal} / \mathrm{Mol}$ | $\mathrm{Cal} / \mathrm{Mol-Kelvin}$ | Cal/Mol-Kelvin |
| Total | 147.101 | 48.861 | 112.092 |

C,3.3307831538,-2.5826944327,0.280720875
C,2.2947381538,-0.4785264327,0.352262875
N,1.0871391538,1.3680435673,0.324487875
N,3.3260011538,-1.1610364327,0.579533875
N,2.2175311538,0.9400925673,0.625417875
C,-0.9391218462,0.0275595673,0.730768875
C,-3.4314718462,-0.6166184327,0.998475875
O,1.0929721538,-0.8858364327,-0.174165125
C,-2.3453518462,0.1653705673,0.294580875
C,-0.1697098462,0.5669565673,-1.664092125
C,0.2399491538,0.2643365673,-0.215303125
C,-1.4648078462,1.3820045673,-1.751657125
O,-1.7022058462,1.1763465673,1.101286875
C,-2.6368788462,0.6122925673,-1.128774125
H,3.5885621538,-3.1296894327,1.195209875
Н,4.1287171538,-2.7837684327,-0.444081125
H,2.3845621538,-2.9721364327,-0.114317125
H,-0.6931498462,-0.6471674327,1.552757875
Н,-4.3547208462,-0.0271664327,1.045798875

```
H,-3.1326228462,-0.8647564327,2.021080875
H,-3.6518708462,-1.5470394327,0.462243875
H,-0.3057838462,-0.4022734327,0.159397125
H,0.6591811538,1.0774795673,-2.166708125
H,-1.6835728462,1.6010505673,-2.802548125
H,-1.3377698462,2.3407325673,-1.238762125
H,-2.8687798462,-0.2763934327,-1.733102125
H,-3.5423528462,1.2332625673,-1.123124125
```


## First Transition structure (5)

```
B3LYP/6-31G*
E(RB+HF-LYP})=-626.03576507
```

| Zero-point correction $=$ | 0.190091 (Hartree/Particle) |
| :--- | :---: |
| Thermal correction to Energy $=$ | 0.201948 |
| Thermal correction to Enthalpy $=$ | 0.202893 |
| Thermal correction to Gibbs Free Energy= | 0.151791 |
| Sum of electronic and zero-point Energies= | -625.845674 |
| Sum of electronic and thermal Energies= | -625.833817 |
| Sum of electronic and thermal Enthalpies $=$ | -625.832873 |
| Sum of electronic and thermal Free Energies $=$ | -625.883974 |


|  | E (Thermal) | CV | S |  |
| :---: | :---: | :---: | :---: | :---: |
|  | KCAL/MOL | CAL/MOL-KELVIN | CAL/MOL-KELVIN |  |
| TOTAL | 126.725 | 44.870 | 107.553 |  |

$\mathrm{N}, 0,1.4305985721,-0.777053454,-0.1205443126$
C,0,0.3360160937,-0.0724070911,-0.2602260008
O,0,1.6429380517,1.4331241944,1.028218644
C,0,2.6784580835,0.7807340292,1.1630779159
$\mathrm{N}, 0,2.5189193909,-0.7523146457,0.3673581412$
C,0,0.0535390876,0.6524438952,-1.5440622429
C,0,-1.0297451779,-0.1104618393,-2.3357214635
C,0,-2.3441651749,-0.2768646754,-1.5479577395
C, $0,-2.1764246073,-0.5409861439,-0.0507836274$
C, $0,-0.8304756678,-0.4199486198,0.5878001745$
O,0,-1.7923743148,0.6295301412,0.6965045523
С,0,-3.2303717738,-1.3963842768,0.6153683318
$\mathrm{N}, 0,3.8560854829,0.7670446216,1.6585575587$
$\mathrm{H}, 0,-0.6111282021,-0.9636858115,1.5059857477$
H,0,-4.226419269,-0.9720434878,0.4409720542
H,0,-3.0658323636,-1.4455936245,1.6955003069

```
H,0,-3.2201504091,-2.4139233392,0.2087936037
H,0,0.9721405076,0.7666934937,-2.1246767784
H,0,-0.2995671962,1.6503562702,-1.2599422164
H,0,-1.2276451256,0.4122942161,-3.277942583
H,0,-0.6307554523,-1.0975115523,-2.6013705328
H,0,-2.930046994,-1.0894169722,-1.9926776443
H,0,-2.9537486557,0.6318178326,-1.6351305554
H,0,4.0084339648,1.6592909676,2.1401312274
```

mPW1K/6-31G*
$\mathrm{E}($ RmPW + HF-PW91 $)=-625.846411684$

| Zero-point correction $=$ | 0.196772 (Hartree/Particle) |
| :--- | :---: |
| Thermal correction to Energy $=$ | 0.208229 |
| Thermal correction to Enthalpy $=$ | 0.209173 |
| Thermal correction to Gibbs Free Energy $=$ | 0.158816 |
| Sum of electronic and zero-point Energies $=$ | -625.649640 |
| Sum of electronic and thermal Energies $=$ | -625.638182 |
| Sum of electronic and thermal Enthalpies= | -625.637238 |
| Sum of electronic and thermal Free Energies= | -625.687596 |


|  | E(Thermal) | CV | S |  |
| :---: | :---: | :---: | :---: | :---: |
|  | KCAL/MOL | CAL/MOL-KELVIN | CAL/MOL-KELVIN |  |
| TOTAL | 130.666 | 43.275 | 105.987 |  |

$\mathrm{N}, 0,-1.5172177315,-0.3151075821,0.2762917242$
C, $0,-0.365741837,0.1813242279,0.0102443754$
O,0,-0.9775392647,-1.1312463217,-1.980487653
C,0,-2.064399151,-1.5404674772,-1.608889054
N,0,-2.4212895489,-0.9801033619,-0.0823331202
C,0,-0.2241200445,1.5779497756,-0.4809366695
C, $0,0.386423121,2.4311290141,0.6291614843$
C, $0,1.7477748141,1.9200011896,1.090283666$
C,0,1.8844981223,0.4125033388,1.1509101424
C, $0,0.8282257361,-0.458317987,0.5917315368$
O,0,2.0074797732,-0.1941371773,-0.1220402696
C,0,2.7968993115,-0.1397606975,2.2037031161
$\mathrm{N}, 0,-3.0628916203,-2.247591955,-1.94637158$
H,0,0.7048304357,-1.4719301199,0.9513260648
H,0,3.7859273395,0.3091188688,2.1127126612
H,0,2.9021112859,-1.2167579887,2.0978458829
H,0,2.4146049023,0.0811417657,3.1990386044
H,0,-1.186860778,1.9630265852,-0.8046210594
H,0,0.4334027969, 1.5295967752,-1.3492818392

```
H,0,0.4783272947,3.4598075665,0.2834150065
\(\mathrm{H}, 0,-0.3061859433,2.4463156401,1.472030465\)
H,0,1.9744168602,2.3368228317,2.0709621799
H,0,2.5300088399,2.2707632283,0.4149622608
H,0,-2.897675232,-2.611385173,-2.8785275994
```


## B3LYP/6-31+G** <br> $\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-626.078064245$

| Zero-point correction $=$ | 0.189050 (Hartree/Particle) |
| :--- | :---: |
| Thermal correction to Energy $=$ | 0.200905 |
| Thermal correction to Enthalpy $=$ | 0.201850 |
| Thermal correction to Gibbs Free Energy $=$ | 0.150799 |
| Sum of electronic and zero-point Energies $=$ | -625.889015 |
| Sum of electronic and thermal Energies= | -625.877159 |
| Sum of electronic and thermal Enthalpies $=$ | -625.876215 |
| Sum of electronic and thermal Free Energies= | -625.927266 |


|  | E (Thermal) | CV | S |
| :---: | :---: | :---: | :--- |
|  | $\mathrm{KCal} / \mathrm{Mol}$ | Cal/Mol-Kelvin | Cal/Mol-Kelvin |
| Total | 126.070 | 45.069 | 107.446 |

$\mathrm{N}, 0,1.4257859175,-0.7648010217,-0.1012288513$
C, $, 0,0.3260698666,-0.0741304071,-0.2586866796$
O,0,1.6758432857,1.4531976199,1.0285050033
C,0,2.6988795783,0.7739474291,1.1562833376
$\mathrm{N}, 0,2.5166151907,-0.7317773645,0.3845297578$
C,0,0.0519189072,0.6439209863,-1.5476728865
C, $0,-1.0363958773,-0.1144497824,-2.3380706989$
C,0,-2.3515444181,-0.276643803,-1.5509165895
C,0,-2.1875272861,-0.5458729183,-0.0547194053
С, $0,-0.8418183726,-0.4236052515,0.5886039958$
O,0,-1.8078419248,0.6236563072,0.6982469902
С,0,-3.2393046881,-1.4087283659,0.6042252719
N,0,3.878654998,0.7637158235,1.6549779992
H,0,-0.623155419,-0.9673171835,1.5064124881
Н, 0,-4.2354701808,-0.988684744,0.4240450946
H,0,-3.0804993577,-1.4599207845,1.6843531184
H,0,-3.2192581053,-2.4239857944,0.1939828199
H,0,0.9723056165,0.7470075302,-2.1262206491
H,0,-0.2929027125,1.6465145613,-1.2696731756
H,0,-1.2315248253,0.4121934527,-3.2780368852
H,0,-0.642367312,-1.102190589,-2.6066239929
H,0,-2.9392024649,-1.0867300969,-1.9960093517

```
H,0,-2.9579829619,0.6339991217,-1.6356592837
H,0,4.0369878325,1.6576937249,2.1271834563
mPW1K/6-31+G**
E(RmPW+HF-PW91) = -625.870002715
\begin{tabular}{lc}
Zero-point correction \(=\) & 0.196081 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.207565 \\
Thermal correction to Enthalpy \(=\) & 0.208509 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.158111 \\
Sum of electronic and zero-point Energies= & -625.673921 \\
Sum of electronic and thermal Energies= & -625.662438 \\
Sum of electronic and thermal Enthalpies \(=\) & -625.661493 \\
Sum of electronic and thermal Free Energies= & -625.711892
\end{tabular}
```

|  | E (Thermal $)$ | CV | S |
| :---: | :---: | :---: | :--- |
|  | $\mathrm{KCal} / \mathrm{Mol}$ | $\mathrm{Cal} /$ Mol-Kelvin | Cal/Mol-Kelvin |
| Total | 130.249 | 43.431 | 106.073 |

N,0,1.4061968811,-0.7083676281,-0.0820853932
C,0,0.3046808061,-0.0763034288,-0.2622753364
O,0,1.7042346736,1.4575038506,1.0443789557
C,0,2.7014089748,0.7639892544,1.1512914811
N,0,2.489353066,-0.7012008365,0.3818245043
C,0,0.0306562201,0.6465361139,-1.5321640956
C,0,-1.0295757695,-0.1224921423,-2.3180994335
C, $0,-2.3334254443,-0.2949064464,-1.5452144975$
C, $0,-2.175965219,-0.5474551869,-0.0599984902$
С,0,-0.8510551733,-0.4207817692,0.5853658897
O,0,-1.8047116851,0.6058677112,0.6717270706
C,0,-3.221551712,-1.3990732664,0.5934021158
$\mathrm{N}, 0,3.8746720454,0.7232457557,1.6314978531$
H,0,-0.6333822287,-0.9520840457,1.5028403417
H,0,-4.2108672145,-0.9877417213,0.398074018
H,0,-3.0737801149,-1.4321831419,1.6692158116
H,0,-3.1916344982,-2.4133062007,0.2006032339
H,0,0.9473476684,0.769486193,-2.1004031966
H,0,-0.3295430701,1.6339232217,-1.244013142
Н,0,-1.2247919098,0.3917453002,-3.2572669692
H,0,-0.6230561482,-1.1006365838,-2.5769932057
H,0,-2.9061137495,-1.1102829997,-1.9839105452
H,0,-2.9474109056,0.601967725,-1.6368049398
H,0,4.0544582175,1.5993199502,2.1073058325

## Alternative structure A of First Transition structure (with methyl group on imine)

| B3LYP/6-31G* |  |
| :--- | :---: |
| E(RB+HF-LYP) $=-665.342943246$ |  |
|  | 0.215691 (Hartree/Particle) |
| Zero-point correction= | 0.230193 |
| Thermal correction to Energy= | 0.231137 |
| Thermal correction to Enthalpy $=$ | 0.173362 |
| Thermal correction to Gibbs Free Energy $=$ | -665.127252 |
| Sum of electronic and zero-point Energies= | -665.112750 |
| Sum of electronic and thermal Energies= | -665.111806 |
| Sum of electronic and thermal Enthalpies $=$ | -665.169581 |


|  | E (Thermal) | CV | S |  |
| :---: | :---: | :---: | :---: | :---: |
|  | KCAL/MOL | CAL/MOL-KELVIN | CAL/MOL-KELVIN |  |
| TOTAL | 144.448 | 52.625 | 121.597 |  |

C,0,-2.2836919666,-0.4441042007,-1.7530938594
C, $0,-2.3280035728,-0.5486048787,-0.2265979408$
С,0,-1.1499718654,-0.1238101465,0.5831256589
C, $0,0.0885188045,0.3186785737,-0.1186755701$
С, $0,-0.1069717325,0.8878804625,-1.5039104624$
C,0,-0.8901260759,-0.1450035519,-2.3413664288
O,0,1.1647866507,-0.3585649105,0.1467414156
C,0,2.3951494132,0.2369010792,0.9636091165
$\mathrm{N}, 0,1.5012273418,2.0672996641,1.4014440449$
$\mathrm{N}, 0,0.4681246705,2.0543050842,0.91649765$
$\mathrm{N}, 0,3.4242721822,-0.3818386255,1.1184929544$
C,0,3.8756758936,-1.6814678668,0.6749438656
O,0,-2.2913909137,0.7269493815,0.4450472445
С, $0,-3.3166269401,-1.5341636556,0.3562526007$
H,0,4.1033739729,-2.300976306,1.5482916638
H,0,4.799810532,-1.5656874525,0.0998356526
H,0,3.120811203,-2.1837816911,0.0579164349
H,0,-0.9938899707,-0.5578683853,1.5718338965
$\mathrm{H}, 0,-4.3290023308,-1.3175915825,-0.0066702956$
H,0,-3.3263051806,-1.4732547117,1.4484161055
H,0,-3.0656462186,-2.5599601862,0.0621033729
H,0,0.871010828,1.0939528626,-1.9494042535
H,0,-0.6685518639, 1.8256422605,-1.4423186638
H,0,-0.9952880488,0.2139727348,-3.371839489
H,0,-0.3044426165,-1.0721549547,-2.3889430259

```
H,0,-2.6687918005,-1.3738412799,-2.188927337
H,0,-2.9893355113,0.3482751728,-2.0353677689
```

Alternative structure B of First Transition structure (with methyl group on imine)

| B3LYP/6-31G* |  |
| :--- | :---: |
| E(RB+HF-LYP) $=-665.343751231$ |  |
|  | 0.215645 (Hartree/Particle) |
| Zero-point correction= | 0.230087 |
| Thermal correction to Energy $=$ | 0.231031 |
| Thermal correction to Enthalpy $=$ | 0.173978 |
| Thermal correction to Gibbs Free Energy $=$ | -665.128106 |
| Sum of electronic and zero-point Energies= | -665.113664 |
| Sum of electronic and thermal Energies= | -665.112720 |
| Sum of electronic and thermal Enthalpies= | -665.169773 |
| Sum of electronic and thermal Free Energies= | -6 |



```
H,0,-0.3238870268,1.8403521243,-1.246367965
H,0,-1.0617268073,0.5084908142,-3.2154115919
H,0,-0.5892629499,-0.9843392205,-2.4120137851
H,0,-2.9744463053,-0.8403643776,-2.1816227412
H,0,-2.933559175,0.8530147114,-1.7055721124
```

Alternative structure C of First Transition structure (with methyl group on imine)
B3LYP/6-31G*
E(RB+HF-LYP $)=-665.344590800$

| Zero-point correction= | 0.215503 (Hartree/Particle) |
| :--- | :---: |
| Thermal correction to Energy $=$ | 0.229911 |
| Thermal correction to Enthalpy $=$ | 0.230856 |
| Thermal correction to Gibbs Free Energy= | 0.173470 |
| Sum of electronic and zero-point Energies $=$ | -665.129088 |
| Sum of electronic and thermal Energies= | -665.114679 |
| Sum of electronic and thermal Enthalpies $=$ | -665.113735 |
| Sum of electronic and thermal Free Energies $=$ | -665.171121 |


|  | E (Thermal) | CV | S |  |
| :---: | :---: | :---: | :---: | :---: |
|  | KCAL/MOL | CAL/MOL-KELVIN | CAL/MOL-KELVIN |  |
| TOTAL | 144.272 | 52.664 | 120.779 |  |

C,0,-2.607883764,0.4654142403,-1.2150927232
C,0,-2.4362422615,0.1214733326,0.2582810931
C, $0,-1.0562453344,-0.0614073802,0.7826355934$
C, $0,0.1110615022,-0.0189914597,-0.1450086979$
С,0,-0.1021238363,0.3716674143,-1.5916314385
С,0,-1.3836634751,1.1908097499,-1.7941738429
O, $0,1.0645036264,-0.86307158,0.128776562$
C, $0,2.5289547034,-0.4585226157,0.4094699841$
$\mathrm{N}, 0,2.1480346745,1.5809888635,0.7489253472$
$\mathrm{N}, 0,1.0459262486,1.7539105314,0.5176589654$
$\mathrm{N}, 0,3.4547082368,-1.244169143,0.3722138016$
C,0,3.5082186773,-2.6449356419,0.0104555291
O,0,-1.7917841055,1.1516786944,1.0242214821
C,0,-3.6015846579,-0.5587872878,0.9410999857
H,0,3.8293312725,-3.2280188468,0.8797388481
H,0,4.2546861842,-2.7863349659,-0.7775480615
H, $0,2.5346814105,-3.01442342,-0.3358531091$
H,0,-0.8934402025,-0.67841532,1.6666530051
H,0,-4.4960932117,0.0733456377,0.885902687

```
H,0,-3.3796310267,-0.7437794654,1.9961300559
H,0,-3.8340896829,-1.5151100302,0.4581346427
H,0,-0.1628468244,-0.5625693351,-2.1716673867
H,0,0.7807535749,0.9053740562,-1.9635410489
H,0,-1.5353534318,1.3739468802,-2.8636263688
H,0,-1.2782932081,2.1643771266,-1.3062641254
H,0,-2.8011804205,-0.4629288576,-1.7719504798
H,0,-3.5039140424,1.0902457509,-1.3278927077
```


## First Intermediate -diazoalkane (6)



```
H,0,-0.8488873451,1.6964601483,-2.3892432906
H,0,-1.1625427481,-0.0106120109,-2.076736374
H,0,-2.5253112701,1.2701962634,-0.5316762933
H,0,-1.1752662549,2.2886633862,-0.0455629999
```

```
mPW1K/6-31G*
E(RmPW+HF-PW91) = -457.274114863
```

| Zero-point correction $=$ | 0.171118 (Hartree/Particle) |
| :--- | :---: |
| Thermal correction to Energy $=$ | 0.180063 |
| Thermal correction to Enthalpy $=$ | 0.181007 |
| Thermal correction to Gibbs Free Energy $=$ | 0.137028 |
| Sum of electronic and zero-point Energies $=$ | -457.102997 |
| Sum of electronic and thermal Energies $=$ | -457.094052 |
| Sum of electronic and thermal Enthalpies= | -457.093107 |
| Sum of electronic and thermal Free Energies= | -457.137087 |


|  | E (Thermal) | CV | S |  |
| :---: | :---: | :---: | :---: | :---: |
| KCAL/MOL | CAL/MOL-KELVIN | CAL/MOL-KELVIN |  |  |
| TOTAL | 112.991 | 33.917 | 92.563 |  |

C,0,0.5489174834,0.2911814898,0.6861376883
C,0,0.6381058753,-0.9225992044,-0.1354015612
C, $0,-0.1777089154,-1.0438700641,-1.3879161379$
C, $0,-1.5642287,-0.4714510521,-1.1332075134$
C,0,-1.5152523818,0.9836625482,-0.683102008
C, $0,-0.5391084143,1.24440531,0.448564862$
$\mathrm{N}, 0,1.489420598,-1.8279387011,0.1845179452$
N,0,2.2180480029,-2.6495438448,0.4740052507
O,0,0.7886305509,1.5281266277,0.0235034525
C,0,-1.0327411469,2.1125312858,1.5673976874
H,0,0.9838512922,0.22729325,1.6770603319
$\mathrm{H}, 0,-1.3563049941,3.0788178555,1.179178403$
$\mathrm{H}, 0,-0.2459859408,2.2866543316,2.2980422215$
Н,0,-1.8816173345,1.6497295304,2.0700082189
H,0,-0.2466637464,-2.0880985592,-1.6898728156
H,0,0.300273449,-0.4994132498,-2.2072695162
H,0,-2.1674037644,-0.5516669076,-2.0379098387
H,0,-2.0569993561,-1.0732793389,-0.367034649
H,0,-2.5130085604, 1.2994057587,-0.3774697227
Н,0,-1.2253684595,1.6247602489,-1.5172607285
B3LYP/6-31+G**
$\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-457.432551526$


| Sum of electronic and thermal Enthalpies $=$ | -457.111875 |
| :--- | :---: |
| Sum of electronic and thermal Free Energies $=$ | -457.155888 |


|  |  |  |  |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
| Tota |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |

## Second Transition structure for loss of N2 (7)

```
B3LYP/6-31G*
E(RB+HF-LYP})=-457.35251667
```

| Zero-point correction $=$ | 0.161553 |
| :--- | :---: |
| (Hartree/Particle) |  |
| Thermal correction to Energy $=$ | 0.171308 |
| Thermal correction to Enthalpy $=$ | 0.172252 |
| Thermal correction to Gibbs Free Energy= | 0.126417 |
| Sum of electronic and zero-point Energies= | -457.190963 |
| Sum of electronic and thermal Energies= | -457.181209 |
| Sum of electronic and thermal Enthalpies $=$ | -457.180265 |
| Sum of electronic and thermal Free Energies= | -457.226099 |

E (Thermal) CV S


```
C,0,-1.5407973456,-0.4790271962,-1.2927757242
C,0,-1.5507482106,0.9831529213,-0.8685187652
O,0,0.734995946,1.3506194238,-0.0678517345
N,0,1.9110073384,-1.8303959555,0.3837319456
N,0,2.5689085101,-2.6245283081,0.7606788102
C,0,-1.0799151358,2.3598008269,1.2372902377
H,0,0.682171386,0.3581844784,1.791173949
H,0,-1.3005337257,3.2759554126,0.6885138326
H,0,-0.3082299808,2.5796603968,1.9707338448
H,0,-1.9853311656,2.0507041218,1.7576553806
H,0,-0.1612529979,-2.1052464276,-1.6122749502
H,0,0.5484003157,-0.486154803,-1.8163120113
H,0,-1.9204010904,-0.5840450152,-2.3086314743
H,0,-2.2072962312,-1.0517122864,-0.6454403307
H,0,-2.5649935571,1.2833050324,-0.6055061246
H,0,-1.2387855694,1.6216165734,-1.6971500583
B3LYP/6-31+G**
E(RB+HF-LYP) = -457.383910436
```

Zero-point correction=
Thermal correction to Energy=
Thermal correction to Enthalpy=
Thermal correction to Gibbs Free Energy= 0.125506
Sum of electronic and zero-point Energies $=-457.223323$
Sum of electronic and thermal Energies $=\quad-457.213558$
Sum of electronic and thermal Enthalpies $=\quad-457.212614$
Sum of electronic and thermal Free Energies= -457.258404

```
\begin{tabular}{cccc}
& E (Thermal) & CV & S \\
& KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 106.898 & 36.231 & 96.374
\end{tabular}
C,0,-1.1749648654,0.3997585338,0.8164499408
С,0,-0.0108048873,-0.5551590381,0.6860532068
C,0,0.53937809,-0.7070111301,-0.644301599
C,0,0.6928492244,0.5815030067,-1.3903553822
C,0,-0.7795985787,1.0028650986,-1.6576321958
C,0,-1.542622864,1.3100731202,-0.3580348177
O,0,0.0633046786,0.7215775326,1.4340634103
\(\mathrm{N}, 0,2.3657182324,-1.326680983,-0.3285334312\)
\(\mathrm{N}, 0,3.112828412,-2.1318907657,-0.513884304\)
C,0,-2.3006354421,0.0478062914,1.7666305896
Н,0,-0.0087138388,-1.4153929683,1.3520155615
```

```
H,0,-2.7620659587,0.9656542889,2.1500941529
H,0,-1.925109831,-0.5274684883,2.6163345049
H,0,-3.0752651493,-0.5337608584,1.2554120512
H,0,1.2044378289,0.4361760458,-2.3468192455
H,0,1.1921551561,1.383740625,-0.8298328602
H,0,-0.7826389438,1.8749955372,-2.320241296
H,0,-1.2839762714,0.1909510132,-2.1955825311
H,0,-2.6209745554,1.2472749579,-0.5416710449
H,0,-1.3357164384,2.3361965332,-0.028150884
mPW1K/6-31+G**
E(RmPW+HF-PW91) = -457.239168770
Zero-point correction= 0.166231 (Hartree/Particle)
Thermal correction to Energy= 0.175724
Thermal correction to Enthalpy= 0.176668
Thermal correction to Gibbs Free Energy= 0.131401
Sum of electronic and zero-point Energies= -457.072937
Sum of electronic and thermal Energies= -457.063445
Sum of electronic and thermal Enthalpies= -457.062501
Sum of electronic and thermal Free Energies= -457.107767
\begin{tabular}{cccc}
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} / \mathrm{Mol-Kelvin}\) & Cal/Mol-Kelvin \\
Total & 110.268 & 34.944 & 95.272
\end{tabular}
C,0,-1.1646861227,0.3813452642,0.7993581429
C,0,-0.0353904071,-0.5776733188,0.6604829387
C, \(0,0.5109701775,-0.7300565042,-0.6748915072\)
C,0,0.6807241621,0.5712919747,-1.3775379907
C,0,-0.7734512846,0.9892931857,-1.6417473441
C,0,-1.5227503954,1.2972625987,-0.3527772545
O,0,0.0775404134,0.6591326302,1.3883948319
\(\mathrm{N}, 0,2.323162191,-1.286472943,-0.3098725569\)
N,0,3.1250751329,-2.0231196018,-0.4515949631
C,0,-2.2719585376,0.0635072636,1.7608877095
Н, \(,--0.0493687356,-1.4452378504,1.3073655801\)
H,0,-2.7028932438,0.9870852413,2.1463521784
Н,0,-1.8960159877,-0.5138803519,2.600656351
H,0,-3.062002361,-0.4994425527,1.2677401477
H,0,1.1986685548,0.4495292483,-2.3264582793
H,0,1.1717152527,1.3509884427,-0.791351023
H,0,-0.7811984213,1.8538244478,-2.3035532311
H,0,-1.2776284531,0.1801566707,-2.1720353229
```

H,0,-2.5963244369,1.248910003,-0.530120886<br>Н,0,-1.3036822964,2.3123306901,-0.0181296979

## Second Intermediate -epoxy carbene (8)

## B3LYP/6-31G* <br> $\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-347.833879396$

| Zero-point correction $=$ | 0.152967 (Hartree/Particle) |
| :--- | :---: |
| Thermal correction to Energy $=$ | 0.160567 |
| Thermal correction to Enthalpy $=$ | 0.161512 |
| Thermal correction to Gibbs Free Energy $=$ | 0.121677 |
| Sum of electronic and zero-point Energies= | -347.680913 |
| Sum of electronic and thermal Energies= | -347.673312 |
| Sum of electronic and thermal Enthalpies $=$ | -347.672368 |
| Sum of electronic and thermal Free Energies= | -347.712203 |


| E (Thermal) <br> KCAL/MOL |  | CV |
| :--- | :---: | :---: |
| CAL/MOL-KELVIN |  |  | CAL/MOL-KELVIN

mPW1K/6-31G*
$\mathrm{E}(\mathrm{RmPW}+\mathrm{HF}-\mathrm{PW} 91)=-347.743673370$


|  |  |  |  |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
| Tota |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |

$\mathrm{C}, 0,1.5106086192,0.3710686097,-1.2535148484$
$\mathrm{C}, 0,0.6350766623,1.5106960995,-0.7061875584$
$\mathrm{O}, 0,0.3016296886,-0.1509568769,1.3863832324$
$\mathrm{C}, 0,-2.0343528548,-0.7645602225,0.9278738598$
$\mathrm{H}, 0,0.2950015318,-2.1547663205,0.7588408065$
$\mathrm{H}, 0,-2.5950071336,0.0057340074,1.4562031543$
$\mathrm{H}, 0,-1.8794107524,-1.6001271128,1.6032745355$
$\mathrm{H}, 0,-2.6293645277,-1.0971222961,0.0803354318$
$\mathrm{H}, 0,2.5414112132,0.4554595705,-0.8796618022$
$\mathrm{H}, 0,1.6054195678,0.4329957005,-2.3376911946$
$\mathrm{H}, 0,0.6130035293,2.3350465653,-1.4169506552$
$H, 0,1.0386344373,1.8917305999,0.227484754$
$H, 0,-1.2734221368,0.723235046,-1.3827374227$
$H, 0,-1.3790201612,1.7603953606,0.0278229158$

CCSD(T)/6-31+G**/B3LYP/6-31+G**
$\operatorname{CCSD}(\mathrm{T})=-0.34691039238 \mathrm{D}+03$

## Third Transition structure (9)

```
B3LYP/6-31G*
E(RB+HF-LYP})=-347.82789391
```

| Zero-point correction $=$ | 0.152236 (Hartree/Particle) |
| :--- | :---: |
| Thermal correction to Energy $=$ | 0.159653 |
| Thermal correction to Enthalpy $=$ | 0.160598 |
| Thermal correction to Gibbs Free Energy= | 0.120928 |
| Sum of electronic and zero-point Energies= | -347.675658 |
| Sum of electronic and thermal Energies= | -347.668240 |
| Sum of electronic and thermal Enthalpies $=$ | -347.667296 |
| Sum of electronic and thermal Free Energies= | -347.706966 |


|  | E (Thermal) | CV | S |  |
| :---: | :---: | :---: | :---: | :---: |
| TOTAL | KCAL/MOL | CAL/MOL-KELVIN | CAL/MOL-KELVIN |  |
|  | 100.184 | 28.733 | 83.492 |  |

C,0,-0.8072350057,1.0152277282,-0.376955898
C,0,-0.4261396097,0.0812581001,0.796876441
C,0,0.6435280724,-1.107836797,0.4802526272
С, $0,1.0251842768,-1.1467300497,-0.7976447172$
C,0,1.2508295396,0.0809518589,-1.586078244
С,0,-0.1916908373,0.6581455609,-1.7366962303
O,0,0.6925202007,0.3939885284,1.449542903

```
C,0,-1.6080131524,-0.4073849153,1.6293205899
H,0,0.6447608647,-1.8721363444,1.2424787605
H,0,-2.1209126346,0.4639135046,2.0563531674
H,0,-1.2629980635,-1.0354299608,2.4545844767
H,0,-2.3287875912,-0.9628439104,1.0201652519
H,0,1.6565753628,-0.1182578657,-2.5838102003
H,0,1.88555555053,0.8178448834,-1.074047229
H,0,-0.1563039596,1.5373660744,-2.3901893323
H,0,-0.8121686961,-0.093007482,-2.2394728317
H,0,-1.8981426301,1.0596483497,-0.4734098965
H,0,-0.4665194649,2.0092056069,-0.0634428028
mPW1K/6-31G*
E(RmPW+HF-PW91) = -347.733312400
\begin{tabular}{lc}
Zero-point correction \(=\) & 0.156564 \\
(Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.163912 \\
Thermal correction to Enthalpy \(=\) & 0.164856 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.125260 \\
Sum of electronic and zero-point Energies= & -347.576749 \\
Sum of electronic and thermal Energies= & -347.569401 \\
Sum of electronic and thermal Enthalpies \(=\) & -347.568456 \\
Sum of electronic and thermal Free Energies= & -347.608053
\end{tabular}
\begin{tabular}{cccc}
& E (Thermal) & CV & \multicolumn{2}{c}{ S } & \\
KCAL/MOL & CAL/MOL-KELVIN & CAL/MOL-KELVIN \\
TOTAL & 102.856 & 28.181 & 83.337
\end{tabular}
C,0,-0.747084684,1.040448633,-0.3604685344
C,0,-0.4096481445,0.1082290653,0.8078327878
C,0,0.675708859,-1.1152621471,0.4931893488
С, \(0,1.0403371493,-1.1006681367,-0.7583665634\)
C, \(0,1.2151852435,0.0710743699,-1.6149206994\)
С,0,-0.2191586669,0.6231003407,-1.7209456723
O,0,0.6449536218,0.4143530121,1.505581477
С,0,-1.6096320575,-0.4462786629,1.5405280506
H,0,0.6839886803,-1.8416864463,1.2802646501
H,0,-2.1651392517,0.3902635635,1.9671382927
H,0,-1.2975222832,-1.0936048949,2.3550257627
H,0,-2.2708998227,-0.9904516058,0.8691833747
H,0,1.5794389911,-0.1805759299,-2.6088220646
H,0,1.8685250673,0.8250511493,-1.169608815
H,0,-0.2282203116,1.469445001,-2.4076739076
H,0,-0.8578529762,-0.1476982409,-2.1532092405
```

H,0,-1.8280796065,1.167668026,-0.4163907432<br>H,0,-0.3181136545,2.0029045086,-0.0816514319

## B3LYP/6-31+G** <br> $\mathrm{E}($ RB+HF-LYP $)=-347.862165110$

| Zero-point correction $=$ | 0.150981 (Hartree/Particle) |
| :--- | :---: |
| Thermal correction to Energy $=$ | 0.158352 |
| Thermal correction to Enthalpy $=$ | 0.159296 |
| Thermal correction to Gibbs Free Energy= | 0.119904 |
| Sum of electronic and zero-point Energies= | -347.711184 |
| Sum of electronic and thermal Energies= | -347.703813 |
| Sum of electronic and thermal Enthalpies $=$ | -347.702869 |
| Sum of electronic and thermal Free Energies= | -347.742261 |


|  | E (Thermal) | CV | S |
| :---: | :---: | :---: | :---: |
|  | KCal/Mol | Cal/Mol-Kelvin | Cal/Mol-Kelvin |
| Total | 99.367 | 28.937 | 82.907 |
| C,0,0.683018594,1.5006816727,-0.7505567499 |  |  |  |
| C, $0,-0.7361670391,1.0057313062,-0.4575073376$ |  |  |  |
| C,0,-0.7108636063,-0.1655430868,0.525899055 |  |  |  |
| C,0,0.5028644806,-1.2111856825,0.3623335838 |  |  |  |
| C,0,1.1474516936,-1.0022946012,-0.8072177224 |  |  |  |
| C,0,1.5272934679,0.3285660724,-1.3261347309 |  |  |  |
| O,0,0.17109991,-0.0399612176,1.5430335959 |  |  |  |
| C,0,-2.0534906774,-0.8134162687,0.8192562435 |  |  |  |
| H,0,0.3577837334,-2.1408524666,0.8926808327 |  |  |  |
| H,0,-2.7155494749,-0.0632599629,1.268160092 |  |  |  |
| H,0,-1.9396682303,-1.6360261545,1.5282792015 |  |  |  |
| H,0,-2.523719787,-1.1829918699,-0.0968233441 |  |  |  |
| H,0,2.5901042062,0.4590508626,-1.0628802926 |  |  |  |
| H,0,1.5016866974,0.3217250663,-2.4231939275 |  |  |  |
| H,0,0.6634833949,2.3317291962,-1.4639380148 |  |  |  |
| H,0,1.1258549335,1.8636186456,0.1803104246 |  |  |  |
| H,0,-1.2591283543,0.7118559426,-1.3765156834 |  |  |  |
| H,0,-1.330287879, 1.7996040085,0.0132178957 |  |  |  |
| mPW1K/6-31+G** |  |  |  |
| $\mathrm{E}(\mathrm{RmPW}+$ HF-PW91) $=-347.757005022$ |  |  |  |
| Zero-p | orrection= | 0.155 | 60 (Hartree/Particle) |
| Therm | rection to En |  | 162838 |
| Therm | rection to En | lpy $=$ | 163782 |


| Thermal correction to Gibbs Free Energy $=$ | 0.124583 |
| :--- | :--- |
| Sum of electronic and zero-point Energies $=$ | -347.601445 |
| Sum of electronic and thermal Energies $=$ | -347.594167 |
| Sum of electronic and thermal Enthalpies $=$ | -347.593223 |
| Sum of electronic and thermal Free Energies= | -347.632422 |


|  | E (Thermal | CV | S |
| :---: | :---: | :---: | :--- |
|  | $\mathrm{KCal} / \mathrm{Mol}$ | $\mathrm{Cal} /$ Mol-Kelvin | Cal/Mol-Kelvin |
| Total | 102.183 | 28.372 | 82.503 |

$$
\begin{aligned}
& \text { C,0,0.7003379186,1.475850017,-0.7375368262 } \\
& \text { C, }, 0,-0.7084470866,1.0002747178,-0.4465264811 \\
& \text { C, } 0,-0.692379035,-0.1399128815,0.5538899783 \\
& \text { C,0,0.517727664,-1.2372483231,0.3510074407 } \\
& \text { C,0,1.1269683185,-0.9783984347,--0.7797931996 } \\
& \text { C,0,1.4933338402,0.3168443429,-1.3560208392 } \\
& \mathrm{O}, 0,0.1122871295,0.0051754762,1.5762347137 \\
& \mathrm{C}, 0,-2.0189906268,-0.8246622358,0.7696562435 \\
& \mathrm{H}, 0,0.378871732,-2.1195384135,0.9426637224 \\
& \mathrm{H}, 0,-2.7240906564,-0.0905842875,1.1593848519 \\
& \mathrm{H}, 0,-1.9220128361,-1.6211341178,1.5005374101 \\
& \mathrm{H}, 0,-2.416060692,-1.2243488372,-0.1597631731 \\
& \mathrm{H}, 0,2.5652037503,0.4415285745,-1.177016804 \\
& \mathrm{H}, 0,1.3788130646,0.2881709729,-2.4401523873 \\
& \mathrm{H}, 0,0.6929423031,2.3280794991,-1.415271468 \\
& \mathrm{H}, 0,1.1602508185,1.7878229163,0.1968259045 \\
& \mathrm{H}, 0,-1.2259388056,0.6966754777,-1.3576158131 \\
& \mathrm{H}, 0,-1.297581672,1.7954411903,0.012472148
\end{aligned}
$$

## CCSD(T)/6-31+G**/B3LYP/6-31+G**

$\operatorname{CCSD}(\mathrm{T})=-0.34688712875 \mathrm{D}+03$

## 6-Heptyn-2-one (10)

```
B3LYP/6-31G*
E(RB+HF-LYP) = -347.916334560
```

| Zero-point correction $=$ | 0.151611 (Hartree/Particle) |
| :--- | :---: |
| Thermal correction to Energy $=$ | 0.161022 |
| Thermal correction to Enthalpy $=$ | 0.161967 |
| Thermal correction to Gibbs Free Energy= | 0.116855 |
| Sum of electronic and zero-point Energies= | -347.764723 |
| Sum of electronic and thermal Energies= | -347.755312 |


| Sum of electronic and thermal Enthalpies $=$ | -347.754368 |
| :--- | :---: |
| Sum of electronic and thermal Free Energies $=$ | -347.799480 |


|  | E (Thermal) | CV | S |  |
| :---: | :---: | :---: | :---: | :---: |
| TOTAL | KCAL/MOL | CAL/MOL-KELVIN | CAL/MOL-KELVIN |  |
|  | 101.043 | 33.251 | 94.946 |  |

$\mathrm{C}, 0,-0.536652931,1.3800804218,-0.2776259155$
$\mathrm{C}, 0,-0.6356452665,0.6625168666,1.0697884251$
$\mathrm{C}, 0,1.5485822828,-2.081463196,0.0559044593$
$\mathrm{C}, 0,1.2973656855,-1.2054118012,-0.7370236177$
$\mathrm{C}, 0,0.9922422816,-0.1566589389,-1.7119129277$
$\mathrm{C}, 0,-0.3922301466,0.5086495891,-1.5389822648$
$\mathrm{O}, 0,0.0470105509,1.0130759593,2.0129793183$
$\mathrm{C}, 0,-1.6643990566,-0.4493510097,1.2029688026$
$\mathrm{H}, 0,1.7804620606,-2.8394170835,0.7692989548$
$\mathrm{H}, 0,-2.6176619598,-0.1771298536,0.7339078736$
$\mathrm{H}, 0,-1.8194513214,-0.6714098411,2.2609337973$
$\mathrm{H}, 0,-1.2956471471,-1.3523600863,0.70295906$
$\mathrm{H}, 0,1.0509792162,-0.5840610059,-2.7222060417$
$\mathrm{H}, 0,1.7698762406,0.6185429852,-1.6637441231$
$H, 0,-0.5559241431,1.1485116952,-2.4145804795$
$H, 0,-1.1735611947,-0.2599737901,-1.5677122803$
$H, 0,-1.4615932633,1.9686444479,-0.3778787251$
$\mathrm{H}, 0,0.2908600101,2.0938732671,-0.2035143511$
mPW1K/6-31G*
$\mathrm{E}($ RmPW + HF-PW91 $)=-347.820550704$

| Zero-point correction $=$ | 0.156236 |
| :--- | :---: |
| (Hartree/Particle) |  |
| Thermal correction to Energy $=$ | 0.165389 |
| Thermal correction to Enthalpy $=$ | 0.166334 |
| Thermal correction to Gibbs Free Energy $=$ | 0.121728 |
| Sum of electronic and zero-point Energies= | -347.664315 |
| Sum of electronic and thermal Energies= | -347.655161 |
| Sum of electronic and thermal Enthalpies $=$ | -347.654217 |
| Sum of electronic and thermal Free Energies= | -347.698823 |


|  | E (Thermal) | CV | S |  |
| :---: | :---: | :---: | :---: | :---: |
|  | KCAL/MOL | CAL/MOL-KELVIN | CAL/MOL-KELVIN |  |
| TOTAL | 103.783 | 32.186 | 93.881 |  |

C,0,-0.4985429001,1.3646511003,-0.2627417309
C,0,-0.6309073934,0.6470256309,1.0623240804

```
C,0,1.5605576744,-2.0309633404,0.0722676244
C,0,1.2892685928,-1.184089883,-0.7345949947
C,0,0.963032087,-0.1630137703,-1.7203810823
С,0,-0.3969954906,0.5053291949,-1.5177732678
O,0,0.01558718,0.9946714409,2.0185894405
C,0,-1.6503727293,-0.4541364355,1.1625113143
H,0,1.8084903412,-2.7647621074,0.7993812958
H,0,-2.5810216875,-0.1827677506,0.664159611
H,0,-1.8406156636,-0.6756708397,2.2081154445
H,0,-1.2666026785,-1.3508505952,0.67708541
H,0,0.9918045219,-0.6165377015,-2.7123370189
H,0,1.7448262994,0.5990190379,-1.7082891883
H,0,-0.5730130394,1.1457404536,-2.3823474663
H,0,-1.1827092556,-0.2503005877,-1.5324239635
H,0,-1.3933360488,1.988758776,-0.3473594432
H,0,0.3512407265,2.0411848061,-0.184371866
B3LYP/6-31+G**
E(RB+HF-LYP) = -347.947256200
```

Zero-point correction=
Thermal correction to Energy=
Thermal correction to Enthalpy=
Thermal correction to Gibbs Free Energy= 0.115801
Sum of electronic and zero-point Energies= -347.796540
Sum of electronic and thermal Energies $=\quad-347.787096$
Sum of electronic and thermal Enthalpies $=\quad-347.786152$
Sum of electronic and thermal Free Energies= $\quad-347.831456$

```
\begin{tabular}{|c|c|c|c|}
\hline & E (Thermal) & CV & S \\
\hline & KCal/Mol & Cal/Mol-Kelvin & Cal/Mol-Kelvin \\
\hline Total & 100.502 & 33.336 & 95.349 \\
\hline \multicolumn{4}{|l|}{C, \(0,-0.5323558473,1.3775166048,-0.2745225754\)} \\
\hline \multicolumn{4}{|l|}{C, \(0,-0.6518602347,0.6737845961,1.075996724\)} \\
\hline \multicolumn{4}{|l|}{C,0,1.5806163842,-2.1052979319,0.02691321} \\
\hline \multicolumn{4}{|l|}{C, \(0,1.3155670072,-1.2191133153,-0.7537738803\)} \\
\hline \multicolumn{4}{|l|}{C, \(0,0.9983359871,-0.1593615533,-1.7130383322\)} \\
\hline \multicolumn{4}{|l|}{C,0,-0.3894052854,0.4978644701,-1.5312512455} \\
\hline \multicolumn{4}{|l|}{O,0,0.016266474,1.0390708879,2.0283972694} \\
\hline \multicolumn{4}{|l|}{C,0,-1.677049773,-0.4377658318,1.2111430192} \\
\hline \multicolumn{4}{|l|}{H,0,1.8233737473,-2.86959918,0.7296429385} \\
\hline \multicolumn{4}{|l|}{H,0,-2.6210425514,-0.1740129688,0.7206514111} \\
\hline \multicolumn{4}{|l|}{H,0,-1.8496062822,-0.6449368433,2.268637643} \\
\hline
\end{tabular}
```

```
H,0,-1.297918132,-1.3457297957,0.7294341487
H,0,1.057420213,-0.5780994863,-2.7258934617
H,0,1.7738458072,0.6162750453,-1.6559918194
H,0,-0.5602195096,1.1341505077,-2.4073460526
H,0,-1.1667847704,-0.2741182275,-1.5542558429
H,0,-1.4518872719,1.9724155097,-0.3805451496
H,0,0.2995975293,2.085326104,-0.2003134882
```

mPW1K/6-31+G**
$\mathrm{E}($ RmPW + HF-PW91 $)=-347.838719034$

| Zero-point correction $=$ | 0.155572 (Hartree/Particle) |
| :--- | :---: |
| Thermal correction to Energy $=$ | 0.164739 |
| Thermal correction to Enthalpy $=$ | 0.165683 |
| Thermal correction to Gibbs Free Energy $=$ | 0.121050 |
| Sum of electronic and zero-point Energies= | -347.683147 |
| Sum of electronic and thermal Energies= | -347.673980 |
| Sum of electronic and thermal Enthalpies $=$ | -347.673036 |
| Sum of electronic and thermal Free Energies= | -347.717669 |


| E (Thermal) | CV | S |
| :--- | :---: | :--- |
| KCal/Mol | Cal/Mol-Kelvin | Cal/Mol-Kelvin |
| Total | 103.375 | 32.299 |

## Alternative fragmentation transition structure (11)



## Ring-flipped alternative structure

$\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-626.068741464$

| Zero-point correction= | 0.185711 (Hartree/Particle) |
| :--- | :---: |
| Thermal correction to Energy $=$ | 0.198487 |
| Thermal correction to Enthalpy $=$ | 0.199431 |
| Thermal correction to Gibbs Free Energy= | 0.146378 |
| Sum of electronic and zero-point Energies $=$ | -625.883031 |
| Sum of electronic and thermal Energies= | -625.870254 |
| Sum of electronic and thermal Enthalpies $=$ | -625.869310 |
| Sum of electronic and thermal Free Energies $=$ | -625.922363 |


|  | E (Thermal) | CV | S |
| :---: | :---: | :---: | :--- |
|  | $\mathrm{KCal} / \mathrm{Mol}$ | $\mathrm{Cal} /$ Mol-Kelvin | Cal/Mol-Kelvin |
| Total | 124.553 | 47.913 | 111.660 |

C,0,2.1991348097,-0.102909445,-1.288590731
C,0,1.597095015,-1.511329501,-1.3845888128
C,0,0.0788883891,-1.5111391101,-1.2713994421
С,0,-0.5693744949,-0.432081524,-0.5011407114
C,0,0.2581092647,0.6122503316,0.1615646082
C, $0,1.7548219633,0.6246819006,-0.0042124402$
O, $0,-0.5665484482,-0.4101816344,-1.9552194797$
C,0,-0.6095064852,-2.8485525344,-1.4228993775
O,0,-0.3222223316,1.7275018003,0.5163818546
C, $0,-1.3247937765,1.9028062745,1.5745733496$
$\mathrm{N}, 0,-2.2556236408,2.7084945879,1.5639776217$
H,0,-2.444940743,3.2625110089,0.7271859608
$\mathrm{N}, 0,-0.6702740532,0.2294784358,2.8024243854$
$\mathrm{N}, 0,0.0358110483,-0.3685783339,2.1466678742$
H,0,-1.5565913599,-0.5904102317,-0.0673252494
H,0,-0.3797279877,-3.2837343823,-2.4017814503
$\mathrm{H}, 0,-1.6941247707,-2.7403556577,-1.3414531353$
H,0,-0.2676392898,-3.5463513255,-0.6507532086
H,0,2.2099429246,0.1274238053,0.8637025355
H,0,2.1011885717,1.6625323364,0.0030151863
H,0,3.2921068444,-0.167835214,-1.3003284002
H,0,1.8974983369,0.4788298262,-2.1650124747
H,0,1.9989893518,-2.1540111466,-0.5893289002
H,0,1.8778227701,-1.9752815272,-2.3385476884

## Dichlorocarbene

| B3LYP/6-31G* |  |
| :--- | :---: |
| E(RB+HF-LYP) $=-958.383063867$ |  |
|  | 0.003971 (Hartree/Particle) |
| Zero-point correction= | 0.007411 |
| Thermal correction to Energy= | 0.008356 |
| Thermal correction to Enthalpy $=$ | -0.021810 |
| Thermal correction to Gibbs Free Energy= | -958.379092 |
| Sum of electronic and zero-point Energies= | -958.375652 |
| Sum of electronic and thermal Energies= | -958 |
| Sum of electronic and thermal Enthalpies= | -958.374708 |
| Sum of electronic and thermal Free Energies= | -958.404873 |


|  | E (Thermal) | CV | S |
| :---: | :---: | :---: | :---: |
|  | KCAL/MOL | CAL/MOL-KELVIN | CAL/MOL-KELVIN |
| TOTAL | 4.651 | 9.211 | 63.488 |

$\mathrm{C}, 0,-0.7033044177,0 .,-0.4973114503$
$\mathrm{Cl}, 0,-0.7014480463,0 ., 1.255279529$
$\mathrm{Cl}, 0,0.9496731349,0 .,-1.0797578407$

MPW1K/6-31G*
$\mathrm{E}($ RmPW + HF-PW91 $)=-958.433234127$


C,0,-0.6808091343,0.,-0.481404679
$\mathrm{Cl}, 0,-0.6879175619,0 ., 1.2277238552$
$\mathrm{Cl}, 0,0.9282031387,0 .,-1.0578163215$

## MP2/6-31G*

$\mathrm{E}($ RHF $)=-956.712219043$
Zero-point correction= . 004367 (Hartree/Particle)

| Thermal correction to Energy $=$ | .007724 |
| :--- | :---: |
| Thermal correction to Enthalpy $=$ | .008668 |
| Thermal correction to Gibbs Free Energy= | -.021307 |
| Sum of electronic and zero-point Energies $=$ | -957.081945 |
| Sum of electronic and thermal Energies= | -957.078588 |
| Sum of electronic and thermal Enthalpies $=$ | -957.077644 |
| Sum of electronic and thermal Free Energies= | -957.107619 |


|  | E (Thermal) | CV | S |
| :---: | :---: | :---: | :--- |
|  | $\mathrm{KCal} / \mathrm{Mol}$ | $\mathrm{Cal} /$ Mol-Kelvin | Cal/Mol-Kelvin |
| Total | 4.847 | 8.893 | 63.088 |

C,0,-0.6845298912,0.,-0.484035651
$\mathrm{Cl}, 0,-0.6912612265,0 ., 1.2338453796$
$\mathrm{Cl}, 0,0.9328600116,0 .,-1.0630092675$
B3LYP/6-311++G(2d,p)
$\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-958.460612255$

| Zero-point correction= | 0.003986 (Hartree/Particle) |
| :--- | :---: |
| Thermal correction to Energy $=$ | 0.007421 |
| Thermal correction to Enthalpy $=$ | 0.008365 |
| Thermal correction to Gibbs Free Energy $=$ | -0.021762 |
| Sum of electronic and zero-point Energies= | -958.456626 |
| Sum of electronic and thermal Energies= | -958.453192 |
| Sum of electronic and thermal Enthalpies $=$ | -958.452247 |
| Sum of electronic and thermal Free Energies $=$ | -958.482375 |


|  | E (Thermal) | CV | S |
| :---: | :---: | :---: | :--- |
|  | $\mathrm{KCal} / \mathrm{Mol}$ | $\mathrm{Cal} /$ Mol-Kelvin | Cal/Mol-Kelvin |
| Total | 4.657 | 9.198 | 63.408 |

C,0,-0.6946420667,0.,-0.4911860378
$\mathrm{Cl}, 0,-0.6962270869,0 ., 1.2446536675$
$\mathrm{Cl}, 0,0.9413948751,0 .,-1.0712938895$

## Styreneoxide (18)

B3LYP/6-31G*
$\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-384.846014992$
Zero-point correction $=\quad 0.139241$ (Hartree/Particle)
Thermal correction to Energy= 0.146439

| Thermal correction to Enthalpy $=$ | 0.147383 |
| :--- | :---: |
| Thermal correction to Gibbs Free Energy $=$ | 0.107103 |
| Sum of electronic and zero-point Energies= $=$ | -384.706774 |
| Sum of electronic and thermal Energies $=$ | -384.699576 |
| Sum of electronic and thermal Enthalpies $=$ | -384.698632 |
| Sum of electronic and thermal Free Energies= | -384.738912 |


|  | E (Thermal) | CV | S |
| :---: | :---: | :---: | :--- |
|  | KCal/Mol | Cal/Mol-Kelvin | Cal/Mol-Kelvin |
| Total | 91.892 | 27.825 | 84.777 |

C, $0,-0.2143138858,-0.1342144713,0.2011319728$
С, $0,-0.3266268774,-0.0158454236,1.6844947156$
O,0,0.8876253326,-0.0410869151,2.4484037785
C,0,0.1410399074,1.1777410473,2.4198412558
Н,0,-1.1435836006,-0.5845640145,2.1334932993
H,0,0.5987850461,1.9942911669,1.8611317733
H,0,-0.3350984105,1.4584573024,3.3602167249
C, $0,-1.3503744394,-0.4312972696,-0.5612811538$
C,0,-1.2676049254,-0.5151774867,-1.9514196101
C,0,-0.0443186196,-0.3120315245,-2.5927057624
С, $0,1.0948667092,-0.027959391,-1.835672813$
C, $0,1.0120105325,0.0601351592,-0.4466198845$
H,0,-2.3039029511,-0.5971950704,-0.0640937953
Н,0,-2.1569381252,-0.7451927237,-2.532269129
H,0,0.0224542038,-0.3820311346,-3.6750950747
H,0,2.0525208228,0.1189153085,-2.3283921821
H,0,1.8966899444,0.257910647,0.151165834

## mPW1K/6-31G*

$\mathrm{E}($ RmPW + HF-PW91 $)=-384.819700025$

| Zero-point correction= | 0.142903 (Hartree/Particle) |
| :--- | :---: |
| Thermal correction to Energy $=$ | 0.149926 |
| Thermal correction to Enthalpy= | 0.150871 |
| Thermal correction to Gibbs Free Energy= | 0.110897 |
| Sum of electronic and zero-point Energies $=$ | -384.676797 |
| Sum of electronic and thermal Energies= | -384.669774 |
| Sum of electronic and thermal Enthalpies= | -384.668829 |
| Sum of electronic and thermal Free Energies= $=$ | -384.708804 |


|  | E (Thermal) | CV | S |  |
| :---: | :---: | :---: | :---: | :---: |
|  | KCAL/MOL | CAL/MOL-KELVIN | CAL/MOL-KELVIN |  |
| TOTAL | 94.080 | 26.868 | 84.133 |  |

```
C,0,-0.2031820304,-0.1497613357,0.2045077179
C,0,-0.2986826172,-0.0452731874,1.6787076841
O,0,0.9048513562,0.0269344695,2.4003496603
C,0,0.090955191,1.1730254547,2.3853083527
H,0,-1.056227302,-0.6674948682,2.1390508319
H,0,0.471824211,2.0049516276,1.8083808203
H,0,-0.3786742952,1.4223977561,3.3272949595
C,0,-1.3394995768,-0.4099013383,-0.5467011444
C,0,-1.2645408202,-0.4846530391,-1.9249454471
C,0,-0.0500734849,-0.3085726193,-2.563866335
C,0,1.0879305542,-0.0611894985,-1.8166795506
C,0,1.0137333803,0.0166607652,-0.4385785321
H,0,-2.2879993715,-0.5555886478,-0.0502934815
H,0,-2.1546180917,-0.6859258774,-2.5007160782
H,0,0.0100408431,-0.3710357733,-3.6392145088
H,0,2.0397839426,0.0647716658,-2.3092003277
H,0,1.8972156382,0.1904371512,0.15538403
MP2/6-31G*
E(RHF) = -382.417874747
Zero-point correction= . }139896\mathrm{ (Hartree/Particle)
Thermal correction to Energy= . }14725
Thermal correction to Enthalpy= . }14819
Thermal correction to Gibbs Free Energy= . }10768
Sum of electronic and zero-point Energies= -383.473745
Sum of electronic and thermal Energies=
Sum of electronic and thermal Enthalpies= -383.465444
Sum of electronic and thermal Free Energies= -383.505955
\begin{tabular}{cccl}
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} / \mathrm{Mol-Kelvin}\) & Cal/Mol-Kelvin \\
Total & 92.403 & 28.435 & 85.264
\end{tabular}
C,0,-0.2144320398,-0.1537943058,0.207950705
С, \(0,-0.3214986325,-0.0350987263,1.6853579887\)
O,0,0.9159323993,-0.0133169291,2.4283587755
C,0,0.1157107497,1.1821270023,2.3885763292
H,0,-1.1017657433,-0.6347966151,2.1577836668
H,0,0.5326036003,1.997650176,1.8004920121
H,0,-0.3477154569, 1.4629856647,3.3327028554
C,0,-1.3574149976,-0.4247626044,-0.5535223311
C,0,-1.2730909581,-0.4981434963,-1.9443101369
```

C, $0,-0.04626388,-0.3005020471,-2.582495946$
С, $0,1.0965534273,-0.0379162111,-1.8228842509$
C, $0,1.0154141441,0.0376392338,-0.4322125859$
H,0,-2.3132522147,-0.5858223745,-0.0569205136
H,0,-2.1644311532,-0.7105067099,-2.5299586948
H,0,0.0203407761,-0.3613555398,-3.6660208264
H,0,2.0557695653,0.1040725997,-2.3153758091
$\mathrm{H}, 0,1.9011245541,0.2170151605,0.1716684721$

## B3LYP/6-311++G(2d,p)

$\mathrm{E}($ RB+HF-LYP $)=-384.960406846$
Zero-point correction= 0.138184 (Hartree/Particle)
Thermal correction to Energy $=\quad 0.145434$
Thermal correction to Enthalpy $=\quad 0.146378$
Thermal correction to Gibbs Free Energy= 0.105915
Sum of electronic and zero-point Energies $=\quad-384.822223$
Sum of electronic and thermal Energies $=\quad-384.814973$
Sum of electronic and thermal Enthalpies $=\quad-384.814028$
Sum of electronic and thermal Free Energies= $\quad-384.854492$

|  | E (Thermal | CV | S |
| :---: | :---: | :---: | :--- |
|  | $\mathrm{KCal} / \mathrm{Mol}$ | $\mathrm{Cal} / \mathrm{Mol-Kelvin}$ | Cal/Mol-Kelvin |
| Total | 91.261 | 28.022 | 85.163 |

C,0,-0.2099004981,-0.1262570501,0.1977666417
С,0,-0.3282138254,-0.0096104002,1.6772819265
O, $, 0.8778788683,-0.0523672112,2.4526695369$
C,0,0.1408403919,1.1735586344,2.4198576734
H,0,-1.1498288085,-0.5707071339,2.1174646474
H,0,0.6143480777,1.9817318144,1.8696013771
$\mathrm{H}, 0,-0.339962339,1.4498798117,3.3542930513$
C, $0,-1.3419945245,-0.428323618,-0.5604734451$
C, $0,-1.2620676982,-0.516891344,-1.9459236487$
C,0,-0.0446154239,-0.3149215333,-2.5878314407
С,0,1.0908456899,-0.0269635631,-1.8357400872
C, $0,1.0103960503,0.0669124914,-0.4513189084$
H, $0,-2.2917596066,-0.5965439665,-0.0636640122$
H,0,-2.1490277603,-0.7506384325,-2.5229263445
H, $0,0.0209743011,-0.3896239614,-3.6667346783$
H,0,2.0446726046,0.1186588564,-2.3292077843
$\mathrm{H}, 0,1.8958116119,0.2711589982,0.1381051794$

## Transition state 20

## B3LYP/6-31G*

| $\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-1343.22740266$ |  |
| :---: | :---: |
| Zero-point correction= 0.144 | 0.144582 (Hartree/Particle) |
| Thermal correction to Energy= 0. | 0.155851 |
| Thermal correction to Enthalpy= 0 | 0.156795 |
| Thermal correction to Gibbs Free Energy= | $\mathrm{gy}=0.104803$ |
| Sum of electronic and zero-point Energies= | gies $=\quad-1343.082821$ |
| Sum of electronic and thermal Energies= | $s=\quad-1343.071551$ |
| Sum of electronic and thermal Enthalpies= | ies $=\quad-1343.070607$ |
| Sum of electronic and thermal Free Energies= | ergies $=\quad-1343.122600$ |


|  | E (Thermal) | CV | S |  |
| :---: | :---: | :---: | :---: | :---: |
|  | KCAL/MOL | CAL/MOL-KELVIN | CAL/MOL-KELVIN |  |
| TOTAL | 97.798 | 41.196 | 109.427 |  |

C,0,0.8258701492,1.1221197311,-2.1236965298
C,0,-0.2746169014,0.7387050151,-1.3371007161
C,0,-1.3925505609,0.1613526883,-1.9637564801
C,0,-1.4164904711,-0.017611719,-3.344422058
С,0,-0.3190736288,0.3686644616,-4.1162621732
С, $0,0.8018320138,0.935365631,-3.5021401491$
C,0,-0.3131599148,0.9204456869,0.1143588413
C,0,0.6835277903,1.6187229059,0.9374676459
О,0,0.8819972273,0.187600262,0.9477285889
H,0,-1.2423742646,0.6817826929,0.6217504511
H,0,1.5152064511,2.1452514883,0.4753179304
H,0,0.3591795312,2.0196550807,1.8949611338
H,0,-2.2428703399,-0.1462170782,-1.3606761972
H,0,-2.2878747308,-0.4620921176,-3.8162480665
H,0,-0.3343268521,0.226767958,-5.1931599932
H,0,1.6587829663,1.2313197042,-4.1002502443
H,0,1.7074013534,1.5539986338,-1.6597500358
C, $0,0.8714847961,-0.618999148,2.3498533098$
Cl, $0,0.5394326777,-2.2964393012,1.7122673846$
$\mathrm{Cl}, 0,-0.7153174758,-0.0637877561,3.1977570957$

## MPW1K/6-31G*

$\mathrm{E}($ RmPW + HF-PW91 $)=-1343.24912618$
Zero-point correction= 0.149190 (Hartree/Particle)

| Thermal correction to Energy $=$ | 0.159885 |
| :--- | :---: |
| Thermal correction to Enthalpy $=$ | 0.160829 |
| Thermal correction to Gibbs Free Energy $=$ | 0.110443 |
| Sum of electronic and zero-point Energies $=$ | -1343.099936 |
| Sum of electronic and thermal Energies $=$ | -1343.089241 |
| Sum of electronic and thermal Enthalpies $=$ | -1343.088297 |
| Sum of electronic and thermal Free Energies $=$ | -1343.138683 |


|  | E (Thermal) | CV | S |  |
| :---: | :---: | :---: | :---: | :---: |
|  | KCAL/MOL | CAL/MOL-KELVIN | CAL/MOL-KELVIN |  |
| TOTAL | 100.329 | 39.399 | 106.046 |  |

C,0,0.7999714815,1.1483747373,-2.1021315685
С, $0,-0.2844753286,0.7455254853,-1.3238667728$
C,0,-1.373551443,0.1355415389,-1.945519514
C,0,-1.3835407102,-0.0580004487,-3.310254112
С,0,-0.3017445019,0.3469569625,-4.0727900966
C,0,0.788868983,0.9476939507,-3.4654751125
C,0,-0.3348626857,0.9386879827,0.1037287279
C,0,0.7046524689,1.5288934257,0.9333580998
О,0,0.877279179,0.1251944816,0.9895142498
H,0,-1.2568328629,0.7143968838,0.6150612396
$\mathrm{H}, 0,1.5531646463,2.0125543839,0.4730397328$
$\mathrm{H}, 0,0.4032958586,1.9644350359,1.8747942063$
H,0,-2.2109186484,-0.1885917494,-1.3467440354
H,0,-2.2317928073,-0.5296878824,-3.7799104662
H,0,-0.305752695,0.1923698922,-5.1402143575
H,0,1.633526691,1.2589937595,-4.0591348517
H,0,1.659062116,1.6110665255,-1.643573496
C,0,0.8258183838,-0.6052904912,2.2507023048
Cl,0,0.4709420871,-2.2635131563,1.706311749
$\mathrm{Cl}, 0,-0.6420482998,-0.0192745826,3.1574562682$

## MP2/6-31G*

$\mathrm{E}($ RHF $)=-1339.11237527$
Zero-point correction= . 146314 (Hartree/Particle)
Thermal correction to Energy= . 157173
Thermal correction to Enthalpy= . 158117
Thermal correction to Gibbs Free Energy= . 107948
Sum of electronic and zero-point Energies $=\quad-1340.558955$
Sum of electronic and thermal Energies $=\quad-1340.548097$
Sum of electronic and thermal Enthalpies= $\quad-1340.547152$
Sum of electronic and thermal Free Energies= $\quad-1340.597321$

|  |  |  |  |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |

$\mathrm{C}, 0,-1.3456341518,0.1369968018,-1.9545713149$
$\mathrm{C}, 0,-1.3769877445,-0.0460353714,-3.3296171227$
$\mathrm{C}, 0,-0.3037878399,0.3713696756,-4.1105325526$
$\mathrm{C}, 0,0.7998240791,0.9735933676,-3.5108287951$
$\mathrm{C}, 0,-0.2724354498,0.9279162497,0.1078353695$
$\mathrm{C}, 0,0.7424187734,1.5957066269,0.924931737$
$\mathrm{O}, 0,0.8949901961,0.1594651485,0.9390022032$
$\mathrm{H}, 0,-1.2058267499,0.7218227153,0.6155589203$
$\mathrm{H}, 0,1.5873389643,2.0916052009,0.4609945662$
$\mathrm{H}, 0,0.431742135,2.0074331767,1.8789193$
$\mathrm{H}, 0,-2.1766855131,-0.197318173,-1.3444115122$
$\mathrm{H}, 0,-2.2354210694,-0.5181999754,-3.7912372833$
$\mathrm{H}, 0,-0.3248574395,0.2266085425,-5.1838741723$
$\mathrm{H}, 0,1.6373574892,1.2963425239,-4.117002496$
$\mathrm{H}, 0,1.6998132392,1.6261071458,-1.6866456691$
$\mathrm{C}, 0,0.8288297419,-0.6352326973,2.3648382652$
$\mathrm{Cl}, 0,0.4768335696,-2.3046581956,1.7505318598$
$\mathrm{Cl}, 0,-0.7434410626,-0.0444602305,3.1657480855$

## Alternative transition state 21

```
B3LYP/6-31G*
E(RB+HF-LYP})=-1343.21908262
```

| Zero-point correction= | 0.144873 (Hartree/Particle) |
| :--- | :---: |
| Thermal correction to Energy $=$ | 0.156048 |
| Thermal correction to Enthalpy $=$ | 0.156992 |
| Thermal correction to Gibbs Free Energy $=$ | 0.105646 |
| Sum of electronic and zero-point Energies= | -1343.074210 |
| Sum of electronic and thermal Energies= | -1343.063034 |
| Sum of electronic and thermal Enthalpies $=$ | -1343.062090 |
| Sum of electronic and thermal Free Energies= | -1343.113437 |


|  | E (Thermal) | CV | S |  |
| :---: | :---: | :---: | :---: | :---: |
|  | KCAL/MOL | CAL/MOL-KELVIN | CAL/MOL-KELVIN |  |
| TOTAL | 97.922 | 41.078 | 108.068 |  |

C, $0,1.2755248459,0.7160454526,-3.5163944678$
C,0,1.002540191,1.0148709068,-2.1882432398
С,0,-0.2430189624,0.6618847355,-1.6210281445
С, $0,-1.1998198615,0.0036001444,-2.4273801134$
C,0,-0.9253027252,-0.2809258653,-3.7585499099
C, $0,0.3135500205,0.0720796744,-4.303452967$

```
C,0,-0.5877585411,0.9489242317,-0.25890356
O,0,0.3882996898,0.0848374873,1.0618922952
C,0,-0.5464914161,-0.3057742549,2.1767359958
Cl,0,0.4858115243,0.2138718474,3.6672499388
C,0,0.2759604771,1.506319318,0.7821606133
Cl,0,-0.4537476655,-2.1339990364,2.0530793849
H,0,-1.5843698308,0.6964071427,0.0904368116
H,0,1.246400085,1.9114591832,0.5047219453
H,0,-0.2043667885,2.0523064244,1.5908926027
H,0,-2.1548752806,-0.2778827847,-1.9925425653
H,0,-1.6676893073,-0.7838077426,-4.3706534537
H,0,0.5317220096,-0.1560397715,-5.3428971673
H,0,2.2365172079,0.9844997898,-3.9445955192
H,0,1.7540746171,1.5143740126,-1.5857647588
```

MPW1K/6-31G*
$\mathrm{E}($ RmPW + HF-PW91 $)=-1343.23934014$

| Zero-point correction= | 0.149193 (Hartree/Particle) |
| :--- | :---: |
| Thermal correction to Energy $=$ | 0.159898 |
| Thermal correction to Enthalpy $=$ | 0.160842 |
| Thermal correction to Gibbs Free Energy= | 0.110515 |
| Sum of electronic and zero-point Energies $=$ | -1343.090147 |
| Sum of electronic and thermal Energies= | -1343.079442 |
| Sum of electronic and thermal Enthalpies $=$ | -1343.078498 |
| Sum of electronic and thermal Free Energies $=$ | -1343.128825 |


|  | E (Thermal) | CV | S |  |
| :---: | :---: | :---: | :---: | :---: |
|  | KCAL/MOL | CAL/MOL-KELVIN | CAL/MOL-KELVIN |  |
| TOTAL | 100.337 | 39.417 | 105.922 |  |

C,0,1.2747221494,0.7222447785,-3.5174479169
C, $0,1.0091138157,1.0081637462,-2.1985332263$
С,0,-0.2180125358,0.6411116423,-1.6327586949
C,0,-1.1646739753,-0.0178550633,-2.4275221086
C,0,-0.8983330134,-0.2889739244,-3.7497426308
C, $0,0.322390379,0.0781383436,-4.2936840473$
C, $0,-0.550452254,0.9072461402,-0.2781543965$
O,0,0.4046002486,0.0271077427,1.078093077
C,0,-0.4900131815,-0.3128705148,2.134016035
Cl,0,0.3784712098,0.2811192743,3.6280458537
C,0,0.3221839741,1.4209123373,0.7565763466
$\mathrm{Cl}, 0,-0.4542102364,-2.0956858843,2.1212523015$
H,0,-1.5294327346,0.6328348446,0.0848303747

```
H,0,1.2971115422,1.7865472877,0.4711095497
H,0,-0.1316713268,1.9971851274,1.5491888454
H,0,-2.1054704828,-0.3116708151,-1.9884753557
H,0,-1.6324333448,-0.793475592,-4.3567571369
H,0,0.5353737671,-0.1406115471,-5.3283201765
H,0,2.2227898142,1.0005629873,-3.9485147365
H,0,1.7529420802,1.5106932244,-1.6023707796
MP2/6-31G*
E(RHF})=-1339.0869570
Zero-point correction= . }146195\mathrm{ (Hartree/Particle)
Thermal correction to Energy= . }15724
Thermal correction to Enthalpy= . }15819
Thermal correction to Gibbs Free Energy= . }10696
Sum of electronic and zero-point Energies= -1340.532706
Sum of electronic and thermal Energies= -1340.521651
Sum of electronic and thermal Enthalpies= -1340.520707
Sum of electronic and thermal Free Energies= -1340.571931
\begin{tabular}{cccl}
& E (Thermal) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 98.675 & 40.921 & 107.811
\end{tabular}
C,0,1.2956378626,0.7609371554,-3.5888394994
C,0,1.0445472074,1.0516924055,-2.2511625368
C,0,-0.1703590102,0.648348669,-1.6570017508
C, \(0,-1.1218035214,-0.039748194,-2.4428264535\)
C,0,-0.8668193128,-0.307027175,-3.7828646112
C,0,0.3452701515,0.0852829357,-4.3605069545
С,0,-0.4856903742,0.8849222074,-0.2783740196
O,0,0.4438860941,-0.0677468299,1.1149113899
C,0,-0.4474887412,-0.3389020357,2.147098702
\(\mathrm{Cl}, 0,0.2889503759,0.3432399547,3.6421785589\)
C,0,0.4089735732,1.3977932159,0.7281626324
\(\mathrm{Cl}, 0,-0.5503912691,-2.1042283649,2.2047364974\)
H,0,-1.4714917297,0.6185272437,0.0944577111
H,0,1.4200496387,1.6701499095,0.4391299228
H,0,0.0214718949,1.9920651786,1.5494321889
H,0,-2.0566026788,-0.3572172416,-1.985243754
H,0,-1.6076698224,-0.8339014597,-4.378836869
Н, \(, 0,0.5474618648,-0.1326696134,-5.4062077365\)
H,0,2.2365021588,1.0697568435,-4.0375209641
H,0,1.7900780963,1.5922716451,-1.6741706277
```

\author{

B3LYP/6-311++G(2d,p) <br> $\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-1343.40699403$ <br> \begin{tabular}{lc}
Zero-point correction $=$ \& 0.143843 (Hartree/Particle) <br>
Thermal correction to Energy $=$ \& 0.155045 <br>
Thermal correction to Enthalpy $=$ \& 0.155989 <br>
Thermal correction to Gibbs Free Energy $=$ \& 0.104617 <br>
Sum of electronic and zero-point Energies $=$ \& -1343.263151 <br>
Sum of electronic and thermal Energies $=$ \& -1343.251949 <br>
Sum of electronic and thermal Enthalpies= \& -1343.251005 <br>
Sum of electronic and thermal Free Energies= \& -1343.302377

 <br> 

\& E (Thermal) \& CV \& S <br>
\& KCal/Mol \& Cal/Mol-Kelvin \& Cal/Mol-Kelvin <br>
Total \& 97.292 \& 41.244 \& 108.121
\end{tabular} <br> C,0,1.2692914803,0.7154474373,-3.4965524301 <br> C,0,0.9925954914,1.0161628823,-2.1746889758 <br> С,0,-0.2509088476,0.6671902266,-1.6139677661 <br> C,0,-1.2014961389,0.0091958348,-2.418690352 <br> C,0,-0.9228395296,-0.2783809751,-3.7433092617 <br> C, $0,0.3134738877,0.0720536803,-4.282472278$ <br> C,0,-0.5986541096,0.956284204,-0.2557321911 <br> O,0,0.375923084,0.0948583949,1.051701235 <br> С,0,-0.5332346984,-0.2989074759,2.1808086342 <br> $\mathrm{Cl}, 0,0.527404061,0.1782843576,3.6474902877$ <br> C, $0,0.2626050119,1.5189413012,0.7779906541$ <br> $\mathrm{Cl}, 0,-0.4744676883,-2.1195354103,2.0423661204$ <br> H,0,-1.5958698133,0.7097932314,0.0870928671 <br> H,0,1.2279019635,1.9244549451,0.4966924203 <br> H,0,-0.2145236539,2.0577122626,1.5892121212 <br> $\mathrm{H}, 0,-2.1550533588,-0.2716473585,-1.9875719182$ <br> $\mathrm{H}, 0,-1.6603630436,-0.7818115321,-4.3555342625$ <br> Н,0,0.5349715585,-0.1585322855,-5.3175763192 <br> H,0,2.2293893594,0.980678843,-3.9211205751 <br> H,0,1.7412486981,1.5138299376,-1.5726793535

}

## Alternative transition state 22

B3LYP/6-31G*
$\mathrm{E}($ RB+HF-LYP $)=-1343.21882592$


Sum of electronic and thermal Free Energies= $\quad-1343.301722$

|  | E (Thermal) | CV | S |
| :---: | :---: | :---: | :--- |
|  | $\mathrm{KCal} / \mathrm{Mol}$ | $\mathrm{Cal} / \mathrm{Mol}-$ Kelvin | $\mathrm{Cal} /$ Mol-Kelvin |
| Total | 96.999 | 41.647 | 110.562 |

C,0,-0.5637856652,0.1922312153,-3.4929730378
C, $0,0.3724988271,0.9594460713,-2.8042861394$
C, $0,0.1828735673,1.2549533608,-1.4630162788$
С,0,-0.9507433625,0.7861482344,-0.7890812507
С,0,-1.8920991047,0.0257207592,-1.4960876463
C,0,-1.6985548962,-0.2737489107,-2.8361950082
C,0,-1.2413134238,1.1047302697,0.6083847745
C, $0,-0.3452481554,1.7317406465,1.5826437632$
O,0,-0.4929051568,0.3258067041,1.8500274568
C,0,0.8373729741,-0.6849733177,2.2003672057
Cl,0,0.2245094179,-2.2448717363,1.5255542573
Cl,0,2.2200699802,-0.1388467089,1.1076857787
H,0,-2.2844359478, 1.0535325915,0.8924828524
H,0,0.6547457475,2.0034682441,1.2613189922
H,0,-0.7549561519,2.360910292,2.3668627703
H,0,-2.7753545308,-0.3379254413,-0.9835068295
H,0,-2.4301771861,-0.8693631783,-3.3680436376
H,0,-0.4089955283,-0.0396909185,-4.5398283788
H,0,1.254650849,1.3257687582,-3.3147102248
H,0,0.9239096718,1.8425696148,-0.9384141032

## Styrene

## B3LYP/6-31G*

$\mathrm{E}($ RB+HF-LYP $)=-309.648258855$

| Zero-point correction $=$ | 0.133731 (Hartree/Particle) |
| :--- | :---: |
| Thermal correction to Energy $=$ | 0.140501 |
| Thermal correction to Enthalpy $=$ | 0.141445 |
| Thermal correction to Gibbs Free Energy $=$ | 0.102256 |
| Sum of electronic and zero-point Energies $=$ | -309.514528 |
| Sum of electronic and thermal Energies $=$ | -309.507758 |
| Sum of electronic and thermal Enthalpies $=$ | -309.506814 |
| Sum of electronic and thermal Free Energies $=$ | -309.546003 |

E (Thermal) CV S
KCAL/MOL CAL/MOL-KELVIN CAL/MOL-KELVIN
$\begin{array}{llll}\text { TOTAL } & 88.166 & 26.029 & 82.481\end{array}$


|  | E (Thermal) | CV | S |
| :---: | :---: | :---: | :--- |
|  | $\mathrm{KCal} / \mathrm{Mol}$ | $\mathrm{Cal} /$ Mol-Kelvin | Cal/Mol-Kelvin |
| Total | 87.567 | 26.162 | 82.632 |

C, $0,0.7692492571,-0.1923779671,-1.9001893769$
C, $0,-0.4566635767,-0.0603982382,-1.2581073768$
C, $0,-0.5392749393,0.0480268138,0.1357370506$
C,0,0.6559938281,0.0199839588,0.8686649903
C, $0,1.879834563,-0.1115544344,0.2303143321$
С,0,1.9438814401,-0.2186107231,-1.1580588338
C, $0,-1.8629561721,0.1850285196,0.7602635415$
C,0,-2.1432567766,0.2943478758,2.0593379549
H,0,0.6293329762,0.1021031999, 1.9482443333

```
H,0,2.7911026857,-0.1308091042,0.8166666371
H,0,2.9018140299,-0.3211929069,-1.6536620129
H,0,0.8057458036,-0.2745762455,-2.9801252747
H,0,-2.6932489305,0.1952491587,0.0584613225
H,0,-3.1667428109,0.3903534612,2.3984840919
H,0,-1.379157593,0.2928069189,2.8275213198
H,0,-1.369691902,-0.0406093141,-1.8433641087
```


## Phosgene

## B3LYP/6-31G*

$\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-1033.71437719$

| Zero-point correction $=$ | 0.010503 (Hartree/Particle) |
| :--- | :---: |
| Thermal correction to Energy $=$ | 0.014455 |
| Thermal correction to Enthalpy $=$ | 0.015399 |
| Thermal correction to Gibbs Free Energy= | -0.017458 |
| Sum of electronic and zero-point Energies $=$ | -1033.703875 |
| Sum of electronic and thermal Energies $=$ | -1033.699922 |
| Sum of electronic and thermal Enthalpies $=$ | -1033.698978 |
| Sum of electronic and thermal Free Energies $=$ | -1033.731835 |


|  | E (Thermal) | CV | S |  |
| :---: | :---: | :---: | :---: | :---: |
|  | KCAL/MOL | CAL/MOL-KELVIN | CAL/MOL-KELVIN |  |
| TOTAL | 9.071 | 11.837 | 69.153 |  |

C,0,-0.3898664893,0.,-0.3164925357
Cl, $0,-0.546825253,0 ., 1.4424045499$
$\mathrm{Cl}, 0,1.2993605549,0 .,-0.8314239494$
O,0,-1.3067376495,0.,-1.0609643744

## B3LYP/6-311++G(2d,p)

$\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-1033.81206656$
Zero-point correction= 0.010389 (Hartree/Particle)
Thermal correction to Energy= 0.014361
Thermal correction to Enthalpy $=\quad 0.015306$
Thermal correction to Gibbs Free Energy $=\quad-0.017579$
Sum of electronic and zero-point Energies $=\quad-1033.801677$
Sum of electronic and thermal Energies $=\quad-1033.797705$
Sum of electronic and thermal Enthalpies= $\quad-1033.796761$
Sum of electronic and thermal Free Energies $=\quad-1033.829646$

|  | E (Thermal) | CV | S |  |
| :---: | ---: | :---: | :---: | :---: |
|  | KCAL/MOL | CAL/MOL-KELVIN | CAL/MOL-KELVIN |  |
| TOTAL | 9.012 | 11.904 | 69.212 |  |

C,0,-0.393279468,0.,-0.3192978655
$\mathrm{Cl}, 0,-0.5457815551,0 ., 1.4401076677$
Cl,0,1.297312974,0.,-0.8299296426
O,0,-1.3020446642,0.,-1.0571549042

## (2,2-Dichlorocyclopropyl)benzene (19)



С, $0,-1.2975584879,-0.3356473607,0.9224610802$
Cl, $0,-0.2480062476,-1.6900201854,1.387947912$
$\mathrm{Cl}, 0,-2.9956977219,-0.8413135912,0.6993486549$

## B3LYP/6-311++G(2d,p)

$\mathrm{E}($ RB+HF-LYP $)=-1268.28298072$

| Zero-point correction= | 0.143048 (Hartree/Particle) |
| :--- | :---: |
| Thermal correction to Energy= | 0.151918 |
| Thermal correction to Enthalpy= | 0.152862 |
| Thermal correction to Gibbs Free Energy= | 0.108025 |
| Sum of electronic and zero-point Energies= | -1268.139933 |
| Sum of electronic and thermal Energies= | -1268.131063 |
| Sum of electronic and thermal Enthalpies $=$ | -1268.130119 |
| Sum of electronic and thermal Free Energies= $=$ | -1268.174956 |


|  | E (Thermal) | CV | S |  |
| :---: | :---: | :---: | :---: | :---: |
|  | KCAL/MOL | CAL/MOL-KELVIN | CAL/MOL-KELVIN |  |
| TOTAL | 95.330 | 35.067 | 94.367 |  |

C,0,3.0815684166,0.7120092619,-1.8734987243
C,0,1.9022615348,0.5566946023,-2.5946699956
C,0,0.677866313,0.592181881,-1.9418204743
C,0,0.6076352497,0.7778441882,-0.5577671786
C,0,1.796101013,0.9376308159,0.1536192205
C,0,3.0235715202,0.9042163184,-0.4986965042
C,0,-0.7393940175,0.8080779351,0.0843192811
C,0,-0.9822032614,0.9465834978,1.5802570799
H,0,1.7724546199, 1.09646102,1.2243580144
H,0,3.9364367039,1.0323125251,0.0708657492
H,0,4.038500088,0.6868490225,-2.3808836439
H,0,1.9357719834,0.410221697,-3.6677734152
H,0,-1.49904825, 1.2750415911,-0.5324647903
H,0,-1.8072745528,1.5667494021,1.9040831103
H,0,-0.1297412605,0.9372687374,2.2457634365
H,0,-0.2380242865,0.4720780045,-2.5099157134
C,0,-1.3025486897,-0.334914645,0.8969850645
$\mathrm{Cl}, 0,-0.3014222631,-1.7580726696,1.2371322856$
$\mathrm{Cl}, 0,-3.0161202968,-0.7642170441,0.6542559873$

## Loose epoxide-CCl $\mathbf{L}_{2}$ complex

| B3LYP/6-31G* |  |
| :--- | :---: |
| E(RB+HF-LYP) $=-1343.23654742$ |  |
|  |  |
| Zero-point correction= | 0.144799 (Hartree/Particle) |
| Thermal correction to Energy= | 0.157029 |
| Thermal correction to Enthalpy $=$ | 0.157973 |
| Thermal correction to Gibbs Free Energy= | 0.102538 |
| Sum of electronic and zero-point Energies= | -1343.091749 |
| Sum of electronic and thermal Energies= | -1343.079518 |
| Sum of electronic and thermal Enthalpies= | -1343.078574 |
| Sum of electronic and thermal Free Energies= | -1343.134009 |


|  | E (Thermal) | CV | S |  |
| :---: | :---: | :---: | :---: | :---: |
|  | KCAL/MOL | CAL/MOL-KELVIN | CAL/MOL-KELVIN |  |
| TOTAL | 98.537 | 42.643 | 116.673 |  |

C,0,1.2387105664,0.451012252,-3.5106089094
C,0,0.9687490856,0.5931165192,-2.1505234469
С, $0,-0.3415352407,0.4569764738,-1.6740808986$
C,0,-1.3719377642,0.1652987604,-2.5757421913
С,0,-1.1013384743,0.0303850831,-3.9377268532
C,0,0.2046754515,0.1740812627,-4.4084258496
C, $0,-0.664795851,0.635854666,-0.2306724062$
O, $0,0.42813537,0.4894387815,0.712875609$
C,0,-0.4974716984,-0.3882241105,2.6171989453
Cl,0,0.7613993274,0.1426070054,3.7513545621
C,0,-0.191199895,1.782075929,0.566580015
$\mathrm{Cl}, 0,-0.2400834426,-2.1048710597,2.2542900619$
H,0,-1.5801476184,0.1574531654,0.1156675676
H,0,0.4463792086,2.530728774,0.1000761871
Н,0,-0.7679351879,2.1008388015,1.4325871836
$\mathrm{H}, 0,-2.38916101,0.0443419212,-2.2100357798$
H,0,-1.909472737,-0.1942293502,-4.6285020948
H,0,0.4175380387,0.0633272051,-5.4681731974
H,0,2.2593413492,0.5511463958,-3.8700524807
H,0,1.7728678748,0.7859107433,-1.4465212957

## B3LYP/6-311++G(2d,p)

$\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-1343.42455768$

| Zero-point correction $=$ | 0.143214 (Hartree/Particle) |
| :--- | :---: |
| Thermal correction to Energy= | 0.155831 |
| Thermal correction to Enthalpy $=$ | 0.156775 |
| Thermal correction to Gibbs Free Energy= | 0.099201 |


| Sum of electronic and zero-point Energies $=$ | -1343.281344 |
| :--- | :---: |
| Sum of electronic and thermal Energies $=$ | -1343.268727 |
| Sum of electronic and thermal Enthalpies $=$ | -1343.267782 |
| Sum of electronic and thermal Free Energies $=$ | -1343.325357 |


|  | E (Thermal) <br> KCal/Mol | CV <br> Cal/Mol-Kelvin |
| :--- | :---: | :--- |
| Total | Sal/Mol-Kelvin |  |

## Epoxide of cis-2-butene

```
B3LYP/6-311++G(2d,p)
E(RB+HF-LYP})=-232.50408941
Zero-point correction= 0.112931 (Hartree/Particle)
Thermal correction to Energy=}0.11879
Thermal correction to Enthalpy=}0.11973
Thermal correction to Gibbs Free Energy= 0.084326
Sum of electronic and zero-point Energies= -232.391158
Sum of electronic and thermal Energies= -232.385297
Sum of electronic and thermal Enthalpies= -232.384353
Sum of electronic and thermal Free Energies= -232.419763
```

|  | E (Thermal) | CV |
| :--- | :---: | :--- |$\quad$ S

## Transition structure 23

B3LYP/6-31G*
$\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-1190.80836503$

| Zero-point correction= | 0.119149 (Hartree/Particle) |
| :--- | :---: |
| Thermal correction to Energy $=$ | 0.128998 |
| Thermal correction to Enthalpy $=$ | 0.129943 |
| Thermal correction to Gibbs Free Energy $=$ | 0.082991 |
| Sum of electronic and zero-point Energies= | -1190.689216 |
| Sum of electronic and thermal Energies= | -1190.679367 |
| Sum of electronic and thermal Enthalpies $=$ | -1190.678422 |
| Sum of electronic and thermal Free Energies $=$ | -1190.725374 |


|  | E (Thermal) | CV | S |
| :---: | :---: | :---: | :--- |
|  | KCal/Mol | Cal/Mol-Kelvin | Cal/Mol-Kelvin |
| Total | 80.948 | 33.598 | 98.818 |

C,0,1.5932644364,1.6478224545,-1.6412134097
C,0,0.3333460791,1.3395988514,-0.9112118019
O,0,0.5446501257,0.1336901082,0.3551807079
C,0,-0.2520109641,-1.0417609173,0.728765104
$\mathrm{Cl}, 0,-2.0397664344,-0.7087880075,0.3111398861$
C,0,0.1011165419,1.5228554643,0.5309880715
$\mathrm{Cl}, 0,0.3354420406,-2.2977913447,-0.461503226$
$\mathrm{H}, 0,-0.5320474616,1.0171573169,-1.4814894965$
$\mathrm{C}, 0,1.0058487033,2.3142550731,1.4399762575$
$\mathrm{H}, 0,-0.9483669063,1.5526065057,0.8193608433$
$\mathrm{H}, 0,1.4865787181,2.6109661225,-2.1641974232$
$\mathrm{H}, 0,1.7970364015,0.8862475465,-2.3999688527$
$\mathrm{H}, 0,2.4567975333,1.7213409834,-0.9762996095$
$\mathrm{H}, 0,0.8807812552,1.9697924873,2.4707101548$
$\mathrm{H}, 0,2.0586610874,2.2141744881,1.1668723956$
$\mathrm{H}, 0,0.7274842816,3.3734171167,1.3959177753$

## B3LYP/6-311++G(2d,p)

$\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-1190.95586317$

| Zero-point correction= | 0.117924 (Hartree/Particle) |
| :--- | :---: |
| Thermal correction to Energy $=$ | 0.127814 |
| Thermal correction to Enthalpy $=$ | 0.128758 |
| Thermal correction to Gibbs Free Energy $=$ | 0.081716 |
| Sum of electronic and zero-point Energies $=$ | -1190.837939 |
| Sum of electronic and thermal Energies $=$ | -1190.828049 |
| Sum of electronic and thermal Enthalpies $=$ | -1190.827105 |
| Sum of electronic and thermal Free Energies= $=$ | -1190.874147 |


|  | E(Thermal) | CV | S |
| :---: | :---: | :---: | :--- |
|  | KCal/Mol | Cal/Mol-Kelvin | Cal/Mol-Kelvin |
| Total | 80.204 | 33.820 | 99.008 |

C,0,1.5898182257,1.6449662168,-1.6290107539
C,0,0.3385358176,1.3249366943,-0.8995380953
O,0,0.5548225251,0.131734763,0.3580942393
C,0,-0.2594922527,-1.041074114,0.725420219
Cl,0,-2.0288147127,-0.703102448,0.2935796814
C, $, 0,0.1072667757,1.519159201,0.5371312096$
Cl,0,0.32065414,-2.2992225598,-0.4545851287
H,0,-0.5263697974,1.0050763358,-1.4663253377
C,0,1.005538108,2.3212899335,1.4343038968
H,0,-0.9397539622, 1.5431856934, 0.8234655371
H,0,1.4822362682,2.6254625429,-2.1117620191
H,0,1.7775248945,0.9139828183,-2.4160665878
H,0,2.4580105766, 1.6891809254,-0.9734083958
H,0,0.8798925036,1.9944021758,2.4671486738
H,0,2.0559529358,2.223259646,1.1649284207
H,0,0.7226560688,3.375429302,1.3745195398

## Alternative transition structure 24



## Trans- $\beta$-methylstyrene (27)

## B3LYP/6-31G* <br> $\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-348.968043718$

| Zero-point correction $=$ | 0.161954 (Hartree/Particle) |
| :--- | :---: |
| Thermal correction to Energy $=$ | 0.170303 |
| Thermal correction to Enthalpy $=$ | 0.171247 |


| Thermal correction to Gibbs Free Energy $=$ | 0.127992 |
| :--- | :---: |
| Sum of electronic and zero-point Energies $=$ | -348.806090 |
| Sum of electronic and thermal Energies= | -348.797741 |
| Sum of electronic and thermal Enthalpies= | -348.796797 |
| Sum of electronic and thermal Free Energies= | -348.840052 |


|  | E (Thermal $)$ | CV | S |
| :---: | :---: | :---: | :--- |
|  | $\mathrm{KCal} / \mathrm{Mol}$ | $\mathrm{Cal} / \mathrm{Mol}-$ Kelvin | Cal/Mol-Kelvin |
| Total | 106.867 | 31.343 | 91.038 |

$$
\begin{aligned}
& \mathrm{C}, 0,0.8762098441,1.006259444,0.6186028698 \\
& \mathrm{C}, 0,1.0354987319,1.0142054004,1.9504502609 \\
& \mathrm{C}, 0,1.8996482582,1.986932795,2.6972311738 \\
& \mathrm{C}, 0,0.0513864756,0.0909500988,-0.185531929 \\
& \mathrm{H}, 0,0.5161205147,0.2771812322,2.5630567299 \\
& \mathrm{H}, 0,1.4127286489,1.7595829161,0.0394349774 \\
& \mathrm{H}, 0,1.3130028758,2.5635649367,3.4258830335 \\
& \mathrm{H}, 0,2.6816905761,1.4681524138,3.2689554315 \\
& \mathrm{H}, 0,2.3883854934,2.6947263955,2.0192584707 \\
& \mathrm{C}, 0,0.0239079132,0.2541383495,-1.5818481315 \\
& \mathrm{C}, 0,-0.7388324287,-0.5825009934,-2.3955029505 \\
& \mathrm{C}, 0,-1.496486147,-1.6078420142,-1.8295065391 \\
& \mathrm{C}, 0,-1.4815687346,-1.7852355727,-0.4426298833 \\
& \mathrm{C}, 0,-0.7195731503,-0.9490438657,0.3677401315 \\
& \mathrm{H}, 0,0.6120074203,1.05142835,-2.0312262153 \\
& \mathrm{H}, 0,-0.7404288561,-0.4322792493,-3.4720674635 \\
& \mathrm{H}, 0,-2.0926185841,-2.2625572009,-2.4593589351 \\
& \mathrm{H}, 0,-2.068224036,-2.5809832434,0.0094547361 \\
& \mathrm{H}, 0,-0.7238086277,-1.1059984005,1.442579219
\end{aligned}
$$

## B3LYP/6-31+G** <br> $\mathrm{E}($ RB+HF-LYP $)=-348.996549701$

| Zero-point correction $=$ | 0.161254 |
| :--- | :---: |
| (Hartree/Particle) |  |
| Thermal correction to Energy $=$ | 0.169587 |
| Thermal correction to Enthalpy $=$ | 0.170531 |
| Thermal correction to Gibbs Free Energy= | 0.127697 |
| Sum of electronic and zero-point Energies $=$ | -348.835296 |
| Sum of electronic and thermal Energies= | -348.826963 |
| Sum of electronic and thermal Enthalpies $=$ | -348.826019 |
| Sum of electronic and thermal Free Energies= | -348.868852 |

E (Thermal) CV S
$\mathrm{KCal} / \mathrm{Mol} \mathrm{Cal} / \mathrm{Mol}-\mathrm{Kelvin} \mathrm{Cal} / \mathrm{Mol}-\mathrm{Kelvin}$
$\begin{array}{llll}\text { Total } & 106.417 & 31.482 & 90.151\end{array}$
$\mathrm{C}, 0,0.8776665082,1.0079336552,0.6186635853$
$\mathrm{C}, 0,1.0372196014,1.0162209327,1.952398851$
$\mathrm{C}, 0,1.9015154242,1.9888958836,2.7002187015$
$\mathrm{C}, 0,0.0516324279,0.0911879207,-0.1856847512$
$\mathrm{H}, 0,0.5172490426,0.2789746498,2.5636987989$
$\mathrm{H}, 0,1.4140851567,1.760864747,0.0395947377$
$\mathrm{H}, 0,1.3134382973,2.5635389538,3.4278862867$
$\mathrm{H}, 0,2.6816157323,1.4683126427,3.2711664062$
$\mathrm{H}, 0,2.3905689705,2.6966866661,2.0234561724$
$\mathrm{C}, 0,0.0238478402,0.2543046539,-1.5832362097$
$\mathrm{C}, 0,-0.7400418117,-0.5835420648,-2.397904661$
$\mathrm{C}, 0,-1.4985163575,-1.6100304134,-1.8314334634$
$\mathrm{C}, 0,-1.4830160493,-1.7870983272,-0.4427704376$
$\mathrm{C}, 0,-0.7199180956,-0.9497183484,0.3682132193$
$\mathrm{H}, 0,0.6112228046,1.0508865111,-2.0336031819$
$\mathrm{H}, 0,-0.7417760023,-0.4334618279,-3.4739082371$
$\mathrm{H}, 0,-2.0944308702,-2.2644904314,-2.4607294861$
$\mathrm{H}, 0,-2.0692408539,-2.5823709657,0.0093462088$
$\mathrm{H}, 0,-0.7250692042,-1.1078642993,1.442303289$

## Cis- $\beta$-methylstyrene

$\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-348.963675765$

| Zero-point correction= | 0.162382 (Hartree/Particle) |
| :--- | :---: |
| Thermal correction to Energy $=$ | 0.170490 |
| Thermal correction to Enthalpy $=$ | 0.171435 |
| Thermal correction to Gibbs Free Energy= | 0.129243 |
| Sum of electronic and zero-point Energies= | -348.801294 |
| Sum of electronic and thermal Energies= | -348.793185 |
| Sum of electronic and thermal Enthalpies $=$ | -348.792241 |
| Sum of electronic and thermal Free Energies= | -348.834433 |


|  | E (Thermal) | CV | S |
| :---: | :---: | :---: | :---: |
|  | KCAL/MOL | CAL/MOL-KELVIN | CAL/MOL-KELVIN |
| TOTAL | 106.984 | 31.052 | 88.800 |

C,0,0.5654023694,1.2828633604,0.89245624
C, $0,0.008671306,0.4707563178,-0.1134065692$
C,0,0.5605415802,-0.80949664,-0.3029761999
C,0,1.6010584549,-1.2688837315,0.5042891275
$\mathrm{C}, 0,2.1218791624,-0.4588584757,1.51460575$
$\mathrm{C}, 0,1.6016550169,0.8239014934,1.7019300847$
$\mathrm{C}, 0,-1.0872657166,1.0132331247,-0.938256248$
$\mathrm{C}, 0,-2.1319310374,0.3719626492,-1.4898437489$
$\mathrm{C}, 0,-2.506193326,-1.0793995084,-1.3781188424$
$\mathrm{H}, 0,-3.5897291665,-1.1805304423,-1.2389728146$
$\mathrm{H}, 0,-2.2572399091,-1.6345142788,-2.2942633128$
$\mathrm{H}, 0,-2.0071464896,-1.5751047348,-0.5411294084$
$\mathrm{H}, 0,0.1670909983,2.2838413372,1.0425825983$
$\mathrm{H}, 0,2.0071054981,1.4689684895,2.4772289113$
$\mathrm{H}, 0,2.9337231935,-0.8180847781,2.1413273852$
$\mathrm{H}, 0,2.013788985,-2.2601254638,0.3344606261$
$\mathrm{H}, 0,0.1961123038,-1.4360315597,-1.1102641178$
$\mathrm{H}, 0,-2.8226176091,0.9820382223,-2.0721174214$
$H, 0,-1.0439946623,2.0930716689,-1.0829300083$

## Styrene

$\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-309.648271016$
Zero-point correction= 0.133718 (Hartree/Particle)
Thermal correction to Energy=
0.140502

Thermal correction to Enthalpy=
0.141446

Thermal correction to Gibbs Free Energy= 0.102109
Sum of electronic and zero-point Energies $=\quad-309.514553$
Sum of electronic and thermal Energies $=\quad-309.507769$
Sum of electronic and thermal Enthalpies $=\quad-309.506825$
Sum of electronic and thermal Free Energies= $=309.546162$

| E (Thermal) | CV | S |  |
| :---: | :---: | :---: | :---: |
| KCAL/MOL | CAL/MOL-KELVIN | CAL/MOL-KELVIN |  |
| 88.166 | 26.031 | 82.791 |  |

$\begin{array}{llll}\text { TOTAL } & 88.166 & 26.031 & 82.791\end{array}$
$\mathrm{C}, 0,-1.0751480168,0 .,-1.5714576142$
$\mathrm{C}, 0,-1.0783422225,0 .,-0.1798993656$
$\mathrm{C}, 0,0.1273824495,0 ., 0.545548821$
$\mathrm{C}, 0,1.331290702,0 .,-0.1797904339$
$\mathrm{C}, 0,1.3370209296,0 .,-1.5741414443$
$\mathrm{C}, 0,0.1322440143,0 .,-2.2769899247$
$\mathrm{C}, 0,0.1854747248,0 ., 2.0170600015$
$\mathrm{C}, 0,-0.8410661494,0 ., 2.8764437845$
$\mathrm{H}, 0,-0.6705965413,0 ., 3.9486122711$
$\mathrm{H}, 0,-1.8797033981,0 ., 2.5571597144$

H,0,1.1958388217,0.,2.4265283772
H,0,2.2742844354,0.,0.3624769654
H,0,2.2825035922,0.,-2.1102299519
H,0,0.1308723801,0.,-3.3636259791
H,0,-2.0191162884,0.,-2.110378929
H,0,-2.0272215908,0.,0.3488145855

## Shi's original catalyst ketone (25)

$\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-919.433549646$

| Zero-point correction $=$ | 0.299586 |
| :--- | :---: |
| (Hartree/Particle) |  |
| Thermal correction to Energy $=$ | 0.316585 |
| Thermal correction to Enthalpy $=$ | 0.317529 |
| Thermal correction to Gibbs Free Energy= | 0.255639 |
| Sum of electronic and zero-point Energies $=$ | -919.133963 |
| Sum of electronic and thermal Energies $=$ | -919.116965 |
| Sum of electronic and thermal Enthalpies $=$ | -919.116020 |
| Sum of electronic and thermal Free Energies= | -919.177911 |


|  | E (Thermal $)$ | CV | S |
| :---: | :---: | :---: | :--- |
|  | $\mathrm{KCal} / \mathrm{Mol}$ | $\mathrm{Cal} /$ Mol-Kelvin | Cal/Mol-Kelvin |
| Total | 198.660 | 66.574 | 130.259 |

O,0,-0.1977930939,2.6713951744,-0.1804751089
C,0,-0.2396746584,1.687948108,0.8465842803
C, $0,-1.2743934297,0.7088050373,0.263470203$
О,0,-2.2016828418,1.5607436839,-0.3706124438
C,0,-1.5224538751,2.790030813,-0.7185853357
C,0,1.141115811,1.0999178824,1.1051574021
O, $0,1.5928934581,0.2127156119,0.0802547242$
C, $0,0.711959724,-0.8716530785,-0.1753205657$
C,0,-0.6007891842,-0.2683031416,-0.7109076418
С, $0,1.4220868003,-1.8631166743,-1.1125385027$
O,0,1.3509947511,-3.1128439771,-0.4366010984
C, $0,1.1629335877,-2.853476818,0.9443293647$
O,0,0.3986018475,-1.6210582912,0.9810278018
C,0,0.3084886072,-3.9608399142,1.5365124608
C,0,2.4974673862,-2.6596447674,1.6686665815
O,0,-1.0272960778,-0.5090169351,-1.8179609164
C, $0,-1.4153556485,2.9322412669,-2.2307811464$
C,0,-2.2755760893,3.9425815677,-0.0574666005
H,0,0.8365964132,-4.9163086635,1.4650879216

```
H,0,0.0933656806,-3.7564759153,2.589594029
H,0,-0.6312521755,-4.0326698428,0.9833834369
H,0,3.088554814,-3.579242641,1.6126349085
H,0,3.0688140938,-1.8453896474,1.2142987449
H,0,2.3271327653,-2.4156402199,2.7222663003
H,0,-2.4144292578,3.0174724091,-2.6687558299
H,0,-0.8419944521,3.8297772314,-2.4840015567
H,0,-0.9209417117,2.0564951052,-2.6552206519
H,0,-3.3146075734,3.9576852758,-0.4007850018
H,0,-2.2758328369,3.8268164493,1.0307372346
H,0,-1.8058125669,4.898028877,-0.3108799127
H,0,2.4561698529,-1.5340502922,-1.2691585111
H,0,0.90849444,-1.9553800818,-2.0707031869
H,0,-1.7865997571,0.1251029254,1.0375641386
H,0,-0.6171384952,2.1226195847,1.7864184533
H,0,1.1276152351,0.5763405105,2.0687287464
H,0,1.8812670004,1.9023951145,1.1490040718
```


## Dioxirane isomer \# 1 (lowest energy) (29a-chair)

```
B3LYP/6-31G*
E(RB+HF-LYP) = -994.546993362
```

| Zero-point correction= | 0.303460 (Hartree/Particle) |
| :--- | :---: |
| Thermal correction to Energy $=$ | 0.321067 |
| Thermal correction to Enthalpy $=$ | 0.322011 |
| Thermal correction to Gibbs Free Energy= | 0.258893 |
| Sum of electronic and zero-point Energies= | -994.243534 |
| Sum of electronic and thermal Energies= | -994.225926 |
| Sum of electronic and thermal Enthalpies $=$ | -994.224982 |
| Sum of electronic and thermal Free Energies= | -994.288101 |


|  | E (Thermal) | CV | S |
| :---: | :---: | :---: | :--- |
|  | $\mathrm{KCal} / \mathrm{Mol}$ | $\mathrm{Cal} /$ Mol-Kelvin | Cal/Mol-Kelvin |
| Total | 201.473 | 69.619 | 132.844 |

O,0,-1.1419555603,-1.1721053463,-1.0980721715
C, $0,-1.1324062204,-0.1350970098,-0.1392803524$
С,0,-2.5022306893,-0.2301367168,0.5393958985
O,0,-3.3103821727,-0.8473810668,-0.4547949218
C,0,-2.4855729033,-1.7227315978,-1.2038110184
C,0,0.0748356381,-0.3462485857,0.7722646395
C,0,1.4301470511,-0.2145965724,0.0697790518
$\mathrm{C}, 0,1.4481472252,0.9722536183,-0.9096999686$
$\mathrm{C}, 0,0.1196848175,1.2759352837,-1.5914721938$
$\mathrm{O}, 0,-1.0060481973,1.1466492296,-0.7240983207$
$\mathrm{O}, 0,2.4829384632,0.0760033636,0.9622463127$
$\mathrm{C}, 0,2.7796538611,1.4934625821,0.8847909503$
$\mathrm{O}, 0,1.841691072,2.0342149246,-0.0490005359$
$\mathrm{C}, 0,2.556298239,2.1564925948,2.2353874682$
$\mathrm{C}, 0,4.2128249877,1.6458277115,0.3747594051$
$\mathrm{O}, 0,-0.0759638515,0.1490115179,2.0650660087$
$\mathrm{O}, 0,-0.0284362762,-1.3279310678,1.7566430337$
$\mathrm{C}, 0,-2.4686111317,-3.1305514957,-0.6083482991$
$\mathrm{C}, 0,-2.931504721,-1.6811914057,-2.6571484945$
$\mathrm{H}, 0,-2.9115156868,0.7560780033,0.7591068631$
$\mathrm{H}, 0,-2.4456132576,-0.8283812427,1.4550286292$
$\mathrm{H}, 0,1.6285837397,-1.1700561726,-0.4283962324$
$\mathrm{H}, 0,2.209708413,0.8012873976,-1.6871682363$
$\mathrm{H}, 0,0.0023711013,0.6109463272,-2.455459256$
$\mathrm{H}, 0,0.1117734061,2.311905207,-1.9378615116$
$\mathrm{H}, 0,3.2469977535,1.7393629885,2.9743473275$
$\mathrm{H}, 0,2.7328850417,3.2339646269,2.1574718531$
$\mathrm{H}, 0,1.5332223472,1.9809349881,2.5718268044$
$H, 0,4.9070638687,1.1375773048,1.0509548413$
$\mathrm{H}, 0,4.3199125149,1.2023676735,-0.6199889347$
$\mathrm{H}, 0,4.4854275399,2.7044865769,0.319032129$
$\mathrm{H}, 0,-3.470244661,-3.569191897,-0.6536924355$
$\mathrm{H}, 0,-1.7772261961,-3.7711972892,-1.164856965$
$H, 0,-2.1431421409,-3.0995393085,0.4357709219$
$\mathrm{H}, 0,-3.9529489099,-2.0636667996,-2.7466181128$
$\mathrm{H}, 0,-2.907929738,-0.6491662464,--3.0162615775$
$\mathrm{H}, 0,-2.2716698775,-2.2959150152,-3.2768538682$

## B3LYP/6-31+G**

$\mathrm{E}($ RB+HF-LYP $)=-994.603951790$

| Zero-point correction= | 0.301298 (Hartree/Particle) |
| :--- | :---: |
| Thermal correction to Energy= | 0.318992 |
| Thermal correction to Enthalpy $=$ | 0.319936 |
| Thermal correction to Gibbs Free Energy= | 0.256686 |
| Sum of electronic and zero-point Energies $=$ | -994.302654 |
| Sum of electronic and thermal Energies= | -994.284960 |
| Sum of electronic and thermal Enthalpies= | -994.284015 |
| Sum of electronic and thermal Free Energies= | -994.347265 |

$$
\text { E (Thermal) } \quad \text { CV } \quad \text { S }
$$



## Dioxirane isomer \# 2 (29b)

$\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-994.546649805$

| Zero-point correction= | 0.303495 (Hartree/Particle) |
| :--- | :---: |
| Thermal correction to Energy $=$ | 0.321110 |
| Thermal correction to Enthalpy $=$ | 0.322054 |
| Thermal correction to Gibbs Free Energy= | 0.259163 |
| Sum of electronic and zero-point Energies $=$ | -994.243155 |
| Sum of electronic and thermal Energies= | -994.225540 |
| Sum of electronic and thermal Enthalpies $=$ | -994.224596 |
| Sum of electronic and thermal Free Energies= | -994.287487 |


|  | E (Thermal) | CV | S |  |
| :---: | :---: | :---: | :---: | :---: |
|  | KCAL/MOL | CAL/MOL-KELVIN | CAL/MOL-KELVIN |  |
| TOTAL | 201.499 | 69.612 | 132.365 |  |

C,0,0.7649184074,2.7964851576,-1.4549544649
O,0,0.7218854127,1.7654125242,-0.4365156858
C, $0,-0.1847058211,0.7672987446,-0.8510998474$
С, $0,-0.4096957791,1.0329854601,-2.3524045935$
O,0,0.4532871208,2.1195437955,-2.6606352381
C, $0,0.4295741734,-0.5871225443,-0.5006111958$
C,0,0.6504140993,-0.7998831755,0.9989692134
С, $0,-0.5788146244,-0.3452468282,1.8074239028$
С, $0,-1.3422506698,0.8429417685,1.2332522966$
О,0,-1.438440688,0.8400942609,-0.1928592611
O,0,0.78976301,-2.1602434176,1.3441753682
C,0,-0.4687989341,-2.634037902,1.8866590121
O,0,-1.3698807073,-1.527375689,1.7928597156
O,0,-0.0179919041,-1.6534857135,-1.2741504496
O,0,1.3850079602,-1.1037161384,-1.3707202624
С,0,-1.0140284648,-3.776498213,1.043681563
C,0,-0.2327830066,-3.02943772,3.344750962
C, $0,2.1894428321,3.3165870454,-1.5427774414$
C,0,-0.2638389964,3.8849102228,-1.139345983
H,0,2.2672457142,4.0523229927,-2.3487159083
H,0,2.4818170597,3.7934862239,-0.6024760656
H,0,2.8678396054,2.4861431738,-1.7532640406
H,0,-0.2531639567,4.6462972374,-1.9256391517
H,0,-1.2690176413,3.4588120893,-1.075645446
H,0,-0.0303054741,4.3647902653,-0.1833482175
H,0,-0.325144659,-4.6258429092,1.0774160822
H,0,-1.986287668,-4.0968042048, 1.4314388114
H,0,-1.1250186604,-3.4540357896,0.0073752326
H,0,0.5341755978,-3.8078858963,3.4012112201

```
H,0,0.1103851385,-2.1707217162,3.9297561713
H,0,-1.1572433923,-3.4114126033,3.7892960762
H,0,-1.4650251946,1.2825914946,-2.5130351782
H,0,-0.131748262,0.1819442988,-2.9744711194
H,0,1.5599327055,-0.2568155516,1.2773213725
H,0,-0.2759081677,-0.0960645981,2.8367949437
H,0,-0.8571565276,1.7678034296,1.5672310587
H,0,-2.3710171494,0.8296629915,1.600260121
```


## Dioxirane isomer \# 3 (29c-boat)

$\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-994.543903031$

| Zero-point correction= | 0.303172 (Hartree/Particle) |
| :--- | :---: |
| Thermal correction to Energy $=$ | 0.320873 |
| Thermal correction to Enthalpy $=$ | 0.321817 |
| Thermal correction to Gibbs Free Energy $=$ | 0.258192 |
| Sum of electronic and zero-point Energies $=$ | -994.240731 |
| Sum of electronic and thermal Energies= | -994.223030 |
| Sum of electronic and thermal Enthalpies= | -994.222086 |
| Sum of electronic and thermal Free Energies= | -994.285711 |


|  | E (Thermal) | CV | S |
| :---: | :---: | :---: | :--- |
|  | KCal/Mol | Cal/Mol-Kelvin | Cal/Mol-Kelvin |
| Total | 201.351 | 69.636 | 133.910 |

O,0,-1.6228477543,-1.251015353,-0.8534441928
C,0,-0.7422199057,-0.3798070819,-0.2033293497
С,0,-1.4823612849,0.0289285314,1.0955461929
O,0,-2.6144461897,-0.816959208,1.1423167279
C, $0,-2.9063042932,-1.2148470958,-0.1921281545$
C, $0,0.5886953514,-1.114729732,0.0488674454$
C, $0,1.8158618418,-0.2281528633,0.1023593309$
C,0,1.9179747972,0.6239632628,-1.1892238849
C,0,0.5615193347,0.6881649111,-1.9003126172
О, $,,-0.4949849802,0.8045816259,-0.9453470473$
O, $0,1.6552282641,0.7328892299,1.1312252471$
C,0,2.2704789399,1.95805071,0.7098532467
O,0,2.3113735551,1.9071659108,-0.7223051489
C,0,1.382859196,3.1125407578,1.1515901351
C,0,3.6979708736,2.0450642837,1.2496412959
O,0,0.5499328811,-2.2184738109,0.8932777287
O,0,0.8027949931,-2.3391300951,-0.5863333543

```
C,0,-3.4652618848,-2.626806227,-0.1613825957
C,0,-3.8192039177,-0.205607664,-0.8913732363
H,0,-1.7523369731,1.0898672027,1.0194277527
H,0,-0.8888068497,-0.1266843232,1.9985969057
H,0,2.6960366311,-0.8611763548,0.266798316
H,0,2.6829341975,0.240340264,-1.8752457453
H,0,0.412225691,-0.1959096828,-2.5367376059
H,0,0.5128779009,1.5823360116,-2.5253447374
H,0,1.8103479623,4.0634664612,0.8195903287
H,0,0.3910277692,2.9918355888,0.7095493673
H,0,1.2947235801,3.1292861326,2.2423513681
H,0,4.1890015783,2.9473251094,0.8720998649
H,0,3.6915954988,2.0770912651,2.3436476886
H,0,4.2814094014,1.1763243453,0.9282866768
H,0,-4.4064720255,-2.6444272424,0.396486163
H,0,-3.6509173376,-2.9850819698,-1.1781914726
H,0,-2.7449200043,-3.2875669146,0.3265878822
H,0,-4.7846316256,-0.1517149142,-0.378215143
H,0,-3.3630571973,0.7884253967,-0.8954053577
H,0,-3.9874986415,-0.5067735301,-1.930048788
```

Dioxirane isomer \# 4 (29d)
$\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-994.543071975$

| Zero-point correction= | 0.302979 (Hartree/Particle) |
| :--- | :---: |
| Thermal correction to Energy $=$ | 0.320773 |
| Thermal correction to Enthalpy $=$ | 0.321718 |
| Thermal correction to Gibbs Free Energy= | 0.257487 |
| Sum of electronic and zero-point Energies $=$ | -994.240093 |
| Sum of electronic and thermal Energies= | -994.222299 |
| Sum of electronic and thermal Enthalpies $=$ | -994.221354 |
| Sum of electronic and thermal Free Energies= | -994.285585 |


|  | E (Thermal) | CV | S |
| :---: | :---: | :---: | :--- |
|  | KCal/Mol | Cal/Mol-Kelvin | Cal/Mol-Kelvin |
| Total | 201.288 | 69.729 | 135.185 |

O,0,-1.6329778479,-1.2272114858,-0.8206501475
C,0,-0.7391348375,-0.3765134467,-0.1618667385
C,0,-1.4960837847,0.0394902699,1.1125334641
O,0,-2.8560610131,-0.0661505811,0.7284225096
C,0,-2.9573390301,-1.0964259187,-0.2487034694
$\mathrm{C}, 0,0.5746732247,-1.1379515346,0.1077041251$
$\mathrm{C}, 0,1.8219784934,-0.2800349462,0.1331621767$
$\mathrm{C}, 0,1.9406167841,0.5366816958,-1.1787535347$
$\mathrm{C}, 0,0.5796440147,0.6287260327,-1.8799036111$
$\mathrm{O}, 0,-0.4642955375,0.7924367143,-0.920156601$
$\mathrm{O}, 0,1.6853073801,0.7083334579,1.138604703$
$\mathrm{C}, 0,2.3223481358,1.912251234,0.685625486$
$\mathrm{O}, 0,2.3863593534,1.8136362588,-0.7431962071$
$\mathrm{C}, 0,1.445072498,3.0927951661,1.0772794434$
$\mathrm{C}, 0,3.7430843066,1.9973561035,1.2426722026$
$\mathrm{O}, 0,0.5158387276,-2.2173326632,0.9837912431$
$\mathrm{O}, 0,0.7552574547,-2.3862288062,-0.4927864893$
$\mathrm{C}, 0,-3.3280302468,-2.4337566033,0.3894265213$
$\mathrm{C}, 0,-3.9295062866,-0.6390653929,-1.3259192638$
$\mathrm{H}, 0,-1.2842425817,1.0703075617,1.3947141355$
$\mathrm{H}, 0,-1.2532502872,-0.63222808,1.9469609616$
$\mathrm{H}, 0,2.6876103031,-0.9292592253,0.3116059457$
$\mathrm{H}, 0,2.6865096659,0.1125543707,-1.8616829159$
$\mathrm{H}, 0,0.4004718848,-0.2622878163,-2.4993306201$
$\mathrm{H}, 0,0.5531093988,1.5118738102,-2.5218309151$
$\mathrm{H}, 0,1.8959190537,4.027069664,0.7291716113$
$\mathrm{H}, 0,0.4608135309,2.9777160072,0.6171706272$
$\mathrm{H}, 0,1.3352272749,3.1412398289,2.1652461112$
$\mathrm{H}, 0,4.2519768373,2.8800058833,0.843018902$
$\mathrm{H}, 0,3.7221063487,2.0653769246,2.3348206327$
$\mathrm{H}, 0,4.3180429299,1.1105155308,0.9576682182$
$\mathrm{H}, 0,-3.3522636322,-3.2220656966,-0.3693042267$
$H, 0,-2.5864384747,-2.710917415,1.1443168381$
$H, 0,-4.3126574234,-2.3660997739,0.8626874836$
$\mathrm{H}, 0,-3.9938325701,-1.3871945731,-2.1217305475$
$H, 0,-4.9260913404,-0.4949501787,-0.8968817413$
$H, 0,-3.5823786862,0.307164061,-1.7483933981$

## Dioxirane isomer \# 5 (29e)

$\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-994.539936043$

| Zero-point correction $=$ | 0.303006 (Hartree/Particle) |
| :--- | :---: |
| Thermal correction to Energy $=$ | 0.320901 |
| Thermal correction to Enthalpy $=$ | 0.321845 |
| Thermal correction to Gibbs Free Energy= | 0.257652 |
| Sum of electronic and zero-point Energies= | -994.236930 |
| Sum of electronic and thermal Energies= | -994.219035 |

$\begin{array}{lc}\text { Sum of electronic and thermal Enthalpies }= & -994.218091 \\ \text { Sum of electronic and thermal Free Energies }= & -994.282284\end{array}$

|  | E (Thermal) | CV | S |
| :---: | :---: | :---: | :---: |
|  | KCal/Mol | Cal/Mol-Kelvin | Cal/Mol-Kelvin |
| Total | 201.368 | 69.960 | 135.105 |
| O, $0,-1$ | 578941,-1.0 | 50103,-0.9555 | 293 |
| C, $0,-1$ | 335293,-0.3565 | 686455,0.30086 | 191 |
| C, $0,-2$ | 643896,-1.093 | 089543,1.03964 | 521 |
| O,0,-2 | 954475,-2.19 | 407302,0.203503 | 7791 |
| C,0,-2 | 267366,-1.85 | 039327,-1.1206 |  |
| C, 0,0 . | 51272,-0.472 | 1875,0.9187347 |  |
| C,0,1. | 89089,0.123981 | $16363,0.0125211$ |  |
| C, $0,0$. | 94249,1.4093 | 33298,-0.6725165 |  |
| C, $0,-0$ | 114264,1.954 | 66371,0.0917833 |  |
| O,0,-1 | 948335,1.004 | 290717,0.16793 |  |
| O,0,2. | 04567,0.56743 | 11607,0.7492499 |  |
| C,0,2. | 20769,1.69773 | 39655,0.0632094 |  |
| O,0,1. | 1736,2.3351618 | 8708,-0.576548800 |  |
| C,0,3. | 18915,2.6462 | 57225,1.0961686 |  |
| C,0,3. | 58083,1.2588 | 23533,-0.99719660 | 048 |
| O,0,0. | 11203,-0.275 | 13234,2.293769 | 782 |
| O,0,0. | 85759,-1.621 | 440977,1.639248 | 486 |
| C, $0,-1$ | 477192,-3.12 | 428302,-1.83674 | 5911 |
| C, $0,-3$ | 713297,-1.079 | 573077,-1.85148 | 1204 |
| H,0,-3 | 6096,-0.4010 | 1492,1.1683093 |  |
| H, $0,-2$ | 020644,-1.47 | 579568,2.011410 | 6643 |
| H, $0,1$. | 68701,-0.639 | 15013,-0.728039 | 6717 |
| H,0,0. | 71757,1.2249 | 81651,-1.719540 | 287 |
| H, $0,-0$ | 140005,2.239 | 22659,1.1018303 |  |
| H, $0,-0$ | 990994,2.838 | 13534,-0.400051 | 994 |
| H,0,2. | 72029,2.91423 | 42256,1.8256981 |  |
| H, $0,3$. | 63487,3.5552 | 48234,0.6082010 |  |
| H,0,4. | 62079,2.1680 | $73448,1.6180583$ |  |
| H,0,4. | 51307,0.7537 | 38313,-0.52615795 | 559 |
| H,0,3. | 834139,0.5700 | 57773,-1.7124956 | 532 |
| H,0,4. | 70158,2.1288 | 99297,-1.550328003 | 034 |
| H, $0,-1$ | 4995,-2.8935 | 181,-2.84062368 |  |
| H,0,-2 | 654324,-3.80 | $799928,-1.92352$ | 0845 |
| H, $0,-1$ | 265516,-3.61 | 93868,-1.266063 | 344 |
| H,, ,-3 | 483321,-0.79 | 682753,-2.85284 | 9138 |
| H,0,-4 | 531775,-1.69 | 280365,-1.94486 | 0738 |
| H, $0,-3$ | 281493,-0.16 | $228825,-1.30821$ | 4709 |

Dioxirane isomer \# 6 (highest energy, 29f)


```
H,0,1.1659973096,4.5175082882,-2.4923822219
H,0,0.9977015684,4.2107902877,-0.7449889376
H,0,3.1082527304,2.0905488047,-3.0738059187
H,0,1.8447361871,0.8674498725,-3.3239562028
H,0,1.6746149219,2.4715358326,-4.0593137927
H,0,-0.1999370299,-4.7107719111,1.7755975298
H,0,0.6046985279,-4.1817608165,0.2786655747
H,0,0.8992472486,-3.3114873816,1.7975546545
H,0,-2.573715015,-4.4088162572,0.6787507562
H,0,-2.9349853046,-2.8422998623,-0.0883492181
H,0,-1.7623585569,-3.9571177734,-0.8386916179
```

Dioxirane model for Shi's oxazolidinone catalyst for cis and terminal alkenes (dioxirane derived from 26)
$\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-1083.41839519$

| Zero-point correction= | 0.251102 (Hartree/Particle) |
| :--- | :---: |
| Thermal correction to Energy $=$ | 0.268498 |
| Thermal correction to Enthalpy= | 0.269442 |
| Thermal correction to Gibbs Free Energy= | 0.205751 |
| Sum of electronic and zero-point Energies= | -1083.167293 |
| Sum of electronic and thermal Energies= | -1083.149897 |
| Sum of electronic and thermal Enthalpies $=$ | -1083.148953 |
| Sum of electronic and thermal Free Energies= $=$ | -1083.212644 |


|  | E (Thermal) | CV | S |
| :--- | :---: | :---: | :--- |
|  | KCal/Mol | Cal/Mol-Kelvin | Cal/Mol-Kelvin |
| Total | 168.485 | 66.757 | 134.050 |

C $\quad-1.929444 \quad 1.000294 \quad-0.709751$
$\begin{array}{lllll}\text { C } & -0.836408 & 0.039584 & -0.226121\end{array}$
$\begin{array}{lllll}\text { O } & -1.476550 & -0.803423 & 0.740145\end{array}$
C $\quad-2.855850-0.721126 \quad 0.637423$
$\mathrm{N} \quad-3.141172 \quad 0.318864-0.256185$
O $\quad-0.371655-0.697197-1.320439$
C $\quad 0.503361-1.782098 \quad-0.974240$
C $\quad 1.709464-1.354562-0.148522$
$\begin{array}{lllll}\text { C } & 1.440758 & -0.278492 & 0.921457\end{array}$
$\begin{array}{lllll}\text { C } & 0.356709 & 0.700771 & 0.461328\end{array}$
$\begin{array}{lllll}\text { O } & 2.680182 & -0.700704 & -0.954907\end{array}$
C $\quad 3.515966 \quad 0.055068-0.072716$
$\begin{array}{llll}\mathrm{O} & 2.691791 & 0.344130 & 1.088521\end{array}$
$\begin{array}{llll}\mathrm{O} & 0.092907 & 1.801439 & 1.270722\end{array}$

| O | 0.722397 | 1.920697 | -0.096502 |
| :--- | ---: | ---: | ---: |
| C | 3.918814 | 1.344555 | -0.769814 |
| C | 4.713449 | -0.771373 | 0.394598 |
| O | -3.598301 | -1.433134 | 1.243191 |
| C | -4.423174 | 0.712820 | -0.646584 |
| O | -5.457607 | 0.204636 | -0.295317 |
| H | 4.531557 | 1.953943 | -0.098999 |
| H | 4.501002 | 1.117854 | -1.668523 |
| H | 3.030447 | 1.913558 | -1.048652 |
| H | 5.281247 | -0.214830 | 1.146245 |
| H | 4.385907 | -1.713322 | 0.845085 |
| H | 5.371640 | -0.996018 | -0.450435 |
| H | -1.892049 | 1.087868 | -1.797047 |
| H | -1.822696 | 1.984259 | -0.246986 |
| H | 1.111673 | -0.705902 | 1.875170 |
| H | 2.136563 | -2.250815 | 0.327242 |
| H | -0.060123 | -2.544687 | -0.425912 |
| H | 0.835525 | -2.199813 | -1.926351 |
| H | -4.369674 | 1.571644 | -1.343199 |

## Trihydroxy substituted dimethyldioxirane (starting oxidant for structure 52)

$\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-493.892195472$

| Zero-point correction= | 0.103061 (Hartree/Particle) |
| :--- | :---: |
| Thermal correction to Energy $=$ | 0.111688 |
| Thermal correction to Enthalpy $=$ | 0.112632 |
| Thermal correction to Gibbs Free Energy $=$ | 0.069839 |
| Sum of electronic and zero-point Energies= | -493.789135 |
| Sum of electronic and thermal Energies= | -493.780507 |
| Sum of electronic and thermal Enthalpies $=$ | -493.779563 |
| Sum of electronic and thermal Free Energies $=$ | -493.822356 |


|  | E (Thermal) | CV | S |  |
| :---: | :---: | :---: | :---: | :---: |
|  | KCAL/MOL | CAL/MOL-KELVIN | CAL/MOL-KELVIN |  |
| TOTAL | 70.085 | 30.543 | 90.066 |  |

O,0,-1.2858958718,0.5476136673,0.9912352827
C,0,-0.3027474815,0.0304153287,0.1351942501
C,0,1.0486097971,-0.2632537554,0.7777265562
O,0,1.8838131197, $0.823101911,0.5352000797$
С, $0,-0.3281623918,0.5504477077,-1.2892422866$
O,0,-1.6354759689,0.6442270603,-1.8023203481

```
O,0,-1.2883724246,-0.8840961803,0.5183334602
O,0,1.6255681483,-1.4099742207,0.1770426527
H,0,0.8790920316,-0.4358085112,1.8533626019
H,0,0.2013840659, \(1.5154363182,-1.2942680464\)
H,0,0.236001367,-0.1381843075,-1.9255987642
H,0,1.1922146908,-2.194295714,0.5518397584
H,0,-2.1905226783,1.0144941138,-1.0956486952
\(\mathrm{H}, 0,2.7785349589,0.5657245141,0.8123130079\)
```


## Transition structure A (Structure 34)


$\mathrm{C}, 0,-1.1573723199,-1.6137484023,-1.4324809792$
$\mathrm{C}, 0,0.1448851298,-2.3152626989,-1.7935740273$
$\mathrm{O}, 0,1.0067948319,-2.5561699704,-0.6834230446$
$\mathrm{O}, 0,-2.34723153,-0.481857112,0.195228648$
$\mathrm{C}, 0,-3.0323214613,-1.7149406167,-0.1178851238$
$\mathrm{O}, 0,-2.0973554667,-2.5098317298,-0.8542955967$
$\mathrm{C}, 0,-3.403711449,-2.4605425736,1.1552633302$
$\mathrm{C}, 0,-4.2459787322,-1.3697461127,-0.984535096$
$\mathrm{O}, 0,-0.3380911021,-1.7094037112,1.7244169345$
$\mathrm{O}, 0,0.1553494004,0.0755542958,1.7652747243$
$\mathrm{C}, 0,4.0778101239,0.7628141099,-0.8206749143$
$\mathrm{C}, 0,3.8856373195,-1.6335635236,-1.6112372229$
$\mathrm{H}, 0,5.1610394913,0.6352048518,-0.7352852643$
$\mathrm{H}, 0,3.8525328648,1.1598963566,-1.8150772818$
$\mathrm{H}, 0,3.7571219856,1.4818705772,-0.0632987482$
$\mathrm{H}, 0,4.9608950039,-1.7877297824,-1.4749191017$
$\mathrm{H}, 0,3.3673260681,-2.5825021846,-1.4610832223$
$\mathrm{H}, 0,3.707341102,-1.3018475996,-2.6396495867$
$\mathrm{H}, 0,-4.1243320976,-1.8738781488,1.7343315731$
$\mathrm{H}, 0,-3.8576323429,-3.4255552841,0.9062437844$
$\mathrm{H}, 0,-2.5046999311,-2.6157267145,1.7530911353$
$\mathrm{H}, 0,-4.9087132726,-0.684721115,-0.4461731977$
$\mathrm{H}, 0,-3.9322895744,--0.8812565553,-1.912505596$
$\mathrm{H}, 0,-4.805481601,-2.2767526444,-1.2354990315$
$\mathrm{H}, 0,2.6452588832,-2.8649123542,0.9756932528$
$\mathrm{H}, 0,2.1411804049,-1.5698309133,2.098660223$
$\mathrm{H}, 0,-0.7899723827,0.440602556,-0.7683264252$
$\mathrm{H}, 0,-1.5721853856,-1.1699620053,-2.3532761786$
$\mathrm{H}, 0,0.6693430099,-1.7105324367,-2.5447383069$
$\mathrm{H}, 0,-0.0705944371,-3.297481301,-2.2214421838$
$\mathrm{H}, 0,2.7419251698,0.7211857559,2.7399375044$
$\mathrm{H}, 0,2.7044925005,2.4715461564,2.9914173816$
$\mathrm{H}, 0,1.4601831409,1.4501138896,3.7423267577$
$\mathrm{H}, 0,-2.5024694165,3.2544373137,1.6561321336$
$\mathrm{H}, 0,-3.8008767658,4.2268870914,-0.2121662167$
$\mathrm{H}, 0,-2.767213449,4.4435949774,-2.4648729541$
$\mathrm{H}, 0,-0.4283102653,3.6831026857,-2.8299760232$
$\mathrm{H}, 0,0.8722451059,2.7250222165,-0.9716613078$
$\mathrm{H}, 0,1.7269007466,1.5888788089,0.6697200277$
$\mathrm{H}, 0,-0.4830971393,2.5033706843,2.5906575736$

B3LYP/6-31+G**
$\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-1343.58260590$

| Zero-point correction= 0.462895 (Hartree/Particle) |  |  |  |
| :---: | :---: | :---: | :---: |
| Thermal correction to Energy=$0.489945$ |  |  |  |
| Thermal correction to Enthalpy= 0.490889 |  |  |  |
| THERMAL CORRECTION TO GIBBS FREE ENERGY= 0.405921 |  |  |  |
| Sum of electronic and zero-point Energies= -1343.119711 |  |  |  |
| Sum of electronic and thermal Energies $=\quad-1343.092661$ |  |  |  |
| Sum of electronic and thermal Enthalpies= -1343.091717 |  |  |  |
| Sum of electronic and thermal Free Energies= -1343.176685 |  |  |  |
|  E (Thermal) CV S <br>  KCal/Mol Cal/Mol-Kelvin Cal/Mol-Kelvin <br> Total 307.445 105.985 178.830 |  |  |  |
|  |  |  |  |
|  |  |  |  |
| C,0.9955366892,-2.7924590253,-0.955514423 |  |  |  |
| C,1.5731607869,-2.5101718243,0.3027565047 |  |  |  |
| C,2.9801925271,-2.4419090208,0.3912420751 |  |  |  |
| C,3.7806302915,-2.643453368,-0.7306835374 |  |  |  |
| C,3.192277621,-2.9199360755,-1.9684282761 |  |  |  |
| C,1.7975541353,-2.9929487422,-2.074996739 |  |  |  |
| C,0.7918231934,-2.3210319918,1.513077508 |  |  |  |
| C,-0.5799490558,-2.2025536285,1.6265211689 |  |  |  |
| C,-1.3091025019,-2.3881318914,2.9230630627 |  |  |  |
| O,-1.811079123,-0.2811947605,-0.8703584632 |  |  |  |
| С,-1.7036420576,0.8109567378,0.0374866626 |  |  |  |
| C,-2.9615511619,0.6942128737,0.9198137149 |  |  |  |
| O,-3.6807638926,-0.4262300205,0.3860687027 |  |  |  |
| C,-3.2124264796,-0.6457136103,-0.9378833082 |  |  |  |
| C, $-0.360721409,0.7974671405,0.8146873802$ |  |  |  |
| C, $0.8459046926,0.9274415192,-0.1424986781$ |  |  |  |
| C,0.6494825978,2.0433642946,-1.1811936237 |  |  |  |
| C,-0.7844193537,2.2542314149,-1.6477930718 |  |  |  |
| O,-1.7684785681,2.066625665,0.6290715289 |  |  |  |
| O,2.0337429843,1.3211780288,0.5249126389 |  |  |  |
| C,2.2471250722,2.7396157168,0.3236592773 |  |  |  |
| O,1.1535492055,3.1828581349,0.4906693867 |  |  |  |
| C,2.2000133937,3.4860209149,1.6481255089 |  |  |  |
| C,3.5757866562,2.9160206273,-0.414186629 |  |  |  |
| O,-0.4116155985,1.6057170478,1.8824198678 |  |  |  |
| O,-0.2048599453,-0.2359463975,1.8049244172 |  |  |  |
| C,-3.3264528846,-2.1252993168,-1.2689690916 |  |  |  |
| C,-3.9611639559, $0.2255731112,-1.9535417757$ |  |  |  |
| H,-4.3803393937,-2.4152720519,-1.293871432 |  |  |  |
| H,-2.8869719542,-2.3289516316,-2.2495454457 |  |  |  |
| H,-2.8224258526,-2.7313007461,-0.5135308992 |  |  |  |

```
H,-5.0177704004,-0.0578955302,-1.9676226943
H,-3.8805569174,1.2828962168,-1.6966783052
H,-3.5456878213,0.0788016285,-2.9555151673
H,3.028556359,3.1629350096,2.2857473349
H,2.291642811,4.5621815922,1.4710433958
H,1.2563765344,3.2717116022,2.1508793953
H,4.3894548191,2.480842776,0.1736132182
H,3.5477731861,2.4141584016,-1.3856822654
H,3.7821206993,3.9791190217,-0.5705350218
H,-3.5463363024,1.6162716632,0.8512993662
H,-2.7128630546,0.4887013638,1.9600329951
H,1.0158712679,-0.0404500124,0.6218833856
H,1.2700290702,1.838171739,-2.0687926941
H,-0.985777098,1.5696907278,-2.481641466
H,-0.911382496,3.2819130495,-1.9955311644
H,-2.2118522463,-1.7739154898,2.9526676799
H,-1.6174016174,-3.4372756883,3.0274089723
H,-0.6767603034,-2.128617983,3.7763432925
H,3.4377462405,-2.214075235,1.3497190321
H,4.8610081316,-2.581294959,-0.6418537266
H,3.8140848734,-3.0803129721,-2.8442769235
H,1.3371742672,-3.2113590909,-3.0340763952
H,-0.0824279714,-2.8552727333,-1.0547384161
H,-1.1827160935,-2.2299107074,0.7258248849
H,1.3651179831,-2.2733266823,2.4369235926
```


## Transition structure B (Structure 35)

## B3LYP/6-31G* <br> $\mathrm{E}($ RB+HF-LYP $)=-1343.49715905$

| Zero-point correction $=$ | 0.466330 (Hartree/Particle) |
| :--- | :---: |
| Thermal correction to Energy $=$ | 0.493021 |
| Thermal correction to Enthalpy $=$ | 0.493965 |
| Thermal correction to Gibbs Free Energy= | 0.410261 |
| Sum of electronic and zero-point Energies= | -1343.030829 |
| Sum of electronic and thermal Energies= | -1343.004138 |
| Sum of electronic and thermal Enthalpies= | -1343.003194 |
| Sum of electronic and thermal Free Energies= $=$ | -1343.086898 |


|  | E (Thermal | CV | S |
| :---: | :---: | :---: | :---: |
|  | $\mathrm{KCal} / \mathrm{Mol}$ | Cal/Mol-Kelvin | Cal/Mol-Kelvin |
| Total | 309.375 | 105.114 | 176.170 |

$\mathrm{O}, 0,-3.1460413688,-1.9607588585,-1.3813884403$
$\mathrm{C}, 0,-2.786288604,-1.6751096494,-0.0360359545$
$\mathrm{C}, 0,-1.2519191149,-1.7455228885,-0.1014440467$
$\mathrm{O}, 0,-1.0182803488,-2.7666827114,-1.053835475$
$\mathrm{C}, 0,-2.2069256676,-2.924270169,-1.8678995091$
$\mathrm{C}, 0,-3.3611354306,-0.3479578251,0.4536526418$
$\mathrm{O}, 0,-2.6100530989,0.8100649592,0.0902281084$
$\mathrm{C}, 0,-1.2212001159,0.7279222344,0.3874816439$
$\mathrm{C}, 0,-0.6612560681,-0.3855606939,-0.527274252$
$\mathrm{C}, 0,-0.6122239419,2.1256483097,0.1760332977$
$\mathrm{O}, 0,-0.1295903104,2.5142209307,1.4696799933$
$\mathrm{C}, 0,-0.8016944456,1.7097178025,2.4308420433$
$\mathrm{O}, 0,-0.9798474052,0.4450927313,1.7618405927$
$\mathrm{C}, 0,0.0987967367,1.5054643083,3.6391716405$
$\mathrm{C}, 0,-2.1513099613,2.3234685425,2.8230328883$
$\mathrm{O}, 0,-0.7248167753,-0.0538006757,-1.8105789224$
$\mathrm{O}, 0,0.7825187434,-0.3687092649,-0.736874746$
$\mathrm{C}, 0,-1.8996686764,-2.6123832899,-3.3243528177$
$\mathrm{C}, 0,-2.7326557001,-4.3460318432,-1.6570847601$
$\mathrm{C}, 0,2.4287234023,0.0089606732,0.648117697$
$\mathrm{C}, 0,2.259648502,-1.2993052049,0.2313622658$
$\mathrm{H}, 0,0.3032245964,2.4687363936,4.1160132338$
$\mathrm{H}, 0,-0.390168713,0.8529981361,4.3686688601$
$\mathrm{H}, 0,1.0489435193,1.0534939762,3.3447991759$
$\mathrm{H}, 0,-1.9906733423,3.2959711273,3.2996529715$
$\mathrm{H}, 0,-2.7856849172,2.4585578355,1.9448345915$
$\mathrm{H}, 0,-2.6733218942,1.6697609029,3.529770485$
$\mathrm{H}, 0,-1.1848501483,-3.3420313813,-3.7188844321$
$H, 0,-2.8171031867,-2.6651818771,-3.9200278407$
$\mathrm{H}, 0,-1.4705718234,-1.611974494,-3.3896285192$
$\mathrm{H}, 0,-1.9661320046,-5.0752629783,-1.9382546244$
$H, 0,-2.9931159009,-4.5125069224,-0.6070355876$
$\mathrm{H}, 0,-3.6225470675,-4.517014055,-2.2713441832$
$\mathrm{H}, 0,-1.3818607066,2.8140374201,-0.1872942157$
$\mathrm{H}, 0,0.2276357847,2.1032256294,-0.517804457$
$\mathrm{H}, 0,-0.8306846597,-2.044369026,0.8602644053$
$\mathrm{H}, 0,-3.1647173034,-2.4688809413,0.6298231832$
$\mathrm{H}, 0,-3.4476211223,-0.3975213092,1.5466734395$
$\mathrm{H}, 0,-4.3576898593,-0.201580856,0.0297391882$
$\mathrm{H}, 0,1.9226763187,0.3048653691,1.5619415583$
$\mathrm{C}, 0,3.2287016572,1.0364621742,-0.000984688$
$\mathrm{H}, 0,2.7520630313,-1.6219821174,-0.6808809424$
$\mathrm{C}, 0,1.7543848226,-2.399478136,1.111524023$

C,0,3.1137302645,2.3680478163,0.4481482278
C,0,3.8725439866,3.3819359102,-0.1297419339
C,0,4.7641790065,3.0876435395,-1.1635685866
C, $0,4.889861709,1.7713378803,-1.6191528596$
C,0,4.133272265,0.7558764326,-1.0453857125
H,0,2.3947103539,2.6018876704,1.2281747898
H,0,3.7647155734,4.4037178512,0.2234482611
H,0,5.3586636541,3.8780739871,-1.6135476699
H,0,5.5830742247,1.5377222598,-2.4224603544
H,0,4.2522583296,-0.2620256776,-1.4031090348
H,0,2.6109125055,-2.9634830335,1.5079410247
H,0,1.1845897604,-2.012805746,1.9619269468
H,0,1.1367717528,-3.1030405723,0.5453833711
B3LYP/6-31+G**
$\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-1343.58073657$

| Zero-point correction= | 0.462995 (Hartree/Particle) |
| :--- | :---: |
| Thermal correction to Energy $=$ | 0.490008 |
| Thermal correction to Enthalpy $=$ | 0.490952 |
| Thermal correction to Gibbs Free Energy= | 0.405879 |
| Sum of electronic and zero-point Energies $=$ | -1343.117741 |
| Sum of electronic and thermal Energies= | -1343.090728 |
| Sum of electronic and thermal Enthalpies $=$ | -1343.089784 |
| Sum of electronic and thermal Free Energies= $=$ | -1343.174857 |


|  | E (Thermal) | CV | S |
| :---: | :---: | :---: | :--- |
|  | $\mathrm{KCal} / \mathrm{Mol}$ | $\mathrm{Cal} /$ Mol-Kelvin | Cal/Mol-Kelvin |
| Total | 307.485 | 105.992 | 179.051 |

O,-3.8840754221,-0.3154889727,-0.785352618
С,-3.2045858289,0.5543549248,0.1149149125
C,-2.0390845189,-0.3299945716,0.5902892784
O,-2.6081985113,-1.6283051444,0.6027544637
C,-3.7775929967,-1.6435120133,-0.257348405
C,-2.8081219369,1.8729674914,-0.5428981312
O,-1.5852461217,1.8368452316,-1.2829147786
C,-0.4803283763,1.2820901438,-0.576963653
C,-0.8239348735,-0.2112002727,-0.3548385889
C,0.7922374029,1.5551421339,-1.3994120205
O,1.60284065,2.3847279504,-0.5512528912
C,0.7433029817,2.9726644583,0.4186178953
O,-0.2483243393,1.9495269774,0.6595510771

C,1.5202258232,3.217211853,1.7021985554
C,0.096658643,4.2583432096,-0.1109189456
O,-0.8523720213,-0.8962528967,-1.4958317311
O, $0.3018744257,-1.0760997491,-0.0281288087$
C,-3.5812114773,-2.6128472647,-1.4120616821
C,-4.9929707654,-1.9819688115,0.6079167676
C,2.0664083501,-0.8212581485,1.2890408919
C,1.0790188965,-1.6739653349,1.7469770699
H,2.3277570662,3.9301517275,1.5143167182
H,0.8607054453,3.6322633985,2.4693166402
H,1.9533576987,2.2873724477,2.0754212672
H,0.8723851997,5.0061692043,-0.3012885314
Н,-0.4485467626,4.0696660707,-1.0371933812
Н,-0.6034887717,4.6601131104,0.6282012294
H,-3.4975181542,-3.634255332,-1.0283644783
H,-4.4398782102,-2.5619422308,-2.0888432553
Н,-2.6691077692,-2.3525309053,-1.9499411432
H,-4.8500343274,-2.9547681227,1.0877593985
H,-5.1339536992,-1.2309807167,1.3906645311
H,-5.8952439581,-2.0219735077,0.009606228
H,0.5298219453,2.0699179224,-2.3283896863
H,1.3411798702,0.6397592601,-1.6168416292
H,-1.7330827487,-0.0627971946,1.6035840649
Н,-3.8601999298,0.789912021,0.9691995698
Н,-2.7346221468,2.6391322432,0.2391053187
H,-3.5783142257,2.1709181318,-1.2578764609
H,2.0239523559,0.2104210555,1.6258262093
C,3.1842918075,-1.1577418491,0.420409708
H,1.1054103836,-2.7155025383,1.4427539221
C,0.1767332662,-1.3641239523,2.8999353064
C,4.0386111574,-0.1204402977,-0.0087844718
C,5.1355380855,-0.3893218401,-0.8248620634
C,5.401566252,-1.7004036104,-1.2300574531
C,4.5606724444,-2.7407424143,-0.815578234
C,3.4654184704,2.4755415511,0.000548985
H,3.8159326957,0.9017412627,0.2821641007
H,5.7781088057,0.4234639352,-1.1500029077
H,6.2557168195,-1.9122601917,-1.8665111263
H,4.7613592596,-3.7600226711,-1.1318641341
H,2.8248853229,-3.2944891607,0.3099484501
H,0.587979519,-1.8299039586,3.8062499685
H,0.0956221788,-0.2889340174,3.0824552466
Н,-0.8192899839,-1.788542112,2.7464042911

## Transition structure EA (Structure 36)

| E(RB+HF-LYP) $=-1343.49417539$ |  |
| :--- | :---: |
|  |  |
| Zero-point correction $=$ | 0.465352 (Hartree/Particle) |
| Thermal correction to Energy $=$ | 0.493535 |
| Thermal correction to Enthalpy $=$ | 0.407620 |
| Thermal correction to Gibbs Free Energy $=$ | -1343.028823 |
| Sum of electronic and zero-point Energies $=$ | -1343.001640 |
| Sum of electronic and thermal Energies $=$ | -1343.000696 |
| Sum of electronic and thermal Enthalpies $=$ | -1343.086556 |

Total

| E (Thermal) | CV | S |
| :---: | :---: | :---: |
| KCal/Mol | Cal/Mol-Kelvin | Cal/Mol-Kelvin |
| 309.070 | 105.583 | 180.707 |

C,0,-0.3269567393,2.8348642482,-0.7745468189
C,0,-1.076970799,2.6042724679,0.4002927737
C,0,-2.4656818317,2.8480528589,0.3646846318
С,0,-3.0827734167,3.3155120338,-0.7910970196
С,0,-2.3253936274,3.5435345789,-1.9421176825
C,0,-0.9480281261,3.296418923,-1.9293784729
C,0,-0.4880312793,2.1604407179,1.6499362601
C,0,0.8275477904,1.8282318525,1.8984394446
C,0,1.3889141094,1.7347045998,3.286164654
H,0,0.7377198918,2.6282197951,-0.7872354657
H,0,-3.0563142614,2.6600879979,1.2571532666
H,0,-4.1536772407,3.497602881,-0.7969416977
Н,0,-2.8041311746,3.9087760605,-2.8465324865
H,0,-0.3577891986,3.4656184942,-2.8256654474
H,0,-1.1752785509,2.0980149461,2.4918199672
H,0,1.5450705599, 1.8822590044,1.0886375456
H,0,2.1543203108,0.9556049056,3.3441437821
H,0,1.8572000827,2.6881113957,3.5679160878
H,0,0.6086205508,1.5057990233,4.0179818965
O,0,2.0485007839,0.2099671173,-0.5628497825
C, $0,1.5568394628,-1.0489339828,-0.1591072879$
C,0,2.7277814606,-1.6132861391,0.6477929096
O,0,3.8685706968,-1.0810138012,-0.0213001143
C,0,3.48894172,0.1130430843,-0.6993490558
C, $0,0.2234592471,-0.9479642992,0.6395620804$
С,0,-0.960337836,-0.7741193666,-0.3255136588
C, $0,-1.0576896348,-2.0038402493,-1.2534300038$

```
C,0,0.273124795,-2.7622779,-1.2917135346
O,0,1.3455569491,-1.8193128461,-1.3510338864
O,0,-2.208472678,-0.7299965345,0.3349795231
C,0,-2.9250181626,-1.9583171105,0.1191485139
O,0,-2.0655805331,-2.8015478755,-0.6535288999
C,0,-3.1903341451,-2.6415803929,1.4541855592
C,0,-4.1985066193,-1.6397803161,-0.6662119187
C,0,4.1187486154,1.3267227732,-0.0197500104
C, \(0,3.8721916704,-0.0108739134,-2.1715331606\)
H,0,2.7772651616,-2.7028302624,0.6149430468
H,0,2.6745995458,-1.2820495389,1.691876666
H,0,-0.8219121312,0.1495312709,-0.8963801241
H,0,-1.3533834112,-1.6949911857,-2.2667269571
H,0,0.370740032,-3.3825422756,-2.1857080096
H,0,0.3433288612,-3.4048072326,-0.404850511
H,0,-3.8548559873,-2.0246135825,2.0678885586
H,0,-3.6652063951,-3.6149619096,1.2933293796
H,0,-2.2402203904,-2.7754132339, 1.9749341148
H,0,-4.8244133295,-0.9378571172,-0.1057450674
H,0,-3.9456300637,-1.1842126622,-1.6289734715
H,0,-4.7720950607,-2.5540622914,-0.8494156935
H,0,5.2072768349,1.2838215892,-0.1232325822
H,0,3.7652229536,2.2581379745,-0.475397377
\(\mathrm{H}, 0,3.8758254168,1.3328136099,1.0469458739\)
H,0,4.9544185951,-0.149110388,-2.263827297
H,0,3.361630336,-0.8720553487,-2.6061680684
H,0,3.5856448349,0.8924790616,-2.7203547615
O,0,0.1146108264,-1.9196991087,1.5679444008
O,0,0.223696868,-0.0904366753,1.7741432108
```


## Transition structure DA (Structure 37)

$\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-1343.49414673$

| Zero-point correction $=$ | 0.465574 |
| :--- | :---: |
| (Hartree/Particle) |  |
| Thermal correction to Energy $=$ | 0.492786 |
| Thermal correction to Enthalpy $=$ | 0.493730 |
| Thermal correction to Gibbs Free Energy= | 0.407317 |
| Sum of electronic and zero-point Energies $=$ | -1343.028573 |
| Sum of electronic and thermal Energies= | -1343.001360 |
| Sum of electronic and thermal Enthalpies $=$ | -1343.000416 |
| Sum of electronic and thermal Free Energies= | -1343.086830 |



```
H,0,-0.7970362178,3.4162874684,0.1862302749
H,0,-1.0434844321,3.710093104,-1.5519750105
H,0,1.8514131251,2.8729443722,2.1187504553
H,0,3.1438739653,3.9265977768,1.4707747262
H,0,3.5392880891,2.3047819216,2.0871481517
H,0,4.5256269517,1.522991057,-0.2014795231
H,0,3.5615354421,1.7962221488,-1.6680400286
H,0,4.2712880922,3.1797526017,-0.8017464558
H,0,-3.141091424,-2.4515013659,-1.9692610703
H,0,-4.638405078,-2.3872430504,-1.0178308062
H,0,-3.0977328949,-2.6978869033,-0.2021459082
H,0,-3.7730476197,-0.0983290887,-2.8821624884
Н,0,-5.2139326562,-0.067588045,-1.8362742782
H,0,-4.0007916144,1.2341208898,-1.7407159072
O,0,-0.4411225112,1.6718561766,1.766752977
O,0,-0.3008495089,-0.1472364544,1.7216826457
```


## Transition structure EB (Structure 38)

$\mathrm{E}($ RB+HF-LYP $)=-1343.49441751$

| Zero-point correction $=$ | 0.466189 |
| :--- | :---: |
| (Hartree/Particle) |  |
| Thermal correction to Energy $=$ | 0.493123 |
| Thermal correction to Enthalpy $=$ | 0.494068 |
| Thermal correction to Gibbs Free Energy= | 0.409189 |
| Sum of electronic and zero-point Energies $=$ | -1343.028229 |
| Sum of electronic and thermal Energies $=$ | -1343.001294 |
| Sum of electronic and thermal Enthalpies $=$ | -1343.000350 |
| Sum of electronic and thermal Free Energies= | -1343.085229 |


|  | E (Thermal) | CV | S |
| :---: | :---: | :---: | :---: |
|  | $\mathrm{KCal} / \mathrm{Mol}$ | $\mathrm{Cal} /$ Mol-Kelvin | Cal/Mol-Kelvin |
| Total | 309.440 | 105.300 | 178.642 |

O,0,-0.1397808007,1.9487730159,0.8031809682
C,0,-0.4030080094,1.443350613,-0.5042255978
C, $0,0.910780291,1.72311721,-1.2694294903$
O,0,1.7556920424,2.3973039863,-0.3291714303
C,0,0.901115582,2.9332783582,0.6779235037
C,0,-0.8177936035,-0.0470992952,-0.4199137197
C,0,-2.0670068514,-0.1304498079,0.470845904
С,0,-3.2059507186,0.6692129949,-0.2059883139
С,0,-2.6914304869,1.5038583726,-1.3898011439

> | $\mathrm{O}, 0,-1.4689699695,2.1874445406,-1.0901627665$ |
| :--- |
| $\mathrm{O}, 0,-2.5721236057,-1.4393367573,0.6248363467$ |
| $\mathrm{C}, 0,-3.8113128516,-1.5898100466,-0.0858387024$ |
| $\mathrm{O}, 0,-4.0937312995,-0.3252260784,-0.6943988694$ |
| $\mathrm{C}, 0,-3.6472888994,-2.6326567682,-1.1849890499$ |
| $\mathrm{C}, 0,-4.9067510242,-1.93336503,0.9232821522$ |
| $\mathrm{C}, 0,1.6611815506,3.0259532762,1.991899334$ |
| $\mathrm{C}, 0,0.3319903717,4.2946968687,0.25893833$ |
| $\mathrm{H}, 0,0.7024766612,2.3522947134,-2.1408606371$ |
| $\mathrm{H}, 0,1.4019524279,0.8013863206,-1.5832062824$ |
| $\mathrm{H}, 0,-1.8323666494,0.2833998721,1.4542975155$ |
| $\mathrm{H}, 0,-3.7146251219,1.3105085728,0.5268174491$ |
| $\mathrm{H}, 0,-3.4004167794,2.2910699948,-1.6581791379$ |
| $\mathrm{H}, 0,-2.5622022599,0.8343608928,-2.246767072$ |
| $\mathrm{H}, 0,-3.4553055976,-3.6172627799,-0.7460404648$ |
| $\mathrm{H}, 0,-4.5576290697,-2.689868233,-1.7905102428$ |
| $\mathrm{H}, 0,-2.8008792501,-2.3505925523,-1.8146829276$ |
| $\mathrm{H}, 0,-4.6700748084,-2.8696933901,1.4389450977$ |
| $\mathrm{H}, 0,-4.9942006645,-1.1363717559,1.6685110614$ |
| $\mathrm{H}, 0,-5.8698920249,-2.0457646747,0.4153457794$ |
| $\mathrm{H}, 0,2.5054662173,3.7129715773,1.881844764$ |
| $\mathrm{H}, 0,1.0043857013,3.4055114513,2.7801958577$ |
| $\mathrm{H}, 0,2.0443851796,2.0492477648,2.2956435638$ |
| $\mathrm{H}, 0,1.1467900916,5.0189481645,0.1567858834$ |
| $\mathrm{H}, 0,-0.2035032027,4.2218830434,-0.689058871$ |
| $\mathrm{H}, 0,-0.36961938,4.6572076776,1.0169669182$ |
| $\mathrm{O}, 0,-0.8768563412,-0.6575178095,-1.6112248534$ |
| $\mathrm{O}, 0,0.2372639947,-0.9885213684,-0.1745982146$ |
| $\mathrm{C}, 0,1.9849771301,-0.8745592573,1.1751639514$ |
| $\mathrm{C}, 0,0.9546963744,-1.658412982,1.6498006058$ |
| $\mathrm{C}, 0,3.0859952642,-1.2925956272,0.3190297157$ |
| $\mathrm{C}, 0,0.0381964405,-1.254552448,2.761196819$ |
| $\mathrm{C}, 0,3.9245502672,-0.3006762665,-0.229057831$ |
| $\mathrm{C}, 0,4.9970718423,-0.6478813529,-1.0458917726$ |
| $\mathrm{C}, 0,5.2567952742,-1.9908913477,-1.3276208648$ |
| $\mathrm{C}, 0,4.434754257,-2.9858579009,-0.7887916952$ |
| $\mathrm{C}, 0,3.3619031599,-2.6432214837,0.0265996834$ |
| $\mathrm{H}, 0,1.9896138264,0.1690735953,1.4712535327$ |
| $\mathrm{H}, 0,0.9147818313,-2.7044149715,1.3600803263$ |
| $\mathrm{H}, 0,0.3807826153,-1.7149454308,3.6993419847$ |
| $\mathrm{H}, 0,0.0246491757,-0.1695857891,2.8993869541$ |
| $\mathrm{H}, 0,-0.9790067678,-1.6123466168,2.5764903326$ |
| $\mathrm{H}, 0,3.7029245463,0.744755447,--0.0312490997$ |
| $\mathrm{H}, 0,5.6287873317,0.129837838,-1.4660618177$ |

H,0,6.0950248825,-2.2632721141,-1.9631435135<br>H,0,4.6346273822,-4.0318627859,-1.0042560616<br>H,0,2.7403293826,-3.428460541,0.4456287561

## Transition structure D (Structure 39)

| E(RB+HF-LYP $)=-1343.49437390$ |  |
| :--- | :---: |
|  |  |
| Zero-point correction $=$ | 0.466324 (Hartree/Particle) |
| Thermal correction to Energy $=$ | 0.494082 |
| Thermal correction to Enthalpy $=$ | 0.409960 |
| Thermal correction to Gibbs Free Energy $=$ | -1343.028049 |
| Sum of electronic and zero-point Energies $=$ | -1343.001291 |
| Sum of electronic and thermal Energies $=$ | -1343.000347 |
| Sum of electronic and thermal Enthalpies $=$ | -1343.084413 |


|  | E (Thermal) | CV | S |
| :---: | :---: | :---: | :--- |
|  | KCal/Mol | Cal/Mol-Kelvin | Cal/Mol-Kelvin |
| Total | 309.414 | 104.987 | 176.932 |

O,0,-2.6740989201,-2.1275664876,-0.8457298065
C, $0,-1.4122778501,-1.6501662115,-1.3003142701$
C, $0,-1.2406944174,-0.3847308913,-0.4519628389$
O, $0,-2.5648170256,0.1133676394,-0.3426382548$
C,0,-3.4878470016,-0.9805917003,-0.589735822
C, $0,-0.3016038022,-2.6839960805,-1.1408970671$
O,0,0.2273800344,-2.7877220432,0.1776629966
C,0,0.6723337109,-1.5489997309,0.7344540303
C,0,-0.6064641704,-0.6984597923,0.9130837161
C, $0,1.4129732966,-1.8730354092,2.042806845$
O,0,2.7684741967,-1.495300827,1.802373935
C, $0,2.940055568,-1.2997410561,0.4075883936$
O,0,1.6347117416,-0.9062760281,-0.0723341119
C,0,3.9017007805,-0.1425304468,0.1948863762
C,0,3.4011748602,-2.5890821406,-0.2803476146
O,0,-1.3592998499,-1.2165307723,1.9009076591
O,0,-0.5101540489,0.4205755926,1.7956844336
C,0,-4.3336437404,-1.251468313,0.6448644708
C,0,-4.3198318702,-0.6184308109,-1.8214252548
C, $0,0.5263682445,2.5486195305,1.0301817222$
C,0,-0.7515608311,2.2977499433,1.5019938541
H,0,4.8930834186,-0.4088907106,0.5738468125

```
H,0,3.9822175233,0.1003551318,-0.8686916236
\(\mathrm{H}, 0,3.5387129493,0.7329395361,0.7368902763\)
H,0,4.3750544536,-2.893261173,0.1168588617
H,0,2.6809094347,-3.3915604942,-0.1053280449
H,0,3.4968374462,-2.4333021806,-1.3603755087
H,0,-4.973940285,-0.3888909039,0.8569311727
Н,0,-4.9706995749,-2.1260050837,0.4768245352
H,0,-3.6747810565,-1.4319861519,1.4952776439
Н, \(0,-4.8614694999,0.3170943257,-1.6485140948\)
H,0,-3.6776482125,-0.4850719112,-2.6976618787
H,0,-5.0452490492,-1.4098683847,-2.0350690811
H,0,1.3242407331,-2.941998663,2.2622167505
H,0,1.0275893457,-1.2896366587,2.8795801029
Н, \(0,-0.6167664034,0.3564534846,-0.9590862646\)
\(\mathrm{H}, 0,-1.4741728214,-1.3797507499,-2.3674137363\)
Н, \(0,0.5023717232,-2.4285107104,-1.8432429918\)
H,0,-0.683170954,-3.6774001945,-1.3900459974
H,0,1.315636881,2.6431846005,1.7739456134
C, \(0,-1.1465892421,2.5929859143,2.9211652307\)
H,0,-1.5754686389,2.245250974,0.7959131386
H,0,-1.9322731051,1.9060761992,3.2448282653
H,0,-0.2946815059,2.4986959516,3.6012331865
H,0,-1.5322083101,3.6188356073,2.9898698168
C,0,0.9227983991,2.7706590711,-0.3457510115
C,0,2.2779965603,3.0548997826,-0.6236499281
C,0,2.7073805915,3.3338359961,-1.9164701759
C,0,1.7923093259,3.3345325876,-2.9723934071
C, \(0,0.443624151,3.0646313331,-2.7187907055\)
C,0,0.009527684,2.7927482225,-1.4260583429
H,0,2.9920429127,3.0616978041,0.1954992983
H,0,3.755446563,3.5519375331,-2.1022089671
H,0,2.1245897801,3.551411036,-3.9837232489
H,0,-0.2747756237,3.0756438158,-3.5338908257
H,0,-1.0453786333,2.6056025938,-1.2512472231
```


## Transition structure BD (Structure 40)

$\mathrm{E}($ RB+HF-LYP $)=-1343.49416342$

| Zero-point correction $=$ | 0.466150 (Hartree/Particle) |
| :--- | :---: |
| Thermal correction to Energy $=$ | 0.492993 |
| Thermal correction to Enthalpy $=$ | 0.493937 |
| Thermal correction to Gibbs Free Energy= | 0.409405 |


| Sum of electronic and zero-point Energies $=$ | -1343.028014 |
| :--- | :---: |
| Sum of electronic and thermal Energies $=$ | -1343.001171 |
| Sum of electronic and thermal Enthalpies $=$ | -1343.000226 |
| Sum of electronic and thermal Free Energies $=$ | -1343.084758 |


|  | E (Thermal) | CV | S |
| :---: | :---: | :---: | :---: |
|  | KCal/Mol | Cal/Mol-Kelvin | Cal/Mol-Kelvin |
| Total | 309.358 | 105.056 | 177.913 |

O,0,1.2229450328,-1.2701686665,-0.5479930923
C,0,0.0635100323,-1.8152109978,0.0434374049
C,0,0.6106763684,-2.8603730184,1.0102374443
O,0,1.8430422977,-3.2617843246,0.4145876223
C,0,2.270567388,-2.266804672,-0.5104078934
С,0,-0.8248139811,-0.7325743701,0.6958925149
С, $0,-1.3143791924,0.2832337031,-0.3515243311$
C, $0,-1.8974851668,-0.4032459505,-1.5910523132$
C, $0,-1.1950644651,-1.6951003081,-1.9935867374$
O,0,-0.7650559652,-2.495281179,-0.8980985961
O,0,-2.3936314483,1.0755777113,0.1171047835
C,0,-3.6297823399,0.5181910765,-0.4040940597
O,0,-3.2471372004,-0.6130545174,-1.1901956297
C,0,-4.5191120648,0.0397500782,0.7331141069
C,0,-4.2906703693,1.5873992897,-1.276071119
C,0,3.5429746072,-1.5950200395,-0.0054434552
C,0,2.4381255734,-2.9137600283,-1.8836629351
H,0,-0.0491362374,-3.7250411131,1.0871984854
$\mathrm{H}, 0,0.76862722,-2.4204544851,2.0005274573$
H,0,-0.475356795,0.9336458455,-0.6145708906
H,0,-1.862323783,0.2860417603,-2.450926095
H,0,-0.3360130509,-1.431505049,-2.624715
H,0,-1.8764621343,-2.322250529,-2.5741775302
H,0,-4.8309099479,0.8903575403,1.3480782316
H,0,-5.4135862965,-0.445530403,0.3290082093
Н,0,-3.9614453376,-0.6668987614,1.3492524576
H,0,-4.489527981,2.4864631041,-0.6839698008
H,0,-3.6385659565,1.8641710887,-2.1104415486
Н, $,--5.2380427447,1.2156231409,-1.6792033073$
H,0,4.3501719144,-2.3309745033,0.0615630101
H,0,3.8502764078,-0.7905432954,-0.6805291494
H,0,3.3657690036,-1.176469958,0.9894685541
H,0,3.2090653027,-3.6900007204,-1.8399718545
H,0,1.4940665664,-3.3745726821,-2.1836345519
H,0,2.7330846723,-2.1675436348,-2.628998091

```
O,0,-1.7028742452,-1.315165635,1.5331775412
O,0,-0.3249155986,-0.1386520738,1.8972778797
C,0,1.4114429161,1.6304550951,1.7947570532
C,0,0.1297415234,1.6741515827,2.3183517089
C,0,-0.1344157983,1.5303426998,3.7902488564
C,0,1.8653092541,2.1982841552,0.5412128987
C,0,3.221435103,2.0459107076,0.1774655529
C,0,3.72528268,2.6167756634,-0.9860900038
C,0,2.8856932689,3.3567578182,-1.8229298633
C, \(0,1.5416718181,3.5286881833,-1.4770846879\)
C,0,1.0363379766,2.9654294696,-0.3103685611
H,0,2.1780402535,1.1624180943,2.4098337412
H,0,-0.6546416673,2.1738818596,1.756828717
H,0,-1.1165461058, 1.0807361527,3.9550058662
H,0,0.6235873125,0.9067802104,4.2737640083
H,0,-0.1216183457,2.5204641266,4.2648686377
H,0,3.878076693,1.4731461573,0.826511662
H,0,4.7733113264,2.4868698588,-1.2416111611
H,0,3.276424442,3.8035584633,-2.7328166253
H,0,0.8869494225,4.1141754471,-2.1166997452
H,0,-0.0045279263,3.1320009389,-0.0509372407
```


## Transition structure DD (Structure 41)

$\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-1343.49267341$

| Zero-point correction $=$ | 0.465809 (Hartree/Particle) |
| :--- | :---: |
| Thermal correction to Energy $=$ | 0.492805 |
| Thermal correction to Enthalpy $=$ | 0.493749 |
| Thermal correction to Gibbs Free Energy $=$ | 0.408585 |
| Sum of electronic and zero-point Energies= | -1343.026864 |
| Sum of electronic and thermal Energies $=$ | -1342.999869 |
| Sum of electronic and thermal Enthalpies= | -1342.998925 |
| Sum of electronic and thermal Free Energies= | -1343.084089 |


|  | E (Thermal) | CV | S |
| :---: | :---: | :---: | :---: |
|  | KCal/Mol | Cal/Mol-Kelvin | Cal/Mol-Kelvin |
| Total | 309.240 | 105.275 | 179.243 |

O,0,1.5672715027,-1.0954421547,-0.2803306105
C, $0,0.3457876838,-1.7686849109,-0.1441918547$
C,0,0.724397723,-3.0118721544,0.6651370812
O,0,2.0496495392,-3.2831013492,0.2198083766
$\mathrm{C}, 0,2.6506827512,-2.0481189061,-0.1494233823$
$\mathrm{C}, 0,-0.7321401461,-0.879652535,0.5374325655$
$\mathrm{C}, 0,-1.3216797265,0.0909591522,-0.4924300619$
$\mathrm{C}, 0,-2.034171252,-0.7040681472,-1.602593951$
$\mathrm{C}, 0,-1.5086640916,-2.1441499416,-1.6549558966$
$\mathrm{O}, 0,-0.0933005449,-2.1310774287,-1.4650883014$
$\mathrm{O}, 0,-2.3261671695,0.9378671647,0.0359469862$
$\mathrm{C}, 0,-3.6254144269,0.4890766596,-0.4100506489$
$\mathrm{O}, 0,-3.397981408,-0.6748738988,-1.2063201591$
$\mathrm{C}, 0,-4.4724996075,0.0903159756,0.790408914$
$\mathrm{C}, 0,-4.2475329715,1.6009381344,-1.2552429469$
$\mathrm{C}, 0,3.5834455987,-1.5581032679,0.9568953764$
$\mathrm{C}, 0,3.3430033414,-2.2276985582,-1.4952598228$
$\mathrm{H}, 0,0.0970911338,-3.8748269236,0.4375360979$
$\mathrm{H}, 0,0.6843922172,-2.8006179728,1.7403057863$
$\mathrm{H}, 0,-0.5106090725,0.7032129368,-0.8982310603$
$\mathrm{H}, 0,-1.8992715391,-0.2081649649,-2.5746253275$
$\mathrm{H}, 0,-2.0207145954,-2.7378276741,-0.8862405718$
$\mathrm{H}, 0,-1.6774298771,-2.6091342373,-2.6290222792$
$\mathrm{H}, 0,-3.9292475156,--0.6575868926,1.3713748439$
$\mathrm{H}, 0,-5.4281158222,-0.3259132514,0.4554363066$
$\mathrm{H}, 0,-4.6729724717,0.9643011061,1.4189064894$
$\mathrm{H}, 0,-4.3539521425,2.5158029008,-0.6632078659$
$\mathrm{H}, 0,-3.6142290049,1.819578222,-2.1210643183$
$\mathrm{H}, 0,-5.2366638191,1.2973131325,-1.6124270758$
$\mathrm{H}, 0,4.0210796981,-0.5900830131,0.692770189$
$\mathrm{H}, 0,4.3935100235,-2.2782264424,1.1082049375$
$\mathrm{H}, 0,3.0265505528,-1.4512522967,1.8926201669$
$\mathrm{H}, 0,3.7906170056,-1.2841006544,-1.8233741777$
$\mathrm{H}, 0,4.1305589908,-2.9843078433,-1.4166381259$
$\mathrm{H}, 0,2.6076606994,-2.5514498238,-2.2353262512$
$\mathrm{O}, 0,-1.5912849014,-1.6146994349,1.2835762918$
$\mathrm{O}, 0,-0.3653263974,-0.3351401608,1.7877943225$
$\mathrm{C}, 0,1.2732372452,1.5953120611,1.6832960692$
$\mathrm{C}, 0,0.0534334623,1.507597631,2.3253756975$
$\mathrm{C}, 0,-0.0584827267,1.2163371567,3.7944468427$
$\mathrm{C}, 0,1.5597887198,2.2673590487,0.4315416635$
$\mathrm{C}, 0,2.8919288849,2.2865635621,-0.0355449144$
$\mathrm{C}, 0,3.2387920025,2.9645912751,-1.1985175203$
$\mathrm{C}, 0,2.259348194,3.6405046792,-1.930886665$
$\mathrm{C}, 0,0.933359141,3.6339064291,-1.4861270837$
$\mathrm{C}, 0,0.583640018,2.9620125797,-0.3199227497$
$\mathrm{H}, 0,2.129486251,1.1503132068,2.1864743365$
$\mathrm{H}, 0,-0.8165170354,1.9727798649,1.8722213708$

H,0,-0.9713740551,0.6516924562,4.0005212469<br>H,0,0.799203805,0.6414379928,4.1567853912<br>H,0,-0.1038964757,2.1591351248,4.3557805913<br>H,0,3.6559050076,1.7658672639,0.53537824<br>H,0,4.2713672309,2.9666891493,-1.5362443123<br>H,0,2.5265368317,4.1708535789,-2.8406431287<br>H,0,0.1687855747,4.1600254312,-2.0510516768<br>H,0,-0.452195465,2.9674721858,0.004364657

## Transition structure AA (42)

```
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-1343.49168309\)
```

| Zero-point correction $=$ | 0.465694 (Hartree/Particle) |
| :--- | :---: |
| Thermal correction to Energy $=$ | 0.492558 |
| Thermal correction to Enthalpy $=$ | 0.493503 |
| Thermal correction to Gibbs Free Energy= | 0.408650 |
| Sum of electronic and zero-point Energies= | -1343.025989 |
| Sum of electronic and thermal Energies= | -1342.999125 |
| Sum of electronic and thermal Enthalpies $=$ | -1342.998181 |
| Sum of electronic and thermal Free Energies= | -1343.083033 |


|  | E (Thermal) | CV | S |
| :---: | :---: | :---: | :--- |
|  | KCal/Mol | Cal/Mol-Kelvin | Cal/Mol-Kelvin |
| Total | 309.085 | 105.256 | 178.587 |

C,0,-2.6782024338,-2.0461799999,1.1842101219
C, $0,-2.7058095348,-1.8988149126,-0.2195319122$
C,0,-3.8527634059,-1.3233568296,-0.8067033928
C,0,-4.9125565243,-0.8788874319,-0.0222830688
C,0,-4.8585260482,-1.014067718,1.3677919331
С, $0,-3.7408860184,-1.6049630191,1.9658755154$
C,0,-1.632838285,-2.3656394247,-1.0791018396
C,0,-0.3233862209,-2.6581325611,-0.7271912153
C,0,0.5518811244,-3.5554870577,-1.5496392176
H,0,-1.8302367199,-2.5325196629,1.6568397965
H,0,-3.8945437473,-1.2168254756,-1.8877503699
Н,0,-5.7821144761,-0.4288735562,-0.492830535
H,0,-5.6868852748,-0.6715860497,1.9814005007
Н,0,-3.7043390669,-1.7303636474,3.0443721024
H,0,-1.8965212827,-2.5143296253,-2.1246250354
H,0,0.0023741931,-2.4960434838,0.2959964426
H,0,1.5909926611,-3.2293171854,-1.4772049515

```
H,0,0.4828015331,-4.5868801835,-1.1763145749
H,0,0.2511079706,-3.5492391265,-2.6012994287 O,0,2.0506561863,-1.1375621681,0.3418577548 C,0,1.6850500107,0.2016805588,0.0721249714 C,0,3.0384108072,0.8675177515,-0.2003021758 O,0,3.9277277702,0.1476957279,0.6473887599 C,0,3.4331613044,-1.177666616,0.7774888345 C, \(0,0.7085616881,0.2651835192,-1.1552541039\) C, \(0,-0.3757615277,1.3372182897,-0.9734340904\) C,0,-1.0878163035,1.3215453138,0.3947264976 C,0,-0.2427961408,0.5858896196,1.4357570772 O,0,1.1431499814,0.8247800689,1.2282875826 O,0,0.2815316682,2.6006254629,-0.986104052 C,0,-0.4502740635,3.5073325983,-0.1638464994 O,0,-1.2299000905,2.7002433869,0.7300710455 C,0,0.5447297061,4.339770329,0.6355777467 С,0,-1.3980476865,4.3536598428,-1.0164077708 C,0,4.1864085797,-2.1321397061,-0.1472738895 C,0,3.4997899473,-1.5700186869,2.248823046 H,0,3.0489482714,1.9179224296,0.0895017344 H,0,3.3017967003,0.7594682645,-1.2580687737 H,0,-1.0738473822,1.2453487134,-1.8142754921 H,0,-2.0860973429,0.8751951523,0.3402769892
H, \(0,-0.4571453228,-0.4902356259,1.4127605632\)
H,0,-0.4773614565,0.9628184042,2.4344654392
H,0,0.0135413245,5.0327909974,1.2956268644
H,0,1.1656796478,3.6734389191,1.2392281752
H,0,1.1848365057,4.9182286997,-0.0382510324
H,0,-2.0137093735,4.9943978186,-0.3769410073
Н,0,-0.8300882011,4.9843876179,-1.7077749588
H,0,-2.0623409113,3.7070836609,-1.5986272837
H,0,3.7774855131,-3.1455625367,-0.0743908524
H,0,4.0979618988,-1.792699328,-1.1835221832
H,0,5.2455219435,-2.1623766509,0.1273883345
H,0,3.1013195812,-2.5791290665,2.397249033
H,0,4.537394435,-1.5490313494,2.5973620787
H,0,2.912998283,-0.8588293196,2.8350055453
O,0,1.2925908384,0.2601749244,-2.346698759
O,0,0.1280556769,-1.0039451477,-1.6228068977
```


## Transition structure G (43)

$\mathrm{E}($ RB+HF-LYP $)=-1343.49216932$

| Zero-point correction $=$ | 0.466269 (Hartree/Particle) |
| :--- | :---: |
| Thermal correction to Energy $=$ | 0.492954 |
| Thermal correction to Enthalpy $=$ | 0.493899 |
| Thermal correction to Gibbs Free Energy $=$ | 0.410508 |
| Sum of electronic and zero-point Energies= | -1343.025900 |
| Sum of electronic and thermal Energies= | -1342.999215 |
| Sum of electronic and thermal Enthalpies $=$ | -1342.998271 |
| Sum of electronic and thermal Free Energies= | -1343.081661 |


|  | E (Thermal) | CV | S |
| :---: | :---: | :---: | :--- |
|  | KCal/Mol | Cal/Mol-Kelvin | Cal/Mol-Kelvin |
| Total | 309.334 | 105.155 | 175.509 |

[^4]```
H,0,3.4702098138,4.0813406003,-0.914686222
H,0,-3.6078255391,1.432244078,1.085909017
H,0,-2.6526329363,0.3064786121,2.090983403
H, \(0,0.8618565285,-0.0172939898,-0.8033266466\)
H,0,0.9297628486,1.899899918,-2.2124809214
H,0,-1.3308145095,1.5371370742,-2.4460029007
H,0,-1.296071937,3.2421796908,-1.9354721597
С,0,-0.0987008901,-2.0353490418,1.8523599979
C, \(0,0.2699960303,-2.3716403415,0.54285829\)
C,0,-1.4460225462,-2.4085397632,2.4157435263
H,0,0.7028050583,-2.0612543133,2.5858699403
C,0,1.6064276345,-2.4361695227,0.0169259267
H, \(,-0.5324585637,-2.5575580926,-0.1670053162\)
C, \(0,1.8009665038,-3.0097286049,-1.2621156968\)
C,0,3.0766700893,-3.1464771378,-1.7958322388
C,0,4.1840356519,-2.6869473828,-1.076748595
C,0,4.0075693132,-2.083837657,0.1748095371
C,0,2.7382861319,-1.9582551825,0.7210580488
Н, \(0,0.9364928369,-3.3612968291,-1.8196478278\)
H,0,3.2104689623,-3.6022712117,-2.7726333476
H,0,5.1816643993,-2.7838479656,-1.49597586
H,0,4.8661766349,-1.6989381362,0.7170049595
H,0,2.6039093137,-1.4405857216,1.6643908135
H,0,-1.6226348287,-1.8503023442,3.3391851744
H,0,-2.2581539418,-2.1849946346,1.7202285735
Н,0,-1.4675851869,-3.4791212662,2.658776163
```


Transition structure CA (44)

$\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-1343.49137261$

Zero-point correction $=$	0.465751 (Hartree/Particle)
Thermal correction to Energy $=$	0.492595
Thermal correction to Enthalpy $=$	0.493539
Thermal correction to Gibbs Free Energy=	0.409098
Sum of electronic and zero-point Energies $=$	-1343.025622
Sum of electronic and thermal Energies=	-1342.998777
Sum of electronic and thermal Enthalpies=	-1342.997833
Sum of electronic and thermal Free Energies= $=$	-1343.082274

	E (Thermal	CV	S
	$\mathrm{KCal} / \mathrm{Mol}$	$\mathrm{Cal} /$ Mol-Kelvin	Cal/Mol-Kelvin
Total	309.108	105.241	177.721

$\mathrm{C}, 0,1.0503621231,-2.8865208276,-1.8755286836$
$\mathrm{C}, 0,1.6631781706,-2.8115557003,-0.6057971387$
$\mathrm{C}, 0,3.0719627849,-2.7473103786,-0.5490290836$
$\mathrm{C}, 0,3.8353147193,-2.7204820852,-1.7119945104$
$\mathrm{C}, 0,3.2096621274,-2.7739149277,-2.9607051569$
$\mathrm{C}, 0,1.8160611318,-2.8637403273,-3.0366132074$
$\mathrm{C}, 0,0.9094451716,-2.8578703107,0.6337399776$
$\mathrm{C}, 0,-0.4427982375,-2.6077132149,0.823472877$
$\mathrm{C}, 0,-1.2009342913,-3.1413659638,2.0019503404$
$\mathrm{H}, 0,-0.0282482732,-2.9896397932,-1.9460902286$
$\mathrm{H}, 0,3.5589987665,-2.7045631589,0.4219213378$
$\mathrm{H}, 0,4.9179918598,-2.6601144439,-1.646882946$
$\mathrm{H}, 0,3.8043788831,-2.7574588666,-3.8695653516$
$\mathrm{H}, 0,1.3275613644,-2.9266759745,-4.0049342232$
$\mathrm{H}, 0,1.4762676074,-3.1359591298,1.5203149802$
$\mathrm{H}, 0,-1.0502471721,-2.2946878073,-0.0206767676$
$\mathrm{H}, 0,-1.9927266318,-2.4443687821,2.2813209801$
$\mathrm{H}, 0,-1.6596427998,-4.1060032537,1.7432650484$
$\mathrm{H}, 0,-0.5421851314,-3.2927573183,2.8619141236$
$\mathrm{O}, 0,-2.3050377548,-0.2389648823,0.5546282533$
$\mathrm{C}, 0,-1.3881906968,0.8337051608,0.4950432782$
$\mathrm{C}, 0,-2.1505305435,2.0168768662,1.1432401787$
$\mathrm{O}, 0,-3.4139012717,1.4852528561,1.5202895944$
$\mathrm{C}, 0,-3.6269828166,0.2995703907,0.7752051062$
$\mathrm{C}, 0,-0.0787049898,0.4600239833,1.2773327875$
$\mathrm{C}, 0,1.1764788644,1.041796324,0.6110002062$
$\mathrm{C}, 0,1.2755308053,0.8050242095,-0.910283433$
$\mathrm{C}, 0,-0.0980556669,0.4790993791,-1.4973412302$
$\mathrm{O}, 0,-1.1199670643,1.2240901674,-0.8460788648$
$\mathrm{O}, 0,1.0831356993,2.4596980785,0.7152129553$
$\mathrm{C}, 0,1.7472987945,3.044279968,-0.4024599248$
$\mathrm{O}, 0,1.7703758829,2.0391562298,-1.4261576189$
$\mathrm{C}, 0,0.9256902415,4.2357674817,-0.8780123017$
$\mathrm{C}, 0,3.1871874578,3.4109088988,-0.0361890271$
$\mathrm{C}, 0,-4.407898675,-0.6763137762,1.6411963094$
$\mathrm{C}, 0,-4.3081076731,0.5926125887,-0.5658995452$
$\mathrm{H}, 0,-2.2525201194,2.8217609041,0.4066316491$
$\mathrm{H}, 0,-1.6513188912,2.3889116337,2.0382358117$
$\mathrm{H}, 0,2.0482885463,0.6604470844,1.1560928891$
$\mathrm{H}, 0,1.9872561131,0.012416743,-1.1635711963$
$\mathrm{H}, 0,-0.3004366577,-0.5967082096,-1.4287037437$
$\mathrm{H}, 0,-0.1274081829,0.7692141482,-2.5506279289$
$\mathrm{H}, 0,1.3938769447,4.6920028288,-1.7558903687$

```
H,0,-0.0779560604,3.8943358574,-1.1423891935
H,0,0.8537325242,4.9887510821,-0.0867892268
H,0,3.7180009169,3.7895073988,-0.9156436274
H,0,3.1992790371,4.1797565186,0.7429655277
H,0,3.7199632062,2.529519793,0.3348680661
H,0,-5.39938656,-0.2682266118,1.8598549202
H,0,-4.5309150541,-1.6350406266,1.1276698455
H,0,-3.8751102453,-0.8304942522,2.5828970901
H, \(0,-5.295428765,1.034104653,-0.3954172001\)
Н, \(0,-3.7042867658,1.2846962698,-1.1577244698\)
H,0,-4.4311566487,-0.3319893168,-1.1399761339
O,0,-0.1440832649,0.6271613642,2.5902708972
O,0,0.1191734461,-0.954894289,1.6309552117
```


Transition structure H (45)

$E($ RB+HF-LYP $)=-1343.49177120$

Zero-point correction $=$	0.466361 (Hartree/Particle)
Thermal correction to Energy $=$	0.492971
Thermal correction to Enthalpy $=$	0.493915
Thermal correction to Gibbs Free Energy=	0.410271
Sum of electronic and zero-point Energies $=$	-1343.025410
Sum of electronic and thermal Energies=	-1342.998800
Sum of electronic and thermal Enthalpies $=$	-1342.997856
Sum of electronic and thermal Free Energies=	-1343.081501

	E (Thermal)	CV	S
	KCal/Mol	Cal/Mol-Kelvin	Cal/Mol-Kelvin
Total	309.344	105.070	176.045

O,0,-3.741984794,-1.1172129746,-0.677175909
С, $0,-3.3071399304,-0.1005606772,0.2155316252$
C,0,-1.9623902646,-0.6664264063,0.7073092312
O,0,-2.1969042235,-2.0630640444,0.733877926
C, $0,-3.3180686021,-2.3672480456,-0.1247831814$
С, $0,-3.2383155602,1.2604708058,-0.4685414422$
O,0,-2.0823388185,1.4606043995,-1.2798518729
C,0,-0.856243889,1.2337037824,-0.6008349022
C,0,-0.809208054,-0.2756624454,-0.2471487879
C, $0,0.2882183742,1.6830421602,-1.5288532622$
O,0,0.986254735,2.6896539079,-0.7849015804
C,0,0.0540711009,3.2188643159,0.1506845153

[^5]Transition structure E (46)


```
H,0,3.6390051518,2.4140403306,-0.6232552145
H,0,2.1679229712,2.6942694576,1.5154531056
H,0,0.7625618597,0.780845125,1.7420166819
H,0,0.5056128074,4.3313367767,2.0901692328
H,0,0.053505427,5.4989219866,0.8262409918
H,0,-1.2027109775,4.5741524507,1.6825971611
H,0,-0.675901726,4.588368639,-1.5131142249
H,0,-2.0361254692,3.8197249551,-0.6655059704
Н,0,-0.9407652196,2.8249988215,-1.6657907901
O,0,-0.0136888664,0.6749077918,-1.500023687
O,0,-0.6013761486,-0.6167998286,-0.2067530669
С,0,-1.1901705999,-1.2323452324,1.5075882028
C,0,-2.196253004,-1.9879456617,0.9075802923
H,0,-2.0419869777,-3.0645574629,0.8414059177
C,0,-3.3945112835,-1.4788306262,0.3025489365
Н,0,-1.4400264138,-0.2279270617,1.8338042658
C,0,-0.1006510844,-1.9219566061,2.2850730119
H,0,0.8685314711,-1.438439787,2.1519211396
Н,0,-0.3460782718,-1.9066952572,3.3558752731
\(\mathrm{H}, 0,0.0051385708,-2.9663239743,1.9751498765\)
С,0,-4.3942987258,-2.391345516,-0.1084329966
С,0,-5.5811291387,-1.9412787839,-0.671369808
С, \(0,-5.7844660137,-0.569807328,-0.8576667728\)
С,0,-4.7942520833,0.3456439268,-0.4820002772
С,0,-3.6106848347,-0.0938795982,0.0962741733
Н,0,-4.2273598489,-3.4565535234,0.0320713821
H,0,-6.3446297118,-2.6525809991,-0.9729748352
H,0,-6.7088580819,-0.2152142087,-1.3054930451
H,0,-4.9465278491,1.4075983193,-0.6517438029
H,0,-2.8265162797,0.6152548042,0.3381551566
```


Transition structure C (47)

$\mathrm{E}($ RB+HF-LYP $)=-1343.48975459$

Zero-point correction $=$	0.465680 (Hartree/Particle)
Thermal correction to Energy $=$	0.492585
Thermal correction to Enthalpy $=$	0.493529
Thermal correction to Gibbs Free Energy=	0.408591
Sum of electronic and zero-point Energies $=$	-1343.024074
Sum of electronic and thermal Energies=	-1342.997170
Sum of electronic and thermal Enthalpies $=$	-1342.996226
Sum of electronic and thermal Free Energies=	-1343.081164

E (Thermal)	CV	S
KCal/Mol	Cal/Mol-Kelvin	Cal/Mol-Kelvin
Total	309.102	105.325

```
C,0,-3.2856631092,-0.1129714414,0.9361061727 С,0,-1.5950357978,-1.2860718503,-2.375727408 С,0,-3.1463562782,-0.4660843701,2.2905507454 C,0,-3.9635416756,0.1084456128,3.2588710614 C, \(0,-4.9386490793,1.038291972,2.8881833526\)
C,0,-5.0895737115,1.3933334271,1.5450268849
C,0,-4.2700316086,0.8231748989,0.5749894596
H,0,-2.3663959994,-1.1684146902,2.57176506
H,0,-3.8395028373,-0.1644632883,4.3030205433
H,0,-5.5805375782, 1.4842190605,3.6430642239
H,0,-5.8500385231,2.1126015958,1.2540137359
Н,0,-4.4066161674,1.0924329475,-0.4681619441
H,0,-2.294776723,-1.4164268311,-3.212620933
H,0,-0.6662287604,-0.873898521,-2.7786586987
\(\mathrm{H}, 0,-1.3841317007,-2.2745396311,-1.9553284888\)
H,0,-1.9628936689,-1.691761725,0.2800957378
H,0,-2.614221877,0.5651862119,-1.708769355
```


Transition structure AD (48)

$\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-1343.48737507$

Zero-point correction $=$	0.465261 (Hartree/Particle)
Thermal correction to Energy $=$	0.492281
Thermal correction to Enthalpy $=$	0.493225
Thermal correction to Gibbs Free Energy=	0.407643
Sum of electronic and zero-point Energies $=$	-1343.022114
Sum of electronic and thermal Energies=	-1342.995094
Sum of electronic and thermal Enthalpies $=$	-1342.994150
Sum of electronic and thermal Free Energies=	-1343.079732

	E (Thermal $)$	CV	S
	KCal/Mol	Cal/Mol-Kelvin	Cal/Mol-Kelvin
Total	308.911	105.371	180.123

O,0,-0.9265597202,1.3371790652,0.2865886106
C, $0,0.4697590612,1.2022825927,0.1797541596$
C,0,0.983600962,2.6056473737,0.5231531335
O,0,-0.0669016979,3.4546928708,0.0750257819
C,0,-1.2875119044,2.7337036679,0.18301961
С, $0,0.97992203,0.0968119805,1.171088808$
C,0,2.0745467573,-0.7847045209,0.5466259048
C,0,1.769717348,-1.2945603083,-0.8781944641

[^6]```
Н,0,-5.4921282487,0.3880709616,-0.7589101788
Н,0,-5.054217106,-0.7254972253,-2.9400126634
H,0,-3.1877768835,-2.3545716789,-3.1443775949
H,0,-1.7733041272,-2.8730670062,-1.1958636188
```


## Transition structure CD (49)

$E($ RB+HF-LYP $)=-1343.48733066$

| Zero-point correction $=$ | 0.465253 (Hartree/Particle) |
| :--- | :---: |
| Thermal correction to Energy $=$ | 0.492270 |
| Thermal correction to Enthalpy $=$ | 0.493214 |
| Thermal correction to Gibbs Free Energy= | 0.407792 |
| Sum of electronic and zero-point Energies= | -1343.022077 |
| Sum of electronic and thermal Energies= | -1342.995061 |
| Sum of electronic and thermal Enthalpies $=$ | -1342.994117 |
| Sum of electronic and thermal Free Energies= | -1343.079538 |



```
H,0,0.6419416185,-1.0099224639,-0.9868811535 H,0,0.9152857103,-0.3134071283,-2.5987170933 H,0,1.8334190707,3.6812471217,-3.6528559361 H,0,0.3726623832,3.0023552423,-2.8866162395 H,0,0.9529911131,4.6246929444,-2.4278855513 H,0,4.0406917227,3.7637419947,-2.2184604995 H,0,3.1690153198,4.7816828549,-1.0455146818 H,0,3.9451580507,3.2724284803,-0.5148286484 H,0,-4.8853076605,-0.1790188904,1.2569729166 H,0,-3.7783965456,-1.5694362881,1.2911745124 H,0,-3.4021512991,-0.104831882,2.2417094586 H,0,-4.6074031353,-0.1579052974,-1.3678617854 H,0,-2.9682177903,0.0617496477,-2.0308798412 H,0,-3.4181524027,-1.4823785595,-1.28701426
O,0,-0.0998397771,1.969985309,1.8987118913
O,0,0.47029551,0.1846652536,1.8992631036
C,0,0.6299430864,-2.0864490462,2.0370571505
C,0,1.738481314,-1.2507632147,2.0382308062
C,0,2.4061070268,-0.7887377632,3.3015175088
C,0,0.187019184,-2.9801433289,0.9855716945
С,0,-1.1213028467,-3.5040636813,1.0423539255
С,0,-1.5767647988,-4.3975082068,0.0792760024
C, \(0,-0.7306691,-4.7986786199,-0.9586432732\)
С, \(0,0.5763632818,-4.3059314117,-1.0207631347\)
C,0,1.0330029524,-3.4102263425,-0.0595574121
H,0,0.0285095641,-2.0860668109,2.9433536874
H,0,2.3505688671,-1.2112187346,1.1393223984
H,0,2.8679887264,0.1924100552,3.1620064397
H,0,1.6852937729,-0.7151849824,4.1203188442
H,0,3.1920828342,-1.4993154885,3.5926057302
H,0,-1.7790017908,-3.1861381352,1.8462166373
H,0,-2.5900315642,-4.784968882,0.1366980871
H, \(,-1.0832318227,-5.5010616881,-1.7086737826\)
H,0,1.2430540145,-4.6309258292,-1.8145476872
H,0,2.0613790955,-3.0628120665,-0.0993316018
```


## Transition structure AB (50)

$\mathrm{E}($ RB+HF-LYP $)=-1343.48585457$

| Zero-point correction $=$ | 0.465165 (Hartree/Particle) |
| :--- | :---: |
| Thermal correction to Energy $=$ | 0.492273 |
| Thermal correction to Enthalpy $=$ | 0.493217 |


| Thermal correction to Gibbs Free Energy $=$ | 0.407393 |
| :--- | :---: |
| Sum of electronic and zero-point Energies $=$ | -1343.020690 |
| Sum of electronic and thermal Energies= | -1342.993582 |
| Sum of electronic and thermal Enthalpies $=$ | -1342.992638 |
| Sum of electronic and thermal Free Energies $=$ | -1343.078462 |


|  | E (Thermal) | CV | S |
| :---: | :---: | :---: | :---: |
|  | KCal/Mol | Cal/Mol-Kelvin | Cal/Mol-Kelvin |
| Total | 308.906 | 105.596 | 180.632 |

O,0.7647369571,1.1755739857,0.4447429905
C,-0.5879100429,1.0590159857,0.0687139905
C,-0.8696860429,2.3603729857,-0.7067330095
O,0.1161369571,3.2612299857,-0.2182730095
C,1.2630829571,2.4892449857,0.0945829905
С,-0.8075490429,-0.2215510143,-0.8184710095
C,-2.1534370429,-0.9082330143,-0.5251640095
C,-2.5028320429,-1.0823100143,0.9717399905
C,-1.6255050429,-0.1811770143,1.8413679905
О,-1.4272140429,1.0757749857,1.2181469905
O,-3.1612500429,-0.0166660143,-0.9932520095
С,-4.3250200429,-0.1773570143,-0.1874840095
O,-3.8696800429,-0.6943280143,1.0697939905
С,-4.9497260429,1.1939439857,0.0315399905
С,-5.2841310429,0.1844600143,0.8270440095
C,2.1876089571,2.3477899857,-1.1161240095
C,1.9365479571,3.1076729857,1.3109489905
H,-1.8557840429,2.7609199857,-0.4729840095
H,-0.7735050429,2.1911819857,-1.7842400095
Н,-2.1780120429,-1.8539130143,-1.0816340095
H,-2.4167050429,-2.1238380143,1.3006479905
Н,-0.6633890429,-0.6685820143,2.0579959905
H,-2.1301900429,0.0177479857,2.7905929905
Н,-5.8376450429,1.1081849857,0.6655889905
H,-4.2208930429,1.8432839857,0.5225799905
Н,-5.2426130429,1.6359979857,-0.9259090095
Н,-6.1425760429,-1.3598670143,-0.1708480095
Н,-5.6448460429,-0.8101260143,-1.7903530095
Н,-4.7768830429,-2.1404360143,-0.9931450095
Н,3.0664669571,1.7495869857,-0.8574850095
H,1.6598019571,1.8413989857,1.9291680095
H,2.5165949571,3.3358179857,1.4551570095
H,2.7996289571,2.5073349857,1.6146059905
H,2.2799189571,4.1202659857,1.0762879905

```
H,1.2201199571,3.1566939857,2.1350299905
О,-0.5304680429,-0.0750900143,-2.0971980095
O,0.3456499571,-1.1817250143,-0.8272890095
C,1.7570449571,-1.8453270143,0.7218409905
C,0.9652099571,-2.7681300143,0.0528549905
C,3.0426469571,-1.3256050143,0.2952569905
C,-0.1038230429,-3.5795290143,0.7186669905
С,3.8151759571,-0.6023580143,1.2254329905
C,5.0797149571,-0.1271780143,0.8892949905
C,5.5907969571,-0.3511820143,-0.3913300095
C,4.8270409571,-1.0505850143,-1.3324180095
C,3.5688569571,-1.5359900143,-0.9957150095
H,1.4162029571,-1.5121450143,1.6996629905
H,1.3431169571,-3.1902150143,-0.8730610095
H,0.2964959571,-4.5764460143,0.9496269905
H,-0.4413920429,-3.1313260143,1.6565759905
H,-0.9637670429,-3.7267570143,0.0579419905
H,3.4135189571,-0.4201510143,2.2188679905
H,5.6642859571,0.4212699857,1.6226089905
H,6.5751009571,0.0229529857,-0.6588000095
H,5.2142489571,-1.2112860143,-2.3346070095
H,2.9747559571,-2.0481220143,-1.7451520095
```


## Transition structure CB (51)

$\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-1343.48491397$

| Zero-point correction $=$ | 0.465176 (Hartree/Particle) |
| :--- | :---: |
| Thermal correction to Energy $=$ | 0.492271 |
| Thermal correction to Enthalpy $=$ | 0.493215 |
| Thermal correction to Gibbs Free Energy= | 0.407854 |
| Sum of electronic and zero-point Energies $=$ | -1343.019738 |
| Sum of electronic and thermal Energies $=$ | -1342.992643 |
| Sum of electronic and thermal Enthalpies $=$ | -1342.991699 |
| Sum of electronic and thermal Free Energies= | -1343.077060 |


|  | E (Thermal) | CV | S |
| :---: | :---: | :---: | :---: |
| KCal/Mol | Cal/Mol-Kelvin | Cal/Mol-Kelvin |  |
| TOTAL | 308.904 | 105.563 | 179.658 |

O,0,0.7597152554,1.2043513705,0.3171495928
С,0,-0.5973784244,1.0507095195,-0.0134597842
С,0,-0.9404653158,2.3208460431,-0.8310597994

[^7]```
H,0,1.4233303894,-3.1579752323,-0.859587984
H,0,0.3886135991,-4.5496029773,0.9608911065
H,0,-0.3775012901,-3.1149747977,1.6584633595
H,0,-0.883626972,-3.7252822044,0.060906455
H,0,3.5612929422,-0.5619849017,2.2935004319
H,0,5.8212455473,0.2524185034,1.6942514814
H,0,6.6454273863,0.0218558136,-0.6419632374
H,0,5.1891337908,-1.0136845653,-2.3707289733
H,0,2.9356056197,-1.8220118719,-1.7774711602
```


Oxazolidinone + styrene transition structure A (56)

$\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-1393.06039948$

Zero-point correction=	0.386073 (Hartree/Particle)
Thermal correction to Energy $=$	0.411025
Thermal correction to Enthalpy $=$	0.411969
Thermal correction to Gibbs Free Energy $=$	0.330684
Sum of electronic and zero-point Energies=	-1392.674327
Sum of electronic and thermal Energies=	-1392.649374
Sum of electronic and thermal Enthalpies $=$	-1392.648430
Sum of electronic and thermal Free Energies $=$	-1392.729715

	E (Thermal)	CV	S
	KCal/Mol	Cal/Mol-Kelvin	Cal/Mol-Kelvin
Total	257.922	96.504	171.079

C,0,-2.0491801084,3.5921548672,-0.1672754231
С,0,-0.9531920739,3.0715774351,-0.8908445755
C,0,0.2126929111,3.859899005,-1.0089376553
C, $0,0.2823124905,5.119841128,-0.4214139267$
C, $0,-0.8121271909,5.6205208167,0.2867530221$
C,0,-1.9769258893,4.852351553,0.4112610352
С,0,-0.9684555392,1.7639959177,-1.5175124723
С,0,-1.9609443381,0.8153844845,-1.4438984925
Н,0,-2.9259970087,1.0227281849,-0.9979898639
O,0,-1.2712827237,0.0217417108,0.2645114724
С,0,-0.434330955,-1.120351215,0.3744244155
C, $0,-0.7208247137,-2.2618263286,-0.6269396565$
С, $, 0,0.2659534921,-3.4292394385,-0.4608608313$
С,0,1.6908604384,-3.0402720349,-0.0930092589
O,0,1.7841511383,-1.9421254608,0.8222253987
C,0,1.0755966034,-0.8004019217,0.4432826985
$\mathrm{O}, 0,-1.9761457575,-2.8698919775,-0.4054013623$
$\mathrm{C}, 0,-1.7731506815,-4.0952182437,0.3431770006$
$\mathrm{O}, 0,-0.3611680376,-4.1837951163,0.5665924536$
$\mathrm{O}, 0,1.5231731648,-0.3287374288,-0.851025202$
$\mathrm{C}, 0,2.2170959439,0.8462249398,-0.7501472569$
$\mathrm{~N}, 0,2.2172527851,1.232606306,0.5945185046$
$\mathrm{C}, 0,1.4209447253,0.32600566,1.4255798941$
$\mathrm{C}, 0,-2.47392212,-4.0217695458,1.6906275358$
$\mathrm{C}, 0,-2.2607596374,-5.258238635,-0.5221207404$
$\mathrm{O}, 0,-0.9748592662,-1.1796774681,1.6041531935$
$\mathrm{C}, 0,2.7808902477,2.4054266444,1.0909639444$
$\mathrm{O}, 0,3.3718682406,3.2405798514,0.4493089143$
$\mathrm{O}, 0,2.682337391,1.415229081,-1.7004273693$
$\mathrm{H}, 0,-3.5558580183,-3.945612958,1.5433812776$
$\mathrm{H}, 0,-2.2623584191,-4.9254617758,2.2714141797$
$\mathrm{H}, 0,-2.1245066621,-3.1423469793,2.2329240258$
$\mathrm{H}, 0,-3.3174919015,-5.1211301596,-0.7716804861$
$\mathrm{H}, 0,-1.6943407158,-5.3131957571,-1.456926696$
$\mathrm{H}, 0,-2.1457876014,-6.2051079973,0.01488905$
$\mathrm{H}, 0,2.0019170672,-0.077229834,2.2571120523$
$\mathrm{H}, 0,0.5133888496,0.8066767665,1.7940560224$
$\mathrm{H}, 0,-0.6905268335,-1.8566171306,-1.6435793127$
$\mathrm{H}, 0,0.3076816877,-4.01353284,-1.3945944311$
$\mathrm{H}, 0,2.2406174771,-2.7953816278,-1.0096636727$
$\mathrm{H}, 0,2.1880239748,-3.8758424443,0.4039708812$
$\mathrm{H}, 0,-0.0757486683,1.5081386652,-2.0838171368$
$\mathrm{H}, 0,-1.9196674371,-0.0606094373,-2.0795438991$
$H, 0,2.6168737509,2.4825481951,2.1827323035$
$H, 0,1.0728018119,3.4669241516,-1.5440511014$
$\mathrm{H}, 0,1.1940120111,5.702743082,-0.5099260312$
$\mathrm{H}, 0,-0.7605844937,6.6045235864,0.7447535993$
$\mathrm{H}, 0,-2.8272260917,5.2411952557,0.9644412017$
$\mathrm{H}, 0,-2.9557871025,3.0053708495,-0.0576870246$

Oxazolidinone + styrene transition structure B (57)

$\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-1393.05531773$

Zero-point correction=	0.385384 (Hartree/Particle)
Thermal correction to Energy=	0.410644
Thermal correction to Enthalpy=	0.411588
Thermal correction to Gibbs Free Energy=	0.327390
Sum of electronic and zero-point Energies=	-1392.669933

Sum of electronic and thermal Energies $=$	-1392.644674
Sum of electronic and thermal Enthalpies $=$	-1392.643730
Sum of electronic and thermal Free Energies $=$	-1392.727928

	E (Thermal	CV	S
	$\mathrm{KCal} / \mathrm{Mol}$	$\mathrm{Cal} / \mathrm{Mol}-\mathrm{Kelvin}$	$\mathrm{Cal} /$ Mol-Kelvin
Total	257.683	96.784	177.210

C, $0,4.53159354,-0.817104176,-0.0353636485$
C,0,3.3374030741,-1.5027199451,-0.3428323788
C,0,3.2044294012,-2.8441679803,0.0770785463
С,0,4.2303266285,-3.4699094783,0.7725743529
C,0,5.4116326604,-2.7764207032,1.0619716185
C,0,5.5598711499,-1.4479750607,0.6562729229
C,0,2.3072434887,-0.8011738992,-1.0768969951
С,0,1.0808472727,-1.2860154979,-1.4714069618
Н,0,0.8309373758,-2.3371200211,-1.3882564549
O, $0,0.3426167513,-0.7418130836,0.3023438704$
C, $0,-0.5958344669,0.3224124697,0.4447465331$
C,0,0.0063908302,1.7298116638,0.2219379762
C,0,-1.0546731789,2.8383976949,0.3212971476
С,0,-2.4343466641,2.4738922979,-0.2076966725
O,0,-2.8316034606,1.1289009927,0.0800221032
C,0,-1.9217112757,0.1489743289,-0.3329005783
O,0,0.9336068361,2.0845210502,1.2275654883
C,0,0.2709453442,2.9436268674,2.1881022898
O,0,-1.0747771424,3.0857822472,1.7201780199
O,0,-1.6947472399,0.2438933456,-1.7583805939
C, $0,-2.4224799825,-0.7058207299,-2.4429666705$
$\mathrm{N}, 0,-2.9910099346,-1.5638920296,-1.4923699823$
C,0,-2.5806240115,-1.2187188291,-0.1291619114
C, $0,0.2401095897,2.2877183567,3.5595428843$
C,0,0.9907488383,4.2932292998,2.1827454623
O,0,-0.7233264589,-0.1507251384,1.6928491135
C,0,-3.8181187687,-2.6474634584,-1.7814693241
O,0,-4.1711491089,-3.0034066774,-2.8788656313
O,0,-2.4839194139,-0.7479208483,-3.6377514402
H,0,1.2604945036,2.1622788379,3.935463139
H,0,-0.3178429003,2.9150394574,4.2624162202
H,0,-0.2337036037,1.3085442557,3.4785885234
H,0,2.0452263236,4.156965549,2.4425292235
H,0,0.9399845782,4.7559448798,1.1920700459
H,0,0.5335402402,4.9705344578,2.911003233
H,0,-3.4362346243,-1.122577409,0.5407444127

```
H,0,-1.8653195068,-1.9364602245,0.2777719779
H,0,0.5111089462,1.7427512299,-0.7504867942
H,0,-0.7093957755,3.7335494957,-0.2219190142
H,0,-2.4553190825,2.6370102901,-1.2917932403
H,0,-3.1916233133,3.1071172759,0.2591737623
H,0,4.640734828,0.2190485298,-0.3451913163
H,0,6.4731588112,-0.9059433397,0.8835920302
H,0,6.2116686901,-3.2715099524,1.6052389249
H,0,4.113361823,-4.5005483975,1.0947380669
H,0,2.2897496751,-3.3891090486,-0.1321035052
H,0,0.4587838376,-0.6972420552,-2.1331675988
H,0,2.526508156,0.2407869494,-1.3025632497
H,0,-4.1248763618,-3.1591109815,-0.8483935058
```


Oxazolidinone + styrene transition structure C (58)

$\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-1393.05684109$

Zero-point correction=	0.385877 (Hartree/Particle)
Thermal correction to Energy $=$	0.410945
Thermal correction to Enthalpy $=$	0.411889
Thermal correction to Gibbs Free Energy=	0.329744
Sum of electronic and zero-point Energies $=$	-1392.670964
Sum of electronic and thermal Energies=	-1392.645896
Sum of electronic and thermal Enthalpies $=$	-1392.644952
Sum of electronic and thermal Free Energies= $=$	-1392.727097

	E (Thermal)	CV	S
	$\mathrm{KCal} / \mathrm{Mol}$	$\mathrm{Cal} /$ Mol-Kelvin	Cal/Mol-Kelvin
Total	257.872	96.620	172.889

C	0	2.09859	-2.08712	0.42443
C	0	0.92636	-1.38766	-0.27532
O	0	1.48391	-0.1604	-0.81026
C	0	2.84571	-0.12453	-0.68248
N	0	3.24559	-1.28401	-0.00978
O	0	0.48866	-2.21516	-1.31002
C	0	-0.50417	-1.63728	-2.16581
C	0	-1.71425	-1.08203	-1.42961
C	0	-1.41452	-0.37625	-0.09767
C	0	-0.25048	-1.05013	0.67053
O	0	-2.60004	-2.11333	-1.01677
C	0	-3.40892	-1.5688	0.03257

O	0	-2.64272	-0.47794	0.59647
O	0	0.13592	-0.3704	1.87691
C	0	0.14167	2.07323	1.99642
C	0	1.22205	1.22284	2.12752
O	0	-0.52729	-2.07602	1.47829
C	0	-3.64647	-2.65278	1.07262
C	0	-4.70587	-0.98616	-0.53236
O	0	3.51119	0.80244	-1.0595
C	0	4.56418	-1.62419	0.29076
O	0	5.54821	-0.9941	-0.00923
C	0	-0.19568	2.90355	0.86255
C	0	-1.42517	3.60063	0.88728
C	0	-1.79429	4.43562	-0.16074
C	0	-0.9413	4.59221	-1.25687
C	0	0.27971	3.90875	-1.29967
C	0	0.65581	3.07315	-0.25545
H	0	2.00583	1.1961	1.38146
H	0	-4.25972	-2.25753	1.88865
H	0	-4.17117	-3.49961	0.61817
H	0	-2.68707	-2.98169	1.474
H	0	-5.26828	-0.48492	0.26169
H	0	-4.49234	-0.25167	-1.31528
H	0	-5.32766	-1.78137	-0.95586
H	0	2.17202	-3.11874	0.07607
H	0	1.96971	-2.065	1.50813
H	0	-1.17662	0.68023	-0.24687
H	0	-2.22977	-0.38434	-2.11038
H	0	-0.04875	-0.8352	-2.75902
H	0	-0.81187	-2.4415	-2.83736
H	0	-2.08716	3.47175	1.73959
H	0	-2.74277	4.96356	-0.1259
H	0	-1.22519	5.24665	-2.07644
H	0	0.94277	4.03137	-2.15093
H	0	1.60592	2.55303	-0.31319
H	0	1.49199	0.86118	3.11124
H	0	-0.55866	2.10403	2.82815
H	0	4.5992	-2.57719	0.8531

Oxazolidinone + styrene transition structure D

$\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-1393.05644322$
Zero-point correction= 0.386029 (Hartree/Particle)

Thermal correction to Energy $=$	0.411022
Thermal correction to Enthalpy $=$	0.411966
Thermal correction to Gibbs Free Energy $=$	0.330242
Sum of electronic and zero-point Energies=	-1392.670415
Sum of electronic and thermal Energies $=$	-1392.645421
Sum of electronic and thermal Enthalpies $=$	-1392.644477
Sum of electronic and thermal Free Energies=	-1392.726201

E (Thermal)	CV	S
KCal/Mol	Cal/Mol-Kelvin	Cal/Mol-Kelvin
Total	257.920	96.439

$\mathrm{H}, 0,4.4715415953,-3.0112435157,-0.3382701095$
$\mathrm{H}, 0,3.5314933307,-2.6188281216,-1.789405683$
$\mathrm{H}, 0,5.1758102401,-1.9666874334,-1.5949969822$
$\mathrm{H}, 0,0.4150669171,3.7023526028,0.3817687006$
$\mathrm{H}, 0,0.1260315703,2.671529118,1.816349098$
$\mathrm{H}, 0,0.5282129693,-1.3439853889,-0.2601173231$
$\mathrm{H}, 0,1.7711462296,-1.0622264273,-2.2801119817$
$\mathrm{H}, 0,0.2773229087,0.6802825867,-2.6314524095$
$\mathrm{H}, 0,1.8570693599,1.4583046885,-2.8929901746$
$\mathrm{H}, 0,-2.5198321384,-0.3645376431,1.6777224748$
$\mathrm{H}, 0,-0.8709985596,-0.7005916668,3.4276481684$
$\mathrm{H}, 0,-1.6426075045,4.7483520221,1.6197195947$
$\mathrm{H}, 0,-3.5501898201,-0.7937678539,-0.3935961905$
$H, 0,-4.0461720481,-2.3141779334,-2.2833894735$
$H, 0,-2.762875677,-4.4280520219,-2.5505166999$
$H, 0,-0.9944993406,-5.0239221986,-0.9083075131$
$\mathrm{H}, 0,-0.5206111328,-3.5398006137,0.9972591359$

Oxazolidinone + styrene transition structure E (59)

$\mathrm{E}($ RB+HF-LYP $)=-1393.05692479$
C,0,1.0282043093,-0.7936558384,3.2947049669
C,0,2.1311429831,-1.2434965747,2.5336909267
C,0,3.4330688441,-0.9470821753,2.9971042164
C,0,3.6242196308,-0.2084078938,4.1591464911
C, $0,2.5191977654,0.2527579482,4.881308797$
C,0,1.2209832896,-0.041737005,4.4460748527
C,0,1.9879508217,-1.9855509746,1.3038901183
C,0,0.8391228595,-2.2051278599,0.5732799234
O,0,1.156178369,-0.6968137886,-0.6795325831
C, $0,0.0186702204,-0.1186142744,-1.3239118047$
C, $0,-0.9476159522,-1.1371564732,-1.9768456704$
C,0,-2.1716333649,-0.445278061,-2.6010603975
C,0,-2.693615092,0.7726600948,-1.8510802136
O,0,-1.6696851223,1.5963488553,-1.280803046
С, $0,-0.7508219882,0.9173223315,-0.4755425651$
O,0,-0.3614347196,-1.8022245011,-3.0771316355
C,0,-0.816373458,-1.171144221,-4.2994856904
O,0,-1.6773155464,-0.1031988732,-3.8881333668
C,0,0.1497654966,1.9578298456,0.1952419149
$\mathrm{N}, 0,-0.4207535067,2.0276638206,1.5443303291$
C,0,-1.32720183,0.9876710735,1.7793089282

```
O,0,-1.4345680892,0.2588879004,0.6213368822
С, \(0,0.3570056167,-0.5807206858,-5.0657551642\)
C,0,-1.5931476327,-2.2146376776,-5.1042475008
O,0,0.9308479468,0.4844533811,-2.0946847338
O,0,-1.9087547725,0.703049241,2.7899478716
C,0,0.0099586914,2.9445215108,2.4986337574
O,0,-0.3456520822,2.9967564697,3.6518399716
H,0,0.852162887,-2.9416189077,-0.2202517908
H,0,2.9169404728,-2.3546218155,0.8713348358
H,0,-0.1333417005,-1.9280255074,0.9646241168
H,0,1.0319412884,-1.3806208591,-5.3863385365
H,0,-0.0043757225,-0.0507883225,-5.9531764206
\(\mathrm{H}, 0,0.9005985085,0.1077285776,-4.4176463711\)
H,0,-0.95022227,-3.0728960187,-5.3230985893
H, \(,-2.4606178756,-2.5735358065,-4.5415661125\)
Н,0,-1.9401132253,-1.784563553,-6.0491526674
H,0,0.0718587758,2.9116250397,-0.3282857486
H,0,1.1860999258,1.6149056702,0.2104231299
H,0,-1.2453967946,-1.8800664568,-1.2299241976
H,0,-3.0008697645,-1.166526995,-2.6883176148
H,0,-3.3736076759,0.4375915851,-1.0586816674
H,0,-3.2427574379, 1.4232583989,-2.5348672437
H,0,0.7439073265,3.6464468428,2.0582551464
H,0,4.2899005081,-1.2932675361,2.4244577583
H,0,4.6310018995,0.0156724552,4.4997488041
H,0,2.6664900738,0.840582004,5.7829236733
H,0,0.3593219416,0.3275669124,4.9923921427
H,0,0.0161382735,-1.0314804662,2.9873848491
```

Oxizolidinone + cis-beta-methylstyrene transition structure A
$E(R B+H F-L Y P)=-1432.37549396$
Zero-point correction= 0.413978 (Hartree/Particle)
Thermal correction to Energy= 0.440784
Thermal correction to Enthalpy= 0.441728
Thermal correction to Gibbs Free Energy= 0.355627
Sum of electronic and zero-point Energies $=\quad-1431.961516$
Sum of electronic and thermal Energies= -1431.934710
Sum of electronic and thermal Enthalpies $=\quad-1431.933766$
Sum of electronic and thermal Free Energies $=\quad-1432.019866$
E (Thermal) CV S

Total	$\begin{aligned} & \mathrm{KCal} / \mathrm{Mol} \\ & 276.596 \end{aligned}$	Cal/Mol-Kelvin 102.129	$\mathrm{Cal} / \mathrm{Mol}-\mathrm{Kelvin}$ 181.214
O	-4.15531	-0.6657 0.39866	
C	-3.25696	-1.05814-0.62995	
C	-2.31839	0.15708-0.69504	
O	-3.18161	$1.2441-0.42985$	
C	-4.35759	$0.74478 \quad 0.25724$	
C	-2.58621 -	-2.39096-0.32683	
O	-1.51419	-2.31182 0.61955	
C	-0.53824 -	-1.35712 0.32288	
C	-1.17132	0.05280 .33619	
C	0.6151 -1.	1.523911 .31993	
N	1.67923 -2.	-2.07538 0.47743	
C	1.33464	-2.06042-0.87832	
O	0.04373	-1.61032-0.97851	
O	-1.38124	0.483881 .58704	
O	-0.22397	1.118940 .29714	
C	-4.46901	1.360151 .64324	
C	-5.57265	$1.03367-0.6257$	
C	1.49997	1.32304-1.27214	
C	2.73059	$1.4565-0.50611$	
C	0.39782	$2.1537-1.36292$	
C	0.23602	$3.57244-0.90633$	
H	-4.61843	2.441331 .55942	
H	-5.3232	0.929452 .17576	
H	-3.55019	1.167272 .1983	
H	-5.65394	2.10939 -0.81035	
H	-5.48154	0.52801-1.592	
H	-6.48881	0.69073-0.13456	
H	0.32166	-2.21828 2.10935	
H	0.89623 -	$-0.560021 .74738$	
H	-1.88829	0.27459-1.69494	
H	-3.79379	-1.16317-1.58698	
H	-2.21101	-2.81962-1.26386	
H	-3.31066	-3.08072 0.11117	
H	1.45943	0.4316 -1.89365	
H	-0.36477	1.82483-2.06388	
O	2.00667	-2.33511-1.8343	
C	$2.93053-$	-2.42466 0.98075	
O	3.87507 -2.	-2.81361 0.33768	
H	$2.95342-2$	-2.30156 2.08058	
C	3.83088	0.6666-0.90641	
C	$5.0479 \quad 0$	$0.74135-0.23556$	

C	5.18691	1.59041	0.86446
C	4.09512	2.3483	1.30062
C	2.87841	2.28311	0.62961
H	3.71719	-0.02045	-1.74036
H	5.87904	0.12266	-0.56007
H	6.13377	1.64528	1.39455
H	4.1897	2.98203	2.1781
H	2.02645	2.82823	1.01699
H	-0.0358	4.19611	-1.76699
H	-0.58479	3.63649	-0.18411
H	1.13931	3.98826	-0.45881

Oxizolidinone + cis-beta-methylstyrene transition structure B

$E($ RB + HF-LYP $)=-1432.37261342$
Zero-point correction= 0.413953 (Hartree/Particle)
Thermal correction to Energy= 0.440592
Thermal correction to Enthalpy= 0.441536
Thermal correction to Gibbs Free Energy= 0.355872
Sum of electronic and zero-point Energies $=\quad-1431.958660$
Sum of electronic and thermal Energies $=\quad-1431.932022$
Sum of electronic and thermal Enthalpies= $\quad-1431.931077$
Sum of electronic and thermal Free Energies= $\quad-1432.016741$

	E (Thermal)	CV	S
	KCal/Mol	Cal/Mol-Kelvin	Cal/Mol-Kelvin
Total	276.476	102.085	180.295

O,0,-0.2433104925,3.6892762658,0.1381307606
С, $0,-0.7867674801,2.8351016101,-0.8592232356$
C, $0,0.1098083706,1.5959536573,-0.7212104733$
O,0,1.3738629645,2.1515637511,-0.4116293232
C,0,1.1724755903,3.480509242,0.140540031
С,0,-2.2747780848,2.5865198259,-0.6557898796
O,0,-2.5757093552,1.6392472021,0.3738262653
C, $0,-1.9206188979,0.4078069562,0.2568533696$
C, $0,-0.3946061367,0.6282934577,0.3751782872$
С,0,-2.4942035882,-0.5262850122,1.3273221337
N,0,-3.3835473682,-1.3828298612,0.5383683273
C,0,-3.1905114901,-1.2100788977,-0.839561504
O,0,-2.2465493982,-0.221572268,-1.0039943781
O,0,-0.0507384084,0.8329586043,1.6482215012

[^8]Transition structure for trihydroxy dimethyldioxirane reacting with trans- β methylstyrene (52)
$E($ RB+HF-LYP $)=-842.841920744$


```
H,0,2.7580516836,-2.6222352731,-1.7184981963
H,0,-2.1248330021,-1.9127589735,-0.7025305873
H,0,2.5658675047,0.5586313362,-2.2899217702
```


Transition Structure for reaction of oxazolidinone-derived dioxirane with 1phenylcyclohexene, Isomer A, (Structure 63)

C---O distances 2.405, 2.060
$\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-1549.11709090$

Zero-point correction=	0.480036 (Hartree/Particle)
Thermal correction to Energy $=$	0.508684
Thermal correction to Enthalpy $=$	0.509628
Thermal correction to Gibbs Free Energy $=$	0.419837
Sum of electronic and zero-point Energies=	-1548.637055
Sum of electronic and thermal Energies=	-1548.608407
Sum of electronic and thermal Enthalpies $=$	-1548.607463
Sum of electronic and thermal Free Energies $=$	-1548.697254

	E (Thermal)	CV	S
	$\mathrm{KCal} / \mathrm{Mol}$	$\mathrm{Cal} /$ Mol-Kelvin	Cal/Mol-Kelvin
Total	319.204	111.508	188.981

C,0,0.6049027792,2.8956908014,-0.7350336793
C, $0,-0.3330471641,2.6409019488,0.2923181095$
C,0,-1.6393082542,3.1533891964,0.1245826222
C, $0,-1.9913171595,3.8783310282,-1.010211705$
C,0,-1.050017091,4.1126309862,-2.0142405025
C,0,0.2475381243,3.6151960794,-1.8700993096
C,0,0.0301928281,1.905272826,1.5155258383
C,0,1.2363314417,1.2286069625,1.6407378174
O,0,0.14370026,-0.4905131237,1.3333582519
C,0,-0.2615064236,-1.2037522361,0.159620176
С, $0,0.8984224482,-1.5352636088,-0.8095322135$
О,0,0.4525443231,-2.3843995017,-1.8232844553
C, $0,-0.58071677,-1.846014614,-2.6566433444$
C, $0,-1.7828247662,-1.3078980809,-1.8950382243$
C, $0,-1.4574179743,-0.5709210176,-0.5885408653$
O,0,1.4211354855,-0.3039831841,-1.3683222966
C,0,2.7747807916,-0.2054852116,-1.2075854186
N,0,3.2122260528,-1.3451548882,-0.5221269176
C,0,2.0965011439,-2.2077245165,-0.1255818846
O,0,-2.6641190087,-0.6790913974,0.1448273355

```
C,0,-3.4228841671,-1.7993935249,-0.3728679588
O,0,-2.6340314455,-2.3491247141,-1.4343029715
O,0,3.4109652604,0.7457093006,-1.5744684548
C,0,4.5348345372,-1.6175368696,-0.1775603858
O,0,5.4955907167,-0.935526214,-0.4380892624
O,0,-0.4928643739,-2.2143466961,1.0031186142
C,0,-3.605506698,-2.8660947926,0.6959937958
C,0,-4.7490197964,-1.2573937897,-0.9096902347
H,0,1.9164480957,1.2208915099,0.7983316287
H,0,-4.2046350418,-2.4681231293,1.5213060243
H,0,-4.1233870818,-3.733807737,0.2742730713
H,0,-2.6279170921,-3.1655995626,1.0758010192
H,0,-5.2994999687,-0.7531634154,-0.1091280479
H,0,-4.5759188694,-0.5344314305,-1.712927769
H,0,-5.3642703762,-2.0751423209,-1.2982961574
H,0,2.2137216348,-3.2231072881,-0.5092582832
H,0,1.9587231356,-2.2305031881,0.9566727099
H,0,-1.243746438,0.4854821827,-0.7654344338
H,0,-2.3347435029,-0.6359581666,-2.5729020626
H,0,-0.1641660821,-1.0415863034,-3.274975351
H,0,-0.8863509953,-2.6683901706,-3.3069319701
H,0,-2.3932308768,2.9740339129,0.8817428387
H,0,-3.0044648189,4.2573045991,-1.1112244065
H,0,-1.3240588445,4.6785844152,-2.9003707841
H,0,0.9906855272,3.790515636,-2.6424200169
H,0,1.6239714546,2.5352250723,-0.6626645349
C,0,1.8434120629,0.8447832238,2.9675001039
C,0,-0.9330430731,1.9194320699,2.6831309044
H,0,4.5999236155,-2.5710504449,0.3816676489
H,0,2.8619402001,1.2551438862,3.0039145379
C,0,1.0206610547,1.3305556817,4.1684783945
H,0,1.9506134538,-0.2464908585,2.9963703233
H,0,-1.1081342212,2.9684456291,2.9665311353
H,0,-1.8994961961,1.5301320425,2.339645392
C,0,-0.4702711213,1.110100326,3.9038397865
H,0,-1.0695164658,1.4016453171,4.7740753042
H,0,-0.6560403493,0.046929921,3.7194200882
H,0,1.3402337662,0.8049743452,5.0752860542
H,0,1.2101837097,2.3998567979,4.3390794421
```

Transition Structure for reaction of oxazolidinone-derived dioxirane with 1phenylcyclohexene, Isomer B, (Structure 64)

C----O distances 2.091, 2.417
$\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-1549.11870065$

Zero-point correction $=$	0.480121 (Hartree/Particle)
Thermal correction to Energy $=$	0.508517
Thermal correction to Enthalpy $=$	0.509461
Thermal correction to Gibbs Free Energy=	0.421250
Sum of electronic and zero-point Energies=	-1548.638580
Sum of electronic and thermal Energies=	-1548.610184
Sum of electronic and thermal Enthalpies=	-1548.609239
Sum of electronic and thermal Free Energies=	-1548.697450

	E (Thermal)	CV	S
	$\mathrm{KCal} / \mathrm{Mol}$	Cal/Mol-Kelvin	Cal/Mol-Kelvin
Total	319.099	111.356	185.655
O,0,-3	734097,-1.6135	321417,0.19991	
C, $0,-2$	4285,-1.69894	3497,-0.785689	
C,0,-2	28952,-0.3209	$82639,-0.655681$	898
O,0,-3	522788,0.533	92808,-0.34627	
C, $0,-4$	254309,-0.266	972859,0.18420	
C, $0,-1$	304466,-0.306	20495,0.443322071	
C,0,-0	180828,-1.53	742554,0.313130	121
O,0,-1	984263,-2.69	$654854,0.46257$	
C,0,-1	466433,-2.89	102561,-0.558980	4429
O,0,0.	13241,-1.541	832116,-0.970532	4618
C,0,1.	23881,-2.075	04669,-0.85396	456
N,0,1.9	0767,-2.1573	2595,0.5141652	
C, $0,0$.	26306,-1.605	62944,1.3311664	
O,0,-0	355576,0.945	516209,0.630032861	614
O,0,-1	858227,-0.1187	7430018,1.7163973	3376
C,0,3.	32092,-2.638	893256,1.056443	328
O,0,4.	8369,-3.0707	58018,0.44178962	
O,0,2.	00342,-2.374	12336,-1.79578	4333
C,0,-4	1362,0.15165	1026,1.6104991246	
C, $0,-5$	772484,-0.12	178936,-0.76577	2262
C, $0,0.1$	032745,2.0258	9175,-1.0210573703	
C, $0,-1$	056981,2.902	28966,-1.299298	346
C, $0,-1$.	790518,3.8940	175242,-0.167544	246
C, $0,0.0$	15366,4.5820	08514,0.2832299	
C, $0,1.0$	29785,3.55603	94374,0.76213312	
C, $0,1.2$	35741,2.4045	8394,-0.1986536187	
C, $0,2.5$	08811,1.683	$10355,-0.1780298$	
C,0,3.3	74824,1.6806	$74707,0.9814846$	

```
C,0,4.5380110922,0.9915881199,1.0111635679
C,0,4.9828435555,0.3005506696,-0.1191546865
C,0,4.2093904582,0.3075972879,-1.2819894927 C,0,2.9980413655,0.9918338734,-1.3123826988 H,0,0.3548140269,1.1880392082,-1.6951231401 H,0,-5.0998862233,1.1826502856,1.622873584
Н, \(0,-5.5068572572,-0.5009628842,2.0260326848\)
H,0,-3.8271758168,0.0853556728,2.21558888348
H,0,-5.895550418,0.9259502709,-0.8459393418
H,0,-5.3447918637,-0.4848565666,-1.7670189776
H,0,-6.4547400252,-0.7016821496,-0.3935355179
H,0,0.6334653273,-2.2693610448,2.1537730891
H,0,1.1449061716,-0.609457087,1.7072773673
\(\mathrm{H}, 0,-1.7919125851,-0.0054930024,-1.6032479017\)
H,0,-3.3559340016,-1.800906178,-1.7884755543
H,0,-1.495033616,-3.1417172035,-1.503155127
H,0,-2.582295619,-3.7570075145,-0.235314758
H,0,3.1446865412,-2.5792883301,2.1618535359
H,0,2.9923414804,2.1995384742,1.8732198005
H,0,5.1337990086,0.9902088889, 1.9199140881
H,0,5.9198005386,-0.24727797,-0.092584617
H,0,4.5409794988,-0.234889336,-2.1610836202
\(\mathrm{H}, 0,2.4216274143,1.0029981368,-2.2316725204\)
H,0,0.7094802283,3.1257037396,1.7196815729
Н,0,2.0001263449,4.049785719,0.9582867127
H,0,-1.8827944289,2.2859291845,-1.4913264547
H,0,-0.7945975022,3.4471148007,-2.2363085553
H,0,-0.1968513624,5.2951410679,1.0917307887
H,0,0.4238094383,5.1613734573,-0.5504940824
H,0,-2.0237704223,4.6351251136,-0.5009076661
H,0,-1.7321725199,3.345635392,0.6704363378
```


Transition Structure for reaction of oxazolidinone-derived dioxirane with 1phenylcyclohexene, Isomer C

$\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-1549.11565119$

Zero-point correction=	0.480241 (Hartree/Particle)
Thermal correction to Energy $=$	0.508718
Thermal correction to Enthalpy $=$	0.509662
Thermal correction to Gibbs Free Energy=	0.420921
Sum of electronic and zero-point Energies=	-1548.635411
Sum of electronic and thermal Energies=	-1548.606933

$\begin{array}{ll}\text { Sum of electronic and thermal Enthalpies }= & -1548.605989 \\ \text { Sum of electronic and thermal Free Energies }= & -1548.694730\end{array}$

	E (Thermal	CV	S
	$\mathrm{KCal} / \mathrm{Mol}$	Cal/Mol-Kelvin	Cal/Mol-Kelvin
Total	319.226	111.304	186.772

C,0,1.8875340513,1.0762524642,3.6100993679
C,0,0.5629233216,1.7669359944,3.2688415559
C,0,0.315468532,1.8701058327,1.7852632116
C,0,1.3337792803,1.8936658422,0.842401404
C,0,2.7226687124,1.4287334537,1.2377212243
С,0,3.0186651894,1.6235116101,2.734966114
C, $0,1.1107839084,2.4002643795,-0.5188753213$
C,0,1.9581243212,2.0240681947,-1.5838782846
C, $0,1.7603216879,2.5245837384,-2.8672541733$
C,0,0.7256057851,3.4270334993,-3.1226885567
C,0,-0.1173862639,3.8227193403,-2.0807266781
C, $0,0.0703797882,3.3164361937,-0.7987018771$
О,0,-0.2173045375,-0.0666417876,1.6063397993
C, $0,-0.9097639109,-0.7820119121,0.5987712495$
С,0,-0.033176307,-1.7269100913,-0.2582778938
O, $0,-0.8568399895,-2.5388646074,-1.0474767095$
C, $0,-1.6678091545,-1.8361777653,-1.9950710788$
C,0,-2.5221354945,-0.7345888978,-1.3845259088
С,0,-1.8446700655,0.0805227313,-0.2749933858
C, $0,0.8645555078,-2.6470145657,0.5759672329$
$\mathrm{N}, 0,2.1345910905,-2.5714273457,-0.150105184$
C,0,2.127250477,-1.5406044854,-1.0972666174
О,0,0.8787155175,-0.9744460943,-1.0896099449
O,0,-2.9403160637,0.5937038804,0.4596551379
С,0,-4.1002311379,-0.2370300993,0.2010418398
O, $0,-3.6573330628,-1.2539904797,-0.7041964986$
O,0,-1.4150818889,-1.4734602163,1.6378099526
O,0,3.0248057875,-1.1504821462,-1.7931647246
C,0,3.2166836142,-3.404856402,0.1252882729
O,0,4.2974170841,-3.3726611888,-0.4106388514
C,0,-4.5779153296,-0.9038780541,1.4815962716
С,0,-5.1674718915,0.6427884392,-0.4522387816
H,0,-0.6624619976,2.2477873184,1.5059343775
Н,0,-4.9183372497,-0.1445590629,2.1928623642
H,0,-5.4123256241,-1.5784094531,1.2634877066
H,0,-3.7536936333,-1.4648745427,1.9242106519
H,0,-5.4246735679,1.4747385188,0.2108675178

```
H,0,-4.8020106188,1.0588103316,-1.396347838
H,0,-6.0716974898,0.0589472649,-0.6513505599
H,0,0.4581340586,-3.6592386133,0.5800976601
H,0,0.9568044613,-2.2746522696,1.5975891131
H,0,-1.264702524,0.9142156914,-0.6827744193
H,0,-2.8387076283,-0.0631958392,-2.1994623335
H,0,-1.0279418336,-1.3991205525,-2.7712270564
H,0,-2.3062886945,-2.5958431422,-2.4510465445
H,0,2.9544793363,-4.1281275903,0.9216865021
H,0,2.7487011418,1.3002480692,-1.4251356665
H,0,2.4151914083,2.2006371782,-3.6708755323
H,0,0.5792256375,3.8231444413,-4.1238571184
H,0,-0.9158318273,4.5363493102,-2.2643405971
H,0,-0.574082429,3.6647932966,0.0017939458
H,0,2.8296635615,0.365473835,0.9803718982
H,0,3.4710451374,1.9568957503,0.6383621184
H,0,-0.2846891794,1.2497518846,3.7291219618
H,0,0.5609790151,2.7930854068,3.6707384382
H,0,3.9710482277,1.1386768258,2.9791261491
H,0,3.1513308364,2.6956129251,2.9374560903
H,0,2.1202745733,1.218923643,4.6719555066
H,0,1.7808187653,-0.002634731,3.4469915414
```


Transition Structure for reaction of oxazolidinone-derived dioxirane with 1phenylcyclohexene, Isomer D

$\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-1549.11523420$

Zero-point correction $=$	0.480155
(Hartree/Particle)	
Thermal correction to Energy $=$	0.508626
Thermal correction to Enthalpy $=$	0.509570
Thermal correction to Gibbs Free Energy $=$	0.420934
Sum of electronic and zero-point Energies $=$	-1548.635079
Sum of electronic and thermal Energies=	-1548.606609
Sum of electronic and thermal Enthalpies $=$	-1548.605664
Sum of electronic and thermal Free Energies $=$	-1548.694300

	E (Thermal	CV	S
	KCal/Mol	Cal/Mol-Kelvin	Cal/Mol-Kelvin
Total	319.167	111.314	186.551

[^9]```
H,0,-0.1718417751,5.1979729743,-2.3983406997
H,0,-1.6615362868,4.9654466075,-0.4157455466
H,0,-1.1310991216,3.3435802886,1.3451895597
H,0,2.9493108196,2.2269039281,2.0062553319
C,0,2.6341847018,0.2431886559,2.8289927372
H,0,2.9236242386,0.9698746625,0.8018462469
H,0,-0.2729397283,1.2020133519,4.4186752432
H,0,-0.1325306702,-0.4141472407,3.7527500617
C,0,1.785672731,0.5896412387,4.0560965473
H,0,3.6971654319,0.1902310146,3.0896283513
H,0,2.3418046269,-0.7434437087,2.4503984625
H,0,1.9686322293,-0.1183576718,4.8720705553
H,0,2.0837757226,1.5801780589,4.4276430968
```

Transition structure for 5-chair + trans-2-butene, analog of structure 34
C---O distances 2.087, 2.061
$\mathrm{E}($ RB+HF-LYP $)=-1151.75762959$

| Zero-point correction= | 0.413088 (Hartree/Particle) |
| :--- | :---: |
| Thermal correction to Energy $=$ | 0.436622 |
| Thermal correction to Enthalpy $=$ | 0.437566 |
| Thermal correction to Gibbs Free Energy $=$ | 0.362883 |
| Sum of electronic and zero-point Energies= | -1151.344541 |
| Sum of electronic and thermal Energies= | -1151.321008 |
| Sum of electronic and thermal Enthalpies $=$ | -1151.320064 |
| Sum of electronic and thermal Free Energies= | -1151.394746 |


|  | E (Thermal) | CV | S |
| :---: | :---: | :---: | :--- |
|  | KCal/Mol | Cal/Mol-Kelvin | Cal/Mol-Kelvin |
| Total | 273.984 | 91.885 | 157.183 |

C,0,2.1403268978,-1.419843954,0.3956811187
C,0,1.2305870029,-0.1780398319,0.3589597042
O,0,0.8327678462,0.0097024442,1.7104807769
C,0,1.8117250473,-0.6570427093,2.5390597424
O,0,2.1929759855,-1.7945535063,1.7766951144
O,0,2.0149183873,0.9071982688,-0.125318886
C,0,1.3831035552,2.180908298,-0.0264359121
C,0,0.0034745105,2.2539548239,-0.6706604428
С, $0,-0.8465127154,0.9811849622,-0.5370934768$
C,0,0.0214801844,-0.2928959941,-0.604238713
O,0,0.077610733,2.4048723552,-2.0825321414

```
C,0,-1.1786737705,1.9788423156,-2.6167540427
O,0,-1.7463869537,1.0848942699,-1.6265046209
O,0,-0.7465627265,-1.5342002606,-0.5061412841
O,0,0.3955064207,-0.7584448226,-1.7869045966
C,0,-0.9255342277,1.2381643514,-3.9207360955
C,0,-2.1305571959,3.1663406046,-2.7739260675
C,0,1.1403901579,-1.1175677248,3.8232710201
C,0,3.0102423326,0.2590131061,2.8128040983
C,0,-2.5656833587,-2.0258900054,0.3912021046
C,0,-3.4897404924,-0.8553357471,0.4469380832
C,0,-1.5216026726,-2.2784014323,1.2522597753
C,0,-0.8087002598,-3.5886807819,1.367237795
H,0,1.8646525748,-1.6444903303,4.4515041012
H,0,0.7582301641,-0.2566750933,4.3799386736
H,0,0.3143020912,-1.7971126173,3.6028726626
H,0,3.7550755521,-0.2757007394,3.4109574544
H,0,3.4706561297,0.5834613119,1.8775594007
H,0,2.6889509238,1.1474356573,3.3668385824
H,0,-1.8753064591,0.9054469493,-4.3521635429
H,0,-0.4297987869,1.9017628004,-4.6369590958
H,0,-0.296570118,0.3701864001,-3.7193803864
H,0,-3.1195551032,2.8171519608,-3.0875676281
H,0,-2.2418846131,3.702538556,-1.8261632471
H,0,-1.7482055389,3.8616509517,-3.5280385069
H,0,3.1317320466,-1.1612790083,0.0099696591
H,0,1.7239699682,-2.2459559509,-0.1794712694
H,0,-1.4142068757,0.9791088079,0.3978978426
H,0,-0.5338742209,3.1087778201,-0.2265928829
H,0,1.2852548539,2.4634576204,1.0297956246
H,0,2.0567724126,2.887482053,-0.5175853715
H,0,-1.287305566,-1.5192326536,1.99442185
H,0,-2.8016982444,-2.7878304796,-0.349280976
H,0,-4.5206729513,-1.2112337502,0.5793290261
H,0,-3.2538818781,-0.1814121009,1.2760959076
H,0,-3.4558702028,-0.290461737,-0.4918802744
H,0,0.261782631,-3.4301268578,1.5273895618
H,0,-1.1914731422,-4.1484614182,2.2333514777
H,0,-0.9536631602,-4.2024998268,0.4735543098
```

Transition structure for 5-chair + 2-methyl-2-butene, analog of structure 34

C---O distances 2.192, 2.047
$\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-1191.07820111$


```
H,0,-0.3117142937,2.0460742711,-4.598573776
H,0,-0.1598111305,0.5123881252,-3.6876005626
H,0,-3.0080524482,2.9259978443,-3.0386999594
H,0,-2.1367136664,3.8137933131,-1.7746312678
H,0,-1.6488610526,3.9873591847,-3.4768672337
H,0,3.2896218472,-0.9960990071,0.057653898
H,0,1.893026771,-2.0949484631,-0.1370226849
H,0,-1.2741842575,1.0926600331,0.4344674324
H,0,-0.4187990452,3.2368912535,-0.185123925
H,0,1.4089261529,2.6124942192,1.0657346343
H,0,2.1746685116,3.0418063929,-0.4831377915
H,0,-1.1718286123,-1.4131074121,1.949021209
C,0,-2.9573102415,-2.9211209949,-0.6439826927
H,0,-4.3901350691,-1.032346221,0.744980202
H,0,-3.0290187345,-0.1183169219,1.4241466529
H,0,-3.329400602,-0.1173454974,-0.3322814934
H,0,0.4260937555,-3.2357314519,1.5914205217
H,0,-1.0304481627,-4.0492935172,2.1807580558
H,0,-0.6490180354,-4.0702459799,0.4501837022
H,0,-3.2124268777,-2.3814304154,-1.5623891766
H,0,-2.2098472973,-3.6769788597,-0.8872909972
H,0,-3.8690011035,-3.4325643108,-0.3024328484
```


## Trans- $\beta$-methylstyreneoxide (27)

$\mathrm{E}($ RB+HF-LYP $)=-424.168478116$

| Zero-point correction $=$ | 0.167261 (Hartree/Particle) |
| :--- | :---: |
| Thermal correction to Energy $=$ | 0.175998 |

THERMAL CORRECTION TO ENTHALPY= 0.176942

| Thermal correction to Gibbs Free Energy $=$ | 0.133131 |
| :--- | :--- |
| Sum of electronic and zero-point Energies $=$ | -424.001217 |

Sum of electronic and thermal Energies $=\quad-423.992480$
Sum of electronic and thermal Enthalpies= -423.991536
Sum of electronic and thermal Free Energies= $=424.035347$

|  | E (Thermal) | CV | S |
| :---: | :---: | :---: | :---: |
|  | KCal/Mol | Cal/Mol-Kelvin | Cal/Mol-Kelvin |
| Total | 110.440 | 33.514 | 92.208 |

```
C,0,1.0311063878,0.505219027,2.5122225002
C,0,2.3139028638,0.4488878438,1.9639292366
C,0,2.4790352186,0.0778168378,0.6274220059
C, \(0,-1.1202896438,-0.4608515849,-0.4530707506\)
C,0,-1.391545975,0.2261960246,-1.7355766663
С,0,-2.7858747856,0.4381266906,-2.2678223513
Н,0,-0.6409349213,0.9476505858,-2.0669683873
H,0,-1.989250775,-0.8251893773,0.1000326477
H,0,-2.7974201691,0.3515827648,-3.3606313709
Н,, ,-3.4748806179,-0.308360531,-1.8601497775
H,0,-3.1526265022,1.4371821007,-2.0038390264
H,0,-1.0767156403,0.232393583,2.1590553712
\(\mathrm{H}, 0,0.8943503779,0.7846628895,3.5536213171\)
H,0,3.1798926216,0.685456179,2.5763682433
H,0,3.4760885677,0.0206913767,0.1982834316
Н,0,1.4896151931,-0.5394960997,-1.1930422323
О,0,-0.910901693,-1.1256570886,-1.7101594659
```


## Acrolein-cis

| B3LYP/6-31+G* |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{E}(\mathrm{RB}+$ HF-LYP $)=-191.920479353$ |  |  |  |  |
| Zero-poin | correction= | 0.061477 (Hartree/Particle) |  |  |
| Thermal | rrection to Energy | 0.065881 |  |  |
| Thermal | rrection to Enth | $=0.066825$ |  |  |
| Thermal | rrection to Gibb | Energy= 0.034960 |  |  |
| Sum of el | tronic and zero- | t Energies $=\quad-191.859002$ |  |  |
| Sum of el | tronic and therm | Energies $=\quad-191.854598$ |  |  |
| Sum of el | tronic and therm | Enthalpies= -191.853654 |  |  |
| Sum of electronic and thermal Free Energies= |  |  |  | -191.885519 |
|  | E (Thermal) | CV S |  |  |
|  | KCAL/MOL | CAL/MOL-KELVIN CAL/MOL-KELVIN |  |  |
| TOTAL | 41.341 | 13.741 |  | 67.065 |
| C, $0,-0.094603166,-0.0335068748,-0.9305544994$ |  |  |  |  |
| O, $, 0,0.9302027871,0.6144330323,-1.0546615958$ |  |  |  |  |
| C, $0,-0.685841477,-0.4411399485,0.368819743$ |  |  |  |  |
| C,0,-0.1222892045,-0.1203677296,1.542335167 |  |  |  |  |
| H,0,-0.6547485108,-0.3610046659,-1.8312392287 |  |  |  |  |
| H,0,-1.6078640082,-1.0188050314,0.3232402997 |  |  |  |  |
| Н, $0,-0.5611481533,-0.4225114488,2.4890947163$ |  |  |  |  |

H,0,0.7985414601, $0.4569442047,1.5725945161$

## Acrolein-trans (65)

B3LYP/6-31G*
$\mathrm{E}($ RB+HF-LYP $)=-191.911973566$

Zero-point correction= 0.061650 (Hartree/Particle)
Thermal correction to Energy= 0.066006
Thermal correction to Enthalpy= 0.066950
Thermal correction to Gibbs Free Energy= 0.035371
Sum of electronic and zero-point Energies= -191.850323
Sum of electronic and thermal Energies $=\quad-191.845968$
Sum of electronic and thermal Enthalpies $=\quad-191.845024$
Sum of electronic and thermal Free Energies= -191.876602

|  | E (Thermal) | CV | S |  |
| :---: | :---: | :---: | :---: | :---: |
|  | KCAL/MOL | CAL/MOL-KELVIN | CAL/MOL-KELVIN |  |
| TOTAL | 41.419 | 13.706 | 66.463 |  |

C,0,-1.0191469533,0.4475923027,-1.3762667296
C,0,-0.4405206989,-0.3356727565,-0.4586905493
С, $0,0.486167306,0.2214781787,0.54467616$
O,0,1.0426239101,-0.4363848204,1.4018950643
H,0,-0.6231748628,-1.4066488836,-0.4084864956
H,0,-1.7047141563,0.0591087256,-2.1234559418
$\mathrm{H}, 0,-0.821897764,1.517834573,-1.4064360817$
$\mathrm{H}, 0,0.6497975797,1.3203977989,0.4649047182$

## B3LYP/6-31+G* <br> $\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-191.911973566$

| Zero-point correction= | 0.061521 (Hartree/Particle) |
| :--- | :---: |
| Thermal correction to Energy $=$ | 0.065881 |
| Thermal correction to Enthalpy $=$ | 0.066825 |
| Thermal correction to Gibbs Free Energy= | 0.035228 |
| Sum of electronic and zero-point Energies $=$ | -191.862395 |
| Sum of electronic and thermal Energies $=$ | -191.858035 |
| Sum of electronic and thermal Enthalpies= | -191.857091 |
| Sum of electronic and thermal Free Energies= | -191.888688 |


|  | E (Thermal) | CV | S |  |
| :---: | :---: | :---: | :---: | :---: |
|  | KCAL/MOL | CAL/MOL-KELVIN | CAL/MOL-KELVIN |  |
| TOTAL | 41.341 | 13.729 | 66.501 |  |

```
C,0,-1.0191469533,0.4475923027,-1.3762667296
C,0,-0.4405206989,-0.3356727565,-0.4586905493
C,0,0.486167306,0.2214781787,0.54467616
O,0,1.0426239101,-0.4363848204,1.4018950643
H,0,-0.6231748628,-1.4066488836,-0.4084864956
H,0,-1.7047141563,0.0591087256,-2.1234559418
CCSD(T)/6-31G(d) single point energy
CCSD(T)=-191.3619094
```

```
mPW1K/6-31G*
```

mPW1K/6-31G*
E(RmPW+HF-PWq1) = -191.84892bこ229
E(RmPW+HF-PWq1) = -191.84892bこ229
Zero-point correction= 0.063605 (Hartree/Particle)
Thermal correction to Energy= 0.067915
Thermal correction to Enthalpy=}0.06885
Thermal correction to Gibbs Free Energy= 0.037357
Sum of electronic and zero-point Energies= -191.785321
Sum of electronic and thermal Energies= -191.781011
Sum of electronic and thermal Enthalpies= -191.780067
Sum of electronic and thermal Free Energies= -191.811570

|  | E（Thermal） | CV | S |  |
| :---: | :---: | :---: | :---: | :---: |
|  | KCAL／MOL | CAL／MOL－KELVIN | CAL／MOL－KELVIN |  |
| TOTAL | 42.617 | 13.413 | 66.303 |  |

O,0,-1.7807223148,-0.1172169639,0.
C,0,-0.6715616151,0.3496445433,0.
C,0,0.5576559648,-0.4496578116,0.
C,0,1.7501091673,0.1382892098,0.
H,0,-0.5225745639,1.4427148765,0.
H,0,0.4395852125,-1.5242443258,0.
H,0,2.6698364314,-0.427202314,0.
H,0,1.8417103363,1.2168118254,0.
MP2/6-31G*
E(RHF) = -190.7589%し१42
Zero-point correction= 0.062257 (Hartree/Particle)
Thermal correction to Energy= 0.066624
Thermal correction to Enthalpy=
Thermal correction to Gibbs Free Energy= 0.035934
Sum of electronic and zero-point Energies= -191.249368

```


\section*{MVK-cis}
```

B3LYP/6-31+G*
E(RB+HF-LYP})=-231.247287070

```
\begin{tabular}{lc}
Zero-point correction= & 0.061521 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.065881 \\
Thermal correction to Enthalpy \(=\) & 0.066825 \\
Thermal correction to Gibbs Free Energy= & 0.035228 \\
Sum of electronic and zero-point Energies \(=\) & -191.862395 \\
Sum of electronic and thermal Energies \(=\) & -191.858035 \\
Sum of electronic and thermal Enthalpies= & -191.857091 \\
Sum of electronic and thermal Free Energies= & -191.888688
\end{tabular}
\begin{tabular}{lccc}
\multicolumn{2}{c}{ E (Thermal) } & CV & S \\
KCAL/MOL & CAL/MOL-KELVIN & CAL/MOL-KELVIN \\
TOTAL & 41.341 & 13.729 & 66.501
\end{tabular}
```

H,0,-1.0594011328,0.5103250589,-1.4601716349
H,0,-0.6365241413,-2.2518877685,-0.1620503429

```

\section*{MVK-trans (66)}
```

B3LYP/6-31G*
E(RB+HF-LYP ) = -231.234878390

```
\begin{tabular}{lc}
Zero-point correction \(=\) & 0.089970 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.095758 \\
Thermal correction to Enthalpy \(=\) & 0.096702 \\
Thermal correction to Gibbs Free Energy= & 0.061113 \\
Sum of electronic and zero-point Energies \(=\) & -231.144908 \\
Sum of electronic and thermal Energies= & -231.139120 \\
Sum of electronic and thermal Enthalpies \(=\) & -231.138176 \\
Sum of electronic and thermal Free Energies \(=\) & -231.173765
\end{tabular}

\section*{B3LYP/6-31+G* \\ \(\mathrm{E}(\) RB+HF-LYP \()=-231.247559203\)}

Zero-point correction= 0.089797 (Hartree/Particle)
Thermal correction to Energy= 0.095577
Thermal correction to Enthalpy= 0.096521
Thermal correction to Gibbs Free Energy= 0.060944
Sum of electronic and zero-point Energies \(=\quad-231.157762\)
Sum of electronic and thermal Energies \(=\quad\)-231.151982
Sum of electronic and thermal Enthalpies= \(=-231.151038\)

Sum of electronic and thermal Free Energies= \(\quad-231.186615\)
\begin{tabular}{ccccc}
& E (Thermal) & CV & S & \\
& KCAL/MOL & CAL/MOL-KELVIN & CAL/MOL-KELVIN \\
TOTAL & 59.976 & 19.385 & 74.879
\end{tabular}

C,0,0.6622768237,1.3338835003,0.4588978651
C,0,0.3328028991,-0.1488938804,0.4436831291
O,0,0.8358713911,-0.9162287841,1.2550793071
C,0,-0.6165462463,-0.6833482931,-0.5720456942
С,0,-1.2342268723,0.0437733066,-1.5132281581
H,0,1.3689654477,1.531267281,1.2674379683
H,0,1.10627582,1.6468753506,-0.4940024918
\(\mathrm{H}, 0,-0.2419683773,1.9350528494,0.614000311\)
Н,0,-0.7834564363,-1.7560523692,-0.495637438
H,0,-1.0862262747,1.1161890231,-1.6126538979

\section*{CCSD(T)/6-31G(d) single point energy \\ \(\operatorname{CCSD}(\mathrm{T})=-230.5526161\)}
```

mPW1K/6-31G*
E(RmPW+HF-PW7l) = -23l.l⿺483l\&38

```
\begin{tabular}{lc}
Zero-point correction \(=\) & 0.092604 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.098301 \\
Thermal correction to Enthalpy \(=\) & 0.099245 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.063828 \\
Sum of electronic and zero-point Energies \(=\) & -231.072228 \\
Sum of electronic and thermal Energies= & -231.066531 \\
Sum of electronic and thermal Enthalpies \(=\) & -231.065586 \\
Sum of electronic and thermal Free Energies \(=\) & -231.101004
\end{tabular}
\begin{tabular}{ccccc}
& E (Thermal) & CV & S & \\
& KCAL/MOL & CAL/MOL-KELVIN & CAL/MOL-KELVIN \\
TOTAL & 61.685 & 18.939 & 74.543
\end{tabular}

C,0,-1.0165251203,0.,-1.6412895916
C,0,-1.0310591288,0.,-0.3126884618
C,0,0.1754184704,0.,0.544851532
O,0,0.0478249156,0.,1.7477285715
C,0,1.5360181578,0.,-0.0958862967
Н,0,-1.9627339071,0.,0.2366734197
H,0,-1.9339360339,0.,-2.2115696556
H,0,-0.0968193868,0.,-2.2090686327
```

H,0,1.6683883591,0.8792857501,-0.7255511351
H,0,2.2909990101,0.,0.6833154746
H,0,1.6683883591,-0.8792857501,-0.7255511351
MP2/6-31G*
E(RHF) = -ここๆ.802486549
Zero-point correction= 0.091295 (Hartree/Particle)
Thermal correction to Energy= 0.097034
Thermal correction to Enthalpy= 0.097979
Thermal correction to Gibbs Free Energy= 0.062510
Sum of electronic and zero-point Energies= -230.395074
Sum of electronic and thermal Energies= -230.389335
Sum of electronic and thermal Enthalpies= -230.388390
Sum of electronic and thermal Free Energies= -230.423859

|  | E (Thermal) | CV | S |  |
| :---: | :---: | :---: | :---: | :---: |
|  | KCAL/MOL | CAL/MOL-KELVIN | CAL/MOL-KELVIN |  |
| TOTAL | 60.890 | 19.238 | 74.650 |  |

C,0,0.8482396699,1.2944193627,0.
C,0,0.5414043193,-0.1877683238,0.
O,0,1.4426649883,-1.0290673744,0.
C,0,-0.8743756032,-0.6368440425,0.
C,0,-1.9371131142,0.1828253657,0.
H,0,1.9309369156,1.4210975524,0.
H,0,0.4231039114,1.7788318117,-0.8838536366
H,0,0.4231039114,1.7788318117,0.8838536366
H,0,-1.0013695374,-1.7169523225,0.
H,0,-1.8367863441,1.2632721189,0.
H,0,-2.9492403933,-0.2083361488,0.

```

TS 71, Ac as diene, MVK-cis, endo
B3LYP/6-31G*
\(\mathrm{E}(\) RB+HF-LYP \()=-423.119431252\)
Zero-point correction= 0.155197 (Hartree/Particle)
Thermal correction to Energy= 0.164593
Thermal correction to Enthalpy= 0.165537
Thermal correction to Gibbs Free Energy= 0.120728
Sum of electronic and zero-point Energies= -422.964234
Sum of electronic and thermal Energies \(=\quad-422.954839\)
\begin{tabular}{lc}
Sum of electronic and thermal Enthalpies \(=\) & -422.953894 \\
Sum of electronic and thermal Free Energies \(=\) & -422.998703
\end{tabular}
\begin{tabular}{ccccc}
& E (Thermal) & CV & S & \\
& KCAL/MOL & CAL/MOL-KELVIN & CAL/MOL-KELVIN \\
TOTAL & 103.283 & 34.055 & 94.307
\end{tabular}

C,0,-0.6367061771,1.6733205189,-0.1476237647
C,0,0.490082034,1.0069108758,-0.6537797647
H,0,0.7354850245,1.0366609536,-1.7100407647
C,0,1.3736292586,0.2979041557,0.2749282353
O,0,1.0129593086,0.1398850415,1.4441792353
C, \(0,-2.1424308113,0.5185610419,-0.1213227647\)
С, \(0,-1.8404204398,-0.6542808624,0.5961082353\)
С,0,-0.8816941633,-1.5270695587,0.0262072353
O,0,-0.3172262571,-1.2308393799,-1.0549307647
C,0,2.6718094406,-0.276640433,-0.2532027647
H,0,-2.9013610213,1.1814198015,0.2905732353
H,0,-0.5598748819,-2.4152794568,0.5942472353
H,0,-1.0674214234,2.4506103824,-0.7761037647
H,0,-2.1609603945,-0.797251964,1.6238992353
H,0,-2.1884307736,0.3993640273,-1.2008907647
H,0,-0.5910342529, 1.9124205334, 0.9116672353
H,0,3.2659395645,-0.6677372448,0.5753142353
H,0,2.4464896973,-1.0870185044,-0.9558317647
H,0,3.2496892002,0.4822117501,-0.7947097647

\section*{B3LYP/6-31+G*}
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-423.138660922\)
\begin{tabular}{lc}
Zero-point correction= & 0.154716 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.164202 \\
Thermal correction to Enthalpy \(=\) & 0.165146 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.119971 \\
Sum of electronic and zero-point Energies= & -422.983945 \\
Sum of electronic and thermal Energies \(=\) & -422.974459 \\
Sum of electronic and thermal Enthalpies \(=\) & -422.973515 \\
Sum of electronic and thermal Free Energies= & -423.018690
\end{tabular}
\begin{tabular}{ccccc}
& E (Thermal) & CV & S & \\
& KCAL/MOL & CAL/MOL-KELVIN & CAL/MOL-KELVIN \\
TOTAL & 103.038 & 34.174 & 95.079
\end{tabular}

C,0,-0.6371929288,1.6567503147,-0.1478712623
\(\mathrm{C}, 0,0.4839815989,0.9744209967,-0.6520870592\)
\(\mathrm{H}, 0,0.717780751,0.9885117333,-1.7118037234\)
\(\mathrm{C}, 0,1.3983544416,0.2905944113,0.2714124059\)
\(\mathrm{O}, 0,1.0690015172,0.1471483584,1.4531160692\)
\(\mathrm{C}, 0,-2.1621445996,0.5325302528,-0.1346693356\)
\(\mathrm{C}, 0,-1.8855130376,-0.6481051868,0.58563382738\)
\(\mathrm{C}, 0,-0.920551459,-1.5302093377,0.0429885046\)
\(\mathrm{O}, 0,-0.3279464333,-1.2420530392,-1.0293538404\)
\(\mathrm{C}, 0,2.7031320307,-0.2501186287,-0.2729473005\)
\(\mathrm{H}, 0,-2.9116770651,1.2068241911,0.276785677\)
\(\mathrm{H}, 0,-0.6101324123,-2.4149488457,0.6198434201\)
\(\mathrm{H}, 0,-1.0542980877,2.4349921611,-0.7850310437\)
\(\mathrm{H}, 0,-2.2253843101,-0.7869297884,1.6084272919\)
\(H, 0,-2.2084365052,0.4187358316,-1.2153594342\)
\(H, 0,-0.5908324134,1.9078751496,0.909193701\)
\(H, 0,3.2882760485,-0.6903614566,0.5376948377\)
\(\mathrm{H}, 0,2.500907726,-1.0108500843,-1.0360584292\)
\(\mathrm{H}, 0,3.2849593198,0.550211622,-0.748575487\)
\(\operatorname{CCSD}(\mathrm{T}) / 6-31 \mathrm{G}(\mathrm{d})\) single point energy
\(\operatorname{CCSD}(\mathrm{T})=-.42188632730 \mathrm{D}+03\)
```

mPW1K/6-31G*
E(RmPW+HF-PW91) = -422.984153306

```
Zero-point correction= 0.159770 (Hartree/Particle)

Thermal correction to Energy \(=\quad 0.168990\)
Thermal correction to Enthalpy= 0.169934
Thermal correction to Gibbs Free Energy= 0.125472
Sum of electronic and zero-point Energies \(=\quad-422.824383\)
Sum of electronic and thermal Energies \(=\quad-422.815163\)
Sum of electronic and thermal Enthalpies \(=\quad-422.814219\)
Sum of electronic and thermal Free Energies \(=\quad-422.858681\)
\begin{tabular}{ccccc}
& E (Thermal) & CV & S & \\
& KCAL/MOL & CAL/MOL-KELVIN & CAL/MOL-KELVIN \\
TOTAL & 106.043 & 33.265 & 93.579
\end{tabular}

C,0,-1.6685006931,-0.5535221752,-0.2560620945
C, \(0,-0.8793661278,-0.310276161,0.8574204119\)
H,0,-1.2299463271,0.2992517633,1.6757588994
C,0,0.4254564869,-0.9596038543,0.9539922927
O,0,0.880397481,-1.5243863216,-0.0262526432
C, \(0,-1.3203205437,0.776834133,-1.5899280285\)
```

C,0,0.0400293147,0.7815541223,-1.8820701932
C,0,0.9004820335,1.2074463586,-0.8522397568
O,0,0.4350183147,1.5271914427,0.2540824924
C,0,1.1745783414,-0.8646622385,2.2482273533
H,0,-2.0088329784,0.4543668294,-2.3601236066
H,0,1.9826390108,1.1479983443,-0.9938915269
H,0,-2.7271275354,-0.3475566157,-0.1678339298
H,0,0.4416826976,0.2964709773,-2.7588787305
H,0,-1.6738846713,1.5890661416,-0.9707375661
H,0,-1.4076955061,-1.4260638684,-0.8382909974
H,0,2.1037955579,-1.4211560676,2.1780792465
H,0,1.3873935295,0.1802890481,2.4698810223
H,0,0.5744969853,-1.2617286307,3.0673584863
MP2/6-31G*
E(RHF) = -420.494772097

| Zero-point correction= | 0.157046 (Hartree/Particle) |
| :--- | :---: |
| Thermal correction to Energy $=$ | 0.166389 |
| Thermal correction to Enthalpy $=$ | 0.167333 |
| Thermal correction to Gibbs Free Energy $=$ | 0.122951 |
| Sum of electronic and zero-point Energies= | -421.627486 |
| Sum of electronic and thermal Energies= | -421.618143 |
| Sum of electronic and thermal Enthalpies $=$ | -421.617199 |
| Sum of electronic and thermal Free Energies $=$ | -421.661581 |


|  | E (Thermal) | CV | S |  |
| :---: | :---: | :---: | :---: | :---: |
|  | KCAL/MOL | CAL/MOL-KELVIN | CAL/MOL-KELVIN |  |
| TOTAL | 104.410 | 34.102 | 93.410 |  |

C,0,-1.7669669289,-0.6096960706,-0.2109781655
С,0,-0.9849873687,-0.4237600279,0.9248357749
$\mathrm{H}, 0,-1.334255681,0.1620263698,1.7709376689$
C,0,0.3648365079,-0.9505091044,0.9056064267
O,0,0.818738908,-1.3981993383,-0.1714545419
C, $0,-1.247033511,0.743467646,-1.6003955269$
C,0,0.1289255909,0.6615540767,-1.7860475617
C,0,0.9607041056,1.211506271,-0.7525981153
О,0,0.453517062,1.6615482429,0.2996578052
C, $0,1.2213924352,-0.843907122,2.141821925$
Н,0,-1.9055844193,0.4186646119,-2.4023033577
H,0,2.0560399799,1.1543355776,-0.8671961854
H,0,-2.8240703209,-0.3601368945,-0.159993056
H,0,0.5738008577,0.0884553807,-2.5943446

```
```

H,0,-1.5979279247,1.5780817601,-1.0015262992
H,0,-1.5031468583,-1.4572243099,-0.835632673
H,0,2.1291645509,-1.434054824,2.0064084265
H,0,1.4871610518,0.2059243445,2.2991266469
H,0,0.679546018,-1.1947972669,3.0254287786

```

\section*{TS, Ac as diene, MVK-cis, exo}
```

B3LYP/6-31G*
E(RB+HF-LYP) = -423.117268113

```
Zero-point correction= 0.155089 (Hartree/Particle)
Thermal correction to Energy= 0.164483
Thermal correction to Enthalpy= 0.165427
Thermal correction to Gibbs Free Energy= 0.120641
Sum of electronic and zero-point Energies \(=\quad-422.962179\)
Sum of electronic and thermal Energies \(=\quad-422.952785\)
Sum of electronic and thermal Enthalpies \(=\quad-422.951841\)
Sum of electronic and thermal Free Energies= \(\quad-422.996627\)
\begin{tabular}{ccccc}
& E (Thermal) & CV & S & \\
& KCAL/MOL & CAL/MOL-KELVIN & CAL/MOL-KELVIN \\
TOTAL & 103.215 & 34.113 & 94.260
\end{tabular}

Н,0,-0.3456614275,-2.6245496685,1.7917670175
С,0,-0.6061548875,-1.7778100685,1.1325670213
O,0,0.1293023176,-1.5226299294,0.1431766542
C,0,-1.6655114614,-0.9261312375,1.503795631
H,0,-2.1527553883,-1.0667165178,2.465456836
C,0,-1.8349965516,0.2576372065,0.7626875125
H,0,-2.6141283504,0.9461264546,1.0858369275
H,0,-1.7188441772,0.1931766166,-0.3176104246
C, \(0,-0.2543966745,1.3466902422,0.9456173141\)
H,0,-0.2001154342,1.5297020216,2.0151266723
H,0,-0.6802508262,2.1589686287,0.3597830861
C, \(0,0.8114129398,0.675409573,0.3373188124\)
H,0,1.5983358965,0.2116203828,0.9202778051
C,0,0.9406042251,0.694050236,-1.1396883879
O,0,0.0758700791,1.2262482176,-1.8273094056
C,0,2.1384234719,-0.0052106275,-1.7425861453
Н,0,2.0600009415,-1.0791388536,-1.5373719025
H,0,2.1640890676,0.1643448623,-2.8206690181
H,0,3.0716641536,0.3497078215,-1.2878055371

\section*{CCSD(T)/6-31G(d) single point energy}
\(\operatorname{CCSD}(\mathrm{T})=-.42188234550 \mathrm{D}+03\)

\section*{TS, Ac as diene, MVK-trans, endo}

\author{
B3LYP/6-31G* \\ \(\mathrm{E}(\) RB+HF-LYP \()=-423.110288892\)
}
\begin{tabular}{lc}
Zero-point correction= & 0.155013 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.164379 \\
Thermal correction to Enthalpy \(=\) & 0.165323 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.120757 \\
Sum of electronic and zero-point Energies= & -422.955276 \\
Sum of electronic and thermal Energies= & -422.945910 \\
Sum of electronic and thermal Enthalpies \(=\) & -422.944966 \\
Sum of electronic and thermal Free Energies= & -422.989532
\end{tabular}
\begin{tabular}{ccccc}
& E (Thermal) & CV & S & \\
& KCAL/MOL & CAL/MOL-KELVIN & CAL/MOL-KELVIN \\
TOTAL & 103.149 & 34.281 & 93.797
\end{tabular}

C, \(0,-0.6189109653,1.5337274049,-0.2271330998\)
C,0,0.4740213529,0.8172942643,-0.7246008314
C,0,1.6245223627,0.353776882,0.0902506177
C,0,1.4508096666,0.22532491,1.5953134317
O,0,2.7007848161,0.1414669719,-0.4481705801
C,0,-2.2435791986,0.4039104836,-0.3602652777
С,0,-2.0767354341,-0.7307872991,0.4458691785
С,0,-1.0090458104,-1.5958731405,0.1192247682
O,0,-0.2472030872,-1.3481469896,-0.8502437392
\(\mathrm{H}, 0,0.6535049671,0.7790564854,-1.7937890751\)
Н, \(0,-3.0178832308,1.1210761139,-0.0955343735\)
H,0,-0.7752166609,-2.4398707874,0.7913101655
H,0,-1.0369945423,2.3002520876,-0.8762990509
H, \(0,-2.5788458884,-0.8269816805,1.4052216213\)
H,0,-2.1032488299,0.2630052166,-1.4277676429
H,0,-0.6293608746,1.7988852932,0.8267157189
H,0,2.2671292105,-0.3820557148,1.9912459486
H,0,1.4979690965,1.216381816,2.065029463
H,0,0.4878010787,-0.2205497203,1.8692290558

\section*{\(\operatorname{CCSD}(T) / 6-31 G(d)\) single point energy}
\(\operatorname{CCSD}(\mathrm{T})=-.42187537756 \mathrm{D}+03\)

\section*{TS, Ac as diene, MVK-trans, exo}

\section*{B3LYP/6-31G* \\ \(\mathrm{E}(\) RB+HF-LYP \()=-423.109903999\)}
\begin{tabular}{lc}
Zero-point correction \(=\) & 0.154937 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.164376 \\
Thermal correction to Enthalpy \(=\) & 0.165320 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.120360 \\
Sum of electronic and zero-point Energies \(=\) & -422.954967 \\
Sum of electronic and thermal Energies \(=\) & -422.945528 \\
Sum of electronic and thermal Enthalpies \(=\) & -422.944584 \\
Sum of electronic and thermal Free Energies= & -422.989544
\end{tabular}

\(\operatorname{CCSD}(\mathrm{T}) / 6-31 \mathrm{G}(\mathrm{d})\) single point energy
\(\operatorname{CCSD}(\mathrm{T})=-.42187489319 \mathrm{D}+03\)

\section*{TS, MVK as diene, Ac-cis, exo}

\(\operatorname{CCSD}(\mathrm{T}) / 6-31 \mathrm{G}(\mathrm{d})\) single point energy
\(\operatorname{CCSD}(\mathrm{T})=-.42187915121 \mathrm{D}+03\)

\section*{TS, MVK as diene, Ac-trans, endo}

\(\operatorname{CCSD}(\mathrm{T}) / 6-31 \mathrm{G}(\mathrm{d})\) single point energy
\(\operatorname{CCSD}(T)=-.42187523669 \mathrm{D}+03\)

TS, MVK as diene, Ac-trans, exo

\(\operatorname{CCSD}(T) / 6-31 G(d)\) single point energy
\(\operatorname{CCSD}(\mathrm{T})=-.42187385732 \mathrm{D}+03\)

\section*{Product 67, Ac as diene}

Thermal correction to Gibbs Free Energy=
Sum of electronic and zero-point Energies=
Sum of electronic and thermal Energies=
Sum of electronic and thermal Enthalpies=
Sum of electronic and thermal Free Energies=
0.125483
-423.044112
-423.035363
-423.034419 -423.078307
\begin{tabular}{cccc}
& E (Thermal \()\) & CV & S \\
& \(\mathrm{KCal} / \mathrm{Mol}\) & \(\mathrm{Cal} /\) Mol-Kelvin & Cal/Mol-Kelvin \\
Total & 105.690 & 32.365 & 92.371
\end{tabular}

C, \(0,-2.6181438492,-0.1191402018,0.3879591702\)
C,0,-1.4777566176,-0.9192171471,-0.1951494067
O,0,-1.5852790187,-2.0952569385,-0.4984924045
C, \(0,-0.1212507301,-0.23872816,-0.399545777\)
C,0,0.9463144385,-0.8108381383,0.5481005516
C, \(0,2.3012095904,-0.1418994758,0.267214209\)
C,0,2.1117105711,1.3405306711,0.0634980464
C,0,0.9019290019,1.882319055,-0.1270117599
O,0,-0.2714260883,1.1788296208,-0.226217229
H,0,0.1852390222,-0.4243013714,-1.4397618816
H,0,2.9833770557,-0.3226283125,1.1087165766
H,0,0.7200968525,2.9483007096,-0.2200817849
H,0,0.9914321569,-1.895647351,0.4136204664
H,0,2.9707642675,2.0044212927,0.1022789049
H,0,2.7781431176,-0.5995101303,-0.6124768425
\(\mathrm{H}, 0,0.6395146608,-0.6129283603,1.5836927028\)
H,0,-3.4874567885,-0.7679060793,0.5144591384
H,0,-2.3275021263,0.3222891267,1.3488328631
H,0,-2.8640417649,0.7211716399,-0.2719886962
\(\operatorname{CCSD}(\mathrm{T}) / 6-31 \mathrm{G}(\mathrm{d})\) single point energy
\(\operatorname{CCSD}(T)=-.42195963304 \mathrm{D}+03\)
mPW1K/6-31G*
\(\mathrm{E}(\mathrm{RmPW}+\mathrm{HF}-\mathrm{PW}\) 耳ll \()=-423 . \square 72002448\)
\begin{tabular}{lc}
Zero-point correction \(=\) & 0.165100 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.173637 \\
Thermal correction to Enthalpy \(=\) & 0.174581 \\
Thermal correction to Gibbs Free Energy= & 0.130957 \\
Sum of electronic and zero-point Energies= & -422.906902 \\
Sum of electronic and thermal Energies= & -422.898366 \\
Sum of electronic and thermal Enthalpies= & -422.897421 \\
Sum of electronic and thermal Free Energies= & -422.941046
\end{tabular}
\begin{tabular}{ccccc}
& E (Thermal) & CV & S & \\
& KCAL/MOL & CAL/MOL-KELVIN & CAL/MOL-KELVIN \\
TOTAL & 108.959 & 31.266 & 91.816
\end{tabular}
\(\mathrm{C}, 0,2.5189460935,-0.5705615404,0.5075975565\)
\(\mathrm{C}, 0,1.6310348456,0.564550852,0.1068253609\)
\(\mathrm{O}, 0,1.9935285628,1.7141513534,0.1172216389\)
\(\mathrm{C}, 0,0.2084764443,0.2604697658,-0.3215724703\)
\(\mathrm{C}, 0,-0.8028982951,0.8881739062,0.6253957334\)
\(\mathrm{C}, 0,-2.2091720873,0.6263926189,0.1091033588\)
\(\mathrm{C}, 0,-2.3156246444,-0.7886862046,-0.3634793311\)
\(\mathrm{C}, 0,-1.2432766632,-1.5503709428,-0.550087157\)
\(\mathrm{O}, 0,0.038025981,-1.1377695708,-0.4091542047\)
\(\mathrm{H}, 0,0.0735429236,0.6869525885,-1.3202530748\)
\(\mathrm{H}, 0,-2.9352383229,0.8109773014,0.9021141135\)
\(\mathrm{H}, 0,-1.2885989055,-2.5902492017,-0.8342970298\)
\(\mathrm{H}, 0,-0.5901686628,1.9509110789,0.7117618737\)
\(\mathrm{H}, 0,-3.2872137419,-1.2289847129,-0.5308708884\)
\(\mathrm{H}, 0,-2.4559761897,1.3231916209,-0.6959488653\)
\(\mathrm{H}, 0,-0.6797850945,0.4406460519,1.61317987\)
\(\mathrm{H}, 0,3.4835926209,-0.1799934052,0.8149847243\)
\(\mathrm{H}, 0,2.0640644423,-1.1409842574,1.316388372\)
\(\mathrm{H}, 0,2.6384304198,-1.2633320559,-0.324296875\)

\section*{MP2/6-31G*}
\(E(\) RHF \()=-420.598445892\)
Zero-point correction= 0.162898 (Hartree/Particle)
Thermal correction to Energy= 0.171530
Thermal correction to Enthalpy \(=\quad 0.172474\)
Thermal correction to Gibbs Free Energy= 0.128558
Sum of electronic and zero-point Energies= -421.685741
Sum of electronic and thermal Energies \(=\quad-421.677108\)
Sum of electronic and thermal Enthalpies \(=\quad-421.676164\)
Sum of electronic and thermal Free Energies= \(\quad-421.720081\)
\begin{tabular}{ccccc}
& E (Thermal) & CV & S & \\
& KCAL/MOL & CAL/MOL-KELVIN & CAL/MOL-KELVIN \\
TOTAL & 107.637 & 31.774 & 92.430
\end{tabular}

C,0,2.5338395055,-0.5702447732,0.5001709908
C,0,1.6353122706,0.5709179736,0.104677371
O,0,1.9922883878,1.7460715024,0.1280368387
\(\mathrm{C}, 0,0.2081024955,0.259510971,-0.3241956963\)
\(\mathrm{C}, 0,-0.8062435592,0.8808639126,0.6317175115\)
\(\mathrm{C}, 0,-2.2169701061,0.6373046647,0.0980633714\)
\(\mathrm{C}, 0,-2.3294935278,-0.7844738512,-0.374522782\)
\(\mathrm{C}, 0,-1.2536353566,-1.5671125145,-0.5467690132\)
\(\mathrm{O}, 0,0.0525101073,-1.1651027869,-0.3952091149\)
\(\mathrm{H}, 0,0.0575036197,0.6776116902,-1.3318715725\)
\(\mathrm{H}, 0,-2.9542517265,0.8314435203,0.8863955808\)
\(\mathrm{H}, 0,-1.3041390597,-2.6152011517,-0.8250970037\)
\(\mathrm{H}, 0,-0.5800847068,1.9452658088,0.7412675069\)
\(\mathrm{H}, 0,-3.3073404695,-1.2219498084,-0.5516632025\)
\(\mathrm{H}, 0,-2.4431302522,1.3416740052,-0.7136509581\)
\(\mathrm{H}, 0,-0.687078926,0.4034757616,1.6116695556\)
\(H, 0,3.5056147063,-0.1692103433,0.7903367945\)
\(H, 0,2.0889602458,-1.130589302,1.3275240621\)
\(H, 0,2.6400882763,-1.2708682021,-0.3323830716\)

\section*{Product 68, MVK as diene}

\section*{B3LYP/6-31G* \\ \(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-423.200266945\)}
\begin{tabular}{lc}
Zero-point correction \(=\) & 0.159094 (Hartree/Particle) \\
Thermal correction to Energy \(=\) & 0.168016 \\
Thermal correction to Enthalpy \(=\) & 0.168960 \\
Thermal correction to Gibbs Free Energy= & 0.124929 \\
Sum of electronic and zero-point Energies= & -423.041173 \\
Sum of electronic and thermal Energies= & -423.032251 \\
Sum of electronic and thermal Enthalpies= & -423.031307 \\
Sum of electronic and thermal Free Energies= \(=\) & -423.075338
\end{tabular}
\begin{tabular}{ccccc}
& E (Thermal) & CV & S & \\
& KCAL/MOL & CAL/MOL-KELVIN & CAL/MOL-KELVIN \\
TOTAL & 105.431 & 32.669 & 92.670
\end{tabular}

C,0,2.6884538955,-0.1252036319,-1.2067930041
C,0,1.3094514745,0.2910662753,-0.794696627
O,0,0.7547809967,-0.6351697947,0.0670078499
C,0,0.6620809454,1.3981682299,-1.193269423
С,0,-0.7612793267,1.7069989229,-0.7995062172
C, \(0,-1.425913867,0.4635347482,-0.1917522769\)
C,0,-0.432054141,-0.2251708068,0.7540682347
С,0,-1.0120949844,-1.4742696111,1.3950987976
```

O,0,-1.9622130521,-1.4489788228,2.147488858
H,0,1.1835583505,2.0840694837,-1.8548321106
H,0,-2.3342878489,0.7132618091,0.3656869252
H,0,-0.5101648971,-2.4252823695,1.1191683223
H,0,-1.3314173171,2.0359273761,-1.6787456315
H,0,-0.1507693709,0.474674211,1.5569232805
H,0,-1.7022389934,-0.2423956126,-0.9855629819
H,0,-0.797282798,2.5443919107,-0.0860238381
H,0,3.3503648965,-0.2007608323,-0.3349546985
H,0,2.6643218849,-1.1134537987,-1.6833523939
H,0,3.1155085593,0.592012003,-1.9131774413
B3LYP/6-31+G*
E(RB+HF-LYP})=-423.20026694

| Zero-point correction $=$ | 0.159094 (Hartree/Particle) |
| :--- | :---: |
| Thermal correction to Energy $=$ | 0.168016 |
| Thermal correction to Enthalpy $=$ | 0.168960 |
| Thermal correction to Gibbs Free Energy $=$ | 0.124929 |
| Sum of electronic and zero-point Energies $=$ | -423.041173 |
| Sum of electronic and thermal Energies= | -423.032251 |
| Sum of electronic and thermal Enthalpies $=$ | -423.031307 |
| Sum of electronic and thermal Free Energies $=$ | -423.075338 |

E (Thermal) CV S

| TOTAL | 105.431 | 32.669 | 92.670 |
| :--- | :--- | :--- | :--- |

C,0,2.6884538955,-0.1252036319,-1.2067930041
C,0,1.3094514745,0.2910662753,-0.794696627
O,0,0.7547809967,-0.6351697947,0.0670078499
C,0,0.6620809454,1.3981682299,-1.193269423
С, $0,-0.7612793267,1.7069989229,-0.7995062172$
C,0,-1.425913867,0.4635347482,-0.1917522769
C,0,-0.432054141,-0.2251708068,0.7540682347
С,0,-1.0120949844,-1.4742696111,1.3950987976
O,0,-1.9622130521,-1.4489788228,2.147488858
H,0,1.1835583505,2.0840694837,-1.8548321106
H,0,-2.3342878489,0.7132618091,0.3656869252
H,0,-0.5101648971,-2.4252823695,1.1191683223
H,0,-1.3314173171,2.0359273761,-1.6787456315
H,0,-0.1507693709,0.474674211,1.5569232805
H,0,-1.7022389934,-0.2423956126,-0.9855629819
H,0,-0.797282798,2.5443919107,-0.0860238381

```
```

H,0,3.3503648965,-0.2007608323,-0.3349546985
H,0,2.6643218849,-1.1134537987,-1.6833523939
H,0,3.1155085593,0.592012003,-1.9131774413

```
\(\operatorname{CCSD}(\mathrm{T}) / 6-31 \mathrm{G}(\mathrm{d})\) single point energy
\(\operatorname{CCSD}(\mathrm{T})=-.42195600585 \mathrm{D}+03\)

\begin{tabular}{ccccc}
& E (Thermal) & CV & S & \\
& KCAL/MOL & CAL/MOL-KELVIN & CAL/MOL-KELVIN \\
TOTAL & 108.718 & 31.615 & 91.604
\end{tabular}

C,0,2.6622605309,-0.1291065366,-1.1937297396
C, \(0,1.2963372573,0.2828540943,-0.7784182507\)
O,0,0.7455501694,-0.6345208695,0.0637320214
C,0,0.6611398682,1.3885964576,-1.164477979
С,0,-0.7501181247,1.6955726891,-0.7737824891
С,0,-1.4042815317,0.4565970068,-0.1860424296
C, \(0,-0.4164243751,-0.2236788241,0.744404194\)
С, \(0,-0.9905512819,-1.4538491874,1.3961608449\)
O,0,-1.9873408626,-1.4321773752,2.0614518071
H,0,1.1858735206,2.0721808514,-1.8152265798
H,0,-2.3107270268,0.6916720711,0.3674949488
H,0,-0.4301978121,-2.3856834704,1.2192509582
H, \(,-1.3129327451,2.0317329396,-1.6458947805\)
\(\mathrm{H}, 0,-0.1312021946,0.4751147903,1.5386313717\)
\(\mathrm{H}, 0,-1.6700062279,-0.2409020842,-0.9816195503\)
H,0,-0.7841045919,2.5198350431,-0.056315566
H,0,3.3166702605,-0.2189714952,-0.3270302299
H,0,2.6306006278,-1.1041193417,-1.6798452271
H,0,3.090177677,0.5908124562,-1.8856008769

TS 72, [3,3]-rearrangement between products
B3LYP/6-31G*
\(\mathrm{E}(\mathrm{RB}+\mathrm{HF}-\mathrm{LYP})=-423.137974685\)

Zero-point correction=
Thermal correction to Energy=
0.155799 (Hartree/Particle)
0.164642
\begin{tabular}{lc}
Thermal correction to Enthalpy \(=\) & 0.165586 \\
Thermal correction to Gibbs Free Energy \(=\) & 0.122127 \\
Sum of electronic and zero-point Energies= & -422.982176 \\
Sum of electronic and thermal Energies \(=\) & -422.973333 \\
Sum of electronic and thermal Enthalpies \(=\) & -422.972388 \\
Sum of electronic and thermal Free Energies \(=\) & -423.015847
\end{tabular}
\begin{tabular}{ccccc}
& E (Thermal) & CV & S & \\
& KCAL/MOL & CAL/MOL-KELVIN & CAL/MOL-KELVIN \\
TOTAL & 103.315 & 33.026 & 91.467
\end{tabular}

C,0,2.5990298965,-0.34952107,-0.1170200596
C,0,1.2801225376,0.2841163506,0.2619438187
O,0,0.727042871,0.0065623278,1.3610952517
C,0,0.5489654874,1.1103226409,-0.6378298025
С,0,-0.6793543884,1.7030169963,-0.1553535528
C,0,-1.9503352476,0.6153729861,0.0141314835
C,0,-1.5716451112,-0.620631351,0.6625791181
C,0,-0.8089429187,-1.5477487434,-0.0990349785
O,0,-0.3859208558,-1.2156237563,-1.2298313452
\(\mathrm{H}, 0,0.8756614985,1.2363128747,-1.665075053\)
H,0,-2.7190444565,1.1723591904,0.5535168232
Н, \(,-0.4985885569,-2.4996548266,0.3596049858\)
H,0,-1.0700021877,2.4832753779,-0.8120745792
H,0,-1.8159279768,-0.8310982851,1.6986226994
H,0,-2.2417913517,0.4358604175,-1.0233649062
H,0,-0.5584352453,2.0671336855,0.8677152305
H,0,3.3219904555,-0.2052090566,0.6932693866
H,0,2.4639801217,-1.4281284455,-0.2570768608
H,0,3.0061400424,0.0720736385,-1.0417451397
B3LYP/6-31+G*
\(\mathrm{E}(\mathrm{RB}+\) HF-LYP \()=-423.137974685\)
Zero-point correction= 0.155799 (Hartree/Particle)
Thermal correction to Energy= 0.164642
Thermal correction to Enthalpy= 0.165586
Thermal correction to Gibbs Free Energy= 0.122127
Sum of electronic and zero-point Energies \(=\quad-422.982176\)
Sum of electronic and thermal Energies= -422.973333
Sum of electronic and thermal Enthalpies \(=\quad-422.972388\)
Sum of electronic and thermal Free Energies= -423.015847
E (Thermal) CV S
\begin{tabular}{|c|c|c|c|}
\hline & KCAL/MOL & CAL/MOL-KELV & L/MOL-KELVIN \\
\hline TOTAL & 103.315 & 33.026 & 91.467 \\
\hline \multicolumn{4}{|l|}{C,0,2.5990298965,-0.34952107,-0.1170200596} \\
\hline \multicolumn{4}{|l|}{C,0,1.2801225376,0.2841163506,0.2619438187} \\
\hline \multicolumn{4}{|l|}{O,0,0.727042871,0.0065623278,1.3610952517} \\
\hline \multicolumn{4}{|l|}{C,0,0.5489654874,1.1103226409,-0.6378298025} \\
\hline \multicolumn{4}{|l|}{C, \(0,-0.6793543884,1.7030169963,-0.1553535528\)} \\
\hline \multicolumn{4}{|l|}{C,0,-1.9503352476,0.6153729861,0.0141314835} \\
\hline \multicolumn{4}{|l|}{C,0,-1.5716451112,-0.620631351,0.6625791181} \\
\hline \multicolumn{4}{|l|}{C, \(0,-0.8089429187,-1.5477487434,-0.0990349785\)} \\
\hline \multicolumn{4}{|l|}{O,0,-0.3859208558,-1.2156237563,-1.2298313452} \\
\hline \multicolumn{4}{|l|}{H,0,0.8756614985, 1.2363128747,-1.665075053} \\
\hline \multicolumn{4}{|l|}{H,0,-2.7190444565, \(1.1723591904,0.5535168232\)} \\
\hline \multicolumn{4}{|l|}{H,0,-0.4985885569,-2.4996548266,0.3596049858} \\
\hline \multicolumn{4}{|l|}{H,0,-1.0700021877, 2.4832753779,-0.8120745792} \\
\hline \multicolumn{4}{|l|}{H, \(0,-1.8159279768,-0.8310982851,1.6986226994\)} \\
\hline \multicolumn{4}{|l|}{H,0,-2.2417913517, \(0.4358604175,-1.0233649062\)} \\
\hline \multicolumn{4}{|l|}{H,0,-0.5584352453,2.0671336855,0.8677152305} \\
\hline \multicolumn{4}{|l|}{H,0,3.3219904555,-0.2052090566,0.6932693866} \\
\hline \multicolumn{4}{|l|}{H,0,2.4639801217,-1.4281284455,-0.2570768608} \\
\hline H,0,3.006 & 00424,0.072073 & 385,-1.0417451397 & \\
\hline
\end{tabular}
\(\operatorname{CCSD}(\mathrm{T}) / 6-31 \mathrm{G}(\mathrm{d})\) single point energy
\(\operatorname{CCSD}(\mathrm{T})=-.42188891695 \mathrm{D}+03\)

C,0,2.531538047,-0.4066609512,-0.0420828082
C,0,1.2299879962,0.2635222565,0.2656028323
```

O,0,0.62384767,0.0191455195,1.3344920705
C,0,0.5230739228,1.0276467303,-0.6767851951
С,0,-0.7070038788,1.6452986809,-0.2093830826
C,0,-1.8957938368,0.6110091058,0.1015313079
C,0,-1.4516265079,-0.6415434007,0.6892913329
C,0,-0.7314984268,-1.4909721234,-0.1617565998
O,0,-0.3536086049,-1.032789396,-1.2566146216
H,0,0.8970866879,1.1804367908,-1.6764484082
H,0,-2.6173440538,1.132075254,0.7238966686
H,0,-0.3630696956,-2.4539262419,0.1980945475
H,0,-1.0972126292,2.3771466301,-0.910917598
H,0,-1.7040605424,-0.9350349332,1.6953623425
H,0,-2.3272564,0.4060702096,-0.8762711063
H,0,-0.5189807446,2.1168016205,0.7532547401
H,0,3.2315902818,-0.2454314753,0.7754248125
H,0,2.3753951852,-1.4807929689,-0.1375619535
H,0,2.9698754947,-0.0379956626,-0.966360361
MP2/6-31G*
E(RHF) = -420.474984807
Zero-point correction= 0.159570 (Hartree/Particle)
Thermal correction to Energy= 0.167803
Thermal correction to Enthalpy= 0.168747
Thermal correction to Gibbs Free Energy= 0.127109
Sum of electronic and zero-point Energies= -421.632661
Sum of electronic and thermal Energies= -421.624428
Sum of electronic and thermal Enthalpies= -421.623484
Sum of electronic and thermal Free Energies= -421.665122

|  | E (Thermal) | CV | S |  |
| :---: | :---: | :---: | :---: | :---: |
|  | KCAL/MOL | CAL/MOL-KELVIN | CAL/MOL-KELVIN |  |
| TOTAL | 105.298 | 31.824 | 87.635 |  |

C,0,0.858174991,-1.5691279362,-0.3000825699
C,0,-0.4109132059,-1.0327008068,-0.7692343218
H,0,-0.7261131499,-1.1110547019,-1.8062622174
C,0,-1.2125176791,-0.3923635737,0.2102287018
O,0,-0.6744906816,-0.1986807143,1.3482823272
C,0,1.9774762892,-0.4240201963,0.0194791338
C,0,1.4492033045,0.7099737159,0.7633019588
C,0,0.5912373689,1.5639229475,0.0370334882
O,0,0.2327421451,1.2088614088,-1.1285829873
C,0,-2.5732955588,0.1660987294,-0.1164424906

```

H,0,2.7967393711,-0.9285311502,0.5362598173
H,0,0.1272479739,2.4341282779,0.524789214
H,0,1.3194752649,-2.2529320433,-1.0164509345
H,0,1.680613663,0.8905227277,1.8090221604
H,0,2.290826907,-0.0925618358,-0.9730343794
H,0,0.7133718035,-2.0578409058,0.6657203899
H,0,-2.8080124714,0.9630391364,0.5921197682
H,0,-2.6022762438,0.5588437539,-1.1354827333
H,0,-3.3340778854,-0.615756095,-0.019979206

\section*{VITA}

Zhihong Wang received her Bachelor of Science in 1996 and Master of Science degrees in 2000, both in chemistry from Nankai University in People Republic of China. She entered the Ph.D. program in the Department of Chemistry at Texas A\&M University in August 2000 and has studied under the supervision of Dr. Daniel A. Singleton. She received her Ph.D. degree in chemistry in December 2005.

Zhihong Wang may be reached at Department of Chemistry, Nankai University, Tianjin 300071, P.R.China.```

[^0]: * Reproduced in part with permission from "Isotope effects and the mechanism of fragmentation of epoxy imino-1,3,4-oxadiazolines" by Singleton, D. A.; Wang, Z. Tetrahedron Lett., 2005, 46, 819-822. Copyright 2005 Elsevier Ltd.

[^1]: * Reproduced in part with permission from " Isotope effects and the mechanism of deoxygenation of epoxides with dichlorocarbene" by Singleton, D. A. Wang, Z. Tetrahedron Lett., 2005, 46, 2033-2036. Copyright 2005 Elsevier Ltd.

[^2]: * Reproduced in part with permission from " Isotope effects and the nature of enantioselectivity in the Shi epoxidation. The importance of asynchronicity" by Singleton, D. A.; Wang, Z. J. Am. Chem. Soc. 2005, 127, 6679-6685. Copyright 2005 American Chemical Society.

[^3]: C,0,-2.1798519812,-0.1580531934,-1.4157602864
 С, $0,-2.0224909572,-0.3869708948,0.0713429278$
 С,0,-0.7216763411,-0.2003221709,0.7172117799
 С,0,0.4956638453,0.1812999024,-0.0818143583
 C, $0,0.1359172358,0.855133224,-1.3900161867$
 С, $0,-0.8637957132,0.0120250185,-2.1639022108$
 O, $0,1.3462296073,0.9993785701,0.6958507505$
 C, $0,2.4955849717,0.3283987264,0.8791517561$
 $\mathrm{N}, 0,2.3927287964,-0.9355974032,0.2070346137$
 N,0,1.2893885669,-1.0234892293,-0.3262041199
 N,0,3.5173934922,0.676076689,1.5072710815
 O,0,-1.7097593503,0.7927176288,0.8065011405
 С, $0,-3.0431885475,-1.2709343871,0.7229049686$
 Н,0,-0.5031802721,-0.7196816889,1.6447156944
 H,0,-4.0474150329,-0.9012800596,0.5160450646
 H,0,-2.9036901267,-1.2926496913,1.8011820756
 H,0,-2.9704654906,-2.2875183515,0.33892405
 H,0,1.0495377715,1.0082820212,-1.9634715079

[^4]: O,0,0.8930008106,3.1989853979,-0.5939211544
 C,0,0.3779270185,2.0602371612,-1.2703275105
 С,0,0.6983916618,0.9286422369,-0.2821416417
 O,0,1.925374485,1.347907621,0.2923174689
 C,0,2.0680079581,2.7734833193,0.1022502046
 C,0,-1.0978179249,2.216214029,-1.6151180621
 О,0,-1.9881644613,1.9696044765,-0.5302999263
 C, $0,-1.8126046828,0.7080633769,0.106303306$
 C, $0,-0.4167325493,0.7590784711,0.7840967423$
 C,0,-2.9914686677,0.5279275145,1.0795446084
 O,0,-3.7188397214,-0.5993133716,0.5739152348
 C,0,-3.334669856,-0.778150861,-0.7831347421
 O,0,-1.949361198,-0.3739904923,-0.8114649809
 C, $0,-3.4270583543,-2.2549248704,-1.1370051371$
 C,0,-4.1853694995,0.086348852,-1.7217604546
 O,0,-0.4255614218,1.6304934447,1.7909119578
 O,0,-0.1120263438,-0.2890907808,1.7420227111
 C,0,2.1243455517,3.4905734568,1.4427328878
 C,0,3.3142266129,3.0093081931,-0.7560106825
 Н,0,-4.467047011,-2.5874205852,-1.0682734592
 H,0,-3.0757605412,-2.4224629859,-2.1598084999
 H,0,-2.8273797386,-2.8549202268,-0.4484042176
 H,0,-5.2329780668,-0.2262741742,-1.6625792912
 $\mathrm{H}, 0,-4.1119226512,1.1405966531,-1.4490246564$
 H,0,-3.84397191,-0.0287412642,-2.7560635065
 H,0,3.0227493377,3.1875790945,1.9909165833
 H,0,2.1594520991,4.5741085996,1.2869871086
 H,0,1.2391926951,3.2233902008,2.0209515683
 H,0,4.1973267622,2.5956214663,-0.2583345966
 H,0,3.2113617539,2.5207999177,-1.7302642493

[^5]: O,0,-0.7255087008,2.0701252432,0.5474355311 C,0,0.8039934513,3.7571818937,1.3588788177 С,0,-0.8378559894,4.2892375303,-0.4907640201 O,0,-0.6559686628,-1.011482658,-1.337635732 O,0,0.5141617855,-0.7564528176,0.1586501131 C,0,-2.8893901463,-3.2801342806,-1.2639060344 С,0,-4.4230460175,-2.9743909184,0.7440838183 C,0,1.49495079,-0.0017185765,1.6386255919 C,0,2.4190795223,-1.0286870391,1.4942626088 H,0,1.427217797,4.6050459496,1.0591976457 H,0,0.0960982499,4.0979265046,2.1201791153 H,0,1.4474756682,2.9892973708,1.7938072594 H,0,-0.2230927409,5.1282743033,-0.8325974758 H,0,-1.3878071891,3.8798867706,-1.3403368523 H,0,-1.5635406779,4.6619691774,0.2396716231 H,0,-2.5637760482,-4.2461982126,-0.8645311213 H,0,-3.729635447,-3.4483367675,-1.9458879383 H,0,-2.061507111,-2.8139493785,-1.7990753297 Н,0,-4.0561890518,-3.8791701539,1.2391289226 H,0,-4.7402625662,-2.2674801623,1.5173960116 H,0,-5.2907969462,-3.2362131176,0.1299158948 H,0,-0.1261766353,2.0841499898,-2.4597900963 H,0,0.9739106161,0.8661598426,-1.7477391729 H,0,-1.7341716718,-0.3322912704,1.7218838384 H,0,-4.0079095233,-0.0162786648,1.0634992819 H,0,-3.2840589678,2.0390295677,0.3040482489 H,0,-4.0952713082,1.3785441669,-1.136409018 C,0,0.6249535508,0.0718866188,2.8650356068 H,0,1.6952375609,0.9412414639,1.1453873491 C,0,3.4877681252,-1.0974750085,0.5339068558 H,0,2.2847933395,-1.9098389105,2.1209685332 H,0,1.2089686224,0.4610344067,3.7108400776
 H,0,-0.2100490118,0.7560342991,2.7063254769
 $\mathrm{H}, 0,0.2400285804,-0.913850685,3.1452254777$
 C,0,4.3058597099,-2.2497733398,0.5114843173
 C,0,5.358482841,-2.3621365527,-0.3886929011
 C,0,5.6123295222,-1.3269407334,-1.2926802654
 C,0,4.8090014308,-0.1798132997,-1.2899060835
 C,0,3.7602988896,-0.058651849,-0.3885814006
 H,0,4.0989497917,-3.0564427349,1.2102156708
 H,0,5.9773284419,-3.2547532561,-0.3924619784
 H,0,6.4321139652,-1.4130015331,-2.0005565746
 H,0,5.0046819018,0.620435515,-1.9977762001
 H,0,3.141656665,0.8327994624,-0.4043807214

[^6]: C,0,0.7087975563,-0.4208644908,-1.5528623336 O,0,0.8582036959,0.9375653545,-1.1655318868 O,0,3.2193861273,0.0385202343,0.3585902947
 C,0,3.9428921149,-0.4236713616,-0.7810120783 O,0,3.0222128552,-1.2141081283,-1.5497386303 C,0,4.3804057748,0.7892469705,-1.5930073482 С,0,5.1069318822,-1.3153978616,-0.3470012908 C, $0,-2.0335988575,3.1117910547,1.4621552058$ C,0,-2.0910491879,2.9680396343,-1.090624597 H,0,1.8945790543,2.8553871036,-0.0211476671 H,0,1.1484726712,2.6913832319,1.6025917082 H,0,2.2912631684,-1.5999021113,1.2495100684 Н, $0,1.4524757194,-2.3459668578,-0.8883529889$ H,0,-0.302874526,-0.7746921687,-1.3153662717 H,0,0.8417935088,-0.4554325528,-2.6375203495 H,0,4.9173364645,0.4700634437,-2.4918914522 H,0,3.4960669366,1.3607484976,-1.8844774947 H,0,5.0414281103,1.4266594878,-0.9970371111 H,0,5.6173628783,-1.7270172467,-1.223668664 H,0,5.826823505,-0.7411364607,0.2445499596 H,0,4.7385182682,-2.1475720736,0.2612218449 H,0,-2.9532522266,2.5246284975,1.5565655969 H,0,-1.4028551362,2.9075544785,2.3322603544 H,0,-2.2940979625,4.1749273334,1.4487571983
 H,0,-3.0157025635,2.3831320453,-1.0734991276
 H,0,-2.3434779636,4.0290321137,-1.1885008598
 H,0,-1.4905456343,2.6644683628,-1.9516693524
 O,0,1.2354485909,0.5154259926,2.4038708626
 O,0,-0.0592192593,-0.7048054816,1.8351427409
 C,0,-2.0073496052,-1.7918618265,1.3260449797
 С,0,-0.7878486478,-2.4464834577,1.4137413962
 C,0,-0.3320865269,-3.1500001724,2.6596975343
 C, $0,-2.7843652232,-1.4973950728,0.139019913$
 С,0,-3.8619551154,-0.5930512379,0.2409148861
 C,0,-4.6687664294,-0.3138665293,-0.8567399133
 С,0,-4.422374984,-0.9390126036,-2.0824996811
 C, $0,-3.3701529914,-1.8524608833,-2.1984634453$
 C,0,-2.5630089442,-2.1336038982,-1.1013252019
 H,0,-2.4499439289,-1.477402691,2.2688606274
 H,0,-0.3067853396,-2.7600037613,0.4895265015
 H,0,0.7585746903,-3.1428096913,2.7366582765
 Н,0,-0.7418576467,-2.6694658757,3.5522592681
 H,0,-0.6661982635,-4.1967406647,2.6440201741
 Н,0,-4.0492725686,-0.1040710482,1.1930205635

[^7]: O,0,0.2831370788,3.0312458727,-0.9426088433
 C,0,1.1462190072,2.5743171125,0.0861605868
 C,0,-0.7988242114,-0.2689412576,-0.8460567657
 C, $0,-2.1247532632,-0.9745213436,-0.5034591503$
 C,0,-2.4546093248,-1.0946877753,1.0032380113
 C,0,-1.5857860329,-0.1423018511,1.8235177282
 O,0,-1.4288722191,1.0937770435,1.1459055071
 O,0,-3.158252767,-0.1259859248,-0.9954998998
 С, $0,-4.3087717054,-0.278922599,-0.1704543542$
 O, $0,-3.8267980225,-0.7272274081,1.1036578952$
 С, $0,-4.9636380199,1.0857215525,-0.0057162219$
 C,0,-5.2496339469,-1.3369535516,-0.7522199054
 C,0,2.5703615806,2.5886750348,-0.4445399731
 C, $0,0.9663966276,3.3937584111,1.3687969571$
 H,0,-1.6985216187,2.8981236615,-0.2880212538
 H,0,-1.2970293821,2.0836785723,-1.8335584488
 H,0,-2.1346296045,-1.9427346242,-1.0202191925
 H,0,-2.3437648574,-2.1200226977, 1.3730115909
 Н, $0,-0.6078387975,-0.5960217298,2.0408834646$
 H,0,-2.0797280087,0.0829274498,2.7724372695
 H,0,-5.8359184916,1.0102425641,0.6508945841
 H,0,-4.2405013911,1.7758672564,0.4354913891
 H, $0,-5.2866074934,1.4724712569,-0.9772731116$
 Н,0,-6.0957849187,-1.503458849,-0.0779963559
 H,0,-5.6305451525,-1.0155435436,-1.7267710487
 H,0,-4.7206585379,-2.2868118493,-0.8816514646
 H,0,2.8605510245,3.6125566231,-0.7005287375
 H,0,3.2654060944,2.2002560602,0.3050739739
 H,0,2.6248768464, 1.9652010396,-1.3398546544
 H,0,1.2257675768,4.4415903948,1.1851411032
 H,0,-0.0687540725,3.3384132163,1.7158824762
 H,0,1.6143827197,3.0052264239,2.161717232
 O,0,-0.5520209853,-0.1593310388,-2.1326814492
 O, $0,0.3781946043,-1.1954620794,-0.8366521405$
 C,0,1.8178693245,-1.8145487909,0.7386840723
 C,0,1.0287107401,-2.7329624388,0.0581026799
 C,0,3.1003603233,-1.2887269664,0.313200631
 C, $0,-0.0285573621,-3.5613056473,0.7237361105$
 C, $0,3.9241177323,-0.6694387182,1.2742350451$
 C,0,5.1947930702,-0.2115127175,0.9374825565
 С,0,5.6574153073,-0.3419892514,-0.3739186482
 C, $0,4.8401140848,-0.9309952871,-1.345300727$
 C,0,3.5772428917,-1.4039604834,-1.0091298027
 H,0,1.4778549987,-1.4952156431,1.7218789277

[^8]: O,0,0.3860170416,-0.5704407696,0.4984742942 C,0,1.6691298971,3.5441384718,1.5760578336 C, $0,1.8704341499,4.4791723978,-0.783344644$ C, $0,0.3694653948,-2.1461339659,-0.8937568856$ C, $0,0.1078774748,-3.3429043874,-0.0327103217$ С,0,1.5749419256,-1.4994155029,-1.0895969963 C,0,2.8836904728,-1.77599205,-0.5036604676 С,0,3.3380820864,-3.0754085093,-0.2100954329 C, $0,4.6144641725,-3.2756200896,0.3113165601$ C,0,5.4509699346,-2.1852309847,0.5587318208 C,0,5.0117445021,-0.8897171871,0.2698603257 C,0,3.7457618691,-0.6855810508,-0.268319497 H,0,2.752584069,3.3895999832,1.6039690836 H,0,1.4456947011,4.5267425216,2.0042606 H,0,1.1800060585,2.7638413453,2.1605053834 H,0,2.9379334198,4.2468079137,-0.8506441873 H,0,1.4477769142,4.4378652107,-1.7919546767 H,0,1.7565198465,5.4963564966,-0.3956559906 H,0,-3.0435356465,0.0551199006,2.0691563803 H,0,-1.6991745283,-1.0958130285, 1.8126129744 H,0,0.1793861388,1.0511165534,-1.6685000169 H,0,-0.6529818535,3.2809367499,-1.8585671598 H,0,-2.7090201551,2.245662098,-1.6034542036
 H,0,-2.7699581784,3.5119270375,-0.354203233
 H,0,-0.9212146514,-3.3213244001,0.3382576625
 Н, $0,0.2130313806,-4.2684693788,-0.6163292329$
 H,0,0.7885136153,-3.3921183276,0.8201127345
 H,0,3.3888040409,0.3204795993,-0.4721529521
 H,0,5.6593988799,-0.0392975541,0.4634408922
 H,0,6.4440241309,-2.3444899075,0.9699798865
 H,0,4.9580191152,-4.2848127485,0.5205600953
 H,0,2.7091444333,-3.9322852079,-0.4256018164
 H,0,-0.4506100752,-1.8277053176,-1.5301206644
 H,0,1.5565572274,-0.6547150071,-1.7728373334
 O,0,-3.688587133,-1.7996700099,-1.7549932924
 С,0,-4.2914481692,-2.2682528862,1.1171896711
 O, $0,-5.0342205874,-3.0147635941,0.5285058124$
 H,0,-4.2476563169,-2.1996595279,2.2215701922

[^9]: C,0,-0.4867755589,3.4043773669,0.4743754068 С, $0,-0.7821958282,4.3353006915,-0.5160708178$ C, $0,0.0570682376,4.4698018615,-1.624969652$ C,0,1.1936293831,3.6653626006,-1.7298782925 С, $, 0.0 .986199906,1.6373033292,1.4695118501$ C,0,0.0034576493,1.1377853505,2.316917308 О,0,-0.2007290894,-0.6624541281,1.4403620191 C,0,-0.7735426372,-1.081584914,0.2100437789 С, $0,0.2577572656,-1.5441570428,-0.8504206533$ O,0,-0.4047781265,-2.1110224758,-1.9430879662 C,0,-1.2830405937,-1.2249889721,-2.6451020364 C,0,-2.3169386316,-0.5457201835,-1.7602471437 C, $0,-1.8067705861,-0.0979052582,-0.3842036102$ O,0,1.0806282358,-0.4328872717,-1.278882556
 C,0,2.4073099825,-0.7636848213,-1.2866539049
 N,0,2.5336369849,-2.0580265895,-0.7744782337
 C,0,1.2474027757,-2.5859667271,-0.3136902428
 O, $0,-2.9912673744,-0.0343161154,0.3887680874$
 C, $0,-3.9963329036,-0.8721086969,-0.2355217435$
 O,0,-3.3746498838,-1.4246289636,-1.4011523343
 O,0,3.2717703284,-0.0091556413,-1.6481420105
 C,0,3.7329246644,-2.753022987,-0.6291932382
 O,0,4.828769047,-2.3601665282,-0.9467795664
 O,0,-1.1976461035,-2.1483461439,0.907657814
 С, $0,-4.3936572104,-2.0136736773,0.6874096598$
 C,0,-5.1744987908,0.0232648351,-0.6229694559
 H,0,-1.0293524107,1.4132106884,2.1343951359
 H,0,-4.8743307929,-1.6161069949, 1.5870039146
 H,0,-5.0994713926,-2.6776569578,0.1776767622
 H,0,-3.5011845636,-2.5711458254,0.9748392502
 H,0,-5.5754171042,0.5205399416,0.2658675234
 H,0,-4.8590224397,0.7944558332,-1.3325927836
 H,0,-5.9700034857,-0.572646657,-1.081506878
 H,0,1.0292753332,-3.5614806162,-0.7510081066
 H,0,1.1957431863,-2.6420129904,0.7745682217
 H,0,-1.3555665721,0.8977414496,-0.4275100545
 $\mathrm{H}, 0,-2.7116983716,0.3237803604,-2.3115645589$
 H,0,-0.6925251721,-0.4539505345,-3.1550401558
 H,0,-1.7796108016,-1.8430567775,-3.3961218292
 C,0,2.4351702549,1.2925494228,1.7281152187
 C,0,0.2908320159,0.5952339297,3.6964622833
 H,0,3.5511714502,-3.7461828826,-0.1747120237
 H,0,2.3649941787,2.1020617652,-0.8712307926
 H,0,1.8484094951,3.7549424294,-2.5919705562

