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ABSTRACT

Signal Statistics of Phase Dependent

Optical Time Domain Reflectometry. (December 2006)

Aleksander K. Wójcik, B.S., Instituto Tecnológico

y de Estudios Superiores de Monterrey;

M.Eng., Texas A&M University

Co–Chairs of Advisory Committee: Dr. Chin B. Su
Dr. Henry F. Taylor

The statistics of the phase dependent optical time-domain reflectometer have

been analyzed. The optical fiber is modeled by the use of a discrete set of reflec-

tors positioned randomly along the fiber. The statistics of the reflected light from

a traveling pulse are derived. The statistics of the signal are used to calculate the

characteristics of shot noise in the photodetector, and the probability that noise of

certain intensity will occur. An estimation of the backscattered power is made by cal-

culating the fraction of the backscattered power that is captured in a guiding mode.

Upper power limits are calculated by considering nonlinear optical effects. An estima-

tion of noise from thermally excited sound waves, amplified by Brillouin scattering,

is derived. This noise considers the parameters of a photodetector, giving a model

for the noise in the measurable photocurrent. Two models are used to describe the

fading probability of the signal. The first model, based on the Fabry-Perot inter-

ferometer with a random phase perturbation in the middle, is used to calculate the

probability that the whole signal vanishes for any value of phase perturbation. The

second model, by calculating the correlation between two signals, one perturbed and

one unperturbed, predicts the fading of the signal of interest. The present work gives

the theoretical basis for the phase dependant Optical Time Domain Reflectometry,

allowing its optimization and setting the fundamental limitations to the performance
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of the system.
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CHAPTER I

INTRODUCTION

A. Background

The optical time domain reflectometer (OTDR) has been used for decades to charac-

terize anomalies in optical fiber links [1]. Its extension to single mode fibers followed

few years later [2]. The principle behind OTDR is the Rayleigh scattering phenomena.

The natural density fluctuations, present in non-crystalline (amorphous) homogenous

materials, translate into local variations of permittivity of the material [3]. Light prop-

agating inside such medium will be scattered in all directions. The original theory was

derived to explain the blue color of the sky, and it has been confirmed experimentally

[4]. The same ideas have been successfully applied to explain scattering phenomena

in glasses, giving quantitative estimates from thermodynamical arguments [5, 6]. The

glass is treated as a liquid with extremely high viscosity. The model requires the use

of the concept of fictive temperature, being this the temperature at which the glass

solidifies.

Recent theoretical and experimental advances permitted better understanding

of the phenomena of propagation of light in the fiber, such as nonlinear effects and

propagation of sound waves. This combined with the development of optical fiber

technology, and new kinds of lasers, allowed the applications of fiber optics in sensors

[7, 8, 9], for example as a fiber optic gyroscope [10], in biology [11] and automobile

industry [12].

OTDRs are commonly used as part of the fiber sensors. They permit the analysis

of local effects on the light inside the fiber, by the analysis of the signal at one of the

The journal model is IEEE Journal of Lightwave Technology.
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ends. This makes possible to construct distributed sensors. The special geometry of

the fiber makes it particularly suited for long range distributed sensors.

Rayleigh backscattering consists of the addition of large number of signals from

microscopic scatterers. A common problem with systems where a large number of

interfering signals contribute to the signal of interest is the fading phenomena. This

problem has been widely studied in the mobile communications context [13]. Fading

is present in coherent OTDR systems as well, and can affect the performance of

the system. Several experimental techniques have been implemented to analyze and

possibly minimize this effect [14, 15, 16, 17].

B. Experiment

In an OTDR, laser pulses are launched into the fiber and the returned signal is an-

alyzed in time domain. A modified version of OTDR has been developed at Texas

A&M University to detect and locate time dependent phase variations along the fiber.

This technique uses a very stable (low frequency drift) and narrow linewidth, single

mode laser source. The use of a highly coherent laser is known as coherent OTDR

(C-OTDR) or phase-sensitive OTDR (φ-OTDR) [18]. The main difference between

C-OTDR and φ-OTDR is the use of heterodyne detection in the former and direct

detection in the latter. The use of this kind of source presents a considerable modifica-

tion to the traditional OTDR, where the coherent effects, fundamental for φ-OTDR,

are considered undesirable noise known as Coherent Rayleigh Noise (CRN) [19, 20].

The backscattered signal is sensed using a photodetector and then analyzed. The co-

herent addition of the amplitudes of light waves scattered from spatially distributed

centers makes it highly sensitive to variations of phase inside the fiber [21].

The φ-OTDR intrusion sensor system consists of a continuous wave laser, mod-
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Fig. 1. Intrusion sensor system.

ulated in form of pulses, amplified by an erbium doped amplifier and launched into

the fiber. The backscattered light is coupled to a photodetector and analyzed using

a computer, as shown on Fig. 1. When an intruder steps over the fiber, induces a

variation of pressure with time, at a particular location along the fiber.

The linewidth of the laser is vital for this application, since coherence time is of

the order of the inverse of the bandwidth of the light [22],

∆t ∼ 1

∆ν
. (1.1)

It was necessary to build a laser with a very narrow bandwidth and low frequency

drift. The laser consists of a 980 nm laser diode, used as a pump laser, coupled into

3m long, Er3+ doped fiber (7 dB/m gain) through a wavelength division multiplexing

(WDM) coupler. The resonant laser cavity is built by two fiber Bragg gratings (FBG),

one of 99.9% reflectance on the backside and the other one of 92% reflectance on the

output side [18]. The laser operates in a single mode, with a wavelength of 1555.4 nm,

its linewidth is 3 kHz, the output power is 50µW. Its frequency drift, depending on

ambient temperature, is of the order of 1 MHz/min [23]. The light is then amplified

and modulated in amplitude, in form of pulses, by an optical modulator.

The laboratory tests of the whole system were performed by simulating the effect



4

of an intruder by a phase modulator. The modulator was constructed by wrapping

10 m of fiber around a piezoelectric (PZT) cylinder. The PZT section was in between

two spools of fiber, of 2 km and 10 km long respectively. The results of these tests

demonstrated that the signal pulses applied to PZT modified the OTDR signal no-

ticeably, making possible to detect phase changes located 42 km away from the source

[24].

The system has been demonstrated in two field tests, where a length of fiber

was buried and a person walked on the ground above it. This produced a phase

perturbation, and the intruder was detected by the sensor. The signal at the receiver

was separated into two orthogonal polarizations, each one of them detected separately.

For the field tests, the source signal had to be amplified. The first test used an 8.5 km

length of cable buried 30 cm deep. The cable contained two fibers, spliced together at

the far end to form a loop. A 2 km spool of fiber connected the monitoring equipment

to one of the fibers in the buried cable. The operation of the system is illustrated by

Fig. 2, where the spectral characteristics of the output have been measured.

The system was able to detect people walking over and near the fiber, as well

as a car driving near it, proving its potential [23], and motivating further theoretical

analysis of the φ-OTDR.

C. Contribution

This dissertation analyzes the statistical properties of the signal of interest in φ-

OTDR. It covers the aspects of power limitations of the signal, probability of fading,

correlation of perturbed and unperturbed signals and shot noise. Chapter II describes

a general overview of the propagation of the pulse signal inside the fiber.In Chapter

III a Fabry-Perot model of the φ-OTDR is introduced. The model is used to analyze
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Fig. 2. Spectrum of the backscattered signal.

two kinds of fading effects in the system. The probability of fading of the signal is

calculated, and a Monte Carlo simulation is performed. In Chapter IV the correla-

tion between a perturbed and unperturbed signal is calculated, for arbitrary phase

of perturbation and its position in the pulse. The result is used to calculate the

probability distribution function of the output signal, with and without losses in the

fiber. Chapter V deals with the shot noise, unavoidable in any optical system. In

this chapter the probability that the noise exceeds an arbitrary threshold is derived.

Chapter VI covers the upper limits of power and pulse length imposed by Brillouin

nonlinear effects. Brillouin scattering is analyzed also as source of noise, taking into

account the characteristics of the photodetector. Chapter VII gives a quantitative
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estimation of power levels expected at the receiver, from the Rayleigh backscattering

theory point of view. A comparison between the presented geometrical optics ap-

proach and Lorentz reciprocity theorem approach for a step index fiber is made in

order to validate the model. The number of photons is calculated, which in view of

the large number of photons involved, discards the necessity of quantum theory.
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CHAPTER II

PROPAGATION IN THE OPTICAL FIBER

A. Modeling of Rayleigh Scattering

An optical fiber is not perfectly homogenous and has microscopic density fluctuations,

as shown in Fig. 3a. The light launched into the fiber will be scattered in all directions.

The backscattered light in the fiber exhibits the characteristics of Rayleigh scattering,

which implies that the size of the fluctuation densities must be much smaller than the

wavelength of the laser light λ. Part of that light, will be captured by a guided mode

and propagate in the reverse direction. The number of such microscopic scatterers

is very large and a statistical model has been proposed [25], where the scatterers are

represented as randomly distributed reflectors, as shown in Fig. 3b. If we consider

discrete time increments ∆t, and take vg as the speed of propagation of the pulse, we

can define ∆z as a minimum resolution length of the model. For our purposes it is

possible to use the LP approximation [26] of the modes inside the fiber, and model

the φ-OTDR in one dimension. This reduces the problem into a series of reflectors,

as shown in Fig. 3c.

B. Propagation of a Light Pulse in a Fiber

As the light propagates inside the fiber, using the model defined above, some of the

reflectors will be excited. The excited reflectors will change as the pulse propagates

in time. This is shown on Fig. 4. In Fig. 4a the pulse is at time t1 and then it travels

inside the fiber, and at time t2 another set of reflectors is excited. We can see that

the signal from more than one reflector will be excited during an overlapping period

of time. During this period, the reflected signals from both scatterers will arrive at
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Fig. 3. Equivalent model of density fluctuations. a) Density fluctuations in the fiber.

b) Equivalent model with density fluctuations replaced by reflectors. c) Simu-

lation model of randomly distributed reflectors.

the same time at the origin, and will interfere with each other.

In the φ−OTDR, a pulse of highly coherent light is injected into a fiber, and a

phase shift representing the signal of interest is applied at some point along the fiber.

Fig. 5 illustrates the relation between time delay and the location of a light pulse in

a fiber. The leading edge of the pulse entered the fiber at z = 0 at time t = 0, and

reached the location at which a phase shift is applied at time t = T . The trailing edge

of the pulse passed that same location at a time T + ∆t, with ∆t the temporal width

of the pulse. The time at which the backscattered light passed out of the fiber at

z = 0 is denoted by t∗. The solid triangles indicate the location in the fiber for which

the backscattered light exited the fiber at a particular value of t∗ : τ1 = 2T + ∆t/2

for the left set of pulses, and τ2 = 2T +∆t/4 for the right set. It is evident from these
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Fig. 4. Pulse traveling inside the fiber. a) The pulse in the fiber at time t1 excites one

set of reflectors. b) The same pulse at time t2.

sketches that the region of the fiber which contributes to the backscattered signal at

a given instant of time has a width W/2, where W is the spatial width of the pulse

(A similar form for a continuous case can be derived [27]). Propagation of this region

of width W/2 in the fiber is illustrated in Fig. 6.

We can also see that a particular point in the fiber will be excited for the whole

duration of the pulse. This result has to be taken into account to consider temporal

correlation effects, since the signals coming from different scatterers are independent

from each other. This can be seen clearly from Fig. 6. The phase perturbation

location is excited at time T and stops being excited at time T + ∆t.

Eb(t, z = 0) = E0e
iωt

tvg

2∑
zn=

tvg−W

2

rne
i(ϕn+θp)e−2αzne2iβzn (2.1)



10

  

Fig. 5. Schematic illustration of the propagation of a light pulse in a fiber as it crosses

a location at which a phase shift is applied. Each solid triangle indicates the

location from which the backscattered light reaches the entrance end of the

fiber at time t∗.

 

Fig. 6. Propagation of the region in the fiber of extent 0.5W for which backscattered

light arrives at the entrance end of the fiber at time t∗.
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Where rn is the reflectance of the n’th reflector, zn is its position and α is the loss

of the fiber. The parameter θp is the phase perturbation factor, only those scatterers

that are after the phase perturbation will be affected. Or put in a mathematical form,

θp =

 0, zn < zp

2ϕp, zn > zp

(2.2)

Where zp is the point where the perturbation occurs, and ϕp is the phase of the

perturbation.
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CHAPTER III

STATISTICS OF REFLECTIONS

A. Fabry-Perot Interferometer Model for the φ-OTDR

A φ-OTDR can be envisioned as a fiber Fabry-Perot interferometer with distributed

reflectors of reflectance RA and RB, positioned on either side of a location at which a

phase perturbation θpert is applied to the fiber, as illustrated in Fig. 7. In our model,

the values of RA and RB at a particular instant in time result from coherent addition

of electric field amplitudes of backward-propagating waves from a large number of

randomly located reflectors in the fiber. When the leading edge of a light pulse

reaches the phase shift location, the scatterers within the pulse initially contribute

to RA. As the pulse continues to propagate, the number of scatterers contributing to

RA diminishes while the number contributing to RB grows. Finally, when the trailing

edge of the pulse reaches the phase shift location, all of the scatterers within the pulse

contribute to RB.

As the fiber temperature or laser frequency changes with time, the phase relations

between the contributions from the various reflectors also change, leading to changes

in the values of RA and RB. Assuming that RA and RB are always � 1, which will

be the case for the anticipated applications of the φ-OTDR, the reflected power R

from such an interferometer can be expressed as

R = r2
A + r2

B + 2rArB cos(φ0 + 2θpert) (3.1)

where the amplitude refection coefficients rA and rB are related to the reflectances by
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RA RB

II

IR

φ

Fig. 7. Fabry-Perot model for a φ-OTDR. The incident light is reflected from two

mirrors of reflectance RA and RB, with both reflectances � 1. The light

reflected from the second mirror experiences a phase shitft of φ radians relative

to the light reflected from the first mirror.

RA =
√
rA

RB =
√
rB

(3.2)

and φ0, the phase difference between the two reflected waves in the absence of an

applied perturbation, is termed the phase bias. The value of φ0 is determined by the

coherent addition of the amplitudes of the waves from the individual reflectors, and is

a random quantity with a uniform probability distribution over the range 0 < φ0 < 2π

The factor of 2 multiplying θpert , which represents the phase perturbation induced by

the intruder and defined in eq. (7.34), results from the fact that the return wave from

the second reflector of reflectance RB passes through the phase-shift region twice.

In the φ-OTDR, we are interested in the change in the trace resulting from the

application of θpert. It follows from eq. (7.34) that, when the interferometer as a

whole is considered, two types of fading can occur, which will be termed “reflectance

fading” and “phase bias fading”. Reflectance fading occurs when rArB is small, which

occurs occasionally as the fiber temperature or laser frequency drift with time. Phase

bias fading results when the value of φ0 is such that the change in R given by eq.
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(7.34) is small in response to an applied phase perturbation θpert. Reflectance fading

can occur regardless of the value of φ0.

B. Statistics of Reflections

In the linearly polarized (LP) mode approximation [26], a single mode fiber with its

axis in the z-direction supports two orthogonally polarized waves with amplitudes Ex

and Ey given by

Ex(z, t) = Ex(z)e
iωt−iβxzx̂

Ey(z, t) = Ey(z)e
iωt−iβyzŷ

(3.3)

with Ex(z) and Ey(z) the field amplitudes, ω the radian frequency of the light, and

βx and βy the mode propagation constants for the two polarization constants. In the

ideal case of a cylindrically symmetric, isotropic fiber, the two propagation constants

are equal. However, in actual cabled fibers, stresses and asymmetries lead to a slight

birefringence; i.e., βx 6= βy.

Our model assumes that the amplitudes of the reflected waves for a particular (x

or y) polarization from M reflectors, randomly located in the fiber, add coherently

at the optical receiver to produce the detected optical power, according to

u =
M∑

m=1

um (3.4)

where u is the resultant electric field amplitude of the reflected wave at the receiver,

and um is the amplitude of the contribution from them’th reflector. In this expression,

relating to Eq.(2.1),

um = rme
i(ϕm+θp)e2iβzm = Aeiφm (3.5)
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where A is the amplitude of the contribution from each reflector, and {φm} are the

phases of the reflected waves, 1 6 m 6 M . We can write

um = (um)R + i(um)I (3.6)

where (uR)m and (uI)m are the real and imaginary parts of the field amplitude, given

by

(um)R = A cosφm

(um)I = A sinφm

(3.7)

As the temperature of the fiber changes, or the laser frequency drifts, the value

of each φm will vary over the interval 0 < φm < 2π. The mean values of the quantities

(um)R and (um)I , denoted by 〈(um)R〉 and 〈(um)I〉, are given by

〈(um)R〉 = 〈(um)I〉 = 0 (3.8)

while

〈(um)2
R〉 = 〈(um)2

I〉 =
A2

2
(3.9)

and

〈|um|2〉 = A2 (3.10)

The addition of the M wave amplitudes is a random walk process, according to

our model’s assumptions, and it follows that, for M →∞,
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〈uR〉 = 〈uI〉 = 0

〈u2
R〉 = 〈u2

I〉 = MA2

2

〈|u|2〉 = MA2

(3.11)

with u given by eq.(3.4).

Once again invoking the central limit theorem, the normalized probability distri-

butions for uR and uI are Gaussian functions PG(uR) and PG(uI) and can be written

PG(uR) =
√

a
π

exp(−au2
R)

PG(uI) =
√

a
π

exp(−au2
I)

(3.12)

where the constant a is given by

a =
1

MA2
. (3.13)

Alternative forms for these probability distributions are

PG(uR) = 1√
2πσ

exp(−u2
R/2σ

2)

PG(uI) = 1√
2πσ

exp(−u2
I/2σ

2),
(3.14)

where the standard deviation σ is given by

σ =
1√
2a
. (3.15)

From independence of the imaginary and the real part of u, we can write the proba-

bility distribution function [28]

PG(uR, uI) = PG(uR)PG(uI) (3.16)
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Using the properties of Gaussian distribution, we can write

PG(|u|) = PG(uR)PG(uI), (3.17)

which, from eqs. (3.14) is given by

PG(|u|) =
a

π
exp(−a|u|2) (3.18)

In calculating average value of quantities of interest, it can be noted that the

average value of a function f(|u|), which is given by evaluating the integral

〈f(|u|)〉 =

∞∫
−∞

duR

∞∫
−∞

duIPG(uR)PG(uI)f(|u|) (3.19)

can also be evaluated using the cylindrical coordinate representation of the integral,

expressed as

〈f(|u|)〉 = 2π

∞∫
0

PG(|u|)|u|f(|u|)du (3.20)

It follows from eqs. (3.18) and (3.20) that

〈|u|〉 = 2a

∞∫
0

|u|2 exp(−a|u|2)d|u|, (3.21)

which, from integral tables is evaluated to be

〈|u|〉 = 0.5

√
π

a
=

0.886√
a
. (3.22)

Thus,
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a =
.25π

〈|u|〉2
, (3.23)

which makes it possible to express eq. (3.18) as

PG(|u|) =
.25

〈|u|〉2
exp(−.25πµ2), (3.24)

with

µ =
|u|
〈|u|〉

. (3.25)

C. Probability of Fading of the Signal

“Reflectance fading” will occur when the detected optical power from a region of

the fiber falls to a very low value because the random phases {φm} for the individual

reflectors are such that the resultant amplitude of the light wave at the optical receiver

is close to zero. A measure of the extent to which this occurs is the probability that

the magnitude of reflected amplitude |u| is less than a particular value u0, P (|u| < u0),

given by

P (|u| < u0) = 2π

u0∫
0

|u|PG(|u|)d|u| (3.26)

which, from eq.(3.24), is given by

P (|u| < u0) = .5π

µ0∫
0

µ exp(−.25πµ2)dµ, (3.27)

with

µ0 =
u0

〈|u|〉
. (3.28)
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Fig. 8. Fading probability for a single reflector composed of many individual reflectors

with random phase.

The integral in eq.(3.27) is evaluated to be

P (|u| < u0) = 1− exp(−.25πµ2
0). (3.29)

This expression is plotted in Fig. 8. Thus, in the limit of small µ0,

P (|u| < u0) ≈ .25πµ2
0. (3.30)

The preceding analysis applies to the statistics of the amplitude |u| of the light

wave reflected from a region of the fiber containing M reflectors. In the Fabry Perot

model of the φ-OTDR introduced before, the quantity |u| is analogous to one of the

coefficients rA and rB, which represent the amplitudes of the light waves reflected

from the two regions on either side of the location of the applied phase perturbation.
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As mentioned in above, reflectance fading is related to the product rArB. To treat

this phenomenon, we introduce a new field amplitude variable v, which represents

the sum of amplitudes reflected from a different region of the fiber than was used

in computing |u|. The regions of the fiber used for computing u and v are adjacent

to and on opposite sides of the location of the phase perturbation. By analogy with

eq.(3.24),

PG(|v|) =
.25

〈|v|〉2
exp(−.25πν2), (3.31)

with

ν =
|v|
〈|v|〉

(3.32)

We are interested in P (µν < γ2), where γ is a constant. The smaller the value

of γ, the more severe the reflectance fading and the smaller the probability that such

severe fading will occur. The region of fading in µ, ν space for two reflectors is

illustrated in Fig. 9.

We need to integrate a two dimensional probability distribution, to find the expected

value. We can see this more clearly using conditional probability notation and a

discrete probability. In this case we have,

P (µν < γ2) =
∑

P (µν < γ2|µ = x)P (µ = x) (3.33)

For the continuous case we have
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Fig. 9. The solid line represents the locus of µ and ν for which µν = 0.1 for fading in

the case of two statistically independent reflectors. The probability has to be

integrated over the shaded region.

P (µν 6 γ2) = .5π
∞∫
0

x exp(−.25πx2)P (νx 6 γ2)dx

= .5π
∞∫
0

x exp(−.25πx2)

γ2
/x∫

0

.5πy exp(−.25πy2)dydx

(3.34)

We can rewrite this in a different way. To compute the probability of reflectance

fading, we note that

P (µν < γ2) = 〈P (ν < γ2
/
µ)〉 (3.35)

with the expected value 〈f(|u|)〉 defined in eq.(3.19). If follows from eq. (3.31) that

P (ν < γ2/µ) = 1− exp(−.25πγ4/µ2). (3.36)

Then, from eqs.(3.20), (3.24), and (3.36)
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P (µν < γ2) = .5π

∞∫
0

µ[1− exp(−.25πγ4/µ2)] exp(−.25πµ2)dµ. (3.37)

Results for the dependence of P(µν < γ2) on γ2 obtained by numerical evaluation

of eq. (3.37) are plotted in Fig. 10. The first of these plots gives the result of this

calculation with linear scales for both horizontal (abscissa) and vertical (ordinate)

axes. The same data is replotted in Fig. 10b with a logarithmic scale for the vertical

axis, as well as in Fig. 10c with a compressed horizontal axis.

The results given by eq.(3.37) and plotted in Fig. 10 give the probability for

reflectance fading – the smaller the quantity γ2, the more severe the fading. The

analysis can be extended to include both reflectance and phase bias fading.

It follows from eq.(7.34) that the change in Fabry-Perot reflectance ∆R due to

the application of a phase perturbation θpert is given by

∆R = 2rArB[cos(θ0 + 2θpert)− cos(θ0)], (3.38)

It is possible to find the the probability distribution of the cos(∆φij). The process

is illustrated in Fig. 11, where we graph the cos(x) function in the interval [−2π, 2π].

Special care has to be taken, since cos(∆φ) is a multivalued function.

The Cumulative Distribution Function (CDF) of cos(∆φ) has the following form,

y = cos(x)

x = arccos(y)

Fy = Fx(x2)− Fx(x1) + Fx(x4)− Fx(x3)

Fy = Fx(− arccos y)− Fx(arccos y − 2π)

+Fx(2π − arccos y)− Fx(arccos y)

(3.39)
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Fig. 10. Dependence on γ2 of the probability that µν is less than γ2: a) linear scale

b) logarithmic scale for the vertizal axis, c) logarithmic scale for the vertical

axis and compressed horizontal axis.
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Fig. 11. Calculation of the PDF of cos(∆φ)

where Fx is the CDF of a triangular distribution. The triangular distribution function

of x comes from the fact that it’s the difference between two uniformy distributed

variates, in the [−π, π] interval. The expression for Fx is given by

Fx(x) =



0 , x < −2π

(x+2π)2

8π2 ,−2π 6 x 6 0

1− (2π−x)2

8π2 , 0 6 x 6 2π

1 , x > 2π

(3.40)

After some manipulation, we can show that,

Fy(y) =


0 , y < −1[
1− arccos y

π

]
, −1 6 y 6 1

1 , y > 1

(3.41)

with y=cos(∆φ), which defines the CDF for the phase term in the Fabry-Perot model.

The graph of eq.(3.41) is shown in Fig. 12. The probability distribution, can be found
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by taking the derivative of the CDF, which, by using the double angle trigonometric

identity, reduces to

∆R = 2rArB[cos θ0(cos 2θpert − 1)− sin θ0 sin 2θpert], (3.42)

The largest change in the magnitude of ∆R, when θpert = ±0.5π rad, is given by

|∆R| = 4rArB| cos θ0|. (3.43)

In this case, severe phase bias fading occurs when cosθ0 ≈ 0; i. e., if θ0 ≈ ±π/2.

The value of θ0 is determined by the random phases {φn} from the reflectors which

contribute to the φ-OTDR trace. Thus, for calculating the fading probability it is

assumed that θ0 is a random quantity, 0 6 θ0 < 2π. Since we are concerned only with

positive values of cosθ0 , we can express the expectation value of a function G(cosθ0)

as
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〈G(cos θ0)〉 =
2

π

π/2∫
θ0=0

G(cos θ0)dθ0. (3.44)

We can then combine eqs. (3.37) and (3.44) to obtain

P (µν < 4γ2| cos θ0|) =

π/2∫
θ0=0

dθ0

∞∫
0

µ[1− exp(−πγ4/64µ2 cos2 θ0)] exp(−.25πµ2)dµ.

(3.45)

Numerical evaluation of this expression is presented below, Fig.13, for comparison

with Monte Carlo simulation results.

Simulation of the performance of the φ-OTDR starts with determining the ran-

dom positions of the M reflectors within the fiber zm, m = 1, . . . ,M , such that

0 < zm < L, with L the fiber length. Next, the corresponding phase shifts φm are

determined from

φm =
4πnzm

λ
, (3.46)

in the absence of a phase perturbation. Then, the values of u are calculated from

eq.(3.4), and the backscattered power is proportional to |u|2.The process is then

repeated to take account of a phase perturbation by adding 2φpert to only the values

of the φm’s from eq. (3.42) for which zm > zpert, where zpert is the location of

the perturbation. The new value of |u|2 is then subtracted from the one calculated

before the perturbation was applied to determine the effect of the perturbation. This

difference is the signal of interest. The process of determining the random positions

of reflectors and calculating the effect of φpert on |u|2 is repeated many times to get
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Fig. 13. Comparison of a numerical calculation of fading probability from eq. 3.45

with the results of a Monte Carlo simulation: a) for 100 reflectors, b) for 1000

reflectors.

a statistical description of the signal from the φ-OTDR.
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CHAPTER IV

CORRELATION AND STATISTICS OF THE DIFFERENCE BETWEEN

PERTURBED AND UNPERTURBED SIGNALS

A. Probability Distribution of the Intensity

To analyze the phase fading, we will assume that the loss doesn’t change considerably

for the length of ∆z. This approximation is good if the pulse is short enough. This

is usually the case for a practical φ-OTDR system, where the length of the pulse is

limited by the desired resolution, and the fiber presents low loss.

Taking an average of the positions of the scatterers zm, inside the ∆z = W/2

region, we can find,

z̄ = 〈zm〉∆z. (4.1)

The approximation is a moving average of the loss over the spatial length of ∆z. We

notice that the time dependence is fully deterministic, and doesn’t affect the statistics

of the backscattered signal. If we fix the time, we have from eq.(2.1),

Eb(t = t0, z = 0) = E0e
iωt0e−2αz̄

tvg

2∑
zn=

tvg−Wp
2

rne
iϕne2iβzn

Eb = E0e
−2αz̄Eb0

Eb0 = eiωt0

tvg

2∑
zn=

tvg−Wp
2

rne
iϕne2iβzn

(4.2)

Rewriting eq. (4.2) in a more convenient form:

Eb0 = eiωt0

M∑
n=1

rne
iθn . (4.3)
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The only random parameter is Eb0 and is the only one that contributes to fading.

The variable of interest, that we can physically measure, is

I = |eiωt0|2|Eb0|2

= |Eb0|2
. (4.4)

To analyze the statistical properties of the reflected signal, we proceed by ana-

lyzing the case when the number of reflectors M is equal to 3. This permits a detailed

analysis and already shows the effects of coherence between signals. This result will

be then generalized for an arbitrary M .

The expression for IM in the case of three reflectors, M = 3, is,

|E|2 = |r1eiφ1 + r2e
iφ2 + r3e

iφ3|2

= |r1 cos(φ1) + r2 cos(φ2) + r3 cos(φ3)+

i(r1 sin(φ1) + r2 sin(φ2) + r3 sin(φ3))|2

(4.5)

Expanding the absolute value and the square,

|E|2 = (r1 cos(φ1) + r2 cos(φ2) + r3 cos(φ3))
2+

(r1 sin(φ1) + r2 sin(φ2) + r3 sin(φ3))
2

= r2
1 + r2

2 + r2
3 + 2r1r2 cosφ1 cosφ2 + 2r1r3 cosφ1 cosφ3+

2r2r3 cosφ2 cosφ3 + 2r1r2 sinφ1 sinφ2 + 2r1r3 sinφ1 sinφ3+

2r2r3 sinφ2 sinφ3

(4.6)

By the use of trigonometric identities, we can see that,

|E|2 = r2
1 + r2

2 + r2
3 + 2r1r2 cos(φ1 − φ2) + 2r1r3 cos(φ1 − φ3)

+2r2r3 cos(φ2 − φ3)
(4.7)

We can generalize those expressions for an arbitrary M. It has to be noticed that
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there won’t be any terms involving the relations between three or more terms, since

the sum is squared and no higher powers of the sum appear in the expression. For

an arbitrary M, (A similar expression has been found in speckle [29]), we have,

IM =
M∑

n=1

r2
n + 2

M−1∑
i=1

M∑
j=i+1

rirj cos(φi − φj). (4.8)

Where ∆φij = φi − φj as the difference between the phases of two signals. This

form is particularly useful when we want to find the correlation coefficient.

As it has been shown in Chapter III, the intensity for an arbitrary IM will follow

an exponential distribution. We can write this as,

P (IM) =
1

M
exp

(
−IM
M

)
(4.9)

for the Probability Distribution Function (PDF) of IM . The corresponding expression

for the CDF is,

F (IM) = 1− exp

(
−IM
M

)
(4.10)

The Eqs. (4.9) and (4.10) match perfectly the distributions for M > 8, which

can be shown by Monte Carlo simulations. The number of scatterers in practical

systems is extremely large, M →∞, making the formulas particularly accurate.

B. Probability of the Intensity with a Phase Perturbation

If now we apply a phase perturbation, which is equal to twice the perturbation defined

in Chpater III, θp = 2φp (the 2 factor comes from the fact that the light has to cross

that section two times), between the reflectors q − 1 and q, we will have the next

expression for the intensity,
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I ′M =
M∑
i=1

r2
i + 2

q−2∑
i=1

q−1∑
j=i+1

rirj cos(φi − φj)

+2
M−1∑
i=q

M∑
j=i+1

rirj cos(φi − φj) + 2
q−1∑
i=1

M∑
j=q

rirj cos(φi − φj − θp)

(4.11)

Which is the contribution of the reflections from one side of the perturbation,

then the other side. The last term is the contribution from the differences in phases

of the reflectors on both sides of the perturbation.

The phase relations are illustrated in the Fig. 14. The term θp corresponds to

the perturbation, and p is the fraction of scatterers before the perturbation to the

total number of scatterers, p=4/8. In the Fig. 14a we can see, the ∆1,2−∆1,4, which

correspond to the terms before the perturbation, The Fig.18a only shows the terms

between the first scatterer and those before the perturbation. In Fig. 14b we see the

∆5,6 −∆5,8, which are the terms after the perturbation, related to the fifth scatterer.

Since both scatterers have the perturbation, when we take the difference between

them, the perturbation cancels out. The last terms ∆1,5 −∆1,8 are the cross terms,

shown in Fig. 14c. These are the only terms that present the perturbation, and as

it will be shown later, they are the only ones that contribute to the detection of the

signal.

In φ-OTDR the signal of interest is the difference between the intensities of two

consecutive signals, one with a perturbation, the other one without it. We can use

the eqs.(4.8) and (4.11), and take the difference between them,

IM − I ′M = 2

q−1∑
i=1

M∑
j=q

rirj cos(φi − φj)− 2

q−1∑
i=1

M∑
j=q

rirj cos(φi − φj − θp). (4.12)

The expression can be simplified, eliminating those terms that are unchanged by



32

∆1,5+θp

∆1,6+θp

∆1,7+θp

∆1,8+θp

∆1,2

∆1,3

∆1,4 ∆5,8
∆5,7

∆5,6

θp

a) b)

c)

M=8
p=1/2

Fig. 14. Phase differences between scatterers. a) Phase differences before the pertur-

bance. b) Phase differences before the perturbance. c) Cross terms from both

sides of the perturbance.

the perturbation. The only terms left correspond to the cross terms on both sides of

the perturbation,

IM − I ′M = 2

q−1∑
i=1

M∑
j=q

rirj [cos(φi − φj)− cos(φi − φj − θp)]. (4.13)

We can present this term in a more convenient way

IM − I ′M = 2
q−1∑
i=1

M∑
j=q

rirj [cos(φi − φj)− cos(φi − φj) cos θp − sin(φi − φj) sin θp]

= 2
q−1∑
i=1

M∑
j=q

rirj [cos(φi − φj)(1− cos θp)− sin(φi − φj) sin θp]

(4.14)

For further analysis we will assume that all the reflectors have approximately

the same value ri = r. We can show that for the case M=2 the contributions to the

intensity of light, from the variations of the reflectivity from their average value, only

appear in a quadratic form. The average value for the reflectivity r, can be written
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as,

r =
r1 + r2

2
(4.15)

Then,

r1 = r − δr

r2 = r + δr
(4.16)

From the equation of the intensity for the sum of two waves, eq.(4.8) we have

I = r2
1 + r2

2 + 2r1r2 cos ∆φ (4.17)

By using eqs.(4.16), we have

r2
1 = (r2 − 2rδr + δr2)

r2
2 = (r2 + 2rδr + δr2)

r2
1 + r2

2 = 2r2 + 2δr2

2r1r2 = 2(r2 − rδr + rδr − δr2) = 2(r2 − δr2)

(4.18)

We can assume that δr � r. This assumption comes from the fact that most

of the density fluctuations will be created under similar conditions of pressure and

temperature during the pulling of the fiber. The quantities won’t be exactly the same

but they will be close to the average value, related to the loss of the fiber. Since δr is

only present in a quadratic form, we can neglect it, resulting in the following equation:

I = 2r2 + 2r2 cos ∆φ

I = 2r2(1 + cos ∆φ)
(4.19)

We assume that such variations are negligible for any M, and that all the re-
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flectivities are constant, which greatly simplifies the problem and permits further

analysis.

It has been shown before that IM follows an exponential distribution. In the

perturbed case, the extra factor of phase doesn’t modify its probability distribution,

since the intensity will still be a sum of a large number of independent sines and

cosines. This means that I ′M also follows an exponential distribution function, with

the same average value M . Since only a portion of the factors is perturbed in I ′M , IM

and I ′M are correlated. This makes the signal of interest a random variable with the

distribution function determined by the difference of two correlated random variables

with exponential probability distribution function.

The correlation coefficient, that has to be determined, is defined as

ρ =
〈IMI ′M〉 − 〈IM〉〈I ′M〉√
V ar(IM)V ar(I ′M)

(4.20)

Assuming that the scatterer density is constant, approximately N = pM of the

scatterers are localized between [0, p] and are not affected by the phase shift. The

remaining portion, M−N = M(1−p) is localized between [p, 1], and is perturbed. To

be more accurate, the number of scatterers inside each section, [0, p] and [p, 1], would

follow a binomial distribution. This won’t be considered here, since it wouldn’t modify

the statistics of the signal considerably, but would complicate the model unnecessarily.

Using the equations above, we can find the correlation coefficient between IM

and I ′M . If we start with the case of M = 4, q = 3, assuming that p is the position

of the perturbance in a normalized length L = 1, as above. Setting the parameter

p = 1/2, which means that N = 2 reflectors are affected by the phase shift, and

M −N = 2 are not, we have, from eqs.(4.8) and (4.11),
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〈IMI ′M〉M=4 = 〈{4 + 2 cos ∆φ12 + 2 cos ∆φ13 + 2 cos ∆φ14 + 2 cos ∆φ23

+ 2 cos ∆φ24 + 2 cos ∆φ34}

×{4 + 2 cos ∆φ12 + 2 cos(∆φ13 − θp) + 2 cos(∆φ14 − θp)

+2 cos(∆φ23 − θp) + 2 cos(∆φ24 − θp) + 2 cos ∆φ34}〉.

(4.21)

In order to evaluate the expected value, we use the following statistical properties

of the terms in the sum:

〈a〉 = a

〈sinX〉 = 〈cosX〉 = 0

〈sinX sinY 〉 = 〈sinX〉〈sinY 〉 = 0

〈cosX cosY 〉 = 〈cosX〉〈cosY 〉 = 0

〈sinX cosX〉 = 0

〈a sin2X〉 = 〈a cos2X〉 = a
2

(4.22)

Where X and Y are any of the original phase factors in the sum, and follow an

uniform distribution in the [−π, π] interval.

For example if we take one of the terms,

〈2 cos ∆φ132 cos(∆φ13 − θp)〉 = 4〈cos(φ1 − φ3) cos(φ1 − φ3 − θp)〉

= 4〈cos(φ1 − φ3) cos(φ1 − φ3) cos θp + cos(φ1 − φ3) sin(φ1 − φ3) sin θp〉

= 4〈[cosφ1 cosφ3 + sinφ1 sinφ3][cosφ1 cosφ3 + sinφ1 sinφ3] cos θp

+[cosφ1 cosφ3 + sinφ1 sinφ3][sinφ1 cosφ3 − cosφ1 sinφ3] sin θp〉

= 4〈[cos2 φ1 cos2 φ3 + 2 cosφ1 cosφ3 sinφ1 sinφ3 + sin2 φ1 sin2 φ3] cos θp

+[cosφ1 cos2 φ3 sinφ1 − cos2 φ1 cosφ3 sinφ3 + sin2 φ1 sinφ3 cosφ3

− cosφ1 sinφ1 sin2 φ3] sin θp〉

(4.23)
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Using the linearity and independence properties, we have

〈2 cos ∆φ132 cos(∆φ13 − θp)〉 = 4 cos θp {〈cos2 φ1〉〈cos2 φ3〉

+2〈cosφ1 sinφ1〉〈cosφ3 sinφ3〉 +〈sin2 φ1〉〈sin2 φ3〉
}

+4 sin θp {〈cosφ1 sinφ1〉〈cos2 φ3〉

−〈cos2 φ1〉〈cosφ3 sinφ3〉+ 〈sin2 φ1〉〈sinφ3 cosφ3〉

−〈cosφ1 sinφ1〉〈sin2 φ3〉
}

= 2 cos θp

(4.24)

Expanding the product, taking into account the fact that only those terms containing

all of their terms in a quadratic form are different from zero, we have

〈IMI ′M〉M=4 = 〈16 + 4 cos2 ∆φ12 + 4 cos ∆φ13 cos(∆φ13 − θp)

+4 cos ∆φ14 cos(∆φ14 − θp) + 4 cos ∆φ23 cos(∆φ23 − θp)

+4 cos ∆φ24 cos(∆φ24 − θp) + 4 cos2 ∆φ34〉

(4.25)

We notice that in addition to the constant related to the number of scatterersM2,

there are two terms without the perturbation factor. Those terms are the combination

factors, on both sides of the perturbation, independent of each other. There are also

four factors, which are the cross factors from both sides of the perturbation.

Using trigonometric identities and calculating the expected value term by term,

we have

〈IMI ′M〉M=4 = 20 + 8 cos θp (4.26)

The expected value, from the characteristics of an exponential distributions func-
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Fig. 15. Combinations of scatterers. a) Possible combinations for M = 4 b) Different

groups of scatterers.

tion, is 〈IM〉 = M , and its variance is V ar(IM) = M2, as has been shown before. In

this case M = M1 = M2 since the number of scatterers didn’t change, just a phase

perturbation has been applied.

Continuing with the case M=4 and p=1/2, we can calculate the correlating

coefficient, from eq.(4.20),

ρ4 =
20 + 8 cos θp −M2

M2
=

1

4
+

1

2
cos θp (4.27)

We can generalize this result for an arbitrary M . First, we notice that the corre-

lation coefficient is related to the number of reflectors on each side of the perturbation

and the number of possible combinations between any two of them. The combinations

calculations are illustrated in Fig. 15a, for the case of M = 4 scatterers. The total

number of combinations in this figure is N = 6. For a general case we have,
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NT =

 M

2

 =
M !

(M − 2)!2!
=

M−1∑
i=1

i =
M(M − 1)

2
(4.28)

The next step is to find how many combinations are unperturbed. As shown on

Fig. 15b the scatterers have to be divided into two groups, WA and WB. First consider

the scatterers inside WA by itself, then inside WB by itself. If we add both numbers,

we find the number of unperturbed terms. Under the assumption of a constant

scatterer density, the number of scatterers inside both groups becomes: WA = pN

and WB = (1− p)N . The total number number of unperturbed terms becomes,

NNP =
pM(pM − 1)

2
+

(1− p)M((1− p)M − 1)

2
(4.29)

By subtracting the unperturbed terms from the total number of combinations

inside W , we find the number of perturbed terms NP . It would be possible to find di-

rectly this number, by considering all the possible cross combinations of two scatterers

on both side of the perturbation.

NP = NT −NNP = M2p(1− p) (4.30)

This allows us to write the correlation coefficient

ρ =
2

M2
(NNP +NP cos θP ) (4.31)

In the limit of M →∞ we can approximate the formula for ρ,

ρM→∞ ≈ ρ̂ = 2p2 − 2p+ 1 + 2p(1− p) cos θp

ρ̂ = [(1− p)2 + p2] + [2p(1− p)] cos θp

(4.32)
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The correlation coefficient ρ is a function of θp and p, we can make a plot of it

versus those variables.

If the special case when the perturbation is exactly in the middle, p = 1/2, we

can simplify the formula,

ρ̂1/2
=

1

2
+

1

2
cos θp. (4.33)

This case is of special importance, since it minimizes the correlation coefficient

and maximizes the signal of interest. It will impose the limit of the performance of

the system. A plot of the correlation factor is presented in Fig. 16.

The probability distribution function for the difference for two correlated random

variables with exponential distribution function is [30],

P∆(I) =

exp

(
I(M1 −M2)− |I|

√
(M1 −M2)2 + 4M1M2(1− ρ)

2M1M2(1− ρ)

)
√

(M1 −M2)2 + 4M1M2(1− ρ)
(4.34)

Where ∆ = IM1 − IM2 , I is the intensity of the difference, M1 and M2 are the
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expected values of the two random variables, while ρ is their correlation coefficient.

In this case M1 = M2 = M , which reduces the formula (4.34) to,

P (IM − I ′M) =
1

2M
√

1− ρ
exp

(
−|I∆|

M
√

1− ρ

)
(4.35)

This gives the probability distribution of the signal of interest in φ-OTDR.

A comparison of this model with a Monte Carlo simulation is shown in Fig. 17.

The model shows excellent agreement, which validates the formulas given above.

In the Appendix B the C++ code used for the Monte Carlo simulations is given,

the results are plotted in Fig. 17. The program requires the use of newran library
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[31], to generate random numbers. The main code is in OTDRs.cpp. This files makes

makes use of a custom header file custom.h, to include the necessary libraries and

defining suitable custom variables and classes.

The probability distribution function given by eq. (4.35) depends of two param-

eters. We can graph the cumulative distribution function of the signal of interest,

versus both of them, as three dimensional graphs. Fig. 18 shows the graph of the

CDF. for a fixed p = 1/2, the perturbation is in the middle, and varying all the other

parameters.

We can see that when θp gets smaller, the probability of having a zero, which is

equivalent of fading, grows. This can be seen since the slope of the curve gets steeper,

making those values more probable. Fig. 19 shows the graph of the CDF for a fixed

θp = π/2, and changing p, the position of the perturbation. Similar conclusion can be
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made from this graph, as from the previous one. If the perturbation is in the middle

of the signal, the signal will be stronger.

We can see that the correlation time is equal to ∆t, the duration of the pulse

[16]. That is the time that a particular reflector is excited. This result is valid under

the assumption that the scatterers are uncorrelated, which is the case in the present

Rayleigh scattering model [3].

From the given expression for the probability PI we can now calculate the prob-

ability of fading induced by the position and perturbation of the phase.

P (|I∆| 6 I∆th) =
I∆th∫
−I∆th

PI∆(I∆)dI∆ = 2
I∆th∫
0

PI∆(I∆)dI∆

= 2
I∆th∫
0

1

2M
√

1− ρ
exp

(
−|I∆|

M
√

1− ρ

)
dI∆

(4.36)

Evaluating the integral
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PFad =
−M

√
1− ρ

M
√

1− ρ
exp

(
−|I∆|

M
√

1− ρ

)∣∣∣∣I∆th

I∆=0

= 1− exp

(
−|I∆th|
M
√

1− ρ

)
(4.37)

The expression above gives the probability that the absolute value of difference

of signals is less than a certain threshold, Ith.

Extending the model by adding the loss term, that the intensity experiences as

it propagates along the fiber, we have that

∆′ = (IM1 − IM2)e
−2αz̄. (4.38)

The exponential factor is deterministic and can be treated as a constant. The CDF

of a random variable multiplied by a constant will be

Fy(y) = Fx(y/k) (4.39)

We can see that the probability distribution function, using the fact that e−2αz̄

is not a random quantity, has to be modified as follows

P (∆′) =
e2αz̄

2M
√

1− ρ
exp

(
−|I∆|e2αz̄

M
√

1− ρ

)
(4.40)

The probability of fading, defined in the same way as before, is

P (|I ′∆| 6 I∆th) =
I∆th∫
−I∆th

PI′∆
(I ′∆)dI ′∆ = 2

I∆th∫
0

PI′∆
(I ′∆)dI ′∆

= 2
I∆th∫
0

e2αz̄

2M
√

1− ρ
exp

(
−|I∆|e2αz̄

M
√

1− ρ

)
dI∆

. (4.41)

From which we can calculate,
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PFad =
−e2αz̄M

√
1− ρ

e2αz̄M
√

1− ρ
exp

(
−|I∆|e2αz̄

M
√

1− ρ

)∣∣∣∣I∆th

I∆=0

= 1− exp

(
−|I∆th|e2αz̄

M
√

1− ρ

)
(4.42)

For a constant threshold, the probability of fading of the signal, will be higher

as the signal propagates in the fiber. Different threshold has to be used for the signal

coming from different sections of the fiber. The signal from the far end needs a lower

threshold than the signal from the end close to the source.
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CHAPTER V

SHOT NOISE IN THE Φ-OTDR

The theory of the noise in photodetectors, widely applied in the analysis of bit error

rates in optical communication systems, serves as the starting point for analyzing

noise in the φOTDR. A simple photodetector circuit upon which the noise model is

based is illustrated in Fig. 20.

It is assumed that the probability P (N) for the number of electrons N delivered

to a load impedance by a photodetector illuminated by a light source of constant

power during a fixed sampling time τ is given by the Poisson distribution PP (N,N)

[32]

PP (N,N) =
e−N

(
N
)N

N !
, (5.1)

where N = 0, 1, · · · and N is the average number of electrons per time interval (not

Iph

V ZL

I

+
-

Fig. 20. Optical receiver, in which a photocurrent I, from a photodiode to which a DC

bias volatge is applied, is induced by an input optical signal. The current is

delivered to the receiver load impedance, ZL.



46

necessarily an integer). It is easily shown that this expression satisfies the normaliza-

tion condition

∞∑
N=0

PP (N,N) = 1. (5.2)

for any N .

If N is sufficiently large (let’s say, N > 25), as is usually the case in receivers

for optical communication, the Poisson distribution in eq. (5.1) can be accurately

approximated by the Gaussian distribution

PG(N,N) =
1√
2πσ

exp

(
−(N −N)2

2σ2

)
. (5.3)

where σ is the standard deviation, given by

σ =
√
N. (5.4)

In a simple pulse code modulation optical communication system, in which a

light pulse is emitted by the optical transmitter to transmit a “one” and no pulse is

emitted to transmit a “zero”, the average number of electrons from the photodetector

will be designated N̄1 when a “one” is received and N̄0 when a “zero” is received. A

threshold level Nth is set, such that

N0 < Nth < N1. (5.5)

In the receiver circuitry, when N electrons are collected during a bit time interval

τ , a decision is made that a “zero” was transmitted if N < Nth, and that a “one” was

transmitted if N > Nth.

The bit error rate (BER) in such a system, assuming that the probability of error
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is the same when a “zero” is transmitted as when a “one” is transmitted, is given by

BER =

∫ ∞

Nth

PG(N,N)dN, (5.6)

with PG(N,N) given by eq.(5.3). Thus, the BER is the area under the tail of the

Gaussian function. The “Q-function” Q(α), defined as

Q(α) =
1√
2π

∞∫
α

exp(−ζ2/2)dζ (5.7)

is frequently used in characterizing bit error rates in communication systems. The

graph of the function is shown in Fig.V. This function is normalized; i.e., Q(−∞) = 1;

and also has the property that Q(0) = 0.5. It follows from eqs. (5.3), (5.6), and (5.7)

that

BER = Q

(
Nth −N

σ

)
. (5.8)

It can be shown that for α > 4, a good asymptotic approximation to Q(α) [33] is

Q(α) ≈ exp(−α2/2)√
2πα

. (5.9)

In the φ-OTDR, where detection of a phase shift is made by subtracting consec-

utive traces, the signal of interest ∆N is given by

∆N = N+ −N− (5.10)

where N− and N+ are samples taken immediately before and after the phase shift was

applied. If, in fact, no phase shift were applied, then ∆N represents the difference of

two statistically independent samples from a distribution with mean N . The resultant
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probability distribution for ∆N is then given by

P ′G(∆N) =
1√
2πσ′

exp

[
−∆N2

2σ′2

]
. (5.11)

where σ′ is the standard deviation for this Gaussian distribution, given by σ′ =
√

2σ,

or

σ′ =
√

2N. (5.12)

A major difference between the φ-OTDR and most optical systems, including

optical communication systems, is that the received optical power can vary randomly

even in the absence of a signal, that is, if θpert ≡ 0. This means that N can no

longer be regarded as a constant, but rather as a statistically varying quantity. To

determine the appropriate probability distribution for N , we note from eq.(3.18) that

the probability distribution for |u|2 is a Gaussian function, with u the amplitude of
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the optical signal at the receiver. This implies that the probability distribution for

N can be written as the exponential function PE(N)

PE(N) = C1 exp(−C2N), (5.13)

with C1 and C2 constants. But normalization of PE(N) requires that C2 = C1. The

expected value of N , 〈N̄〉, is evaluated from

〈N̄〉 =

∫ ∞

0

N̄PE(N̄)dN̄ (5.14)

to be

〈N̄〉 =
1

C1

(5.15)

so we can rewrite eq. (5.13) as

PE(N) =
1

〈N〉
exp

(
− N̄

〈N̄〉

)
(5.16)

It follows from eq. (5.6) that

P (|∆N | > ∆Nth) = 2

∫ ∞

0

PE(N)Q(α)dN, (5.17)

with

α =
∆Nth√

2N
, (5.18)

which can be rewritten

α =
K√
X
, (5.19)

with
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K =
∆Nth√
2〈N〉

(5.20)

and

X =
N

〈N〉
. (5.21)

Then, using the approximate form for Q(α) from eq.(5.9), it follows that

Q(α) =

√
X√

2πK
exp(−K

2

2X
). (5.22)

It then follows from eq.(5.17) that

P (|∆N | > ∆Nth) =

√
2√
πK

∞∫
0

√
X exp(−X) exp

(
−K

2

2X

)
dX, (5.23)

This integral can be evaluated numerically to obtain the probability of the noise

|∆N | exceeding the threshold ∆Nth, for different values of K.
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CHAPTER VI

PULSE POWER LIMITATIONS DUE TO BRILLOUIN SCATTERING

The optical signal level in a φ-OTDR, and hence the signal-to-noise ratio (SNR)

and overall system performance improves as the optical power in a pulse of given

duration increases. A phenomenon known as stimulated Brillouin scattering (SBS),

which limits the maximum usable power in an optical fiber communication system,

will have a similar effect on a φ-OTDR sensor system. SBS can affect the performance

of the system by depleting the signal. It can also act as a noise source.

Brillouin scattering is an optical-acoustic interaction in which a photon of energy

hν interacts with the medium in which it propagates to emit or absorb a photon of

energy hν ′ and a phonon of energy Ephon. From the conservation of energy follows

that

hν = hν ′ ± Ephon (6.1)

Although the description of the phenomenon requires a full quantum mechanical

analysis, it has been found that for all practical purposes it can be described classi-

cally as the coupled interaction of the incident laser wave, an acoustic wave and the

Brillouin scattered optical wave [34].

A. SBS in Single Mode Fibers

In our application, the duration of the pulse is much longer than the phonon lifetime,

which is in the order of nanoseconds for optical fibers [35]. This allows us to treat

the problem as a steady state SBS, and avoid transient analysis.

The steady state equations, after simplifying the equation and eliminating the
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sounds wave dependence, governing SBS are [36]:

∂IL

∂z
= −gBILIB − αIL

∂IB

∂z
= −gBIBIL + αIB

(6.2)

where IL and IB are the signal and Brillouin intensities respectively, gB is the Brillouin

gain coefficient and α is the fiber attenuation coefficient. The coupled Eqs.(6.2) can

be solved analytically if certain approximations are made, or integrated numerically

[37].

B. Threshold of SBS in Single Mode Fibers

Classically, Brillouin scattering in optical fibers can be modeled as the amplification

of thermally excited sound waves and propagates only in the backward direction. For

sources with very narrow line width, Brillouin scattering is the main nonlinear effect

and imposes limits to the transmitted power [38].

For light propagating in an optical fiber, SBS grows exponentially in the reverse

direction when the optical power P exceeds a threshold Pth, given approximately by

Pth =
21Aeff

gBLeff

. (6.3)

where Aeff is the effective cross-sectional area of the fiber mode, gB is the SBS

coefficient, and Leff is the maximum length of fiber over which the amplification

occurs [39]. We have to keep the power below the threshold Pth, because if the power

exceeds this threshold, the signal will be considerably depleted. It will be assumed

here that the performance of the φ-OTDR is degraded when the SBS threshold is

exceeded.

The value of Leff is determined by the spatial width of the optical pulse W . Let



53

z1 and z2 be the location of the trailing and leading edge of the pulse, respectively,

at a given time t0, where

z2 = z1 +W (6.4)

and

W =
c∆T

ng

, (6.5)

with c the free-space speed of light, ng the group refractive index of the fiber mode,

and ∆T the pulse duration. For t > t0, light scattered from the front of the pulse at

time t0 will be located at z′2 given by

z′2 = z2 −
c(t− t0)

ng

. (6.6)

Amplification will cease at a time t̂ when the scattered light at location z′2 passes

the position z′1 of the forward-propagating pulse’s trailing edge, given by

z′1 = z1 +
c(t− t0)

ng

(6.7)

Setting z′1 = z′2 yields the result that

z2 − z1 =
2c(t̂− t0)

ng

(6.8)

It follows from eqs. (6.4) and (6.5) that

t̂− t0 = 0.5∆T (6.9)

From the definitions of Leff and z′1 that
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Leff = z2 − z′1, (6.10)

and from eqs. (6.4) and (6.7) that

Leff = W − c(t̂− t0)

ng

(6.11)

while from eqs. (6.5), (6.9), and (6.11) it follows that

Leff = 0.5W (6.12)

or, alternatively, from eq.(6.5),

Leff =
0.5c∆T

ng

(6.13)

Leff is the interaction length between the two signals.

C. Typical Single Mode Fiber

As an example, with c = 3 × 108 m/s, ng = 1.46 for silica fiber, it follows from eq.

(6.13)that

Leff = 1.027× 108∆T (6.14)

with Leff in m and ∆T in s. For single mode fiber with an effective mode radius of

4 µm, the area is calculated to be

Aeff = 5.03× 10−11m2 (6.15)
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Using these values with gB = 5× 10−11 m/W [39], it follows from eq. (6.4) that

Pth = 2.06× 10−7
/
∆T (6.16)

Thus, the threshold optical power for SBS for a pulse width ∆T = 1 µs is

Pth = 206mW (6.17)

The number of photons per optical pulse Nphot is given by

Nphot =
Pth∆T

hν
(6.18)

with hν the photon energy. It follows from eq.(6.16), with hν = 1.28 × 10−19 J at a

wavelength of 1550 nm that

Nphot = 1.61× 1012 (6.19)

This is the number of photons in a pulse for which the SBS threshold is predicted to

occur. This value is independent of the pulse width. As indicated by eq.(6.16), the

allowable laser power in the pulse is inversely proportional to the pulse width.

D. Spontaneous Brillouin Scattering (SpBS) as a Noise Source

Brillouin scattering below the Pth is usually called the spontaneous regime. The origin

of SpBS from thermally excited acoustic phonons, subjected to random fluctuations,
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make the scattered field noisy and unpredictable in nature.

Brillouin scattered field can be separated into two modes,

fS = f − νB

fA = f + νB

(6.20)

where fS and fA are the frequencies of the Stokes and anti-Stokes components respec-

tively, f is the frequency of the laser and νB is the Brillouin shift (typically close to

11 GHz for single mode silica fibers at λ = 1.55 µm). Only the Stokes component is

amplified by SBS, this means that as long as the Stokes and anti-Stokes components

have the same power, no Stimulated Brillouin Scattering is taking place [40].

In the spontaneous regime the Brillouin scattered power is linear with respect

to the input power, similarly to the Rayleigh scattering. The ratio between both

components (independent of the power of the source) depends on temperature and

strain. The ratio is known as the Landau-Placzek ratio, and is defined as,

RLP =
IR
IB

(6.21)

where IR and IB are the Rayleigh and Brillouin intensities respectively. For single

mode silica fibers, a typical value is RLP ≈ 30 at room temperature [40, 41].

Landau-Placzek ratio gives an estimate of IB. To fully analyze the effects of the

Brillouin phenomenon in the optical fiber, a more complete model has been developed

[42]. The model considers the stimulated amplification of the noise by Brillouin

scattering and its spectral characteristics. The extended model permits analyzing

this effect as a noise source, taking into account the bandwidth and impedance of the

receiver.
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We start by defining a gain factor [43]:

G = (gBPPLeff )/(2Aeff ) (6.22)

The threshold defined in eq.(6.4) can be expressed, in terms of G, as

Gth ≈ 10 (6.23)

We can find backscattered Brillouin power as a function of G [43],

PB(G) = [hνS(n̄+ 1))]π∆νBGe
G[I0(G)− I1(G)]

+ [hνAn̄] π∆νBGe
−G[I0(G) + I1(G)]

(6.24)

with ∆νB being the Brillouin spectral bandwidth, ωS and ωA are the Stokes

and anti-Stokes angular frequencies respectively, n̄ is the phonon thermal equilibrium

population, and I0 and I1 are the modified Bessel functions. The plot of PB is shown

in Fig. 22.

The phonon population in thermal equilibrium can be calculated from [42]
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n̄ =
1

(ehνB/kT − 1)
(6.25)

where h = 6.626068× 10−34 J/s is the Planck’s constant and k = 1.3806505× 10−23

J/K is the Boltzmann’s constant.

Since in practical systems the received power is limited by the properties of a

photodetector, we have to write an expression of the power density of the detected

electrical current. The optical power spectral density is,

ΦS(ω) = ~ωS(n̄+ 1)

(
exp

(
2(π∆νB)2G

(π∆νB)2 + (ω − ωS)2

)
− 1

)
ΦA(ω) = ~ωAn̄

(
1− exp

(
−2(π∆νB)2G

(π∆νB)2 + (ω − ωA)2

)) (6.26)

where ΦS and ΦA are the optical power densities for Stokes and anti-Stokes scattering

respectively. From the previous expression it’s possible to find the spectral power

density of the detected electrical current ΨS,A (in [A2/Hz] and double sided) in terms

of ΦS or ΦA as [43],

ΨS,A = R2P 2
S,Aδ

(
ω
2π

)
+R2 |H(ω)|2

∫∞
−∞ΦS,A(ω + ω′)ΦS,A(ω′)dω′

2π

+ eRḡFPS,A |H(ω)|2 + 1/2R2NEP 2 |H(ω)|2
(6.27)

where R is the photodetector’s responsivity, ḡ is its average gain, F is its excess noise

factor, H(ω) is its spectral response, and NEP is its noise equivalent power. The first

term in eq.(6.27) is the average current power detected; the second term represents

the noise induced by the field statistics, the third term is the shot noise, and the

fourth is the circuit noise contribution. The last three terms depend of the selected

detection bandwidth.
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E. Brillouin Scattering in Fiber Optic Sensor

In the optical sensor the SNR of the system increases with the laser power and its

width. The width is limited by the spatial resolution of the system. It is not desirable

to make the pulse too wide. SBS imposes the upper limit in the power of the pulse.

It’s possible to find the optimal power that would maximize the SNR as a function

of G, defined by eq.(6.27).

The launched laser pulse will experiment loss as it propagates along the fiber,

making the SNR dependent on the position in the fiber. This means that G decreases

as the pulse propagates along the fiber. If we are interested in increasing the SNR of

the signal at the end of the fiber, we can accept higher Brillouin noise from the first

part of the fiber, in order to get a stronger signal from the far end.
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CHAPTER VII

FRACTION OF INCIDENT OPTICAL POWER BACKSCATTERED INTO THE

FIBER MODE

For a high-quality fused silica fiber, the optical loss in the near-infrared region of the

spectrum is caused by Rayleigh scattering, resulting from microscopic inhomogeneities

frozen into the fiber material when it cools from a semi-molten state during the

drawing process. The present problem is concerned only with the part of the scattered

field that is captured into a propagating mode and travels back in the fiber. This

simplifies the problem since the exact form of the radiating components of the fields

is not necessary.

A. Geometric Optics Approach

To calculate the fraction of the Rayleigh scattered light which is backscattered into

the fiber mode, we consider a plane wave of wavelength λ incident in a medium of

dielectric constant 1 on a dielectric sphere of dielectric constant ε and radius a, with

a� λ. The solution to this classical problem in electromagnetic theory is represented

in terms of the derivative of the Rayleigh scattering cross-section σRS per solid angle

Ω as

dσRS

dΩ
= C(1 + cos2 θ) (7.1)

with the constant C given by

C =
2π2a4(ε− 1)2

λ2(ε+ 2)2
, (7.2)

with θ the angle between the direction of propagation of the incident wave (+z direc-
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tion) and the scattered wave [44]. The value of σRS is determined by evaluating the

integral

σRS =

∫
dσRS

dΩ
dΩ (7.3)

over a solid angle of 4π radians, which can be expressed as

σRS = 2πC

π∫
0

(1 + cos2 θ) sin θdθ. (7.4)

Evaluation of this integral yields

σRS =
16πC

3
. (7.5)

The direction of the incident wave corresponds to θ = 0. Assuming that scattered

light propagating at angles over the range π − θ0 < θ < π is captured by the fiber in

the reverse direction, then the Rayleigh-backscattered cross section σRBS is given by

σRBS = 2πC

π∫
π−θ0

(1 + cos2 θ) sin θdθ. (7.6)

With the substitution θ′ = π − θ, it follows that

σRBS = 2πC

θ0∫
0

(1 + cos2 θ′) sin θ′dθ
′
, (7.7)

which is evaluated as

σRBS = 2πC

[
(1− cos θ0) +

1− cos3 θ0

3

]
, (7.8)

For a single mode fiber the capture angle θ0 can be assumed to be � 1, in which
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case cos θ0 ≈ 1− θ2
0/2 and eq. (7.8) reduces to

σRBS ≈ 2πCθ2
0. (7.9)

Thus, it follows from eqs. (7.5) and (7.9) that

σRBS

σRS

=
3θ2

0

8
. (7.10)

For a typical single mode fiber with θ0 = 0.1,

σRBS = .00375σRS. (7.11)

B. Solution for the Step Index Fiber

The solution given above is the solution for a general case of any kind of fiber. In the

case of a single mode step index fiber we can find a more exact solution. The solution

follows that presented by Hartog et al. [45]. The coupling efficiency b is defined as

b(RS) =
1

2

∣∣∣∣∫∫
2π

ψFψSdΩ

∣∣∣∣2∫∫
2π

|ψF |2dΩ
∫∫
2π

|ψS|2dΩ
(7.12)

where RS is the distance of the scatterer from the fiber axis, ψF and ψS are the far

field distributions of the HE11 [46] mode and of the dipole, respectively, while dΩ is

a solid angle differential.

The field distribution in this case is a Bessel function expression,

ψN(R) =

 J0(UR)/J0(U), R 6 1

K0(WR)/K0(W ), R > 1
(7.13)
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From this we have the expression for the captured fraction

B = 3
W 4

V 6

J4
0 (U)

J4
1 (U)

(NA)2

n2

 1∫
0

R
J4

0 (UR)

J4
0 (U)

dR +

∞∫
1

R
K4

0(WR)

K4
0(W )

dR

 (7.14)

where R is the radial coordinate normalized to the core radius a, V is the normalized

frequency, NA the numerical aperture, W 2 = V 2−U2, U is the eigenvalue, while n is

the refractive index under the approximation n1 ' n2 = n.

The eigenvalue equation what has to be solved to find U is [47]

U
J1(U)

J0(U)
= W

K1(W )

K0(W )
(7.15)

where J and K are Bessel functions. Eq.(7.15) is a transcendental equation and has

to be solved numerically.

From the values given in the Appendix A, we can find that for a typical step-

index single mode fiber used in φ−OTDR systems: V ≈ 2.2, U = 1.591, W = 1.519,

NA = 0.144, n = 1.4682. Which by direct evaluation of the eq.(7.14) gives B =

2.15× 10−3.

This shows that the solution given by geometrical optics is accurate enough

for practical purposes. The exact solution is of course impossible to obtain and

impractical, since it would require the knowledge of the position and magnitude of

each the scatterers inside the fiber and how they change with variations of temperature

and pressure.

It is interesting to notice that an exact solution of a radiating dipole in a dielectric

cylinder has been found [48, 49], but it can only be applied to single impurities, and

is not valid for Rayleigh scattering, since it doesn’t follow the λ−4 form [50].
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C. Rate at Which Photons Are Backscattered into the Fiber Mode

Next, the photon backscattering rate
dNRBS

dt
(number of backscattered photons per

unit time) will be calculated. The number of Rayleigh scattered photons dNRS as the

pulse propagates a distance dz in the fiber is given by

dNRS

dz
= αRSNpulse, (7.16)

with αRS the Rayleigh scattering loss coefficient (units: length−1) and N the number

of forward-propagating photons in the pulse, given by

Npulse = N0e
−αz, (7.17)

with N0 the number of photons coupled into the fiber at z = 0, z the distance the

pulse has propagated in the fiber, and α the length attenuation coefficient for the

fiber, with α ≥ αRS. By convention the attenuation coefficient of a fiber is expressed

in units of dB/km, and will be designated α′. The loss in dB, LdB, is given by

LdB = −10 log10(
Npulse

N0

), (7.18)

and from eq. (7.17),

LdB = 10αz log10 e (7.19)

But

α′ = 0.001
dLdB

dz
, (7.20)

where the factor 0.001 results because the length unit in α’ is km−1, while the length

unit in α is m−1. Since log10e = 0.4343, it follows from eq.(7.19) and eq.(7.20) that
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α = 2.303× 10−4α′ (7.21)

But

α′RBS =
σRBSα

′
RS

σRS

, (7.22)

and it follows from eqs.(7.11), (7.21) and (7.22) that

αRBS = 8.64× 10−7 α′RS. (7.23)

Using the value α′RS = 0.20 dB/km at a wavelength of λ = 1550nm, it follows

that

αRBS = 1.73× 10−7/m. (7.24)

By analogy with eq. (7.16)

dNRBS

dz
= αRBSNpulse, (7.25)

The number of photons backscattered per unit time is given by

dNRBS

dt
= vg

dNRBS

dz
, (7.26)

with vg the group velocity of light in the fiber, given by

vg =
c

ng

, (7.27)

where ng is the group refractive index of the fiber mode. From eqs. (7.25),(7.26) and

(7.27),
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dNRBS

dt
=
αRBScNpulse

ng

. (7.28)

From eqs. (7.17), (7.24), (7.28) and , with c = 3× 108 m/s and ng = 1.46 for a

silica fiber, the number of Rayleigh-backscattered photons per second is given by

dNRBS

dt
= 35.5N0e

−αz (7.29)

For example, if N0 = 1012, slightly below the threshold for SBS predicted by eq.

(6.19), then

dNRBS

dt
= 3.55× 1013. (7.30)

at z = 0. The number of backscattered photons NRBS∗ which leaves the fiber at

z = 0 is reduced from the value given in eq. (7.29) by the attenuation in the fiber,

and is given by

dNRBS∗
dt

= 35.5N0e
−2αz (7.31)

The optical power P∗ in the backscattered wave at z = 0 is expressed as

P∗ = hν
dNRBS∗
dt

, (7.32)

so that

P∗ = 35.5hνN0e
−2αz (7.33)

For example, at the entrance end of the fiber (z = 0), with hν = 1.28× 10−19 J

at a wavelength of 1550 nm, and N0 = 1012, the backscattered power is calculated to

be
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P∗ = 4.54µW (7.34)

If the fiber loss is entirely due to Rayleigh backscattering, such that α′ = α′RBS =

0.2dB/km, then the round trip attenuation e−2αz is 10 dB for each 25 km of fiber

length. In our example, the backscattered power from a distance z = 25 km is 10%

of the value in eq. (7.34), or

P∗ = 454nW (7.35)
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CHAPTER VIII

CONCLUSIONS

This dissertation focuses on the statistics of the signal in a φ-OTDR system, from the

classical point of view. As has been shown the number of photons is large enough,

so we can neglect quantum effects of the interactions between photons and matter.

The equations for the statistical analysis of the backscattered signal have been de-

rived. The noise power and bit error rate probabilities have been calculated, giving

theoretical limits of performance for the system.

The operation of the system relies on the coherence of the laser source. Without

coherent interference it wouldn’t be possible to detect a phase perturbation caused by

an intruder stepping on the fiber. The interference phenomena have the drawback of

being random in nature, which leads to fluctuations and possibly a complete fading

of the signal. In this case the fading is closely related to the fact that the signal

originate from a random sum of a large number of waves.

Two different models have been developed. The first model, called the Fabry-

Perot model, gives the probability that the full φ-OTDR signal fades, depending on

the spatial position of the scatterers inside the fiber. This model considers the signal

from both sides of the perturbation and predicts the fading of the signal taking into

account the relative phases between them. The derivation of the statistics of the

signal has been used to model the quantum noise in the photodetector and to give a

statistical description of its behavior.

An alternative model has also been developed. This model gives the probability

of the difference between two consecutive signals. In the case of φ-OTDR, this is

the signal of interest. The model allows us to calculate the probability of the signal

being below some chosen threshold. We can also see that noise and fiber loss play a
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fundamental role, even in fading considerations. From this model we can calculate

the probability that the signal fades depending of the phase and position of the

perturbation. The correlation between two consecutive signals, one perturbed and

one unperturbed had to be derived, and integrated into the derivations. The inclusion

of loss into the model, shows that the probability of fading for a fixed threshold from

the back of the fiber, is greater that if the intruder steps on the closer end of the fiber.

Another important aspect of the system has been calculated. The fraction of

the Rayleigh backscattered signal that is guided back into the fiber. This allows a

quantitative estimation of the order of powers expected in a real system. The model

uses a general geometrical optics approach, which permits its extension to different

kinds of fibers. Its accuracy has been validated with a full wave solution for a single

mode step index fiber.

Brillouin scattering presents the limit for the power launched into the fiber, above

which there will be serious depletion of the source as well as noise in form of Stokes and

anti-Stokes waves. Brillouin scattering can represent a source of noise as well, through

the stimulation of thermal waves. The model presented here permits the calculation

of the contribution of this noise considering the bandwidth of the photodetector.

The present analysis covers most of the aspects of noise in the φ-OTDR. It also

explains the coherent phenomena, under a monochromatic source assumption, govern-

ing the operation of the systems and its limitations. This permits the optimization of

the system from a theoretical point of view, and gives a good insight of the mechanism

behind the whole system.

The fading phenomena could be reduced by the addition of a second source with

a different frequency. The probability of fading of both of the signals at the same

time is much smaller than of one signal. In this case further analysis of four wave

mixing and noise effects would have to be analyzed. The cost effects of having a
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second source would have to be considered.

The next step of this work is to compare the models with a real implementation.

This would allow the development of a more accurate model. The model can be

expanded for physical variables not considered here, for example the effect of tem-

perature, sound waves and vibrations in the system. A detailed analysis of large set

of data from the sensor, with the simultaneous monitoring of other parameters would

permit improving the overall performance of the system. The analysis would require

a statistical point of view, analogous to the methods used here and the corresponding

simplifications. The loss of the fiber depends of the drawing process. Recent works

have focused on reducing the Rayleigh scattering losses in the fiber by modifying the

temperature at which the fiber is created [51]. Incorporation in the model of ther-

modynamic effects would permit a better estimation of the properties in the fiber.

The estimation of the size, number and intensity of the scatter centers would allow a

closer analysis of the coherent interaction between them.
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APPENDIX A

CHARACTERISTICS OF THE SMF-28 FIBER

The information provided here has been taken from the product information

booklet provided by Corning [52]. All the values are at 1550 nm wavelength unless

stated otherwise.

Table I. Characteristics of the SMF28 single mode fiber

Characteristic Typical Symbol Value [Units]

Effective Group Index of Refraction Neff 1.4682

Rayleigh Backscatter Coefficient (for 1 ns

pulse width)

-82 dB

Core Diameter 8.2 µm

Cladding Diameter 125.0 ± 1.0 µm

Numerical Aperture NA 0.14

Mode-Field Diameter 10.4 ±.8 µm

Typical Attenuation 0.19 dB/km
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APPENDIX B

PROGRAM CODES

/******************************************************************/

// Main program. Filename: OTDRs.cpp

// Aleksander Wojcik

/******************************************************************/

#include "custom.h"

const double c=299792458;

const double pi=3.1415926535898;

void main(void)

{

MotherOfAll urng; // declare uniform random number generator

Random::Set(urng); // set urng as generator to be used

Uniform U;

fstream fout,foutc;

char filename[]="output.txt";

char controlf[]="control.txt";

int control;
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double p;

double L;

double k;

complejo c1(0.0,1.0),c2(0.0,1.0);

int jj,kk,DATA,M;

int N,per;

complejo *E;

complejo *G;

double posi;

double Tp;

double pos;

complejo T;

complejo H;

stringstream out_filename;

string of;

// Parameters

DATA=20000; // Number of simulations

k=1000; // wavenumber

M=1000; // number of scatterers

p=0.5;

Tp=pi/2.0;
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L=100;

control=0; // 1 for control.txt file, 0 to supress

// control file just generates number

//of perturbed scatterers in %

// End of Parameters

E=new complejo[M];

G=new complejo[M];

per=floor(DATA/100);

N=floor(M*p);

out_filename << "p" << p << "_Tp" << Tp;

out_filename << << "_M" << M << "_D" << DATA/1000;

out_filename << "k_" << filename;

of = out_filename.str();

fout.open(of.c_str(),ios::out);

if(control==1)

foutc.open(controlf,ios::out);

cout << "\n Starting Monte Carlo Simulation. \n\n";
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for(kk=0;kk<DATA;kk++)

{

if(kk%per==0)

cout << "Progress " << 100*(kk+1)/DATA << " %\n";

posi=0;

for(jj=0;jj<M;jj++)

{

pos=U.Next();

E[jj]=exp(_j*k*pos*L);

G[jj]=E[jj];

if(pos>p)

{

G[jj]=G[jj]*exp(_j*Tp);

posi++;

}

}

T=_z;

H=_z;

for(jj=0;jj<M;jj++)

{
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T=T+E[jj];

H=H+G[jj];

}

fout << abs(T)*abs(T) << "\t" << abs(H)*abs(H) << "\n";

if(control==1)

foutc << 100*(posi/M) << "\n";

}

fout.close();

if(control==1)

foutc.close();

cout << "\n\n Completed 100% \n";

cout << " Number of scatterers: " << M << "\n";

cout << " Number of simulations: " << DATA << "\n";

cout << " Perturbation in Radians: " << Tp << "\n";

cout << " Perturbation position (normalized): " << p << "\n";

cout << " Output file: " << out_filename.str() << "\n";

delete [] E;

delete [] G;

}

/******************************************************************/

// Header File. Filename: custom.h
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// Aleksander Wojcik

/******************************************************************/

#include <iostream>

#include <fstream>

#include <complex>

#include <vector>

#include <sstream>

#include <string>

using namespace std;

#include "newran.h"

typedef complex<double> complejo; // define complejo

typedef vector<complejo> vectorc; // vector of complex numbers

ostream& operator << (ostream& s, complejo& c)

{

s << "(" << c.real() << "," << c.imag() << ")";

return s;

}

template <class T>

ostream& operator << (ostream& s,vector<T>& v)

{
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int i;

for(i=0;i<v.size();i++)

s << v[i] << "\n";

return s;

}

template <class T>

vector<T>& operator * (vector<T>& v,T& r)

{

int i;

for(i=0;i<v.size();i++)

v[i]=v[i]*r;

return v;

}

complejo _j(0.0,1.0);

complejo _z(0.0,0.0);
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