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ABSTRACT 

 

A Rigorous Compressible Streamline Formulation for Black Oil and Compositional Simulation. 

      (December 2006) 

Ichiro Osako, B.E., Waseda University; 

M.S., Texas A&M University 

Chair of Advisory Committee:  Dr. Akhil Datta-Gupta 

 

In this study for the first time we generalize streamline models to compressible flow using a 

rigorous formulation while retaining most of its computational advantages. Our new formulation 

is based on three major elements and requires only minor modifications to existing streamline 

models. First, we introduce a relative density for the total fluids along the streamlines. This 

density captures the changes in the fluid volume with pressure and can be conveniently and 

efficiently traced along streamlines. Thus, we simultaneously compute time of flight and volume 

changes along streamlines. Second, we incorporate a density-dependent source term in the 

streamline saturation/composition conservation equation to account for compressibility effects. 

Third, the relative density, fluid volumes and the time-of-flight information are used to 

incorporate cross-streamline effects via pressure updates and remapping of saturations. Our 

proposed approach preserves the 1-D nature of the conservation calculations and all the 

associated advantages of the streamline approach. The conservation calculations are fully 

decoupled from the underlying grid and can be carried out using large time steps without grid-

based stability limits. 

We also extend the streamline simulation to compositional modeling including 

compressibility effects. Given the favorable computational scaling properties of streamline 

models, the potential advantage for compositional simulation can be even more compelling. 

Although several papers have discussed compositional simulation formulation, they all suffer 

from a major limitation, particularly for compressible flow. All of the previous works assume, 

either explicitly or implicitly, that the divergence of total flux along streamlines is negligible. 

This is not only incorrect for compressible flow but also introduces inconsistency between the 

pressure and conservation equations. We examine the implications of these assumptions on the 

accuracy of compositional streamline simulation using a novel and rigorous treatment of 

compressibility.  
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We demonstrated the validity and practical utility of our approach using synthetic and field 

examples and comparison with a finite difference simulator. Throughout the validation for 

compositional model, we found out the importance of finer segments discretizations along 

streamlines. We introduce optimal coarsening of segments to minimize flash calculations on 

each segment while keeping the accuracy of finer segments.  
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CHAPTER I 

INTRODUCTION
     

1 

1.1 Statement of the Problem 

 

Streamline simulators have received increased attention in the petroleum industry because of 

their ability to effectively handle multimillion cell detailed geologic models and large simulation 

models. The efficiency of streamline simulation has relied primarily on the decoupling of the 3-

D conservation equation into 1-D equations along streamlines using the streamline time of flight 

as the spatial coordinate.
1
 Until now, this decoupling has been strictly valid for incompressible 

flow. Applications to compressible flow have generally lacked strong theoretical foundations and 

for the most part yielded mixed or unsatisfactory results.  

In this study for the first time we generalize streamline models to compressible flow using a 

rigorous streamline formulation while retaining much of its favorable characteristics.
2
 Our new 

formulation is based on three major elements and requires only minor modifications to existing 

streamline models. First, we introduce an ‘effective density’ for the total fluids along the 

streamlines. This density captures the changes in the fluid volume with pressure and can be 

conveniently and efficiently traced along streamlines. Thus, we simultaneously compute time of 

flight and volume changes along streamlines. Second, we incorporate a density-dependent source 

term in the streamline conservation equation to account for compressibility effects. Third, the 

effective density, fluid volumes and the time-of-flight information are used to incorporate cross-

streamline effects via pressure updates and remapping of saturations/compositions evolved using 

the conservation equation. Our proposed approach preserves the 1-D nature of the 

saturation/composition update calculations and all the associated advantages of the streamline 

approach. The conservation calculations are fully decoupled from the underlying grid and can be 

carried out using large time steps without grid-based stability limits. 

We demonstrated the validity and practical utility of our approach using synthetic and field 

examples and comparison with both commercial finite difference and streamline simulators for 
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black oil model. The synthetic examples involve waterflooding in a ¼-five spot pattern under 

undersaturated conditions and also three phase flow with both free and solution gas. Our results 

show close agreement with the finite difference simulator in terms of water-oil and gas-oil ratio 

histories for an extended period of time. The field example is from a highly heterogeneous 

carbonate reservoir in West Texas and includes multiple patterns consisting of 11 injectors, 31 

producers and over 30 years of production history. Our proposed formulation results in 

significant improvement in performance prediction over current commercial streamline 

simulators. 

In many applications, a black oil representation of the reservoir fluids is inadequate. These 

include depletion of gas condensate and volatile oil reservoirs and also enhanced oil recovery 

processes such as enriched miscible gas injection, carbon dioxide flooding and chemical 

flooding. Specifically, when the fluid properties are dependent on both phase composition and 

pressure, we have to resort to compositional simulation. Such simulations involve the solution of 

the mass conservation equation in conjunction with phase equilibrium calculations to determine 

phase compositions, phase pressures and saturations.
3-5

 The additional capabilities of 

compositional simulation also make it more expensive in terms of computation time and 

memory. This makes the potential benefit of streamline based compositional simulation even 

more compelling than for black oil or for two phase waterflood. In this study, we derive 1-D 

conservation equation for compositional model and apply the equation into academic finite 

difference compositional simulator (UTCOMP).
6
 Thus, pressure and phase equilibrium 

calculations are obtained from the simulator and our new approach is used in conservation 

equation part evolving compositions. We will validate and utilize our new approach using 

synthetic 2-D homogeneous and 3-D heterogeneous examples by comparing our compositional 

streamline simulator with the finite difference simulator. 

Through the application of compositional streamline simulation, we found out the necessity 

of finer discretization of segments along streamline. Maintaining the finer discretization is very 

expensive in terms of computational cost because flash calculations are conducted on each 

discretized segments along streamline. As we increase the number of segments to keep finer 

discretization, the computational time will also increase significantly. To overcome the problem 

we introduce optimal coarsening of streamline segments based on optimal upgridding technique 

widely applied in geological parameters.
7
 The simple statistical criteria accounting for trade off 

between bias and variance can coarsen some segments while keeping finer discretizations in 
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necessary segments such as near injection/production wells and saturation fronts. We will 

illustrate our new approach using a synthetic 1D example and also utilize it using same synthetic 

2-D homogeneous and 3-D heterogeneous examples for the validation of compositional model. 

Our approach will enable us to reduce computational time significantly and we will examine 

CPU time comparison with finite difference simulator to see scaling effect of our streamline 

simulation.  

 

1.2 Background and Literature Review 

 

Streamline simulators have become increasingly popular for high resolution reservoir 

simulation using multimillion cell geologic models. For incompressible or slightly compressible 

flow and under convection dominated conditions, streamline models are well-known to 

outperform conventional finite-difference simulation in terms of computational speed.
1,8-10

 

Streamline models can also result in improved accuracy because of subgrid resolution and 

reduced numerical dispersion and grid orientation effects.
8
 To a large extent, the efficiency of the 

current streamline formulation is the consequence of the incompressibility assumption that 

allows us to easily and effectively decouple the pressure and conservation equations during flow 

simulation. This decoupling has been greatly facilitated by the introduction of the streamline 

time of flight coordinate.
1
 Specifically, utilizing the time of flight as the spatial coordinate, the 

multidimensional conservation equations are reduced to a series of 1-D solutions along 

streamlines. These 1-D solutions can be carried out independently and using relatively large 

time-steps as they are not impacted by the underlying geologic grid-based stability limitations. 

This is the primary advantage of the streamline simulation. In addition, for heterogeneity 

dominated flow and adverse mobility ratio conditions, the streamlines need to be updated 

infrequently, leading to further savings in computation time.
9
 

However, much of the elegance and simplicity of the current streamline formulation is lost 

when we consider compressible flow. This is because the pressure and conservation equations 

are now strongly coupled. Also, compressibility effects will require more frequent pressure 

recalculations to account for unsteady state effects and also to adequately update pressure 

dependent reservoir properties. Several authors have attempted to incorporate compressibility 

effects during streamline simulation.
11-15

 Most of these previous works have rigorously 

accounted for compressibility effects during the pressure and velocity calculations using 
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standard finite-difference formulation.
12-15

 However, while deriving the conservation equations 

along streamlines, all of these formulations fail to adequately account for compressibility effects. 

This is because of the inherent assumptions behind the current streamline time of flight 

formulation. All of the previous works on compressible streamline simulation assume, either 

explicitly or implicitly, that the divergence of total flux along streamlines is negligible. This is 

not only incorrect for compressible flow but also introduces inconsistency between the pressure 

and conservation equations. All these lead to increased material balance error and very often 

inaccurate performance predictions. Our experience with compressible flow in the current 

commercial streamline simulators has been mixed; problems with the formulation are probably 

quite widespread. 

 

1.3 Objectives of Research 

 

The primary objective of this research is to overcome problems obtained by conventional 

streamline simulations by presenting a rigorous streamline formulation for compressible black 

oil and compositional flow. Followings are the basic objectives: 

 

� Introduce the compressible streamline formulation and highlight the main differences with 

the existing incompressible formulation. 

 

� Present several examples to outline the major steps and illustrate the underlying concepts in 

compressible streamline simulation. 

 

� Derive the 1-D saturation equations along streamlines for compressible black oil model. 

 

� Examine the stability and time step selection for pressure updates during compressible black 

oil model. 

 

� Derive the 1-D conservation equations along streamlines for compositional model. 

 

� Introduce optimal coarsening of segments along streamlines to reduce computational time 

while retaining the accuracy of finer discretization segments results. 
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� Validate and demonstrate the practical use of our approaches 

 

1.4 Dissertation Outline 

 

Chapter II discusses the general background of streamline simulation and extension to 

compressible flow. Streamline simulation starts from the pressure equation. We calculate 

velocity field from the pressure, then we can trace the streamline. The essence of streamline 

simulation is to decouple the conservation equation from 3-D space into 1-D “time of flight” as 

the spatial coordinate. However, the decoupling of the conservation equation arises from the 

inherent assumption of incompressibility which provides a lot of advantages in conventional 

streamline simulation. We will discuss how we overcome the inherent assumption with the new 

approach. 

In Chapter III, we will extend our approach to the application of two- and three- phase black 

oil model. The conventional streamline simulation has mainly involved applications to 

incompressible or slightly compressible flow. We demonstrate how our approach works when 

we apply it to more compressible oil and gas phases. In the presence of gas, gravity segregation 

is one of the major mechanisms in the reservoir. We demonstrate how we can handle the gravity 

segregation in streamline simulation using operator splitting technique.  

In Chapter IV, we will extend our approach to compositional model. In some practical 

applications such as depletion of gas condensate and volatile oil reservoirs and also enhanced oil 

recovery processes, a black oil model is not enough to represent the actual reservoir fluid 

components. However, compositional simulation requires more computational time. As the 

computation time increases, the streamline approach can be more advantageous. We apply our 

approach to compositional simulation and demonstrate its advantages using synthetic examples.  

In Chapter V, we introduce a method to optimize coarsening of the number of segments 

along streamlines for 1-D transport calculations. If we refine the number of discretization 

segments to evolve compositions along streamlines, it results in better accuracy, however, it will 

also increase the computational time because increased the number of flash calculations along 

streamlines. The optimal coarsening method enables us to coarsen segments in regions that do 

not require finer resolution such as far from wells and saturations fronts while retaining the 

accuracy of the finer resolution else where. We will illustrate the method with simple 1-D gas 

injection problem and validate it for 2-D homogeneous and 3-D heterogeneous cases.  
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In Chapter VI, the new developments from this work and their practical applicability are 

summarized. Potential future research works are also suggested.  
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CHAPTER II 

A RIGOROUS COMPRESSIBLE FORMULATION
*
 

2 

Much of the elegance of the current streamline (or streamtube) formulation arises from the 

restriction to incompressible flow. In short, if a specific volumetric flux is allocated to a line or a 

tube at an injector, then that same flux will be transported to a producer. However, most real 

systems have some degree of compressibility. The compressibility effects become particularly 

important for three-phase flow including gas. Thus, the formulation needs to be generalized to 

account for changes in fluid volumes because of pressure variations along the streamwise 

directions. Fortunately, a small modification to the equations presented so far can be used to 

determine the volumetric flux as a function of distance along a streamline. A similar approach 

could be applied to streamtube calculations, although historically this has not been implemented. 

This chapter explains from the background of streamline including inherent incompressible 

assumptions to the extension to compressible fluid flow. 

 

2.1 Streamline Simulation Background   

 

We will first start with a brief review of the current streamline formulation before discussing 

its extensions to compressible flow. At a fundamental level, all streamline techniques are based 

upon a coordinate transformation from physical space to a coordinate system following the flow 

directions.  This transformation is based upon the bi-streamfunctions and an additional time of 

flight coordinate.  Following Bear 
16

 we introduce the bi-streamfunctions, ψ, and χ to construct a 

velocity field, u
r

, 

 

χψ ∇×∇=u
r

...................................................  (2.1) 

 

                                                      

*
 Part of this chapter is reprinted with permission from “A Rigorous Compressible Streamline 

Formulation for Two and Three-Phase Black Oil Simulation,” by Hao Cheng, Ichiro Osako, 

Akhil Datta-Gupta, and Michael J. King, paper SPE 96866 presented at the 2005 SPE Annual 

Technical Conference and Exhibition, Dallas, TX, October 9-12, Copyright 2005 by the 

Society of Petroleum Engineers. 
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Note that the incompressibility assumption is implicit in the definition of the bi-streamfunctions 

because of the vector identity, 

 

0)( =∇×∇•∇ χψ
............................................  (2.2) 

 

A streamline is defined by the intersection of a constant value for ψ  with a constant value for 

χ .  In two dimensional applications, we use the simplified functional forms, ( )yx,ψψ = , 

z=χ , leading to the more familiar expressions 
y

ux
∂

∂ψ
= , 

x
u y

∂

∂ψ
−= , where ψ  is recognized 

to be the streamfunction. The time of flight, τ, is defined simply as the travel time of a neutral 

tracer along the streamlines, 

 

∫=
u

ds
zyx r

φ
τ ),,( .........................................  (2.3) 

 

Or, in a differential form as follows 

 

φτ =∇⋅u
r

......................................................  (2.4) 

 

Streamline techniques are based upon a coordinate transformation from the physical space to the 

time of flight coordinate where all the streamlines can be treated as straight lines of varying 

lengths. This coordinate transformation is greatly facilitated by the fact that the Jacobian of the 

coordinate transformation assumes an extraordinarily simple form when using Eq. 2.1 and Eq. 

2.4: 

 

φτχψτ
χψτ

=⋅∇=∇×∇⋅∇=
∂

∂
u

zyx

r
)(

),,(

),,(
. (2.5) 

 

Starting from this expression, we have the following relationship between the physical space 

and the time of flight coordinates following the flow direction, 

 

χψτφ ddddzdydx = . ...............................  (2.6) 
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It is now easy to see that the coordinate transformation also preserves the pore volume, which is 

an essential feature to preserve the material balance. 

Spatial gradients along streamlines become a very simple form in the time of flight coordinates. 

Using the (τ, ψ, χ ) coordinates, the gradient operator can be expressed as: 

 

( ) ( ) ( )
χ

χ
ψ

ψ
τ

τ
∂

∂
∇+

∂

∂
∇+

∂

∂
∇=∇ . ................  (2.7) 

 

Because u
r

 is orthogonal to both ψ∇  and χ∇ , 

 

τ
φ

∂

∂
=∇•u

r
. ..................................................  (2.8) 

 

The major advantage of the τ  coordinate becomes evident when we consider the conservation 

equation for the water phase in two-phase incompressible flow, away from sources and sinks, 

 

0)( =•∇+
∂

∂
uF

t

S
w

w
r

φ . ...................................  (2.9) 

 

This expression can be expanded and transformed using the τ coordinate, 

 

0=
∂

∂
+

∂

∂

τ
ww F

t

S
. ..............................................  (2.10) 

 

After this coordinate transformation, we have decomposed the three dimensional fluid flow into 

a series of one dimensional (in τ) evolution equation for Sw along streamlines. This equation is 

just as valid in one, two and three dimensions, and for homogeneous and heterogeneous media. 

The τ transformation includes all of these effects. All that is required for implementation is the 

velocity field and the calculation of the line integral in Eq. 2.3. 
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2.2 Generalization to Compressible Flow 

 

Compressibility generates a change in effective volume that will depend upon pressure 

change, specifically the 
t

P

∂

∂  term. If the pressure drops, then we expect the total volumetric flux 

from a cell to be positive. Thus, the divergence of the total flux no longer vanishes. This requires 

redefinition of the bi-streamfunctions to account for compressibility effects, 

 

χψρ ∇×∇=u
r

................................................  (2.11) 

 

where we have introduced the ‘effective density’, ρ . For incompressible flow, ρ  = 1. We 

can develop Eq. 2.11 further by recognizing that u
r

ρ  now represents a conserved flux.
16

 

 

( ) ( )

u

uu

u

r

rr

r

•∇+
∂

∂
=

•∇+∇•=

•∇=∇×∇•∇=

ρ
τ

ρ
φ

ρρ

ρχψ0
....................  (2.12) 

 

Eq. 2.12 can be reduced to an ordinary differential equation that can be integrated to obtain 

ρ along streamlines. This becomes apparent when we recognize that u
r

•∇ within each gridcell is 

a constant. In fact, the computing of ρ  can be carried out in conjunction with the streamline 

tracing using the algorithm of Pollock.
17

 The Pollock algorithm assumes that the cell velocities 

vary linearly in the respective directions, that is, 

 

( )
( )

( )11

11

11

zzcuu

yycuu

xxcuu

zzz

yyy

xxx

−+=

−+=

−+=

.....................................  (2.13) 

 
where the coefficients, C, depend on the difference of Darcy velocities on the grid block faces 

(Fig. 2.1), 

 

( )
( )
( ) zuuc

yuuc

xuuc

zzz

yyy

xxx

∆−=

∆−=

∆−=

12

12

12

......................................  (2.14) 
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From Eq. 2.13, it follows that 

 

zyx

j

j ccccu ++==•∇ ∑
=

3

1

r
...........................  (2.15) 

 

Eq. 2.12 can now be integrated: 
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The value for this effective density can be traced along each streamline from the injectors 

where 10 =ρ  and where the initial volumetric flux oq , is assigned to a streamline. Along the 

streamline, the volumetric flux will now be given by ρoqq = . Instead of working with an 

effective density, it is as easy to work with this volumetric flux 
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This equation provides a definition of the volumetric flux along any streamline, consistent 

with the velocity field. 
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Figure 2.1 Ponting algorithm with compressible fluid. 
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It is interesting to note that compressibility does not generate any transverse flux corrections. 

This is counter-intuitive at first, until one realizes that the bi-streamfunctions of Eq. 2.11 already 

include the effects of compressibility on the traces of the streamlines. However, volumetric flux 

is not conserved on these lines (or tubes); the volumetric flux that enters a tube or is assigned to 

a line will be modified along its length, according to Eq. 2.17. 

For compressible flow, another modification that needs to be done is the Jacobian of the 

transformation from ( )zyx ,,  to ( )χψτ ,, , to modify the relationship of volumes. Now we have 

 

( )
( )

ρφτρτχψ
χψτ

=∇•=∇•∇×∇=
∂

∂
u

zyx

r
)(

,,

,,
 (2.18) 

 

In terms of volume we have. 

 

χψτ
ρ

φ ddddzdydx
1

= ...................................  (2.19) 

 

In integral form, 

 

∫∫=•= χψδ ddqauQ
rr

..................................  (2.20) 

 

because the volumetric flux now depends upon the position along the streamline. No other 

aspects of the streamline time of flight formulation need to be modified for convective flux. The 

coordinate transformation in Eq. 2.19 can be used to transform multidimensional saturation 

equation to a series of 1-D saturation equations along streamlines using time of flight as the 

spatial coordinate.  This is identical to the incompressible case. However, the compressibility 

effects will result in a source/sink term in the 1-D saturation equation to account for fluid 

expansion and compression along streamlines. The details of the derivation and solution of the 

saturation equations for compressible flow are discussed in the next section for two and three-

phase black oil simulation. 
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2.3 Illustration of the Rigorous Compressible Streamline Formulation 

 

We now illustrate the calculations using waterflood in a homogeneous ¼-spot pattern under 

black oil conditions and compare the results with the incompressible streamline formulation. Fig. 

2.2a shows the pressure distribution for a two-phase black oil case computed using finite-

difference. The initial reservoir pressure was set at 3000 psi and the producer is bottomhole 

pressure constrained at 1000 psi. Both water and oil are treated as compressible fluids 

summarized in TABLE 2.1, although the oil compressibility is kept somewhat higher than usual 

to have a pronounced effect. The bubble point pressure was set sufficiently low to ensure 

undersaturated conditions and no free gas for this example. The three-phase case will be 

considered later. 

 

TABLE 2.1FLUID PROPERTIES OF WATER AND OIL 

Compressibility [1/psi] Viscosity [cp]

Water 1.00E-06 1.0

Oil 4.60E-04 2.0  

 

The velocity field obtained from the pressure distribution is used to trace streamlines and 

compute time of flight using the Pollock algorithm 
17

 as in the incompressible case. Note that the 

Pollock algorithm is sufficiently general and is not limited to incompressible flow. However, 

unlike incompressible flow, streamlines can now originate and terminate anywhere in the 

domain. While tracing streamlines, we also compute the divergence of flux at each grid cell 

using Eq. 2.15. The divergence of flux is shown in Fig. 2.2b. The streamline time of flight for 

this ¼ five-spot example is shown in Fig. 2.2c at t=200 days. 
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(a) Pressure distribution 

 

 
(b) Divergence of flux 

 
(c) Streamline time of flight 

Figure 2.2 Contour plots of waterflood in a ¼ spot pattern. 
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(a) Tracing relative density along streamline  

 
(b) ‘local’ 

 
(c) ‘accumulated’ 

Figure 2.3 Contour plots of changes in relative density. 
 

Next we calculate the effective densities along streamlines using Eq. 2.16 and show in Fig. 

2.3.a. A contour of the ‘local’ changes in effective density ( ρ∆ for each grid cell) is shown Fig. 

2.3b. A value of less than unity indicates expansion of the fluid in the grid cell and vice versa. 

Note that the changes in effective density are a function of fluid compressibility, porosity and 



 

 

16 

time of flight. The relatively low values at the stagnant corners reflect the large cell time of flight 

there.  

The accumulated effective densities along streamlines are contoured in Fig. 2.3c and 

resemble the time of flight distribution. In fact, based on Eq. 2.19, we can view the relative 

densities as scale factors for the time of flight, ‘accelerating’ or ‘retarding’ the particle transport 

along streamlines. The oil rate at the producing well for the compressible streamline calculations 

is shown in Fig. 2.4. For validation purposes, we have also shown the results from finite 

difference simulation. There is very good agreement between streamline and finite difference 

calculations. Fluid compressibility of oil gives high production rate initially, however the 

injecting water support is not high enough to maintain the high oil production rate and causing 

the smooth reduction of production rate. The rapid reduction is because of the water 

breakthrough. Finally, to demonstrate the effects of fluid compressibility, we have also 

superimposed the results from incompressible streamline formulation. Clearly, the 

compressibility effects are too large to be ignored for this case. Because of incompressibility of 

the reservoir fluid, injecting constant surface rate of water is replacing the reservoir oil with 

constant rate even though the producing well has bottom hole pressure constraints, and the rapid 

reduction of oil production rate is indicating the water breakthrough.  
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Figure 2.4 Impact of compressibility in oil production rate. 
 

The example discussed so far involves mostly fluid expansion as the pressure was below the 

initial pressure throughout the reservoir except in the vicinity of the injection well. In next 

example, we increased bottomhole pressure to 2500 psi and kept other parameters. The reservoir 
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pressure for the most part is now above the initial pressure and fluid is under compression 

throughout the reservoir. This is also indicated by the cell values of divergence of flux which are 

all negative as shown in Fig. 2.5. Fig. 2.6 shows the tracing of the effective density along the 

streamlines. The contour of the effective density is shown in Fig. 2.7. Notice that unlike the 

previous case, the effective densities are now greater than unity everywhere reflecting fluid 

compression along streamlines. As before, the effective density distribution is significantly 

impacted by the time of flight. 

 

 

Figure 2.5 Cell value of C for compressible case. 
 

 

Figure 2.6Tracing density along streamline. 
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Figure 2.7Contour plot of relative density. 

 

Fig. 2.8 shows the oil production rate vs. time using the compressible streamline formulation 

and a commercial finite difference simulator. Notice the dramatically different behavior for this 

example compared to the previous case. Clearly, our proposed formulation adequately captures 

the effects of fluid expansion and compression. For comparison purposes, we also show the 

results from a commercial streamline simulator using black oil properties. The improvements 

resulting from our new formulation is quite obvious here. 

 

 

Figure 2.8Oil production rate vs. time. 
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CHAPTER III 

TWO AND THREE – PHASE BLACK OIL SIMULATION
* 

3 

This chapter presents the extension of compressible streamline formulation to two and three 

– phase black oil simulation. Conventional streamline has applied in many waterflooding cases 

because inherent incompressible assumptions are true in these situations. However, most of the 

reservoirs have some degree of compressibility and black oil fluid representation is widely used 

for reservoirs which do not have so complex fluid representations because of computational 

advantages compared to compositional model which can handle even more complex fluid 

representations. Thus, we first show two and three – phase black oil streamline formulations. 

Then we also introduce time-step selection for pressure update in compressible streamline 

simulation by using correction CFL approach. Since we have gas phase in our model, we also 

show the operator splitting approach to capture gravity segregation problems. 

Finally, the power and computational efficiency of our approach are demonstrated by 

applications to synthetic and field examples. The synthetic examples include a 2-D 

homogeneous ¼ spot case and also 2-D cross sectional case for gravity segregation problems. 

And the field example is from the Goldsmith San Andres Unit (GSAU) in West Texas and 

includes multiple patterns with 11 injectors and 31 producers. All of our examples show the 

rigorousness of our compressible streamline formulation into two and three - phase black oil 

model in terms of accuracy and computational efficiency.  

 

3.1 Streamline Saturation Equation for Two and Three - Phase Black Oil 

 

3.1.1 Streamline Saturation Equation for Two – Phase Black Oil  

 

The water mass conservation equation for two-phase black oil case is given by, 

                                                      

*
 Part of this chapter is reprinted with permission from “A Rigorous Compressible Streamline 

Formulation for Two and Three-Phase Black Oil Simulation,” by Hao Cheng, Ichiro Osako, 

Akhil Datta-Gupta, and Michael J. King, paper SPE 96866 presented at the 2005 SPE Annual 

Technical Conference and Exhibition, Dallas, TX, October 9-12, Copyright 2005 by the 

Society of Petroleum Engineers. 
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where, Bw is formation volume factor of water, and Fw is fractional flow of water.  

Expanding the divergence operator we get, 
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Now, transforming to streamline time of flight coordinates using, 
τ

φ
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It is now clear that compressibility effects act as source/sink terms along streamlines to 

account for fluid expansion/compression. Note that c  is spatially varying along the streamline 

and can be obtained by mapping divergence of flux computed for each grid cell onto the 

streamline. For incompressible flow, 0=c  everywhere and the right hand term vanishes. We 

can re-write Eq. 3. 3 in terms of the effective density along streamline using the following 

relation, 
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Eq. 3.4 follows directly from Eq. 2.16. The saturation equation can now be expressed as, 
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For numerical solution along streamline we can use either Eq. 3.3 or Eq. 3. 5 because both 

c  and ρ  are available along streamlines. Discretizing Eq. 3.3, we get, 
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where the interblock quantities need to be approximated appropriately as in conventional finite 

difference simulation. We use upstream weighting for wF and midpoint weighting for wB . 

For compressible flow, the pressure field needs to be updated more often compared to 

incompressible flow. Also, the saturation along streamlines will need to be mapped back onto the 

finite difference grid as in the incompressible streamline formulation. However, for compressible 

flow, we need to utilize Eq. 2.19 whereby the effective density, the flow rate and the time-of-

flight information are used to incorporate cross-streamline effects and remapping of saturations. 

Note that along any streamline, we must satisfy the mass balance constraint, 

 

jjii qq ρρ = ....................................................  (3.7) 

 

where i and j are two arbitrary nodes along the streamline. Because 1=ρ  at the injector, the 

flow rate at any position along the streamline can be related to the assigned rate at the injector, 

0q  as follows, 
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0= ........................................................  (3.8) 

 
While mapping saturations from streamline segments to a grid-block, we need to take into 

account the variation in flow rates along streamlines. The average saturation in a grid block can 

be calculated by weighting the saturation, local flow rate and time of flight of each streamline 

segment passing through the grid block as follows  

 

( )

∑

∑

∆⋅

∆⋅⋅

=

i

i

ii

iiiw

w
q

qS

S

ψ

ψ

τ

τ
.......................................  (3.9) 

 

 

 

 

 



 

 

22 

3.1.2 Streamline Saturation Equation for Three – Phase Black Oil  

 

We now extend the concepts developed for two-phase black oil simulation to three-phase 

flow conditions. The water saturation equation remains unchanged from the two-phase case. In 

addition, we now have the mass conservation equation for gas as follows, 
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where, Rs is solution gas oil ratio. Following the same procedure discussed for two-phase black 

oil simulation, we obtain the following equations for gas saturation along streamlines, 
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Or, 
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3.1.3 Operator Splitting Technique for Gravity Segregation Problems 

 

In streamline simulation, operator splitting method has been used to apply 1-D front tracking 

schemes to multidimensional problems and also for including gravity by Bratvedt et al.
10, 24

 By 

including gravity the fractional flow is, 
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At this point, it is important to notice the distinction in the symbols, fw and Fw. And Gw is given 

by,  
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Applying Eq. 3.12. into Eq. 3.10, 
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Expanding the divergence term, 
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And applying the time of flight coordinate, the conservation equation will be 
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We can not solve the conservation equation along streamlines because the gravity term does 

not follow the streamline direction. Operator splitting allows us to solve the equation by starting 

with the convective term to account for convection along the streamline and then moving to the 

gravity term accounting for density difference. Thus we split the conservation equation into two 

equations as 
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First equation is solved along the streamline as in the conventional streamline simulation. Once 

the convection part of saturation update has been done along all streamlines, saturation data is 

mapped back onto the Cartesian grid blocks and then a second equation is solved on the 

Cartesian grid blocks. While solving Eq. 3.17, one has to be careful about the upstream 

treatment of the phase. Following the approach of Sammon 
19

, Eq. 3.17 is discretized to  
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3.1.4 Synthetic Examples 

 

In this section we present simulation results for three-phase flow using the compressible 

streamline formulation since our two-phase synthetic examples are shown in the illustration of 

the method. First, we simulated water injection in a ¼ five-spot pattern with three-phase flow. A 

homogeneous permeability model represented by 25×25 grid cells was used. The initial solution 

GOR is 1.27 Mscf/STB. Initial reservoir pressure is 3005 psi and the initial gas saturation is set 

at 0.2 everywhere. The producer is bottomhole pressure constrained at 2500 psi, and the injector 

is rate constrained at 250 B/d. TABLE 3.1 and 3.2 summarize fluid properties of oil and gas. 

Water properties are remained same as two-phase example. A pressure update time step of 2 

days was used in these simulations. Figs. 3.1 show the oil, gas and water production rates, 

respectively. An explicit finite difference solution was used for 1-D saturation transport along 

streamlines. The oil rate starts with a relatively large value because of the initial pressure 

drawdown. However, as the gas saturation builds up, the oil rate declines and then rises again as 

the oil bank is produced. For comparison purposes, we have superimposed the results from finite 

difference simulation. The agreement is, indeed, very close. Fig. 3.2 compares the water and gas 

saturation profiles from streamline and finite-difference simulation at 1750 days. Again, the 

saturation distributions are in good agreement.  

 

TABLE 3.1FLUID PROPERTIES OF OIL 

Rs [Mscf/STB] Pb [psi] Bo [RB/STB] Viscosity [cp]

0.001 14.7 1.062 1.04

0.11 264.7 1.15 0.915

0.219 514.7 1.207 0.829

0.433 1014.7 1.324 0.732

0.643 1514.7 1.411 0.663

0.862 2014.7 1.514 0.613

1.057 2514.7 1.605 0.551

1.27 3000 1.695 0.51

1.27 3514.7 1.671 0.549

1.27 9014.7 1.579 0.74  
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TABLE 3.2FLUID PROPERTIES OF GAS 

Pg [psi] Bg [RB/Mscf] Viscosity [cp]

14.7 166.666 0.008

264.7 12.093 0.0096

514.7 6.274 0.0112

1014.7 3.197 0.014

2014.7 1.614 0.0189

2514.7 1.294 0.0208

3014.7 1.08 0.0228

4014.7 0.811 0.0268

5014.7 0.649 0.0309

9014.7 0.386 0.047  
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(a) Gas production rate 

Figure 3.1Production vs. time for three phase flow and comparison with finite difference. 
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(b) Oil production rate 
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(c) Water production rate 

Figure 3.1Continued. 
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(a) Water saturation 

 

(b) Gas saturation 

Figure 3.2Water and gas saturation distribution:  finite difference (left) vs. streamline (right). 
 

Second example is 2-D cross sectional case to demonstrate the gravity segregation problems. 

A homogeneous permeability model represented by 25×1×25 grid cells was used. Initial 

reservoir condition and fluid properties are almost same as in the last example. The producer is 

bottomhole pressure constrained at 2500 psi in right side of the reservoir, and the injector is rate 

constrained at 800 B/d in the left side of reservoir.  Both injection and production wells are 

perforated through all layers. A pressure update time step of 2 days was used in these 

simulations. Gas saturation profiles of finite difference and our streamline simulation without 

gravity option are compared in Fig. 3.3. As we see, we could clearly see there is no gravity 

segregation in our streamline simulation. However, by including the gravity option, as we see in 

Fig. 3.4 showing the comparison of finite difference and our streamline with gravity option, we 

can capture the gravity segregation well.  
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Figure 3.3Gas saturation distribution:  finite difference. 

 

 

 

             (a) without gravity segregation                   (b) with gravity segregation 

Figure 3.4Gas saturation distribution: streamline. 
 

 

3.1.5 Field Example 

 

We have applied the compressible streamline formulation to perform black oil simulation of 

waterflooding in a CO2 pilot project area in the Goldsmith San Andres Unit (GSAU), a dolomite 

formation located in west Texas.
20

 The pilot area consists of nine inverted 5-spot patterns 

covering around 320 acres with an average thickness of 100 ft, We have over 50 years of 

production history prior to CO2 project initiation in Dec. 1996. Fig. 3.5 shows the CO2 pilot 

project site in the GSAU. We performed streamline simulation for 20 years of waterflood prior 

to the initiation of CO2 injection.  
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Figure 3.5 Goldsmith field CO2 pilot area (shown within the box). 
 

Because of the practical difficulties in obtaining the correct boundary conditions for the pilot 

area, extra wells located outside the pilot area were included in this study. The extended study 

area consists of 11 water injectors and 31 producers. The study area is discretized into 58x53x10 

mesh or a total of 30,740 grid cells. The porosity field, shown in Fig. 3.6, is obtained by a 

Sequential Gaussian Simulation using the well log and seismic data. The permeability field is 

generated via a cloud transform based on the porosity-permeability relationship and shown in 

Fig. 3.7.  

 

 

Figure 3.6 Porosity distribution. 
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Figure 3.7 Permeability distribution. 

 

We compare the water cut and oil production rates in all the producing wells using our 

proposed streamline formulation and a commercial finite difference simulator for a total 7800 

days. At the beginning of the waterflood, water saturation was 0.225. Both water and oil are 

treated as compressible fluids with live oil PVT properties summarized in TABLE 3.3. The 

reservoir pressure was kept above the bubble point pressure throughout the simulation. No 

capillary pressure was included in these simulations. The simulation results are shown in Fig. 3.8 

for a selected number of wells. Our proposed formulation closely follows the results from the 

finite difference simulator.  

 

TABLE 3.3FLUID PROPERTIES OF WATER AND OIL 

Compressibility [1/psi] Viscosity [cp]

water 1.00E-06 0.79

oil 4.60E-06 0.4747  
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Figure 3.8 Comparison with a commercial finite-difference simulator for a few selected wells. 
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Figure 3.8 Continued. 
 

Our primary emphasis in this paper has been the new formulation rather than the 

computational aspects. As in the incompressible case, the compressible streamline simulation is 

likely to be most advantageous for flow simulation through high resolution geologic models and 

very large simulation models. However, as we discuss in the next section, the speed up factor 

will be less compared to the incompressible case. This computational advantage will mainly 

arise from two reasons. First, the streamline approach will require fewer pressure solutions. This 

is particularly the case for moderate to adverse mobility ratio displacements.
21

 Second, with our 

proposed compressible formulation the solution of the 1-D saturation equations is still decoupled 

from the underlying grid, thus allowing for larger time steps. To elaborate on these points, in 

TABLE 3.4 we have compared the number of pressure solutions for streamline and finite 

difference simulation for all the cases presented here. For the finite difference simulation, we 

have attempted to optimize the time step size by selecting the automatic time step selection 

option in the commercial simulator.  However, there could still be further scope for optimization. 
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So, these numbers should be treated as approximate. Nevertheless, these results appear to be 

consistent with the CFL calculations shown in the next section. From these results, we can see 

that for the two phase compressible cases, the stable time step size for streamline simulation is 

almost ten times larger than that of the finite difference simulator. However, this computational 

advantage is likely to diminish for three phase cases as indicated in TABLE 3.4. 

 

TABLE 3.4NUMBER OF PRESSURE UPDATES 

Case \ Simulation Streamline Finite Difference

Two-Phase 25 465

Three-Phase 400 941

Field 229 2367  

 

3.2 Stability Consideration and Pressure Time Selection 

 

An obvious question is how to select the time step for pressure updates during compressible 

streamline simulation. Intuitively, we know that compressible flow will require more frequent 

pressure recalculations. But is there a stability criterion that we could use for pressure time step 

selection? Osako et al.
21

 addressed this issue in the context of incompressible streamline 

simulation. In this section we show that the formulation is sufficiently general and the same logic 

applies for compressible flow. Following Osako et al.,
21

 we can use operator splitting to rewrite 

Eq. 3.2 in a predictor-corrector mode as follows, 
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where 0u
r

 represents the ‘initial’ velocity distribution (at the beginning of a time step) used to 

generate the streamline and compute the time of flight in Eq. 3.19a and u
r

 represents the 

‘instantaneous’ velocity. Within the operator splitting approximation, this pair of equations is 

equivalent to the original three dimensional flow equation. The first equation is the usual 

streamline evolution equation with the source term to include compressibility effects. The 

second equation includes any and all unsteady state effects, whether transverse or longitudinal, 

those are usually neglected in the streamline formulation. In fact, we can solve the corrector 
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equation, Eq. 3.19b, at the end of each time step using finite difference methods to update the 

streamline-derived saturations. However, Osako et al.
21

 pointed out that the main utility of this 

corrector equation is to define a ‘correction’ CFL (Courant-Fredrich-Levy) 
22

 number for 

determining the stable time step for pressure updating. 

Based on the corrector equation and following the logic of Osako et al.,
21

 the discrete CFL 

number for the compressible flow will be given by, 
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The summation is only taken over the inflow faces, e.g., 
fn

r  is inwardly directed cell face area, 

and ( ) ff nuu
rrr

•− 0
 must be positive. As usual, the stable time step will be given by the condition, 

.1≤CFL Note that the CFL  equation for compressible flow is identical to that for incompressible 

flow. Is the magnitude also the same? The answer is obviously “no”. Because of the 

compressibility effects, fluid velocities will change and so will the CFL  number. 

To illustrate the impact of compressibility on CFL numbers, we again examine waterflood in 

a ¼ five-spot pattern. We use an end point mobility ratio of 0.5 and summarize in TABLE 3.5 

because typically favorable mobility ratios are more challenging for streamline simulation.
23 

To 

start with, we examine an incompressible case. Fig. 3.9 shows the oil rate for various pressure 

update time steps and the corresponding CFL numbers. For comparison purposes, we have also 

shown the results from a finite difference simulation with small time steps which will serve as 

the reference solution. As expected, the streamline solution becomes unstable for .1>CFL  This 

is consistent with the observations by Osako et al. But, how about compressible flow? Fig. 3.10a 

shows the results for a pressure update time step of 20 days. We obtain very good agreement 

with the finite difference solution for this case. However, as the time step size is increased to 40, 

and 60 days, the results deviate from the finite difference solution and also show oscillatory 

behavior, Fig. 3.10b. These results are summarized in TABLE 3.6 which shows that the stable 

time step is given by CFL limit of unity. The unstable time steps are marked yellow.  

 

TABLE 3.5FLUID PROPERTIES OF WATER AND OIL 

Compressibility [1/psi] Viscosity [cp]

Water 1.00E-06 1.0

Oil 4.60E-04 0.5  
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TABLE 3.6CORRECTION CFL FOR STABILITY 

20 40 60

CFL-Incompressible 0.716 0.97 1.385

CFL-Compressible 0.727 1.18 2.683

CFL-Compressible FD 13.696 17.969 19.933

Time step (days)
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Figure 3.9 Impact of pressure time step size on oil production rate (incompressible flow). 
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(a) Pressure update time step = 20 days 

Figure 3.10 Impact of pressure time step size on oil production rate (compressible flow). 
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(b) Pressure update time step = 40, 60 days 

Figure 3.10 Continued 
 

For comparison purposes, in TABLE 3.6 we have also shown the CFL numbers computed for 

the conventional finite difference simulation using the same time steps. Clearly, the finite 

difference solution is unstable for all the time steps. Based on the results, it appears that the 

stable time step for finite difference solution for this example will be less than 2 days 

 

3.3 Chapter Summary 

 

We have presented a rigorous formulation for two and three – phase black oil compressible 

streamline simulation. Unlike previous studies, we no longer assume that volumetric flux is 

conserved along streamlines. The key features of our formulation are (i) introduction and tracing 

of an effective density along streamlines to account for fluid expansion/compression, (ii) use of 

the effective density during mapping from streamlines to grid blocks and vice versa and (iii) a 

source/sink term in the saturation equation along streamlines to account for compressibility 

effects. Although we have restricted our development to black oil simulation, the approach is 

quite general and can be easily extended to compositional simulation. Gravity effects are 

accounted for using operator splitting as in incompressible streamline simulation 
4
. We have 

validated our approach by comparison with finite difference simulation for two and three phase 

flow using synthetic and field examples. Importantly, our proposed formulation can be easily 

implemented within the framework of existing streamline simulators. 

Some specific conclusions from this study can be summarized as follows: 
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1. A rigorous compressible streamline formulation has been presented for two and three-

phase black oil simulation. Our proposed approach requires only minor modifications to 

current streamline simulators with significant improvement in accuracy of performance 

predictions. 

2. We can now account for fluid expansion/compression along streamlines by introducing 

an effective density along the streamlines. This effective density can be easily traced 

along the streamline and allows us to rigorously decouple the 3-D saturation equation 

into a series of 1-D equations.  

3. We have reformulated the 1-D saturation equations along streamlines by introducing a 

source/sink term to account for compressibility effects. Also, the mapping of saturations 

from streamlines to grid blocks and vice versa has been improved to account for changes 

in fluid volume. 

4. We have shown that the discrete CFL number of Osako et al.
14

 for selection of time step 

for pressure updates also applies to compressible streamline simulation. As expected, the 

compressible formulation restricts the simulation to smaller time-step size compared to 

incompressible flow in order to maintain the stability of the solution. 

5. We have validated our new formulation using synthetic and field examples and 

comparison with a commercial finite difference simulator. 
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CHAPTER IV 

COMPOSITIONAL STREAMLINE SIMULATION WITH 

COMPRESSIBILITY EFFECTS 

4 

Streamline simulators have been applied in many waterflood projects because of their ability 

to take large time-steps during the pressure solution in an IMPES formulation under the 

incompressible fluid flow assumptions. However, the incompressibility assumption limited the 

application to the reservoirs that do not contain highly compressible fluids such as live oil and 

gas. Our recently proposed rigorous compressible streamline formulation 
2
 has overcome the 

assumptions and we have validated our approach with black oil model examples. The application 

to compositional simulation is more appealing because of the linear scaling properties in 

computation time for streamline models.  

Our proposed approach for the rigorous compressible formulation is based on three 

elements. First, we formulate an equation to trace the effective density along the streamline to 

capture the expansion and shrinkage of the fluid along the streamline. Second, a simple corrector 

algorithm is used to update the saturation to account for the density changes because of the 

compressibility. Thirdly, we propose a treatment to reallocate the rate of each streamline based 

on the density. These three elements will capture all physics of compressibility and also be done 

all along streamline without going back to grid block domain. 

We demonstrated the validity and practical utility of our approach using a series of 

numerical experiments in a 2-D five-spot pattern, and an application to 3-D heterogeneous case 

with four components fluid example. For the numerical experiments, we pay particular attention 

to the importance of rigorous treatment of compressibility which is absent on earlier works.
11-15

 

Our results clearly demonstrate the impact of the remapping and reallocation algorithms based 

on the density difference along the streamline because of the compressibility and also the linear 

scaling advantage of streamline. The proposed approach broadens streamline applications into 

other types of reservoirs currently not applied in the industry. 
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4.1 Introduction 

 

In many applications, a black oil representation of the reservoir fluids is inadequate. These 

include depletion of gas condensate and volatile oil reservoirs and also enhanced oil recovery 

processes such as enriched miscible gas injection, carbon dioxide flooding and chemical 

flooding. Specifically, when the fluid properties are dependent on both phase composition and 

pressure, we have to resort to compositional simulation. Such simulations involve the solution of 

the mass conservation equation in conjunction with phase equilibrium calculations to determine 

phase compositions, phase pressures and saturations.
3-5

 The additional capabilities of 

compositional simulation also make it more expensive in terms of computation time and 

memory. This makes the potential benefit of streamline based compositional simulation even 

more compelling than for black oil or for two-phase waterflood.  

We already know that streamline models can outperform conventional finite difference 

simulation in terms of computational speed. However, most applications have been limited to 

incompressible or slightly compressible flow and under convection dominated flow.
8-10, 24-27

 The 

underlying incompressible assumption allows us to decouple the pressure and conservation 

equations easily by introducing a time of flight coordinate.
1
 By applying the time of flight as a 

spatial coordinate, multidimensional conservation equations are decoupled into series of 1-D 

equation and the decoupled equation can be solved using a relatively large time step compared to 

original grid block based equations. The decoupled equation can also reduce numerical 

dispersion and grid orientation effects which eventually improve the accuracy of the solution.  

However, most of the elegance and simplicity of the streamline models are lost once we 

think about compressible flow because of the coupling between pressure and saturation. Several 

authors have attempted to overcome the incompressibility assumptions during streamline 

simulation.
2, 11-15

 Since the pressure and velocity calculations in streamline models use finite 

difference scheme, most of these previous works have rigorously accounted for compressibility 

effects in the pressure equation. However, all of these formulations neglect the divergence of 

total flux term during the derivation of 1-D conservation equations. The divergence of total flux 

term is essential to account for compressibility effects because it vanishes for incompressibility 

assumptions. Neglecting this term is not only incorrect for compressible flow but also introduces 

inconsistency between the pressure and conservation equations. All these lead to increased 

material balance error and very often inaccurate performance predictions.  
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Our recent proposed approach 
1
 removed the limitation for two and three- phase black oil 

simulation by introducing relative density concepts and mapping the relative density along 

streamline. The divergence of total flux representing the fluid expansion/compression is captured 

by the relative density. The conservation equations are decoupled into series of 1-D equation and 

the divergence of total flux acts as a source term. Following are the basic objectives in this study: 

 

• Introduce the compressible streamline formulation and highlight the main differences 

with the existing incompressible formulation. 

 

• Present several examples to outline the major steps and illustrate the underlying concepts 

in compressible streamline simulation. 

 

• Derive the 1-D conservation equations along streamlines for compositional model. 

 

• Apply our 1-D conservation equations into UTCOMP 

 

• Validate the new formulation by comparison with finite difference simulation 

 

In this study, we apply a finite difference simulator (UTCOMP) 
6
 for pressure and streamline 

trajectory. Our new approach is used in conservation equation part in evolving phase 

compositions and saturations.  

For our validation purpose, our streamline model is compared with the finite difference 

compositional simulation results obtained from UTCOMP. 

  

4.2 Compositional Streamline Formulation 

 

Much of the elegance of the current streamline (or streamtube) formulation arises from the 

restriction to incompressible flow. In short, if a specific volumetric flux is allocated to a line or a 

tube at an injector, then that same flux will be transported to a producer. However, most real 

systems have some degree of compressibility. The compressibility effects become particularly 

important for three-phase flow including gas. Thus, the formulation needs to be generalized to 

account for changes in fluid volumes because of pressure variations along the streamwise 

directions. Fortunately, a small modification to the equations presented so far can be used to 

determine the volumetric flux as a function of distance along a streamline. A similar approach 

could be applied to streamtube calculations, although historically this has not been implemented. 
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Fig. 4.1 shows the flowchart of compositional streamline simulation. After initializing reservoir 

and well parameters, we can obtain pressure and corresponding velocity fields on simulation grid 

blocks. Streamline tracing starts from producers to injectors with the velocity fields and we 

sample several parameters required for phase flash calculations and solution of conservation 

equations along streamlines. We evolve compositions along the streamline with a series of 1D 

conservation equations. Evolved parameters will be sampled back to grid blocks and updated by 

operator splitting technique 
10, 28, 29

 if gravity effects are dominant. We continue the loop until the 

end of simulation time.  
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Figure 4.1 Flow chart of compositional streamline simulation. 

 

4.2.1 Pressure Calculation of Compositional Streamline Simulation 

 

Streamline simulation is an IMPES type reservoir simulation, which solves pressure 

equation implicitly followed by saturation equation or conservation equation explicitly. 

Streamline simulation starts by solving pressure equation. Here we discuss how we solve 

pressure equation in compositional simulation. Since the essence of streamline simulation is 

coordinate transformation from 3-D physical space to 1-D time of flight along streamline, there 

is no special treatment for solution of pressure equation compared to conventional finite 

difference approach. Let us start by clarifying the difference of pressure equation between the 

black oil and compositional case. In the black oil case, we are able to eliminate the derivative 
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term of saturation with respect to time so that we could obtain the pressure equation easily. 

However, in compositional case we can not eliminate the term directly to get the pressure 

equation. Thus, we need iterative solutions to handle the non-linearity of accumulation terms. In 

this study, we apply the technique introduced by Acs et. al. 
30

 and Watts.
31

 They have introduced 

a ‘volume balance’ formulation, which tries to balance the pore volume of the reservoir and the 

total fluid volume. The balanced system is simply the pore volume filled totally with the fluids. 

Our derivation came directly from an overall system volume balance in stead of working with 

individual phase equations. In the balanced system, we have 

 

)(),( PVNPV pt = ..............................................  (4.1) 

 

where the total fluid volume, tV , is a function of pressure and fluid composition, and the rock 

pore volume, pV  is a function of only the pressure. Here, N  denotes the fluid composition 

given by the total number of moles of each component, iN , cni ,,2,1 K= . Differentiating Eq. 

4.1 with respect to time and using the chain rule, we obtain 
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Let us define 
0φ  and 

0

pV  to be the porosity and pore volume at a reference pressure
0P . From 

the definition of rock or formation compressibility fc  we have the following, 
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The general mass conservation equation is given by, 
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Where, iW  in Eq. 4.4 represents the number of moles of component i  per unit bulk volume. 

Thus, the total number of moles of component i , iN  will be given by, 
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Here, bV is the bulk volume. The mass conservation equation, Eq. 4.4 can now be expressed as 

follows, 
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Here, K

rr
 is the dispersion tensor, not to be confused with the permeability tensor, k

rr
. At this 

stage, it is convenient to introduce the concept of the partial molar volume defined by, 
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The partial molar volume represents the change in total volume as a mole of component i enters 

or leaves the system. It can be computed directly from the equation of state or from empirical 

fluid property correlations. 

Substituting Eq. 4.3b, Eq. 4.6 and Eq. 4.7 into Eq. 4.2, we obtain a preliminary form of the 

compositional pressure equation,
32
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The phase velocities ju
r

can be expressed in terms of phase pressures using Darcy’s law. We can 

utilize the capillary pressure relationships to replace all other phase pressures in terms of a 

reference phase pressure, for example phase 1, 
1PP = . Suppose, 

ll
PPP jjc −= , for example, 

jcj PPP 11 += , and 011 =cP . 
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 ..............................................................................  (4.9) 
 

Again, the pressure equation Eq. 4.9 is solved using finite difference methods. The solution of 

the pressure equation requires the evaluation of the partial derivatives of total volume with 

respect to pressure and component moles. These derivatives can be calculated from the equation 

of state and the phase equilibrium relations. 

 

4.2.2 Extension of Rigorous Compressible Formulation to Compositional Model 

 

Once we solve for pressure and obtain the velocity field on grid blocks, we can trace 

streamlines and map underlying grid properties onto the streamlines. Along each streamline, we 

will evolve compositions with the conservation equation. In this section, we will show how to 

decouple the 3-D conservation equation into a series of 1-D equations by applying rigorous 

compressible streamline formulation.
2
 The general conservation equations for multi-component 

multiphase flow in the absence of sources or sinks is given by Eq. 4.10. For clarity of exposition, 

we will neglect physical dispersion, 
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The phase velocities can be expressed in terms of total velocity using Darcy’s law as in Eq. 4.11, 
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Here, 
jcj PPP −=

ll
, 

jj ρρρ −=∆
ll

, and 

rt

rj

jF
λ

λ
= . 

During streamline simulation the gravity and capillary pressure terms are treated using operator 

splitting as discussed before. We will focus on the convective flux term to derive the 

compositional streamline equation. Expanding the divergence operator in Eq. 4.10, we get 
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The usual definition of the time of flight, τ , and the definition of c  for compressible systems 

provide us with: 
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This leads to the following component conservation equation along streamlines, 
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Here, iz  is the total mole number per unit pore volume for component i  and is given by, 
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In deriving Eq. 4.13, we have neglected porosity changes with time for simplicity. This can be 

easily avoided by including porosity in the definition of iz . The fractional flux of component i  

has been defined by  
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so that the flux of component i  is given by  
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Same as black oil example, the source / sink term 








− ij

c

φ
 in Eq. 4.13 is very important to 

correctly model flow along the streamlines. Early treatments of compositional streamline 
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simulation 
11, 14, 15

 were developed in the incompressible limit ( 0→c ) and did not include this 

term. 

Eq. 4.13 can be solved numerically for 
iz  along each streamline. The total composition is 

mapped back onto the grid at the end of the pressure time step. Note that during mapping, we 

must account for fluid expansion using the ‘effective density’ term in compressible flow as 

discussed well in our previous chapter. Thus, the total composition in a streamline segment 

within a grid block should be weighted by ρτ /d  for that streamline segment while mapping onto 

the grid. The gravity and capillary pressure terms can be accounted for at this stage via operator 

splitting. Finally, the phase compositions and saturations are obtained from the total composition 

by thermodynamic flash calculations. 

 

4.2.3 Phase Equilibrium Calculation 

 

Reviewing Fig. 4.1, almost all aspects of compositional streamline simulation have been 

discussed except the phase equilibrium calculations. The solution of the 1-D conservation 

equations, Eq. 4.13 yields updated iz , the overall composition along the streamlines. Phase 

equilibrium or ‘flash’ calculations are required to determine the number of hydrocarbon phases, 

the phase saturations, jS  and their compositions, ijx , at a given temperature and pressure. 

Compositional simulation involves frequent flash calculations and thus, it is necessary that these 

calculations be efficient and robust. In general, phase equilibrium calculations impose three 

conditions. First, the overall material balance (molar balance constraints) must be satisfied for 

each component. Second, the chemical potential (or equivalently, the fugacities) of each 

component must be the same in all phases. Finally, the equilibrium phase split and composition 

must have the lowest Gibbs free energy at the given temperature and pressure.
33

 

The details of the phase equilibrium calculations are the same as for finite difference 

simulation. The calculations typically follow a sequential application of phase stability analysis 

to determine the number of phases followed by flash calculations to determine the amount and 

composition of each phase.
32, 34, 35

 The phase stability analysis ensures that the Gibbs free energy 

is minimized for the number of phases in equilibrium. The flash calculations involve an iterative 

procedure to compute the equilibrium constants or K-values defined as the ratio of the 

component mole fractions in the vapor and the liquid phases. The basis for computing the K-
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values is the equality of the component fugacities in each phase. The component fugacities can 

be conveniently obtained using an equation of state such as the Peng-Robinson equation of 

state.
36

 

 

4.2.4 Solution of the Conservation Equation 

 

The 1-D compositional transport equation has been reduced to the simple form, Eq. 4.13. As 

in the case of waterflooding, the transport equations can be solved analytically for two-phase 

multi-component incompressible flow with constant initial and injection conditions.
37-38

 The 

analytic solutions are constructed by solving the eigenvalue problems associated with the mass 

conservation equations and involve Riemann solutions. The goal here is to identify the unique 

path (composition route) that connects the initial and injection conditions in the composition 

space.
39, 40

 When applicable, these analytic solutions can lead to significant savings in 

computation time. However, for most practical situations, a numerical solution will be necessary. 

The transport equation along a streamline, Eq. 4.13, can be approximated by finite difference as 

follows, 
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where l  is the spatial discretization index in the τ  direction, and ( )
2/1+lij , ( )

2/1−lij  represent the 

time-averaged flux of component i  at the node boundaries and are given by, 
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The simplest approximation to the fluxes at the node boundaries is the single-point upstream 

weighting which yields smooth and stable solutions. This leads to the following finite difference 

form, 
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Here expressed for flow in the direction of increasing l , or equivalently with increasing τ .  

 

4.2.5 Validation of the Method 

 

We now validate the calculations using CO2 injection into a depleted oil and gas reservoir in 

a homogeneous five-spot pattern using 4 components and compare the results with the finite-

difference compositional simulation. The initial reservoir pressure was set at 1200 psi and the 

four corner producers are bottomhole pressure constrained at 1000 psi. Properties for each 

component are summarized in TABLE 4.1. The velocity field obtained from the pressure 

distribution is used to trace streamlines and compute time of flight using the Pollock algorithm 
17

 

as in the conventional streamline case. Note that the Pollock algorithm is sufficiently general and 

is not limited to incompressible flow. However, unlike incompressible flow, streamlines can now 

originate and terminate anywhere in the domain.  

 

TABLE 4.1FLUID PROPERTIES OF COMPONENTS 

Component Critical Pressure Critical Temperature Critical Volume Molecular Weight

[psi] [R]  [ft3/lb-mole] [lb/lb-mole]

CO2 1070.6 547.43 1.507 44.01

C1 667.1961 343.08 1.5798 16.043

C4-6 485.939 839.538 5.0201 72.824

C7-14 351.535 1085.53 8.8842 135.8191

Acentric Factor Parachor Volume Shift Parameter

CO2 0.22394 78 0.14

C1 0.01142 71 -0.154

C4-6 0.2436 233.048 0.0406

C7-14 0.6 394.499 0.0634  

 

The cumulative oil rate at the producing wells for the compositional streamline calculations is 

shown in Fig. 4.2. For validation purposes, we have also shown the results from finite difference 

simulation. There is very good agreement between streamline and finite difference calculations. 

To demonstrate the effects of fluid compressibility, we have also superimposed the results 

without the compressibility term on Eq. 4.13 which captures the fluid expansion/compression. 

Clearly, the compressibility effects are too large to be ignored for this case. Fig. 4.3 shows the 
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cumulative gas comparisons in this case. Again we have very good agreement between 

streamline and finite difference calculation. 
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Figure 4.2 Cumulative oil production rate comparisons including without RHT. 

 

 

 

0.0E+00

2.0E+06

4.0E+06

6.0E+06

8.0E+06

1.0E+07

1.2E+07

0 50 100 150 200 250 300

Time [days]

C
u

m
. 

G
a
s
 P

ro
d

u
c
ti

o
n

 [
s
c
f]

UTCOMP

streamline

streamline without RHT

 

Figure 4.3 Cumulative gas production rate comparisons including without RHT. 
 

4.2.6 High Resolution Numerical Scheme 

 

Because of the rapid mobility and composition changes in compositional simulation, the 

single point upstream weighting in Eq. 4.19 can produce unacceptably smeared results when 

applied to problems that entail propagating sharp or unstable fronts. Numerical dispersion can be 

particularly pronounced in compositional simulation because unlike waterflooding, the saturation 
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or composition front may not be self-sharpening. Also, numerical dispersion can interact with 

phase behavior leading to phase trapping and inaccurate recovery predictions.
41

 To remedy the 

situation, the industry has focused on high resolution numerical schemes for compositional 

simulation. By such schemes, we imply numerical methods that are at least second-order 

accurate in the smooth regions and yet give well resolved, non-oscillatory fronts.
42

 

In this section we will develop a widely used class of high resolution numerical schemes 

known as Total Variation Diminishing (TVD) schemes.
43

 The TVD schemes utilize flux limiters 

to selectively restrict higher order fluxes to prevent non-physical oscillations. In practice the 

TVD schemes will be applied to each component flux in the form 
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The flux limiting function ( )rϕ in Leonard Scheme (third order) 
44

 will be defined as  

 

rr
LE

3

1

3

2
)(

λλ
ϕ

+
+

−
= ....................................  (4.22) 

 

We know that the direct application of higher order schemes can result in oscillatory solutions 

for the propagation of sharp fronts. Sweby 
45

 derived the algebraic conditions on the limiter 

function )(rϕ  that guarantees monotonicity and prevents non-physical oscillations in the 

solution.  
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Recall that our goal is to derive difference schemes that minimize numerical diffusion, whilst 

maintaining monotonicity. Thus, we want to maximize the contribution of the higher-order anti-

diffusive flux in Eq. 4.20, without violating the conditions of Eq. 4.23. To limit each of the flux 

functions, at each value of r , we have applied the criteria below for Third-order Leonard,  
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[ ]))(,2,2(,0)( rrMinMaxr
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Figs. 4.4 and 4.5 show comparisons of cumulative oil & gas production results from finite 

difference and our streamline simulation both with TVD scheme. Overall, we obtained the 

reasonable agreement. And also if we compare to Figs. 4.2 and 4.3 obtained with single point 

upstream weighting, oil and gas production seem accelerated a bit with high order numerical 

schemes. It means the numerical dispersion because of single point upstream is reduced by 

introducing the high order numerical scheme.   

 

0

500

1000

1500

2000

0 50 100 150 200 250 300

Time [days]

C
u

m
. 

O
il

 P
ro

d
u

c
ti

o
n

 [
b

b
l]

UTCOMP

streamline

streamline without RHT

 

Figure 4.4 Cumulative oil production rate comparisons with TVD including without RHT. 
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Figure 4.5 Cumulative gas production rate comparisons with TVD without RHT. 
 

4.2.7 Gravity Segregation in Compositional Streamline Simulation 

 

As in the black oil case, the operator splitting method has been applied to capture gravity 

segregation in compositional streamline simulation. Jessen et al. 
28

 has already presented the 

details of the technique based on the operator splitting as applied in the black oil case. By 

substituting Eq. 4.11 into Eq. 4.10, the conservation equation will be given by, 
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We neglect the capillary pressure and now apply operator splitting technique. Then, we obtain 

the following two equations, 
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Eq. 4.26a eventually leads to the same form as Eq. 4.13 and is solved along streamlines. Eq. 

4.26b is solved on each grid block with the following equation, 
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Jessen et al. 
28

 introduced a pseudo-immiscible approach to reduce the CPU time as well as 

the operator splitting error. Their proposed method updates saturations instead of component 

moles along gravity lines at the end of convective step. When we map parameters back to grid 

block from streamlines, all parameters such as phase saturation, densities, and viscosities are 

already known. Then we can update phase saturations by using the modified version of the 

approach for black oil model (Eq. 3.18 in the last chapter). 
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where, i is either liquid or gas. 

Once we update phase saturations based on the gravity force, we need to update overall mole 

fraction and molar density for new time step pressure calculations.  

 

4.2.8 A 3-D Heterogeneous 5 Spot Example 

 

We simulated again CO2 injection for a depleted reservoir in a five-spot pattern. A 

heterogeneous permeability model with 21×21×4 grid cells was used, and the permeability field 

is shown in Fig. 4.6. It was generated by sequential Gaussian simulation. Since it is a three 

dimensional model, we have applied the gravity segregation treatment for our compositional 

model.  
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Figure 4.6 Heterogeneous permeability field. 
 

Jessen and Orr 
28

 proposed a pseudo-immiscible approach for the treatment of gravity 

segregation with compositional streamline model. It involves solving the gravity lines just after 

the end of a given convective step as in conventional operator splitting approaches. The initial 

water saturation is 0.25. Initial reservoir pressure is 1200 psi, and we have four different initial 

components (CO2=0.05, C1 = 0.35, C4-6 = 0.45, C7-14 = 0.15) and their properties are same as 

in the last 2-D example. The producer is bottomhole pressure constrained at 1000 psi, and the 

injector is rate constrained at 500 lbm-mol/day. Figs. 4.7 show the cumulative oil and gas 

production rate. Our results show good agreement with the finite difference simulator.  

Spatial distribution of gas saturation is also compared in Figs. 4.8, where the left side shows 

results from the finite difference simulator and the right one is from our streamline simulation. It 

shows a reasonable match except for the bottom layer. We think it is partly because of the 

difference in injection well treatments between finite difference and streamline simulation. Our 

streamline simulator is designed to give always 100 % of injection fluid or gas into the injection 

grid; however, the finite difference simulator will simply solve the material balance in the 

injection wells. Thus, although the last layer in the finite difference model couldn’t inject much 

volumes compared to the upper layers because of throughput constraints at the injection well, the 

streamline simulator is able to inject high percentages of gas into the last layer. Fig. 4.9 shows 

the spatial distribution of gas saturation without the gravity segregation option in streamline 

simulation. We can not observe any gas override to the top of the reservoir.  
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(a) Oil 
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(a) Gas 

Figure 4.7 Cumulative well production comparison. 
 

 

 

  (a) UTCOMP        (b) streamline 

Figure 4.8 Spatial distribution of gas saturation. 
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Figure 4.9 Spatial distribution of gas saturation without gravity option in streamline. 
 

As for the CPU time, finite difference simulation took 24 mins, whereas the streamline 

model took 20 mins.  

 

4.3 Chapter Summary 

 

In this chapter, our rigorous compressible streamline formulation is extended to 

compositional model. It is quite easy to couple our formulation into existing finite difference 

simulation. Through the extension, we have demonstrated the importance of higher order 

numerical schemes and gravity segregation problems for compositional simulation. By including 

higher order numerical schemes and operator splitting techniques, the streamline simulation is 

more accurate and physically representative.  

Some specific conclusions from this study can be summarized as follows: 

 

1. Use of the relative density term allows us to include compressibility effects in compositional 

streamline simulation. It retains a source term in compositional streamline equation that can 

rigorously account for compressibility effects. 

2. The relative density traced along streamline decouples 3-D compositional equations to a 

series of 1-D equations. We can retain the advantage of streamline simulation by taking 

larger time step size for the 1-D solution along streamlines.  
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3. We have presented numerical examples to illustrate the importance of including 

compressibility effects in compositional streamline simulation. 

 

We will discuss the computational time comparison with finite difference simulation in the 

next chapter. 
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CHAPTER V 

OPTIMAL COARSENING OF STREAMLINE SEGMENTS  

FOR TRANSPORT CALCULATIONS 

5 

As we mentioned in the last section, the numerical dispersion in compositional simulation 

would be one of the issues we need to pay attention. To reduce the numerical dispersion, one 

way is to introduce higher order numerical schemes shown in the last section, and another way is 

to apply finer scale cells for the composition propagation. In streamline simulation, a series of 

1D composition propagations are carried out along streamlines and we map the updated 

compositions onto the grid block. Thus, instead of refining grid blocks in the reservoir model we 

can refine the segments in each streamline to reduce numerical dispersion. However, the refining 

of grid blocks or segments along streamlines will lead to increase computation time because we 

need flash calculations on these blocks or segments, and the flash calculation constitutes much of 

the computational expenses. In this chapter, we propose a novel approach that optimizes the 

number of segments along streamline to reduce the computational time during compositional 

streamline simulation significantly. Let us start by showing the impact of different number of 

discretization segments along streamline. 

 

5.1 Introduction 

 

Although using streamline simulator we could obtain a reasonable match with finite 

difference simulation for well performance such as cumulative productions of oil and gas, 

comparisons of saturation contour profiles show differences especially around injection wells as 

shown in Fig. 5.1. We couldn’t improve the results even after introducing higher order numerical 

schemes. We found that the parameter that determines the number of discretization segments 

along streamline has a significant impact on the saturation profile. In streamline simulation, once 

we trace the streamlines, we map grid block parameters onto the streamlines and transform 3-D 

transport equations from physical space to 1-D time of flight space. Fig. 5.2a shows the 

illustration of a traced streamline. The properties on underlying grid blocks are mapped onto the 

1D time of flight coordinate domain as shown in Fig. 5.2b, where the left boundary is the 
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injection well and the right boundary is the producing well. Generally the properties are mapped 

to irregular time of flight segments. In our calculation, we divide the irregular time of flight 

segments into regular time of flight segments as shown in Fig. 5.2c so that ∆τ of the discretized 

conservation equation (Eq. 4.17) would be constant all along the streamline. When we divide 

into finer segments, we use a parameter to determine the multiplication factor to refine the 

segments. Suppose one streamline is passing through 20 grid blocks. The refinement parameter 

is multiplied by the number of grid block to determine the level of discretization. The segments 

are evenly spaced according to time of flight along the streamline. In Fig. 5.1, the refinement 

factor is 2. Fig. 5.3 uses a refinement factor of 4, and clearly shows improvement in results. 

However, the disadvantage of increasing the number of segments along streamlines is to increase 

the computational time from 8 mins to 32 mins. Now the question is do we really need to refine 

the segments all along the streamline evenly or can we optimize the level of discretization.  

 

  

    (a) Streamline (factor of refinement = 2)      (b) Finite difference 

Figure 5.1 Spatial distribution of gas saturation. 
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(a) Segments on the traced streamline 

Time of FlightTime of Flight
 

(b) Illustration of segments on irregular time of flight coordinate along streamline  

Time of FlightTime of FlightTime of FlightTime of FlightTime of Flight
 

(c) Illustration of segments on regular time of flight coordinate along streamline 

Figure 5.2 Illustration of segments along streamline. 
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Figure 5.3 Spatial distribution of gas saturation. 

 

 

5.2 Approach 

 

5.2.1 Optimal Coarsening of Streamline Segments 

 

We have seen the impact of the level of discretization of segments along streamline. How 

can we define the optimal number of segments? We can think of two ways to define the optimal 

segments along streamlines. First, one approach would be introducing the adaptive mesh 

refinement algorithm widely applied in the reservoir simulation.
46

 Another approach would be 

analogous to recursive sequential coarsening applied in the area of upgridding of geological 

properties.
7, 8, 47, 48

 In our study, we examined the optimal coarsening idea given by Testerman,
7
 

and King et al.,
8
 because recursive coarsening is significantly faster than the sequential 

refinement. Also it requires minor modification to our existing code. The original motivation of 

King et al. was to investigate how many layers are required to preserve fine-scale vertical 

heterogeneity. Their method is quite simple. They introduces sum of squares criteria given by 

two equations below, 

 

• Sum of squares within layer 
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• Sum of squares between layers 

 

( )∑∑
= =

−=
x zN

i

N

k

i

c

ik mpSSB
1 1

2
..................................  (5.2) 

 

Where, 
f

ikp  is the original given property,
c

ikp  is the intermediate property value after coarsening 

some layers, mi is the weighted average of the properties in z-direction. 

Before moving to the optimal number of segments, we need to think about how we select 

two segments to combine. In recursive coarsening technique, first we combine original segments 

into coarser segments using two adjacent segments at a time. We then calculate sum of squares 

of variances for each combination of two neighbor segments and pick up the best combination 

that gives minimum changes within a segments and maximum variance between segments to 

maintain their heterogeneity.  Although the original ‘upgridding’ idea utilizes permeability as the 

parameters to evaluate variance, what kind of properties is useful for our streamline application? 

We use slowness which is the reciprocal of the local velocity, 2221 zyx vvvs ++= , because this 

property determines the time of flight along streamlines. As slowness increases, the time of flight 

increases. Conversely, as slowness decreases, the time of flight decreases. Thus, we require 

keeping finer segments near low slowness region (fast velocity) and can take more coarse 

segments in large slowness region (low velocity).   

Let’s think of a simple 1D example as shown in Fig. 5.4. Now we have initially four segments 

with slowness in the range of 0.1~3 which is on top in Fig.5.4.   

 

Time of FlightTime of Flight

SSWSSW SSBSSB

00 17.0117.01

5.015.011212

22 15.0115.01

2.052.05 12.9612.96

55

0.10.1 55 33 0.150.15

55 55 55

0.10.1 44 44 0.150.15

2.552.55 2.552.55 33 0.150.15

0.10.1 55 1.5751.575 1.5751.575

Time of FlightTime of Flight

SSWSSW SSBSSB

00 17.0117.01

5.015.011212

22 15.0115.01

2.052.05 12.9612.96

55

0.10.1 55 33 0.150.150.10.1 55 33 0.150.150.10.1 55 33 0.150.15

55 55 55

0.10.1 44 44 0.150.15

2.552.55 2.552.55 33 0.150.15

0.10.1 55 1.5751.575 1.5751.575

0.10.1 44 44 0.150.15

2.552.55 2.552.55 33 0.150.15

0.10.1 55 1.5751.575 1.5751.575
 

Figure 5.4 1-D four segments example. 
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Since there is no coarsening of the segments yet, sum of squares within segments (SSW) is going 

to be zero, whereas sum of squares between segments (SSB) is going to be the maximum value. 

We coarsen left two segments and take arithmetic average for the segments as shown in second 

row in Fig.5.4.  Now SSW and SSB are calculated as follows, 
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SSW is increased a little, and SSB is decreased a little. We do the same kind of coarsening in the 

middle two segments and right two segments which are shown in Fig. 5.4. If we look at SSW and 

SSB values carefully, the combination of middle two segments shows the smallest SSW and the 

largest SSB values. This means that this case results in the minimum change within the segments 

and keeps the heterogeneity between segments after coarsening. Thus, we pick up middle two 

segments to combine and keep this SSW and SSB as the values of 3 segments. Now we start 

coarsening left two, and right two segments and compare SSW and SSB with the 3 segments 

model.  We continue the same procedure until we have just one segment. Fig. 5.5 shows the 

relationship of SSW and SSB when we coarsen 70 segments into 1 segment. 

By coarsening some segments, sum of squares within segment (SSW) will be increased because 

the difference within segments will increase by merging neighboring segments and averaging the 

segment’s value. On the other hand, sum of squares between segments (SSB) will be decreased 

because the heterogeneity is reduced shown in Fig. 5.5. We will keep original segment’s values 

with the minimum SSW, and keep heterogeneity with the maximum SSB. 
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Figure 5.5 Relationship between SSW and SSB. 

 

5.2.2 Determination of Optimal Point 

 

Next step would be how we come up with the optimal number of the coarsening, in other 

words, when we should stop coarsening. There are three ways to obtain the optimal point. First 

one would be simply taking the cross point of SSW and SSB in Fig. 5.5. Second way is also quite 

simple. We will just draw a straight line from SSB = maximum value at the minimum number of 

segment to SSB = 0 at the maximum number of segment. The cross point of the straight line and 

the SSB curve would be the optimal one shown in Fig. 5.6. 
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Figure 5.6 Searching optimal point with straight line. 
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In the third approach, we apply a regression line with the SSW vs. the number of segments plot. 

Starting by drawing the regression line from 3 SSW points picked up from the smallest number 

of segment (1, 2, and 3), we calculate the Root Mean Square Error (RMSE). We can also draw 

another regression line for the rest of the SSW points given by the number of segments from 

4~100, then calculate RMSE with the regression line. We add these two RMSE values after 

normalizing by the number of regression points (100 points in this case) and set as the RMSE 

result of the number of segment as 3. After that, we increase the number of regression points one 

by one from the smallest number of segments and obtain Fig. 5.7. The smallest RMSE would be 

the optimal point to finish the coarsening. 
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Figure 5.7 Searching optimal point with multiple regression lines. 
 

5.3 Illustration of the Method 

 

We now illustrate the method using a 1-D homogeneous CO2 injection problem with the 

same fluid properties as in the last chapter. Figs. 5.8 ~ 5.10 are obtained from this example, and 

we can see the optimal segments are found to be 35, 35, and 39 respectively.   
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Figure 5.8 Relationship between SSW and SSB. 
 

 

 

 

Figure 5.9 Optimal point selection with straight line. 
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Figure 5.10 Optimal point selection with regression line. 
 

Figs. 5.11 show the comparison of the original grid block slowness and those of the refined 

segments along the streamline. Fig. 5.11a shows results without the optimal coarsening where 

we have used a factor of 4 to refine the discretization of segments along streamlines. Fig. 5.11b 

shows results with the optimal coarsening method. It is clear that with optimal coarsening we 

still capture the original grid slowness with a much coarsened segments, especially in high 

slowness regions with low total velocities. We show 4 different results of gas saturation values 

as a function of distance from the injection well in Fig. 5.12. These 4 different results are from 

finite difference, streamline simulations without optimal coarsening (refinement factor of 2 and 

4), and using optimal coarsening method with an initial refinement factor of 4. As we can see, 

the results with the refinement factor of 2 deviates from the other three results. It means that the 

refinement factor is too low to obtain accurate results. The optimal coarsening method was using 

about the same number of segments as with the refinement factor of 2 after coarsening and still 

keeps the result very close to the reference solution. Remember that the main objective for the 

optimal coarsening is to reduce the computational time by reducing the number of flash 

calculations which require high computational expense during compositional simulation. 

TABLE.5.1 summarizes the CPU time for these results. Even for this simple 1-D calculation, we 

can clearly see the effectiveness of the optimal coarsening method. 
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(a) With refinement factor of 4 
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(a) With optimal coarsening 

Figure 5.11 Original grid and streamline segments property comparison. 
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Figure 5.12 1-D gas saturation profile. 
 

TABLE 5.1 CPU TIME COMPARISONS FOR 1-D OPTIMAL COARSENING 

CPU time [sec]

UTCOMP 46.2465

With Optimal Coarsening 38.5955

Without Optimal Coarsening 60.27667  

 

5.4 Applications 

 

We utilize the same case used in the validation of the method for compressible 

compositional formulation to show how the optimal coarsening method works. Fig. 5.13 shows 

the spatial distribution of gas saturation with the optimal coarsening method. On comparing 

Figs. 5.1, 5.3, and 5.13, we see that the optimal coarsening method keeps the same higher 

resolution as the finer discretization of segments and shows a better match with the finite 

difference solution than a uniformly coarse discretization. For this comparison, the CPU time is 

also summarized in TABLE 5.2. The streamline simulation with the optimal coarsening method 

doesn’t show much faster CPU time than the finite difference simulation for this small example. 

However compared to the fine-scale solution, it is much faster. The CPU time comparison with 

finite difference and its scaling properties will be discussed later. 
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Figure 5.13 Spatial distribution of gas saturation. 
 

TABLE 5.2 CPU TIME COMPARISONS FOR 2-D EXAMPLE 

CPU time [min]

Finite Difference 5

With Optimal Coarsening 15

With Fine Descretization 32

With Coarse Descretization 8  

 

5.5 Scaling of CPU Time 

 

In this section, we investigate the scaling of the CPU time with number of grid blocks for 

streamline simulation compared to the finite difference compositional simulation. We use 21x21, 

51x51, 101x101, and 101x101x3 grid blocks to run a total of 2000 days of simulation. Results 

are shown in Fig 5.14. Because of maximum allowable dimension restrictions for the finite 

difference simulator, we draw regression lines based on our four cases and extend these lines to 

larger number of grid blocks. We can see the computational advantage of streamline methods for 

more than 10000 grid blocks, and especially for about million cells for which streamline method 

has about 10 times computational speed advantage compared to finite difference simulator.  
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Figure 5.14 CPU time comparison. 
 

5.6 Chapter Summary  

 

We propose a scheme for coarsening of segments for 1-D solution during compositional 

streamline simulation. As the reservoir size and the number of wells are increased, the number of 

streamlines used in the model will also be increased. If we want to optimize the number of 

segments by using the dynamic way like the adaptive mesh algorithm, the calculation time just 

for the optimization itself will be very costly. However, our simple statistical method for the 

optimization is computationally efficient. The static optimization is not only giving high quality 

results comparable to fine segments, it also gives a quantitative analysis by introducing SSW and 

SSB to indicate how much heterogeneity and original properties are preserved. We show the 

effectiveness of the approach and the effectiveness through several synthetic examples. CPU 

time comparison promises our compositional streamline formulation with optimal coarsening 

method can be very effective for field-scale high resolution compositional simulation with 

multimillion cells.  
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

6 

6.1 Conclusions 

 

We have presented a rigorous formulation for two and three – phase black oil and 

compositional streamline simulation. Unlike previous studies, we no longer assume that 

volumetric flux is conserved along streamlines. The key features of our formulation are (i) 

introduction and tracing of an effective density along streamlines to account for fluid 

expansion/compression, (ii) use of the effective density during mapping from streamlines to grid 

blocks and vice versa and (iii) a source/sink term in the saturation equation along streamlines to 

account for compressibility effects. Gravity effects are accounted for using operator splitting as 

in incompressible streamline simulation.
4
 We have validated our approach by comparison with 

finite difference simulation for two and three phase flow using synthetic and field examples. 

Importantly, our proposed formulation can be easily implemented within the framework of 

existing streamline simulators. 

Some specific conclusions from this study can be summarized as follows: 

 

1. A rigorous compressible streamline formulation has been presented for two and three-

phase black oil and compositional simulation. Our proposed approach requires only 

minor modifications to current streamline simulators with significant improvement in 

accuracy of performance predictions. 

2. We can now account for fluid expansion/compression along streamlines by introducing 

an effective density along the streamlines. This effective density can be easily traced 

along the streamline and allows us to rigorously decouple the 3-D 

saturation/composition equation into a series of 1-D equations.  

3. We have reformulated the 1-D saturation/composition equations along streamlines by 

introducing a source/sink term to account for compressibility effects. Also, the mapping 

of saturations/compositions from streamlines to grid blocks and vice versa has been 

improved to account for changes in fluid volume. 



 

 

73 

4. We have shown that the discrete CFL number of Osako et al.
14

 for selection of time step 

for pressure updates also applies to compressible streamline simulation for the black oil 

model. As expected, the compressible formulation restricts the simulation to smaller 

time-step size compared to incompressible flow in order to maintain the stability of the 

solution. 

5. We have validated our new formulation using synthetic and field examples and 

comparison with a commercial finite difference simulator. 

6. We have defined an optimal coarsening method for selection of the number of segments 

along streamline for 1-D solution. The method is easy to apply and can result in 

significant reduction of computational time while retaining the accuracy of fine 

discretization. 

 

6.2 Recommendations 

 

Our study is concentrated to overcome the inherent incompressible assumption of current 

streamline models. However, there is another inherent problem in current streamline models that 

is mapping error from physical space to streamline co-ordinates. Managing mapping errors using 

appropriate numerical methods can be an area of future research. 

By combining accuracy and computational advantages of streamline simulation in 

compositional simulation, high resolution simulation of EOR processes and compositional 

history matching will also be attractive research topic. 
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NOMENCLATURE 

7 

 a
r

 streamline face area vector 

 B formation volume factor, phase P=Oil, Water, Gas 

C divergence of total flux 

fc  formation compressibility 

FP fractional flow, phase P=Oil, Water, Gas 

g gravity constant 

 k permeability 

 krP relative permeability, phase P=Oil, Water, Gas 

 K

rr
 dispersion tensor 

 M mobility ratio 

 Ni total number of moles, i = number of component 

 fn
r

 cell face area vector (normal) 

 n̂  cell face area vector (unit normal) 

 P pressure 

 Pc capillary pressure 

 PV cell pore volume 

 q volumetric flux 

 Rs solution gas oil ratio 

 SP water saturation, phase P=Oil, Water, Gas 

 Sorw residual oil saturation 

 Swirr irreducible water saturation 

 t time 

 t1, t2 time split times 

 Vt total fluid volume 

 VP rock pore volume 

 Vb rock bulk volume 

Wi number of moles per unit bulk volume, i = number of component 

 xij mole fraction, i = number of component,  j = phase 
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u
r

 total Darcy velocity 

 0u
r

 initial total Darcy velocity 

 t∆  time step size 

 x∆  cell size (one-dimensional) 

 
Pλ  mobility, phase P=Oil, Water, Gas 

 τ  time of flight 

 φ  porosity 

 ρ  relative density 

 
Pρ  phase density, phase P=Oil, Water, Gas 

 χψ ,  bi-streamfunctions 

 
pµ  viscosity, phase P=Oil, Water, Gas 

 
tλ  total mobility 

 
jξ  density,  j = phase  
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