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ABSTRACT

Bayesian Methods in Bioinformatics. (December 2005)

Veerabhadran Baladandayuthapani, B.Sc., Indian Institute of Technology,

Kharagpur India;

M.A., University of Rochester

Co-Chairs of Advisory Committee: Dr. Raymond J. Carroll

Dr. Bani K. Mallick

This work is directed towards developing flexible Bayesian statistical methods

in the semi- and nonparamteric regression modeling framework with special focus on

analyzing data from biological and genetic experiments. This dissertation attempts to

solve two such problems in this area. In the first part, we study penalized regression

splines (P-splines), which are low–order basis splines with a penalty to avoid under-

smoothing. Such P–splines are typically not spatially adaptive, and hence can have

trouble when functions are varying rapidly. We model the penalty parameter inherent

in the P–spline method as a heteroscedastic regression function. We develop a full

Bayesian hierarchical structure to do this and use Markov Chain Monte Carlo tech-

niques for drawing random samples from the posterior for inference. We show that

the approach achieves very competitive performance as compared to other methods.

The second part focuses on modeling DNA microarray data. Microarray technology

enables us to monitor the expression levels of thousands of genes simultaneously and

hence to obtain a better picture of the interactions between the genes. In order to

understand the biological structure underlying these gene interactions, we present a

hierarchical nonparametric Bayesian model based on Multivariate Adaptive Regres-
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sion Splines (MARS) to capture the functional relationship between genes and also

between genes and disease status. The novelty of the approach lies in the attempt to

capture the complex nonlinear dependencies between the genes which could otherwise

be missed by linear approaches. The Bayesian model is flexible enough to identify

significant genes of interest as well as model the functional relationships between the

genes. The effectiveness of the proposed methodology is illustrated on leukemia and

breast cancer datasets.
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CHAPTER I

INTRODUCTION

This dissertation introduces Bayesian nonparametric regression modeling tools and

utilizes modern Markov Chain Monte Carlo (MCMC) techniques to explore the pos-

terior distributions of interest induced by the models. Bayesian methodology has

generated immense interest due to two basic reasons. First, Bayesian methods take

an axiomatic view of uncertainity allowing the user to make coherent inference and

second, Bayesian modeling is particularly well suited to incorporating prior infor-

mation, which is often available. Special focus is on developing Bayesian statistical

machinery for modeling data from functional genomics.

In Chapter II, we study penalized regression splines (P-splines), which are low–

order basis splines with a penalty to avoid undersmoothing. Such P–splines are typ-

ically not spatially adaptive, and hence can have trouble when functions are varying

rapidly. Our approach is to model the penalty parameter inherent in the P–spline

method as a heteroscedastic regression function. We develop a full Bayesian hi-

erarchical structure to do this and use Markov Chain Monte Carlo techniques for

drawing random samples from the posterior for inference. The advantage of using

a Bayesian approach to P–splines is that it allows for simultaneous estimation of

the smooth functions and the underlying penalty curve in addition to providing un-

certainty intervals of the estimated curve. The Bayesian credible intervals obtained

for the estimated curve are shown to have pointwise coverage probabilities close to

The format and style follow that of Journal of the American Statistical Association.
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nominal. The method is extended to additive models with simultaneous spline based

penalty functions for the unknown functions. In simulations, the approach achieves

very competitive performance with the current best frequentist P–spline method in

terms of frequentist mean squared error and coverage probabilities of the credible

intervals, and performs better than some of the other Bayesian methods.

Chapter III deals with DNA microarray data. DNA microarray technology en-

ables us to monitor the expression levels of thousands of genes simultaneously, and

hence to obtain a better picture of the interactions between the genes. In order to

understand the biological structure underlying these gene interactions, we present

here a statistical approach to model the functional relationship between genes and

also between genes and disease status. We suggest a hierarchical Bayesian model

based on Multivariate Adaptive Regression Splines (MARS) to model these complex

nonlinear interaction functions. The novelty of the approach lies in the fact that

we attempt to capture the complex nonlinear dependencies between the genes which

otherwise would have been missed by linear approaches. Owing to the large number

of genes (variables) and the complexity of the data, we use MCMC based stochastic

search algorithms to choose among models. The Bayesian model is flexible enough

to identify significant genes as well as model the functional relationships between

them. The effectiveness of the proposed methodology is illustrated using two publicly

available microarray data sets: Leukemia and hereditary breast cancer.

Chapter IV provides a summary of the results in this dissertation and some open

questions are posed for future research.
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CHAPTER II

SPATIALLY ADAPTIVE BAYESIAN PENALIZED REGRESSION SPLINES∗

2.1 Introduction

Regression splines are approximations to functions typically using a low–order num-

ber of basis functions. Such splines, like all splines, are subject to a lack of smoothness

and various strategies have been proposed to attain this smoothness. A particularly

appealing class are the regression P–splines (Eilers and Marx 1996), which achieve

smoothness by penalizing the sum of squares or likelihood by a single penalty pa-

rameter. The penalty parameter and the fit using P–splines are easy to compute

using mixed model technology (see Robinson 1991; Coull, Ruppert and Wand 2001;

Rice and Wu 2001, among others), and are not sensitive to knot parameter selection

(Ruppert 2002).

Despite these advantages, P–splines with a single penalty parameter are not

suitable for spatially adaptive functions that can oscillate rapidly in some regions and

are rather smooth in other regions (Wand 2000). Rather than using a global penalty

parameter, Ruppert and Carroll (2000) proposed a local penalty method wherein the

penalty is allowed to vary spatially so as to adapt to the spatial heterogeneity in

the regression function. The web site http://orie.cornell.edu/∼davidr contains the

MATLAB code for computing this spatially adaptive estimator.

The purpose of this chapter is to construct a Bayesian version of the local

penalty method. We do this by modeling the penalty as another regression P–

spline, in effect a variance function, in a hierarchical structure. The method is rel-

∗Reprinted with permission from the Journal of Computational and Graphical Statis-
tics. Copyright 2005 by the American Statistical Association. All rights reserved.
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atively simple to compute and implement, and the MATLAB code for it is given

at http://stat.tamu.edu/∼veera. The advantage of using a Bayesian approach to P–

splines is that it allows for simultaneous estimation of the function and the underlying

penalty curve in addition to providing uncertainty intervals for the estimated curve.

We show that our method achieves competitive performance with that of Ruppert

and Carroll in terms of frequentist mean squared error and coverage probabilities of

credible intervals. The Bayesian credible intervals obtained for the estimated curve

are shown to have pointwise frequentist coverage probabilities close to nominal. In

simulations our method outperforms, sometimes substantially, many other Bayesian

methods existing in literature.

The chapter is structured as follows: Section 2.2 introduces the Bayesian model

used, along with the prior and distributional assumptions on the random variables

and parameters. Section 2.3 is devoted to the MCMC setup for the calculations.

Section 2.4 discusses the simulation study undertaken and the results of our findings.

We extend the univariate ideas to additive models in Section 2.5. Technical details

are collected into Appendix A

2.2 Model Formulation

Given data (Xi, Yi), where Xi is univariate, our nonparametric model is defined by

Yi = m(Xi) + εi,

where m(•) is an unknown function, the εi’s are independent conditional on Xi and

normally distributed with mean zero and variance σ2
Y .

To estimate m(•) we use regression P–splines. As the basis functions, here we use

piecewise polynomial functions whose highest order derivative takes jumps at fixed

“knots”. Other basis functions such as B-splines (de Boor 1978) could also be used.



5

With this basis, the functional form of the regression spline of degree p ≥ 1 is given

by

m(X) = αY 0 + αY 1X + . . . + αY pX
p +

MY∑
j=1

βY j(X − κY j)
p
+,

where (αY 0, . . . , αY p, βY 1, . . . , βY MY
) is a vector of regression coefficients and (a)p

+ =

apI(a ≥ 0), and κY 1 < . . . < κY MY
are fixed knots.

To model the unknown smooth function m(•), we illustrate the theory using

regression splines of degree 1, so that

m(X) = αY 0 + αY 1X +

MY∑
j=1

βY j(X − κY j)+, (2.1)

Of course, changes to polynomials of higher degree are trivial. We take MY , the

number of knots, to be large but much less than n, the number of data points. Unlike

knot-selection techniques we retain all candidate knots. In this particular method,

we take the knots to be the equally spaced sample quantiles of X, although one could

just as easily take the knots to be equally spaced.

The number of knots here is specified by the user. Although the choice is not

crucial (Ruppert 2002) a minimum number knots are needed to capture the spatial

variability in the data. The choice of knots is discussed in detail later in the chapter

(Section 2.4.2).

We can interpret (2.1) as a Bayesian linear model. Rewrite (2.1) as

Y = ZY ΩY + εY , (2.2)

where Yn×1 = (Y1, . . . , Yn)T , ΩY = (αY 0, αY 1, βY 1, . . . , βY MY
)T is a (MY + 2)× 1

vector of regression coefficients, εY = (ε1, . . . , εn)T is n×1 error vector and the design
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matrix ZY is defined as

ZY =




1 X1 (X1 − κY 1)+ . . . (X1 − κY MY
)+

1 X2 (X2 − κY 1)+ . . . (X2 − κY MY
)+

...
...

...
. . .

...

1 Xn (Xn − κY 1)+ . . . (Xn − κY MY
)+




.

Suppose that ε1, . . . , εn are independent and identically distributed Normal(0, σ2
Y ).

The parameters in (αY 0, αY 1) can be considered as fixed effects in the model. We put

a normal prior on (αY 0, αY 1) with 0 mean and large variance (say 100). This ef-

fectively acts as a non-informative uniform prior on the fixed effects. The random

variables in {βY j}MY
j=1, are assumed a priori independent and normally distributed,

i.e., βY j ∼ Normal{0, σ2
j (κY j)}, where j = 1, . . . , MY . Note here that σ2

j (κY j) is the

smoothing parameter (shrinkage or ridge parameter).

In the usual regression P–spline formulation with a global smoothing parameter,

the σ2
j (κY j) are all constant as a function of j, so that the smoothing is not spatially

adaptive. We next describe how we extend the model to allow for spatially adaptive

smoothing.

To develop a spatially adaptive technique we need to model σ2
j (κY j). This is

crucial to capturing the spatial heterogeneity of the data because different smoothing

parameters lend different amounts of smoothing in different regions. Allowing the

smoothing parameter to be spatially adaptive also helps improve the mean squared

error (MSE) of the fits, as well as the accuracy of inference (Ruppert and Carroll

2000; Wand 2000). In this spirit, we develop a hierarchical model for σ2
j (κY j), where

σ2(•) is a function evaluated at the knots (κY j). The functional form of σ2(•) is taken

to be another linear regression spline, e.g., for a linear spline

−log{σ2(X)} = αs0 + αs1X +
Ms∑

k=1

βsk
(X − κsk

)+, (2.3)



7

where again κ1 < . . . < κMs are fixed knots. The number of sub-knots Ms is again

user specified and is typically far less than MY , the number of knots in the original

spline. The knots {κk}Ms
k=1 are again taken to be equally spaced quantiles of X. We

now write (2.3) as a Bayesian linear model:

ρ = ZsΩs (2.4)

where ρ = [− log{σ2(κ1)}, . . . ,− log{σ2(κMY
)}]T , Ωs = (αs0 , αs1 , βs1 , . . . , βsMs

)T is an

(Ms +2) × 1 vector and Zs is the design matrix, identical to that for (2.2) except the

change in the knots.

The random variables in the above equation are again assumed a priori indepen-

dent and normally distributed, i.e., βsk
∼ Normal(0, ξ2), where k = 1, . . . , Ms and

the parameters (αs0 , αs1) are again independent and normally distributed with zero

mean and large variance.

As described in Section 2.3, although the motivation as a variance function to

achieve spatially adaptive smoothing is clear, we will actually use a slight modification

of (2.3)–(2.4) in order to avoid Ωs having to be sampled by a complex Metropolis–

Hastings step.

2.3 Implementation via Markov Chain Monte Carlo Simulation

In this section we set up the framework to carry out the Markov Chain Monte

Carlo (MCMC) calculations. The prior distributions of the variance (σ2
Y ) of the error

vector εY , and ξ2, the variance of the βsk
’s, are taken to be a conjugate inverse gamma

distribution with parameters (aY , bY ) and (as, bs) respectively, i.e., σ2
Y ∼ IG(aY , bY )

and ξ2 ∼ IG(as, bs), where IG(•) is the inverse gamma distribution.

The parameters and random variables to be estimated in the model are ΩY , Ωs, ξ
2

and σ2
Y . With the above model and prior set-up all the conditional distributions turn
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out to be of known standard forms except that of Ωs, which is a complex multivariate

density. Hence we need a multivariate Metropolis-Hastings (MH) step to generate

the samples. Since this involves searching over a (Ms + 2)-dimensional space for

convergence, we noticed during the simulations that the movement of the MH step

was very slow.

Hence we resort to the following device to reduce the dimension, thereby making

the moves faster. We add an error term (εu) to the functional form of σ2(X) in

(2.3)–(2.4), leading to the model

ρ = ZsΩs + εu, (2.5)

where εu = Normal(0, σ2
uI). We fix the value of σ2

u for our simulations to = 0.01

because this variance is unidentified in the model. This device reduces the computa-

tional costs by reducing the MH step to one dimension to generate each of σ2
j (κY j)’s,

which are now conditionally dependent only on Ωs and conditionally independent of

the rest of the parameters. This in effect makes the movement of the MCMC sam-

ples across the model space extremely fast and also improves the acceptance rate of

MH moves. In our simulations we found that the choice of the value of σ2
u does not

have great influence on the performance of the MCMC. The complete conditional

posteriors are derived in the Appendix A.

2.4 Simulations

In this section we present simulation studies primarily to evaluate the frequentist

performance of our methodology and to compare it with other related approaches in

literature. Section 2.4.1 compares the Bayesian P–spline approach to the frequentist

local penalty approach of Ruppert and Carroll (2000) and with a variety of recent

Bayesian approaches, in particular with the BARS (Bayesian Adaptive Regression
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Splines) method proposed by DiMatteo, Genovese and Kass (2001). Section 2.4.2

discusses the issue of the choice of knots in the implementation of our algorithm.

2.4.1 Comparison with Other Methods

We compare our Bayesian approach with the frequentist penalized splines approach

(RC, Ruppert and Carroll 2000), through the following simulation study. The X’s

were equally spaced on [0, 1], n = 400, σ2
u = 0.01 and the εi’s were Normal(0, 0.04).

First, we use the regression function as in RC whose spatial variability was controlled

by parameter j,

m(x) =
√

x(1− x) sin

[
2π(1 + 2(9−4j)/5)

x + 2(9−4j)/5

]
, (2.6)

where j = 3 gives low spatial variability and j = 6 gives severe spatial variability; see

Figure 1 panels (a) and (b). The fits obtained by our algorithm using a truncated

power basis function of degree 2 are shown in panels (c) and (d) along with associ-

ated 95% credible intervals. The credible intervals are estimated by computing the

respective quantiles of the sampled function evaluations.

In this chapter, we allow the smoothing/penalty parameter to be a function

of the independent variable X as in (2.3). As mentioned before, this is important

in capturing the spatial heterogeneity in the data by allowing different amounts of

smoothing in different regions. We plot the underlying penalty function, σ2(X) in

Figure 1 panels (e) and (f). We would expect the value of σ2(X) to be large if the

regression curve has rapid changes in curvature, so that the second derivative of the

fitted spline can take jumps large enough to accommodate these changes. Conversely,

if the curvature changes slowly, then we would expect σ2(X) to be small. Observe

that the penalty curve adapts to the spatial heterogeneity of the underlying regression

function with large values in the regions where the curve is non-smooth and small
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Figure 1. (a) Plot of the test curve used for simulations. The spatial variability
of this curve is controlled by the parameter j. In this case j=3 gives low spatial
variability. (b) j=6 gives severe spatial variability. (c) The true function with error
added. (d) Same as (c) but j = 6. (e) Plot of the estimated regression function. The
number knots (MY ) is 30 and number of subknots (Ms) is 5.(f) Same as (e) but j =
6. Here MY =90 and Ms=15. Also shown on the plots are the 95% credible intervals
on the fitted curve.
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values in smooth regions.

In order to compare the performance of fit we compute the averaged mean

squared error (AMSE), which is given by

AMSE = n−1

n∑
i=1

{m̂(xi)−m(xi)}2 . (2.7)

Our estimated AMSE for j = 3 and j = 6 is 0.0.0006 and 0.0027 respectively,

which is comparable to the those obtained by RC on the same data set, which were

0.0007 and 0.0026 respectively.

We also compared the frequentist coverage properties of the Bayesian credible

intervals with the frequentist local penalty confidence intervals of RC and with BARS.

BARS employs free-knot splines, where the number and location of knots are random,

and uses reversible jump MCMC (Green 1995) for implementation. We consider a

spatially heterogeneous regression function,

m(X) = exp{−400(X − 0.6)2}+
5

3
exp{−500(X − 0.75)2}+ 2 exp{−500(X − 0.9)2},

(2.8)

The X’s are equally spaced on [0, 1], the sample size was n = 1000, and the εi were

normally distributed with σ = 0.5. We use truncated power basis function of degree

2 with MY = 40 knots and Ms = 4. We again set σu = 0.01. The BARS program was

graciously provided by the authors of DiMatteo et al. (2001). The BARS estimates

are based on a Poisson prior with mean 6 for the number of knots, and the MCMC

chain was run for 10,000 iterations with a burn-in period of 1000.

Figure 2 shows a typical data set with the true and fitted function plotted.

In order to compare the coverage probabilities of the Bayesian credible intervals,

we compute the frequentist coverage probabilities of the 95% credible intervals over



12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Figure 2. A copy of simulated data for comparing coverage probabilities. Shown
are dots = data, dashed curve = true function and solid curve = Bayesian p-spline
estimate.
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500 simulated data sets. Figure 3 shows the pointwise coverage probabilities of the

95% Bayesian credible intervals along with the “adjusted” local penalty confidence

intervals of RC and those obtained by BARS. The adjustment used by RC is to

multiply the pointwise posterior variances of the local-penalty estimates by a constant

so that the average pointwise posterior variance of the estimate is the same for the

global and local penalty estimate (Ruppert and Carroll 2000, Section 4). The coverage

probabilities shown have been smoothed using P–splines to remove the Monte Carlo

variability. The average coverage probability obtained by the three methods (Bayesian

P–splines, RC, BARS) are (95.22%, 96.28%, 94.72%) respectively. The coverage

probabilities for both Bayesian P–splines and BARS are slightly closer to the nominal

coverage of 95% than the more conservative local penalty intervals of RC. Figure 4

shows the pointwise AMSE using the three methods. The average MSE for BARS

(0.0043) is somewhat smaller than the MSE for the Bayesian P-spline (0.0061) and RC

(0.0065). Thus, our results are competitive to BARS in terms of frequentist coverage

probabilities but BARS does seem to do a slightly better job than our method in

terms of overall MSE.

We also compared our method with two other Bayesian approaches, “Automatic

Bayesian Curve Fitting” method proposed by Denison, Mallick and Smith (1998a)

and the wavelet methods of Donoho and Johnstone (1994): further discussion of

some potential problems with the method of Denison, Mallick and Smith is given

by DiMatteo et al. (2001). We used the four test curves: ‘Heavisine’, ‘Blocks’,

‘Bumps’ and ‘Doppler’ as in Donoho and Johnstone . The X’s were again equally

spaced on [0, 1], n was 2048, and the εi’s were Normal(0, 1). The values of (MY , Ms)

are {(60, 10), (300, 30), (90, 15), (250, 80)} for Heavisine, Blocks, Bumps and Doppler

respectively. Denison et al. (1998a) reported the average MSE from 10 replications

using the above examples and compared the results with those obtained by Donoho
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to remove the Monte Carlo variability.
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and Johnstone. Table 1 compares our results to those obtained by Denison et al.

(1998a) and Donoho and Johnstone . Here λ∗n is the optimal wavelet threshold chosen

specifically for each data set, while {2log(n)}1/2 is a universal threshold proposed by

Donoho and Johnstone . As noted in Denison et al. (1998a) the wavelet results

are obtained with σ2 known and, for ease of computation, require the number of

data points to be a power of 2. Specifically, we take n = 2048 and σ2
u = 0.01 to

compare out results with that of Denison et al. (1998a) and Donoho and Johnstone.

Our method performs markedly better than the wavelet threshold methods in all the

examples considered. Our results are comparable with those obtained by Denison

et al. (1998a), for the ‘Heavisine’, ‘Blocks’ and ‘Bumps’ functions but is much better

for the ‘Doppler’ example.

Table 1. Average mean squared error(AMSE) comparison from 10 replications for
different example curves across different methods: wavelet threshold methods,

Automatic Bayesian curve fitting and Bayesian P-splines

Function Wavelet threshold Wavelet threshold Automatic curve Bayesian
λ∗n {2log(n)}1/2 fitting P-splines

Heavisine 0.060 0.083 0.033 0.028
Blocks 0.427 0.905 0.170 0.137
Bumps 0.499 1.080 0.167 0.098
Doppler 0.151 0.318 0.135 0.024

2.4.2 Choice of Knots

In this chapter we present a penalty approach which is similar in spirit to smoothing

splines, but with fewer knots. In P-splines the crucial parameter in controlling the

amount of smoothness is the penalty, i.e., in our case σ2(κ). Once a certain minimum

number of knots is reached, further increase in the number of knots causes little

change to the fit given by P–spline (Ruppert 2002 ; Ruppert, Wand and Carroll

2003 ). To this effect we ran an analysis with different number of knots, but the
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same selection for each method. The X’s were equally spaced on [0, 1], n = 400,

σ2
u = 0.01 and the εi’s were Normal(0, 0.04). We again use the regression function

as in (2.6) with j = 3 (low spatial variability) and j = 6 (severe spatial variability).

We used 5 different sets of knots for the regression curve and the penalty curve i.e.

{(20, 3), (40, 4), (60, 6), (90, 9), (120, 15)}. To compare the performance of fit across

the different sets of knots we compute the AMSE as in (2.7).

Table 2 shows the AMSE for the test cases described above. For j = 3 there is

essentially no improvement on the fit of the curve on increasing the number knots.

For the severe spatially variable case (j = 6) the AMSE improves appreciably by

increasing the number of knots from (20,3) to (40,4) but marginally by increasing

the knots further. In all the examples we consider, there is evidence that there is a

minimum necessary number of knots to be reached to fit the features in the data,

and a further increase in the number of knots does not have appreciable effect on

the fit. Thus, if enough knots are specified, adaptive P–splines will be able to track

the sudden changes in the underlying function, and where the underlying function is

smooth the penalty will shrink the jumps at those knots to 0.

For the penalty curve σ2(X), the number of subknots Ms is taken to be much

smaller than MY , the number of knots for the original regression spline. We tried a

variety of choices for Ms in our simulation examples and found that the choice of Ms

has relatively little effect on the fit. We keep the value of Ms large enough for the

penalty curve to be spatially variable and small enough to reduce the computational

cost. In all our simulation examples we take the value of Ms to be less than a sixth

of the number of knots chosen for original regression spline (MY ).

The variance of the error term in all the simulation examples was taken so that

we could mimic the simulation setup of the methods to which we compare our method

to. In order to study the performance of our estimator in the presence of increased
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noise we ran a further simulation study. We took the same simulation curve as in

(2.1) with j = 3, the X’s were equally spaced on [0, 1], n = 400 and σ2
u = 0.01.

The variance of the error term (σ2
Y ) was taken to be at three different levels: (0.04,

0.1, 0.5). The average MSE over 25 simulated datasets was found to be (0.0015,

0.0055, 0.0070) respectively showing that the fitted curve can estimate the underlying

regression function well even under increased noise.

Table 2. Average mean squared error(AMSE) comparison using different sets of
knots (MY , Ms). Shown are the AMSE obtained for two test cases of a simulation
example curve (2.6) (see text) where j=3 gives low spatial variability and j=6 gives

severe spatial variability

Knot set j = 3 j = 6
(20,3) 0.0007 0.0094
(40,4) 0.0007 0.0048
(60,6) 0.0008 0.0036
(90,9) 0.0009 0.0028

(120,15) 0.0012 0.0027

2.5 Extension to Additive Models

2.5.1 An Algorithm for Additive Models

To this point, we have confined our attention to univariate cases only. The method-

ology developed previously can be easily extended to additive models. The general

additive model problem is to find functions mj such that

Y = α +

p∑
j=1

mj(Xj) + ε, (2.9)

where the Xj are the predictor variables, E(ε|X1, ..., Xp) = 0 and var(ε|X1, ..., Xp) =

σ2
Y . Thus the overall regression function is a sum of p univariate functions, or curve

fits. The univariate functions can be modelled with univariate splines, as we shall
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assume here. A model of the general type in (2.9) is known as an additive model.

Hastie and Tibshirani (1990) provide an extensive account of these models.

The extension to Bayesian additive models is straightforward when we use a

basis function representation (such as P-splines) for the individual curves. That is,

we can write g(X) =
∑p

j=1 mj(Xj) in (2.9) as a linear combination of P-splines and

regression coefficients as:

g(X) = α0 +

p∑
j=1

α1jXj +

p∑
j=1

Mj∑
i=1

βji(Xj − κji)+, (2.10)

where again Xj is the jth predictor in X and Mj is the number of knots for the jth

curve. Each one-dimensional function is again described by the parameters βji (the

coefficients) and κji (the knots).

As in previous sections we can use the same Bayesian linear model results, to

make posterior inference for additive models. Thus the fact that a general set of

predictors is now a vector, rather than just a scalar, is of little consequence. In

matrix notation we again write

Y = Bβ + ε,

with ε ∼ Normal(0, σ2I), β = (α0, α1, . . . , αp, β1, . . . , βp)T with βj = (βj,1, . . . , βj,Mj
)

and

B =




1 X1 B1,1(X1) . . . B1,M1(X1) B2,1(X1) . . . Bp,Mp(X1)

...
...

...
. . .

...
...

. . .
...

1 Xn B1,1(Xn) . . . B1,Mn(Xn) B2,1(Xn) . . . Bp,Mp(Xn)




,

= [1 X B1 · · · Bp]
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where

Bj =




(Xj1 − κj,1)+ . . . (Xj1 − κj,Mj
)+

...
. . .

...

(Xn1 − κj,1)+ . . . (Xn1 − κj,Mj
)+




.

With the above formulation, we adopt the same methodology as discussed in the

previous sections for the univariate case. The distributional assumptions and prior

structure on the random variables and parameters respectively are exactly the same

as described in Section 2.2. The functional form of the variance of β is again a linear

regression spline as in (2.3).

2.5.2 Simulations of an Additive Model

We take a slightly modified example from Hastie and Tibshirani (1990, pp. 247–251).

We simulated from the functions m1 and m2 for the model,

Yi = m1(Xi) + m2(Zi) + εi, i = 1, . . . , 100,

where

m1(X) =




−2X for X < 0.6,

−1.2 otherwise,

m2(Z) =
cos(5πZ)

1 + 3Z2
,

with Xi and Zi generated independently from the Uniform (0, 1) distribution and

εi from an Normal(0, 0.25) distribution. Figure 5 shows the estimates for functions

m1(X) and m2(Z), along with the credible intervals. The fits are better in terms of

AMSE than the estimates provided by Denison et al. (1998a). Also Denison et al.

(1998a) used plug-in estimates for the regression coefficients (β’s), and thus under-

estimate the uncertainty. We perform a full Bayesian analysis where in we draw the

regression coefficients from the sampler, and hence obtain standard Bayesian credible

intervals.
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Figure 5. Additive model example. The dotted line represents the true function
and the solid line represents the estimate regression function. Also shown are the 95%
credible intervals. (a) m1(X);(b) m2(Z).
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CHAPTER III

MODELING NONLINEAR GENE INTERACTIONS USING BAYESIAN MARS

3.1 Introduction

DNA microarray technology has revolutionized biological and medical research. The

use of DNA microarrays allows simultaneous monitoring of the expressions of thou-

sands of genes (Duggan et al. 1999; Schena et al. 1995), and has emerged as a tool

for disease diagnosis. This technology promises to monitor the whole genome on a

single chip so that researchers can have a better picture of the interactions among

thousands of genes simultaneously. In order to understand the biological structure

underlying the gene interactions, i.e., on what scale can we expect genes to interact

with each other, we need to model the functional structure between the genes. How-

ever, due to the complexity of the data and the curse of dimensionality, it is not an

easy task to find these structures. The purpose of this chapter is to present a statis-

tical approach to model the functional relationship between genes and also between

genes and disease status, with special focus on nonlinear relationships. In doing so,

we also identify (select), for classification purposes, the genes which are significantly

more influential than the others. In data sets that we have investigated, out method

shows equal ability to classify but uses far fewer genes to do so.

One of the key goals of microarray data is to perform classification via different

expression profiles. In principle, gene expression profiles might serve as molecular

fingerprints that would allow for accurate classification of diseases. The underly-

ing assumption is that samples from the same class share expression profile patterns

unique to their class (Yeang et al. 2001). In addition, these molecular fingerprints

might reveal newer taxonomies that previously have not been readily appreciated.
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Several studies have used microarrays to profile colon, breast and other tumors and

have demonstrated the potential power of expression profiling for classification (Alon

et al. 1999; Hedenfalk et al. 2001). Such problems can be classified as unsuper-

vised, when only the expression data are available, and supervised, when a response

measurement is also taken for each sample. In unsupervised problems (clustering)

the goal is mainly to identify distinct sets of genes with similar expression profiles,

suggesting that they may be biologically related. Both supervised and unsupervised

problems also focus on finding sets of genes that relate to different kinds of diseases,

so that future samples can be classified correctly. Classical statistical methods for

clustering and classification have been applied extensively to microarray data, see

Eisen et al. (1998) and Alizadeh et al. (2000) for clustering and Golub et al. (1999)

and Hedenfalk et al. (2001) for classification. One of the objectives of this study is

to identify sets of significant genes for classification, i.e., variable selection.

A common objective in microarray studies is to highlight genes that (on average)

co-regulate with tissue type. This can be treated within a classification framework,

where the tissue type is the response and the gene expressions are predictors. In this

chapter we will consider rule based classifiers to discover genes that co-regulate and

hence provide some of most explicit representations of the classification scheme. Rule

based classifiers use primitives such as IF A THEN B, where A relates to conditions

on the value of a set of predictors (genes) X and consequence B relates to change in

Pr(Y|X). These type of rules are easy to interpret. The best known such models

are Classification and Regression Trees (CART; Breiman et al. 1984), where decision

trees provide a graphical order of the rules. The objective of this chapter is two-fold:

(1) find significant genes of interest and (2) find the underlying nonlinear functional

form of the gene interaction. Related approaches in literature such as Lee et al.

(2003) consider only linear functions of the genes, which may not be able to model
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such complex functional forms.

In this chapter we propose to use unordered rule sets based on a Bayesian non-

parametric regression approach to model the high dimensional gene expression data.

In order to explore the complex nonlinear form of the expected responses without

knowledge about the functional form in advance, it is imperative that we look to non-

parametric techniques, since parametric models will not be flexible enough to model

these complex functions. To capture the linear dependencies, and perhaps more cru-

cially the nonlinear functional structures between the genes we use a Bayesian version

of Multivariate Adaptive Regression Splines (MARS), proposed by Friedman (1991)

and extended in the Bayesian framework (BMARS) by Denison et al. (1998b). MARS

is a popular method for flexible regression modeling of high dimensional data and has

been extended to deal with classification problems, see for example Kooperberg et al.

(1997).

In this chapter we treat the classification problem in a logistic regression frame-

work. The logistic link has a direct interpretation of the log odds of having the disease

in terms of the explanatory variables (genes). Since our model space is very large,

i.e. with p genes we have 2p models, exhaustive computation over this model space

is not possible. Hence Markov Chain Monte Carlo (MCMC; Gilks et al. 1996) based

stochastic search algorithms are used. Our approach is to identify significant set(s)

of genes over this vast model space, first to classify accurately and then to model

the functional relationship between them. The flexible nonparametric setup creates

a powerful predictive model, but unlike many black box predictive machines, our

method identifies the significant genes as well as focuses on the interactions among

them. In this sense, the method has the advantage that it combines scientific inter-

pretation with accurate prediction.

In order to illustrate our methodology, we choose as examples two publicly avail-
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able data sets: Leukemia Data (Golub et al. 1999) and Hereditary Breast Cancer

data (Hedenfalk et al. 2001). For each case we find sets of genes that have discrimi-

nating power. We also find the functional form of the main effect of dominant genes

and the interaction function between genes that have significant interactions.

3.2 Model Formulation

For a binary class problem the response is usually coded as Yi = 1 for class 1 and

Yi = 0 for the other class, where i = 1, . . . , n and where n is the number of samples

(arrays). Gene expression data for p genes for n samples is summarized in an n × p

matrix, X, where each element xij denote the expression level (gene-expression value)

of the jth gene in the ith sample where j = 1, . . . , p. The exact meaning of expression

values may be different for different matrices, representing absolute or comparative

measurements, see Brazma et al. (2001). Our objective is to use the training data

Y = (Y1, . . . , Yn)T to estimate p(X) = Pr(Y = 1|X) or alternatively the logit function

f(X) = log[p(X)/(1− p(X))].

Assume that the Yi’s are independent Bernoulli random variables with Pr(Yi =

1) = pi so that, p(Yi|pi) = pYi
i (1 − pi)

1−Yi . We construct a hierarchical Bayesian

model for classification as thus. Writing pi = exp(ωi)/[1 + exp(ωi)], wherein ωi’s are

the latent variables introduced in the model to make Yi’s conditionally independent

given the ωi’s. We relate ωi to f(Xi) as,

ωi = f(Xi) + εi, (3.1)

where Xi is the ith row of the gene expression data matrix X (vector of gene expression

levels of the ith sample) and εi are residual random effects. The residual random

effects account for the unexplained sources of variation in the data, most probably

due to explanatory variables (genes) not included in the study.
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We choose to model f in nonparametric framework, primarily due to the fact that

parametric approaches are not flexible enough to model such “rich” gene expression

datasets. One of the most common choices for f is to use a basis function method of

the form,

f(Xi) =
k∑

i=1

βjB(Xi, θj),

where β are the regression coefficients for the bases B(Xi, θj), which are non-linear

functions of Xi and θ. Examples of basis function include regression splines, wavelets,

artificial neural networks and radial bases. We choose a MARS basis function pro-

posed by Friedman (1991) to model f as,

f(xi) = β0 +
k∑

j=1

βj

zj∏

l=1

(xidjl
− θjl)qjl

, (3.2)

where k is the number of spline basis, β = {β1, . . . , βk} are the set of spline coefficients

(or output weights), zj is the interaction level (or order) of the jth spline, θjl is a

spline knot point, djl indicates which of the p predictors (genes) enters into the lth

interaction of the jth spline, djl ∈ {1, . . . , p}, and qjl determines the orientation of

the spline components, qjl ∈ {+,−} where (a)+ = max(a, 0), (a)− = min(a, 0). We

choose the MARS basis function as it can flexibly model the functional relationship

between explanatory variables (genes) and gives interpretable models as compared to

black box techniques such as artificial neural networks.

We illustrate this rather complex notation (3.2) through an example. Suppose a

MARS model is of the following form (dropping the subscript i),

f = 2.5 + 3.2(x20 − 2.5)+ + 4.1(x10 − 1.2)−(x30 + 3.4)+

Here we have k = 2 spline basis functions with β = {2.5, 3.2, 4.1} as the spline

coefficients. Gene 20 enters the model as a linear term (main effect) with interaction
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level z1 = 1, knot point θ11 = 2.5, spline orientation q11 = +. We observe a bivariate

interaction between genes 10 and 30 i.e. d21 = 10, d22 = 30 with corresponding

knots = (1.2,−3.4) and spline orientation = (−, +). See Friedman (1991) for a

comprehensive illustration of the model.

Write (3.1) and (3.2) in matrix form as,

ω = Θβ + ε, (3.3)

where ω is the vector of the latent variables, and Θ is the MARS basis matrix,

Θ =




1
∏z1

l=1(x1d1l
− θ1l)q1l

· · · ∏zk

l=1(x1dkl
− θkl)qkl

1
∏z1

l=1(x2d1l
− θ1l)q1l

· · · ∏zk

l=1(x2dkl
− θkl)qkl

...
...

. . .
...

1
∏z1

l=1(xnd1l
− θ1l)q1l

· · · ∏zk

l=1(xndkl
− θkl)qkl




(3.4)

In order to aid a Bayesian formulation we impose a prior structure on all the

model parameters, M = {β,θ, q,d,z, v, k, , λ, σ2}. The specific forms of the priors

that we take are as follows. We assign a Gaussian prior to β with mean 0 and variance

σ2D−1, where D ≡ diag(λ1, λ, . . . , λ) is (n + 1) × (n + 1) diagonal matrix. We fix

λ1 to a small value, amounting to a large variance for the intercept term but keep

λ unknown. We assign a Inverse-Gamma(IG) prior to σ2 and a gamma prior to λ

with parameters (γ1, γ2) and (τ1, τ2) respectively. Note that the above model can be

extended to have multiple prior variances on β as,

p(β, σ) ∼ Nn+1(β|0, σ2D−1)IG(σ2|γ1, γ2)

where D is a diagonal matrix with diagonal elements λ = (λ1, . . . , λn+1)
T . Once again

λ1 is fixed to a small value but all other λ’s are unknown. We assign independent

Gamma (τ1, τ2) priors to them.
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The prior structure on the MARS model parameters are as follows. The prior

on the individual knot selections θjl is taken to be uniform over the n data points

p(θjl|djl) = U(x1djl
, x2djl

, . . . , xndjl
), where djl indicates which of the genes enter our

model and p(djl) is uniform over the p genes, p(djl) = U(1, . . . , p). The prior on

the orientation of the spline is again uniform, p(qjl = +) = p(qjl = −) = 0.5. The

interaction level in each spline has a prior, p(zj) = U(1, . . . , zmax), where zmax is the

maximum level of interaction set by the user. Finally the prior on k, the number of

splines, is taken to an improper one, p(k) = U(1, . . . ,∞), which indicates no a priori

knowledge on the number of splines. Hence the model now has only one user defined

parameter, zmax, the maximum level of interaction, for which we shall recommend a

default setting in Section 3.5.

3.3 Computation

The information from the data are combined with the prior distributions on the

parameters via Bayes’ theorem and the likelihood function as,

p(ω,θ, q,d,z, β, v, k, λ, σ2|Y) = p(Y|ω,θ, q, d, z, β, v, k, λ, σ2)

×p(ω,θ, q,d,z,β, v, k, λ, σ2)

For classification problems with binary data and logistic likelihood, conjugate priors

do not exist for the regression coefficients. With the Bayesian hierarchical structure

as in the previous section the posterior distributions are not available in explicit form,

so we use MCMC techniques (Gilks et al. 1996) for inference. Conventional MCMC

methods such as the Metropolis-Hastings (MH) algorithm (Metropolis et al. 1953;

Hastings 1970) are not applicable here since the parameter (model) space is variable:

we do not know the number of splines apriori. Hence we use the variable dimension

reversible jump algorithm outlined in Green (1995).
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In our framework, the chain in updated using the following proposals with equal

probability:

1. Add a new spline basis to the model.

2. Remove one of the k existing spline bases from the model.

3. Alter an existing spline basis in the model (by changing the knot points).

Following each move an update is made to the spline coefficients β. Note that the

above three move steps are equivalent to adding, removing and altering a column of

Θ in (3.4). The algorithm is included in the Appendix B. The update to β is the

critical step determining the efficiency of the algorithm. A poor proposal distribution

for β results in the current state having low posterior probabilities and low acceptance

rates. This is because adding, deleting or altering a column of Θ in (3.4) would alter

the remaining β parameters as they are now ill-tuned to the data.

We introduce the latent variables ω to circumvent the problem. The idea is to

introduce an extra set of parameters into the model that leave the original (mar-

ginal) model distribution unchanged, in order to improve the overall efficiency of

the sampling algorithms. Therefore conditional on ω, all the other parameters are

independent of Y. This allows us to adopt conjugate priors for (β, σ2) to perform

the MCMC calculations as well as marginalize over the model space. Considerable

computational advantage is gained from the fact that the posterior distribution of

β given the other parameters is now known exactly, i.e., normally distributed. The

details of the procedure are given in Appendix .
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3.4 Prediction and Model Choice

For a new sample with gene expression xnew, the marginal posterior distribution of

the new disease state, ynew is given by

Pr(ynew = 1|xnew) =
∞∑

k=1

∫
P (ynew = 1|xnew,Mk)P (Mk|Y )dMk, (3.5)

where Pr(Mk|Y ) is the posterior probability andMk indicates the MARS model with

k splines. The integral given in (3.5) is computationally and analytically intractable

and needs approximate procedures. We approximate (3.5) by its Monte Carlo estimate

by,

Pr(ynew = 1|xnew) =
1

m

m∑
j=1

P (ynew = 1|xnew,M(j)), (3.6)

where M(j) for j = 1, . . . , m are the m MCMC posterior samples of the MARS model

parametersM. The approximation (3.6) converges to the true value (3.5) as m →∞.

In order to select from different models, we generally use misclassification error.

When a test set is provided, we first obtain the posterior distribution of the parameters

based on training data, ytrn (train the model) and use them to classify the test

samples. For a new observation from the test set, yi,test we will obtain the probability

Pr(yi,test = 1|ytrn, xi,test) by using the approximation to (3.5) given by (3.6). When

this probability is greater than 0.5 we will classify it as 1 and when it is less than

0.5 we will classify it as 0. The number of misclassified samples from the test set is

defined as the misclassification error.

If there is no test set available, we will use a hold-one-out cross-validation ap-

proach. For the cross validation predictive density, in general, let Y−i be the vector

of Yj’s without the ith observation Yi,

P (Yi|Y−i) = P (Y)
P (Y−i)

=
[∫ {P (yi|Y−i,Mk)}−1P (Mk|Y)dMk

]−1
.
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The MCMC approximation to this is

P̂ (Yi|Y−i,trn) = m−1

m∑
j=1

{
P (yi|Y−i,trn,M(j))

}−1
,

where M(j) for j = 1, . . . , m are the m MCMC posterior samples of the MARS model

parametersM. This simple expression is due to the fact that the Yi’s are conditionally

independent given the model parameters M.

3.5 Examples

We illustrate the Bayesian methodology with two microarray examples. For all the

examples considered below we set the maximum level of interaction, zmax = 2, i.e.,

allow for only additive and bivariate interactions. The MCMC chain is run for 50,000

iterations of which the first 10,000 are discarded as burn-in.

3.5.1 Leukemia Data

This microarray data set is taken from Golub et al. (1999). The data set contains

measurements corresponding to samples from Bone Marrow and Peripheral blood

samples taken from 72 patients with either acute lymphoblastic leukemia (ALL) or

acute myeloid leukemia (AML). As in the original paper we split the data into a

training set of 38 samples (27 are ALL and 11 AML) and a test set of 34 samples

(20 ALL and 14 AML). The data set contains expression levels for 7129 human genes

produced by Affymetrix high-density oligonucleotide microarrays.

In order to identify significant genes, we isolate those genes that enter our MARS

model most frequently in the posterior samples. Table 3 shows the genes that occur

most frequently as main effects in our model. The other genes’ main effects were not

observed frequently in the generated MCMC samples so did not have great influence

on the response. The corresponding plots of the posterior mean main effect functions
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Table 3. Leukemia data: Top 50 genes (predictors) entering the Bayesian MARS
model as main effects ranked in descending order of the frequency of times they

appear in posterior MCMC samples

Gene ID Gene description Frequency
X95735 Zyxin 1.206
J04615 SNRPN Small nuclear ribonucleoprotein polypeptide N 1.018
M62762 ATP6C Vacuolar H+ ATPase proton channel subunit 0.888
J04027 Adenosine triphosphatase mRNA 0.752
X64364 BSG Basigin 0.388
Z11793 Selenoprotein P 0.354
U29091 GB DEF = Selenium-binding protein (hSBP) mRNA 0.352
U26710 Cbl-b mRNA 0.32
Z17240 HMG2 High-mobility group (nonhistone chromosomal) protein 2 0.32
L00058 MYC V-myc avian myelocytomatosis viral oncogene homolog 0.266
U79285 GLYCYLPEPTIDE N-TETRADECANOYLTRANSFERASE 0.19
X62320 GRN Granulin 0.186
U10323 Nuclear factor NF45 mRNA 0.18
M80254 PEPTIDYL-PROLYL CIS-TRANS ISOMERASE 0.172
HG2280-HT2376 D-Amino-Acid Oxidase 0.172
M15059 ”FCER2 Fc fragment of IgE, low affinity II, receptor for (CD23A)” 0.166
L07956 ”GBE1 Glucan (1,4-alpha-), branching enzyme 1 (glycogen branching enzyme,

Andersen disease, glycogen storage disease type IV)” 0.146
U02388 ”LTB4H Leukotriene B4 omega hydroxylase (cytochrome P450, subfamily IVF)” 0.14
M19888 SPRR1B Small proline-rich protein 1B (cornifin) 0.138
M15841 SNRPB2 Small nuclear ribonucleoprotein polypeptide B” 0.138
X66363 SERINE/THREONINE-PROTEIN KINASE PCTAIRE-1 0.124
U90919 Clones 23667 and 23775 zinc finger protein mRNA 0.122
S73885 TFAP4 Transcription factor AP-4 (activating enhancer-binding protein 4)) 0.118
Y12812 RFXAP mRNA 0.112
U97188 Putative RNA binding protein KOC (koc) mRNA 0.104
U82759 GB DEF = Homeodomain protein HoxA9 mRNA 0.086
X59417 PROTEASOME IOTA CHAIN 0.084
U61849 NPTX1 Neuronal pentraxin I 0.082
HG2604-HT2700 Pan-2 0.082
X60655 EVX1 Even-skipped homeo box 1 (homolog of Drosophila) 0.082
X59131 D13S106 mRNA for a highly charged amino acid sequene 0.08
L40400 ”(clone zap113) mRNA, 3’ end of cds” 0.08
Z33642 V7 mRNA for leukocyte surface protein 0.08
X74570 Gal-beta(1-3/1-4)GlcNAc alpha-2.3-sialyltransferase 0.078
M64571 MAP4 Microtubule-associated protein 4 0.078
X99585 SMT3B protein 0.076
L40393 (clone S171) mRNA 0.074
L12760 ”PHOSPHOENOLPYRUVATE CARBOXYKINASE, CYTOSOLIC” 0.072
L00022 IG EPSILON CHAIN C REGION 0.07
J00209 ”IFNA10 Interferon, alpha 10” 0.066
U93205 Nuclear chloride ion channel protein (NCC27) mRNA 0.062
D63880 KIAA0159 gene 0.06
L36818 INPPL1 Inositol polyphosphate phosphatase-like protein 1 (51C protein) 0.06
HG2743-HT2846 ”Caldesmon 1, Alt. Splice 4, Non-Muscle” 0.06
X92110 HcgVIII protein 0.06
X05997 GB DEF = Gastric lipase 0.058
HG4185-HT4455 ”Estrogen Sulfotransferase, Ste” 0.058
L78132 Prostate carcinoma tumor antigen (pcta-1) mRNA 0.058
L40586 IDS Iduronate 2-sulfatase (Hunter syndrome) 0.056
D26067 ”KIAA0033 gene, partial cds” 0.056
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is shown in Figure 6. These curves are estimated by,

E{fi(X)} =
1

T

T∑
t=1

∑
j:zj=1

djl=i

β
(t)
j Θ

(t)
j (X), (3.7)

where T is the number of models in the generated sample, indexed with the super-

script. The second summation ensures that the curves are estimated by only consid-

ering the main effect basis functions involving the i gene (predictor), thus averaging

over the basis functions relating to the desired gene main effect. Note here that these

curves can only guide us to the shape of the main effect functions. We can see that

there is evidence that gene BSG Basigin shows little effect on the response. As the

expression level of gene Adenosine triphosphatase mRNA increases the response de-

creases linearly. Observing the plots of main effect functions (Figure 6), for the gene

Zyxin the response is unaffected over the negative expression values but decreases

linearly for increasing positive expression values, while on the other hand exactly the

opposite feature is found gene SNRPN Small nuclear ribonucleoprotein polypeptide

N where the response increases linearly for negative expression values and is unaf-

fected in the positive range. Similar conclusions can be drawn for other genes too.

This demonstrates how threshold basis functions such as MARS, allow for insightful

interpretation of the relationship between response and genes (predictors), with the

added advantage being that MARS model automatically ignores variables that have

little effect on the response.

Table 4 shows the genes that enter as an interaction term most often in the

posterior samples. Figure 7 shows the interaction surface of the top three interact-

ing gene pairs indicating the joint contribution to the odds of having a disease of

the two genes. The surface is estimated in a manner similar to (3.7), but now we

only consider interaction terms involving the two genes desired in the second sum-

mation. This figure highlights the advantage of the using flexible nonlinear MARS
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Figure 6. Leukemia data: Posterior mean main effects of the significant genes
entering the Bayesian MARS model. The horizontal axis is the standardized expres-
sion level of the gene and the vertical axis is the mean main effect function.
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basis functions in discerning this complex interaction function between genes over

linear approaches. In the top panel of Figure 7 we can see that high expression levels

of gene Alpha-Amylase 2B Precursor combined with low (negative) expression levels

of gene Adenosine triphosphatase calcium results in an increased level of response,

which is unaffected for low levels of both genes. A similar feature is also detected

observing the interaction surface of genes Natural killer cell receptor (KIR) mRNA

and HOXA1 Homeo box A1. From the bottom most panel we can observe that the

odds increases as the expression level of gene LYN V-yes-1 Yamaguchi sarcoma viral

related oncogene homolog increases and that of gene DAGK1 Diacylglycerol kinase

alpha decreases.

Using two pairs of genes that discriminate between the two classes AML and ALL

reasonably, we plot the probability contours, Pr(Yi = 1) (Figure 8) to demonstrate

the advantages of using a nonlinear model. Any linear approach would divide the

predictor space into two regions separated by a straight line. Such a complex decision

boundary can only be uncovered using a nonlinear model. Note that this predictive

contours appear smooth even though individual MARS models have axis parallel

non-smooth contours. This is due to averaging over thousands of MARS models,

thus marginalizing over the model space.

Golub et al. use a 50-gene predictor trained using their weighted voting scheme

on the training samples. The predictor made strong predictions for 29 of the 34 test

samples, declining to predict the other five cases. For the same case our misclassifica-

tion error rate for the test set is 0.08, i.e, we misclassify 3 out of the 34 test samples.

Our results appear to be competitive to the results from Golub et al., but we use

far fewer genes. Figure 9(a) shows the marginal density of the number of splines,

p(k|Y ) from 50,000 samples of our MCMC chain. The mode of the distribution is 2

basis terms, thus showing that we get competitive results by using considerably fewer
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Figure 7. Leukemia data: Posterior mean interaction functions of the significant
genes entering the Bayesian MARS model. The X and Y axes are the standardized
expression levels of the interacting genes and the vertical axis is the mean interaction
function.
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Figure 9. Plot of p(k|Y ), the posterior distribution of the number of splines
basis functions using 50,000 samples from the MCMC output. (a) Leukemia data; (b)
Breast cancer data.

3.5.2 Hereditary Breast Cancer Data

We use the microarray data-set used in Hedenfalk et al. (2001) on breast tumors from

patients carrying mutations in the predisposing genes, BRCA1 or BRCA2 or from

patients not expected to carry a hereditary predisposing mutation. Pathological and

genetic differences appear to imply different but overlapping functions for BRCA1 and

BRCA2. They examined 22 breast tumor samples from 21 breast cancer patients, and

all patients except one were women. Fifteen women had hereditary breast cancer, 7

tumors with BRCA1 and 8 tumors with BRCA2. 3,226 genes were used for each breast



40

tumor sample. We use our method to classify BRCA1 versus the others (BRCA2 and

sporadic).

Table 5 lists the top 50 genes that enter as main effects in the MARS model

in posterior MCMC samples, along with the corresponding frequency of appearance.

Similarly Table 6 shows the top 25 interacting genes that enter the MARS model.

These genes enter our model most frequently while classifying BRCA1 versus BRCA2

and sporadic. A similar list of 51 genes which best differentiate among the types of

tumor is also provided by Hedenfalk et al.. We find quote a few overlapping genes

(marked by a *) between the two lists like keratin 8 (KRT8), ODCantizyme and

ACTR1A. KRT8 is a member of the cytokeratin family of genes and cytokeratins are

frequently used to indentify breast cancer metastases by immunohistochemistry, and

cytokeratin 8 abundance has been shown to correlate well with node-positive disease

(Brotherick et al. 1998).

Figure 10 shows the posterior mean main effect function of the top six genes genes

selected from the list. The vertical axis show the odds of having BRCA1 mutation

and the horizontal axis is the standardized expression level of that particular gene.

An advantage of using a nonlinear approach is evident here as we can unearth a

threshold expression level and its corresponding effect on the the odds of having a

BRCA1 mutation. For example, for polymerase (RNA) II polypeptide it is seen that

the odds are relatively high for negative expression levels while the odds decrease

for higher expression levels of the gene. Figure 11 shows posterior mean interaction

function of two pairs of genes from the list of top 25. This shows the combined effect

these two genes on the odds of carrying mutation of BRCA1.

Since test data were not provided, to check our model adequacy we used full

hold-one-out cross validation. The results are summarized in Table 7. We compare

our cross validation results with other popular classification algorithms as in Lee et
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Table 5. Breast cancer data: Top 50 genes (predictors) entering the Bayesian
MARS model as main effects ranked in descending order of the frequency of times

they appear in posterior MCMC samples

Image Clone ID Gene description Frequency
767817 polymerase (RNA) II (DNA directed) polypeptide F 3.596
307843 ESTs (*) 2.87
81331 ”FATTY ACID-BINDING PROTEIN, EPIDERMAL” 2.46
843076 signal transducing adaptor molecule (SH3 domain and ITAM motif) 1 2.396
825478 zinc finger protein 146 2.304
28012 O-linked N-acetylglucosamine (GlcNAc) transferase 2.17
812227 ”solute carrier family 9 (sodium/hydrogen exchanger), isoform 1 ” 2.024
566887 heterochromatin-like protein 1 (*) 1.946
841617 ornithine decarboxylase antizyme 1 (*) 1.894
788721 KIAA0090 protein 1.81
811930 KIAA0020 gene product 1.668
32790 ”mutS (E. coli) homolog 2 (colon cancer, nonpolyposis type 1)” 1.46
784830 D123 gene product (*) 1.396
949932 nuclease sensitive element binding protein 1 (*) 1.382
26184 ”phosphofructokinase, platelet” (*) 1.294
810899 CDC28 protein kinase 1 1.294
46019 minichromosome maintenance deficient (S. cerevisiae) 7 (*) 1.266
897781 keratin 8 (*) 1.192
32231 KIAA0246 protein (*) 1.084
293104 phytanoyl-CoA hydroxylase (Refsum disease) (*) 1.006
180298 protein tyrosine kinase 2 beta 0.952
47884 macrophage migration inhibitory factor (glycosylation-inhibiting factor) 0.864
137638 ESTs (*) 0.792
246749 ”ESTs, Weakly similar to trg [R.norvegicus]” 0.792
233365 HP1-BP74 0.788
815530 PAK-interacting exchange factor beta 0.68
123425 ”ESTs, Moderately similar to AF141326 RNA helicase HDB/DICE1 [H.sapiens]” 0.642
22230 ”collagen, type V, alpha 1” 0.612
324210 sigma receptor (SR31747 binding protein 1) 0.608
824117 vaccinia related kinase 2 0.602
124405 androgen induced protein 0.594
83210 ”Complement component 8, beta polypeptide” 0.592
49788 carnitine acetyltransferase 0.59
344352 ESTs 0.586
842806 cyclin-dependent kinase 4 0.568
810734 Human 1.1 kb mRNA upregulated in retinoic acid treated HL-60 neutrophilic cells 0.564
814701 ”MAD2 (mitotic arrest deficient, yeast, homolog)-like 1” 0.554
36007 zinc finger protein 133 (clone pHZ-13) 0.518
110503 FOS-like antigen-1 0.492
767784 jun D proto-oncogene 0.488
486844 ”gap junction protein, alpha 1, 43kD (connexin 43)” 0.486
810408 hypothetical 43.2 Kd protein 0.456
199381 vav 3 oncogene 0.446
509682 histone deacetylase 3 0.446
43021 histidyl-tRNA synthetase 0.438
212198 ”tumor protein p53-binding protein, 2” (*) 0.418
840702 SELENOPHOSPHATE SYNTHETASE ; Human selenium donor protein (*) 0.402
666128 D component of complement (adipsin) 0.4
613126 ubiquitin specific protease 13 (isopeptidase T-3) 0.396
139705 ESTs 0.384
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genes entering the Bayesian MARS model. The horizontal axis is the standardized
expression level of the gene and the vertical axis is the mean main effect function.
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al. (2003). All the other methods use 51 genes for classification purposes while the

MARS methods selects far fewer genes. Figure 9(b) shows the marginal density of

the number of splines, p(k|Y ) from 50,000 samples of our MCMC chain. The mode

of the distribution is 3 showing that the number of splines basis terms (genes) used

by the model adapts to the problem at hand and uses fewer genes with the results

being competitive to any other method.

Table 7. Model misclassification errors using hold-one-out cross-validation for
breast cancer data

Model Number of
misclassifies samples

Bayesian MARS 0
Feed-forward neural networks 1.5 (Average error)
(3 hidden neurons, 1 hidden layer)
Gaussian kernel 1
Epanechnikov kernel 1
Moving window kernel 2
Probabilistic neural network (r=0.01) 3
kNN (k=1) 4
SVM linear 4
Perceptron 5
SVM Nonlinear 6



46

CHAPTER IV

SUMMARY AND FUTURE RESEARCH

In Chapter II we presented an automated Bayesian method to fit spatially adaptive

curves. We also provided an extension to additive models, wherein we obtained

estimates of regression function and uncertainty intervals. We use regression P-splines

to model the unknown smooth function, but we allow spatial adaptivity in the penalty

function by modeling it as another regression P–spline. Our simulations indicate that

our method is very competitive to that of Ruppert and Carroll (2000) in terms of

frequentist mean squared error and coverage probabilities of the credible intervals.

We also provide Bayesian uncertainty intervals: the intervals had pointwise coverage

close to the frequentist nominal level. Other methods, such as those of Donoho and

Johnstone (1994) and Denison et al. (1998a) appear to be no better than ours, and

in some cases worse. Simulations indicate that our methods are roughly comparable

to the BARS method of DiMatteo et al. (2001).

One issue that remains unresolved is choice of the number of knots for the re-

gression P-spline. We have here relied on the work of Ruppert (2002) in simulated

data sets, the analyses of data examples in Ruppert et al. (2003), and work of Eil-

ers and Marx (1996, 2002) as evidence that a large number of knots is unnecessary

within the P-spline paradigm, with recommendations of between 10 and 50 knots

for most situations of non-spatially adaptive smoothing. We believe that choosing

a far smaller number of knots for spatially adaptive smoothing, as we have done,

makes intuitive sense, and clearly works well in our examples, and in the examples

of Ruppert and Carroll (2000). Inevitably, however, there will be interest in letting

the data select the number of knots, even in the P-spline paradigm. Indeed, this has
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been done in the frequentist approach, see Ruppert and Carroll (2000) and Ruppert

et al. (2003, Chapter 17), where the number of knots and subknots is effectively

chosen by GCV. We conjecture that the following method will work in our Bayesian

context: it is based on the work of Kass and Wasserman (1995) and illustrated in

a model-averaging context by Carroll, Roeder and Wasserman (1999). Specifically,

choose a set of numbers of knots and subknots: Ruppert, et al. use combinations of

(10, 20, 40, 80, 120) for the former and (3, 4, 5, 6) for the latter. Then run our method

for each of the combinations, and compute BIC for each at the posterior mean of

median of the parameters. Finally, either select the combination on the basis of BIC,

or average the fits using BIC as a model averaging device. We conjecture that this

approach will work comparably to the frequentist approaches.

The other obvious issue here is the general comparison between regression spline

methods. There are basically three approaches: (a) the P-spline approach as advo-

cated here needs little more introduction; (b) knot selection methods such as BARS;

and (c) regression splines without penalization but where the number of knots are

selected using devices such as BIC and AIC, see Rice and Wu (2001) for an illus-

tration. All these methods have value. Approach (c) generally tends to choose a

smallish number of knots and is essentially only available in a frequentist context.

Our own view is that in the frequentist context of regression splines, penalization

with a fixed number of knots is a more natural approach than selecting the number of

knots, especially when inference is of interest, since inference after model selection is

extremely difficult in the frequentist context. The knot selection methods (free-knot

splines) are clearly geared to handle problems where a high degree of spatial adapta-

tion is necessary: that the P-spline approach does reasonably well in comparison to

say BARS may in fact be seen as somewhat surprising. One nice feature of P-splines

is that being little more than mixed models methods, they are readily adapted to
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new problems without great effort. Ciprian Crainiceanu (personal communication)

has recently shown how to implement our methods in WinBUGS, which gives some

sense of its ease of application.

An interesting question concerns extension of these methods to non-Gaussian

data. Indeed, BARS for example was motivated originally for the treatment of Pois-

son data, where it is extremely effective. Bayesian versions of penalized regression

splines that are not spatially adaptive are easy to develop for generalized linear mod-

els, either via brute-force (Ruppert, et al., 2003, Chapter 16) or via latent variable

methods such as those Albert and Chib (1993) for binary data, and of Holmes and

Mallick (2003) for binary and count data as special cases. These latter approaches

essentially place one back into the Gaussian framework after the latent variables are

computed, and these devices should allow spatially adaptive smoothing to be devel-

oped readily. Another interesting question is spatially adaptive smoothing in the

presence of heteroscedasticity: frequentist P-splines are readily developed in this case

(Ruppert, et al., 2003, chap. 14), and adding Bayesian spatially adaptive smoothing

should be possible.

In Chapter II we presented a approach to model nonlinear gene interactions using

a Bayesian MARS. Our method uses MCMC based stochastic search algorithms to

obtain the models. The advantage of our method is that we capture the nonlinear

dependencies between the genes, dependencies that would have been missed by linear

approaches. Our approach is not only flexible enough to model these complex interac-

tion functions, but it also identifies significant genes of interest for further biological

study. We illustrated our method using two microarray data sets which have been

well analyzed in literature. In both cases we used far fewer genes and yet obtained

competitive results to those reported in literature.

We have treated the binary case in detail in this study. When the response is
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not binary, such that the number of classes (C) is greater than two, then the problem

becomes a multiclass classification problem. This can be handled in a manner similar

to the binary classification approach, as follows. Let Yi = (Yi1, . . . , YiC) denote the

multinomial indicator vector with elements Yiq = 1 if the qth sample is belongs to the

qth class and Yij = 0 otherwise. Let Y denote the n× C matrix of these indicators.

The likelihood of the data given the MARS spline bases (Θ1, . . . , ΘC), is given by,

P(Yi = 1|Xi) = pyi1
1 pyi2

2 , . . . , pyiC

C ,

where pq is the probability that the sample came from class q. This is modelled in a

similar manner to the binary class case as in Section 3.2. The prior structure imposed

on the parameters is also akin to that described in Section 3.2. A detailed study will

be performed in future.
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APPENDIX A

BAYESIAN P–SPLINES: DETAILS OF THE SAMPLER

In this section we derive the conditional distributions for the all the random variables

and parameters in the spatially adaptive Bayesian P–spline model outlined in Chapter

II. The algorithm for the MCMC sampling is as follows:

• Give initial values to all parameters: ΩY , Ωs, ξ2, {σ2(κj)}MY
j=1 and σ2

Y .

• Start the MCMC sampler and iterate.

• Updating (ΩY , σ2
Y )

Conditional on the rest of the parameters, using Bayesian linear model theory

with conjugate priors, the conditional posterior distribution of (ΩY , σ2
Y ) is,

[ΩY , σ2
Y ] ∼ Normal(mY , ΣY )IG(ãY , b̃Y )

where mY = (1/σ2
Y )(ΣY ZT

Y Y ), ΣY = [(ZT
Y ZY /σ2

Y +Λ−1
Y )−1], ZY is the regression

spline design matrix and ΛY = diag{100, . . . , 100, σ2(κ1), . . . , σ
2(κMY

)} is the

prior variance on ΩY . Here IG(•) is the Inverse Gamma distribution with

shape parameter, ãY = [(n/2) + aY ] and scale parameter, b̃Y = [(1/2){(Y −
ZY ΩY )T (Y − ZY ΩY )}+ (1/bY )]−1.

• Updating (Ωs, ξ
2)

With conjugate priors on (Ωs, ξ
2), the conditional posterior distribution is,

[Ωs, ξ
2] ∼ Normal(ms, Σs)IG(ãs, b̃s)

where ms = (1/σ2
u)(ΣsZ

T
s ρ), Σs = [(1/σ2

u)(Z
T
s Zs) + Λ−1

s ]−1 and ρ denotes the

vector [− log{σ2(κ1)}, . . . ,− log{σ2(κMY
)}]T . Λs = diag{100, 100, ξ2, . . . , ξ2} is
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the prior variance on Ωs. The posterior inverse gamma parameters are ãs =

[(MY /2)+as] and b̃s = [(1/2){∑Ms

j=1 β2
js}+(1/bs)]

−1. We set (as, bs) to be (1, 1)

for all the examples.

• Updating {σ2(κj)}MY
j=1

The penalty parameters, {σ2(κj)}MY
j=1, conditional on the current model para-

meters does not have an explicit form. Thus we resort to Metropolis-Hastings

procedure withe a proposal density T [σ2∗(κj), σ
2(κj)] that generates the moves

from the current state σ2∗(κj) to a new state σ2(κj). The proposed updates are

then accepted with probabilities,

α = min

{
1,

p[σ2∗(κj)|rest]T [σ2(κj), σ
2∗(κj)]

p[σ2(κj)|rest]T [σ2∗(κj), σ2(κj)]

}
,

otherwise the current model is retained. It is convenient to take the proposal

distribution T [σ2∗(κj), σ
2(κj)] to be a symmetric distribution (eg. Gaussian)

with mean equal to the old value σ2(κj) and a pre-specified standard deviation.

Since the density involves exponential terms, the likelihood values

calculated during the implementation of the algorithm are typically very large,

hence we worked on a log scale. A common problem encountered in the imple-

mentation is the non-mobility of the MH step. If we start at bad starting values

it may take a large number of iterations or even worse may not converge. To

circumvent the problem we use frequentist estimates as starting values for the

MCMC run, and in particular use the estimates of the smoothing parameter

that minimize the generalized cross validation (GCV) statistic

GCV =
‖Y − ZY ΩY (σ2(κ))‖
[(1− df(σ2(κ)))/n]2

where

df(σ2(κ)) = tr{(ZT
Y ZY + ΛY )−1(ZT

Y ZY )}
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is the degree of freedom of the smoother which is defined to be the trace of the

smoother matrix (Hastie and Tibshirani, 1990 Section 3.5).
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APPENDIX B

BAYESIAN MARS: DETAILS OF THE SAMPLER

In this section we derive the conditional distributions for the all the random variables

and parameters in the Bayesian MARS model outlined in Chapter III. The algorithm

for the MCMC sampling is as follows:

• Start with an constant intercept model with k = 0 and Θ = (1, . . . , 1)′.

• Set the initial values of the latent variables ω.

• Draw the intercept (β0, σ
2) using the update for (β, σ2) as given below.

• Start the MCMC sampler and iterate.

– Draw latent variable ω given the current model.

– Update prior precision λ on β as given below.

– Update Θ using one of the following moves with equal probability.

∗ Add a spline basis function.

∗ Delete a spline basis function.

∗ Alter a spline basis function.

– Redraw (β, σ2)

– Accept the modifications to Θ and β with probability,

Q = min

{
1,
|V̂ ∗|1/2

|V̂ |1/2
exp

( a

a∗

)}

where |V̂ | is the determinant of the posterior variance covariance matrix of

β and is given by (Θ′Θ + D)−1, the superscript ∗ refer to the parameters
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of the proposed update model and a is the error term,

a = ω′ω − β̂
′
V̂ −1β̂.

– Otherwise keep the current model.

The procedures for updating Θ i.e., adding, deleting and modifying a spline base and

for updating (β, σ2) are given below.

Adding a spline

The steps to add a basis function to the model is as follows:

1. Draw the interaction level of the spline zj ∼ U(1, . . . , zmax).

2. Draw zj elements {dj1, . . . , djzj
} from {1, . . . , p} without replacement.

3. For each of the zj interactions that make up the jth spline: select a data point

at random from the data set, say xi and set the corresponding knot point

θjl = xidjl
. Then draw the orientation of the spline from uniform {0, 1}, where

0 corresponds to + (positive orientation) and 1 to − (negative orientation).

4. Update (β, σ2) as given below.

Deleting a spline

Choose one of the k splines at random and remove it from the model and subsequently

update the values of (β, σ2) as shown below

Modifying a spline

The following is the procedure to modify a basis function to the model,

1. Select at random one of the k splines, say the jth, to modify.
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2. Select the lth of the zj interactions at random and reset the knot point θjl by

randomly drawing a data point xi from the data set and fixing the value of

θjl = xidjl
.

3. Update (β, σ2) as given below.

Updating the latent variables ω

For the update to ω, we propose to update each ωi in turn conditional on the

rest. That is, we update ωi|ω−i,Y,M (i = 1, . . . , n), where ω−i indicates the ω with

the ith element removed.

The latent variables ωi’s conditional on the current model parameters M and

the data Yi does not have an explicit form. Thus we resort to the Metropolis-Hastings

procedure with a proposal density T (ω∗i |ωi) that generates the moves from the current

state ωi to a new state ω∗i . The proposed updates are then accepted with probabilities,

α = min

{
1,

p(yi|ω∗i )p(ω∗i |ω−i, Θ)T (ωi|ω∗i )
p(yi|ωi)p(ωi|ω−i, Θ)T (ω∗i |ωi)

}
,

otherwise the current model is retained.

Finally, the full conditional for ωi is,

p(ωi|ω−i,Y,M) ∝ exp

[
n∑

j=1

Yiωi −
n∑

j=1

log(1 + exp(ωi))− 1

2σ2
(ωi −Θ′

iβ)2

]

where Θi is the ith row of MARS basis matrix Θ as given in (3.4).

It is convenient to take the proposal distribution T (ω∗i |ωi) to be a symmetric

distribution (eg. Gaussian) with mean equal to the old value ωi and a pre-specified

standard deviation.

Updating (β, σ2) conditional on changes to the spline base and latent variables ω

Conditional on the latent variables ω and the current MARS model, using Bayesian
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linear model theory we update the spline coefficients and the residual random effects,

given the changes to the spline basis using their posterior distribution, so that

(β, σ2) ∼ Nn+1(β|m, σ2V)IG(σ2|γ̃1, γ̃2),

where m = V (Θ∗)′ω, V = [(Θ∗)′Θ∗ + D]−1, γ̃1 = (γ1 + n/2), and γ̃2 = (γ2 +

(1/2)(ω′ω−m′V m)). Here Θ∗ now is the n× (k+1) matrix of outputs from k splines

with the intercept and D is the prior precision on β.

Updating prior precision λ conditional on the current model

We draw new values of λi using the conditional posterior disribution,

λi ∼ Gamma(τ1 +
1

2
, τ2 +

β′β
2

)

where k is the number of basis functions and β are the regression coefficients.
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