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ABSTRACT 
 
 

The Diffuse Neuroendocrine System and Its  

Immuno-modulatory Roles in Chicken T-cell Immunity. (December 2005) 

Xiaodong Zhang, B.S., Laiyang Agricultural College; M.S., Nanjing Agricultural 

University 

Chair of Advisory Committee: Dr. Luc Berghman 

 

Neuroendocrine cell populations were systematically studied and characterized in the 

thymus, an avian primary immune organ. The expression of the specific mRNAs for both 

Chromogranin A (CgA) and Carboxypeptidase E (CpE) in the thymus was first verified 

by RT-PCR.  Additional evidence using immunofluorescent dual labeling, has 

demonstrated for the first time the co-existence of CgA and CpE in identical 

neuroendocrine cells at the protein level in a vetebrate primary lymphoid organ. These 

CpE- and CgA-positive cells were primarily found in the transition zone between the 

cortex and the medulla of the thymic lobules, an area known to contain numerous 

arterioles and to be heavily innervated by the autonomic nervous system, suggesting that 

these cell population can potentially receive input from each other, from the autonomous 

nervous system, from the circulation, or all of the above. (Neuro)endocrine messenger 

molecules produced by the thymic microenvironment, such as somatostatin (SST), seem 

to play a potentially important immunomodulatory role with regard to cell proliferation, 

differentiation, and migration, as well as cytokine production. The results showed that 

both SST and its receptor, SSTR2, are expressed locally within chicken thymus. The in 

vitro study showed that SST significantly inhibits IL-2 and concanavalin A (ConA) 
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induced proliferation of thymocytes. In comparison with controls (medium containing IL-

2 and ConA but without SST), addition of SST at 10-9 M and 10-6 M resulted in a nearly 

20% decrease in proliferation (P < 0.01). The effects of somatostatin (SST) on the 

immune system, the role of SST on the gene expression of cytokines (IL-1, TGF, INF), 

chemokine receptors (CXCR4) as well as MHC-I components was assessed by real-time 

PCR. The question as to exactly which stimuli trigger the release of mediators such as 

somatostatin remains for future study.  In addition, a complete inventory of all substances 

stored in the thymic LDCV and their effects on the developing T-cells when released in 

the microenvironment of the thymus are also questions that warrant further investigation. 
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CHAPTER I 

INTRODUCTION AND LITERATURE REVIEW 

 

The development of T-cells for protection against pathogens and other non-self antigens 

is an essential feature of the vertebrate cellular immune system. In birds, as in mammals, 

the process that creates such a diverse immunological repertoire of T-cell receptors has 

been shown to be critically dependent on the microenvironment of the thymus.  The 

thymic stroma is complex and consists of epithelial cells, mesenchym, macrophages and 

dendritic cells, in addition to fibroblasts and matrix molecules (1).  These components 

provide not only essential cell-cell contacts but also communicate with the developing T-

lymphocytes in a humoral manner. In addition to classical cytokines, the thymus 

produces a number of unique humoral factors and an ever-growing list of neuroendocrine 

and peripheral hormones. While some of these, such as prolactin and growth hormone, 

have well characterized effects on thymocyte differentiation and proliferation, many have 

been identified but have not been assigned a defined function within the thymus(2). The 

neuroendocrine circuits within the avian thymus and lymphocyte-microenvironment 

interactions are essential for the education and balance between self-tolerance and 

immunity, which will be discussed in this literature review. 

 

T-cell ontogeny 

The thymus is the primary immune organ that generates naïve T-cells in birds. It consists  

 
__________ 

This dissertation follows the style and format of Journal of Immunology. 
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of two rows of seven separate lobes on each side of the neck, along the jugular veins  

extending from the lower jaw to the thorax.  These lobes are further divided in lobules, 

separated by septa composed of connective tissue.  The lobules are the elementary units 

of the thymus and contain a central area, the medulla, and a surrounding area, the cortex.  

Unlike in the bursa of Fabricius, there is lesser clear boundary between the cortex and the 

medulla (3). 

 

During embryonic development, T-cell precursors are derived from stem cells near the 

thoracic aorta (4). The embryonic thymus is populated with three separate waves of stem 

cells: at days 6-8, days 12-14, and days 18-21 of embryonic development (5).  Each wave 

lasts for 1.5 to 2 days and is followed by intense thymocyte proliferation, maturation and 

seeding to the periphery, which lasts for a period of approximately three weeks. Thymic 

seeding continues after hatching but not in such discrete waves (6). 

 

T-cells mature within the thymus while undergoing a series of changes of both their 

localization and their phenotype (7).  During thymocyte maturation, they migrate from 

the outer thymic cortex to the medulla where they finally exit. The pattern of cluster of 

differentiation antigen CD 8 and CD4 expression serves as the main characteristic for 

distinguishing different maturational stages of TcR (T-cell receptor) αβ cells.  The 

chicken also have a TcR γδ population of thymocytes that mature more rapidly and that 

also have a distinct, yet unknown, physiological role, except for the fact that they may be 

involved in the control of isotype switching(8).  

Early αβ thymocytes are CD8 and CD4 negative and are called triple negative as they 
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also lack expression of the CD3 complex. The formation of αβ T-cells in the thymic 

cortex requires a period of three to four days before they enter the thymic medulla. While 

these cells migrate from the site of T-cell precursor entry, the outer thymic cortex, to the 

medulla, their expression of CD4 and CD8 gradually increases and they become double 

positive thymocytes. This thymic population proliferates vigorously to produce the 

largest thymocyte population. Finally, in the medulla, thymocytes downregulate one of 

the two accessory moledules before leaving the thymus as single positive CD4 or CD8 

αβ T-cells(6).  

 
 
Additional markers of thymocyte maturation have been characterized to further examine 

the thymic subpopulations. The expression of another differentiation marker, CD5, starts 

very early in thymocyte development, possibly even before thymic colonization by 

precursor cells. CD5 is found at high levels on all T-cell subsets during thymocyte 

maturation, and is thus an ideal handle for isolation of a total T-cell population from the 

thymus.  In contrast to the abundant CD5 expression, the CD6 antigen is only found on 

double positive and single positive thymocytes, suggesting it is a maturation-dependent 

antigen, acquired during or after positive and negative selection (6). 

 

The thymic microenvironment and neuroendocrine factors 

While a majority of cells within the primary immune organs after hatch are clearly 

lymphoid, the thymus also contains a diverse array of non-lymphoid cells.  Taken 

together, these non-lymphoid elements are loosely defined as the thymic stroma.  The 

stroma consists to a large extent of thymic epithelial cells derived from the third 
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pharyngeal pouch, but it is not entirely clear if all thymic (i.e. cortical and medullary) 

epithelial cells share the same developmental origin (9). In addition to cortical and 

medullary epithelial cells, another important stromal cell type is mesenchyme, which is 

derived from the neural crest (10). The importance of mesenchyme was emphasized in 

that extirpation of the neural crest in birds resulting in a lack of mesenchymal 

contribution to the developing thymus, disrupted thymic formation and function (11).  

The precise mechanism by which mesenchymal cells influence development of the 

thymus is, however, still somewhat unclear. Finally, the thymic stroma also contains bone 

marrow derived dendritic cells and macrophages, and fibroblasts. 

 

Positive selection takes place in the cortex of the thymus and is largely driven by the 

cortical epithelial cells that provide pepide-MHC ligands for the αβ TCR and also other 

unknown co-stimulatory or accessory signals (9). Induction of tolerance through negative 

selection is taking place in the thymic medulla and is mediated by dendritic cells that 

reside at the cortico-medullary junction (12, 13), although medullary epithelial cells have 

recently been shown to express many proteins that were previously thought to be tissue- 

or organ-specific, indicating a potential role for these cells in tolerance to a variety of 

tissues (14-17). The interactions between lymphoid and stromal cells, whether through 

cell-cell contact or humoral interaction are thus absolutely vital for normal 

lymphopoiesis, as was also shown in the chicken (18-20). The humoral aspects of this 

microenvironment include the secretion of a plethora of cytokines (21), chemokines (22), 

hormones and especially neuropeptides.  Arguably, the thymus has developed into the 

most fertile paradigm for the study of immuno-neuro-endocrine cross talk during recent 
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years (23, 24). 

 

T-cells are targets for neuropeptides in several different ways. First of all, primary and 

secondary lymphoid organs are innervated. This is especially clear around the vasculature 

at the thymic cortico-medullary junction (25). The presence of parasympathetic 

(cholinergic) and sympathetic (noradrenergic) innervation in lymphoid organs and the 

immunomodulatory influences of the classical cholinergic and noradrenergic transmitters 

have been known for some time (26), but the importance of the complex autonomic 

peptidergic innervation is a topic of more recent investigations.  For instance, double 

immunofluorescence reveals the coexistence of noradrenergic and NPY-like and/or 

opioid immunoreactivity, but no evidence, so far, is available of co-release of opioids and 

noradrenaline from the sympathetic nerve fibers of lymphoid organs (27). 

 

In addition, considerable evidence has now been presented that the thymic stroma is an 

essential source of endocrine, paracrine and autocrine humoral factors (23). As 

mentioned above, it is a complex network consisting of epithelial cells (derived from the 

pharyngeal region), neural crest-derived ectomesenchym, dendritic cells, macrophages 

(both of bone marrow origin) and fibroblasts and each of these components has been 

shown to be a potential source of thymic hormones, cytokines and an ever-growing list of 

hormones and neuropeptides, many of which with yet unknown effects on T-cell 

physiology (28, 29). One of the most recent surprises includes the finding that the thymus 

is an important source of parathyroid hormone (30, 31), to the extent that mice without 

parathyroid glands have only a mildly abnormal bone phenotype, due to the parathyroid 
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hormone supply from the thymus.   Finally, T-cells themselves produce their own set of 

neuropeptides such as substance P (32), calcitonin gene-related peptide (33), GnRH-I and 

–II (34) and many more.  

 

The immunological significance of these neuroendocrine elements is currently an area of 

intensive research. A role in negative selection is one of the possibilities that have been 

proposed and that has recently gained significant support (16, 17, 35). For instance, 

expression of insulin in the thymus seems to be linked with clonal deletion of insulin-

reactive T-cells, and this might also be the case for the other pancreatic hormones and 

potentially other peripheral tissue-specific self-antigens (36). In addition, the role of 

thymic pituitary hormones and neuropeptides may at least partly lay in the regulation of 

cytokine secretion (29). 

 

Although much less evidence is available in birds, the avian thymus seems also to be an 

example of immuno-neuroendocrine interaction. Various thymic neuropeptide-positive 

cells, containing peptides including neurotensin, met-enkephalin, neuropeptide Y, 

substance P and VIP were demonstrated immunohistochemically by Atoji et al. (37-39). 

Recent studies have also demonstrated the presence of immunoreactive pro-

opiomelanocortin (POMC)-related molecules in the thymus of 4-day old chickens, with 

cell numbers increasing with ageing (40, 41).  Nitrergic, peptidergic and substance P 

innervation of the chick thymus was described by Gulati et al. (42, 43).  The functional 

significance of this neuroendocrine presence within the avian cellular immune system 

remains elusive.   
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Neuroendocrine cell markers 

Neuroendocrine cells secrete proteins via one of two distinctively different pathways, i.e. 

the constitutive secretory pathway and the regulated secretory pathway. In the regulated 

secretory pathway, proteins such as pro-hormones and pro-neuropeptides mature in the 

large dense-core secretory granules of the neuroendocrine cell through a number of post-

translational modifications and a specific, extracellular (depolarizing) stimulus is required 

for delivery (exocytosis) of the secretory products to the outside of the cell. The 

biogenesis of secretory granules proceeds via two distinctive steps. First, the immature 

secretory granules are initially formed from the trans-Golgi network (TGN), separate 

from constitutive secretory vesicles (44). This is followed by the maturation step where 

the immature secretory granules become mature. Vesicles in the constitutive pathway are 

pruned away from the immature secretory granules to remove missorted proteins such as 

mannose-6-phosphate receptors and furin (45, 46). 

 

Chromogranin A (CgA) is considered as an on/off switch controlling the biogenesis of 

large dense-cored vesicles (LDCV) and essential for the regulated secretory pathway in 

neuroendocrine cells. For instance, after inhibition of CgA expression by antisense RNAs 

in PC12 cells, secretory granule formation was essentially lost. On the other hand, knock-

in of bovine CgA into the above CgA-deficient PC12 cells restored the regulated 

secretory pathway (46, 47). 

 

Chromogranin A (CgA) is one of the most abundant acidic secretory glycoproteins 

ubiquitously present in neuroendocrine/endocrine cells and the major member of the 
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chromogranin family. About 40% of the total soluble bovine chromaffin granule proteins 

are CgA(48-50).  It thus serves as a useful tissue and serum marker of neuroendocrine 

cell and neuroendocrine tumor (51). The diversity of tissues containing CgA-positive 

cells is enormous (including the chromaffin cells of the adrenal medulla, the parathyroid 

chief cells, thyroid parafollicular C cells, the pancreatic islet cells and gut neuroendocrine 

cells (52). The ubiquitous distribution of CgA in neuroendocrine and endocrine tissues 

suggests their general role in the regulated secretion. 

 

Intracellularly, CgA is involved in sorting and packaging of peptides into secretory large 

dense-cored granules. These are organelles for storage of prohormones, 

nroneuropeptides, processing enzymes (for peptide hormone processing), and other 

proteins required for regulated secretion from endocrine and neuroendocrine cells (49) 

(53) (46). CgA controls the biogenesis of secretory granules, and hence regulated 

secretion in neuroendocrine/endocrine cells. For instance, 6T3 (a cell line derived from a 

mouse anterior pituitary tumor cell line AtT-20) lacking the regulated secretory pathway 

and CgA expression showed recovery of regulated secretory phenotype when CgA was 

introduced exogenously (47, 54, 55). CgA is also a precursor protein for several bioactive 

peptides, including catestatin, vasostatin, pancreastatin, and other peptide hormones with 

autocrine, paracrine, and endocrine activities(56). 

 

In clinical cancer studies, CgA is a useful marker for neuroendocrine tumors (57).  

Recent work by Fangwen Rao and colleagues suggests that markedly elevated CgA may 

point to malignant pheochromocytoma. Plasma CgA concentrations may be useful to 
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gauge tumor response and relapse during chemotherapy of malignant pheochromocytoma 

(58). 

 

Carboxypeptidase E (CpE, previously also referred to as CpH(59))  appears to be another 

important element in the process of sorting and processing of prohormones (see Fig.2). 

Carboxypeptidase E per se is an exoproteolytic processing enzyme exclusively present in 

the Golgi apparatus and secretory granules of neural/neuroendocrine cells. Its function is 

to remove basic amino acids residues exposed upon endoproteolyic cleavage of the 

hormone precursor by a specific prohormone convertase.  The membrane-bound form of 

the enzyme is anchored in the wall of the secretory granules through its COOH-terminal 

end, which also serves as a sorting receptor for several prohormones and 

proneuropeptides in neuroendocrine cells(60, 61).  

 

Somatostatin and somatostatin receptors in the immune system 

As mentioned above, lymphoid organs can be considered preferential sites of immuno-

neuroendocrine interactions. They produce several different categories of messengers, 

hormones or neuropeptides, which exert their local paracrine activities through their 

corresponding receptors on immune cells. Among the hormones and neuropeptides 

involved in regulating immune cell activities, we have decided to focus on somatostatin 

which has been shown in mammals to exert multiple effects on immune functions (62). 

 

Somatostatin (SST, also referred as somatotropin release-inhibiting factor, or SRIF) is a 

cyclic neuropeptide originally found in hypothalamus, where it was identified as a potent 
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inhibitor of the secretion of growth hormone (GH) and thyroid-stimulating hormone 

(TSH) from the anterior pituitary(63, 64). In fact, SST and its receptor SSTR then have 

been found throughout the body, including pancreas, salivary gland, kidney, lymphoid 

cells, blood vessel walls, etc., and exert multiple physiological effects. For review, see 

(65-67). 

 

SST, like many other neuropeptides, is initially synthesized from one single gene as a 

larger preprosomatostatin with, in mammals, 92 amino acids. It is then cleaved at its C-

terminus to form  two biologically active forms, SST-14 (See Fig. 1.1) and SST-28, 

composed of either 14 or 28 amino acids, respectively (68, 69). Chicken SST-14 has the 

exact same amino-acid sequence as in mammals, while in SST-28 there is one amino acid 

difference Hasegawa (70). SST has a very short half-life (1.5~3 minutes) in the systemic  

 

 

 

Ala Gly Cys Lys Asn Ph Ph

Trp 

Lys 

Cys Ser Thr Thr Ph

s 

s 

 

Fig.1.1. The structure of somatostatin-14.  Chicken SST-14 has the exact same amino-
acid sequence as in mammals.  
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circulation (71), indicating that SST-producing cells, or stores of SST are probably close 

to the target cells. Synthetic analogs were developed, such as octreotide, with a longer 

half-life and resistance to proteolytic degradation for clinical applications. 

 

Five somatostatin receptor (SSTR) subtypes have been identified and characterized in 

mammals; they are SSTR-1, -2, -3, -4 and –5, encoded by five different, intronless genes 

(72, 73). In addition, rodent SSTR-2 has two isoforms, SSTR-2A and SSTR-2B, due to 

alternative splicing (74). SSTRs have seven α-helical trans-membrane domains, with a 

structure of three intra and extra cellular loops, and they are all coupled with G-protein 

(75). SSTRs are highly conserved between species; for example, SSTR1 of mouse and 

human share 99% sequence identity(76). Within the same species, there is a 45–61% 

sequence identity between different receptor subtypes. Both SST-14 and SST-28 bind to 

SSTR1–4 with equal affinity. However, SST-28 has a higher affinity for SSTR5 (76).  

 

In mammals, the SSTRs are widely expressed in different tissues throughout the body, 

with different expression level and subtype combinations (77). SSTR is distributed in a 

tissue-specific fashion, while the majority of SST-target tissues express multiple SSTR 

subtypes at the same time (78).   

 

The structure of SSTR subtypes 1-5 is highly homologous (40–60%), but evidence has 

supported the concept that each subtype mediates different biological actions of SST. For 

example, in humans, SSTR2 and SSTR5 are involved in controlling growth hormone 

release, and SSTR5 appears to be important in modulating insulin and glucagon release 
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(79).  Apoptosis can be induced by activation of SSTR3, whereas SSTR1, SSTR4 and 

SSTR5 have an inhibitory effect on the cell cycle (80). Depending on the cell type, the 

five SSTR subtypes are coupled to a variety of signal transduction pathways in exerting 

various physiological functions, including adenylate and guanylate cyclase, 

phospholipase A2 and C, K+ and Ca2+ channels, Na+–H+ exchanger, Src, Erk1/2, p38 

mitogen-activated protein kinases, and tyrosine phosphatases (80). 

 

SST has been shown to have multiple effects on various immune cells. Studies regarding 

the effects on immune cell proliferation, secretion, migration and apoptosis reveal that the 

immunomodulatory actions by somatostatin are complex and depend on various 

physiological and experimental conditions, as summarized in the Table 1.1. 

 

Table 1.1. Heterogeneous effects of somatostatin on immune cells (81) (    stands for 

upreulation;     downregulation). 

 

↑↓–↑↑Cell migration

––↑–Cell adhesion

–↑↑↑Apoptosis

↑↓↓↑↓–Cell secretion

––↓–Colony growth

↔↓↑↓↓Cell proliferation

MonocytesB-cells                                  T-cellsThymocytes                     

↑↓–↑↑Cell migration

––↑–Cell adhesion

–↑↑↑Apoptosis

↑↓↓↑↓–Cell secretion

––↓–Colony growth

↔↓↑↓↓Cell proliferation

MonocytesB-cells                                  T-cellsThymocytes                     

 



                                                                                                                                     13  

SST can influence the functions of immune cells in both health and disease (reviewed in 

(82)). An in vivo study on rats showed that as a consequence of repeated treatments with 

low doses of somatostatin-14, the volumes of thymus cortex and medulla, the total 

number of thymocytes, the number of thymocytes in the cortex and medulla and the 

numerical density of thymocytes in the deeper cortex were all decreased. Thymus size 

was also diminished (83). In a study of human thymuses, a negative correlation between 

the receptor density and the chronological age of the thymus has been demonstrated (84). 

The effect of SST on T-cell proliferation seems complex, as SST has been observed to 

both suppress and stimulate T-lymphocyte proliferation and inhibit colony formation 

(82). With regard to cytokine regulation, SST was reported to have inhibitory effects on 

IL-2 secretion from different human T-cell lines (85) and on the secretion of TNF-α, IL-

1β and IL-6 in monocytes. It was also shown to inhibit the chemotaxis of human 

neutrophils (86). It is noteworthy that SST may regulate human T-lymphocyte migration 

and homing (87). Also, SST  was shown to inhibit IgE and IgG4 production by plasma B-

cells (88).  

 

A potential autocrine/paracrine regulatory role has been suggested for SST  in mouse (36, 

89). SST and the SST analog octreotide have been shown to inhibit the proliferation of 

primary cultured thymic epithelial cells (90). Moreover, the hypothesis that a disturbance 

in the endogenous production of SST might be involved in the pathogenesis of 

autoimmune and neoplastic diseases was supported by in vitro data (91). In a more recent 

study, SST has been found to increase thymocyte numbers in fetal thymic organ culture, 

to enhance maturation and to induce the cell migration (92). In the same study, SST has 
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been shown to increase the cellular proliferation of total splenocytes, but to inhibit 

proliferation of thymocytes in suspension and purified splenic T-cells (92).  

The intracellular signalling mechanisms coupled to SSR activation in immune cells have 

been less investigated so far. SST was previously shown to inhibit adenylyl cyclase 

activity, but only at very high, non-physiological concentrations (93). However, Cardoso 

et al. (85) have shown that SST inhibited adenylate cyclase activity in mitogen-activated 

human peripheral blood mononuclear cells (PBMC) and in Jurkat T cells in a dose-

dependent fashion at nanomolar concentrations. Many studies have found that the effects 

of SST on immune secretion, proliferation or other functions, are ‘biphasic’(94). That is, 

inhibitory effects were maximal at nanomolar concentrations of SST, and reduced or 

absent at higher (micromolar) concentrations. The latter effect may be the consequence of 

the receptor internalization process with a subsequent down-regulation, an uncoupling 

from second messenger activation, or even the activation of different intracellular second 

messenger pathways via distinct SSR subtypes.  

 

SST is also thought to play a role in the regulation of apoptosis. SST and octreotide have 

been shown in human to induce apoptosis via SSTR2A and SSTR3 (95, 96), and 

apoptosis and chromosome breakage has been observed in activated human lymphocytes 

exposed to synthetic SST analogs (97). More recently, SST-14 and octreotide were 

demonstrated to inhibit [3H] thymidine incorporation in selected human thymocyte 

subsets, indicating the presence of functional receptors on these cells, while SST-14, but 

not octreotide, induced a significant increase in the percentage of apoptotic thymocytes 

(98). 
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In summary, SSTR subtypes appear to be differentially expressed on specific cell subsets 

within the organs of the immune system. The expression of neuropeptide receptors on 

immune cells is dynamically regulated and may depend on the traffic of these cells 

through and within lymphoid structures and homing in tissues. SST may be involved in 

the regulation of a number of different immune cells but it may also regulate diverse 

functional aspects in the same type of immune cells (e.g. proliferation, secretion, 

migration). SST effects on immune cells, as is the case of other neuropeptides, seem to be 

based mainly on autocrine and paracrine modes of action contrasting with its endocrine 

activities along the hypothalamo-pituitary axis (81). In fact, the following chapters will 

further address this question on a chicken model.  
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CHAPTER II 

IMMUNOHISTOCHEMICAL ASSESSMENT OF CGA-, CD57- AND NSE-

POSITIVE CELLS IN THE CHICKEN THYMUS: DISTINCT 

NEUROSECRETORY CELL POPULATIONS IN A PRIMARY LYMPHOID 

ORGAN 

 

Introduction 

The concept that immune cells and immune response are significantly influenced by the 

nervous/neuroendocrine system is well established in mammals. For example, 

hypothalamic and pituitary hormones such as PRL, GH, ACTH, LHRH play a role in 

thymic cell proliferation (99). In addition, central and peripheral lymphoid organs like 

thymus and spleen are innervated by both sympathethic and parasympathethic 

components (100). Classic neurotransmitters, such as catecholamines and acetycholine, 

and peptide transmitters (e.g. NPY, VIP) from neural origin are released in the lymphoid 

microenvironment and participate in the immune modulation.  However, the function of 

locally existing neuroendocrine cells within lymphoid organs still largely remain elusive. 

The diffuse neuroendocrine/endocrine cells are relatively poorly defined in immune 

system, especially in birds. Although the presence of neuropeptides (such as neurotensin 

and somatostatin) in the chicken thymus was reported as early as 1978 (101), a 

methodical analysis of neurosecretory cells in a chicken lymphoid organ, regardless of 

the secretory product involved, has to our knowledge, not been described. The diffuse 

neuroendocrine/endocrine cell populations are believed to produce major chemical 
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categories of messengers, hormones or neuropeptides, which exert locally their paracrine 

activities through their receptors on immune cells(98).  

 

In an attempt to uncover this complex neuroendocrine-immune network, a first and 

essential step is to identify and characterize these neuroendocrine populations within 

immune organs/tissues. This study aimed to use an immunocytochemical approach to 

assess the molecular heterogeneity of the neuronal/neuroendocrine derived component 

within the chicken thymus, by employing a novel monoclonal antibody (Mab) against 

turkey chromogranin A (102), a commercial Mab against CD-57, i.e. HNK-1, a classical 

marker for neural crest-derived cells (103) and a polyclonal antiserum against neuron-

specific enolase (NSE) (43). 

 

Chromogranin A (CgA) is one of the most abundant acidic secretory glycoproteins 

ubiquitously present in neuroendocrine/endocrine cells and the major member of the 

chromogranin family (40% of the total soluble bovine chromaffin granule proteins) (48-

50).  It thus serves as a useful tissue and serum marker of neuroendocrine cell and 

neuroendocrine tumors(51). The diversity of tissues containing CgA-positive cells is 

enormous (including the chromaffin cells of the adrenal medulla, the parathyroid chief 

cells, thyroid parafollicular C cells, the pancreatic islet cells and gut neuroendocrine cells 

(52). The ubiquitous distribution of CgA in neuroendocrine and endocrine tissues 

suggests its general role in the regulated secretion. 

 

Intracellularly, CgA is involved in sorting and packaging of peptides into secretory large 
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dense-cored granules,  organelles that designed for storage of prohormones, 

proneuropeptides, processing enzymes ( for peptide hormone processing), and other 

proteins required for regulated secretion from endocrine and neuroendocrine cells (49) 

(53) (46). CgA has been shown to control the biogenesis of secretory granules, and hence 

indirectly also regulated secretion in neuroendocrine/endocrine cells. For instance, 6T3 (a 

cell line derived from a mouse anterior pituitary tumor cell line AtT-20) lacking both the 

regulated secretory pathway and expression of CgA, showed recovery of regulated 

secretory phenotype when CgA was introduced exogenously (47, 54, 55). CgA is also a 

precursor protein for several bioactive peptides, including catestatin, vasostatin, 

pancreastatin, and other peptide hormones with autocrine, paracrine, and endocrine 

activities. 

 

Neuron specific enolase (NSE) is a highly acidic homodimeric 78kDa protein  (104) that 

has been found in central and peripheral nervous elements and also in many 

neuroendocrine cells and neuroendocrine tumors (105). NSE is thus regarded as one of 

the best described indicators for neurons. CD57 (the antigen recognized by the 

monoclonal antibodiey HNK-1) is generally considered to be a classical marker for 

neural crest-derived cells (106). There was evidence that the CgA-producing cells are 

derived from neural crest progenitor cells, a transient, migratory, multipotent precursor 

cell population known to generate much of the peripheral nervous system, epidermal 

pigment cells and a variety of mesectodermal derivatives(107). Normal development of 

the thymus is also dependent on correct development and patterning of neural crest cells 

(11, 108, 109) (110). By use of these traditional markers for (neuro)endocrine, nervous 
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and neural crest-derived cells, the neuroendocrine components of the chicken thymus 

were systematically surveyed in this report. 

 

Materials and methods 

Primary antibodies 

Monoclonal anti-turkey hypophysial CgA antibodies were obtained as a side product 

during the production of Mabs against a preparation of highly purified turkey 

hypophysial prolactin that contained trace amounts of CgA. These anti-CgA Mabs have 

been extensively used for immunohistochemical analyses of turkey and chicken pituitary 

sections (references, please). The identity of the antigen recognized by these Mabs was 

established by tandem mass spectrometry de novo sequencing of seven tryptic peptides 

from a turkey pituitary protein purified by immunoaffinity chromatography (102). Rabbit 

anti-NSE antiserum was obtained from ImmunoStar (Hudson, WI) and monoclonal 

mouse anti-CD57 (HNK-1) was obtained from Ancell Corporation (Bayport, MN). The 

former is a marker for neuronal cells (43), while the latter is a marker for neural crest-

derived cells (103, 111).  

 

Tissue sampling and processing 

White Leghorn chicks obtained from a local hatchery (Hy-line) at 1 day of age were 

raised in wire cages at the Texas A & M Poultry Science Center. The birds were 

euthanized at 1, 3, 4, 7, 8, 10, and 13 weeks of age. Thymic tissues were excised and 

fixed for 24 h at room temperature in Bouin Hollande sublimate. Bouin Hollande 

sublimate was prepared by adding 10 ml of saturated HgCl2 solution to 90 ml of Bouin 
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Hollande solution. The tissue blocks were then processed for paraffin embedding using 

routine laboratory protocols. Seven-μm thick tissue sections were made with a rotary 

microtome MT 980 (Research and Manufacturing Co., Inc).  

 

Immunohistochemical reagents 

TBST is a Tris-buffered saline containing 0.1% Triton X-100, pH 7.4. Trizma base and 

Triton X-100 were obtained from Sigma (St Louis, MO). Biotinylated goat anti-mouse 

immunoglobulin (Ig) and goat anti-rabbit Ig, Rhodamine Red-conjugated goat anti-mouse 

Ig, peroxidase-conjugated streptavidin, and FITC- and Rhodamine Red-conjugated 

streptavidin were obtained from Jackson Laboratories (West Grove, PA). Fluorescein 

isothiocyanate (FITC)-conjugated goat anti-mouse IgM, biotinylated goat anti-mouse IgG 

and DAB (3,3′-diaminobenzidine tetrahydrochloride) were obtained from Sigma (St 

Louis, MO). Cytoseal (a xylene-based mounting medium) was obtained from Stephens 

Scientific (Kalamazoo, MI). Vectashield (a water soluble mounting medium) was 

purchased from Vector Laboratories (Burlingame, CA).  

 

Immunohistochemical detection of CgA 

Immunohistochemical staining was performed on paraffin sections of thymic tissues from 

1, 3, 4, 7, 8, 10, and 13 week-old chickens. The tissue sections were dewaxed and 

hydrated using standard laboratory procedures. The sections were first incubated in a 

moist chamber for 1 h with 10% (v/v) normal goat serum, and then overnight with 

monoclonal mouse anti-turkey CgA Mab designated PL1G7F11 at a 1:3000 dilution 

(starting from undiluted ascitic fluid) in TBST (rinsing and dilution buffer). The next day, 
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the sections were rinsed with TBST and the detection protocol employed a 30 min 

incubation with biotinylated goat anti-mouse IgG (1:900) followed by a 30 min 

incubation with peroxidase-conjugated streptavidin (1.5 μg/ml). The enzyme reaction was 

developed for approximately 10 min using 25 mg of DAB and 75 μl of 30% (v/v) H2O2 in 

200 ml of 50 mM Tris–HCl, pH 7.4. A number of sections were counterstained with 

hematoxylin–eosin. The sections were dehydrated, coverslipped with Cytoseal, and 

immunoreactive (ir) cells were observed with an Olympus BX50 light microscope (Leeds 

Instruments, Inc., Irving, TX) and photographed with a Spot 110 digital camera 

(Diagnostic Instruments, Inc., St Sterling Heights, MI).  

 

Immunofluorescent double staining: CgA vs. NSE and CgA vs. HNK-1 
 
A direct comparison between the CgA- and NSE-ir cell populations was achieved by 

immunofluorescent double staining on the same tissue section. Upon dewaxing and 

rehydration, the sections were incubated overnight simultaneously with both primary 

antibodies, i.e. monoclonal mouse anti-CgA (PL1G7F11, ascitic fluid diluted 1:3000) and 

rabbit anti-NSE (purchased ready for use). The next day, the sections were rinsed with 

TBST and incubated simultaneously with Rhodamine Red-conjugated goat anti-mouse Ig 

(1:200) and biotinylated goat anti-rabbit Ig (1:500) for 90 min. Upon rinsing, the sections 

were finally incubated with FITC-conjugated streptavidin (3 μg/ml TBST) for 30 min, 

rinsed and coverslipped with Vectashield.  

 

The dual staining strategy for the comparison of CgA- and HNK-1-positive cells took 

advantage of the fact that the former is a mouse IgG, whereas the latter is a mouse IgM. 
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Therefore, both primary antibodies (HNK-1 at 2 μg/ml and mouse anti-CgA ascites at 

1:3000) were combined for simultaneous incubation on the same section. The next 

morning, the sections were rinsed and incubated with the combined secondary antibodies 

(FITC-conjugated anti-mouse IgM at 1:400 and biotinylated goat anti-mouse IgG at 

1:300). The slides were rinsed again and incubated with Rhodamine Red-conjugated 

avidin (1:400) for 40 min. Upon final rinsing, the slides were coverslipped with 

Vectashield. Negative controls accounting for potential cross-reactivity of the secondary 

reagents with mouse IgG or IgM were negative.  

 

Thymic microsomal fraction 

Chicken thymic granules (microsome) were prepared by a previously described 

procedure (112-114). Briefly, chicken thymic lobes from a 6-week old broiler were 

homogenized in 0.32 M sucrose buffered with 10 mM Hepes (pH 7.4) with a glass 

Dounce homogenizer. Ten percent of Protease inhibitor cocktail (Sigma P2714) was 

added to the homogenate. All the reagents and samples were cooled on ice. The 

homogenate was centrifuged at 2,200g for 10 min to remove the nuclei and the rough 

microsomal fraction was spun down at 100,000g for 2 hours. The pellets were 

resuspended and stored at –80C until analysis by SDS-PAGE and western blot. 

 

CgA SDS-PAGE and Western blotting 

Chicken thymic granules, protein extracts from fresh chicken thymus, adrenal and 

pituitary were mixed with identical volumes of SDS-PAGE reducing sample buffer. 

Equal volumes of all samples were loaded onto a 12% Tris-HCl Bio-Rad precast 
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polyacrylamide gels, and CgA was determined by Western blot.  After the proteins were 

electrotransferred to a nitrocellulose membrane (BioRad), the membrane was blocked 

with blocking buffer (Li-COR, Nebraska USA) and incubated with anti-CgA primary 

antibody (1:5000) for 5 hrs. Alexa Fluor 680-conjugated goat anti-mouse IgG (1:2500, 

Molecular Probes) was applied for signal detection. Odyssey protein weight markers 

were obtained from Li-Cor. The membrane was scanned with an Odyssey System (Li-

COR, Nebraska USA).  

 

Results 

Immunocytochemical demonstration of chromogranin A (CgA)-positive cells 

Intensely stained CgA+ cells were readily detectable in the chicken thymus at all ages 

tested (Fig.2.1A–D). The overall staining characteristics of the cells varied little with age, 

with the exception that cells seemed to increase in number with age (results not shown). 

Groups of immunopositive cells were distributed in a typical ring-like fashion, one ring in 

every thymic lobule. Counterstaining with hematoxylin–eosin (Fig.2.1B) showed that the 

ring of CgA+ cells was located at the medullary side of the cortico-medullary border. As a 

consequence, CgA+ cells were located in close proximity to the arterioles and the venules 

that provide the blood supply to the thymus. Upon high power magnification (Fig. 2.1C 

and D), it became clear that the CgA+ cells constitute a population of cells with diverse 

morphologies. While the majority of cells displayed a simple round to oval shape, some 

cells possessed very conspicuous extensions, reminiscent of a neuron-like morphology. 

 

 



                                                                                                                                     24  

 

 

 

 

 

 

 

 

 

 

 

1A 1B 

1C 

1D 

100 

100 μm 

25 

50 μm 

A B 

C 

D 

Fig. 2.1. Immunocytochemical demonstration of chromogranin A in the thymus of a 2-
week old chicken.  (A) Low power magnification shows intensely stained groups of 
immunopositive cells that are arranged in a typical ring-like distribution. There is little 
evolution of this picture with age, except for an apparent increase in the number and 
stainability of the cells. (B) Same as (A), but with hematoxylin–eosin counterstaining. 
The outer region (cortex, indicated by C) of each thymic lobule is stained somewhat 
darker by the counterstain than the inner area (medulla, indicated by M). The ring of 
CgA-positive cells is located at the medullary side of the corticomedullary border, in the 
neighborhood of arterioles and veins that are responsible for the blood supply to each of 
the lobules. Both the cortex and the central area of the medulla are essentially devoid of 
stained cells. (C) Same as (A) but at higher power magnification. This picture clearly 
shows the morphological heterogeneity of the CgA-positive cell population. Some cells 
have a simple, round or oval appearance, while other cells clearly show the neuron-like 
morphology with several extensions (See E). (D) Higher power amplification of the left 
hand cluster of cells from (C). This photomicrograph shows another illustration of the 
stellate appearance of some of the cells. Also note the proximity of the blood vessels near 
the CgA-positive cluster of cells.  
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Fig. 2.1. Continued. 
 
 
 

Western blot of CgA in thymic cell and thymic microsomal fraction 
 
To further confirm the expression of CgA in the chicken thymus, SDS-PAGE and 

Western blot were carried out by using the same antibody as the one used for 

immunocytochemistry. A clear band with a molecular weight of approximately 70k Da 

was observed in the sample of total protein extracts from chicken thymus in Western blot. 

The CgA blotting pattern was similar to a previous study in chicken pituitary (102). 

Chicken adrenal and pituitary protein extracts were used as positive controls (See Fig. 

2.2).  
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Fig. 2.2. CgA western blot of SDS-PAGE separation of chicken protein extracts from 
thymus, adrenal, pituitary and thymic microsomal fraction. A major band about at 70 kD 
was observed from samples of protein preparations and thymic microsomal granule 
fraction. Lane 1. Standard; 2. Thymus; 3.Adrenal; 4. Pituitary; 5. BSA; 6.Granule. 

                                                        

Immunofluorescent dual staining experiments 

The reputation of CgA as a neuroendocrine marker protein and especially the occurrence 

of long cytoplasmic, axon-like extensions on some of the CgA+ cells prompted us to 

explore the possibility that these cells were related with neuronal or neural crest-derived 

cells. For this purpose, single and dual staining experiments were performed with 

commercial antibodies recognizing NSE and CD57, respectively. As shown in Figs. 2.3 

and Fig. 2.4 A and B, both antisera reacted with discrete thymic cell populations. NSE+ 

cells were relatively scarce and fairly weakly stained, whereas CD57+ cells, stained with 

HNK-1, were intensely stained, fairly abundant, and, more importantly, located in the 

exact same area as the CgA+ cells. This is obvious when comparing the respective 

counterstained sections (Fig. 2.1 and Fig. 2.4).  
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Fig. 2.3. Immunocytochemical demonstration of neuron-specific enolase (NSE) in the 
thymus of a 2-week old chicken. NSE-positive cells are much less abundant than CgA 
cells and they also stain much less intensely. 
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Fig. 2.4. Immunocytochemical demonstration of CD57 in the thymus of a 2-week old 
chicken by use of monoclonal antibody HNK-l. (B) Is the same as (A) but counterstained 
with hematoxylin and eosin. When compared with Fig. l(A) and (B), CD57-positive cells 
clearly have a very similar distribution pattern as the CgA-positive cells: more or less 
clustered cells in a ring-like distribution at the medullary side of the cortico-medullary 
border. CD57-positive cells seem slightly less numerous than CgA positive cells. C, 
cortex; M, medulla.  

 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T5X-49MX24W-1&_user=952835&_coverDate=04%2F30%2F2004&_alid=311911663&_rdoc=1&_fmt=full&_orig=search&_qd=1&_cdi=5014&_sort=d&_docanchor=&view=c&_acct=C000049198&_version=1&_urlVersion=0&_userid=952835&md5=c33f865306cdfed00845661119b9a213&artImgPref=F#fig1#fig1
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However, when compared on the same tissue section, it became clear that neither the 

NSE+ cell population (Fig. 2.5), nor the CD57+ population (Fig. 2.6) overlapped to a 

noticeable extent with the CgA+ cells, since not a single clearly yellow stained cell could 

be found. This leads to the conclusion that the neural/neuroendocrine cellular component 

in the avian thymus is a complex entity that appears heterogeneous both in morphology 

and lineage.  

 

 

 

  

 

 

 

 

 

 

Fig. 2.5. Immunofluorescent dual staining of CgA and NSE on the same thymus section 
of a 2-week old bird. The picture shows red CgA-positive and green NSE-positive cells. 
No double-stained (yellow) cells could be observed. 
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Fig. 2.6. Immunofluorescent dual staining of CgA and CD57 on the same thymus section 
of a 2-week old bird. CgA-positive cells are stained red while CD57-positive cells are 
stained green. The overlap between both populations is virtually non-existent. An 
occasional yellowish cell is likely a spatial superposition of a red and a green cell located 
in different planes.
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Discussion 

By the availability of a new monoclonal antibody against turkey chromogranin A (CgA), 

this investigation described for the first time the neuroendocrine component of the avian 

thymus by use of traditional markers for (neuro)endocrine, nervous and neural crest-

derived tissue. In practical terms, molecular markers are invaluable in defining 

neuroendocrine cells and in particular chromogranin A (115), (116). The obtained 

immunohistochemical evidence, in combination with the identification of thymic CgA 

expression by Western Blot, has allowed us to demonstrate the storage and production of 

chromogranin A by a discrete cell population in the chicken thymus. CgA controls the 

biogenesis of secretory granules, and hence regulated secretion in neuroendocrine 

(endocrine) cells. Secretory large dense-cored granule is responsible for storage of 

prohormones, proneuropeptides, processing enzymes and other proteins required for 

regulated secretion in endocrine and neuroendocrine cells. Indeed,  a number of reports 

have described (neuro)endocrine molecules in the avian thymus, such as neurotensin (101) 

(117) (37) (43) (38), neuropeptide Y, substance P, vasoactive intestinal polypeptide 

(43)and (37), proopiomelanocortin derivatives (41), calcitonin gene-related peptide (43) 

and somatostatin (101) (118). 

 

Both the location of the CgA+ cells (in the medulla of the lobules near the 

corticomedullary border) and their morphological heterogeneity (round to oval, but also 

stellate cells) are in remarkable agreement with the nitrergic cells that have been 

described earlier in the thymic microenvironment of the chicken by Gulati et al. (42, 43, 

119). Therefore, immunofluorescent dual staining experiments were performed with a 
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neuron-specific marker, rabbit anti-NSE. While some NSE+ cells were detected in the 

same area as the CgA+ cells, it was quite clear that these were two totally separated cell 

populations without detectable overlap (Fig. 2.5).  

 

Single stained sections showed a CD57+ cell (i.e. Neural crest-derived cells) population 

with the same typical ring-like distribution as the CgA+ cells. However, dual-staining 

experiments could not demonstrate the slightest overlap between the two cell populations 

(Fig. 2.6). LaBonne et al. reported that CgA-producing cells are derived from neural crest 

progenitor cells, a transient, migratory, multipotent precursor cell population known to 

generate much of the peripheral nervous system, epidermal pigment cells and a variety of 

mesectodermal derivatives (107). While these data confirm the presence of neural crest-

derived cells in the avian thymus (120), they fail to convincingly categorize the CgA+ 

cells as neural crest derivatives. A possible explanation is that these neuroendocrine 

phenotypes could be changed or switched during the course of cell development.  

 

Angeletti and Hickey (121) first described CgA-positive cells as a potential link between 

the nervous and immunological systems. Indeed, the substantial number of CgA+ cells 

and the ease with which they can be stained using a moderately sensitive, non-amplified 

enzymatic method is noteworthy. The profile of every lobule was characterized by a ring 

of clustered CgA+ cells at the medullary side of the corticomedullary border, suggesting 

that in a 3-dimensional view, the medullae of the thymic lobules are surrounded by a 

spherical lattice of neuroendocrine cells. The cortico-medullary boundaries of the chicken 

are important cross-roads of communication because they have been shown to receive 
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vagal cholinergic (acetyl cholinesterase-positive) nerves, but they are also innervated by 

sympathetic perivascular catecholaminergic plexi (122). As such, the CgA-positive 

neuro-endocrine cells (as well as the CD57+-positive neural crest-derived and NSE-

positive neural cells) are potential targets of the autonomous nervous system and of 

systemically circulating signals. 

 

In response to the stimulus, those molecules co-stored with CgA as well as CgA 

derivatives in the secretary granules are expected to be released intoto the 

microenvironment of the thymus.  The biological functions of these amines or peptides 

are now being extensively studied. For instance, the CgA fragment corresponding to 

amino acids 1–76 (vasostatin-1) inhibits vascular tension, exerts antifungal and 

antibacterial effects, promotes cell adhesion, and affect muscle contraction(56). Another 

CgA-derived bioactive peptide, catestatin, is a potent catecholamine antagonist that 

counteracts the biological action of catecholamine, which is co-stored with CgA (123, 

124). Some of the latest studies also link CgA and catestatin with hypertension, providing 

insight in new therapeutic agents and genetic predisposition to high blood pressure (125).  

 

In conclusion, the neuroendocrine component of the avian thymus was characterized as  

acomplex system consisting of at least three apparently distinctive cell populations 

thatpotentially receive input from each other, from the autonomous nervous system or 

fromthe circulation. The nature of the messenger molecules co-stored with CgA, the 

mechanism by which they are released and their effects on the proliferation and 

differentiation of the developing T-cell populations will be topics of further investigation.  
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CHAPTER III 

CARBOXYPEPTIDASE E, AN ESSENTIAL ELEMENT OF THE REGULATED 

SECRETORY PATHWAY, IS EXPRESSED AND PARTIALLY CO-LOCALIZED 

WITH CHROMOGRANIN A IN CHICKEN THYMUS 

 

 

Overview 

The study in this chapter aimed at assessing the expression of carboxypeptidase E (CpE) 

and its potential co-existence with chromogranin A (CgA) in the diffuse neuroendocrine 

system in the thymus of the chicken. Both CgA and CpE are characteristic functional and 

structural elements of the regulated secretory pathway. CpE is a processing enzyme that 

catalyzes the transformation of peptide precursor proteins into bioactive peptide 

hormones, but it also serves as a sorting receptor in the regulated secretion pathway, 

while chromogranin A is a classic marker protein for neuroendocrine cells. The 

immunohistochemical evidence presented in this investigation, combined with the 

identification of the chicken CpE mRNA by RT-PCR, has allowed us to demonstrate the 

co-existence of CgA and CpE in identical neuroendocrine cells in a primary lymphoid 

organ. The CpE- and CgA-positive cells are primarily found in the transition zone 

between the cortex and the medulla of the thymic lobules, an area known to contain 

numerous arterioles and to be heavily innervated by the autonomic nervous system. It is 

tempting to speculate that the diffuse neuroendocrine system may serve as a relay for 

nervous stimuli delivered by sympathetic and/or parasympathetic nervous system and/or 

for humoral factors delivered by the circulation, which would provide a mechanism for 

fine tuning thymopoiesis by a variety of physical and environmental factors. 
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Introduction 

The thymus is the primary lymphoid organ for T-cell development and thus plays a 

pivotal role in the vertebrate cellular immune system. Considerable evidence has been 

presented that the thymus is also the source of an ever growing list of hormones and 

neuropeptides(23), for review, see(28). The immunological significance of these neuro-

endocrine elements has been intensively investigated. Hormones play an essential role in 

establishing central T-cell tolerance (126). For example, thymic epithelial cells express 

insulin causing clonal deletion of insulin-reactive T-cells (127). However, mounting 

evidence shows that thymic neuropeptides also function as humoral signaling factors 

affecting T-cell physiology.  In this context, neuropeptides act as immunomodulators (23) 

that participate in the homeostatic regulation and provide essential growth regulatory 

signals - ranging from stimulatory to pro-apoptotic - to thymocytes, as well as in the 

regulation of cytokine secretion (18, 19, 28, 29). For instance, somatostatin, a 

neuropeptide mainly produced in the brain, is highly expressed in murine thymus and was 

shown to be able to regulate thymocyte development and migration (92).   

 

Also the avian thymus appears to be an example of immuno-neuroendocrine interaction.  

Various thymic neuropeptide-positive cells, containing peptides including neurotensin, 

met-enkephalin, neuropeptide Y, substance P and VIP were demonstrated 

immunohistochemically by Atoji et al.(37). Other studies have demonstrated the presence 

of immunoreactive pro-opiomelanocortin (POMC)-derived molecules in the thymus of 4-

day old chickens, with cell numbers increasing with ageing (40, 41).  Finally, nitrergic 

and peptidergic innervation of the chick thymus was described by Gulati et al.(42, 43). 
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While the effects of these humoral elements on T-cell physiology are now being 

elucidated, their releasing mechanism is largely unknown. Neuroendocrine cells secrete 

proteins via one of two distinctively different pathways, i.e. the constitutive secretory 

pathway and the regulated secretory pathway. In the regulated secretory pathway, 

proteins such as pro-hormones and pro-neuropeptides mature in the secretory granules of 

the neuroendocrine cell through a number of post-translational modifications and a 

specific, extracellular (depolarizing) stimulus is required for delivery (exocytosis) of the 

secretory products to the outside of the cell.  Chromogranin A (CgA) is considered as an 

on/off switch in neuroendocrine cells, controlling the biogenesis of large dense-cored 

vesicles (LDCV) and essential for the regulated secretory pathway. For instance, after 

inhibition of CgA expression by antisense RNAs in PC12 cells, secretory granule 

formation was essentially lost, whereas, knock-in of bovine CgA into these CgA-

deficient PC12 cells restored the regulated secretory pathway (46, 47). 

 

In the process of sorting and processing of prohormones, carboxypeptidase E (CpE, 

previously also referred to as CpH(59) appears to be another crucial element. 

Carboxypeptidase E per se is an exoproteolytic processing enzyme exclusively present in 

the Golgi apparatus and secretory granules of neural/neuroendocrine cells. Its function is 

to remove basic amino acids residues exposed upon endoproteolyic cleavage of the 

hormone precursor by a specific prohormone convertase at the site of a dibasic pair (e.g. 

Lys-Lys).  The membrane-bound form of the enzyme is anchored in the wall of the 

secretory granules through its COOH-terminal, which also serves as a sorting receptor for 

several prohormones and proneuropeptides in neuroendocrine cells (60, 61). 
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In the previous chapter, we have shown the existence of a complex neuroendocrine cell 

population within the chicken thymus, including a CgA-immunoreactive cell population 

(128). Here we further investigate whether carboxypeptidase E is also expressed in the 

chicken thymus, and more specifically in the previously described CgA-positive cells. 

The co-existence of CpE and CgA in the same cells in the chicken thymus would provide 

strong circumstantial evidence suggesting that the release of the neuropeptides in the 

thymus occurs, at least partly, through the regulated secretory pathway. This, in turn 

would imply that a specific stimulus is responsible for the release of neuropeptides under 

the proper physiological conditions.  In this study, the cDNA sequence of chicken 

carboxypeptidase E was first assembled in silico and a reverse transcription polymerase 

chain reaction was performed to examine the production of carboxypeptidase E mRNA 

within chicken thymus. In addition, an immunocytochemical approach was used to 

confirm the presence of CpE, and to assess its cellular co-localization with CgA. 

 

Materials and methods 

Chicken carboxypeptidase E cDNA sequence  

A chicken CpE cDNA contig was assembled in silico based on the public chicken 

Expressed Sequence Tag (EST) and chicken genome databases. The human 

carboxypeptidase E cDNA sequence (GI: 31565486) was compared to the available 

sequences in the chicken EST database (http://www.chickest.udel.edu/ 

Cogburn_CAP3_DB/blast.html). The resulting EST sequences with high homology were 

assembled into one consensus sequence using CAP3 program at 
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http://deepc2.zool.iastate.edu/aat/cap/cap.html. The assembled chicken CpE cDNA 

sequence was then verified by comparison with the chicken whole genome database 

(http://genome.ucsc.edu/cgi-bin/hgBlat). The predicted amino acid sequence of chicken 

Cpe was deduced by use of the NCBI ORF (Open Reading Frame) Finder 

(http://www.ncbi.nlm.nih.gov/gorf/gorf.html). 

 

CpE RT-PCR and sequencing  

Total RNA was extracted from normal broiler chicken thymus using Trizol (Invitrogen, 

US) according to standard protocols. Total RNA was reverse transcribed to cDNA with 

Omniscript reverse transcriptase (Qiagen, US) using random hexamer-oligos as the 

primer (1μM).  The cDNA (5μl) was then amplified by PCR for the detection of 

Carboxypeptidase E.  The PCR reaction mixture contained 2 mM MgCl2, 50 mM of KCl, 

dNTP mix(200 μM of each dNTP), and 1 μl  BD Advantage™ 2 Polymerase Mix, 

[including BD TITANIUM Taq DNA Polymerase, a small amount of proofreading 

polymerase, and BD TaqStart Antibody (1.1 μg/μl) (Clontech, USA)]  and 0.4 μM of the 

following gene-specific primers. The sequence of the forward primer was:  

TTGGTCGAAGTAATGCCCAGG (Tm 610 C) and that of the reverse primer was:  

TCCTCCCAATAGCCCTTCAGA (Tm 600C). The expected size of the PCR product was 

550 bp.  PCR reactions were carried out using the following conditions: 95 0C for 1.5 

min, and 30 cycles of 95 0C for 25 sec and 68 0C for 3 min. The resulting PCR product 

was then sequenced in the Gene Technologies Laboratory, Texas A&M University, using 

an ABI Prism 377XL DNA Sequencer. Similarily, a RT-PCR was also conducted using 

total RNA from human thymus (Ambion, TX). Specific primers for the human CpE 
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sequence (gi:4503008)were designed as follows:  

Forward: AGATGGAACCACCAACGGTG 

Reverse: AGATGGTGGCATTCGCAATT 

The primers were expected to anneal on exon 5 and 7, respectively. The RT-PCR product 

spans two introns (129), with an expected size of amplicon of 251 bp. 

 

Immunocytochemistry 

White Leghorn chicks were obtained from a local hatchery (Hy-line). Thymic tissues 

were harvested and fixed for 24 hours at room temperature in Bouin Hollande sublimate.  

Bouin Hollande sublimate was prepared by adding 10 mL of saturated HgCl2 solution to 

90 mL of Bouin Hollande solution.  The tissue blocks were then processed for paraffin 

embedding using routine laboratory protocols. Tissue sections of 9-10 μm thick were 

made with a rotary microtome MT 980 (Research & Manufacturing Co., Inc). 

 

Immunohistochemical reagents and primary antibodies 

TBST is a Tris-buffered saline containing 0.1% Triton X-100, pH 7.4.  Trizma base, 

Triton X-100 and DAB were obtained from Sigma (St. Louis, Mo).  The peroxidase-

conjugated secondary antibodies, biotinylated goat anti-rabbit Ig, rhodamine red-

conjugated goat anti-mouse Ig, and FITC- and rhodamine red-conjugated streptavidin 

were obtained from Jackson Laboratories (West Grove, PA). Cytoseal (a xylene-based 

mounting medium) was obtained from Stephens Scientific (Kalamazoo, MI).  Vectashield 

(a water soluble mounting medium) was purchased from Vector Laboratories 
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(Burlingame, CA).  Monoclonal anti-CgA antibodies were previously characterized (102, 

128). Rabbit anti-CpE antibodies were a generous gift from Dr. Peng Loh (61). 

 

CgA and CpE immunofluorescent double staining 

A direct comparison between the CgA- and CpE-ir cell populations was achieved by 

immunofluorescent double staining on the same tissue section. A detailed procedure was 

described elsewhere (128). Briefly, upon dewaxing and rehydration, the sections were 

incubated overnight simultaneously with both primary antibodies, i.e. monoclonal mouse 

anti-CgA (ascites fluid diluted 1:3000) and rabbit anti-CpE (1: 1000).  The next day, the 

sections were rinsed with TBST and incubated simultaneously with Rhodamine Red-

conjugated goat anti-mouse Ig (1:600) and biotinylated goat anti-rabbit Ig (1:500) for 90 

minutes.  Upon rinsing, the sections were finally incubated with FITC-conjugated 

streptavidin (3μg/ml TBST) for 30 minutes, rinsed and coverslipped with Vectashield. 

Immunoreactive cells were observed with Zeiss Axioplan Microscope and Zeiss 

Axiophot Camera Module.  Photomicrographs were taken with a Spot camera. 

 

SDS-PAGE and Western blot  

Protein extracts from fresh chicken thymus, adrenal and pituitary were prepared mixed 

with identical volumes of SDS-PAGE reducing sample buffer(130). The procedure was 

previously described in the first chapter. Equal volumes of all samples were loaded onto a 

12% Tris-HCl Bio-Rad precast polyacrylamide gel. The proteins were separated for 1 h at 

a constant voltage of 100 V.  Immediately after the separation, the proteins were electro-

transferred to a nitrocellulose membrane, using a NOVEX blotting system at 0.8 mA per 
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cm2 for 1 hour. The membrane was blocked with blocking buffer (Li-COR, Nebraska 

USA) and incubated with primary antibody (1:4000) for 5 hrs. Alexa Fluor 680-

conjugated goat anti-mouse IgG (1:5000, Molecular Probes) was applied for signal 

detection. Odyssey protein weight markers were obtained from Li-Cor. The membrane 

was scanned with an Odyssey Infrared Imaging System (Li-COR, Lincoln, Nebraska 

USA).  

 

Results 

Chicken CpE structure and synthesis   

A chicken CpE cDNA contig of 2240 bp was assembled (data not shown). The positions 

of exons and introns were examined by aligning the cDNA contig with the chicken 

genomic sequence at http://genome.ucsc.edu/cgi-bin/hgGateway. The chicken CpE gene 

is located on chromosome 4 and consists of 9 exons.  Synthesis of CpE mRNA in the 

chicken thymus was proved by RT-PCR (Fig. 3.1) and confirmed by sequencing of the 

resulting PCR product.  

 

The predicted Chicken CpE protein consisted of 469 amino acids, while mouse and 

human have been reported to consist of 476 amino acids. The calculated theoretical pI 

and molecular weight of chicken CpE is 5.1 and 52.4 kDa, respectively. The cDNA and 

protein sequence of chicken CpE, as well as the secondary structure, are highly conserved 

(Fig. 3.2 and Fig. 3.3). The C-terminal of CpE is believed to anchor the molecule to the 

membrane of the secretory granules and its sequence is identical between species.  

 

 

http://genome.ucsc.edu/cgi-bin/hgGateway
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Figure 3.1.  Agarose gel electrophoresis of CpE RT-PCR product. The specific amplicon 
with the expected size of 550 bp was sequenced and was shown 98% of identity with the 
predicted cDNA sequence.  
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Figure 3.2. The predicted chicken CpE protein sequence, aligned with human 
(gi:6429043) and mouse (gi:22203763) CpE sequence. The amino acid sequence of CpE 
appears to be  highly conserved among chicken, mouse and human. Dark-shaded 
sequences shown are identical, as noted * in the consensus. ~ noted for high homology. 
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Figure 3.3. Secondary structure of chicken CpE. The chicken CpE contains a Zn_pept 
domain from 168 and ends at position 458. Zn_pept domain (a Zn-binding catalytic 
domain of Zinc metallopeptidases) is conserved among many other members of the 
carboxypeptidase protein family. Structural analysis was conducted using SMART 
(http://smart.embl.de/).  
 

CpE protein expression in chicken thymus 

A. Immunocytochemical localization  

Chicken CPE was shown to be expressed in chicken thymus at the protein level by 

immunocytochemistry (Fig. 3.4), using pituitary as a positive control tissue. Paraffin 

sections of chicken thymus and pituitary were stained with an anti-CpE C-terminal 

antibody (61). Cells displaying CpE-like immunoreactivity (CpE-ir) were located 

primarily on the cortico-medullary border, a region that is heavily innervated by the 

autonomous nervous system and numerous blood capillaries. While the morphology of 

the CpE-ir cells is heterogeneous, most of the cells are round but some of them have star-

like extensions. Fig. 3.5 shows a picture of double staining of CPE and CgA. Although a 

few single-stained CgA- and CpE-positive cells could be found, the large majority of 

cells were double-stained. 

 

As a positive control, the pituitary showed specific, very typical cytoplasmic staining in 

groups of adjacent cells sharing an almost identical morphology reminiscent of the 
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POMC cells, although the phenotype of these cells in pituitary was not determined in this 

experiment. However, both lobes contained CpE-positive cells (results not shown). 
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Figure 3.4. Six-week-old chicken pituitary (top) and thymus (bottom) was stained with 
rabbit anti-CpE antiserum. (A, pituitary; B-C, thymus. The bar in A and C equals to 25 
micrometes; the bar in B equals to 50 micrometers) 
In thymus, CpE immuno-reactive cells (Fig. B and C) were located primarily on the 
cortico-medullary border, a region that is heavily innervated by the autonomous nervous 
system and where numerous blood capillaries can be found. While the morphology of the 
CPE-immuno-reactive cells is heterogeneous, most of the cells are simple, round and 
some of them have star-like extensions. In pituitary, typical cytoplasmic staining was 
readily detectable in groups of adjacent cells sharing an almost identical 
morphology.reminiscent of the POMC cells (Fig. A). 
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Figure 3.5. Immunofluorescent CgA and CpE double staining. Thymic cells were stained 
with a monoclonal antibody against CgA and a rabbit polyclonal antiserum against a 
synthetic C-terminal peptide of CpE. Cells labeled in red (rhodamine) were the CgA-
immunoreactive cells and the green labeled cells (FITC) were CpE-positive cells. 
Fig. 3.5 (A) shows the single red channel and (B) the single green.  (C) shows the 
composite image. Although a few single-stained CgA- and CpE-positive cells could be 
found, many cells was double-stained. Arrow in (C) points to a double-stained yellow 
cell. Arrow in (A) points to the single-stained red CgA positive cell. 
 

 

B. Western blotting 

To further confirm the expression of CpE in the chicken thymus, SDS-PAGE and 

Western blot were carried out by using the same antibody as the one used for 

immunocytochemistry. A clear band with a molecular weight of approximately 53k Da 
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was observed in the sample of total protein extracts from chicken thymus in Western blot. 

Chicken adrenal and pituitary protein extracts were used as positive controls (See Fig. 

3.6).  
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Figure 3.6.  Western blot identification of CPE. Lane 1: Protein standards; Lane 2: 
Pituitary; Lane 3: Adrenal; Lane 4: Thymus. Protein extracts from chicken thymus, 
adrenal gland and pituitary were separated by SDS-PAGE on a 12% Tris-HCl precast 
polyacrylamide gel, blotted onto a nitrocellulose membrane and analyzed with a rabbit 
polyclonal antiserum (1:4000) against against a synthetic C-terminal peptide of CpE. 
Alexa Fluor 680-conjugated goat anti-mouse IgG antibody was used as the detection 
reagent. CPE was expressed in chicken thymus, as well as in adrenal gland and pituitary 
(positive controls). 
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Fig. 3.7.  RT-PCR of CpE on human thymus total RNA. Lane 1: specific amplicon; lane 
2: negative control; lane 3: molecular markers.  An expected amplicon size of 251 bp was 
observed. The specificity of the PCR product was further confirmed by DNA sequencing.  
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Discussion 

In the regulated secretory pathway (RSP), neuropeptide precursors in the trans-Golgi 

network are transported and sorted to the secretory granules of neuroendocrine cells. 

They are then processed and mature into active peptides and stored in large dense-core 

vesicles (LDCVs) until secreted upon delivery of a specific stimulus to the cell (50, 131). 

The present study aimed at assessing the co-existence of two essential elements of the 

regulated secretory pathway, chromogranin A and carboxypeptidase E, in the diffuse 

neuroendocrine system in the thymus of the chicken. The immunohistochemical evidence 

presented in this investigation, combined with the identification of the chicken CpE 

mRNA by RT-PCR, has allowed us to demonstrate this co-existence of CgA and CpE in 

identical neuroendocrine cells. To our knowledge, this has not been shown previously in 

any lymphoid tissues of any vertebrate species, including in human thymus.   

 

Recently, a predicted carboxypeptidase E mRNA of 2034 bp was added to the GenBank 

(XM_420392.1  GI:50746181) based on the chicken (jungle fowl) genome sequence. 

Compared to the nucleotide sequence we assembled in silico (based on publicly available 

chicken ESTs), the open reading frames of both sequences were almost identical but the 

EST-based sequence was about 200 bp longer in the 3’ non-coding region. The chicken 

CpE gene consists of nine exons, as is also the case in humans.  The predicted chicken 

CpE protein sequence consists of 469 amino acids and shows 87, 87, 88 and 90% 

homology with rat, mouse, human and bovine CpE, respectively. The C-terminal 

sequence of CpE, which serves as an anchor to the membrane of secretory granule, is 

perfectly conserved between birds and mammals. The major portion of the chicken CpE 
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protein structure consists of a Zn_pept domain (residues 168 through 458). This domain 

is conserved in many other members of the carboxypeptidase protein family in 

mammals(132). The highly conserved CpE sequence between species may suggest a 

conserved function and distribution of this molecule. Preliminary RT-PCR experiments 

demonstrated expression of CpE mRNA in human thymus (see Fig 7), further exploration 

on mammalian species in a comparative view is underway. 

 

Immunofluorescent dual staining clearly showed partial co-localization of the CpE and 

CgA in the identical cells, although single stained cells (either CgA- or CpE-positive) 

were occasionally observed. The latter observation proves that dual stained cells are 

authentic and not an artifact caused by cross-reacting secondary reagents.  

Importantly, this evidence suggests that in the chicken thymus, some of the locally 

produced neuroendocrine molecules may be processed and released through the regulated 

secretory pathway. If this hypothesis is correct, it follows that extra-cellular stimuli must 

be regulating the function of at least part of the thymic diffuse neuroendocrine system. 

 

As previously described, the CpE-CgA double positive cells are primarily found in a 

transition zone between the cortex and the medulla of the thymic lobules. This area is 

known to contain numerous arterioles and is heavily innervated by the autonomous 

nervous system (133). Therefore, it is tempting to speculate that the diffuse 

neuroendocrine system may serve as a relay for nervous stimuli delivered by sympathetic 

and/or parasympathetic nervous system and/or humoral factors delivered by the 



                                                                                                                                     50  

circulation, allowing thymopoiesis to be fine tuned by a variety of physical and 

environmental factors (134).  

 

An area of future research is to isolate and purify LDCV from the crude microsomal 

fraction described in this study, by immuno-affinity chromatography, magnetic sorting or 

even immunoprecipitation, using a monoclonal antibody against C-terminal end of CpE  

starting. This will pave the way of identification of those neuropeptides and hormones 

stocked in the neurosecretory granules.  
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 CHAPTER IV 

INTRA-THYMIC EXPRESSION OF SOMATOSTATIN AND ITS EFFECTS ON 

PROLIFERATION AND DIFFERENTIATION OF CHICKEN THYMIC CELLS 

 

Introduction 

The immune system and neuroendocrine systems are now known to have intense bi-

directional interactions in order to maintain physiological homeostasis. More and more 

evidence is showing that the cross-talk between these two systems is fundamentally 

important to their physiological functions. In fact, primary and secondary lymphoid 

organs are innervated by nerve fibers and neuropeptides are released from the nerves to 

signal the immune system (135, 136). In addition, lymphoid organs contain an ectopic 

population neuroendocrine cells producing hormones or neuropeptides, as shown in the 

chicken in the previous chapters, and in other studies in mammals as well.(82, 137). 

Various neuropeptides have been shown to act as immunomodulators of the immune 

organs in mammals (87, 138). In this study, we will focus our attention on somatostatin in 

chicken thymus, which has been shown in mammals to exert multiple effects on immune 

functions within the microenvironment (62) (65, 67) 

 

Somatostatin (SST, also referred as somatotropin release-inhibiting factor, or SRIF) is a 

cyclic neuropeptide originally found in hypothalamus, identified as a potent inhibitor of 

the secretion of growth hormone (GH) and thyroid-stimulating hormone (TSH) from the 

anterior pituitary(63). In fact, later on, SST and its receptor SSTR have been found 

throughout the body, including in the pancreas, salivary gland, kidney, lymphoid cells, 
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blood vessel walls, etc., and it became clear that this neuropeptide exerts multiple 

physiologic effects. For review, see (65). 

 

SST, like many other neuropeptides, is initially synthesized from one single gene as a 

larger preprosomatostatin containing 92 amino acid in mammals. It is then cleaved at C-

terminus to form two biologically active forms, SST-14 and SST-28, composed of either 

14 and 28 amino acids, respectively (68, 69). Chicken SST-14 has the exact same amino 

acid sequence as in mammals, while in SST-28 there is one amino acid difference(70). 

 

In mammals, five SSTR subtypes (SSTR-1, -2, -3, -4 and –5) have been identified and 

characterized; they are encoded by five different, intronless genes (72, 73). In addition, 

rodent SSTR-2 has two isoforms, SSTR-2A and SSTR-2B, due to alternative splicing 

(74). SSTRs have seven α-helical trans-membrane domains, with a structure of three 

intra- and extra-cellular loops, and all of them are G-protein-coupled receptors (75). The 

SSTRs are widely expressed in different tissues throughout the body, with different 

expression level and subtype combinations (77) depending on tissue and stage of 

development. 

 

As mentioned earlier, SST has been shown to have multiple effects on various immune 

cells. Studies regarding the effects on immune cell proliferation, secretion, migration and 

apoptosis reveal that the immunomodulatory actions by somatostatin are complex and 

depend on various physiological and experimental conditions. For review, see (81). SST 

has a very short half-life (1.5~3 minutes) in the systemic circulation (71), indicating that 
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SST-producing cells, or stores of SST are probably close to the target cells. It is thus that 

SST can exert regulatory roles on the chicken developing T-lymphocytes in the thymus, 

through local paracrine secretion and their receptors on immune cells. 

 

In the previous chapters, we have provided strong evidence that chicken thymus, a 

primary lymphoid organs contains neuroendocrine cells. In this study, we examined if 

somatostatin and its receptor are locally expressed within the chicken thymus and their 

effects on the neighboring thymic cells.  In particular, we have evaluated the 

physiological role of somatostatin in vitro with respect to thymic cell proliferation, 

differentiation and apoptosis. 

 

Materials and methods 
 
Animal and tissue processing 

Four to 6-week old broiler chickens were sacrificed by cervical dislocation and tissues 

were dissected on site. For immunohistochemical purposes, the tissues were immediately 

immersed in fixative (Bouin Hollande sublimate) for 24h at room temperature. The 

fixative contained 10 ml of saturated HgCl2 solution and 90ml of Bouin Hollande 

solution. The tissue blocks were then paraffin-embedded using routine protocols. Eight to 

10 μm thick tissue sections were made with a rotary microtome MT 980 (Research and 

Manufacturing Co., Inc.). All experiments followed Animal Use Protocols approved by 

Animal Care and Use Committee at Texas A&M University. 
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Immunocytochemistry 

A. SST single staining 

Immunocytochemical single staining was performed on paraffin sections of thymus tissue 

from 43 days-old Single Comb White Leghorns. The sections were de-waxed and 

hydrated according to standard lab procedures and then incubated overnight with 

polyclonal rabbit anti-SST-14 antibody (ImmunoStar, Lot 216002) at 1:800 in Tris Buffer 

Saline (TBS) containing 0.1% (v/v) Triton-X100 (TBST) buffer. The next day, the 

sections were rinsed with TBST and the secondary antibody, GaRIgG-peroxidase 

(Jackson ImmunoResearch Lab) was applied with final dilution 1/600 and incubated for 

30 minutes. The enzymatic reaction was developed for approximately 10 minutes using 

25 mg of DAB and 75 μl of 30% (v/v) H2O2 (source) in 200 ml Tris buffer (50 mM Tris-

HCl, pH 7.4). The sections were dehydrated and cover-slipped with Cytoseal. To verify 

the specificity of the staining, the diluted primary antibody was pre-incubated with 

somatostatin-14 peptide (Peninsula Laboratories, Belmont, CA). 

 

B. Immunofluorescent double staining of SST and CgA 

Immunofluorescent staining procedure is previously described elsewhere (128). Briefly, 

after dewaxing and rehydration as in 1.1, the sections were incubated overnight with both 

primary antibodies simultaneously, i.e. monoclonal mouse anti-CgA (1:3000) (102) and 

rabbit anti-SST-14 (1:800). The next day, the sections were rinsed with TBST and 

incubated simultaneously with Rhodamine Red-conjugated goat anti-mouse IgG (1:600) 

and FITC-goat anti-rabbit IgG (1:600) (Jackson ImmunoResearch Lab) for 45 minutes.  

Upon rinsing, the sections were coverslipped with Vectashield (Vector Laboratories, 



                                                                                                                                     55  

CA).  Immunoreactive cells were observed with an Olympus BX50 light microscope 

(Leeds Instruments, Inc.; Irving, TX) equipped for epifluorescence with a dual band filter 

set for FITC and Rhodamine (Chroma Technology Corp, Rockingham, VT) and 

photographed with a Spot 110 digital camera (Diagnostic Instruments, Inc., St. Sterling 

Heights, MI). 

 

SSTR2 RT-PCR 

Total RNA was isolated from chicken thymus and pituitary, using TriZol reagent 

(Invitrogen, Carlsbad, CA). RNA samples were quantified with a spectrophotometer 

(Eppendorf BioPhotometer), and treated with RNase-free Dnase I (Invitrogen) to digest 

any residual DNA, according to the manual provided by the manufacturer. The first 

strand cDNA was synthesized from approximately 1.2 μg of total RNA by RETROscript 

reverse transcriptase (Ambion, Austin, TX) using either random hexamers or dexamers 

according to the manufacturer’s protocol. Gene-specific PCR primers were designed by 

using Primer Express 2.0 (Applied Biosystems, Foster City, CA), based on the cDNA 

sequence of chicken somatostatin receptor type 2 (Gallus gallus, gi:50757970). PCR 

primer oligonucleotides were synthesized by Intergrated DNA Technologies Inc. Primer 

sequences were as follows: 

Forward: GCGGATGAGCTGTTCATGCT 

Reverse: GATGCCTGAGGACTTGACTTTGA  

The first-strand cDNA was amplified in a 50 μl PCR reaction that contained 2 mM 

MgCl2, 200 μM dNTP mix, 1.0 μM of each of the forward and reverse primers, PCR 

buffer and 1.25 U AmpliTaq Gold DNA polymerase (Perkin Elmer). The polymerase was 
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activated by pre-heating at 94 0C for 10 min. The PCR protocol used 30 cycles consisting 

of 30s denaturation at 94 0C, and 70s at 65 0C, with a final extension step at 65 0C for 10 

min. The products from the RT-PCR reaction were analyzed by electrophoresis on a 

1.5% agarose gel using ethidium bromide for visualization. Photos were taken using a 

MultiDoc-It Digital Imaging System (UVP, USA). 

 

Proliferation assay   

Chicken thymic lobes were collected from 1-day old male Leghorns (Hy-Line 

International).  A thymic cell suspension was prepared in AIM-V serum-free medium 

(Gibco, Carlsbad, CA). Cells were cultured in 96-well plates at a density of 

approximately 50,000 cells/well, 50 μl in each well; cells were incubated with 

somatostatin (Peninsula Laboratories, Belmont, CA) at a concentration of 10-12 M, 10-9 

M or 10-6 M for 24h, respectively.  Two µg Concanavalin A per ml and 1.5 ng chicken 

IL-2 (kindly donated by Dr. Ellen W. Collisson) per ml were also added to the medium to 

stimulate the cell proliferation. Cell proliferation was assessed using the CellTiter96 Cell 

Proliferation Assay Kit (Promega, WI, USA), based on conversion of a tetrazolium salt 

into a formazan product by the cellular metabolism. Two trials of the assay was 

conducted according to the manufacturer’s instructions. Absorbance at 580nm was 

recorded with a 96-well plate reader (Wallac Victor2, PerkinElmer Life and Analytical 

Sciences, Shelton CT). 
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Flow cytometric measurement of T-cell differentiation  

Initially, thymic cell fragments about 1 mm3 were incubated at 37 0C and 5% CO2 in the 

presence of SST at concentrations of 10-12 M, 10-9 M and 10-6 M in AIM-V serum-free 

medium for 5 days.  Thymic cell suspensions were then prepared and incubated with two 

directly labeled primary antibodies: mouse anti-chicken CD8α-PE (0.2 μg/106 cells) and 

mouse anti-chicken CD4-FITC (1 μg/106 cells) (Southern Biotechnology, Birmingham, 

AL) on ice for 40 min.  Cells were washed twice with cold PBS. Flow cytometric 

analysis was conducted by Dr. Roger Smith, III in the core lab for flow cytometry in the 

Veterinary Phathobiology Department at Texas A&M University. Briefly, labeled cells 

were analyzed with a FACS Calibur flow cytometer (Becton Dickinson, CA, USA) using 

CELLQuest software.  Data were analyzed with the FlowJo software packet (Treestar 

Incl, CA).  

 

CD5 positive T-cell panning  

Two or three thymic lobes were collected from a day-old chicken. Dispersed cells were 

prepared as described previously. The thymic cells were incubated in 10 ml RPMI 1640 

with 0.125% (w/v) collagenase D (Sigma, MO) at 37 °C for 15 min with gentle agitation 

every 5 min.  Density gradient centrifugation was used to remove red blood cells, dead 

cells and cell debris.  Five ml of diluted cell suspension was mixed with an equal volume 

of Histopaque 1077 (Sigma, MO) and centrifuged at 1,500 rpm for 20 min. Viable cells 

were collected from the interface and washed with PBS (pH 7.2) and further incubated 

with 1:500 rat anti-CD5 antibody (Southern Biotechnology, AL) for 1.5h at room 

temperature. The day before panning, a 75 cm2 tissue culture flask was prepared and 



                                                                                                                                     58  

coated overnight with the secondary antibody rabbit anti-rat IgG (50 μg/ml in PBS 

containing 2% (w/v) bovine serum albumin (BSA, Sigma, St. Louis, MO), Southern 

Biotechnology, Birmingham, AL). The thymic cell suspension was then transferred to the 

secondary antibody-coated flask and was incubated for 1 hour at room temperature.  

After 3 rinses with PBS (plus 2% (w/v) BSA), cells were immediately subjected to RNA 

extraction using Trizol, as described above. 

 

Apoptosis detection and quantification 

Cells were prepared as previously described under 4 and cultured in the presence of 10 

ng/ml dexamethasone (Sigma, St. Louis, MO) in the presence or absence of somatostatin 

(SST) at concentrations of 10-12 M, 10-9 M and 10-6 M, respectively, for 4h and 8h. 

Detection and quantification of apoptosis was carried out using an Annexin-V-FLUOS 

staining kit (Roche Applied Science, Indianapolis, IN).  About 106 cells were washed 

with PBS at 200g for 5 min. The resulting cell pellet was resuspended in 100 μl of 

Annexin-V-FLUOS labeling solution and incubated for 10-15 min at room temperature.  

Samples were then analyzed by flow cytometry with the help of Dr. Roger Smith at 

Texas A&M University.  

 

Statistical analysis 

Statistical significance was assessed by ANOVA and Student’s two-tailed t-test (For 

proliferation assay, n=12). Values were considered statistically significant at p < 0.01.  
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Results 

Immunocytochemical demonstration of SST in chicken thymus 

The presence of SST was assessed at the protein level by immunocytochemistry on 

paraffin-embedded thymus sections of adult chickens.  Immunocytochemical data (Fig.1) 

confirmed the presence of SST in the chicken thymus. Numerous SST-positive cells were 

readily observed, localized predominantly in the cortico-medullary junction of the thymic 

lobules, in a typical ring-like area, similar to the distribution of CgA and CpE described 

in previous chapters. These cells displayed diverse morphologies. Most cells were round 

to oval in shape, but some cells had stellate appearance with clear extension (see also Fig. 

2A). Specific staining was abolished by pre-adsorption of the primary antiserum with 

SST-14, confirming the specificity of staining.  

 

Immunofluorescent double staining for both SST and chromogranin A (CgA), a marker 

for neuroendocrine cells, showed a partial overlap between these two cell populations. 

(Fig. 2). In addition, lots of single-stained SST positive cells (green) can be observed, 

without the co-localization of CgA, but also single stained green, non-cellular structures 

were labeled, some of which might be axons or nerve endings. 

 

 

 

 

 

 



                                                                                                                                     60  

 

 

 
B A 

 

 

 

 

 

 

 
 
Fig. 4.1.  Immunohistochemical staining for somatostatin (SST) in the thymus of a 43-
day old Leghorn. A. Paraffin sections were stained with rabbit anti-SST; SST-positive 
cells were detected mainly on the cortico-medullary border, in a typical ring-like area 
(micrometer bar = 100 μm). At higher magnification (B), neuron-like SST-
immunopositive cells were readily observed. Some cells had a stellate appearance with at 
least one extension (see also Fig. 4.2). Specific staining was eliminated by the 
pretreatment of the antibody with SST-14 (micrometer bar = 50 μm). 
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Fig 4.2. Double stained chicken thymus section. Primary antisera were against rabbit 
anti-SST (FITC-labeled) and monoclonal mouse anti-CgA (rhodamine labeled). This 
photomicrograph shows that some of the CgA-positive cells expressed somatostatin. A 
dual stained cell with a conspicuous extension is indicated with a vertical arrow (see inset 
and panel to the right).  However, many cells were positively labeled for CgA without 
expressing SST (horizontal arrows). In addition lots of structures (indicated with asterisks) 
were stained single green; some of these may be axons or nerve endings. Micrometer 
bars: left = 50μm; right = 17 μm. 

 

Expression of the somatostatin receptor type2 (SSTR2) in chicken thymus 
 
For SST to have direct effects on the thymus, more particularly on the T-cells, it is 

essential that the target cell or target tissue expresses the corresponding receptor.  Since 

previous studies have shown that SSTR2 is expressed in mammalian thymus and the 

sequence for chicken SSTR2 was described in the chicken pituitary(63) , it was a logical 

step to assess the expression of SSTR2 in the thymus of the chicken. 
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Fig. 4.3. RT-PCR of SSTR2 in total RNA in chicken thymus (A) and in CD5+ cells (B). 
An amplicon with expected size of 456 bp was synthesized.  Crude total RNA was treated 
with DNase I, which was also used as a template in PCR as a negative control.  
Fig. A. Lane 1 and 6: DNA ladder; 2-5: PCR products with 5 μl or 10 μl loading volume.  
Fig. B.  Lane 1: DNA ladder; 2: PCR product; 3. Negative control (DNase I treated RNA 
as template). 
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Expression of SSTR2 mRNA was demonstrated within chicken thymus. In addition, 

CD5-positive cells produce SSTR2 mRNA, suggesting that developing T-cells are a 

potential target for SST. Hence, somatostatin and its receptor may be important for 

thymocyte development. Consequently, the biological role(s) of SST were examined by 

incubating primary thymic cell suspension in vitro with different concentrations of SST.  

 

Biological effects of somatostatin (SST) on primary thymocytes in vitro 
 
For this purpose, primary thymocyte suspensions, stimulated with Con A and IL-2, and 

treated with SST in picomolar, nanomolar and micromolar concentrations. The results of 

these experiments (Fig. 4.4) suggest that SST significantly inhibits IL-2 and ConA 

induced proliferation of thymocytes. In comparison with controls (medium containing IL-

2 and ConA but without SST), addition of SST at 10-9 M and 10-6 M resulted in a nearly 

20% decrease in proliferation. At 10-12 M of SST, however, this anti-proliferative effect 

was no longer statistically significant.  
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Fig. 4.4  Anti-proliferative effects of SST on chicken primary thymocytes in vitro.  The 
proliferative effect of IL-2 (1.5 ng/ml) and Con A (2 μg/ml) was blocked by a 24h 
incubation with SST at micro- and nanomolar concentrations. Picomolar levels of SST 
were not effective in this respect.  
 

 

In addition to the regulation of thymocyte proliferation, the possible involvement of SST 

in the T-cell maturation was also examined.  Our data (Fig. 4.5) showed that with a 

higher SST concentration, the percentage of CD8 single positive cells tended to increase 

in a dosage-dependent manner, although this numerical trend was not statistically 

significant. This finding suggests that SST could play a role in the differentiation of 

double positive T-cells into CD8 single positive cells in chicken thymus.  
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Finally, apoptosis induced by dexamethasone (as assessed by binding of Annexin-V-

FLUOS), was not significantly decreased by SST at any of the concentrations used in this 

study (results not shown).  
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Fig. 4.5. SST facilitates thymic double positive T-cells differentiate into CD8 single 
positive cells. 
 
 
 
 
 
 
 
 
 
 
 
 



                                                                                                                                     66  

Discussion 
 
In this study, we showed both at the protein level (by immunocytochemistry) and at the 

mRNA level (by RT-PCR) that SST and its receptor SSTR2 are expressed in the chicken 

thymus, and provided evidence that SST plays a regulatory role in thymocyte 

development.  

 

The existence of five different SSTRs and the fact that these subtypes might serve 

different functions raises the question as to which SSTR subtype(s) is/are expressed in 

chicken thymic cells. RT-PCR, being very specific and sensitive, is an ideal tool to 

investigate this problem. In the past, different RT-PCR studies of SSTR subtype 

expression in immune cells have provided inconsistent results between species: human 

peripheral blood T-lymphocytes selectively express SSTR3 (139), while expression of 

SSTR2 and SSTR4 was found in mouse peripheral blood mononuclear cells (PBMC) 

(140). Moreover, in primary lymphoid tissues, SSTR2 expression was found in mouse 

but not in rat thymus (88, 92, 140). However, in general terms, SSTR2 was shown to be 

the most prominently expressed SST receptor subtype in lymphoid organs and in several 

lymphoid and myeloma cell lines (141). The RT-PCR results in our study clearly showed 

that chicken total thymic cells and CD5-positive thymic cells express SSTR2. As to the 

question of which cell type(s) express(es) SSTR2 in the chicken thymus, the final answer 

is yet to be  conclusively established. In a lymphoid organ such as thymus, in addition to 

developing T-cells at various stages of development, there are many accessory cell types 

such as epithelial cells, dendritic cells, fibroblasts, nerve cells, making the question of 

which cell type expresses SSTR2 relatively complex. CD5 is a transmembrane 
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glycoprotein expressed by all T-cells and on a subpopulation of B-cells (142).  Although 

we can not rule out the presence of B-cells in the purified cell population, it is notable 

that the overwhelming majority of the cells in a CD5-enriched cell preparation from 

chicken thymus were T-lymphocytes; in addition, the SSTR2-specific mRNA was readily 

detectable with a routine RT-PCR protocol. It is thus tempting to conclude that chicken 

developing T-cell do express SSTR2. This is in agreement with the study of Solomou et 

al. (92), reporting that SSTR2 is also expressed in adult mouse thymocytes.  

 

Interestingly, in human, different developmental stages of T-cells express different SSTR  

subtypes, adding potentially an additional level of regulation and complexity to the SST-

SSTR interaction. In combination with the observed endogenous production of SST, this 

suggests and corroborates the putative role of SST and SSTR in a bi-directional 

interaction between the cell components of the thymus, including in intrathymic T-cell 

maturation (98). 

 

In the proliferation assay described in the present study, the interaction of SST and its 

receptor SSTR2 was further demonstrated to be implicated in the regulation of chicken 

thymocyte development. . The proliferation of thymocytes induced by ConA and IL-2 

was significantly inhibited by somatostatin. In comparison with controls (medium 

without peptide but with Con A and IL-2), addition of SST at 10-9 M and 10-6 M resulted 

in a nearly 20% decrease in proliferation, but proliferation was not statistically inhibited 

at 10-12 M. This is in agreement with other studies reporting the inhibitory effects of SST 

on cell proliferation (81, 140). It has been demonstrated that the SST-SSTR2 interaction 
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controls T-cell proliferation via either arresting cells at S-phase of the cell cycle or by 

terminating the G1 phase progression (143). These intracellular signalling transduction 

pathways could also be shared among other species, including the birds. In addition, the 

number of double positive T-cells was found to be decreased after the treatment with 

SST. Similarily, an in vivo study showed that SST analogue octreotide accelerates the 

elimination of thymic cells with CD4+CD8+ double positive T-cells(144). 

 

An annexin-V assay was used to detect potential effects of SST on protection against 

apoptosis in thymic cells. Annexin-V is a phospholipid-binding protein with a high 

affinity for phosphatidylserine (PS). The detection of cell-surface PS with annexin-V 

serves as a marker for apoptotic cells because in a viable cell, PS is restricted to the inner 

leaflet of the plasma membrane by an energy-dependent transport from the outer to 

the inner leaflet of the bilayer(145). In the current investigation, no significant decrease 

was recorded in the percentage of apoptotic cells treated with SST after induction of 

apoptosis by dexamethasone. These results are in contrast with a study using mouse fetal 

thymic lobes that found that SST protects thymocytes from dexamethasone-induced 

apoptosis (92), although this apparent contradiction may simply be the result of the 

species (and class) difference. In addition, this discrepancy could be mostly due 

differences in the experimental protocol: in the mouse study, thymocytes in the thymus 

tissue fragments were still capable of interacting with other cell types in the thymus, 

could thus be affected by a different set of signals compared to cells in a cell suspension, 

as used in our study.  Remarkably, under certain conditions, SST can also have pro-

apoptotic effects: earlier studies have shown that an over-production of SST in the thymic 
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cells can lead to an over-production of SSTR2 and in turn, resulting in an increase of 

apoptosis of thymocytes (146).  

 

In general, this study confirms the presence of somatostatin at the cortico-medullary 

border in the chicken thymus and shows, for the first time, that somatostatin plays a role 

in chicken thymic cell proliferation and maturation, an effect that can be explained by the 

expression of its specific receptor SSTR2 (but potentially also other SST receptor 

subtypes) on developing T-cells.  Furthermore, these data suggest that in order to fully 

understand avian immune function, neuroendocrine factors cannot be ignored.  
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CHAPTER V 

SOMATOSTATIN MODIFIES GENE EXPRESSION OF IL-1Β, TGF-Β1 AND 

CXCR4 IN A CHICKEN MITOGEN-ACTIVATED T CELL LINE 

 

Introduction 

In chapters II and III, we have demonstrated the existence of complex neuroendocrine 

cell populations within the thymus, a chicken primary lymphoid organ. Furthermore, as 

shown in the chapter four, somatostatin (SST), a classical neuropeptide, is an effective 

immuno-modulatory substance locally produced within chicken thymus. These data 

clearly indicate that in addition to a role as transmitters/mediators in the nervous system, 

SST and other neuropeptides have the potential to directly interact with their 

corresponding receptors on chicken immune cells, such as T-cells.  To further unravel the 

effects of SST on the immune system, the role of SST on the induction of cytokines, a 

chemokine receptor as well as on MHC components gene expression was assessed. 

 

Cytokines are central regulators of the immune response. Cytokines are produced and 

released by various cells in the body, responding to external stimuli and inducing 

reactions through their specific receptors. They can act in an autocrine manner or 

paracrine manner. Some cytokines can affect distant cells acting in an endocrine manner, 

although this depends on their ability to enter the circulation and on their half-life (147). 

 

Cytokines can be generally categorized into Th1 and Th2 cytokines in mammals,   

according to the type of response they generate. Th1 cytokines include, to name just a 
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few, IL-1, IFN-γ, tumor necrosis factor (TNF), IL-12 and transforming growth factor 

(TGF). They are mainly involved in the cell-mediated immunity. For instance, IFN-γ and 

TNF are macrophage activating cytokines (148). The recombinant chicken IL-1β has 

been shown to exert biological activities similar to those of its mammalian homologue. 

For instance, it induces fibroblasts to secrete chemokines and upregulates corticosterone 

production (149). On the other hand, Th2 cytokines like IL-4, IL-5, IL-10 and IL-13 

mainly regulate humoral immune responses (148) (27).  

 

Knowledge of avian cytokines is lagging far behind as relatively few cytokines were 

cloned and functionally characterized. So far, all of the cytokines characterized in the 

chicken are categorized as Th1-like.  Whether Th1-type or Th2-type immune responses 

can be defined in the chicken (150) is still a matter of debate, as classical Th2 cytokines 

have not been determined until very recently. A study reported last year (151) 

characterized the first non-mammalian Th2 cytokine gene cluster based on a genomics 

approach. The cluster contains functional single-copy genes for IL-3, IL-4, and IL-13. 

Another study showed an increased expression of IL-13 and IL-4 mRNA in the ileum 14 

days after infection with a helminth, which is expected to induce a humoral immune 

response (152). This seems to suggest that the Th1-Th2 polarization was evolutionarily 

conserved for over 300 million years.  

 

The chemokines are a family of small, secreted proteins. They were initially 

characterized through their chemotactic effects on leucocytes. Based on structural and 

genetic considerations, chemokines are grouped into CXC, CC, C and CX3C families.  
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Chemokines play a fundamental role in the recruitment and function of T-lymphocytes. 

T-lymphocytes themselves are also a source of a number of chemokines. At the same 

time, they also express most of the known CXC and CC chemokine receptors to an extent 

that depends on their state of activation/differentiation and/or the type of stimuli they are 

receiving. The expression of CXCR4, together with the production of its ligand, stromal 

cell-derived factor 1 (SDF-1), appears to be extremely important HIV-1 infection of T-

cells (153, 154). In human, (SDF-1) signaling (SDF-1/CXCR4) is critical for early T-cell 

development (155). Treated with neutralizing antibodies against SDF-1 or CXCR4, 

human thymocytes showed a significant reduction of the number of the cells as well as an 

arrested thymocyte differentiation. 

 

To evaluate the function of somatostatin (SST) on chicken T-cells, we have studied the 

effects of SST in vitro on the gene expression profile of genes encoding the cytokines 

interleukin-1β (IL-1β), IFN-γ and transforming growth factor-β4 (TGF-β4), and also the 

components of the major histocompatibility complex class I (MHC-I), β2 microglobulin 

(β2M) and the MHC class I α-chain (MHC-IA), as well as the newly characterized 

chicken chemokine receptor, CXCR4 (156). 

 

Materials and methods 

Phenotypic characterization of T-cell line  

A chicken T-cell line (ATCC CRL-12357, US Patent 5,691,200) for the study of mature 

splenic T-cells was kindly donated by Dr. Mike Kogut (USDA-ARS, College Station, 

TX). This chicken spleen T-cell line was generated by incubating splenocytes with 
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Concanavalin A and subsequently transforming the cells with avian reticulo-endotheliosis 

virus. Cell suspensions were  prepared and incubated with two directly labeled primary 

antibodies: mouse anti-chicken CD8α-PE (0.2 μg/106 cells) and mouse anti-chicken CD4-

FITC (1 μg/106 cells) (Southern Biotechnology, Birmingham, AL) on ice for 40 min.  

Cells were washed twice with cold PBS. Flow cytometric analysis was conducted by Dr. 

Roger Smith, III in the core lab for flow cytometry in the Veterinary Pathobiology 

Department at Texas A&M University. Briefly, labeled cells were analyzed with a FACS 

Calibur flow cytometer (Becton Dickinson, CA, USA) using CELLQuest software.  Data 

were analyzed with the FlowJo software packet (Treestar Inc., CA).  

 

SSTR2 RT-PCR from chicken T-cell line 

Total RNA was isolated from chicken thymus and pituitary, using TriZol reagent 

(Invitrogen, Carlsbad, CA). RNA content of the samples were quantified with a 

spectrophotometer (Eppendorf BioPhotometer, Hamburg, Germany), and treated with 

RNase-free Dnase I (Invitrogen, CA) to digest any residual DNA. The first strand cDNA 

was synthesized from approximately 1.2 μg of total RNA using RETROscript reverse 

transcriptase (Ambion, Austin, TX) and random hexamers or dexamers according to the 

manufacturer’s protocol. PCR primers were designed by using Primer Express 2.0 

(Applied Biosystems), based on the cDNA sequence of chicken somatostatin receptor 

type 2 (Gallus gallus, gi:50757970 XM_425384). Based on the predicted sequence, the 

expected amplicon size is 456 bp.  PCR primer oligonucleotides were synthesized by 

Integrated DNA Technologies Inc. (Coralville, IA). Primer sequences were as follows: 
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Forward:GCGGATGAGCTGTTCATGCT                                                               

Reverse: GATGCCTGAGGACTTGACTTTGA           

The first-strand cDNA was amplified in a 50 μl PCR reaction that contained 2 mM 

MgCl2, 200 μM dNTP mix, 1.0 μM of each of the forward and reverse primers, PCR 

buffer and 1.25 U AmpliTaq Gold DNA polymerase (Perkin Elmer, Wellesley, MA). The 

polymerase was activated by a pre-heating step at 94 0C for 10 min. The PCR 

amplification protocol comprised 30 cycles consisting of 30 s at 94 0C and 70 s at 65 0C, 

with a final extension step at 65 0C for 10 min. The products from the RT-PCR protocol 

were analyzed on a 1.5% agarose gel using ethidium bromide for visualization. The 

results were photographed with a MultiDoc-It Digital Imaging System (UVP, Upland, 

CA). 

 

Cell culture 

Cell cultures were propagated in Dulbecco's Modified Eagle's medium (DMEM) 

containing 2 mM glutamine, 10% (v/v) fetal bovine serum, and 100 U of penicillin and 

10 mg of streptomycin per ml. Cells were counted and plated in 6-well plates at a density 

of approximately 5 x 106 cells /ml, at 37 ºC in a 5% CO2-balanced air environment Plates 

were incubated for 2h, 4h, 8h, 12h, 24 h and 48h, with three different concentrations (pM, 

nM, μM) of SST (Sigma, St. Louis, MO). Treatments were tested in duplicate. At the end 

of the respective treatments, the cells were harvested and processed individually for total 

RNA extraction. 
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Real-time polymerase chain reaction (real-time PCR) 

Total RNA was extracted from each group of cells using Trizol (Invitrogen, Carlsbad, 

CA). Total RNA concentrations were determined by OD 260. cDNA synthesis was 

carried out using the 2-step reverse transcriptase polymerase chain reaction (RT-PCR) 

method (RETROscript Protocol; Ambion, Austin, TX). Briefly, RNA was combined with 

1 μl of oligo dT (1 μM final concentration) and denatured at 70 ºC for 10 min. Then, 1 μl 

of RNase inhibitor (10 U/ml), 2 μl 10X RT buffer, 4 μl of dNTP mix (2.5 μM each dNTP 

final concentration), and 1 μl of MMLV reverse transcriptase (100 U/ml) were added to a 

final volume of 20 μl. The mix was incubated at 42 ºC for 60 min. The resulting cDNA 

was denatured at 92 ºC for 10 min and stored at –80 ºC. 

 

Real-time PCR amplification was performed using the ABI Prism 7900 Sequence 

Detection System (Applied Biosystems), in 384-well plates. The target genes included in 

this study were: IFN-γ and transforming growth factor-β4 (TGF-β4), MHC-β2 

microglobulin (β2M) and the MHC class I α-chain (MHC-IA), as well as a newly 

characterized chicken chemokine receptor, CXCR4, chicken IL-1, and β-actin as the 

endogenous control. Primers used for the PCR (Table 5.1) were designed using Gene 

Express 2.0 (Applied Biosystems, Foster City, CA, USA) or based on literature data 

(157). The target specificity of primer sequences was verified by comparison with 

genomic sequences using BLAST (http://www.ncbi.nlm.nih.gov/blast/ Blast.cgi). 

Each PCR reaction included 1 μl of cDNA sample, 10 μl of SYBR Green master mix 

(PE-Applied Biosystems) and 500 nM of the appropriate gene-specific forward and 

reverse primers, in a final reaction volume of 20 μl. Samples were loaded using the 

http://www.ncbi.nlm.nih.gov/blast/Blast.cgi
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Eppendorf epMothion 5070 robotic workstation. The thermal cycling conditions included 

an initial denaturing step at 95 0C for 10 min, 40 cycles at 95 0C for 15 s, and 65 0C for 1 

min. All mRNA samples were analyzed in triplicate.  The effect on the gene expression 

profile of SST in the chicken T cell line was calculated using the ΔΔCT method (User 

Bulletin #2 for PRISM Sequence Detection System, ABI). The results represent the 

averages of three samples, each run in triplicate, meaning each data point is the result of 6 

measurements. 

 

Statistical analysis 

The effect on the relative gene expression that resulted from SST treatment of chicken T-

cells was calculated using the ΔΔCT method(158) (159), using the following formula: 

(treatment mRNA levels) / (control mRNA levels) = 2-ΔΔCT,  where:  

ΔΔCT = (CT target gene – CT β-actin) treated – (CT target gene – CT β-actin) control
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The primers for real-time PCR were designed based on chicken gene sequences using Gene Express or based on literature data 

(157).  *Gene sequences were obtained from http://www.ncbi.nlm.nih.gov/ 

Gene 
name 

Accession 
Number* 

Forward  5’— 3’ Reverse  5’—3’ Exon  
boundaries  

IL-1 AJ245728 GCTCTACATGTCGTGTGTGATGAG TGTCGATGTCCCGCATGA 5/6 

TGF β M31160 AGGATCTGCAGTGGAAGTGGAT CCCCGGGTTGTGTTGGT 6/7 

β2 M Z48921 CTACAAGTGGGATCCCGAGTTC TCATTTCAACTTGGAATGCAGAA 2/3/4 

MHC-IA M84766 CAGCGGCGCTACAACCA GATGTCACAGCCGTACATCCA 2/3 

CXCR4 AF294794 CCTTGCGTTCTTCCATTGCT GCATTTTGTGCTGATGTTTTGAA 1/2 

Fas Ligand AJ890143 AAGGCATGACCAGAGACAGGTT AAGCCAGTGAAAAAGGAAGCAA 3/4 

INF-γ Y07922 GTGAAGAAGGTGAAAGATATCATGGA GCTTTGCGCTGGATTCTCA 3/4 

β-actin L08165 CTGATGGTCAGGTCATCACCATT TACCCAAGAAAGATGGCTGGAA 1/2 

                                                                                                                                     

Table 5.1. Real-time PCR primers 

 

 

 

 

 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&db=Nucleotide&dopt=GenBank&term=AJ245728
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&db=Nucleotide&dopt=GenBank&term=M31160
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&db=Nucleotide&dopt=GenBank&term=Z48921
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&db=Nucleotide&dopt=GenBank&term=M84766
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&val=9954427
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&db=Nucleotide&dopt=GenBank&term=Y07922
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Result 

Phenotypic characterization of T-cell line ATCC CRL-12357 

Flow cytometric analysis of the phenotype of the chicken splenic T-cell line ATCC CRL-

12357 using fluorescently (directly) labeled anti-CD4 (fluorescein-labeled) and anti-CD8 

(phycoerythrin-labeled) antibodies (Fig. 5.1.).  The results of the analysis reveal a 

heterogeneous cell mixture, in that 66.9 % of cells are strongly CD4-positive, while 32.3 % 

of cells do not express CD4 noticeably above background level, and can technically be 

considered as double negative cells, although it is more likely that these immortalized cells 

have de-differentiated and lost expression of CD4 after multiple cell divisions. 

 

 

Fig. 5.1.  Flow cytometric analysis of the phenotype of the chicken splenic T-cell line 
ATCC CRL-12357 using fluorescently (directly) labeled anti-CD4 and anti-CD8 
antibodies.  The results of the analysis show that 66.9 % of cells were strongly CD4-
positive, while 32.3 % of cells did not express CD4 above background level. 
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Expression of SSTR2 in virally immortalized splenic T-cells 

Analysis of the total RNA isolated from the splenic T-cell line by RT-PCR showed that 

SST receptor subtype 2 (SSTR2) is expressed in the chicken ConA-activated T-cell line 

used in this study. An expected amplicon of 456 bp was observed (Fig. 5.2). This provides 

the basis for the further in vitro study of the potential effects SST on the gene expression 

profile cell line.   

 

600 bp 
500 bp 
400 bp 
300 bp 

  1       2      3      4      5     6 
 

Fig. 5.2. Analysis of splenic T-cell line RNA for the presence of SSTR2 mRNA by use of 
RT-PCR. An expected amplicon of 456 bp was observed. Lane 1. 100 bp DNA ladder; 2. 
Sample A (using hexamers as primers in RT); 3. Sample B (using oligo-dT as primers); 4. 
Positive control; 5. Negative control (H2O); 6: DNase treated RNA (negative control).  
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Fig. 5.3. Examples of dissociation curve of different genes in real-time PCR reactions. The 
gure shows that a specific amplicon (one peak) was synthesized in each reaction. Each 

figure includes three repeats of the same gene amplification, showing the high repeatability 
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of the real-time PCR analysis. 
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Fig. 5.3 Continued 
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Fig. 5.3. Continued 
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Real-time PCR analysis of SST-induced gene expression changes in T-cells in vitro 

From the dissociation curves of the real-time PCR analyses (see examples in Fig. 5.3), it 

was clear that a specific amplicon was synthesized in each reaction, as only one peak was 

observed in every plot. Each panel of Fig. 5.3 includes three repeats of the same gene 

amplification, indicating that the overall PCR reaction was highly reproducible. Loading 

quality is high as an automatic robotic loading workstation was used instead of manual 

pipeting. 

 

A. Short term effects (observed within 4 hours post-treatment) 

Since there was only time to run one independent trial (although the in vitro stimulation 

was run in duplicate in separate plates, we decided to disregard any shifts that were not at 

least 2-fold different from control levels (up- or down-regulated) as potentially not 

biologically relevant fluctuation. As shown in Figs. 5.4-10, the observed effects of SST on 

chicken T-cells were highly complex.  

 

The most surprising result of this entire series of analyses was certainly the observation that 

somatostatin at micromolar levels increased the expression of IL-1β in splenic chicken T-

cells in vitro dramatically (> 25-fold) and fast (within 2 hours or less) (Fig. 5.4.). While the 

response was fast and big, it was clearly transient, since expression levels were reduced to 

control levels by 4 hours after SST exposure.  
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Fig. 5.4. Real-time PCR analysis of IL-1 mRNA levels in immortalized splenic T-cells after 
stimulation with somatostatin as a function of time and dose. Each data point represents the 
result of 6 measurements (duplicate in vitro incubation and analysis of individual mRNA 
samples in triplicate).  The expression level of actin was used as a calibrator.  
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Fig. 5.5.  Real-time PCR analysis of CXCR4 mRNA levels in immortalized splenic T-cells 
after stimulation with somatostatin as a function of time and dose. Each data point 
represents the result of 6 measurements (duplicate in vitro incubation and analysis of 
individual mRNA samples in triplicate).  The expression level of actin was used as a 
calibrator.  
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Fig. 5.6.  Real-time PCR analysis of MHC-1α mRNA levels in immortalized splenic  
T-cells after stimulation with somatostatin as a function of time and dose. Each data point 
represents the result of 6 measurements (duplicate in vitro incubation and analysis of 
individual mRNA samples in triplicate).  The expression level of actin was used as a 
calibrator.  
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Fig. 5.7.  Real-time PCR analysis of TGF-β4 mRNA levels in immortalized splenic 
T-cells after stimulation with somatostatin as a function of time and dose. Each data point 
represents the result of 6 measurements (duplicate in vitro incubation and analysis of 
individual mRNA samples in triplicate).  The expression level of actin was used as a 
calibrator.  
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T-cell CXCR4 mRNA levels were increased nearly 3-fold after 8h treatment (Fig. 5.5). 

MHC-Iα mRNA levels (Fig. 5.6) were increased at 4 h in a dose-dependent manner and 

reached a more than 3-fold increase at micromolar concentrations of SST. At micromolar 

levels, SST upregulated the gene expression of TGF-β4 after 4 hours of treatment (Fig. 

5.7).  At picomolar levels, however, the observed effect was opposite, i.e. a downregulation 

to approximately 50% of the control level was measured. No dependable effects on Fas 

Ligand, β2-Microglobulin and INF-γ production were observed (Figs. 5.8-10).  

 

B. Long-term effects (after 8 – 48 hours of treatment with SST) 

Although several apparently significant gene expression shifts were observed 8 hours or 

more after the start of the SST treatment (Figs. 4-10), these may very well be indirect 

consequences of previous short term effects of SST on IL-1.  However, since we did not 

have access to an immunoassay (or bioassay) for the quantification of IL-1 protein levels in 

the cell culture media, it remains to be seen whether any long-term effects are actually SST-

mediated effects or IL-1 effects.   
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Figs. 5.8. Real-time PCR analysis of β2-microglobulin, Fas ligand and interferon γ mRNA 
levels, resp., in immortalized splenic T-cells after stimulation with somatostatin as a 
function of time and dose. Each data point represents the result of 6 measurements 
(duplicate in vitro incubation and analysis of individual mRNA samples in triplicate).  The 
expression level of actin was used as a calibrator.  
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Discussion 

The effect of SST on cytokine mRNA expression of lymphocytes is clearly a complex 

phenomenon. One of the remarkable findings in this study is the induction of IL-1β 

expression by SST. Although the response to SST was fast and transient, SST (in μM 

concentrations) dramatically (> 25-fold) increased the expression of IL-1β in splenic 

chicken T-cells in vitro. Micromolar quantities of any neuropeptide may seem excessive 

and thus pharmacological in nature, but given the fact that the SST that reaches the T-cells 

in the thymus or in the spleen can perfectly be produced by a paracrine source, exposure of 

T-cells to micromolar SST concentrations may be quite realistic in an in vivo situation.  

Unfortunately, such a claim is nearly impossible to verify. However, also picomolar 

concentrations proved effective at enhancing IL-1 mRNA levels in the present study: a 

sustained approx. 3-fold upregulation was observed, albeit only after 8 hours of exposure to 

SST. It is at this point unclear which of the two observed effects is more plausible in vivo, 

although both might occur under different physiological conditions. 

 

The significantly elevated mRNA level of this pro-inflammatory cytokine is surprising, as 

it is in contrast with the known anti-inflammatory effects that have been reported for SST 

(160-162). Theoretically this apparent contradiction could be explained by the hypothesis 

that SST might promote a compensatory overproduction of IL-1β in response to its 

consumption and/or blockade in mitogen/antigen-activated T-cells. A similar phenomenon 

was observed in previous studies on a rat arthritis model, where i.v. administration of a 

synthetic SST analogue (octreotide) did attenuate the clinical inflammatory symptoms, but 

at the same time SST also significantly increased both the mRNA levels of IL-1 β in local 
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tissues (163) as well as IL-1β protein levels in serum (164). The mechanism and the 

physiological meaning of this effect of SST still needs to be further studied.  

 

On the other hand, one needs to recognize that increased mRNA levels may not necessary 

lead to significant translation of IL-1 protein. Clinical studies have indeed shown that 

measurements of elevated levels of IL-1β mRNA in cells do not necessarily reflect elevated 

protein levels of IL-1 β.  A dissociation of transcription and translation seems to  be 

characteristic for IL-1β, as the propeptide of IL-β  requires proteolytic cleavage by caspase 

1 in order to become bioactive (165, 166). In other words, SST may stimulate transcription 

rather than translation of IL-1.  Unfortunately, we did not have access to an immunoassay 

for the measurement of chicken IL-1 in the culture supernatants produced in this study. In 

contrast, other studies have shown that SST can actually inhibit IL-1β secretion by LPS-

activated human monocytes (86) and rat hepatic stellate cells (Lang A, 2005).  

 

CXCR4 is the specific receptor for chemokine SDF-1(Stromal-cell Derived Factor-1). In 

the present study, the expression of CXCR4 was shown to be up-regulated after 8h of 

treatment with SST. Interestingly, SST has been described to inhibit SDF-1-α-induced T-

cell infiltration in humans (167). Thus, it is hard to ascribe the up-regulation of CXCR4 to 

the direct effect of SST. However, when looking back at 2h, a significant increase of the 

IL-1 mRNA was observed, and if translation did in fact take place, the effect on CXCR4 

may be indirectly due to the SST-induced increase of IL-1 concentrations in the medium. 

This hypothesis is in line with previous studies describing the enhancement of CXC 
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chemokine receptor 4 (CXCR4) mRNA expression upon treatment with the cytokine IL-1β 

(168).  

 

Taken together, our data demonstrate that SST can and does affect the cytokine and 

chemokine receptor transcription in chicken T-cells; however such effects appear to be 

highly context-dependent (162). They clearly depend on the cell type under study and the 

stage of the activation of this cell type, as well as on the cytokine in question.  
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CHAPTER VI 

SUMMARY 

 
For a long time, immune and nervous/neuroendocrine systems have been viewed as 

independently functioning entities, “hidden” from each other, so to speak. However, 

accumulated evidence obtained during the last few decades has profoundly changed this 

concept (For reviews, see(100, 169).In fact, the communication between the immune and 

nervous/neuroendocrine systems has proven to be extensive(2, 162) and, more importantly, 

the cross-talk between the two systems is crucial to maintain homeostasis, and therefore for 

the survival of the organism(169). In this study, we focused on the diffuse neuroendocrine 

cells in central immune organ (the thymus) in the chicken and aimed at investigating how 

the neuroendocrine factors (e.g. somatostatin) regulate or modulate immune function. 

 

In birds, as in mammals, the process that creates the diverse immunological repertoire of T-

cells recognizing non-self antigens has been shown to be critically dependent on the 

microenvironment of the thymus. The thymic stroma is complex and consists of epithelial 

cells, mesenchyme, macrophages and dendritic cells, in addition to fibroblasts and 

extracellular matrix molecules.  These components provide not only essential cell-cell 

contacts but also communicate with the developing T-lymphocytes in a humoral manner. 

The thymus produces a number of unique humoral factors and an ever-growing list of 

neuroendocrine and peripheral hormones. While some of these, such as prolactin and 

growth hormone, have well characterized effects on thymocyte differentiation and 

proliferation, many have been identified but have not been assigned a defined function 

within the thymus, and arguably many messenger molecules remain to be identified.  
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Moreover, the function of local neuroendocrine cells within lymphoid organs remains still 

largely elusive. Although the presence of neuropeptides (such as neurotensin and 

somatostatin) in the chicken thymus was reported as early as 1978 (101), a methodical 

analysis of neurosecretory cells in a chicken lymphoid organ, regardless of the secretory 

product involved has, to our knowledge, not been described. The diffuse 

neuroendocrine/endocrine cell populations are believed to produce major chemical 

categories of messenger molecules, hormones, neurotransmitters or neuropeptides, which 

locally exert their paracrine activities through their specific receptors on immune cells (98). 

 

In an attempt to uncover this complex neuroendocrine-immune network, a first and 

essential step is to identify and characterize these poorly defined neuroendocrine 

populations within immune organs/tissues. One of the most important landmarks that are 

extremely helpful in defining neuroendocrine cells is the presence of dense-core secretory 

granules(170). Numerous studies have provided evidence that the large dense-core 

secretory granule, also known as large dense cored vesicle (LCDV) is an organelle for 

storage of prohormones, pro-neuropeptides, processing enzymes, and other proteins 

required for regulated secretion in endocrine and neuroendocrine cells. Both Chromogranin 

A (CgA) and Carboxypeptidase E (CpE) are characteristic functional and structural 

elements of the secretory granule in the regulated secretory pathway. CpE is a processing 

enzyme that catalyzes the transformation of peptide precursor proteins into bioactive 

peptide hormones, but it also serves as a sorting receptor in the regulated secretion 

pathway, while chromogranin A is a classic marker protein and is considered an ‘on/off’ 

switch for the biogenesis of the LDCV.  The expression of the specific mRNAs for both 
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CgA and CpE in the thymus was first verified by RT-PCR.  Additional evidence at the 

protein level, using immunofluorescent dual labeling, has allowed us to demonstrate the co-

existence of CgA and CpE in identical neuroendocrine cells in an avian primary lymphoid 

organ. These CpE- and CgA-positive cells were primarily found in the transition zone 

between the cortex and the medulla of the thymic lobules, an area known to contain 

numerous arterioles and to be heavily innervated by the autonomic nervous system.  

Interestingly, additional but clearly different neuroendocrine cells with similar distribution 

were identified using two other markers, one for neurons (neuron-specific enolase) and one 

for neural-crest derived cells (HNK-1).  For the remainder of the study, we chose to focus 

on the CgA-positive population, because those are more likely to take part in regulated 

secretory activity.  Based on its neuro-anatomical location and the presence of two hallmark 

molecules typical for cells involved in regulated secretory activity,  it is tempting to 

speculate that the thymic diffuse neuroendocrine system may serve as a relay, for nervous 

stimuli delivered by the sympathetic and/or parasympathetic nervous system, for humoral 

factors delivered by the circulation, or both, which would provide a mechanism for fine 

tuning thymopoiesis by a variety of physical and environmental factors perceived by the 

nervous system.  

 

The existence of complex neuroendocrine cell populations within chicken thymus has led 

us to further study the distribution and biological effects of releasing factors, such as 

neuropeptides, produced by these cells. Particularly, our attention was drawn to 

somatostatin (SST), which in mammals has been shown to exert multiple effects on 

immune functions within the thymic microenvironment (62, 65, 67). In chapter 4 we have 
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examined if both somatostatin and at least on of its receptors (SSTR2) are locally expressed 

within the chicken thymus and we have investigated their potential effects on the 

neighboring thymic cells. The results showed that both SST and SSTR2 are expressed 

locally within chicken thymus. Furthermore, we have evaluated the physiological role of 

somatostatin in vitro with respect to thymic cell proliferation, differentiation and apoptosis. 

The results suggest that SST significantly inhibits IL-2 and ConA induced proliferation of 

thymocytes. In comparison with controls (medium containing IL-2 and ConA but without 

SST), addition of SST at 10-9 M and 10-6 M resulted in a nearly 20% decrease in 

proliferation (P < 0.01). At 10-12 M of SST, however, this anti-proliferative effect was no 

longer statistically significant.  

 

To further unravel the effects of somatostatin (SST) on the immune system, the role of SST 

on the gene expression of cytokines, chemokine receptors as well as MHC-I components 

was assessed. In chapter 5, RNA samples from a somatostatin treated splenic chicken T-cell 

line were assayed in vitro for the production of mRNA encoding the cytokines interleukin-

1β (IL-1β), IFN-γ and transforming growth factor-β4 (TGF-β4), and also components of the 

major histocompatibility complex (MHC), β2 microglobulin (β2M) and the MHC class I α-

chain (MHC IA), as well as a newly characterized chicken chemokine receptor, CXCR4. 

Somatostatin at micromolar level dramatically (> 25-fold) increased the expression of IL-

1β in splenic chicken T-cells in vitro. The response was fast (within 2 hours or less) and 

transient.  However, at the picomolar level, a sustained but more moderate (up to 3-fold) 

upregulation was observed between 8 and 24 hours after the SST treatment was started. T-

cell CXCR4 mRNA production was increased nearly 3-fold after 8 hours of SST treatment.  
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MHC-Iα mRNA levels increased at 4h in a dose-dependent manner and reached more than 

3-fold upregulation at micromolar concentrations of SST.  No significant effects on Fas 

Ligand, β2-Microglobulin and INF-γ gene expression were observed.  

 

In conclusion, the diffuse neuroendocrine component of the avian thymus was 

characterized as a complex cell group, existing of at least three different subpopulations 

that potentially receive input from each other, from the autonomous nervous system, from 

the circulation, or all of the above. Moreover, this study has provided evidence that, also in 

birds, neuroendocrine circuits within the thymus may be important, if not essential, for the 

education and balance between self-tolerance and immunity, as appears to be the case in 

mammals. (Neuro)endocrine messenger molecules produced by the thymic 

microenvironment, such as somatostatin, seem to play a potentially important 

immunomodulatory role with regard to the cell proliferation, differentiation, migration, as 

well as cytokine production.  However, the question as to exactly which stimuli trigger the 

release of mediators such as somatostatin remains a field of future study.  In addition, a 

complete inventory of all substances stored in the thymic LDCV and their effects on the 

developing T-cells when released in the microenvironment of the thymus are also questions 

that warrant further investigation.  
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	CHAPTER I
	INTRODUCTION AND LITERATURE REVIEW
	T-cell ontogeny
	The thymus is the primary immune organ that generates naïve T-cells in birds. It consists 
	                    of two rows of seven separate lobes on each side of the neck, along the jugular veins 
	extending from the lower jaw to the thorax.  These lobes are further divided in lobules, separated by septa composed of connective tissue.  The lobules are the elementary units of the thymus and contain a central area, the medulla, and a surrounding area, the cortex.  Unlike in the bursa of Fabricius, there is lesser clear boundary between the cortex and the medulla (3).
	During embryonic development, T-cell precursors are derived from stem cells near the thoracic aorta (4). The embryonic thymus is populated with three separate waves of stem cells: at days 6-8, days 12-14, and days 18-21 of embryonic development (5).  Each wave lasts for 1.5 to 2 days and is followed by intense thymocyte proliferation, maturation and seeding to the periphery, which lasts for a period of approximately three weeks. Thymic seeding continues after hatching but not in such discrete waves (6).
	T-cells mature within the thymus while undergoing a series of changes of both their localization and their phenotype (7).  During thymocyte maturation, they migrate from the outer thymic cortex to the medulla where they finally exit. The pattern of cluster of differentiation antigen CD 8 and CD4 expression serves as the main characteristic for distinguishing different maturational stages of TcR (T-cell receptor) (( cells.  The chicken also have a TcR (( population of thymocytes that mature more rapidly and that also have a distinct, yet unknown, physiological role, except for the fact that they may be involved in the control of isotype switching(8). 
	Early (( thymocytes are CD8 and CD4 negative and are called triple negative as they also lack expression of the CD3 complex. The formation of (( T-cells in the thymic cortex requires a period of three to four days before they enter the thymic medulla. While these cells migrate from the site of T-cell precursor entry, the outer thymic cortex, to the medulla, their expression of CD4 and CD8 gradually increases and they become double positive thymocytes. This thymic population proliferates vigorously to produce the largest thymocyte population. Finally, in the medulla, thymocytes downregulate one of the two accessory moledules before leaving the thymus as single positive CD4 or CD8 (( T-cells(6). 
	Additional markers of thymocyte maturation have been characterized to further examine the thymic subpopulations. The expression of another differentiation marker, CD5, starts very early in thymocyte development, possibly even before thymic colonization by precursor cells. CD5 is found at high levels on all T-cell subsets during thymocyte maturation, and is thus an ideal handle for isolation of a total T-cell population from the thymus.  In contrast to the abundant CD5 expression, the CD6 antigen is only found on double positive and single positive thymocytes, suggesting it is a maturation-dependent antigen, acquired during or after positive and negative selection (6).
	The thymic microenvironment and neuroendocrine factors
	While a majority of cells within the primary immune organs after hatch are clearly lymphoid, the thymus also contains a diverse array of non-lymphoid cells.  Taken together, these non-lymphoid elements are loosely defined as the thymic stroma.  The stroma consists to a large extent of thymic epithelial cells derived from the third pharyngeal pouch, but it is not entirely clear if all thymic (i.e. cortical and medullary) epithelial cells share the same developmental origin (9). In addition to cortical and medullary epithelial cells, another important stromal cell type is mesenchyme, which is derived from the neural crest (10). The importance of mesenchyme was emphasized in that extirpation of the neural crest in birds resulting in a lack of mesenchymal contribution to the developing thymus, disrupted thymic formation and function (11).  The precise mechanism by which mesenchymal cells influence development of the thymus is, however, still somewhat unclear. Finally, the thymic stroma also contains bone marrow derived dendritic cells and macrophages, and fibroblasts.
	Positive selection takes place in the cortex of the thymus and is largely driven by the cortical epithelial cells that provide pepide-MHC ligands for the (( TCR and also other unknown co-stimulatory or accessory signals (9). Induction of tolerance through negative selection is taking place in the thymic medulla and is mediated by dendritic cells that reside at the cortico-medullary junction (12, 13), although medullary epithelial cells have recently been shown to express many proteins that were previously thought to be tissue- or organ-specific, indicating a potential role for these cells in tolerance to a variety of tissues (14-17). The interactions between lymphoid and stromal cells, whether through cell-cell contact or humoral interaction are thus absolutely vital for normal lymphopoiesis, as was also shown in the chicken (18-20). The humoral aspects of this microenvironment include the secretion of a plethora of cytokines (21), chemokines (22), hormones and especially neuropeptides.  Arguably, the thymus has developed into the most fertile paradigm for the study of immuno-neuro-endocrine cross talk during recent years (23, 24).
	T-cells are targets for neuropeptides in several different ways. First of all, primary and secondary lymphoid organs are innervated. This is especially clear around the vasculature at the thymic cortico-medullary junction (25). The presence of parasympathetic (cholinergic) and sympathetic (noradrenergic) innervation in lymphoid organs and the immunomodulatory influences of the classical cholinergic and noradrenergic transmitters have been known for some time (26), but the importance of the complex autonomic peptidergic innervation is a topic of more recent investigations.  For instance, double immunofluorescence reveals the coexistence of noradrenergic and NPY-like and/or opioid immunoreactivity, but no evidence, so far, is available of co-release of opioids and noradrenaline from the sympathetic nerve fibers of lymphoid organs (27).
	In addition, considerable evidence has now been presented that the thymic stroma is an essential source of endocrine, paracrine and autocrine humoral factors (23). As mentioned above, it is a complex network consisting of epithelial cells (derived from the pharyngeal region), neural crest-derived ectomesenchym, dendritic cells, macrophages (both of bone marrow origin) and fibroblasts and each of these components has been shown to be a potential source of thymic hormones, cytokines and an ever-growing list of hormones and neuropeptides, many of which with yet unknown effects on T-cell physiology (28, 29). One of the most recent surprises includes the finding that the thymus is an important source of parathyroid hormone (30, 31), to the extent that mice without parathyroid glands have only a mildly abnormal bone phenotype, due to the parathyroid hormone supply from the thymus.   Finally, T-cells themselves produce their own set of neuropeptides such as substance P (32), calcitonin gene-related peptide (33), GnRH-I and –II (34) and many more. 
	The immunological significance of these neuroendocrine elements is currently an area of intensive research. A role in negative selection is one of the possibilities that have been proposed and that has recently gained significant support (16, 17, 35). For instance, expression of insulin in the thymus seems to be linked with clonal deletion of insulin-reactive T-cells, and this might also be the case for the other pancreatic hormones and potentially other peripheral tissue-specific self-antigens (36). In addition, the role of thymic pituitary hormones and neuropeptides may at least partly lay in the regulation of cytokine secretion (29).
	Although much less evidence is available in birds, the avian thymus seems also to be an example of immuno-neuroendocrine interaction. Various thymic neuropeptide-positive cells, containing peptides including neurotensin, met-enkephalin, neuropeptide Y, substance P and VIP were demonstrated immunohistochemically by Atoji et al. (37-39). Recent studies have also demonstrated the presence of immunoreactive pro-opiomelanocortin (POMC)-related molecules in the thymus of 4-day old chickens, with cell numbers increasing with ageing (40, 41).  Nitrergic, peptidergic and substance P innervation of the chick thymus was described by Gulati et al. (42, 43).  The functional significance of this neuroendocrine presence within the avian cellular immune system remains elusive.  
	Neuroendocrine cell markers
	Chromogranin A (CgA) is one of the most abundant acidic secretory glycoproteins ubiquitously present in neuroendocrine/endocrine cells and the major member of the chromogranin family. About 40% of the total soluble bovine chromaffin granule proteins are CgA(48-50).  It thus serves as a useful tissue and serum marker of neuroendocrine cell and neuroendocrine tumor (51). The diversity of tissues containing CgA-positive cells is enormous (including the chromaffin cells of the adrenal medulla, the parathyroid chief cells, thyroid parafollicular C cells, the pancreatic islet cells and gut neuroendocrine cells (52). The ubiquitous distribution of CgA in neuroendocrine and endocrine tissues suggests their general role in the regulated secretion.
	Intracellularly, CgA is involved in sorting and packaging of peptides into secretory large dense-cored granules. These are organelles for storage of prohormones, nroneuropeptides, processing enzymes (for peptide hormone processing), and other proteins required for regulated secretion from endocrine and neuroendocrine cells (49) (53) (46). CgA controls the biogenesis of secretory granules, and hence regulated secretion in neuroendocrine/endocrine cells. For instance, 6T3 (a cell line derived from a mouse anterior pituitary tumor cell line AtT-20) lacking the regulated secretory pathway and CgA expression showed recovery of regulated secretory phenotype when CgA was introduced exogenously (47, 54, 55). CgA is also a precursor protein for several bioactive peptides, including catestatin, vasostatin, pancreastatin, and other peptide hormones with autocrine, paracrine, and endocrine activities(56).
	In clinical cancer studies, CgA is a useful marker for neuroendocrine tumors (57).  Recent work by Fangwen Rao and colleagues suggests that markedly elevated CgA may point to malignant pheochromocytoma. Plasma CgA concentrations may be useful to gauge tumor response and relapse during chemotherapy of malignant pheochromocytoma (58).
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	 CHAPTER VI
	SUMMARY
	For a long time, immune and nervous/neuroendocrine systems have been viewed as independently functioning entities, “hidden” from each other, so to speak. However, accumulated evidence obtained during the last few decades has profoundly changed this concept (For reviews, see(100, 169).In fact, the communication between the immune and nervous/neuroendocrine systems has proven to be extensive(2, 162) and, more importantly, the cross-talk between the two systems is crucial to maintain homeostasis, and therefore for the survival of the organism(169). In this study, we focused on the diffuse neuroendocrine cells in central immune organ (the thymus) in the chicken and aimed at investigating how the neuroendocrine factors (e.g. somatostatin) regulate or modulate immune function.
	In birds, as in mammals, the process that creates the diverse immunological repertoire of T-cells recognizing non-self antigens has been shown to be critically dependent on the microenvironment of the thymus. The thymic stroma is complex and consists of epithelial cells, mesenchyme, macrophages and dendritic cells, in addition to fibroblasts and extracellular matrix molecules.  These components provide not only essential cell-cell contacts but also communicate with the developing T-lymphocytes in a humoral manner. The thymus produces a number of unique humoral factors and an ever-growing list of neuroendocrine and peripheral hormones. While some of these, such as prolactin and growth hormone, have well characterized effects on thymocyte differentiation and proliferation, many have been identified but have not been assigned a defined function within the thymus, and arguably many messenger molecules remain to be identified. 
	In conclusion, the diffuse neuroendocrine component of the avian thymus was characterized as a complex cell group, existing of at least three different subpopulations that potentially receive input from each other, from the autonomous nervous system, from the circulation, or all of the above. Moreover, this study has provided evidence that, also in birds, neuroendocrine circuits within the thymus may be important, if not essential, for the education and balance between self-tolerance and immunity, as appears to be the case in mammals. (Neuro)endocrine messenger molecules produced by the thymic microenvironment, such as somatostatin, seem to play a potentially important immunomodulatory role with regard to the cell proliferation, differentiation, migration, as well as cytokine production.  However, the question as to exactly which stimuli trigger the release of mediators such as somatostatin remains a field of future study.  In addition, a complete inventory of all substances stored in the thymic LDCV and their effects on the developing T-cells when released in the microenvironment of the thymus are also questions that warrant further investigation. 

