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ABSTRACT 

Oct-4 Expression in Equine Embryonic Cells.  (December 2005) 

Heather Darby Harding, B.S., Texas A&M University 

Chair of Advisory Committee:  Dr. Katrin Hinrichs 

 

 The Oct-4 transcription factor is believed to co-regulate early embryonic 

development of mammals due to the correlation of its presence with the maintenance of 

pluripotency.  It is commonly used as a marker for the identification of embryonic stem 

(ES) cells for this reason.  Until 1999, Oct-4 studies were limited to in vivo-produced 

embryos; equine embryos have not been studied for their Oct-4 expression patterns.  In 

addition, equine stem-like cells (defined by marker expression, induced differentiation, 

passage survival, and morphology) have recently been isolated from in vivo-produced 

embryos, but no work has been performed in horses to isolate ES cells from in vitro-

produced embryos. 

This study investigated the expression of Oct-4 transcription factor using 

immunocytochemistry in 42 in vitro-produced embryos aged 1-10 days and in 5 in vivo-

produced blastocysts aged 7-10 days.  Effective conditions for rapid establishment of a 

feeder layer of equine fetal fibroblasts were established, and this feeder layer was used to 

grow isolated equine inner cell mass (ICM) cells from in vitro-produced embryos.  The 

expression of Oct-4 was examined in resultant cell growths. 

In vitro-produced embryos less than 6 days of age showed variable staining 

within blastomeres of the same embryo, and the peak of variability correlated with 
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maternal-zygotic transition.  After Oct-4 staining of in vitro-produced blastocysts, no 

cells could be identified as an ICM based on a difference in fluorescent intensity from 

the other cells of the blasyocysts.  However, in vitro-produced blastocysts that were 

subsequently cultured in vivo contained a presumptive ICM, visible based on greater 

fluorescent intensity of Oct-4 stain.  The trophoblast of all blastocysts also stained 

positively for Oct-4 protein.  Fibroblasts were successfully isolated from equine feti.  

Treatment with 20 µg/ml of Mitomycin C arrested cell growth without causing excessive 

death.  Fibroblasts were inactivated and frozen, then thawed as needed to establish a 

confluent monolayer for ICM isolation overnight.  ICMs from in vitro-produced 

embryos formed outgrowths, but none that could be identified morphologically as ES 

cells.  Outgrowth cells contained about 20% Oct-4 expressing cells in sporadic 

groupings.  Assuming appropriate binding of the Oct-4 antibody, Oct-4 expressing cells 

(potentially indicating pluripotency) are found throughout the embryo in early 

development and in the feeder layer after co-culture. 
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CHAPTER I 

INTRODUCTION 

POU transcription factors are defined by their region of homology, originally 

found in mammalian transcription factors Pit-1, Oct-1, Oct-2, and nematode regulatory 

protein Unc-86 [1].  The POU domain of these factors and of more recently identified 

members of the POU family binds a specific octamer motif (ATGCAAAT) in the 

promoter or enhancer regions and regulates target gene expression [2].  This DNA 

sequence is identical among genes, whether they are expressed ubiquitously throughout 

the organism or in a tissue-specific manner, and regulation is managed by the presence 

of different POU transcription factors in different cell types for tissue-specific 

expression [3].  Oct-4 (also called Oct-3, Oct-3/4, POU5F1, OTF3, and NF-A3 

depending on species) is a POU transcription factor involved in regulating early 

embryonic development and cell differentiation, and was first investigated in the mouse 

[4]. 

The POU region of these transcription factors contains a conserved POU-specific 

domain and a conserved homeodomain separated by a variable region; the POU-specific 

domain is further divided into 2 distinct subdomains with high homology [5].  

Comparison of these POU-specific subdomains and the homeodomains allows 

classification of POU family members into 5 distinct classes, with Oct-4 representing the 

fifth and most recently identified class [5-7].  POU proteins differ in the contribution of  

____________ 
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their specific domains to the binding of the octamer motif, but the homeodomain is 

necessary for DNA binding in all transcription factors of this family [5].  There is no 

evidence to suggest that the POU-specific domain can bind the octamer motif without 

the presence of the homeodomain. 

Oct-4 has been studied extensively in embryonic pluripotency research, including 

spatial and temporal characterization of Oct-4 in embryos and identification of 

embryonic stem and stem-like cells [8, 9].  Oct-4 protein has not been studied in horses, 

and has been used in only 1 published instance (in the form of RT-PCR) as a marker for 

the pluripotency of equine ES-like cells [10].  The Oct-4 transcription factor has been 

studied extensively, however, in early embryos of mice [9, 11-16], swine [16], cattle 

[16-19], rats [20], rhesus monkeys [15], and humans [21].  There are a variety of 

expression patterns evident in the early embryos of these species, and patterns seem to 

be fairly species-specific.   Rodent and rhesus monkey in vivo-produced embryos 

express Oct-4 protein at later stages of early development (beginning at the 5-cell and 

16-cell stages, respectively), and it is isolated to the ICM at the hatched blastocyst stage.  

At this stage, mRNA expression patterns are identical to protein expression patterns.  In 

cattle (in vitro-produced embryos) and swine (in vivo-produced embryos), Oct-4 protein 

is present in the embryo throughout early development, and is found in both the 

trophoblast and ICM of blastocysts.  In cattle, Oct-4 mRNA expression is like that of 

rodents and rhesus monkeys and is only in the ICM of the expanded blastocyst.  Finally, 

in in vitro-produced human embryos the pattern is far more complicated.  Human 

preimplantation embryos express Oct-4 protein in only some of their cells between the 5 
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cell and compact morula stages, at varying proportions.  For example, 5-celled embryos 

express Oct-4 in 40% of their cells, whereas 9 cell embryos express Oct-4 in only 11.1% 

and 10 cell embryos in 80% of their cells [21].  At the blastocyst stage of human in vitro-

produced embryos, Oct-4 mRNA (based on PCR analysis) and protein are found in both 

the ICM and the trophoblast.  This wide variability, both among species and within 

single embryos, raises questions as to the true role of Oct-4 in maintaining or signaling 

pluripotency in these species. 

Pluripotency is a trait found in a number of cell types, but the focus for this 

research is on stem cells derived from embryos.  These cells have the potential to 

generate any cell type, making them a valuable asset to the medical and research 

communities.  The most immediate applications for stem cells today are gene targeting 

therapy and regenerative medicine (e.g. diabetes treatment) [22-24].  Only twice have ES 

cells been isolated from equine embryos, and in both cases this was from in vivo-

recovered blastocysts [10, 25].  Recovery of ES cells from any in vitro-produced embryo 

is a rarity, including those resulting from intracytoplasmic sperm injection (ICSI) and in 

vitro fertlization.  In the field of ES cell culture, only 3 studies have successfully 

recovered ES cells from a nuclear transfer embryo [26-28].  The implications of 

culturing stem cells from a cloned blastocyst far outstretch those of a natural embryo.  

To take even the first step towards this—the isolation of ES-like cells from in vitro 

produced embryos—would be a giant leap for equine science.  The most vivid 

application of this science is in regenerative medicine in athletes. Cartilage and ligament 

damage in equine athletes is not only a career-limiting condition, but also serves as an 
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excellent model for such damage in human athletes.  Use of stem cells recovered from 

cloned embryos could theoretically serve to produce cartilage and ligament precursors 

which when implanted could resolve damage that currently does not respond to 

treatment.  Other possible uses of stem cell production in horses includes gene targeting 

for research and even re-creation of gametes for the recovery of genetics of valuable 

animals.  Beyond the clinical application of this field, study of the species through this 

advancing science could clarify our understanding of an unlimited number of 

physiological process in large animals, using the horse as a model. 

ES cells are typically derived in culture by isolating the ICM of a blastocyst-

stage embryo and culturing this mass in an environment supportive of stem cell growth.  

The cells of the ICM are pluripotent, and in appropriate culture conditions they will 

grow and proliferate continuously.  The ultimate proof that a cell is an ES cell involves 

transferring it to a developing embryo, and demonstrating that the cells are present in a 

variety of tissues, including the germ line.  Cells that appear to be ES cells (e.g. in 

morphology and protein expression) but that have not been shown definitively to be 

germ-line transmitted are typically referred to as “ES-like” cells. Successful transfer and 

germ line transmission has only been applied in the mouse [29], and therefore “ES” cells 

obtained from any other species are in fact “ES-like” cells.  Much is still unknown about 

why ES cells behave as they do, and what causes these cells to differentiate into a given 

cell type. 

A major focus of modern research is on the differentiation of stem cells into a 

desired cell type.  Left in culture without appropriately-conditioned medium, ES cells 
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will differentiate into spherical masses of cells known as embryoid bodies (EB), which 

then produce further outgrowths when attached to a plate surface. Germ cells, 

osteocytes, cardiomyocytes, and hepatocytes are some of the multitude of cell types that 

have been derived in vitro from embryoid bodies [30-33].  Consistent advances are being 

made in finding new agents that induce ES cells to differentiate into cells of interest.  

Eventually this technology will be put to use to replace damaged organs, or even to fix 

fertility problems or recover the genetics of a valuable deceased animal.  

The first instance of pluripotent cell isolation from an embryo of any species was 

in 1981, when murine ICM cells cultured in conditioned medium developed into the first 

ES-like cells in culture [34].  Since then, ES-like cells have been isolated from hamsters 

[35], pigs and sheep [36], mink [37], cattle [38-40], rabbits [41], rats [42], humans [43], 

monkeys [44], and most recently horses [10, 25].  Cells were characterized as embryonic 

stem-like cells by their morphology, undifferentiated culture through serial passages, 

differentiation into tumors when injected into living creatures or embryoid bodies when 

growth factors were withheld, induced differentiation into a number of precursor cell 

types, and in later studies by identified pluripotency markers.  Common markers used for 

identification of stem cells are now sold in kits specific for a given species.  For 

example, 1 commercial mouse and human ES-like cell identification kit contains 

reagents to identify the presence of Alkaline Phosphatase, cell-surface stage specific 

antigens SSEA-1 and SSEA-4, and antigens TRA-1-60 and TRA-1-81 (Chemicon 

International, Temecula, CA).  Other common markers used are SSEA-3, ALDH, and of 
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course, Oct-4.  Echoing the expression patterns in embryos, Oct-4 is lost from ES cells 

when they differentiate [10, 15, 20, 45].  

With the exception of the mouse stem-like cells (which used media previously 

conditioned by other cells), the above cells were all grown on inactivated feeder layers 

of rat, murine, human or bovine fibroblasts.  A common tool in cell culture, feeder layers 

provide appropriate conditions for difficult-to-grow cells.  Occasionally ES cells are 

grown in specially conditioned medium without a feeder layer, but these occasions are 

becoming rare since the commercialization of feeder layer products [34, 46-49].  While 

fibroblasts perform many functions when used as feeder cells, the most important of 

these are support in cell-to-cell and cell-to-extracellular matrix interactions (attachment 

of the ES cells to the plate), the production of necessary growth factors and the removal 

of toxins from the culture medium.  Feeder layers allow culture, with minimal effort, of 

cells that are normally very difficult to grow in vitro.  To date, there have been 2  reports 

(1 full paper and 1 brief report) in which equine ES-like cells have been established in 

culture, but only 1 of these studies used equine cells to produce the  feeder layer,  and no 

information was given on the method of production of those feeder cells [10, 25]. 

 To create a functional and supportive feeder layer, the feeder cells must be 

prevented from overtaking the slower-growing ES-like cells.  Therefore, the feeder cells 

must be stopped from growing before they can be used in co-culture, but must still be 

viable to serve their function.  The 2 most common methods for inactivation of feeder 

cells are irradiation and administration of a sub-lethal dose of Mitomycin C (MMC) 

[50].  Irradiation was used frequently in older studies, but is time consuming and 
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expensive.  Mitomycin C is a more efficient and cost-effective alternative and is readily 

available and easy to use.  A cytotoxin still commonly used in cancer therapy, MMC 

inserts between the strands of DNA and prevents DNA replication, thus preventing cell 

division.  Once MMC inserts into the genetic material the cell has a finite lifetime, 

between 1 and 3 weeks.  Therefore, the feeder layer for support of ES cells must be 

replaced periodically during ES cell passaging to provide the best environment to 

support growth. 

The specific aims of this project were: 

1.  To characterize the expression patterns of Oct-4 protein in in vitro-

produced equine embryos during early development.  In vitro-produced embryos 

were studied from Day 1 to Day 10 of development, and in vivo-produced embryos (for 

use as a control for blastocyst development) were studied from Days 7 through 10. 

2.  To determine the appropriate concentration of MMC for production of a 

viable inactivated feeder layer from equine fetal fibroblasts.  The number of cells 

present at confluency in 1 well of a 4-well dish, effectiveness of quantification and cell 

recovery methods, effects of passaging on cell survival, optimal dosage determination of 

Mitomycin C, and effects of freezing on cell survival were examined to optimize feeder 

layer production.   

3.  To evaluate the development of equine ICM cells cultured on feeder 

layers to determine their capability to produce stem-like cells.  These cells were then 

examined for the expression of Oct-4 protein to further identify ES-like characteristics.  
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CHAPTER II 

EMBRYONIC OCT-4 EXPRESSION 

MATERIALS AND METHODS 

Approach 

Equine embryos were produced by in vitro oocyte maturation, ICSI, and in vitro 

embryo culture.   In vitro-produced embryos at different early stages of development 

were immuno-stained for Oct-4 expression, and in vivo-recovered blastocysts were 

stained as well.  Oct-4 expression patterns according to day of culture and number of 

healthy embryonic nuclei were determined.   Finally, the results of the 

immunocytochemistry were validated with a Western blot using murine stem cells to 

confirm binding ability of the primary antibody. 

Embryo origins 

 Three sources of embryos were used for this phase of study: in vitro-produced 

embryos, in vivo-recovered embryos, and embryos from a combination of these sources 

(produced in vitro, transferred to the uterus of a recipient mare, and recovered 2- 3 days 

later for evaluation). 

To produce embryos in vitro, equine ovaries were first recovered from an abattoir 

and transported at room temperature to the laboratory a maximum of 7 hours post-

mortem.  Ovaries were trimmed of excess tissue with scissors and scalpel blades were 

then used to open visible follicles.  The granulosa layer of each follicle was scraped 

using a 0.5 cm bone curette and washed into individual Petri dishes with Hepes-buffered 

TCM-199 with Hank’s salts (Gibco Life Technologies Inc, Grand Island, NY) plus 
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ticarcillin (0.1 mg/ml; SmithKline Beecham Pharmaceuticals, Philadelphia, PA).  After 

all visible surface follicles were opened the ovaries were cut into 5-mm sections to 

locate follicles within the ovarian stroma.  Petri dish contents were examined at 10-20X 

magnification under a dissection microscope.  Depending on the expansion of cumulus 

and mural granulosa, cumulus-oocyte complexes located in the dishes were graded as 

compact or expanded as previously described [51, 52].  Any sign of expansion in the 

cumulus or mural granulosa caused the related oocyte to be classified as expanded.     

Recovered oocytes were matured in TCM-199 with Earle’s salts (Gibco) plus 

10% fetal bovine serum (FBS, Gibco) and 5 mU/ml follicle stimulating hormone (Sioux 

Biochemicals, Sioux Center, IA) in droplets at a ratio of 10 µl medium/oocyte under 

light white mineral oil (Sigma-Aldrich Corp., St. Louis, MO) at 38.2ºC in 5% CO2 in air.  

Oocytes were cultured for maturation for 24 hours if recovered with expanded cumulus 

morphology or 30 hours if recovered with compact cumulus morphology.  Oocytes were 

then denuded of cumulus by pipetting in 0.05% hyaluronidase (Sigma)  in CZB-M [53] 

as previously described [53], and those having a polar body after culture were used for 

ICSI, performed by Dr. Young-Ho Choi as previously described [53].  Briefly, the 

denuded, matured oocytes were held in CZB-H [53] prior to ICSI.  Sperm were prepared 

by swim-up in Sp-CZB [53] and injected into the oocyte in CZB-M.  Injected oocytes 

were held in CZB-H containing 10% FBS in 5% CO2 in air at 38.2 ºC until all 

manipulations were done.  After ICSI, oocytes were cultured in cell culture medium 

(CCM; Dulbecco’s Modified Eagle’s Medium/Nutrient Mixture F-12 Ham (DMEM/F12, 

Sigma) with 10% FBS and 0.5 µg/ml Gentamycin (Sigma)) at 38.2°C in an atmosphere 
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of 5% CO2, 5% O2 and 90% N2.  Medium was completely replaced every 2-3 days.  One 

to 10 oocytes were cultured per drop, and the maximum volume of each droplet was 50 

µl.   

To evaluate expanded blastocysts, presumptive embryos were cultured for a total 

of 7-8 days, then the zona pellucida was removed by treatment with acidic Tyrode’s 

solution (Sigma), and the embryos were cultured for additional 2 or 3 days to allow 

blastocoel expansion.   

Embryos were also recovered in vivo.  This began with the monitoring of 

follicular development via palpation and ultrasonography per rectum (performed by Dr. 

Katrin Hinrichs or Mr. Lance Roasa).  When the follicle was >30 mm diameter, mares 

were artificially inseminated and a dose of Deslorelin (1.5 mg BETpharm, Lexington, 

KY) given intramuscularly.  Mares continued to be monitored to detect the day of 

ovulation.  Seven to 10 days after ovulation, embryos were recovered from the mares by 

uterine flush as previously described [54]. 

Finally, embryos resulting from a combination of these procedures were 

obtained.  Embryos were produced in vitro as described above, and follicular growth in 

recipient mares was monitored and synchronized so that embryos could be transferred to 

mares that ovulated from the day that ICSI was performed to 3 days afterward.  After 7 

days of culture in vitro, the in vitro-produced embryos were transferred transcervically to 

the uteri of synchronized mares then recovered by uterine flush 2-3 days later.  Since 

these embryos developed to the blastocyst stage in vivo, shedding their zonae pellucidae 

and expanding with formation of an embryonic capsule, they allowed for the study of in 
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vivo-like embryos while circumventing the difficulty in recovering large numbers of this 

type of embryo (which is due to the lack of sufficient superovulation technology in the 

mare).   

The numbers of embryos subjected to immunocytochemistry from each of these 

origins are listed in Table 1. 

 
 
TABLE 1.  Origins of embryos subjected to immunocytochemistry. 

Embryo Origin Number of Embryos Stained 
In vitro-produced zygotesa 5 
Early in vitro-produced ICSI embryosb �10/culture day  
Zona-intact, in vitro-produced ICSI blastocystsc  15 
Zona-removed, in vitro-produced ICSI blastocystsd 5 
In vivo-recovered blastocystsc  5 
In vitro-/in vivo-cultured ICSI blastocystse 11 
a Day 1 
b Days 2-6 
c Days 7-10 
d Day 9 
e Transferred at Day 7, recovered after 2 to 3 days in vivo 
 

 
 

Immunocytochemistry of early embryos 

 All embryos described above were subjected to immunocytochemistry.  Washing 

with CCM occurred between each step.  Unless otherwise noted, all dilutions were made 

in phosphate-buffered saline (PBS, Invitrogen, Carlsbad, CA).  Embryos were first fixed 

for 20 minutes at room temperature in 4% paraformaldehyde (Sigma) and then 

permeabilized in 0.2% Triton X-100 (Sigma) and 0.1% Tween-20 (Research Organics, 

Cleveland, OH) for 20 minutes at room temperature.  Non-specific reactions were 

blocked by 20 minute incubation at room temperature in 10% normal goat serum 
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(Jackson ImmunoResearch Laboratories, Inc., West Grove, PA).  Antibodies (1:200) 

were then administered sequentially at room temperature for 40 minutes each, with 

extensive washing between antibody treatments. The primary antibody was a mouse 

monoclonal antibody against amino acids 1-134 of human Oct-4 (Santa Cruz 

Biotechnology, Santa Cruz, CA), and the secondary antibody was goat anti-mouse 

antibody conjugated with indocarbocyanine (Cy3; Jackson ImmunoResearch).  Ten 

minute room-temperature incubation with Hoechst 33258 (Sigma) at a concentration of 

10 µg/ml was used to counterstain nuclear material.  Control reactions for non-specific 

binding of the secondary antibody were carried out by omitting treatment with the 

primary antibody.  After final washing, embryos were immediately mounted in glycerol 

(Sigma) under glass coverslips.  After examination, samples were stored at -20ºC in the 

dark. 

All embryos were evaluated under fluorescence microscopy.  The nucleus 

number for each embryo as determined by Hoechst staining was recorded.  Only normal 

nuclei were counted; those showing pyknosis or degeneration were disregarded as they 

do not contribute to the survival of healthy embryos.  The nucleus number recorded for 

embryos at each day of culture was evaluated to establish a normal nucleus number 

range for each age of embryo (Days 1-6).   This was done on the basis that, on average, 

30% of embryos develop to the blastocyst stage.  During embryo culture, obviously 

degenerating or retarded embryos are removed on Day 3 and Day 5.  Thus, it was 

estimated that conservatively 50% of equine embryos in culture at a given age are 

healthy.  The top 50 percentile of embryos based on nucleus counts for each age 
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provided a guideline for a normal nucleus number for each embryo age.  Only embryos 

showing normal development for their age were then evaluated for the number and 

percentage of nuclei staining for Oct-4 protein.  The intensity of Oct-4 staining (on a 0-5 

scale, with 0 indicating no fluorescence and 5 the brightest fluorescence seen) and the 

proportion of total Oct-4 staining nuclei to the total nucleus number were visually 

determined for embryos of each age.   

The proportion of nuclei expressing Oct-4 protein at each embryo stage was 

found using the equation 

[1] Px = nOct-4/ntotx, x = 1, 2, 3, 4, 5, or 6 days, 

where Px is the proportion of nuclei with any visible Oct-4 staining for age x, nOct-4 is the 

total number of nuclei found to be expressing Oct-4 protein in normal embryos, and ntotx 

is the total number of nuclei for age x.  The proportion of embryonic nuclei showing 

Oct-4 staining was compared among embryo ages using analysis of variance, to 

determine if Oct-4 staining patterns change with embryo age. 

Immunocytochemistry of blastocysts 

Oct-4 expression patterns in in vitro-produced blastocysts were compared with 

those for in vivo-recovered blastocysts.  Blastocysts were stained for Oct-4 and 

counterstained with Hoechst 33258, then in vitro-produced and in vivo-recovered 

blastocysts were immediately mounted in glycerol under coverslips for viewing and in 

vitro-produced/in vivo-cultured blastocysts were first viewed in 10 µl droplets of 

glycerol and then mounted.  Blastocysts were evaluated under fluorescence microscopy 

as described above.  In addition, the presence of any ICM-like mass based on difference 
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in fluorescent intensity was noted.  Twenty ICSI-produced blastocysts were stained for 

Oct-4; 1 of these blastocysts was sacrificed as a control for non-specific binding of the 

secondary antibody.  This blastocyst was given the normal staining treatment as 

described above but the primary antibody step was omitted. 

Western blot 

 Two Western blots were performed, each using 4 in vitro-produced equine 

embryo equivalents (from a combined stock of 16 equine embryos), to attempt to verify 

the presence of Oct-4 in equine blastocysts and to validate the specificity of the primary 

antibody for equine Oct-4 protein.  Fetal fibroblasts do not express Oct-4, and both 

bovine and equine fetal fibroblasts were used as negative controls in the blotting.  

Positive controls used were 1 µg of a protein fragment corresponding to amino acids 1-

134 of the human Oct-4 protein (Santa Cruz) and 10 bovine in vitro-produced embryo 

equivalents (from a stock of 100 bovine embryos, provided by Dr. Chuck Long).  Bovine 

embryo equivalents also provided a control for Oct-4 content per equine embryo.  

Embryos or cells were transferred to lysis buffer at a ratio of 1 unit of cell suspension: 2 

units of lysis buffer (10mM HEPES, 2 mM MgCl2-6H20, 6 mM �-Mercaptoethanol 

(Sigma), pH 7.0) and either stored at -20ºC or used immediately.  The lysed cell 

suspension was then diluted with 2 volumes of Laemmli sample buffer (Bio-Rad 

Laboratories, Hercules, CA) containing 5% �-Mercaptoethanol and boiled for 5 minutes.  

The solution was centrifuged 30 minutes at 14000 RPM to remove cellular debris and 

nuclear material.  After centrifugation, the supernatant was transferred to a fresh 

microcentrifuge tube and loaded into the gel immediately or stored at -20ºC.  SDS-
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PAGE was run at 200V for 35 minutes on 1.0-mm gels with 4% resolving gels and 8% 

stacking gels under standard conditions using a Mini-PROTEAN 3 Cell (Bio-Rad).  All 

buffers and reagents were supplied by Bio-Rad or Sigma and were prepared according to 

Bio-Rad protocol.  The separated proteins were transferred by electrophoresis in semi-

dry transfers to polyvinylidiene difluoride membranes (PVDF, Immobilon-P, Sigma) 

with a Trans-Blot SD (Bio-Rad) at 15V for 30 minutes in blot transfer buffer (48 mM 

Tris, 39 mM glycine, 0.037% SDS, 20% methanol), according to manufacturer 

recommendations.  PVDF membranes were washed in Tween-Tris Buffered Saline 

(TTBS: 0.05% Tween-20, 25 mM Tris, 140 mM NaCl, 3 mM KCl, pH 8.0).  Membranes 

then underwent treatment for 1 hour with 1% normal goat serum and 0.5% skim milk in 

TTBS to block non-specific reactions.  After 3 washes with TTBS, the antibodies were 

administered at room temperature for 2 hours each at dilutions of 1:1000 and 1:20000 

respectively, with 3 30 minute washes of TTBS between antibodies.  The primary 

antibody was that described above, and the secondary antibody was a goat anti-mouse 

antibody conjugated with Peroxidase (Chemicon, Temecula, CA).  After another 3 

washes as described above to remove excess secondary antibody, the membranes were 

incubated with approximately 5 ml of SuperSignal West Pico Chemiluminescent 

Substrate (Pierce Biotechnology, Rockford, IL) for 3–5 min according to the 

manufacturer’s protocol. The results were photographed on an Alpha-Innotech (IS-500) 

system.  BlueRanger Prestained Molecular Weight Marker (Pierce) provided a reference 

to determine the weight of the protein to which the antibodies bound; data in other 

species indicates Oct-4 is a 40-50 kD protein.   
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Four additional Western blots were performed by Dr. Young-Ho Choi, following 

the above procedure with the following exceptions: murine stem cells (provided by Dr. 

Bert Binas) were also used as positive controls and a fresh commercial positive control 

(same catalog number, but different batch; 20 ng) was used.  Instead of bovine or equine 

fibroblasts, murine fibroblasts (also provided by Dr. Bert Binas) were used as a negative 

control.  These blots were performed with 20 bovine blastocysts and 7 Day 10 equine 

embryos (subjected to zona removal on Day 7, then 3 additional days of culture).  

Additional in vitro-produced equine embryos are still being collected by Dr. Choi to 

continue this work with higher embryo concentrations per blot.  

RESULTS 

Early embryos 

 The nucleus number of equine ICSI embryos at Days 1 through 6 of culture and 

the minimum nucleus number used for selecting embryos for evaluation of Oct-4 

staining are presented in Table 2. Embryos meeting the top 50 percentile selection 

criteria were analyzed for expression of Oct-4.  Embryos of the same age showed Oct-4 

completely localized to the nucleus, present throughout the cytoplasm of the cells, or 

distributed at some point in between.  In addition, some embryos did not have any Oct-4 

present in certain nuclei but stained vividly for Oct-4 in other nuclei.  Examples of all 

expression patterns found can be seen in Figure 1.  

Despite the apparent variable diffusion of the protein within the embryo, the 

presence or absence of Oct-4 in the nuclei of the embryos showed a trend over the early 

days of development.  The percentage of nuclei expressing Oct-4 dipped from 83.3% on 
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Day 1 to 75.8% on Day 3 and then steadily rose to 100% expression in Day 6 embryos. 

The proportion of nuclei expressing Oct-4 was significantly higher in Day 6 embryos 

than in Day 3 embryos (LSD, p=0.032).  The number and percentage of nuclei staining 

for Oct-4 for each embryo age is presented in Table 3. 

 

TABLE 2.  Nucleus numbers of early embryos as seen with Hoechst staining and 
number selected as basis for evaluating Oct-4 staining. 

Embryo Age 
(Days) Nucleus Numbers of Stained Embryos Selected Nucleus 

Number 
1 1a, 2, 2, 3, 4 �2 
2 0, 0, 2, 3, 3, 4, 5, 5, 6, 7 �4 
3 0, 0, 0, 1, 3, 3, 4, 5, 6, 6, 6, 6, 8, 8, 9 �6 
4 0, 1, 5, 5, 7, 7, 8, 10, 11, 11, 13, 17, 18, 38 �10 
5 0, 2, 2, 4, 8, 8, 15, 17, 22, 32, 51 �15 
6 0, 0, 1, 2, 13, 17, 57, 63, 55, 83, 90 �57 

Immunocytochemistry was performed on embryos at Days 1-6 and the number of non-degenerating nuclei 
was recorded for each embryo.  The top 50% of embryos for each age were then selected for further 
evaluation. 
a Embryo had 1 intact nucleus and 1 in metaphase, but was considered healthy 
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FIGURE 1.  Oct-4 expression patterns in early equine embryos.  Equine embryos 
produced by ICSI were fixed on Days 1-6 of culture and double labeled with Hoechst 
33258 (blue, left) for DNA and Oct-4 (red, right).  A and A1) Day 1 embryo with diffuse 
Oct-4 staining.  B and B1) Day 1 embryo with specific nuclei staining.  C and C1) Day 2 
embryo with diffuse Oct-4 staining and identifiable nuclei.  D and D1) Day 2 embryo 
with specific nuclei staining.  E-F1) Day 3 embryos with specific nuclei staining.  G and 
G1) Day 4 embryo with diffuse Oct-4 staining and identifiable nuclei.  H and H1) Day 4 
embryo with specific nuclei staining.  I-J1) Day 4 and Day 5 embryos with specific 
nuclei staining and non-Oct-4 staining nuclei.  K-L1) Day 5 and Day 6 embryos with 
diffuse Oct-4 staining and identifiable nuclei. 
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TABLE 3. Oct-4 expression patterns of healthy early embryos. 
Embryo Age 

(Days) 
Cell 

Number 
Number of Oct-
4 Staining Cells 

Percentage of Oct-4 
Staining Cells 

Intensity of Oct-
4 Stainingb 

1 1a 0 0 0 
 2 2 100 3 
 2 2 100 4 
 3 2 67 4 
 4 4 100 3 

Average 2.4 2 83.3 3.8 
2 4 4 100 1 
 5 5 100 3 
 5 2 40 4 
 6 4 67 3 
 7 7 100 3 

Average 5 4.4 81.5 2.8 
3 6 4 67 3 
 6 6 100 3 
 6 4 67 4 
 6 4 67 4 
 9 7 78 2 

Average 7c 5c 75.8c,d 3.2c 
4 10 10 100 4 
 11 11 100 1 
 11 11 100 2 
 13 10 77 4 
 17 17 100 3 
 18 18 100 1 
 38 22 58 2 

Average 17 14.1 83.9 2 
5 15 15 100 3 
 17 17 100 3 
 22 22 100 3 
 32 21 66 4 
 51 51 100 4 

Average 27 25.2 92.0 3.4 
6 57 57 100 2 
 63 63 100 3 
 66 66 100 2 
 83 83 100 1 
 90 90 100 4 

Average 72 71.8 100d 2.4 
Embryos were stained for Oct-4 and counterstained with Hoechst, then the number of nuclei found under 
each stain and the intensity of fluorescence of the Oct-4 stain was evaluated. 
a Embryo had 1 intact nucleus and 1 in metaphase, but was considered healthy 
b 0 = no visible fluorescence, 5 = brightest visible fluorescence 
c 2 8 celled non-fluorescing embryos were removed from this group 
d Within columns, values differ significantly (p<0.05) 
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Two other phenomena of staining were found to apply to all equine embryos 

studied.  Mitotic figures in embryos did not stain for Oct-4 (Fig. 2).  In addition, 

degenerating nuclei (as determined by presence of pyknosis or karyorrhexis on Hoechst 

staining) did not show any Oct-4 signal (Fig. 2).  

 

 
FIGURE 2.  Telophase figure and degenerating nucleus staining.  Embryos were stained with 
Hoechst 33258 (blue, left) for DNA and Oct-4 (red, right).  A and A1) There is no visible 
fluorescence in the indicated area of the telophase figure, but the other 7 nuclei in the embryo have 
visible Oct-4 signal. B and B1) No nuclear material from the degenerating nuclei show any Oct-4 
signal. 
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FIGURE 3. In vitro-produced blastocysts with variable Oct-4 expression.  Blastocysts 
were stained with Hoechst 33258 (blue, left) for DNA and Oct-4 (red, right).  A and A1) 
Day 9 ICSI blastocyst with Oct-4 protein localized to nuclei.  Zona pellucida was 
removed at Day 7 to allow expansion. B and B1) Day 8 ICSI blastocyst with diffuse Oct-
4 protein throughout. 
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In vitro-cultured blastocysts  

The control blastocyst for secondary antibody nonspecific binding had no visible 

fluorescence on visualization.  Distribution of Oct-4 within the other 19 in vitro-cultured 

blastocysts was variable: in some blastocysts Oct-4 was localized to the nuclei, and in 

others it was diffuse throughout the blastocyst (Fig. 3).  Once embryos had reached the 

Day-7 (blastocyst) stage, however, the variable expression of nuclei within a single 

blastocyst was no longer evident, as all nuclei showed fluorescence.  All blastocysts 

were compressed to the coverslips during mounting, allowing the visualization of a 

larger proportion of the blastomeres of each blastocyst within a single viewing plane of 

focus.  There was no evidence of differential staining between any of the cells in any in 

vitro-produced blastocyst. 

  

FIGURE 4.  Day 8 in vivo-recovered blastocyst with presumptive ICM visible after Oct-
4 staining.  Blastocyst was stained with Hoechst 33258 (blue, A) for DNA and Oct-4 
(red, A1). 
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In vivo-recovered blastocysts 

Of the 5 in vivo blastocysts examined, all had a visible ICM at the time of 

recovery.  All 5 blastocysts were mounted under cover slips before visualization. The 

presumptive ICM was identified after staining and mounting in 2 blastocysts (aged 8 and 

10 days) based on visibly amplified Oct-4 signal in a defined mass of cells in the 

blastocyst (Fig. 4).  In all blastocysts, the Oct-4 signal was localized to the nuclei and 

was seen in all cells. 

 In vitro-produced/in vivo-cultured blastocysts 
 

Of the 11 in vitro-produced/in vivo-cultured blastocysts recovered, 7 were 

evaluated after immunocytochemistry. All of these had identifiable presumptive ICMs as 

determined by increased intensity of Oct-4 signal in these cells (vs. other cells in the 

blastocysts) after staining when visualized without compression in a droplet of glycerol.   

All blastocysts had Oct-4 localized to the nuclei, and the nuclei of cells in the 

presumptive ICM had a visibly higher intensity signal than those of the rest of the 

blastocyst (Figs. 5 and 6).  When mounted under coverslips, the blastocysts were 

compressed and some ruptured.  In 4 of 7 blastocysts after mounting, the previously 

visible presumptive ICM was less or no longer identifiable.  
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FIGURE 5.  Day 9 in vitro-produced/in vivo-cultured blastocysts.  Blastocysts were 
stained with Hoechst 33258 (blue, left) for DNA and Oct-4 (red, right).  All blastocysts 
have presumptive ICMs visible with amplified Oct-4 signal.  A-B1) Day 9 ICSI fresh-
transferred/recovered blastocysts.  Blastocysts collapsed and ruptured during staining. C-
D1) Day 9 ICSI vitrified transferred/recovered blastocysts. 
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FIGURE 6. Presumptive ICM cells seen before and after mounting. Blastocysts were 
stained with Hoechst 33258 (blue, left) for DNA and Oct-4 (red, right).  In vitro-
produced/in vivo-recovered blastocysts mounted under a coverslip (A and A1, C and C1) 
and free-floating in glycerol (B and B1, D and D1). A-B1) 200x magnification.  C-D1) 
100x magnification.  
 
 
 
Western blot 
 

Western blots using 4 equine embryo equivalents and 10 bovine embryo 

equivalents did not show any Oct-4 in either lane.  In addition, the positive control 

obtained from Santa Cruz Biotechnology did not perform as expected based on the 

manufacturer’s product information and presented on visualization as a smear with a 

number of bands rather than a single strong band at 42 kD (Fig. 7). 

Further Western blots were performed by Dr. Choi using a fresh positive control.  

Murine stem cells had a clear band at 42 kD, indicating the presence of Oct-4 in these 

cells; murine fibroblasts showed no band (Fig. 8).  The fresh positive control was 

visualized as a single thick band at 42 kD, indicating the specificity of the antibody for 
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Oct-4.  The equine and bovine embryos, despite the higher concentrations used, still did 

not have any visible Oct-4 in the Western blots. 

 

 
FIGURE 7.  Faulty positive control used 
in initial Western blotting.  The thickest 
band (indicated with the arrow) 
represents the appropriate molecular 
weight of 42 kD, but is overshadowed 
by excessive noise in the lane due to a 
compromised sample. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

FIGURE 8.  Western blot confirming 
activity of Oct-4 antibody.  Blot shows 
positive Oct-4 control (Lane 1), positive 
band from murine embryonic stem cells 
(Lane 2), and negative result with 
murine fibroblasts (Lane 3). 
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DISCUSSION 

 This study reports the expression pattern of Oct-4 in equine embryos from Day 1 

after fertilization to the blastocyst stage.  Oct-4 was examined in both a temporal and 

spatial capacity in these embryos.  Evaluation was limited to embryos presumed to be 

growing normally, as defined by the selection criteria.  

 The results show that Oct-4 is present in early embryos and blastocysts through 

Day 10 of development.  The expression patterns were variable in early embryos but 

gradually became more regular, with 100% of nuclei in embryos expressing Oct-4 

protein at Day 6 onward.  This may be related to the maternal-zygotic transition 

(activation of the embryonic genome), which takes place in equine embryos at the 4-8 

cell stage [55].  The steady dip in Oct-4 signal in nuclei over Days 1-3, followed by a 

rapid recovery, may be related to the exhaustion of maternally generated Oct-4 and then 

its recovery via expression of zygotic transcripts.   It was shown in human in vitro-

produced embryos that the presumptive maternal Oct-4 is distributed within the 

cytoplasm, whereas the embryonic Oct-4 is localized to the nucleus [21].  This supports 

the finding that nuclear localization was not consistent until 6 days.  Data in the rat, 

mouse, and rhesus monkey indicates that Oct-4 mRNA is produced from the embryonic 

genome at the time of maternal-zygotic transition [15, 20].  From this point forward the 

variability within and between embryos decreased significantly in equine embryos, and 

Oct-4 became more consistently localized to the nuclei of embryos.  This may indicate 

Oct-4 does not play a significant role in very early embryos since it functions as a 

transcription factor and the genome is not being transcribed; accumulation in the 
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cytoplasmic space suggests that it is non-functional.  With further development, the 

importance of Oct-4 at these stages is echoed by the specificity of localization to the 

nucleus.  The variability observed in Oct-4 expression of early embryos may be related 

to many factors. Those nuclei in an embryo not expressing Oct-4 could be preparing to 

divide; we noted that mitotic figures in embryos did not stain with Oct-4. Additionally, 

transcription is not occurring when a nucleus is about to degenerate.  While we 

attempted to select only viable embryos for our Oct-4 staining, some of these embryos 

may have been compromised or may have contained non-viable blastomeres.   

 Oct-4 was present in all cells of all blastocysts examined, in varying intensities.  

In vitro-produced equine embryos at 7 days of culture that were considered to be 

blastocysts (defined as >64 normal nuclei and apparent differentiation of a rim of 

trophoblast cells) rarely had a visually identifiable ICM.  Thus, this section of the study 

was of particular interest to determine if Oct-4 staining could identify the ICM in 

embryos of in vitro origin.  The ability to identify the ICM of in vitro-produced embryos 

based on the expression of Oct-4 protein would allow much greater confidence in the 

developmental capacity of these embryos and their usefulness as a model of in vivo 

development. In no in vitro-produced blastocysts, however, was there any indication of 

an ICM based on increased intensity of Oct-4 signal.  Mounting under coverslips may 

obscure the ICMs of equine blastocysts, a phenomenon that went undiscovered until 

after the in vitro-produced blastocysts had been mounted and studied.  However, 40% of 

in vivo-recovered blastocysts showed stronger Oct-4 signal in a visible, presumptive 

ICM even when mounted under coverslips.  This suggests that there may be in vivo 
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factors important in promoting viability or maintaining pluripotency of the ICM.  In 

those in vitro-produced/in vivo-cultured blastocysts viewed both before and after 

mounting under coverslips, all blastocysts recovered had an obvious ICM visible to the 

eye on initial evaluation before staining, and a mass was also evident after staining.  This 

mass presented as an area of increased Oct-4 signal, with no corresponding increase in 

Hoechst stain, when viewed in a glycerol droplet.  In 4 out of 7 of these blastocysts, the 

presumptive ICM was more difficult or even impossible to identify once the blastocyst 

was flattened during mounting. To confirm the benefits of viewing blastocysts in 

suspension over mounted blastocysts, further studies should be undertaken in which 

blastocysts are examined under fluorescence microscopy in glycerol droplets before they 

are mounted for examination on slides. 

 Obtaining a single equine in vivo-recovered embryo requires many hours of labor 

and there is only a 50-75% chance of recovery despite this work [56].  A product for 

mare superovulation has just become commercially available; however it is expensive 

(~$500 per cycle) and provides an average of only 1.5-2 embryos per flush [57].  Thus, 

we evaluated both in vivo-recovered blastocysts and in vitro-produced/in vivo-cultured 

blastocysts.  The in vitro-produced/in vivo-cultured blastocysts spent 2 days in utero, 

and this was associated with expansion of the blastocoel and development of an ICM far 

exceeding in vitro-cultured counterparts.  Blastocysts recovered after this time in utero 

were up to 1.250 mm in diameter; large when compared with in vitro-cultured 

blastocysts.  These blastocysts were indistinguishable from typical in vivo-recovered 

blastocysts of the same age.  The increased Oct-4 signal in the presumptive ICMs of 
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these embryos suggests that the uterus supports differentiation between trophoblast and 

ICM cells. 

 While no bands indicating the presence of Oct-4 in either bovine or equine 

embryos were visible in Western analysis to this point, this is most likely due to the low 

number of cells used for each sample.  Week-old embryos are small, averaging 151 cells 

in a bovine Day 7 embryo [58] and 108 cells in an equine Day 7 embryo [59].  As 

mentioned above, more embryos are currently being accumulated to allow further 

exploration of the Oct-4 bands in the Western analysis of these embryos. 

Preliminary work has been performed examining the mRNA expression for Oct-

4 in equine embryos, in collaboration with the laboratory of Dr. John McLaughlin at the 

University of Pennsylvania School of Veterinary Medicine.   Two in vivo-recovered 

equine embryos (Days 8 and 10) were evaluated for expression and spatial distribution 

of Oct-4 mRNA.  Using the Day 10 embryo, a reusable equine cDNA library was 

synthesized as previously described [60, 61].  RT-PCR was performed on this library 

and on 2 negative controls (equine cumulus cells and fibroblasts) using 2 sets of primers 

designed based on a published equine expressed sequence tag with sequences 

corresponding to exons 3-5 of bovine Oct-4.  Both sets of primers produced Oct-4 bands 

(set 1=189bp, set 2=150bp) that were detected only in the blastocyst sample (Fig. 9). 
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FIGURE 9. Expression of Oct-4 mRNA in equine blastocyst at Day 10. Lanes 1 and 3: 
fibroblasts, 2 and 4: cumulus cells, 3 and 6: blastocyst.  Courtesy of Dr. John 
McLaughlin, UPenn. 
 
 
 

The Day 8 blastocyst was used in whole mount in situ hybridization with an Oct-

4-specific antisense mRNA probe that cross-reacts in a number of species with similar 

specificity to determine spatial distribution of the transcript.  The Oct-4 mRNA signal 

was distributed differently than in murine and bovine samples, which exhibit Oct-4 

mRNA in only the ICM (Fig. 10).  The Day 8 equine blastocyst had detectable Oct-4 

mRNA in the entire inner endodermal layer within the trophectoderm layer (Fig. 11).  

These results suggest the signal-expressing inner layer either contains pluripotent cells or 

that the cells of this layer maintain their Oct-4 mRNA expression as they differentiate.  

Studies are currently underway in Dr. McLaughlin’s laboratory to create an equine-

specific mRNA probe to ensure species-specific signal. 
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FIGURE 10. Spatial expression of Oct-4 mRNA in mouse and bovine blastocysts.  a) 
Mouse blastocyst at Day 3.5. b) Bovine blastocyst at Day 7.  Courtesy of Dr. John 
McLaughlin, UPenn. 
 
 
 

 
FIGURE 11. Spatial expression of Oct-4 mRNA in an equine blastocyst at Day 8.  a and 
b are the same embryo from a different angle.  Courtesy of Dr. John McLaughlin, 
UPenn. 
 
 
 

Forty-three in vitro-produced equine embryos from the 3-cell to blastocyst stages 

were shipped to the laboratory of Dr. McLaughlin.  Of these, 18 were lost during 

processing (lysed in the hybridization solution) and 12 were subjected to in situ 

hybridization.  Thirteen embryos were fixed for future evaluation with equine Oct-4 

mRNA probes.  Oct-4 mRNA had low expression in early embryos.  Expression in in 

vitro-produced blastocysts was distributed throughout the embryo (Fig. 12). 
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FIGURE 12. Spatial expression of Oct-4 mRNA in in vitro-produced blastocysts.  A and 
B) Day 7 blastocysts; C and D) blastocysts which had the zona removed at Day 7 and 
were cultured for an additional 3 days.  A and C) control; B and D) Oct-4 mRNA.  
Courtesy of Dr. John McLaughlin, UPenn. 
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CHAPTER III 

FEEDER LAYER DEVELOPMENT 

MATERIALS AND METHODS 

Approach 

To find the appropriate conditions for the immediate (ready within 24 hours of 

removal from storage) establishment of a feeder layer for stem cell culture, a number of 

steps had to be taken.  It was necessary to establish a line of equine fetal fibroblasts and 

learn the growth characteristics specific to equine fetal fibroblasts. To determine growth 

characteristics, increase in numbers of cells over time had to be calculated.  Different 

enumeration protocols were evaluated to determine which most accurately reflected the 

cell numbers in cell suspensions.  Using the technique proven most reliable for counting 

cells, the number of cells present in a confluent monolayer in 1 well of a 4-well dish (the 

plate to be used for ES cell culture) was determined in order to provide a baseline for 

estimating the number of inactivated cells that should be used for plating to immediately 

obtain a confluent monolayer, and to serve as a basis for further culture calculations.  

Once this number was determined, the plating density of cells associated with the most 

rapid growth was determined.  This number provided data needed to produce a rapidly 

growing culture to use in testing different doses of the arresting agent Mitomycin C to 

inhibit growth in equine fibroblast cells.  Using the selected plating density, different 

concentrations of Mitomycin C were added and the effect on cell growth determined, to 

establish a concentration of Mitomycin C that was effective in stopping cell growth but 

that did not cause cell death.   
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Fibroblast line establishment 

Fetal fibroblast cultures were developed from 3 approximately 90-day fetuses 

recovered from an equine abattoir.  The fetuses were transported to the laboratory at 

room temperature, a maximum of 7 hours from recovery.  Skin samples were collected 

from each fetus and washed extensively with PBS, then finely minced and transferred to 

75-cm3 tissue culture flasks with 5-6 ml of CCM.  The tissue was cultured at 38.2°C in 

5% CO2 in air, examined daily, and the medium changed every other day.  

Approximately 1 week after collection of samples, fibroblasts began attaching to the 

bottom surface of the culture flask.  At this point the intact tissue was removed and 

transferred to new culture flasks and the cells attached to the flask surface retained in 

culture an additional 5 days, until they reached confluency.  They were then subjected to 

their first passage. 

 To passage the fibroblasts, medium from each tissue culture flask was removed 

and the inside culture surface of the flask was washed 2 times with 8-10 ml of PBS.  

Each flask was then administered 4 ml of a 0.05% Trypsin-EDTA solution (Trypsin, 

Sigma) for 2-3 minutes, until cells began to disassociate from one another and detach 

from the flask surface.  Approximately 16 ml of CCM was then added to each flask to 

dilute the Trypsin and help to suspend any remaining attached cells.  This suspension 

was transferred to 2 15-ml tubes and centrifuged at 3000 RPM for 3 minutes.  After 

centrifugation, the supernatant was removed and the pellets were each resuspended with 

1.0 ml of culture medium, and then combined into 1 of the 15-ml tubes before 

distribution.  Each 2.0-ml total cell suspension from 1 culture flask was distributed 



   

 

36

between 2-4 fresh culture flasks and returned to culture at 38.2°C in 5% CO2 in air.  

These plated cells were considered Passage 1 fibroblasts.  Fibroblast cultures were 

examined daily and the medium changed every other day; most cultures reached 

confluency after 4 to 5 days and they were subsequently passaged to 2-4 fresh flasks.  

The fetal fibroblast line with the best growth over the first 3 passages was selected for all 

further studies and the other lines were discarded.  From this point forward a fresh 

culture of this selected fibroblast line was maintained in the incubator; cells were 

passaged when they reached confluency (between 5 and 10 days, depending on 

preliminary cell density) or were needed for further studies.  

Counting method and confluency 

  Cell counts performed with a hemocytometer are accurate in determining the 

concentration of cells in a suspension.  However, to calculate the number of cells 

representing confluence, and to determine the ability of MMC to arrest growth without 

cytotoxicity, it was necessary that the number of cells enumerated in the suspension 

reflected accurately the number of cells present in the culture well.  To determine this, 2 

cell counting methods, referred to here as “trypsinization-only” and “trypsinization-plus-

centrifugation”, were compared over 4 trials.  Both counting methods have their 

applications to particular situations.  In more dilute, higher volume solutions 

centrifugation is necessary, but if the volume can be controlled and the cells can be 

sacrificed then the trypsinization-only treatment is a valuable option.   Centrifugation 

holds the potential for loss of cells while transferring suspensions between different 

receptacles and during the centrifugation itself.  Cells may remain in the supernatant and 
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are lost if they are not a part of the pellet.  In situations involving dilute cell suspensions, 

however, centrifugation is the only method available to recover the cells with any 

efficiency.  Trypsinization without subsequent dilution with a serum-containing medium 

avoids this potential loss of cells through manipulation, but it is not an option if the cells 

are needed for further studies.  If the enzymatic activity of Trypsin continues 

unquenched, cell membranes are damaged, causing cell death. 

 Since the ultimate goal of this work is to allow the immediate production of a 

confluent monolayer of previously-inactivated frozen-thawed equine fetal fibroblasts, 

the baseline number of healthy cells in a confluent monolayer is needed.  This will be the 

number of healthy, surviving cells that will need to be plated into the well, and to this 

number will be added additional cells to account for any loss due to manipulation and 

storage damage. 

Passage 5 fetal fibroblasts were seeded at an arbitrary low density in the wells of 

a 4-well dish with CCM and allowed to grow to confluency at 38.2°C in 5% CO2 in air.  

Culture medium was changed every other day.  Within 2-3 days, fibroblasts formed a 

95-100% confluent monolayer on the bottom of the well, and they were then subjected to 

both counting methods in succession. 

First, the medium was removed from the well of interest and the well was 

washed 2 times with 1.0 ml of PBS.  The washed cells were then administered 0.25 ml 

of Trypsin for 2-3 minutes until cell dissociation was evident, then vigorously pipetted to 

establish a homogenous suspension and to remove any remaining cells from the well 

surface.  At this point 10 µl of the trypsinized cell solution was removed and diluted 
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with 90 µl of PBS (1:10 dilution) for counting.  This 2-step procedure was necessary 

because of the limited volume capacity of a single well in a 4-well dish.  To eliminate 

this step, 2.5 ml total volume would be needed in the well, but manufacturer 

recommendations indicate a maximum volume of 1.9 ml in 1 well of a 4-well dish.  

Twenty µl of this dilute mixture was then evaluated in a hemocytometer to determine the 

cell concentration in the suspension. Concentration was determined as the number of 

cells counted (average of 2 sides of the hemocytometer) x 105 cells per ml of fluid.   The 

total cell number recovered from the well using the trypsinization-only method was 

derived using the equation 

[2] nto = C1V1, 

where nto is the total cell number as determined using this technique, C1 is the 

concentration of cells as determined with the hemocytometer, and V1 is the total volume 

of the cell suspension. 

To find the cell number as determined by the trypsinization-plus-centrifugation 

technique, the remaining trypsinized cell suspension was aspirated from the well and 

combined with 10-14 ml of CCM in a 15-ml centrifuge tube for washing and removal of 

Trypsin.  The cell suspension was centrifuged at 5000 RPM for 5 minutes.  The 

supernatant was then removed with an electronic pipette and the pellet was resuspended 

with approximately 0.25 ml of CCM.  The actual volume of this solution was measured 

and recorded and 20 µl of the solution were counted in the hemocytometer as described 

above, without dilution. To use this concentration to determine the number of cells in the 

original well, since some medium (and therefore some cells) was removed from the 
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second measurement technique for use in the first, equation 2 could not completely 

apply.  Therefore, the total cell number was adjusted using the equation 

[3] ntpc = C2V2V1/(V1-Vr) 

where ntpc is the total cell number as determined using this technique, Vr is the volume of 

the suspension removed for the previous method, V2 is the volume after centrifugation 

and resuspension of the pellet, and C2 is the concentration of cells as determined with the 

hemocytometer for this counting method.  

 On the basis of the results of this trial (see Results), the trypsinization-only 

technique was selected as the more accurate and simple technique.   The approximate 

number of cells in a 95-100% confluent monolayer in 1 well of a 4-well dish was 

determined by averaging cell numbers from 4 replicates performed with this technique.  

Seeding density 

This section of the study was performed to determine the optimum fibroblast 

seeding number in 1 well of a 4-well dish to achieve the quickest cell growth rate.  The 

original seeding density which grew the most (that which had the highest proportion of 

final cell density to plated cell density) over a 5-day period was considered the most 

rapidly growing density.  The confluency determination described above found the 

average cell number in 1 well of a 4-well dish with a just-confluent monolayer of fetal 

fibroblasts attached to the bottom to be 3.57 x 105 cells.  Experimental seeding 

concentrations for the next step were extrapolated from this data, with an approximation 

of 4 x 105 cells to allow for some minor cell loss as a result of manipulation.  The 

seeding number with the most rapid growth in 1 well of a 4-well dish over 5 days was 
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then used in the next phase of study to examine the effect of Mitomycin C on cell 

growth. 

 The seeding cell numbers used for study of optimum cell growth were 6.25 x 103, 

1.25 x 104, 2.50 x 104, and 5.00x 104 cells per well.  These are based on the assumption 

that equine fetal fibroblasts divide on average every 24 hours in culture.  Assuming 4 x 

105 cells are in a confluent well and that the cell number in the well doubles every 24 

hours on average, the numbers of cells to plate were based on an approximation of the 

number of cell doublings needed to reach confluency and the number of days (5) of the 

study.  Cell densities of 6.25 x 103 cells, 1.25 x 104 cells, 2.5 x 104 cells and 5.0 x 104 

cells in a well would require 6, 5, 4, and 3 doublings, respectively, to reach 4 x 105 cells 

in a well for a confluent monolayer.  Since the intention of this study is to determine the 

plating density which gives the fastest growth over 5 days in culture, the assumed 

number of doublings over 5 days is included in this range.  Three replicates were 

performed using these seeding densities, with each well of a 4-well dish containing a 

different cell density of passage 6 cells on seeding day (Day 0).  The cells were given 

CCM and cultured for 5 days in 5% CO2 in air at 38.2°C; medium was changed on Day 

3.  On Day 5 for each replicate the wells were each subjected to the trypsinization-only 

counting method.  The total number of cells in each well was determined as described in 

equation 2 above.  Growth rate was determined using the equation 

[4] G = (nf-ni)/ni, 

where G is the growth rate over the 5-day period, nf is the cell number at Day 5, and ni is 

the initial cell number in the well.  Analysis of variance was then used to examine any 
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statistically significant differences between the means of the cell numbers recovered 

between each original cell density. 

Cell loss evaluation 

During the seeding density study, it was observed that not all cells plated 

successfully attached to the bottom of the well, and they instead floated in the effluent.  

These cells were assumed incapable of attachment and were removed with the first 

medium change.  In an attempt to evaluate whether the growth rates determined in the 

previous study accurately reflected actual growth (number of cells initially plated vs. 

number of cells present at 5 days) the percent of cell loss associated with passaging was 

studied in this experiment. 

 To determine cell loss, passage 7 cells were plated at 1.25 x 104 cells/well in a 4-

well dish.  The fibroblasts were given 24 hours to attach to the well surface, then the 

effluent was transferred from 2 wells of the dish into 2 separate 1.5-ml centrifugation 

tubes; the wells were given fresh medium and returned to the incubator.  Cells in all 

wells were cultured 5 days, and medium for all cells was changed on Day 3.  The 2 

samples of 24-hour effluent were found to be too dilute to count directly with a 

hemocytometer, so they were counted using the centrifugation method.  The samples of 

effluent were centrifuged at 5000 RPM for 5 minutes.  The supernatant was then 

removed and the pellet resuspended with 40 µl of CCM, then the cell number recovered 

from the effluent enumerated with a cell hemocytometer.  On Day 5, all wells in the dish 

were treated with the trypsinization-only cell counting method to examine the growth as 

calculated based on the number of seeded cells that had attached to the bottom at 24 
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hours. The potential effect of removing the effluent containing the floating fibroblasts 

after 24 hours was evaluated by comparing final cell numbers between wells which did 

and did not have effluent removed at 24 hours. 

Mitomycin C concentration 

Mitomycin C is an antitumoral antibiotic found to arrest growth in fetal 

fibroblasts and other cell lines, making the cells useful in cell culture as a feeder layer.  

This alkylating agent allows the cells to continue their necessary internal processes, yet 

prevents their division and the reproduction of their DNA.  Mitomycin C works by 

cross-linking complimentary strands of double stranded DNA, a function first studied in 

1964 [62].  Under reducing conditions, MMC is converted to a highly reactive 

compound that reacts in 2 alkylating steps to crosslink the DNA, thus destroying the 

function of the genome [63].  The fibroblasts continue to metabolize and are useful to 

support other cells in culture for 10-14 days.  The previous 2 studies’ parameters were 

based on the need for this experiment to be a 5-day trial with rapidly growing cells.  This 

experiment was based on technique described previously [50]. 

 To find the dose of Mitomycin C that effectively stops the growth of fetal 

fibroblasts, it is logical to use the most proliferative cell seeding number to eliminate the 

variable of cell growth rate.  The previous experiment indicated 1.25 x 104 cells in 1 well 

of a 4-well dish resulted in the most rapid growth of those densities studied over a 5-day 

period (see Results).  This seeding density was used to develop a dose-response curve of 

a rapidly growing culture to Mitomycin C treatment.  This trial was repeated 6 times in 

4-well dishes with each well serving as either a control (no Mitomycin C) or 1 of 3 
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doses: 2 µg/ml, 20 µg/ml, or 200 µg/ml of Mitomycin C in CCM.  The doses were 

chosen based on previous studies of MMC dosing in murine feeder layers [50].   

For each replicate, passage 8 confluent fibroblasts were treated with Mitomycin 

C.  To do this, passage 7 fibroblasts in a culture flask were trypsinized, washed, 

centrifuged, resuspended, enumerated, and then plated at 3.5 x 105 cells/well in all wells 

of a 4-well dish with CCM and allowed 24 hours to attach to the bottom of the well 

while incubating at 38.2°C in 5% CO2 in air.  After this trypsinization treatment the cells 

were considered to be at passage 8.  A density of 3.5 x 105 cells/well reflects the number 

of cells in a confluent monolayer (see Results), and should provide a confluent 

monolayer immediately without the need for further culture and/or cell division.  

Mitomycin C treatment of a confluent monolayer allowed a sufficient number of cells to 

be treated so that the desired starting density of 1.25 x 104 cells/well could be recovered 

after treatment, washing, centrifugation, and resuspension.  The medium was removed 

from all wells after 24 hours allowed for attachment and replaced with medium 

containing MMC at the wells’ respective treatment concentrations.  In each replicate, 

Well 1 was the control, Well 2 received 2 µg/ml MMC, Well 3 received 20 µg/ml MMC, 

and Well 4 received 200 µg/ml MMC.  The cells were then returned to the incubator for 

3 hours. 

 After the 3-hour treatment was completed, the dishes were removed from the 

incubator and the medium with Mitomycin C was removed and discarded.  The cells 

were then thoroughly washed 3 times with 1.0 ml of PBS.  Each well then received 0.5 

ml of Trypsin for 2-3 minutes until cells began to detach from the well surface.  When 
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cells began to disassociate, the Trypsin was quenched with 0.75 ml of CCM.  The cell 

suspension was transferred to 10 ml of CCM in a 15-ml centrifuge tube and centrifuged 

at 5000 RPM for 5 minutes to wash Trypsin from the cells.  The supernatant was 

removed and the pellet resuspended with 0.5 ml of CCM.  The number of cells in each 

resuspended sample was found by removing 20 µl of the suspension and counting the 

number of cells in a hemocytometer.  The volume of suspension to seed into fresh 4-well 

dishes to obtain the desired preliminary cell number of 1.25 x 104 was found using the 

equation 

 [5] V = C/1.25 x 104, 

where V is the volume to be seeded in ml and C is the concentration of cells as found 

with the hemocytometer.  Beginning with the density previously shown to have the most 

rapid growth allowed examination of the inactivating capabilities of MMC without 

differing growth rates of the cultures as an additional variable.  After the appropriate 

volume was seeded into 4-well dishes in the same configuration as for treatment with 

MMC, 1 ml of CCM was added and the passage 9 cells (cells were considered passage 9 

after the most recent trypsinization treatment) cultured at 38.2ºC in 5% CO2 in air.  Cells 

were cultured 5 days, examined daily and medium refreshed on the third day. 

 On Day 5, dishes were removed from the incubator and each well was subjected 

to the trypsinization-only method of counting.  The number of cells in each well was 

recorded and compared between each treatment by analysis of variance. 
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Freezing 

Since the Mitomycin C compound, once dissolved in solution, has a short half 

life (effective period of only 1 week once suspended), preparing Mitomycin C-treated 

fibroblasts separately for each stem cell passage is inefficient.  A method was needed to 

treat many fibroblasts at once and store them for later use as a feeder layer with ES cell 

culture.  Freezing is the most viable option to store a maximal number of cells at 

minimal cost. 

 Freshly trypsinized passage 7 cells (excess cells from the trypsinization 

performed to obtain cells for the MMC dosing study above) were seeded in the wells of 

a 4-well dish and allowed to grow to confluency.  Confluency was reached after 3-4 days 

in culture, and the wells were then trypsinized and the cells counted with the 

trypsinization-plus-centrifugation method.  The resuspended cells were combined with 

an equal volume of 20% DMSO, then divided into 1.0-ml aliquots with a minimum 

concentration of 1 x 106 cells/ml and transferred to cryotubes, then frozen at a rate of -

1°C/minute to -80°C and left overnight.  They were then transferred to a liquid nitrogen 

tank for storage.   

To determine the percentage of cells that do not attach within 24 hours after 

thawing, a cryotube was removed from the storage tank and transferred to 37°C sterile 

water in a sterile specimen cup for thawing.  When thawed, the cryotube was removed 

from the water and the thawed sample removed and combined with 10 ml of CCM in a 

15-ml centrifuge tube, then centrifuged at 5000 RPM for 5 minutes.  The supernatant 

was removed and the pellet resuspended with 0.25 ml of CCM.  The cell concentration 



   

 

46

was enumerated with a hemocytometer.  The passage 8 cells (as a result of the 

trypsinization treatment) were then plated at a seeding density of 3.5 x 105 cells/well, the 

density determined to give a confluent monolayer with fresh cells, in the wells of a 4-

well dish over 6 trials.  They were incubated 24 hours in 5% CO2 in air at 38.2°C, and 

then the effluent was discarded and the attached cells were subjected to the 

trypsinization-only counting method to determine the percentage of cells that did not 

attach within 24 hours of thawing and plating.  

Once the effect of freezing was determined through this experiment, all but 1 

flask each of passage 8, 9, and 10 cells were sequentially treated with Mitomycin C and 

frozen for future use as feeder layer cells.  The remaining flask from passages 8 and 9 

was passaged to 10 fresh culture flasks and allowed to grow to confluency in 5% CO2 in 

air at 38.2°C over 7-10 days.  The remaining flask from passage 10 was passaged to 4 

fresh culture flasks to maintain a fresh stock of untreated cells.  Nine of the 10 flasks 

from each passage were then administered 20 µg/ml Mitomycin C treatment (see 

Results) as described above, with 6 ml of MMC-containing medium per flask.  After 

treatment, cells were trypsinized and the Trypsin quenched as described for passaging of 

cells, then the cell suspension was transferred to 15-ml centrifuge tubes and centrifuged 

to remove the Trypsin.  The recovered pellet was resuspended, the resulting volume 

measured, the concentration of cells determined with a hemocytometer, and the cell 

suspension combined with an equal volume of 20% DMSO solution.  This solution was 

then aliquoted into 1.0-ml cryotubes and frozen as above, with a final cell concentration 

of approximately 1.5 x 106 cells/ml.  The cells were then transferred to liquid nitrogen 
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for storage in a nitrogen tank until they were needed to rapidly produce a confluent 

monolayer of inactivated cells for ES cell culture.   

RESULTS 

Counting method and confluency 

Significantly more cells were recovered with the trypsinization-only method than 

with the trypsinization-plus-centrifugation method (p=0.01).  Table 4 illustrates the cell 

numbers recovered with each method; the trypsinization-plus-centrifugation total cell 

number has been adjusted to account for the solution removed for direct counting.  Not 

only does it appear that centrifugation causes loss of cells, but this method of cell 

recovery also results in more variability in calculated cell numbers. 

 
 

TABLE 4.  Comparison of fibroblast recovery methods. 
 Trypsinization Only Trypsinization-plus-centrifugation 

Trial Cell Conc. 
(cells/ml) 

Total 
Volume 

(ml) 

Total Cell 
Number 

Cell Conc. 
(cells/ml) 

Total 
Volume 

(ml) 

Total Cell 
Numbera 

1 1.20 x 106 0.25 4.03 x 105 5.45 x 105 0.31 2.01 x 105 
2 1.60 x 106 0.25 4.00 x 105 8.40 x 105 0.25 2.19 x 105 
3 1.55 x 106 0.25 3.88 x 105 5.80 x 105 0.28 1.69 x 105 
4 0.95 x 106 0.25 2.38 x 105 1.75 x 105 0.29 5.29 x 104 

Avg   3.57 x 105b   1.60 x 105b 
Passage 5 fibroblasts were allowed to grow just to confluency, then trypsinized and subjected to 
2 enumeration methods in succession.  Total cell numbers found were averaged over the 4 trials 
and the averages compared with ANOVA. 
a Adjusted using cell solution volume and volume removed during trypsinization-only method. 
b Values differ significantly (p<0.05) 
 

 

Having determined that the use of the trypsinization-only method results in a 

more accurate representation of the cell number in a given starting sample, the number 
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of cells in each confluent culture treated with the trypsinization-only method was used to 

determine the number of cells in a just-confluent monolayer.  As seen in Table 4, these 

cell numbers ranged from 2.38 x 105-4.03 x 105 cells in a well.  These numbers indicate 

that the average number of cells in a confluent monolayer of equine fetal fibroblasts in 1 

well of a 4-well dish is 3.57 x 105 cells.  Thus, to immediately obtain a confluent 

monolayer of equine fetal fibroblasts, 3.57 x 105 viable cells should be plated and 

allowed to attach, and no further culture should be necessary. 

 

TABLE 5. Effect of seeding density on fibroblast growth. 

 Initial 
Cell Number Trial 

Final 
Volume 

(ml) 

Final Cell 
Concentration 

(cells/ml) 

Final Cell 
Number 

Growth 
Rate 

Average 
Growth 

Rate 
1 0.25 3.90 x 105 9.75 x 104 14.60 
2 0.25 4.05 x 105 1.01 x 105 15.20 6.25 x 103 
3 0.25 6.75 x 105 1.69 x 105 26.00 

18.6 

1 0.25 1.20 x 106 3.00 x 105 23.00 
2 0.25 9.00 x 105 2.25 x 105 17.00 1.25 x 104 
3 0.25 1.35 x 106 3.38 x 105 26.00 

22 

1 0.25 1.75 x 106 4.38 x 105 16.50 
2 0.25 1.05 x 106 2.63 x 105 9.50 2.5 x 104 
3 0.25 1.85 x 106 4.63 x 105 17.50 

14.5 

1 0.25 2.35 x 106 5.88 x 105 10.75 
2 0.25 1.65 x 106 4.13 x 105 7.25 5.0 x 104 
3 0.25 1.85 x 106 4.63 x 105 8.25 

8.75 

Passage 6 fibroblasts were plated in the wells of a 4-well dish at varying densities and allowed to 
grow 5 days to determine growth rates.   
 
 

Seeding density 

 Table 5 lists growth rates for each seeding density in 3 replicates.  Average 

growth was, in increasing seeding density, 18.6, 22, 14.5, and 8.75 times original 

seeding density over the 5 days of culture.  Though not statistically significant, the 
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average growth rate from cells originally seeded at a density of 1.25 x 104 cells per well 

was the highest.  For the remaining studies in which rapidly growing fetal fibroblasts are 

needed, cells were seeded at a density of 1.25 x 104 cells/well in 1 well of a 4-well dish. 

Cell loss evaluation 

 As Table 6 illustrates, 1.5-2.0 x 103 cells were floating in the effluent of the well 

24 hours after seeding at 1.25 x 104 cells/well (12-16% of seeded cells).  From this data 

it may be assumed that approximately 85% of cells seeded at a density of 1.25 x 104 

cells in 1 well of a 4-well dish attach within 24 hours; i.e. that the actual original density 

of cells is 1.06 x 104 cells per well.  The floating cells did not affect cell growth, as cell 

numbers found on Day 5 were similar between the 2 groups; no statistically significant 

differences were present.  Therefore the removal of the effluent and unattached cells 

after 24 hours in culture does not affect cell growth over 5 days.  These data showed that 

while there is some cell death associated with passaging, that it was at a low enough 

level that it should not alter interpretation of the growth rates obtained in the previous 

study. 

Mitomycin C concentration 
 
 Table 7 lists the number of cells recovered after 5 days in culture following 

plating of 1.25 x 104 cells (the most rapidly growing plating density as determined 

previously) previously treated with varying doses of Mitomycin C.  In addition to this 

quantitative data, cells were examined daily and any noticeable characteristics recorded.  

Few cells were found floating in the effluent of the wells given no MMC.  Cells given 

any dose of MMC, however, suffered from noticeably higher apparent cell damage (cells 
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TABLE 6. Equine fetal fibroblast survival post-manipulation. 
 Day 1 Day 5 

Well 
Number & 
Treatment 

Final 
Volume 

(ml) 

Final Cell 
Concentration 

(cells/ml) 

Final Cell 
Number 

Final 
Volume 

(ml) 

Final Cell 
Concentration 

(cells/ml) 

Final Cell 
Number 

1 Effluent 
removed 0.04 5.0 x 104 2.0 x 103 1.0 3.00 x 105 3.00 x 105 

2 Effluent 
removed 0.04 3.5 x 104 1.4 x 103 1.0 4.05 x 105 4.05 x 105 

3 Effluent 
undisturbed 1.0 3.20 x 105 3.20 x 105 

4 Effluent 
undisturbed 

 
1.0 3.65 x 105 3.65 x 105 

Passage 7 fibroblasts were plated at 1.25 x 104 cells/well and allowed 24 hours to attach.  
Effluent was then removed from Wells 3 & 4 and the number of cells in the effluent enumerated.  
Cells were cultured a total of 5 days, then trypsinized and counted. 
 
 
 
present in effluent) once the cells were plated and allowed 24 hours to attach.  On visual 

inspection, approximately 50% of the cells in any MMC-treated well failed to attach and 

remained floating in the effluent.  Obvious growth was observed in cells given a dose of 

2 µg/ml of MMC after seeding, and excessive cell loss was seen to occur even after cell 

attachment (e.g. cells detached and were seen in the effluent on Days 2 through 5) in 

those trials in which 200 µg/ml of MMC was administered.  This was determined by the 

consistent appearance of cells in the effluent of the well over the 5-day culture period 

and a parallel visible reduction in the number of cells attached to the well surface. 

Freezing 

Freezing causes significant death in equine fetal cells, and this loss must be 

accounted for to find an accurate number of cells needed to immediately (within 24 

hours of thawing) make a confluent monolayer from a frozen stock.  Cells treated with 
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TABLE 7.  Dose-response of equine fetal fibroblasts to Mitomycin C. 

Mitomycin C dose (µg/ml) Day 5 cell numbera Average Day 5 cell 
number  

8.13 x 104 
4.62 x 105 
4.91 x 105 
5.04 x 105 
5.89 x 105 

0 

6.84 x 105 

4.68 x 105 

7.50 x 103 
7.50 x 103 
8.25 x 103 
1.13 x 104 
1.13 x 104 

2 

1.30 x 104 

9.79 x 103  

5.25 x 103 
5.25 x 103 
6.00 x 103 
6.75 x 103 
6.75 x 103 

20 

1.25 x 104 

7.08 x 103 

7.50 x 102 
7.50 x 102 
7.50 x 102 
1.50 x 103 
1.50 x 103 

200 

3.75 x 103 

1.50 x 103 

Confluent passage 8 fibroblasts were treated with 20 µg/ml MMC for 3 hours, then trypsinized 
and plated at 1.25 x 104 cells/well.  Cells were cultured 5 days and then counted. 
a Number of cells attached to well surface at Day 5. 
 
 
 
MMC, frozen, then thawed and seeded at a density to create confluency immediately if 

all cells survived (3.5 x 105 cells/well of a 4-well dish) suffered an average of 77.3% cell 

loss.  This data can be seen in Table 8.  From these results, it was calculated that to 

deliver the number of viable, attachment-capable, frozen-thawed MMC-treated cells 



   

 

52

needed for immediate establishment of a confluent monolayer, 1.55 x 106 total cells 

would need to be plated in 1 well of a 4-well dish.   

 
 
TABLE 8.  Freezing effects on equine fetal fibroblasts. 

Trial 24 hour cell numbera Percent loss 
1 1.075 x 105 69.2857 
2 9.625 x 104 72.5000 
3 6.375 x 104 81.7857 
4 5.875 x 104 83.2143 
5 5.875 x 104 83.2143 
6 9.25 x 104 73.5714 

Average 7.96 x 104 77.3 
Passage 7 fibroblasts were trypsinized and frozen, then thawed, plated at 3.5 x 105 cells/well, and 
allowed 24 hours to attach to the well surface.  Cells attached to the well surface at 24 hours 
were trypsinized and counted. 

a Number of cells attached to well surface 24 hours after plating 
 
 
 
DISCUSSION 

 Fetal fibroblasts treated with Mitomycin C and frozen for long-term storage 

provide an efficient and cost-effective culture system for ES cells.  The results detailed 

optimal seeding densities, inactivation treatments, and handling procedures for equine 

fetal fibroblasts to immediately prepare a confluent feeder layer to support equine ES 

cell growth.  Many of the above procedures required the concentration of a known 

volume of a cell suspension to be found in order to determine the total number of cells 

present.  It was found that trypsinizing cells without any further treatment such as 

centrifugation regularly resulted in a higher cell number recovered.  This is most likely 

due to the loss of cells during transfer to and from vessels used for centrifugation and 

during centrifugation itself.  Unlike other cells such as spermatozoa, which have heavy 
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heads filled primarily with nuclear material, fibroblasts contain a relatively large volume 

of cytoplasm.   This makes them much less dense and they will float and remain in the 

supernatant of a centrifuged solution.  On average, less than half of the cells treated by 

centrifugation were recovered at the end of the procedure.  Therefore, in every situation 

in which only quantitative data is necessary and the cells are of sufficient concentration 

to be counted directly on the hemocytometer,  the trypsinization-only method is more 

accurate a tool. 

 Since the proposed isolation of equine ES cells was to be carried out by culture in 

1 well of a 4-well dish, conditions needed to be optimized for that environment.  The 

number of cells that form a 95-100% confluent monolayer in 1 well of a 4-well dish was 

found to be between 3.5 x 105 and 4.0 x 105 cells.  There is some tolerable error in this 

range that fibroblasts can accommodate; when fewer cells are plated the cells attach and 

maintain a well spread morphology and when more cells are present the cells attach in a 

much slimmer compact morphology.  The range of cells in a confluent monolayer 

provided a starting point from which the ideal number of cells to put into a well to 

immediately achieve a confluent monolayer was determined. 

To eliminate as many variables as possible, an additional step was required 

before MMC dosing could be examined for inactivation of fibroblasts for use as a feeder 

layer.  In a previous study, cells were seeded after MMC treatment at an arbitrary 

subconfluent density and assessed visually [50].  To increase accuracy, a specific cell 

density with a predetermined growth rate was used to test the boundaries of the MMC 

treatment.  The most rapidly growing cell density examined in these trials was 1.25 x 104 
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cells in 1 well of a 4-well dish.  The starting density of 1.25x 104 cells/well grew to 22 

times its original density over our 5-day trial, proving to have the most growth over 5 

days out of the densities examined.  Presumably, this density allowed enough space for 

cells to proliferate rapidly and avoid contact inhibition but had a high enough density to 

allow growth-encouraging cell signaling to occur.  In addition, this density corresponds 

to the general assumption that cells in culture double every 24 hours.  Untreated cells 

plated at this preliminary density and allowed to proliferate just reached confluency, 

approximately 3.5 x 105 cells in 1 well of  4-well dish, at Day 5. 

 Results indicate between 12% and 16% of equine fetal fibroblasts subjected to 

passaging or manipulation will not attach once seeded.  This loss is minimal and is well 

accommodated for in the range of cells determined to create a confluent monolayer in 1 

well of a 4-well dish.   

 Methods previously described were used with minor adjustments to allow further 

quantification of Mitomycin C’s effects on equine fetal fibroblasts.  Rather than relying 

purely on visual assessment of growth [50], the actual number of cells present in the well 

after 5 days was found by counting with a cell hemocytometer.  After the different MMC 

treatments, a known number of cells (1.25 x 104) were seeded into each well and the 

cells allowed to grow, if possible.  An unexpectedly large number of cells did not attach 

post-MMC treatment and remained floating in the effluent of the wells seeded with 

MMC treated cells.  In addition, some cells treated with the highest dosage of MMC 

attached early on in the trial but later detached and were seen floating in the effluent.  

During the 5-day culture period, the number of cells attached to the well in this treatment 
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visually decreased and cells consistently were present in the effluent at media changes.  

The number of cells in which the inability to attach or remain attached was (presumably) 

caused by MMC treatment was visually estimated to be 50%.  Visual assessment of 

growth on a daily basis combined with the numbers found as described above indicated 

20 µg/ml of MMC for 3 hours is the best treatment to stop cell growth without any 

excessive loss of attachment ability in equine fetal fibroblasts.  This is the concentration 

of MMC that was used from this point forward to arrest the growth of large colonies of 

cells for storage and later use as feeder layers. 

 Results indicate that 77.3% of cells do not attach after the freezing and thawing 

process and MMC treatment.  Many cells are lost in the freezing process due to the 

formation of ice crystals within cells in the freezing and thawing procedures.  

Compounded by the recent treatment with a potent poison and the necessary loss while 

cells are transferred and centrifuged to remove freezing agents, this step is by far the 

most inefficient in the establishment of a confluent monolayer of equine fetal fibroblasts 

for use as a feeder layer.  Given the estimated cell loss, 1.5 x 106 MMC-treated, frozen-

thawed cells should be plated when a confluent feeder layer is desired.  
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CHAPTER IV 

EMBRYONIC STEM CELL ISOLATION 

MATERIALS AND METHODS 

Approach 

 Establishing appropriate conditions for ES cell culture is very difficult due to 

species-specific and even strain-specific requirements.  This phase of study began with 

the equine fetal fibroblast studies described above.  Overnight, a feeder layer was 

established from these pre-treated cells, then blastocysts were co-cultured on the 

monolayer to encourage attachment and growth of ES-like cells.  After 7-10 days in 

culture with no morphological changes of the embryonic cells, samples underwent 

immunocytochemistry for detection of Oct-4 protein, as described above. 

Culture preparation 

 Equine fetal fibroblasts were previously inactivated by Mitomycin C and frozen 

and stored in liquid nitrogen as described in Chapter III.  These cells were thawed and 

washed, then seeded in 4-well dishes at 1.5 x 106 cells/well, the number of cells needed 

for immediate establishment of a confluent monolayer as determined in Chapter III.  

After the viable cells attached (24 hours) the medium for these cells was changed to one 

supportive of ES cell growth: CCM plus 0.1 mM �-Mercaptoethanol and 10 ng/ml 

human Leukemia Inhibitory Factor (LIF, Sigma).  LIF is the main additive to ES media 

believed to encourage the development of ES cells from ICM cells.  Once cells were 

given this medium, the environment was considered prepared for the culture of ES cells. 
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Embryos used for culture 

Five zona-free in vitro-produced blastocysts were cultured intact on the feeder 

layer.  Another 5 embryos of this origin were subjected to zona removal and 2 

subsequent days of culture in vitro, then had ICM-like masses mechanically dissected 

from the trophoblast and placed on the feeder layer.  Finally, 5 in vivo-recovered 

embryos were subjected to trophoblast solubilization with Triton X-100 before the 

remaining ICM cells were plated on a feeder layer.   

Cell culture 

Once the culture dish was ready for cell culture, it was returned to the incubator 

and the ICM was isolated from the blastocyst in those embryos undergoing this 

treatment.  For mechanical dissection, embryos were transferred to 20-�l droplets of 

CCM in 35-mm petri dishes for handling.  The embryo was then rotated and the ICM 

visually identified.  The surrounding trophoblast was sliced away with an 18- to 21-

gauge needle, leaving only the ICM behind.  Embryos slated for Triton-X digestion 

treatment were transferred to 20-�l droplets of CCM for holding.  They were then 

transferred to 1% Triton X-100 for 20-30 seconds and moved back to the holding 

medium for washing.  The goal of this treatment was to lyse the outer cell membranes, 

leaving the ICM as the only remaining viable cells in the blastocyst.  The zona pellucida 

and capsule were then mechanically removed from the digested blastocysts with an 18- 

to 21-gauge needle.  Embryos used for intact culture were removed from embryo culture 

and held in media as above until transferred onto the feeder layer. 
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Once the ICM had been isolated (if performed), the whole blastocyst or isolated 

ICM was placed on the feeder layer and the dish placed back into culture at 38.2°C in 

5% CO2 in air.  Over the time the cells were cultured (3-10 days), they were evaluated 

daily at 200-400X to identify the formation of ES-like colonies.  These cells were 

expected to be in piled colonies and be small and round in appearance if viewed 

singularly.  ES cell-supporting medium was refreshed daily, and after 7-10 days with no 

change in the morphology of the culture, cultures were subjected to 

immunocytochemistry to identify Oct-4 expressing cells.  For these cultures the failure 

of attachment (see Results) indicated further culture time would not improve results and 

all cultures were sacrificed to Oct-4 staining. 

Additional trials 

After performing preliminary studies on 45 embryos to develop ICM isolation 

techniques and evaluate response to different culture environments, Dr. Choi attempted 

to propagate embryonic stem-like cells from 21 additional in vitro-produced embryos.  

The zonae were removed with acid Tyrode's solution and the embryos were placed back 

in embryo culture for an additional 2-4 days to allow blastocoel expansion.  Following 

this, the ICM of each embryo was isolated using needle dissection and placed on an 

inactivated murine feeder cell layer in DMEM knock-out medium (Gibco) with 15% 

FBS, 10-20 ng/ml LIF, 0.1 mM �-Mercaptoethanol, 1% Non-essential AA (Gibco) and 

glutamine (Sigma).  As above, after 7-10 days with no changes in morphology cells were 

stained for Oct-4.  After this amount of time in culture, cells needed to be passaged to 

fresh feeder layers, but to do so caused a loss of growth and sacrificed the culture (see 
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Results).  Thus if no identifiable morphological changes had occurred within this amount 

of time, cultures were stained for Oct-4 rather than passaged. 

Immunocytochemistry of cultured cells 

 Unattached vesicles or embryos were stained for Oct-4 as described above, as 

were cultures of cells growing on feeder layers.  All concentrations and treatment times 

were identical to those described in Chapter II.  Treatments for unattached vesicles were 

given in the 4-well dish in which cells were cultured, with approximately 250 µl of each 

solution and 500 µl of medium used for each wash.  After staining was complete, 

unattached cultures were examined in situ on an inverted fluorescent microscope as 

described above.  To stain cultures of cells growing on the feeder layer (designated 

“putative stem cells”; Fig. 11), randomly-chosen portions of 3 different cultures were 

dissected away from the plate surface with 21-gauge needles and subjected to 

immunocytochemistry as described in Chapter II. Cells were then mounted on slides and 

viewed as described in Chapter II. 

Analysis 

The number of cultures that attached to the feeder layer and/or formed 

outgrowths was recorded for each embryo treatment, as was the final number of 

attempted cultures for each embryo treatment.  The proportion of blastocysts 

establishing a culture was found using the equation  

[6] Pc = A/n, 

where Pc is the proportion of attempts that formed cultures, A is the number of cultures 

with successful attachment, and n is the total number of attempts.  In 9 selected viewing 
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areas (3 samples of putative stem cells from each of 3 different embryos), an estimation 

of the number of those cells was made.  An estimate was also made based on 

counterstaining of the total number of nuclei present in these viewing areas under the 

microscope.  Using the equation 

[7] POct-4 = nOct-4/ntot, 

where POct-4 is the proportion of Oct-4 expressing cells in a culture formed from a 

blastocyst, nOct-4 is the number of cells in the viewing area with visibly strong Oct-4 

signal, and ntot is the total number of cells in the viewing area as viewed via Hoechst 

staining.  These proportions were averaged over each viewing area selected to provide a 

general proportion of Oct-4 expressing cells in an ICM cell growth. 

RESULTS 

Cell culture 

 After overnight culture of inactivated frozen-thawed fibroblasts seeded at 1.5 x 

106 cells/well, a 95-100% confluent monolayer was observed in all dishes prepared for 

ES cell culture.  Whole embryos cultured on the monolayers failed to attach and 

remained floating in the effluent, regardless of the length of culture time.  These 

continued to expand in culture, but no outgrowths were observed and no ICM was ever 

visible.  When blastocysts were subjected to trophoblast removal via mechanical 

dissection or Triton-X 100 treatment and then placed on feeder layers, the pieces of 

blastocysts formed spherical fluid-filled aggregates that continued to expand in culture 

but had no obvious ICM and did not attach to the feeder layer.    
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 In the additional trials with murine feeder cells and knock-out base medium, all 

cell masses attached to the feeder layer and started cell proliferation; however, no 

growth of morphologically identifiable stem cells was obtained (Fig. 13).  Attempts to 

passage the cells by mechanical dissection or trypsinization resulted in loss of cell 

growth in the passaged cells.  

 

 
FIGURE 13.  Four day old culture of ICM cells showing putative stem cell growth.  Day 
7 in-vivo recovered blastocyst was mechanically dissected and cultured in ES media on 
inactivated equine fetal fibroblasts.  Passage attempts resulted in loss of growth of these 
cells. 
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Immunocytochemistry of cultured cells 

 All nuclei of the unattached vesicles stained for Oct-4, and the signal was 

isolated to the nuclei.  Notably, there seemed to be some sporadic staining for Oct-4 

among the cells of the feeder layer when attached vesicles were stained in situ (Fig. 14).  

These nuclei had Oct-4 signal equally as bright as the nuclei of the cells with which they 

were co-cultured.  Proximity in culture to the blastocyst or cells appears unrelated to this 

phenomenon, as cells were evenly distributed throughout the well. 

 

 

 
FIGURE 14. In situ Oct-4 staining of unattached vesicle growing in culture on 
inactivated equine fetal fibroblasts.  Image shows Oct-4 staining of the vesicle and 
sporadic staining of nuclei apparently within the feeder layer. The zona was removed 
from this Day 7 in vitro-produced blastocyst, and the blastocyst was then placed on 
confluent, inactivated equine fetal fibroblasts for 3 days before staining.  Culture was 
stained with Hoechst 33258 for DNA (blue, A) and Oct-4 (red, A1). 
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The embryonic cells which attached and grew on the feeder layer showed 

sporadic staining Oct-4 protein.  In various areas of the same culture, a single cell, a 

small group of cells (<10), or a tightly packed aggregate of cells showed strong Oct-4 

signal on staining, while surrounding and otherwise morphologically indistinguishable 

cells did not stain for Oct-4 (Fig. 15).  As seen in Table 9, of the 9 randomly-selected 

viewing areas, the percentage of Oct-4 staining cells ranged from 2.04-77.3%, with an 

average of 19.4% Oct-4 staining cells. 

 

 
 
 
TABLE 9. Expression of Oct-4 in embryonic cell layers. 

Layer Oct-4 nuclei (red) Hoechst nuclei (blue) % Oct-4 staining nuclei 
1 21 4.76 
5 20 25.0 A 
8 123 6.50 
2 98 2.04 
13 142 9.15 B 
221 286 77.3 

1 10 10.0 
8 42 19.0 C 
15 73 20.5 

AVERAGE  19.4 
Randomly selected viewing areas of ICM-resultant cultures were evaluated for the 
proportion of Oct-4 expressing nuclei following immunocytochemistry. 
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FIGURE 15. Sporadic expression of Oct-4 in ICM cells (7-day culture) growing on 
feeder layers. Cells were stained with Hoechst 33258 for DNA (blue, left) and Oct-4 
(red, right). 
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DISCUSSION 

 Despite the many attempts to establish ES cells in culture from in vitro-produced 

equine embryos, no successful growth of morphologically identifiable stem-like cells 

was obtained.  However, immunocytochemistry revealed pockets of Oct-4 staining (and 

thus potentially pluripotent) cells within the apparently differentiated cells growing on 

the feeder layers.  If these do represent stem cells (or, because of their sporadic 

appearance, primordial germ cells) the challenge is to recognize these cells 

morphologically to select them for passage.  

 Failure of robust growth of morphologically identifiable stem-like cells may 

result from a variety of causes, such as the poor development of in vitro-produced 

embryos, the difficulty in encouraging cells to attach to the feeder layer, and the failure 

of the support system of the feeder layer or the media.  In addition, species differences in 

morphology and culture requirements of stem cells have been reported [64].  In addition, 

there are species-specific differences in the expression of the previously discussed pool 

of well-known marker genes.  Since there is only 1 previous report on establishment of 

embryonic stem cells in the horse [10], little is known about the requirements of this 

species and its exact expression profile.  In this study, ES-like cells were identified by 

immunocytochemistry for SSEA-1 and STAT-3, RT-PCR for a number of marker genes 

(including Oct-4), and induced differentiation to 3 precursor cell types. 

As evidenced by size and capacity to produce blastocysts, in vitro-produced 

embryos are developmentally retarded compared to in vivo-produced embryos of the 

same age.  In vitro-produced embryos are much smaller and have a much lower 
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blastocyst development rate than their in vivo counterparts [65].  Because of this delayed 

development, in vitro-produced embryos at the stage investigated here (Days 7-10) may 

not have an ICM capable of forming outgrowths and developing into ES-like cells.  The 

ES-like cells reported by Saito et al. [10] were grown from in vivo-recovered 

blastocysts, with which 5 attempts were made in this study.  The previously described in 

vivo-recovered blastocyst ICMs were isolated by a different method, however, and 

bovine feeder cells were used to support growth rather than equine cells.  In addition, the 

ICMs of the 5 in-vivo recovered embryos used here may have been damaged by the 

Triton-X treatment. 

 Although ES-like cell isolation in other species has become more efficient as 

protocols become more refined, there is still a significant amount of failure in this 

process because the embryonic cells do not attach to the plate surface.  Early murine ES 

cell isolation claimed a success rate of 1/8, with about 30 isolated ICMs plated at a time 

in a dish [34].  In cattle, 3/14 plated demi-blastocysts formed attachments and created 

outgrowths [38], and the 1 published equine study reported that 2/3 of their isolated 

ICMs attached [10].  Another bovine investigation reported plating ICM cells beneath a 

feeder layer after encountering difficulty getting cells to attach [39].  The attempts to 

grow ES-like cells depend heavily on the characteristics of the feeder layer and on the 

medium used; more work is needed to define the optimum conditions for their growth, 

particularly in equine cells. 

 Finding an acceptable culture system for equine blastocyst development has been 

a significant challenge in recent years.  Recent use of a complicated medium containing 
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components shown to be detrimental to embryo development of other species 

(DMEM/F-12) doubled the equine blastocyst development rate [66].  As mentioned 

above, however, the ICM is not readily identifiable in in vitro-produced equine 

blastocysts because of the lack of a well-defined blastocoel.  Therefore, this culture 

medium (which is the base for the ES medium used in this study) could be encouraging 

the expansion of trophoblast cells while neglecting the ICM.  Further, this medium could 

be beneficial at the blastocyst stage but detrimental once the cells of the ICM have been 

isolated.  In addition, this is the first comprehensive study on the use of equine fetal 

fibroblasts as a feeder layer; these cells could prove a less hospitable environment than a 

feeder layer derived from a different species.  A direct comparison of the ability of 

equine and murine feeders to support growth of ICM cells was not performed, and 

should be in future plans in this area. 

 Although the goal of establishing ES-like cells in culture was not reached, 

significant progress was made.  Oct-4 staining cells, suggesting pluripotency based on 

evidence in other species, were found growing in culture.  Further work is needed to 

better define these cells by staining for other stem-cell associated factors, and to refine 

the culture medium to support these cells. 
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CHAPTER V 

CONCLUSIONS 

This work represents the first examination of Oct-4 expression in the equine 

embryo.  Although previously used in RT-PCR with a number of other genes as a 

marker for pluripotency of stem-like cells [10], no examination of the spatial and 

temporal expression patterns of Oct-4 protein have been performed in equine embryos of 

in vivo or in vitro origin.  While some questions remain, significant progress has still 

been made toward understanding the expression patterns of Oct-4 in equine embryos and 

establishing a method for  ES cell isolation from in vitro-produced equine embryos.  

Results of Oct-4 staining in these studies indicate equine early development is 

similar to that reported for human embryos rather than that of murine, bovine, or 

monkey embryos. As in the human, Oct-4 expression is variable before Day 6 of 

development.  As this timing coincides with the maternal-zygotic transition, it is likely 

that the expression pattern reflects the depletion of maternal protein and then 

replenishment after activation of embryonic transcripts.  Oct-4 protein and mRNA are 

present in both ICM and trophoblast up to Day 10, as in human blastocysts.  This 

indicates Oct-4 may play a different or additional role in these species as compared with 

others in which Oct-4 expression is lost from the trophoblast at the blastocyst stage.  In 

addition, this indicates the equine embryo could be a potential model for the human 

embryo for embryonic cell pluripotency.  In vivo factors appear to influence the ICM 

(increase expression of Oct-4) when compared with in vitro-cultured blastocysts.  We 

found that the visualization method used to view the embryos after antibody staining (i.e. 
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in droplets vs. mounted under coverslips) is of importance in identification of an ICM-

like mass after Oct-4 staining of equine embryos.  Unfortunately, the majority of the 

work on blastocyst Oct-4 was performed prior to this discovery, but future studies can 

take full advantage of this and rely on both visualization methods for more accurate 

results. 

Equine fetal fibroblasts have not been previously studied for use as a feeder 

layer.  This study established a number of defined criteria for rapid and efficient 

production of a feeder layer of MMC-inactivated equine fetal fibroblasts.  The equine 

fetal fibroblasts proved to be hardy and robust, and cell loss due to manipulation 

(transferring, plating, etc) was minimal (15% loss).  However, once cells were treated 

with Mitomycin C and/or frozen, their resiliency declined dramatically.  An improved 

method to inactivate and store cells while maintaining some of the hardiness of the cells 

seen before this treatment will greatly improve this process.  The results indicate some 

concentration of MMC between 2 and 20 µg/ml might alleviate some of the damage seen 

while maintaining deactivation activity.  However, these trials provide a guideline for 

effective establishment of inactivated feeder layer of equine fetal fibroblasts. 

 Culture on the feeder layers to produce stem cells had equivocal results.  

Although the morphology of the cells grown in culture did not match those of typical 

embryonic stem cells as reported in other species (and in the 1 report on work performed 

with equine embryos), Oct-4 staining cells (potentially indicating pluripotency, based on 

data in other species) were successfully recovered from equine in vitro-produced embryo 

ICMs, and these cells grew in culture.  These cells cannot be deemed stem-like cells 
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because they have an atypical morphology and cannot survive passaging, yet individual 

cells within these growths stained for Oct-4.  In addition to finding that Oct-4 staining 

cells can be derived from in vitro-produced blastocysts in culture, Oct-4 staining cells 

were also found in the feeder layer following co-culture of an in vitro-produced embryo.  

The relationship of equine ES-like cells and equine feeder fetal fibroblasts should be 

further evaluated. 

 Further work to examine developing equine embryos with improved visualization 

techniques, test the efficacy of equine feeders, and refine the culture system for equine 

ES cell isolation are necessary steps to finally grow ES cells in culture and better 

understand early development of the equine embryo. 
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