
 
 
 
 

FOAM DRILLING SIMULATOR 
 

 
 
 

A Thesis 
 

 by  
 

AMIR SAMAN PAKNEJAD  
 
 
 
 

Submitted to the Office of Graduate Studies of 
 Texas A&M University 

 in partial fulfillment of the requirements for the degree of 
  

MASTER OF SCIENCE  
 
 
 
 
 
 
 

December 2005  
 
 
 
 
 
 

Major Subject: Petroleum Engineering  
 



 

 

FOAM DRILLING SIMULATOR  
 
 
 
 
 

A Thesis 
 

by 
 

AMIR SAMAN PAKNEJAD 
 
 
 
 
 
 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of 
 

MASTER OF SCIENCE 
 
 
 
 
 
Approved by: 

Chair of Committee, Jerome J. Schubert 
Committee Members, Hans Juvkam-Wold 
 Reza Langari 
Head of Department, Stephen A. Holditch 
 
 
 
 

December 2005 
 
 
 
 

Major Subject: Petroleum Engineering 
 
 
 



 iii 

ABSTRACT 

Foam Drilling Simulator.  

(December 2005) 

Amir Saman Paknejad, B.S., Petroleum University of Technology (PUT) 

Chair of Advisory Committee: Dr. Jerome Schubert 

Although the use of compressible drilling fluids is experiencing growth, the flow 

behavior and stability properties of drilling foams are more complicated than those of 

conventional fluids. In contrast with conventional mud, the physical properties of foam 

change along the wellbore. Foam physical and thermal properties are strongly affected by 

pressure and temperature. Many problems associated with field applications still exist, 

and a precise characterization of the rheological properties of these complex systems 

needs to be performed. The accurate determination of the foam properties in circulating 

wells helps to achieve better estimation of foam rheology and pressure.  

 

A computer code is developed to process the data and closely simulate the pressure 

during drilling a well. The model also offers a detailed discussion of many aspects of 

foam drilling operations and enables the user to generate many comparative graphs and 

tables. The effects of some important parameters such as: back-pressure, rate of 

penetration, cuttings concentration, cuttings size, and formation water influx on pressure, 

injection rate, and velocity are presented in tabular and graphical form. 

 

A discretized heat transfer model is formulated with an energy balance on a control 

volume in the flowing fluid. The finite difference model (FDM) is used to write the 

governing heat transfer equations in discretized form. A detailed discussion on the 

determination of heat transfer coefficients and the solution approach is presented. 

 
Additional research is required to analyze the foam heat transfer coefficient and thermal 

conductivity. 
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CHAPTER I 

INTRODUCTION 

 
 
Stable foam could be described as a special type of aerated drilling fluids. Foam is made 

up of a mixture of incompressible fluids injected with compressed air or other gases. In 

foam as a gas-liquid dispersion the incompressible fluid is the continuous phase and the 

gas is the discontinuous phase. The incompressible component is usually the mixture of 

treated fresh water and a surfactant foaming agent. Additives and foaming agents such as 

polymers, graphite, and asphalt can be added to the foam as viscosifiers, stabilizers, 

lubricants, and corrosion inhibitors. The compressible component is usually air, nitrogen, 

natural gases, and rarely CO2. 

 

Stable foam fluids were first used in workover operations back in 19691. Since the first 

use of foam as drilling fluid in the late 1980s, it has been proved that use of drilling fluids 

that have hydrostatic flowing pressures less than pore pressures of the potential producing 

rock formations would increase the drilling and production rates. Underbalanced drilling 

has proven its efficiency in numerous situations where serious problems were 

encountered with conventional drilling operations. Fractured formations and depleted or 

high permeability zones are ideal candidates for foam drilling. The effectiveness of stable 

foam in countering these problems would be between the effectiveness of air drilling and 

aerated drilling. The actual selection of stable foam drilling fluid over either air drilling 

or aerated drilling fluids is not a distinct analytic process. Such a selection is usually 

made after investigating the drilling problem experiences in drilled wells of that specific 

drilling area.  

 

 

 

 

  

This thesis follows the style of SPE Drilling & Completion. 
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Major advantages provided by the foam drilling technique are reduction of lost 

circulation and differential sticking, prevention of formation damage, improvement in 

rate of penetration, improved economics and life cycle, continuous drill stem test, and the 

ability to produce reservoir fluids while drilling. 

 

A DOE research study by Medley et al.2 forecasted that by the year 2005, UBD in the 

United States would account for 10,000 to 12,000 wells per year, or up to 37% of all 

wells. This would increase the annual cost of UBD operations to about U.S. $6 billion.   

 

Although the use of compressible drilling fluids is experiencing growth, the flow 

behavior and stability properties of drilling foams are more complicated than those of 

conventional fluids. Many problems associated with field applications still exist, and a 

precise characterization of the rheological properties of these complex systems needs to 

be performed.  

 

Foam Rheology 

 

The concept of foam rheology was first discussed by Sibree3 in 1934. He found that the 

apparent viscosity of foam was higher than that of each its constituents. He also found 

that foam shows Newtonian behavior below of critical shear-stress value and plug flow 

behavior above of that. 

 

The study of fire-fighting foam behavior by Grove et al.4 produced one of the earliest, 

most enlightening papers on foam rheology. By measuring the effects of pressure, shear 

stress, and foam quality on the apparent viscosity, they indicated that at high shear rates 

the apparent viscosity is independent of shear rate. They also found that at constant 

pressures viscosity highly depends on foam quality and varies directly with foam quality. 

 

Fried’s5 results with a modified rotational viscometer were also consistent with the 

previous works. He found that foam viscosity decreased with decreasing foam quality 

and increased with increasing tube diameters. 
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Raza and Marsden6 study of foams with qualities ranging 0.7 - 0.96 stated that foam 

shows pseudoplastic behavior below critical flow rates and plug flow behavior above 

that.  They found that the critical flow rate is dependent on both foam quality and tube 

diameter.  They did not correct their experiments for slippage at the tube wall and for the 

compressibility of the foam. 

 

David and Marsden7 corrected the experimental results for the both semi-compressibility 

and slippage at the wall. They concluded that corrected viscosity for both slippage and 

compressibility is independent of foam quality. They also found that slip coefficient 

increased with shear stress, but the corrected apparent viscosity still increased with the 

tube diameter. 

 

Einstein’s8 theoretical development was the first mathematical treatment of rheological 

problems in foam. He considered the foam as a suspension of solids in liquid. Based on 

the energy balance criteria his two-phase viscosity for the foam quality ranging from 0 to 

0.45 is given by; 

 

( )Γ+= 5.21uF µµ , ..................................................................................................... (1.1) 

 

Where; 

µF = Foam viscosity  

µu = Base liquid viscosity 

Γ = Foam quality 

 

Hatschek 8 developed a similar foam rheology model based on Stoke’s law for  foam 

quality ranging from 0 to 0.74 as;  

 

( )Γ+= 5.41uF µµ , ..................................................................................................... (1.2) 
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He also described the viscosity of foam for qualities between 0.74 and 0.99. It was based 

on conservation of energy during interference, deformation, and packed bubbles within a 

flow boundary. His proposed model for the foam viscosity is; 

 

��
�

�

�

��
�

�

�

Γ−
=

3
1

1

1
uF µµ , ...................................................................................................... (1.3) 

 

This equation is only applicable in high shear rates, where the foam viscosity is almost 

independent of shear rate. 

 

Mitchell9 developed his model based on Rabinowitsch’s theory. He proposed two 

empirically derived equations for foam viscosity. The equations of foam viscosity for 

foam qualities from 0 to 0.54 and 0.54 to 0.97 are expressed respectively as; 

 

( )Γ+= 6.31uF µµ , ..................................................................................................... (1.4) 

�
�

�
�
�

�

Γ−
= 49.01

1
uF µµ , ................................................................................................... (1.5) 

 

In contradiction with previous models that pertained only to capillary tubes, Beyer et al.10 

were the first to present a model based on both laboratory and pilot-scale tests. They 

followed Mooney’s procedure to correlate slip velocity with liquid volume fraction and 

wall shear stress. The authors stated that the accuracy of their model in large diameter 

wells may be increased by accounting for liquid buildup. Using yield shear stress 

obtained in pilot-scale experimental data, the viscosity is given as; 

 

For 0.02< LVF <0.1; 

( )2677200
1

+
=

LVFoµ , ............................................................................................ (1.6) 

 

For 0.1< LVF <0.25; 
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( )7332533
1

+
=

LVFoµ , ............................................................................................. (1.7) 

    

where; 

LVF = Liquid Volume Fraction 

µo = Bingham Viscosity 

 

Blauer et al.8 proposed to use effective viscosity, density, average velocity, and pipe 

diameter to calculate Reynolds number and Fanning friction factor for foam fluids. They 

found the relationship between Reynolds number and Fanning friction factor for foam 

was the same as that of single-phase fluid. They assumed that foam behaves like a 

Bingham plastic fluid and foam plastic viscosity and yield strength experimentally 

determined as a function of foam quality.  

 

Their proposed equation for effective viscosity of Bingham plastic foam is given as; 

 

v

Dg yc
Pe 6

τ
µµ += , ..................................................................................................... (1.8) 

 

where; 

µe = Effective Viscosity 

µp =Plastic Viscosity 

gc = 32.2 

τy = Yield strength 

D = Tube inside diameter 

ν = Velocity 

 

Reidenbach et al.11 performed experimental work with water foams using nitrogen as an 

internal phase. They proposed a Herschel-Bulkely model to describe a laminar foam flow 

through pipes. They found that substitution of CO2 for N2 as the internal phase gives 

similar laminar rheology. A modified scale-up relationship was used to describe 
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compressibility in turbulent flow. They defined a correlation for apparent viscosity that is 

used as a Newtonian viscosity in standard pressure drop calculations. Apparent viscosity 

is defined as; 

 
11

88
−−

�
�

�
�
�

�+�
�

�
�
�

�=
n

ypa d
v

K
d
vτµ , ...................................................................................... (1.9) 

 

where; 

µa = Apparent Viscosity 

τyp = True yield point stress 

d = Pipe inside diameter 

ν = Bulk velocity 

K = Consistency index 

 

Sanghani 12 set up an experiment with a concentric annular viscometer to closely simulate 

actual wellbore conditions. He found that the Power-Law model was statistically superior 

to the Bingham model in correlating their data. He concluded that foam is pseudoplastic 

at low shear rates and Bingham plastic at high shear rates. He also provided experimental 

data to correlate pseudoplastic parameters K and n, as a function of foam quality as 

below; 

 

87654

32

88.9372.167068.15446.960960.63

65.57677.312147.5615626.

Γ−Γ+Γ−Γ−Γ+
Γ+Γ−Γ+−=K

, .................................. (1.10) 

 

654

32

625.20673.39467.14

955.12467.103654.2095932.0

Γ+Γ−Γ+
Γ+Γ−Γ+=n

, .................................................... (1.11) 

And; 
1

12

3
12

−

��
�

�
��
�

�
�
�

�
�
�

� +=
n

H

f
n

e D

v

n
n

Kµ , .................................................................................... (1.12) 

where; 
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DH = Hydraulic diameter 

 

Recently Ozbayoglu et al.13 conducted a rheological study for foam. They conclude that 

wall slip effect is not negligible and should be considered to establish the true flow 

behavior of foam in pipes. Their experimental data indicated that foam rheology was best 

characterized by the Power-Law model for foam qualities ranging 0.7 to 0.8 and the 

Bingham plastic model gives better fit for higher foam qualities. By using the 

Rabinowitch-Mooney equation the rate of shear at the tube wall is given as follows; 

 

n
n

D
v

w 4
138 +=γ , ........................................................................................................ (1.13) 

  

where; 

( )
�
�

�
�
�

�
=

D
v

d

d
n w

8
ln

ln τ
, .......................................................................................................... (1.14) 

where; 

γ = Wall shear rate 

τw = Wall shear stress 

 

Foam Pressure Analysis 

 

The study of static and dynamic behavior of foam has been a subject of interest to many 

investigators. In drilling with conventional incompressible drilling fluids, it is possible to 

calculate frictional and hydrostatic pressures separately and then to determine the overall 

pressure drop. In drilling with foam such a method is not possible because the frictional 

and hydrostatic pressure components influence each other. Iterative methods seem to be 

the best approach when dealing with compressible fluids. 

 

Krug and Mitchell14 were the first to develop charts for finding volume and injection-

pressure requirements for foam drilling operations. They developed a numerical model 
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based on modified Buckingham-Reiner equations. They assumed incremental pipe 

lengths with fixed pressure drop along the wellbore and pressure-dependent variables 

were averaged over each pressure increment. 

 

Beyer et al.10 developed a finite-difference approach for predicting injection pressures 

during foam circulation. Their model was found to be valid for foam qualities greater 

than 0.75. For foam qualities below 0.75 they proposed that frictional gradients be 

interpolated between that of 0.75-quality foam and the value for flowing water of the 

same velocity. 

 

Blauer et al.8 proposed a method in which an effective Newtonian viscosity and foam 

density are calculated and hydraulic analysis proceeds as if the fluid were an 

incompressible Newtonian fluid.  They assumed gas-phase density to be negligible. To 

revise this assumption Blauer and Kohlhaas15 proposed another model that iterates on 

length. To monitor the changes in quality, velocity, viscosity, and pressure, the wellbore 

was divided into length segments. The real gas law was used to account for gas 

compressibility. 

 

Okpobiri and Ikoku16 developed an iterative semi-empirical method for the prediction of 

frictional losses caused by the solid-liquid phase of foam. Foam flow in this method was 

mathematically modeled as Ostwald-de Waele Power-Law fluid and solutions were 

obtained by iterating on pipe/annulus segments length. 

 

Guo et al.17 presented a trial and error method to estimate the frictional and hydrostatic 

pressures. They coupled the pressure components through the pressure-dependent fluid 

density. Foam was treated a power law fluid. 

 

Lord18 was the first who used a different more sophisticated approach. He developed an 

equation of state based on the real gas law and mass balance conservation. He assumed 

an average friction factor for the entire system and numerically solved the mechanical 
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energy balance equation for compressible fluid flow. To produce good results with this 

method one needs to estimate the best appropriate value of friction factor. 

 

Spoerker et al.19 proposed a new two-phase flow equation to modify Lord’s solution. 

Instead of the real gas equation of state they suggested the use of the virial equation. 

They solved the differential mechanical energy balance equation and presented an 

explicit expression for pressure loss of foam flow. 

 

Liu and Medley20 modified the previous work with accounting for formation fluids 

influx. 

 

Gardiner et al.21 proposed an alternative approach by combining the “Volume Equalized 

Power Law” model and Hagen-Poiseuille equation. They also derived an explicit 

expression for foam flow pressure losses. 

 

Guo et al.22 recently presented a closed form hydraulics equation for predicting 

bottomhole pressure for foam drilling operations. Their analytical model couples the 

frictional and hydrostatic pressure components in vertical and inclined wellbores. In this 

newly developed model foam, is considered to have the Power-law behavior.  

 

Heat Transfer 

 

Unlike conventional mud, foam physical and thermal properties are strongly affected by 

temperature. Wellbore temperature plays an essential role in the prediction of foam 

rheological properties.  

 

Foam thermal properties are the function of pressure and foam quality. Pressure on the 

other hand is a function of thermal properties and temperature, which makes the situation 

a little complicated especially in deep well drilling. 
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The accurate determination of the temperature in circulating wells helps to achieve better 

estimation of foam rheology and pressure. Several authors have proposed different 

models to predict the wellbore temperature during drilling operations. 

 

Farris23 was the first who showed a direct relation between well depth and circulating 

bottom-hole temperature. He developed a chart showing the circulating bottom-hole 

temperatures during cement jobs and his chart has formed a basis for calculation of 

bottom-hole temperatures during drilling operations. 

 

Edwardson et al.24 developed a method to compute the changes in formation temperature 

caused by circulation of mud during drilling. The Basis of their method was the analytical 

solution of the differential equation for heat conduction. The solution of the heat 

conduction equation was presented in a series of graphs that were used to determine 

formation temperature disturbance at various radii. 

 

Crawford et al.25 developed a model based on the Edwardson et al.24 method to calculate 

wellbore temperatures during mud circulation. Their calculation technique provided 

temperatures, as function of time, wellbore geometry, and mud rate at varying depths in 

both the casing and annulus. Their method represented a numerical solution for the 

transient heat transfer at a given depth. 

 

Holmes and Swift26 proposed a simple analytical method for prediction of mud 

temperature in the drill pipe and annulus during drilling at any depth. Their mathematical 

model was based on the steady-state equation for heat transfer between the fluid in the 

annulus and the fluid in the drill pipe, combined with an approximate equation for the 

transient heat transfer between the fluid in the annulus and the wellbore formation. As a 

solution for heat transfer equations, temperatures were calculated as a function of well 

depth, mud rate, mud characteristics, and wellbore geometry. 

 

Keller et al.27 were the first to use the finite difference method (FDM) in their model.  

They developed a two-dimensional transient heat transfer model to predict the wellbore 
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temperatures at any depth. They also concluded that external heat sources such as 

frictional heating, rotational energy, and drill bit energy have significant influence on 

wellbore temperature. 

 

Marshall and Lie28 have developed a model to calculate both the transient and steady-

state temperatures in the wellbore during drilling. A computer code based on FDM was 

developed to solve all the heat transfer equations simultaneously. The energy source 

terms were included in the model. 

 

All of the earlier models are developed based on drilling with conventional mud, 

however, no model is yet developed for foam.  
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CHAPTER II 

FUNDAMENTALS 
 
 
Foam Quality 
 
Foam quality is the volumetric ratio of gas-phase to gas/liquid-phase. The foam quality 

index Γ can be defined as; 

 

flg

g

VVV

V

++
=Γ , ....................................................................................................... (2.1) 

 

where; 

Vg = Gas volume 

Vl = Liquid volume  

Vf =Formation fluid influx volume 

 

The foam quality is a function of the pressure in the annulus. Most foams are stable when 

foam quality is between 0.6 - 0.97. In stable foam drilling operations the lower limit of 

foam quality is usually found at the bottom of the annulus and the higher limit at the top 

of the annulus. Qualities greater than 0.97 would cause the continuous cellular foam 

structure, that entraps the gaseous phase to become unstable and the foam turns into mist. 

When quality is less than 0.6, gas forms isolated bubbles that are independent of the 

liquid-phase and two phases can move with different velocities which breaks down the 

foam structure.  

 

The ideal gas law gives; 

 

T
PV

T
VP

s

ss = , ............................................................................................................... (2.2) 

 

where; 
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P = Pressure at any point 

Ps = Pressure at surface 

T = Temperature at any point 

Ts  = Temperature at surface 

V = Gas volume at any point 

Vs = Gas volume at surface 

 

Eq. 2.2 can be rearranged to; 

 

s
s

s V
PT

TP
V = , ................................................................................................................ (2.3) 

  

Substituting Eq. 2.3 into Eq. 2.1 yields; 

 

flgs
s

s

gs
s

s

QQQ
PT

TP

Q
PT

TP

++
=Γ , ............................................................................................ (2.4) 

 

where; 

Qgs = Gas injection rate 

Ql = Liquid injection rate 

Qf = Formation fluid influx rate 

 

Gas-liquid ratio (GLR) is defined as; 

 

l

gs

Q

Q
GLR = , ............................................................................................................... (2.5) 

 
In order to maintain the surface foam quality at the desired value, we need to set an 

appropriate gas-liquid injection ratio at surface. Based on the maximum allowable foam 

quality at surface without backpressure, the GLR is calculated as; 
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�
�

	


�

�
+

Γ−
Γ

=
l

f

Q

Q
GLR

60

615.5

48.7
1

1 max

max , ........................................................................... (2.6) 

 
By substituting Eq. 2.5 and Eq. 2.6 into Eq. 2.4, the correlation for foam quality at any 

point can be expressed as; 

 
 

l

f

s

s

s

s

Q

Q
GLR

PT
TP

GLR
PT

TP

60

615.5

48.7
1 ++

=Γ , ............................................................................. (2.7) 

 
 
Foam Specific Weight 

 

The specific weight of foam can be expressed as; 
 
 

( ) lgf γγγ Γ−+Γ= 1 , ................................................................................................. (2.8) 
 
 
where; 

γg = Specific weight of gas phase 

γl = Specific weight of liquid phase 

 
The ideal gas law gives; 
 

T

PS g
g 3.53

=γ , ............................................................................................................... (2.9) 

 
 
where; 

Sg = Specific gravity of gas 
 
Introducing Eq. 2.9 into Eq. 2.8 results in; 
 

Γ�
�

	


�

�
−−=

T

PS g
llf 3.53

γγγ , ........................................................................................ (2.10) 
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Foam Velocity 
 
Foam velocity can be expressed as; 

 

A

QQQ
v flg

f

++
= , ................................................................................................. (2.11) 

 
 

where; 

A = Cross sectional area of flow path 

 

Introducing Eq. 2.5 and Eq. 2.6 into Eq. 2.11, the velocity of foam at any point is given 

by; 
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, ........................................................... (2.12) 

 
Foam Friction Factor 
 
Determining friction factor is crucial for foam flow calculations. Assuming that stable 

foam flow falls into a laminar flow regime, the theoretical approach for the Moody 

friction factor is expressed as a function of Reynolds number: 

 

Re
64=f , ................................................................................................................... (2.13) 

 

With Reynolds number calculated as; 

 

e

HD
µ

ρν
=Re , ............................................................................................................ (2.14) 

 

where; 

f = Moody friction factor 
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Re = Reynolds number 

=ν  Average foam velocity 

=ρ  Average foam density 

=eµ  Effective viscosity 

 

It has been reported in several cases that the friction factor given by Eq. 2.13 has been 

too high. Guo29 developed an empirical correlation derived from two-phase flow regimes 

that gives good results for foam flow in conditions commonly encountered in foam 

drilling. This empirical approach which uses the weight flow rate is expressed as; 

 

llgg QSQSw 33.80765.0 +=� , ................................................................................... (2.15) 

 

where; 

=w�  Mass flow rate 

 

HD
w

vD
�

02173.0=ρ , ................................................................................................ (2.16) 

( )vDf ρlog5.2444.1104 −×= , ............................................................................................ (2.17) 
 
 
Foam Hydrostatic and Friction Loss Analysis 
 
Consider foam flow in a vertical conduit section under steady-state conditions. Based on 

the first law of thermodynamics, the governing equation for flow is; 

 

dL
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2
1

2

γ , ........................................................................................... (2.18) 

 
 

where; 

P = Pressure 

γf = Specific weight of foam 
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f = Moody friction factor 

νf = Foam velocity 

DH = Conduit hydraulic diameter 

L = Conduit length 

g = 32.2 

 
Cuttings Removal Phenomena 
 
In foam drilling operations volumetric injection rates of gas and liquid must meet the 

requirements of cuttings transport capacity and foam stability. 

 

In contrast with air drilling, the minimum kinetic energy criterion for cuttings transport 

should not be used in foam drilling. The mixture of foam and cuttings can not be treated 

as a homogeneous system. Significant differences between foam and cuttings velocities 

may exist in the annulus. Therefore, the minimum drag force criterion is the best 

applicable option. Considering the laminar foam flow in normal foam drilling operations, 

the following equation is suggested by Moore30 to estimate cuttings settling velocity in 

foam: 

 

( )
333.0333.0

667.0

56.1
ef

fss
sl

D
v

µρ
ρρ −

= , ...................................................................................... (2.19) 

 

where; 

νsl = Cuttings settling velocity 

Ds = Cuttings equivalent diameter 

ρf = Foam density 

µe = Effective foam viscosity 

 

The equation above is proposed for non-Newtonian Power-law fluids.  

 



 18 

However, the required cuttings transport velocity depends on how fast the cuttings are 

generated by the drill bit and the amount of cuttings concentration allowed in the 

borehole during drilling.  

 

When solid particles are settling down in a steady and still fluid of lower density, they 

first accelerate under the force of gravity and then decelerate due to the increasing drag 

force between the cuttings and the fluid. After a certain time, the velocity of the cutting 

reaches a constant value, known as terminal velocity. The cuttings terminal velocity is 

given by31; 
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where; 

νtr = Terminal velocity 

dh = Hole diameter 

Cp = Cuttings concentration 

A = Annulus area 

Rp = Rate of penetration 

 

Finally, the foam velocity required to transport the cuttings to the surface is; 

 

trslfoam ννν += , ....................................................................................................... (2.21) 

 

Pressure Drop Across Bit Nozzles 

 

A nozzle is a device that causes the interchange of kinetic and internal energy of a fluid 

as a result of change in cross section of flow conduit. Nozzles are often installed into the 

orifices at the drill bit for better removal of cuttings. Pressure loss across the nozzles is 

usually very significant. There is no universal equation for predicting pressure loss across 
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bit nozzles for all types of drilling fluids. Based on gas fraction of fluids and flow 

regimes, different nozzle flow models are available. 

 

One of the best models for estimating bit pressure drop for foam has been developed by 

Okpobiri and Ikoku16. The equation for pressure drop across bit nozzles is expressed as; 
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cgA
E

2
1= , ............................................................................................................... (2.25) 

 

where; 

=∆ bP  Pressure drop across the bit 

Pbh = Bottom-hole pressure 

νn = Nozzle velocity 

M = Gas molecular weight 

mg = Mass of gas 

ml = Mass of liquid 

 

Heat Capacity 

 

Like any two-phase mixture, heat capacity of foam is the average weighted heat capacity 

of each phase. Heat capacity of liquid-phase which is usually water, is a constant known 

value, however, heat capacity of gas-phase varies with temperature and pressure. 

Variation of gas specific heat with pressure is negligible, hence gas specific heat is 

usually considered as a function of only temperature. Heat capacity of foam can be 

calculated as; 
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WaterGasFoam PPP CCC )1( Γ−+Γ= , ............................................................................. (2.26) 

 

where; 

=
FoamPC  Heat capacity of foam 

=
GasPC  Heat capacity of gas 

=
WaterPC  Heat capacity of water 

 

Suppose that the gas-phase is air, Memarzadeh and Miska32 have expressed the heat 

capacity of air as a function of temperature as below; 

 
311275 10629.010268.010899.0238.0 TTTC

AirP
−−− ×−×+×−= , .......................... (2.27) 
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CHAPTER ΙΙΙΙΙΙΙΙΙΙΙΙ    

FOAM DRILLING SIMULATOR 
 

 

This chapter explains how the foam drilling model is developed and offers a detailed 

discussion of many aspects of foam drilling operations. This model is developed based on 

the fundamental equation for steady-state foam flow in vertical pipes, which had 

presented by Eq. 2.18. 

 

Assumptions 

 

Some basic assumptions in developing this foam drilling model are: 

• It is assumed that compressible gasses can be approximated by the ideal gas law. 

• Calculations are based on a constant wellbore geometry. 

• The term bottom-hole is applied for the total depth just above the drill collars. 

• Foam rheology is characterized by the Power-Law model. 

• Wellbore temperature is assumed to be equal to the formation temperature. 

• Gas expansion right below the drill bit (Joule-Thomson effect) is ignored. 

• The minimum drag force criterion is used for cuttings transport analysis. 

• The trouble free cuttings concentration is assumed to be 4%. 

• Formation fluid influx is considered as an incompressible fluid which is known 

as water. 

 

A computer code is developed to process the data and accurately simulate the pressure 

during drilling a well.  The following explains the function of each key on the interface of 

the code. The interface of the simulator is shown in Fig. 3.1. 
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Fig. 3.1-Simulator Main Menu 
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Data Input 

 

To begin the simulation we first need to collect the data. The, “Input Data”, button 

enables the user to enter the initial data. The initial data is collected through the program 

data input user form, Fig. 3.2 shows the wellbore geometry input data.  

 

 

 
Fig. 3.2-Wellbore Geometry Input Data 
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The operative input data is shown in Fig. 3.3.  

 

 

 
Fig. 3.3-Operative Input Data 
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Run  

 

By clicking the, “Run”, button the following steps takes place: 

 

Step 1 

In order to maintain the surface foam quality at the desired maximum value, we need to 

set an appropriate gas-liquid injection ratio at surface. Based on the maximum allowable 

foam quality and no formation water influx, the GLR at surface pressure (no 

backpressure at the choke) is calculated by using Eq. 2.6. 

 

Step 2 

The second step is to calculate the foam properties at surface. Surface foam quality is 

known (maximum quality). Foam specific weight is first calculated by Eq. 2.10 and then 

the hydrostatic pressure is calculated as; 

surfacefoamholeBottom PDepthP +∆×=− γ , .......................................................................... (3.1) 

Since the bottom-hole pressure has been calculated, the foam quality and foam specific 

weight at bottom can be calculated. By taking the average for foam quality and foam 

specific weight over the length the new hydrostatic bottom-hole pressure is calculated. 

This procedure would repeat several times to obtain the accurate hydrostatic bottom-hole 

pressure. 

 

Step 3 

Foam consistency index K and flow behavior index n are calculated based on the foam 

quality at the bottom, to determine the viscosity of foam. In order to calculate foam 

required velocity to transport the cuttings to the surface given by Eq. 2.21, terminal 

velocity and cuttings settling velocity should first be determined. Considering the fact 

that cuttings settling velocity and viscosity are function of each other, the values of each 

should be determined by iteration. Once the required foam velocity is known the liquid 

injection rate should be determined to set the actual foam velocity, given by Eq. 2.12, 
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equal to the minimum required velocity. Finally, Reynolds number and Moody friction 

factor are calculated based on actual foam velocity and viscosity at bottom of the hole. 

 

Now that required flow properties are determined, Eq. 2.18 is used to calculate the total 

hydrostatic and frictional pressure at bottom. 

 

Step 4 

Using the bottom-hole pressure obtained in Step 3, the quality and specific weight of 

foam at bottom are calculated. Then the average pressure between the surface and the 

bottom is calculated. Using the average pressure; quality, specific weight, viscosity, 

velocity, and Moody friction are calculated and consequently Eq. 2.18 yields a new 

bottom-hole pressure. At this point, Step 4 is repeated to update the value of minimum 

required injection rate. 

 

Step 4 needs to be repeated several times to determine the accurate bottom pressure. 

 

Step 5 

As the drill-bit goes down, foam flow enters the next depth increment (∆Depth) of the 

wellbore. In this step, instead of using the surface properties which were used in the 

previous step, the bottom-hole pressure, temperature, and foam properties of the previous 

step should be used as surface properties. Then the Step 3 and Step 4 are repeated again. 

 

Step 6 

The surface pressure used in Step 5, is independent of liquid injection rate calculated in 

that step. To consider the effect of new liquid injection rate on calculations of previous 

depth increments, all the calculations except determining the injection rates should be 

repeated again to find the most accurate value for bottom-hole pressure in the last depth 

increment.  
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Step 7 

The foam quality obtained in Step 6 should be checked to make sure that, it is not lower 

than the required minimum foam quality. If the foam quality was lower than the required 

minimum foam quality, it means back-pressure is needed at the surface choke. The 

minimum required back-pressure to maintain the foam quality greater than the minimum 

limit is calculated. 

 

Step 8 

The Step 1 through Step 7 should be repeated until the bit reaches the total depth. Note 

that the calculated bottom-hole pressure is based on the minimum required back-pressure 

at the choke. This means that no lower values of back-pressure can be used. The effect of 

using the higher values of back-pressure can be evaluated in another part of the simulator. 

 

Output Data 

 

The “Output Data” button offers two choices. As it is shown in Fig. 3.4, the results can 

be seen either as a table or graphs.  
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Fig. 3.4-Output Data Form 

 

 

The program has the ability to generate the graphs which are chosen by the user. The list 

of options is shown in Fig. 3.5. 

 

Here is an example in which the input data shown in Fig. 3.2 and Fig. 3.3 is simulated 

and the output data is presented by both the table and figures. 
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Fig. 3.5-Output Data Graph Form 
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Table 3.1-Output Results 

Depth 
(ft) 

Pressure 
(psia) 

Foam 
Quality 

Liquid 
Injection 

Rate 
(gal/min) 

Gas 
Injection 

Rate 
(scf/min) 

Foam 
Velocity 
(ft/sec) 

Foam 
Viscosity 
(lb/ft-sec) 

Moody 
Friction 
Factor 

100 147.4798 0.947406 15.78 41.87851 10.40485 0.057512 0.324051 
200 155.4484 0.944817 16.2 45.02509 9.904534 0.059446 0.334946 
300 163.4721 0.942234 16.64 48.29128 9.451074 0.061319 0.345497 
400 171.5536 0.939655 17.07 51.67406 9.038051 0.063135 0.355731 
500 179.6959 0.93708 17.5 55.20311 8.660173 0.0649 0.365675 
600 187.9013 0.934508 17.93 58.88136 8.313038 0.066618 0.375354 
700 196.1727 0.931938 18.36 62.71141 7.992955 0.068293 0.38479 
800 204.5124 0.929369 18.79 66.69589 7.696805 0.069928 0.394002 
900 212.9229 0.926801 19.23 70.87446 7.421936 0.071527 0.403007 

1000 221.4065 0.924233 19.67 75.21721 7.166078 0.073091 0.411823 
1100 229.9654 0.921666 20.1 79.68584 6.927275 0.074625 0.420464 
1200 238.6018 0.919097 20.54 84.35931 6.703836 0.07613 0.428943 
1300 247.3178 0.916527 20.98 89.20596 6.494289 0.077608 0.437271 
1400 256.1153 0.913956 21.42 94.22681 6.297346 0.079062 0.44546 
1500 264.9963 0.911383 21.87 99.47042 6.111878 0.080492 0.453517 
1600 273.9627 0.908808 22.31 104.8528 5.936889 0.0819 0.461452 
1700 283.0161 0.90623 22.75 110.4156 5.771495 0.083288 0.469273 
1800 292.1584 0.90365 23.2 116.2148 5.614913 0.084657 0.476984 
1900 301.391 0.901066 23.64 122.1578 5.466445 0.086008 0.484593 
2000 310.7157 0.89848 24.09 128.3434 5.325465 0.087341 0.492104 
2100 320.1338 0.89589 24.53 134.6762 5.191412 0.088657 0.499521 
2200 329.6468 0.893297 24.98 141.2608 5.063781 0.089958 0.506848 
2300 339.2561 0.8907 25.42 147.9961 4.942116 0.091243 0.514089 
2400 348.963 0.8881 25.87 154.9925 4.826004 0.092513 0.521245 
2500 358.7688 0.885496 26.32 162.2049 4.715071 0.093769 0.52832 
2600 368.6746 0.882888 26.76 169.5692 4.608977 0.09501 0.535315 
2700 378.6816 0.880277 27.21 177.2089 4.50741 0.096238 0.542233 
2800 388.791 0.877661 27.66 185.0753 4.410087 0.097452 0.549073 
2900 399.0037 0.875042 28.11 193.1671 4.316747 0.098653 0.555838 
3000 409.3208 0.87242 28.55 201.417 4.227152 0.09984 0.562529 
3100 419.7433 0.869794 29 209.9622 4.141083 0.101015 0.569145 
3200 430.2721 0.867164 29.45 218.7486 4.058336 0.102176 0.575689 
3300 440.908 0.86453 29.89 227.6978 3.978727 0.103325 0.58216 
3400 451.652 0.861893 30.34 236.9577 3.902081 0.104461 0.588559 
3500 462.5049 0.859253 30.79 246.4698 3.82824 0.105584 0.594888 
3600 473.4674 0.85661 31.23 256.1495 3.757054 0.106695 0.601145 
3700 484.5403 0.853963 31.68 266.1555 3.688386 0.107793 0.607333 
3800 495.7244 0.851314 32.12 276.339 3.622108 0.108879 0.613452 
3900 507.0203 0.848661 32.57 286.8594 3.558101 0.109953 0.619503 
4000 518.4287 0.846006 33.01 297.5607 3.496252 0.111015 0.625486 
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Table 3.1-Continued, 

Depth 
(ft) 

Pressure 
(psia) 

Foam 
Quality 

Liquid 
Injection 

Rate 
(gal/min) 

Gas 
Injection 

Rate 
(scf/min) 

Foam 
Velocity 
(ft/sec) 

Foam 
Viscosity 
(lb/ft-sec) 

Moody 
Friction 
Factor 

4100 529.9502 0.843348 33.45 308.5174 3.436457 0.112065 0.631403 
4200 541.5856 0.840688 33.9 319.835 3.37862 0.113104 0.637256 
4300 553.3353 0.838026 34.34 331.3388 3.322648 0.114131 0.643045 
4400 565.2 0.835361 34.78 343.1079 3.268456 0.115148 0.648772 
4500 577.1803 0.832695 35.22 355.1542 3.215963 0.116154 0.65444 
4600 589.2767 0.830026 35.66 367.4814 3.165094 0.11715 0.66005 
4700 601.4898 0.827356 36.1 380.093 3.115778 0.118135 0.665604 
4800 613.82 0.824685 36.54 392.9926 3.067948 0.119112 0.671105 
4900 626.2679 0.822012 36.98 406.184 3.02154 0.120079 0.676555 
5000 638.834 0.819338 37.41 419.5585 2.976495 0.121038 0.681957 
5100 651.5188 0.816663 37.85 433.3315 2.932756 0.121989 0.687314 
5200 664.3228 0.813987 38.28 447.3004 2.89027 0.122932 0.69263 
5300 677.2463 0.811311 38.71 461.56 2.848986 0.123869 0.697907 
5400 690.29 0.808634 39.14 476.1244 2.808858 0.124799 0.703149 
5500 703.4542 0.805957 39.57 490.9971 2.769838 0.125724 0.708359 
5600 716.7393 0.803279 40 506.1819 2.731886 0.126644 0.713542 
5700 730.1458 0.800602 40.43 521.6824 2.694959 0.12756 0.718701 
5800 743.6742 0.797925 40.85 537.3706 2.659019 0.128472 0.723839 
5900 757.3249 0.795249 41.27 553.3642 2.624029 0.129381 0.728961 
6000 771.0981 0.792573 41.69 569.6789 2.589954 0.130288 0.734071 
6100 784.9945 0.789897 42.11 586.3182 2.556761 0.131193 0.739173 
6200 799.0143 0.787223 42.52 603.144 2.524417 0.132098 0.74427 
6300 813.1579 0.78455 42.93 620.2826 2.492894 0.133003 0.749367 
6400 827.4258 0.781878 43.34 637.751 2.462161 0.133908 0.754467 
6500 841.8183 0.779207 43.75 655.5527 2.432192 0.134815 0.759575 
6600 856.3357 0.776538 44.16 673.6912 2.40296 0.135723 0.764693 
6700 870.9784 0.773871 44.56 692.0147 2.37444 0.136634 0.769826 
6800 885.7467 0.771206 44.96 710.6616 2.346607 0.137548 0.774977 
6900 900.641 0.768543 45.36 729.6498 2.31944 0.138466 0.780149 
7000 915.6616 0.765882 45.75 748.8192 2.292916 0.139388 0.785345 
7100 930.8088 0.763223 46.14 768.3152 2.267014 0.140316 0.790568 
7200 946.0829 0.760567 46.53 788.1568 2.241714 0.141248 0.795821 
7300 961.4842 0.757914 46.91 808.175 2.216997 0.142186 0.801106 
7400 977.0129 0.755263 47.29 828.5227 2.192844 0.14313 0.806425 
7500 992.6693 0.752616 47.67 849.2198 2.169238 0.14408 0.811779 
7600 1008.454 0.749972 48.05 870.2694 2.146162 0.145037 0.817171 
7700 1024.366 0.747331 48.42 891.4908 2.123599 0.146001 0.822602 
7800 1040.407 0.744694 48.79 913.0471 2.101535 0.146972 0.828072 
7900 1056.576 0.74206 49.15 934.7689 2.079953 0.14795 0.833583 
8000 1072.875 0.739431 49.51 956.8244 2.058841 0.148936 0.839134 
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Table 3.1-Continued, 

Depth 
(ft) 

Pressure 
(psia) 

Foam 
Quality 

Liquid 
Injection 

Rate 
(gal/min) 

Gas 
Injection 

Rate 
(scf/min) 

Foam 
Velocity 
(ft/sec) 

Foam 
Viscosity 
(lb/ft-sec) 

Moody 
Friction 
Factor 

8100 1089.302 0.736805 49.87 979.2353 2.038183 0.149928 0.844725 
8200 1105.858 0.734183 50.23 1002.005 2.017967 0.150927 0.850356 
8300 1122.543 0.731566 50.58 1024.933 1.998179 0.151934 0.856027 
8400 1139.357 0.728954 50.93 1048.199 1.978808 0.152947 0.861736 
8500 1156.301 0.726345 51.27 1071.616 1.959842 0.153967 0.867481 
8600 1173.374 0.723742 51.62 1095.581 1.94127 0.154993 0.873262 
8700 1190.577 0.721144 51.96 1119.718 1.92308 0.156025 0.879076 
8800 1207.908 0.718551 52.29 1143.977 1.905261 0.157062 0.884921 
8900 1225.37 0.715963 52.63 1168.793 1.887805 0.158105 0.890794 
9000 1242.96 0.71338 52.96 1193.774 1.870701 0.159152 0.896693 
9100 1260.68 0.710803 53.29 1219.095 1.853939 0.160203 0.902614 
9200 1278.529 0.708232 53.61 1244.549 1.837511 0.161257 0.908554 
9300 1296.507 0.705667 53.93 1270.34 1.821408 0.162314 0.914509 
9400 1314.614 0.703107 54.25 1296.495 1.80562 0.163373 0.920476 
9500 1332.85 0.700554 54.57 1323.014 1.790141 0.164433 0.92645 

 

Table 3.1 shows a sample output data. The values presented in the last row of the table 

express the bottom-hole pressure, quality, injection rates, and flow properties at the total 

depth. 
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Pressure 

The variation of pressure along the wellbore is shown in Fig. 3.6. The value of pressure 

at the depth of zero (at surface) indicates the minimum required back-pressure. Fig. 3.6 

shows the changes in pressure at any depth along the wellbore. 
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Fig. 3.6-Bottom-hole Pressure vs. Depth 

Injection rate 

While drilling with constant back-pressure at the choke, as the bit drills ahead successful 

removal of cuttings depends on the injection rate of foam. The minimum required liquid 

injection rates for successful cuttings transport at any depth along the wellbore are 

presented by the Fig. 3.7 which shows that the minimum required liquid injection rate 

increases with depth. Fig 3.8 shows that the minimum required liquid injection rate 

increases with pressure. 
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Liquid Injection Rate Vs. Depth
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Fig. 3.7-Liquid Injection Rate vs. Depth 

Liquid Injection Rate Vs. Pressure

0

10

20

30

40

50

60

0 200 400 600 800 1000 1200 1400

Pressure, psia

In
je

ct
io

n 
R

at
e,

 g
al

/m
in

 
Fig 3.8-Liquid Injection Rate vs. Pressure 
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Gas Injection Rate Vs. Depth
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Fig 3.9-Gas Injection Rate vs. Depth 
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Fig 3.10-Gas Injection Rate vs. Pressure 
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The similar graphs are provided for gas injection rates and are presented in Fig. 3.9 and 

Fig. 3.10. These figures indicate that minimum required gas injection rate increases with 

both the depth and pressure. 

 

Foam quality 

One of the major concerns of the foam drilling operations is to maintain the foam quality 

in a specific range. To monitor the changes in foam quality with respect to the depth and 

pressure the following graphs are provided. Fig 3.11 shows that the quality of foam 

decreases with depth and Fig 3.12 shows that the quality of foam decreases with pressure. 
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Fig 3.11-Foam Quality vs. Depth 
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Fig 3.12-Foam Quality vs. Pressure 

 

Foam viscosity 

There has always been a debate about the rheology of the foam and many different 

models are developed to investigate this matter. The following graphs facilitate the 

comparison between the other methodologies and the one used in this research. 

 

The increase in foam viscosity with depth is shown in Fig 3.13. The viscosity values used 

in this model are the function of both the foam quality and velocity. Fig 3.14 shows that 

the foam viscosity decreases with increase in quality. 
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Fig 3.13-Foam Viscosity vs. Depth 
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Fig 3.14-Foam Viscosity vs. Foam Quality 
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Foam velocity 

Velocity Vs. Depth
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Fig 3.15-Foam Velocity vs. Depth  
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Fig 3.16-Foam Velocity vs. Pressure  
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As the foam viscosity increases along the wellbore, the decrease in the foam velocity is 

shown in Fig. 3.15 and Fig. 3.16. 

 

Minimum required back-pressure 

Another critical aspect of foam drilling operations is the back-pressure determination. In 

order to maintain the foam stability, the surface choke should provide a sufficient back-

pressure along the wellbore.  The need to increase the surface back-pressure since the 

beginning to the end of a typical foam drilling operation is shown in Fig. 3.17. 
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Fig 3.17-Back-pressure vs. Depth 

 

Features 

 

The button, “Features”, has been designed to offer the user several choices for generating 

comparative graphs. As it is shown in Fig. 3.18, there are five options to choose from. 
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Fig. 3.18-Simulator Features 
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When a user chooses an option, that option is considered as a variable and the other 

options would remain constant. The user will be able to assign three different values to 

the variable. A program code simulates the model for the three values of the variable and 

generates the results in one graph. For better understanding of the foam flow behavior 

under different conditions, the simulator also shows the deviation of foam properties 

from the minimum value of the variable. A discussion about the properties is presented 

below; 

 

Back-pressure 

Considering the constant liquid injection rate of 75 (gal/min), three different values are 

assigned to the surface choke back-pressure. Fig. 3.19A shows that at the total depth, the 

bottom-hole pressure decreases with increase in the back-pressure. It is very important to 

remember that generally increasing the back-pressure increases the bottom-hole pressure. 

As it is shown in Fig. 3.19B, in this case increasing the back-pressure by more than 50% 

increases the bottom-hole pressure. Note that increasing the back-pressure by 50% 

decreases the bottom-hole pressure to its minimum limit (in this case). 
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Fig. 3.19-Bottom-hole Pressure vs. Depth at Different Back-pressures. A. Bottom-hole 

Pressure Decreases with an Increase in Back-pressure. B. Bottom-hole Pressure Increases 

with an Increase in Back-pressure. 
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As it is shown in Fig 3.20 the foam quality increases with an increase in back-pressure 

and consequently the bottom-hole pressure decreases. When the back-pressure is 

increased by more than 50%, the applied pressure at the surface and frictional pressure 

prevail over the hydrostatic pressure drop caused by the increase in foam quality and 

from this point any increase in the back-pressure increases the bottom-hole pressure.  
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Fig. 3.20-Foam Quality vs. Depth at Different Back-pressures 

 

 

It is shown in Fig. 3.21 that at constant liquid injection rate an increase in back-pressure 

decreases the gas injection rate.  
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Fig. 3.21-Gas Injection Rate vs. Depth at Different Back-pressures 

 

 

It should be noted as it is shown in Fig 3.22, increasing the back-pressure decreases the 

minimum required injection rates of the liquid and the gas. 
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Fig. 3.22-Minimum Required Injection Rates vs. Depth at Different Back-pressures 
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Fig. 3.23-Flow Properties vs. Depth at Different Back-pressures 
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Increasing the back-pressure increases the foam velocity and an increase in foam velocity 

decreases the foam viscosity and consequently the foam friction. Fig 3.23 clearly shows 

the effect of increasing the back-pressure on the flow properties. 

 

As the back-pressure increases, the effective magnitude of the relative changes of each 

parameter is investigated. At constant liquid injection rate of 75 (gal/min), a default value 

of 150 (psia) is assumed for the back pressure and then to make the comparison of the 

results easier, the default value is increased by 20% and 40% respectively. The deviations 

of properties in these two values are compared with the default value. The effect of 

increasing the back-pressure by 20% and 40% is indicated by the following figures;  

 

Deviation of pressure in Fig. 3.24, suggests that increasing the back-pressure increases 

the bottom-hole pressure but at some depth (here at 8500-9000 ft) the bottom-hole 

pressure begins to decrease. As a result, increasing the back pressure by 20% and 40% 

decreases the pressure at the bottom by 2% and 2.5% respectively.  

 

Fig. 3.25 shows that the gas injection rate decreases with an increase in back-pressure. 

Increasing the back-pressure by 20% and 40% decreases the gas injection rates at the 

total depth by 18% and 31% respectively. Remember that the liquid injection rate is 

assumed to be constant. 
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Fig. 3.24-Deviation of Bottom-hole Pressure vs. Depth (Different Back-pressures) 
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Fig. 3.25-Deviation of Gas Injection Rate vs. Depth (Different Back-pressures) 
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Fig. 3.26 shows that an increase in the back-pressure increases the velocity. The 

deviation of viscosity shown in Fig. 3.27 indicates that, in contrast with the velocity, 

viscosity decreases with an increase in the back-pressure.  
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Fig. 3.26-Deviation of Velocity vs. Depth (Different Back-pressures) 

 

Fig. 3.28 shows the decrease in the Moody friction with increasing the back-pressure.  
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Fig. 3.27-Deviation of Viscosity vs. Depth (Different Back-pressures) 
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Fig. 3.28-Deviation of Moody Friction Factor vs. Depth (Different Back-pressures) 
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It was clearly predictable that the foam quality would increase with increasing the back-

pressure. The deviation of foam quality is shown in Fig. 3.29. 
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Fig. 3.29-Deviation of Quality vs. Depth (Different Back-pressures) 

The summary of the deviation graphs is given in Table 3.2. The negative deviation 

represents an increase in the parameter. 

 

 

 

 

 

 

 

 



 53 

Table 3.2-Summary of Results (Deviations for Back-pressure) 

 
Pressure 

Gas 
Injection 
Rate 

Velocity Viscosity Moody  
Friction Quality 

% 
Deviation 
at Surface 

-17 2 -1 1 5 0 20% 
Increase 
in Back-
pressure 

% 
Deviation 
at Bottom 

2 18 -16 10 14 -5.5 

% 
Deviation 
at Surface 

-38 3 -2 2 8 0 40% 
Increase 
in Back-
pressure 

% 
Deviation 
at Bottom 

3 20 -32 17 22 -9.5 

 

Rate of penetration (ROP) 

Considering the constant back-pressure of 165 (psia), three different values are assigned 

to the rate of penetration. Fig. 3.30 shows that the effect of ROP on the pressure is 

negligible.  

 

All the graphs are plotted based on the minimum required liquid injection rates. The 

injection rate is not assumed to be constant because of, the direct effect of the ROP on the 

minimum required injection rates for successful removal of the cuttings. 
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Fig. 3.30-Bottom-hole Pressure vs. Depth at Different Rates of Penetration 

 

It is shown in Fig. 3.31 that the increase in ROP increases the minimum required 

injection rates.  
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Fig. 3.31-Minimum Injection Rates vs. Depth at Different Rates of Penetration 
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Fig. 3.32-Foam Flow Properties vs. Depth at Different Rates of Penetration 
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Increasing the back-pressure increases the foam velocity and an increase in foam velocity 

decreases the foam viscosity and consequently the foam friction. Fig 3.32 clearly shows 

the effect of increasing the back-pressure on the flow properties. 

 

A default value of 50 ft/hr is assumed for the ROP and then to make the comparison of 

the results easier, the default value is increased by 20% and 40% respectively. The 

deviations of properties in these two values are compared with the default value. The 

effect of increasing the ROP by 20% and 40% is indicated by the following figures;  

 

Deviation of pressure in Fig. 3.33, suggests that increasing ROP increases the bottom-

hole pressure. Since the graph shows a maximum deviation of 1.4% the increase in 

pressure is not considerable. 
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Fig. 3.33-Deviation of Bottom-hole Pressure vs. Depth (Different ROP) 

 

Fig. 3.34 and Fig. 3.35 show that the effect of increasing the rate of penetration on the 

minimum required injection rates and the velocity is approximately the same. It can be 
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concluded that ROP has much higher effect on the required injection rate than the 

pressure. 

 

 
Fig. 3.34-Deviation of Injection Rates vs. Depth (Different ROP) 



 59 

 
Fig. 3.35-Deviation of Flow Properties vs. Depth (Different ROP) 
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Table 3.3-Summary of Results (Deviations for ROP) 

 
Pressure 

Gas 
Injection 
Rate 

Liquid 
Injection 
Rate 

Velocity Viscosity Moody  
Friction 

% 
Deviation 
at Surface 

-0.05 -4 -4 -25 5 9 20% 
Increase 
in ROP % 

Deviation 
at Bottom 

-0.7 -8 -7.5 -7 4.5 9.5 

% 
Deviation 
at Surface 

-0.1 -9 -9 -15 10 22 40% 
Increase 
in ROP % 

Deviation 
at Bottom 

-1.4 -17 -14.5 -14 9 21 

 

The summary of the deviation graphs is given in Table 3.3. The negative deviation 

represents an increase in the parameter. 

 

Cuttings concentration 

Considering the constant back-pressure of 165 (psia), three different values are assigned 

to the cuttings concentration. Fig. 3.36 shows that increasing the cuttings concentration 

increases the bottom-hole pressure. 
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Fig. 3.36-Bottom-hole Pressure vs. Depth at Different Cuttings Concentrations 

The higher value of cuttings concentration means more cuttings in the annulus hence 

higher injection rate is needed for removal of the cuttings. It is shown in Fig. 3.37 that the 

increase in cuttings concentration increases the required minimum injection rates.  
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Fig. 3.37-Minimum Injection Rates vs. Depth at Different Cuttings Concentrations 

Increasing the cuttings concentration increases the foam velocity and an increase in foam 

velocity decreases the foam viscosity and consequently the foam friction. Fig 3.38 clearly 

shows the effect of increasing the back-pressure on the flow properties. 
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Fig. 3.38-Flow Properties vs. Depth at Different Cuttings Concentrations 
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A default value of 4% is assumed for the cuttings concentration and then to make the 

comparison of the results easier, the default value is increased by 20% and 40% 

respectively. The deviations of properties in these two values are compared with the 

default value. The effect of increasing the cuttings concentration by 20% and 40% is 

indicated by the following figures;  

 

Deviation of pressure in Fig. 3.39, suggests that increasing cuttings concentration 

decreases the bottom-hole pressure. Since the graph shows a maximum deviation of 2.5% 

the increase in pressure is considerable. 

 

 
Fig. 3.39-Deviation of Bottom-hole Pressure vs. Depth (Different Concentrations) 
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Fig. 3.40-Deviation of Injection Rates vs. Depth (Different Concentrations) 

Fig. 3.40 shows that the increase in liquid and gas injection rates are approximately the 

same. The higher increase in gas injection rate is caused by the increase in the bottom-

hole pressure. 
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Fig. 3.41-Deviation of Flow Properties vs. Depth (Different Concentrations)  

Fig. 3.41 shows that the flow properties are highly affected by the increase in cuttings 

concentration. 
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Table 3.4-Summary of Results (Deviations for Cuttings Concentration) 

 
Pressure 

Gas 
Injection 
Rate 

Liquid 
Injection 
Rate 

Velocity Viscosity Moody  
Friction 

% 
Deviation 
at 
Surface 

-0.1 -7 -6 -10.5 7 14.5 20% Increase 
in 

Concentration % 
Deviation 
at Bottom 

-1 -12 -10.5 -10 6.5 15 

% 
Deviation 
at 
Surface 

-1 -17 -18 -27 16 35 40% Increase 
in 

Concentration % 
Deviation 
at Bottom 

-2.5 -31 -28 -25 15 34 

 

The summary of the deviation graphs is given in Table 3.4. The negative deviation 

represents an increase in the parameter. 

 

Cuttings size 

Considering the constant back-pressure of 165 psia, three different values are assigned to 

the cuttings diameters. Fig. 3.42 shows that the pressure slightly increases with 

increasing the cuttings diameter.  
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Fig. 3.42-Bottom-hole Pressure vs. Depth at Different Cuttings Diameters 

It is shown in Fig. 3.43 that the increase in cuttings diameter increases the required 

minimum injection rates. Obviously, as the cuttings get larger, higher injection rates are 

needed to transport the cuttings to the surface.  
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Fig. 3.43-Minimum Injection Rates vs. Depth at Different Cuttings Diameters    
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Fig. 3.44-Foam Flow Properties vs. Depth at Different Cuttings Diameters 
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Increasing the rate of penetration increases the foam velocity and an increase in foam 

velocity decreases the foam viscosity and consequently the foam friction. Fig 3.44 clearly 

shows the effect of increasing the cuttings diameter on the flow properties. 

 

A default value of 0.4 in. is assumed for the cuttings diameter and then to make the 

comparison of the results easier, the default value is increased by 20% and 40% 

respectively. The deviations of properties in these two values are compared with the 

default value. The effect of increasing the cuttings diameter by 20% and 40% is indicated 

by the following figures;  

 

Deviation of pressure in Fig. 3.45, suggests that increasing the cuttings diameter 

increases the bottom-hole pressure.  
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Fig. 3.45-Deviation of Bottom-hole Pressure vs. Depth (Different Diameters) 
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Fig. 3.46-Deviation of Injection Rates vs. Depth (Different Diameters) 

Fig. 3.46 shows that increasing the cuttings diameters dramatically increases the 

minimum required injection rates.  
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Fig. 3.47-Deviation of Flow Properties vs. Depth (Different Diameters) 
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Fig. 3.47 shows that the friction factor is highly affected by the increase in cuttings 

diameter. 

 

Table 3.5-Summary of Results (Deviations for Cuttings Diameter) 

 
Pressure 

Gas 
Injection 
Rate 

Liquid 
Injection 
Rate 

Velocity Viscosity Moody  
Friction 

% 
Deviation 
at Surface 

-0.2 -18 -18 -15 9.5 22 20% 
Increase 

in 
Diameter 

% 
Deviation 
at Bottom 

-1.4 -17 -15 -14.5 9 21 

% 
Deviation 
at Surface 

-0.4 -37 -39 -31 18 37 40% 
Increase 

in 
Diameter 

% 
Deviation 
at Bottom 

-2.65 -35 -31 -29 17 36 

 

The summary of the deviation graphs is given in Table 3.5. The negative deviation 

represents an increase in the parameter. 

 

Formation water influx 

When formation water influx is not zero the simulation of the model is a little different. 

The difference is, the value of GLR (see Eq. 2.7) does not remain constant during the 

operation. Hence any change in injection rate would result a change in the value of GLR. 

 

Considering the constant back-pressure of 165 psia, three different values are assigned to 

the water influx rate. Fig. 3.48 shows that the pressure does not change with any increase 

in influx rate.  
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Fig. 3.48-Bottom-hole Pressure vs. Depth at Different Water Influx Rates 

Fig. 3.49 shows that increasing the formation influx rate does not change the flow 

properties. That is because an increase in influx rate decreases the minimum required 

injection rates and hence the velocity remains constant. 
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Fig. 3.49-Flow Properties vs. Depth at Different Water Influx Rates 
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Fig. 3.50-Minimum Injection Rates vs. Depth at Different Water Influx Rates 

It is shown in Fig. 3.50 that the increase in influx rate decreases the required minimum 

liquid injection rate but the necessity of increasing the GLR with an increase in influx 

rate (Fig. 3.51), increases the minimum required gas injection rate. 
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Fig. 3.51-GLR vs. Depth at Different Water Influx Rates 

On the other hand, at constant liquid injection rate as it is shown in Fig 3.52 there would 

be much more increase in gas injection rate. The increase in the gas injection rate can be 

explained by the increase in the GLR. 
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Fig. 3.52-Gas Injection Rate vs. Depth at Different Water Influx Rates  

 

Increasing the influx rate at constant liquid injection rate would also change the flow 

properties. Fig 3.53 shows the changes in flow properties in contrast with the flow 

properties shown in Fig 3.49. 



 80 

 
Fig. 3.53-Flow Properties vs. Depth at Different Water Influx Rates (Const. Inj. Rate) 
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Fig. 3.54-Deviation of Flow Properties vs. Depth (Different Influx Rates) 
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Fig. 3.54 shows the percent change of each property at constant liquid injection rate and 

back-pressure. 

 

Table 3.6-Summary of Results (Deviations for Water Influx Rate) 

 
Pressure 

Gas 
Injection 

Rate 
GLR                                   Velocity Viscosity Moody  

Friction 

% 
Deviation 
at Surface 

-0.2 -4 -6 -1.75 1.25 3 
20% Increase 

in Influx % 
Deviation 
at Bottom 

-0.2 -2 -10.5 -1.5 1.2 2.9 

% 
Deviation 
at Surface 

-0.35 -6.5 -18 -3.5 2.5 5.5 
40% Increase 

in Influx % 
Deviation 
at Bottom 

-0.35 -4 -28 -3.25 2.2 5.4 

 

The deviation of GLR values is shown in Table 3.6. The negative deviation represents an 

increase in the parameter. 

 

Injection rate 

Considering the constant back-pressure of 165 psia, three different values (which are 

greater than minimum required injection rate) are assigned to the injection rate. Fig. 3.55 

shows that the effect of injection rate on the pressure is significant. As it is shown 

increasing the injection rate increases the bottom-hoe pressure. 

 

It is shown in Fig. 3.56 that the increase in injection rate decreases the foam quality along 

the wellbore.  
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Fig. 3.55-Bottom-hole Pressure vs. Depth at Different Injection Rates 
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Fig. 3.56-Foam Quality vs. Depth at Different Injection Rates 
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Fig. 3.57-Gas Injection Rate vs. Depth at Different Injection Rates 

 
Fig. 3.58-Deviation of Gas Injection Rate vs. Depth (Different Injection Rates) 

Fig 3.57 and Fig 3.58 show that increasing the liquid injection rate by 20% and 40% 

increases the gas injection rate a little more than 20% and 40% respectively. 
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Fig. 3.59-Flow Properties vs. Depth at Different Injection Rates 
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Increasing the liquid injection rate increases the foam velocity and an increase in foam 

velocity decreases the foam viscosity and consequently the foam friction. Fig 3.59 clearly 

shows the effect of increasing the injection rate on the flow properties. 

 
 
A default value of 60 (gal/min) is assumed for the injection rate and then to make the 

comparison of the results easier, the default value is increased by 20% and 40% 

respectively. The deviations of properties in these two values are compared with the 

default value. The effect of increasing the liquid injection rate by 20% and 40% is 

indicated by the following figures;  

 

Deviation of pressure in Fig. 3.60, suggests that increasing the liquid injection rate 

increases the bottom-hole pressure. Fig. 3.61 shows that increasing the injection rate 

decreases the foam quality. 
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Fig. 3.60-Deviation of Bottom-hole Pressure vs. Depth (Different Injection Rates) 
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Fig. 3.61-Deviation of Quality vs. Depth (Different Injection Rates) 

It can be seen in Fig. 3.62 that increasing the injection rate dramatically increases the 

foam velocity and decreases the friction factor. 
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Fig. 3.62-Deviation of Flow Properties vs. Depth (Different Injection Rates) 
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Table 3.7-Summary of Results (Deviations for Injection Rate) 

 
Pressure 

Gas 
Injection 

Rate 
Quality                                   Velocity Viscosity Moody  

Friction 

% 
Deviation 
at Surface 

-0.3 -20 0 -20 13 27 20% 
Increase 

in 
Injection 

Rate 
% 
Deviation 
at Bottom 

-1.8 -22 0.5 -19 12 26 

% 
Deviation 
at Surface 

-0.5 -41 0 -40 22 45 40% 
Increase 

in 
Injection 

Rate 

% 
Deviation 
at Bottom 

-3.5 -45 0.95 -36 20 44 

 

The summary of the deviation graphs is given in Table 3.7. The negative deviation 

represents an increase in the parameter. 

 

Summary 

The effects of some important parameters such as; back-pressure, ROP, cuttings 

concentration, cuttings size, formation water influx, and injection rate; on pressure, 

injection rate, and velocity are investigated. The effect of each parameter on the drilling 

operation conditions is summarized in the tables below; 
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Table 3.8- Summary of Effects of Parameters on the Pressure 

Parameters in order of 
effectiveness 

Back-
pressure Inj. Rate Cutt. 

Size 
Cutt. 
Conc. ROP Formati

on Influx 

% 
Deviation 
at Surface 

(17) (0.3) (0.2) (0.1) (0.05) (0.2) 

20% Increase  
% 
Deviation 
at Bottom 

2 (1.8) (1.4) (1) (0.7) (0.2) 

% 
Deviation 
at Surface 

(38) (0.5) (0.4) (1) (0.1) (0.35) 

40% Increase  
% 
Deviation 
at Bottom 

3 (3.5) (2.65) (2.5) (1.4) (0.35) 

 

 

Table 3.9-Summary of Effects of Parameters on the Gas Injection Rate 

Parameters in order of 
effectiveness 

Inj. Rate Cutt. 
Size 

Cutt. 
Conc. 

Back-
pressure ROP Formati

on Influx 

% 
Deviation 
at Surface 

(20) (18) (7) 2 (4) (4) 

20% Increase  
% 
Deviation 
at Bottom 

(22) (17) (12) 18 (8) (2) 

% 
Deviation 
at Surface 

(41) (37) (17) 3 (9) (6.5) 

40% Increase  
% 
Deviation 
at Bottom 

(45) (35) (31) 20 (17) (4) 
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Note that from the parameters discussed above only the back-pressure and the injection 

rate are controlled by the operator. The best practice for successful foam drilling 

operation is to follow these steps; 

 
Step I: Run the simulator to determine the minimum required back-pressure. 

Step II: Check the bottom-hole pressure;  

• If the pressure at the bottom needs to be increased then increase the injection rate 

or increase the back-pressure by more than 50%. 

• If the pressure at the bottom needs to be decreased then decrease the injection rate 

or increase the back-pressure by less than 50%. 

 

Note: 

• The model calculates the minimum required back-pressure hence it is not possible 

to decrease the back-pressure.  

• The minimum required injection rate for successful removal of cuttings varies 

with the back-pressure. 

• At a specific back-pressure the injection rate should not be less than the minimum 

required injection rate calculated by the model. 

• Increasing the injection rate decreases the foam quality. Hence, foam quality 

should be monitored while increasing the injection rate. 

 

Selection of the optimum back-pressure and injection rate is a very complicated 

matter. Some restrictions such as; wellbore stability, wellbore washout, and 

economical considerations play an essential role in optimization of foam drilling 

operations. 
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CHAPTER IV 

HEAT TRANSFER 

 

 
Development of Model 

 

Heat transfer in the wellbore takes place in radial and vertical directions. Radial 

conduction occurs between the fluid inside the drill pipe, annulus fluid, and formation. 

Vertical convective heat transfer occurs within the flowing drilling fluid. Fig. 4.1 shows a 

control volume in the flowing fluid. 

 

 
Fig. 4.1-Control Volume in the Flowing Fluid 
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In the control volume of flowing fluid, the wellbore is divided in three regions. The heat 

transfer model is formulated by performing an energy balance on a volume in the center. 

The radial direction is represented by index, i, and index, j, represents the vertical 

direction along the wellbore. The temperature nodes are located at the center of the cells.  

The governing heat transfer equations written in descretized form are obtained as; 

 

In radial direction, conductive heat is transferred into and out of the central cell, and the 

net heat accumulation in the cell ( i , j ) is expressed as; 
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where, 

∆Ec = Net conductive heat accumulation 

U = Overall heat transfer coefficient 

A = Surface area of borders between the cells 

 

In the vertical direction, the convective heat is transferred into and out of the central cell, 

and the net heat accumulation in the cell ( i , j ) is expressed as; 
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where, 

∆Ef = Net forced convective heat accumulation 

Q = Fluid flow rate 

Cp = Specific heat 

 

The energy accumulation in the central cell is given as; 

 



 94 

( ) ( )n
ji

n
ji

jipe
ji TT

t

mC
E ,

1
,

,
, −

∆
=∆ + , ..................................................................................... (4.3) 

 

where, 

∆Ee = Net energy accumulation 

m = Mass 

∆t = Time interval       

 

In steady-state conditions there would be no energy accumulation in the cell and the 

value for Eq. 4.4 is zero. 

 

Accounting for external heat sources such as; heat generated by flow friction and 

mechanical work of the bit, the net energy balance at the cell ( i , j ) is; 
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where, 

=mE  External mechanical and frictional energy 

 

Substituting Eq. 4.4 for Eq. 4.1-3 and rearranging yields; 
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where, 

andDCBA ,,,, E are temperature coefficients in energy balance equations. 

   

The temperature coefficients are calculated from thermal properties and cell dimensions. 

Eq. 4.5 gives the heat balance correlation over the entire model along the wellbore.  
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The first step to solve Eq. 4.5 is to determine the temperature coefficients. The 

coefficient A  which represents the radial conduction between the drill pipe and the 

annulus is calculated as; 
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Heat transfer between the downward flow in pipe and the upward flow in annulus can be 

treated as counter-flow heat transfer in heat exchangers. Hence, the overall heat transfer 

coefficient is written as; 
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where, 

=
Pipefh  Foam heat transfer coefficient in pipe 

=
Annfh  Foam heat transfer coefficient in annulus 

ro = Pipe outer radius 

ri = pipe inner radius 

 

And the surface area between cell ( i-1, j ) and cell ( i, j ) is; 
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where, 

=
Pipeor  Pipe outer radius 

=∆z  Vertical length interval 
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The coefficient B represents the radial heat conduction between the annulus and 

formation through the casing.  The coefficient B  is calculated as; 
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where the overall heat transfer coefficient and the surface area of border between cell ( i, 

j ) and cell ( i+1, j ) are respectively; 
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where, 

ro = Casing outer radius 

ri = Casing inner radius 

 

The coefficient C  represents the both radial heat conduction and vertical heat convection 

into and out of the center cell ( i, j ). The coefficient C  is calculated as; 
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where, the overall heat transfer coefficients for vertical heat conduction into and out of 

the cell ( i, j ) are written as; 
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where, 

k = Foam heat conductivity 

 

And the surface area of the borders between the central cell and upper or lower cells is 

expressed as: 
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where, 

R = Casing inner radius 

r = Pipe outer radius 

 

Coefficients D and E  are calculated as; 
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In order to determine the coefficients ,,,, DCBA and E , it will be necessary to achieve 

certain values of foam heat transfer coefficient and foam conductivity at any depth along 

the wellbore. Considering the fact that foam heat transfer coefficient and foam 

conductivity vary with foam quality, there is a need to establish a correlation between 

these parameters and foam quality. No guidelines have yet been 

developed on how to correlate foam heat transfer coefficient and heat conductivity with 

foam properties. Clearly, further work is required to estimate parameters of heat transfer 

phenomena when dealing with foam. 
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Bit Mechanical Energy 

 

Considering the fact that foam has much lower heat capacity compared to conventional 

mud, bit mechanical energy plays a significant role in foam temperature analysis.  

 

Bit mechanical energy analysis can be categorized in two distinct types: diamond bits and 

tricone bits. Energy analysis for each type is brought separately in the following text. 

 

 

Diamond bits 

The friction between diamonds and the formation generates significant amounts of heat. 

The rate of heat generated by the friction between the wear flat surface of the bit and the 

rock is presented by Memarzadeh and Miska32 as; 
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where, 

Qbit = Heat generated by the bit 

µb = Coefficient of friction between the bit and the formation 

WOB = Weight on bit 

D = Bit outside diameter 

d = Bit inside diameter 

N = Rotary Speed 

 

Tricone bits 

Tricone bits are more common in foam drilling operations. Pessier and Fear33 have 

developed a model to calculate the bit mechanical energy. The model was designed for 

tricone bits but, it is also applicable for diamond bits. They presented their model as 

below; 
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( ) bs AROPEE ∗−×= − σ310285.1 , ......................................................................... (4.18) 

 

where, 

E = Heat loss 

Es = Specific energy 

σ = Compressive strength of rock 

ROP = Rate of penetration 

Ab = Borehole area 

 

Teale34 derived the following equation for specific energy used in Eq. 4.18; 
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where, 

 N = Rotary speed 

T = Torque at the bit 

 

Solution 

 

Once coefficients and heat generated by the bit have been computed, it is time to solve 

the Eq. 4.5 by using FDM. Eq. 4.5 can be presented in the matrix form of: 

 

BxA ′=′ , .................................................................................................................. (4.20) 

 

where, 

=′A  Matrix of coefficients 

=x  Vector of unknown temperatures at the current time-step 

=′B  Vector of calculated temperatures at the previous time-step 
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The best approach to solve Eq. 4.20, is to solve the system of equations simultaneously 

using an iterative solution method.  
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

 
 

Conclusions 

 

1. A computer code is developed to process the data and accurately simulate the 

pressure during drilling a well using foam drilling fluids.  

2. The developed model simulates the borehole pressure based on the minimum 

required back-pressure at the surface.  

3. Successful removal of cuttings is guaranteed by the determination of the 

minimum required injection rates at any surface back-pressure.   

4. The results are presented by both the tables and figures. 

 

Recommendations 

 

1. The results of the simulator should be compared with the results of the other 

available simulators or the real data from foam drilling operations.  

2. The foam drilling simulator has the potential to be used as an aerated drilling 

simulator. Including the aerated mud in the current simulator enables us to 

combine the temperature model with the pressure model.  

3. The Bingham plastic behavior of foams with qualities of more than 85% should 

be investigated upon the availability of the foam shear stress. 

4. The simulation of the foam flow in deviated and horizontal wells can be included 

in the current simulator.  

5. Effect of formation gas influx especially in shallow wells should be investigated. 

6. Additional research is required to analyze the foam heat transfer coefficient and 

thermal conductivity. 

7. Foam heat transfer coefficient and thermal conductivity should be determined by 

either experimental procedures or simulation of the real data obtained by MWD. 
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8. Some uncertainties about the foam rheology still exist; more investigation on 

rheological properties of the different types of foams would increase the accuracy 

of the foam drilling simulators. 
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NOMENCLATURE 
 
 

A = Annulus area, in2 

Ab = Borehole area, in2 

Ai,j = Surface area of borders between the cells, ft2 

Cp = Cuttings concentration, % 

Cp = Specific heat, Btu/ft-hr-oF 

=
FoamPC  Heat capacity of foam, Btu/ft-hr-oF 

=
GasPC  Heat capacity of gas, Btu/ft-hr-oF 

=
WaterPC  Heat capacity of water, Btu/ft-hr-oF 

D = Tube inside diameter, in 

DH = Hydraulic diameter, ft 
D = Bit outside diameter, in 

Ds = Cuttings equivalent diameter, ft 

DH = Conduit hydraulic diameter, ft 

d = Pipe inside diameter, in 

d = Bit inside diameter, in 

dh = Hole diameter, in 

E = Heat loss, Btu/hr 

Es = Specific energy, psi 

=mE  External mechanical and frictional energy, Btu/hr 

f = Moody friction factor, dimensionless 

g = 32.2, ft/s2 

gc = 32.2, ft/s2 

=
Annfh  Foam heat transfer coefficient in annulus, Btu/ft2-hr-oF 

=
Pipefh  Foam heat transfer coefficient in pipe, Btu/ft2-hr-oF 

K = Consistency index 

k = Foam heat conductivity, Btu/hr-ft 

L = Conduit length, ft 

LVF = Liquid Volume Fraction, dimensionless 
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M = Gas molecular weight, lbm 

m = Mass, lbm 

mg = Mass of gas, lbm 

ml = Mass of liquid, lbm 

N = Rotary Speed, rpm 

P = Pressure at any point, lb/ft2 

Pbh = Bottom-hole pressure, psia 

Ps = Pressure at surface, lb/ ft2 

Q = Fluid flow rate, ft3/sec. 

Qbit = Heat generated by the bit, Btu/hr 

Qf = Formation fluid influx rate, bbl/hr 

Qgs = Gas injection rate, Sft3/min 

Ql = Liquid injection rate, gal/min 

R = Casing inner radius, in 

Re = Reynolds number, dimensionless 

ROP = Rate of penetration, ft/hr 

Rp = Rate of penetration, ft/hr 

r = Pipe outer radius, in 

ri = pipe inner radius, in 

ri = Casing inner radius, in 

ro = Pipe outer radius, in 

=
Pipeor  Pipe outer radius, in 

ro = Casing outer radius, in 

T = Torque at the bit, ft-lbf 

T = Temperature at any point, oR 

Ts  = Temperature at surface,oR 

U = Overall heat transfer coefficient, Btu/ft2-hr-oF  

V = Gas volume at any point, ft3 

Vf =Formation fluid influx volume, ft3 

Vg = Gas volume, ft3 
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Vl = Liquid volume, ft3  

Vs = Gas volume at surface, ft3 

ν = Velocity, ft/sec. 

ν = Bulk velocity, ft/sec. 

=ν  Average foam velocity, ft/sec 

νf = Foam velocity, ft/sec. 

νn = Nozzle velocity, ft/sec. 

νsl = Cuttings settling velocity, ft/sec. 

νtr = Terminal velocity, ft/sec 

WOB = Weight on bit, lbf 

=w�  Mass flow rate, lbm/hr 

∆Ec = Net conductive heat accumulation, Btu/hr 

∆Ee = Net energy accumulation, Btu/hr 

∆Ef = Net forced convective heat accumulation, Btu/hr 

=∆ bP  Pressure drop across the bit, psia 

∆t = Time interval, hr       

=∆z  Vertical length interval, ft 

Γ = Foam quality, dimensionless 

γ = Wall shear rate, sec-1 

γf = Specific weight of foam, lb/ft3 

µa = Apparent Viscosity, lb/ft-sec 

µb = Coefficient of friction between the bit and the formation, lb/ft-sec 

µe = Effective foam viscosity, lb/ft-sec 

=eµ  Effective viscosity, lb/ft-sec 

µF = Foam viscosity, lb/ft-sec 

µo = Bingham Viscosity, lb/ft-sec 

µe = Effective Viscosity, cp 

µp =Plastic Viscosity, lb/ft-sec 

µu = Base liquid viscosity, lb/ft-sec 



 106 

=ρ  Average foam density, lb/ft3 

ρf = Foam density, lb/ft3 

σ = Compressive strength of rock 

τw = Wall shear stress, lb/ft2 

τy = Yield strength, lb/ft2 

τyp = True yield point stress, lb/ft2 
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