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ABSTRACT 

Cost Minimization in Multi−Commodity, Multi−Mode Generalized 

 Networks with Time Windows. (December 2005) 

Ping-Shun Chen, B.S., National Chiao Tung University, Taiwan; 

 M.S., National Chiao Tung University, Taiwan 

Chair of Advisory Committee: Dr. Alberto Garcia-Diaz 

    The purpose of this research is to develop a heuristic algorithm to minimize total 

costs in multi-commodity, multi-mode generalized networks with time windows 

problems. The proposed mathematical model incorporates features of the congestion of 

vehicle flows and time restriction of delivering commodities. The heuristic algorithm, 

HA, has two phases. Phase 1 provides lower and upper bounds based on Lagrangian 

relaxations with subgradient methods. Phase 2 applies two methods, early due date with 

overdue-date costs and total transportation costs, to search for an improved upper bound. 

Two application networks are used to test HA for small and medium-scale 

problems. A different number of commodities and various lengths of planning time 

periods are generated. Results show that HA can provide good feasible solutions within 

the reasonable range of optimal solutions. If optimal solutions are unknown, the average 

gap between lower and upper bounds is 0.0239. Minimal and maximal gaps are 0.0007 

and 0.3330. If optimal solutions are known, the maximal gap between upper bounds and 

optimal solutions is less than 10% ranges of optimal solutions. 
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CHAPTER I 

INTRODUCTION 

1.1 Introduction 

    In multi-commodity, multi-mode generalized networks with time windows 

problems, commodities can represent personnel, products, vehicles, or a diversity of 

services, such as communication services provided by phone or internet companies. 

Multiple modes of the network formulation represent different means of transportation 

used to deliver commodities from origins to destinations. Companies in the commodity 

distribution industry consider not only how many products are to be transported, but also 

how to transport products by means of various transportation methods, i.e., finished 

goods are transported from plants to retailers by airplane or by truck. In addition, 

commodities are allowed to be transferred from one mode to another at some certain 

nodes. Moreover, because commodities may be damaged while transporting, a 

generalized network is selected to express this feature. 

    In natural catastrophes or emergent situations, time is very important. For example, 

before a huge hurricane arrives at some areas, it is critical to quickly evacuate people 

from their homes to safer shelters. After a hurricane goes away, it is essential to dispatch 

supply materials and food to disaster areas. Therefore, time factor is also included in this 

research. 

  

This dissertation follows the format and style of Transportation Research Part B. 
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For example, refinery industries meet all features described in this research. Oil is 

transported through pipes, trucks, or ships. Due to oil evaporating or leaking, the amount 

of oil sent on origin may be different than the amount of oil received at its destination. 

Thus, the generalized network is adequate for modeling losses of oil flows. Time factor 

has significant impacts on scheduling crews to receive and store oil. When oil is 

delivered to refineries, the necessary crews must be ready in order to handle receiving. If 

crews are not ready, oil will not be handled appropriately, which will cause a delay and 

yield extra costs. Furthermore, because oil transportation involves in huge annual costs, 

finding the minimal total costs to deliver oil through different methods of transportation 

within time windows will be very beneficial to refinery industries. 

 

1.2 Motivation 

    Only a few published articles focus on multiple commodities, multiple modes, 

commodity losses, and time windows together. Most papers only include 

multi-commodity, single-mode models, single-commodity, multi-mode models, or 

multi-commodity, multi-mode models without time windows. Under many situations, 

these four factors need to be taken into account simultaneously. For instance, a global 

company takes orders from overseas customers, produces various products at different 

plants, ships finished goods to distribution centers through trucks or airplanes, and 

delivers products to customers within due dates. This example includes multiple 

commodities, multiple modes, losses of commodity flows, and time windows. It is also a 

typical supply chain problem. 
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    It is desired to incorporate the congestion of vehicle flows into the model. This 

congestion is one kind of capacity constraint for arcs. For example, a bridge has its 

capacity for the number of vehicles per hour and its capacity for total weights on it per 

time unit. Hence, this research includes this characteristic to make the model more 

realistic. 

    In general, the entire model involves a lot of resources allocated to the whole 

system. Therefore, how to find a minimum cost for multi-commodity, multi-mode 

generalized networks with time windows problems becomes more and more significant 

for the supply chain management. This research develops a methodology for providing 

good heuristic feasible solutions within reasonable solving times. 

 

1.3 Numerical Example 

    An illustrative example in this section is desired to consider a 3-commodity, 

2-mode, and 10-planning-time-period problem. A plant is located at node A. Customers 

are located at node C and node D. Assume a demand of commodity 1 of 5,000 units at 

node C and time 5, a demand of commodity 2 of 7,500 units at node D and time 8, and a 

demand of commodity 3 of 10,000 units at node D and time 6. Modes M and L represent 

two different transportation methods and have their own routings. Arcs (A, B), (B, C), (B, 

D) and (C, D) represent roads among these nodes, as shown in Fig. 1. 

To simplify the problem, some assumptions are made in this example. First, each 

vehicle on mode M can carry either 100 units of commodity 1, 100 units of commodity 2, 

or 100 units of commodity 3. Each vehicle on mode L can carry either 150 units of 
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commodity 1, 200 units of commodity 2, or 200 units of commodity 3. Second, each 

mode has one kind of vehicle. Third, mode M at nodes A, B, and C has 100 vehicles at 

time 0 and mode L at nodes A and B has 100 vehicles at time 0. Fourth, changing modes 

for commodities takes one time period and there is no damage on commodities while 

changing modes. Finally, the earliest delivery time of each commodity is three time 

periods ahead of its due date. The planning time periods are 10 time periods. Data and 

parameters are displayed in Table 1 and 2. 

 

 
Fig. 1. A physical network. 

 

Table 1 
Parameters for each commodity and mode on each arc 

 
 

Arc 

Loss factor 

Com. 1    Com. 2&3

Cost to transport 
commodity 

Com. 1  Com. 2&3

Cost to transport 
vehicles 

Mode M   Mode L 
(A, B) 0.9 0.9 10 8 100 120 
(B, C) 1 0.9 5 5 50 ∞ 
(B, D) 0.85 0.9 5 12 ∞ 80 
(C, D) 0.9 0.85 12 10 100 ∞ 

Note : “∞” means there is no routing of mode M or mode L on this arc. 

A D

C

B

Origin 

Destination

Destination 

Transshipment 
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Table 2 
Capacity of each vehicle on mode M and L for each commodity 

Mode Commodity 1 Commodity 2 Commodity 3 
M 100 100 100 
L 150 200 200 

 

In Fig. 2, lower and upper bounds of vehicles on arc (A, B) are 0 and 200 vehicles, 

respectively. Flow of vehicles on mode M on arc (A, B) is 60 vehicles. Cost to transport 

per vehicle on mode M for arc (A, B) is $100, and travel time for vehicles on mode M on 

arc (A, B) is 2 time periods. In Fig. 3, (1,555.6, 10, 0.9) represents 1,555.6 units of 

commodity 1 transported by vehicles on mode M at time 0, transporting cost is $10 per 

commodity 1, and loss factor of commodity 1 on arc (A, B) is 0.9. Therefore, 1,555.6 * 

0.9 = 1,400 units of commodity 1 at node B are received. The objective function includes 

the transporting-commodity cost, transporting-vehicle cost, holding-commodity cost, 

holding-vehicle cost, overdue-date cost, and transferring-mode cost. An optimal solution 

is $537,661.28 solved by the CPLEX 9.0 software. 

 

 

Fig. 2. Flow of vehicles on mode M at time 0. 

A D

C

B

Origin 

Destination 

Transshipment 

(0, 200, 60, 100, 2) 
(0, 200, 0, 50, 1) 

(0, 200, 0, 100, 2) 

Destination 
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Fig. 3. Flow of commodity 1 delivered by mode M at time 0. 

 

1.4 Objectives and Contributions  

This research is extended from Haghani and Oh's (1996) model and their pure 

network is changed to a generalized network. The proposed mathematical model of this 

research incorporates the congestion of vehicle flows and time restriction of delivering 

commodities. The main goal of this research is to develop a heuristic algorithm, HA, to 

obtain an approximate optimal solution to minimize total costs incurred during 

transporting and holding for commodities and vehicles within time windows. 

    The most significant contributions of this research are as follows: first, it develops a 

procedure that considers multiple commodities, multiple modes, commodity losses, and 

time windows. Because only a few papers combine with all four factors simultaneously, 

this research can provide more insights in this area. Second, the procedure in this 

research is more computational efficiency than solving original problems directly. This 

procedure is a heuristic algorithm and provides good heuristic feasible solutions instead 

A D

C

B

Destination

Destination 

Transshipment 

(1,555.6, 10, 0.9) 

(0, 5, 1) 

(0, 12, 0.9) 
Origin 



 

 

7
 

of optimal solutions.  

Third, it improves procedures for lower bound generations of subgradient methods. 

Because the step size in this research is adopted in Proposition 2, this step size is larger 

than the traditional step size. Larger step sizes will reduce convergence times. Finally, it 

is an effective procedure for the reduction of upper bounds. Two methods, early due date 

with overdue-date costs and total transportation costs in Phase 2 of the heuristic 

algorithm, HA, are applied to seek an improved upper bound. Testing runs generated in 

Chapter V show that most upper bounds are improved in Phase 2. 

 

1.5 Organization of Dissertation 

Chapter I introduces the scope, motivations, and an illustrative example of a 

multi-commodity, multi-mode generalized network with time windows problems. It also 

points out objectives and contributions of this research. Chapter II reviews and 

summarizes literature of multi-commodity and multi-mode, and Lagrangian relaxations 

with subgradient methods. Chapter III describes the problem, assumptions, model, and 

solution approaches. Chapter IV proposes a methodology, which has two phases. Phase 1 

is based on Lagrangian relaxations with subgradient methods. Phase 2 is used to search 

for an improved upper bound. Different scenarios are generated to test the heuristic 

algorithm, HA, in Chapter V. Data are also summarized and analyzed in Chapter V. 

Chapter VI gives conclusions of this research and recommends future related research. 
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CHAPTER II 

LITERATURE REVIEW 

2.1 Introduction 

This research involves solving multi-commodity, multi-mode mixed integers with 

time windows problems. Therefore, literature reviews include two review papers for 

multi-commodity problems and several related papers. It also reviews Lagrangian 

relaxations with subgradient methods, which will be applied in Phase 1 of the heuristic 

algorithm, HA. 

 

2.2 Multi-Commodity and Multi-Mode 

During the past decades, researchers have worked on multi-commodity flow 

problems. Basically, these problems can be categorized into two classes depending on 

the objective function: linear and nonlinear cost multi-commodity flow problems. 

Kennington (1978) discussed and proved some integrity properties of multi-commodity 

flows. Due to side constraints, which include arc capacity restrictions for all 

commodities sharing the same arc, some integrity properties in a single-commodity flow 

problem do not apply to a multi-commodity flow problem.  Solution techniques for 

linear cost multi-commodity flow problems can be classified accordingly into three 

methods: partitioning, price-directive, and resource-directive. 

Assad (1978) surveyed both linear and nonlinear cost multi-commodity flow 

problems, and found that there were three general types of formulations: node-arc, 
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arc-chain, and arc-circuit. He focused on the optimization of a nonlinear cost 

multi-commodity flow problem over a convex feasible set defined by linear constraints. 

He summarized several algorithms using feasible direction methods, which consist of a 

feasible direction approach, a linear approximation algorithm, and an equilibration 

approach. He also summarized other methods, such as a reduced gradient method, a 

gradient projection method, and an alternative solution technique. 

Guélat et al. (1990) developed a multi-mode, multiple-product network assignment 

model for strategic planning of freight flows. In their model, they only included the flow 

conservation and nonnegative constraints, but excluded capacity constraints of 

congestions. In order to obtain the minimal transporting and transferring cost, they 

adopted the Gauss-Seidel-Linear Approximation algorithm (GSLA). The disadvantage of 

GSLA was the poor rate of convergence in the vicinity of the optimal solution. 

Drissi-Kaitouni (1991) refined Guélat’s model to reduce the computational time and 

compared the computational efficiency of the GSLA algorithm with other decomposition 

algorithms. 

    Rathi et al. (1992) studied a problem which involved allocations of a limited 

number of transport resources to shipments of cargos and personnel within specified 

time windows. They developed three different formulations and solved them using the 

Lift Optimizer module of the Deployment Analysis Prototype (DAP) system.     

Haghani and Oh (1996) studied large-scale multi-commodity, multi-mode network flow 

problems with time windows. They used a time-space network formulation. Their model 

was allowed to transfer commodities between modes on a certain node. They developed 
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two heuristic algorithms to solve this complex problem. One was based on Lagrangian 

relaxations and applied LINDO (Linear, Interactive, and Discrete Optimizer) software to 

solve subproblems. The other was an interactive fix-and-run heuristic algorithm. 

 

2.3 Lagrangian Relaxations with Subgradient Methods 

    Since complex problems are difficult to solve, Lagrangian relaxations propose to 

relax one or several of complicated constraints in the original problem and to 

reformulate them into the Lagrangian Dual (LD) problem. Therefore, it will be easier 

to solve the LD problem than to solve the original problem. The solution of the LD 

problem provides a lower bound for the original minimal problem (see Fisher, 1985). 

For example, let f(x) = cx be a convex function subject to constraints of Ax ≤ b and Cx ≤ 

d in equation (1), where x is nonnegative and integral. The objective of f(x) is to 

minimize cx. 

 

 .integer  and   0                                  

                     ,                                 

                     ,                                 

                                                          s.t.

                                        )(   min

≥

≤

≤

=

x

dxC

bxA

xcxf

     (1) 

If A x ≤ b is relaxed, multiplied by nonnegative µ, and this item, µ(Ax - b), is added 

to its objective function, θ(µ) becomes a new objective function in equation (2). If (Ax 

− b) > 0, the minimum of θ(µ) is cx when µ is 0. If (Ax − b) ≤ 0, the minimum of θ(µ) ≤ 

cx. In both cases, θ(µ) ≤ f(x). Therefore, for each fixed µ, the solution of θ(µ) provides a 



 

 

11
 

lower bound for f(x). The problem becomes how to find a maximal value of θ(µ) in 

order to obtain an optimal or approximate optimal solution for f(x). Moreover, θ(µ) is a 

concave function. This property has already been proven (see Fisher, 1981). 

 

 . 0                                    

 ,integer  and  0                                    

,                                   

                                                             s.t.

           )  (        )(      min

≥

≥

≤

−+=

µ

µµθ

x

dxC

bxAxc

     (2) 

Since Lagrangian relaxations only provide lower bounds for original problems, it 

usually combines with branch-and-bound search methods to obtain an optimal or 

approximate optimal solution. How to choose different values of µ in equation (2) is an 

issue. However, many papers select subgradient methods and apply different step sizes 

to update values of µ.  

If θ(.) satisfies equation (3), g is called a subgradient of θ(.) at v. Here, θ(.) is a 

concave function. If we let θ(v) = cx and g = (Ax − b) and v = 0, equation (3) will 

become equation (4). Equation (5) is used to update values of µ for equation (4), where λ 

is the positive step size, and s is the number of iterations. 

 )(     )(       )( vgv −+≤ µθµθ  for all µ  (3) 

 )      (  x        )( bAxc −+≤ µµθ   for all µ  (4) 

 . ) (         )  ( )  (    ) 1   ( bAx ssss −+=+ λµµ    (5) 
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There are many rules in choosing step sizes in general subgradient methods (see 

Goffin, 1977). For example, if the step size, λk, satisfies equation (6), subgradient 

methods will guarantee to obtain optimal solutions for original problems (see Correa, 

1993; Konnov, 2003). 

 . )(    ,    , 0lim
  

  

  

  

  
∞<∞== ∑∑

∞

=

∞

=
∞→ 0k

2k

0k

kk

k
λλλ  (6) 

 

t.subgradien the is  where ||,||    ||||  then,                          

,
 

) )()( (0  satisfies , size, step the If  .1 nPropositio

**1

  

 * 
  

kkk

2k

k
kk

g

g

2

µµµµ

µθµθλλ

−<−

−
<<

+

    

 

Proof. See Proposition 6.3.1 in p. 610 of Bertsekas (1999). 

     

The step size, λk in Proposition 1, is the most common step size adopted for 

subgradient methods. Let λk = σ(θ(µ*) − θ(µk)) / ||gk||2, where σ is a scalar and 0 < σ < 2, 

and θ(µ*) is an optimal solution of θ(µ). If θ(µ*) is unknown, it is usually replaced by the 

current best upper bound. 

 



 

 

13
 

           

otherwise.    0,  

}. 0 and  0      |   {  where        if  ,  
    ˆ                                   

Here,                         
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Proof. See Proposition 1 of Section 3 of Wang (2003). 

 

For a special case, if all k
ig   
   ˆ  = 0, then 0 < λ < ∞. Wang (2003) recommended a 

new step size in Proposition 2 for subgradient methods and proved that µ would 

converge to its optimal solution. He also gave an example to demonstrate that it worked. 

His step size is larger than the common popular one in Proposition 1. Thus, the 

convergence rate of his step size is quicker than that of the traditional step size. 

    Although subgradient methods lead themselves to an easy implementation in the 

form of a computer program, the resulting computerized procedure may suffer from the 

slow speed of convergence in the neighborhood of the optimal solution. 
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CHAPTER III 

MODEL FORMULATION AND SOLUTION APPROACH 

3.1 Introduction 

    This chapter introduces the problem definition, model formulation, and description 

of a solution approach. The following sections are: Section 3.2 describes the scope of 

multi-commodity, multi-mode generalized networks with time windows problems. 

Section 3.3 defines necessary assumptions and required input data. Problem (P) is 

formulated in Section 3.4. Section 3.5 proposes a heuristic procedure, HA, for solving 

Problem (P). A summary of this chapter is given in Section 3.6. 

 

3.2 Problem Definition 

In multi-commodity, multi-mode generalized networks with time windows 

problems, the term “multi-commodity” means either a variety of commodities or a single 

commodity with different due dates. Additionally, the term “multi-mode” represents 

various means of transportation used to deliver commodities from origins to destinations. 

At certain nodes, commodities may be transferred from one mode to another. Each mode 

has its own capacity and routing. Moreover, because commodities may be damaged 

while transporting, a generalized network formulation is selected to model losses of 

commodity flows. 

Each commodity has its time windows, (t1 - t2). Time windows, (t1 - t2), mean that a 

commodity is not allowed to deliver to its destination before t1. The latest time to deliver 
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a commodity to its destination without penalty is t2. If the time of delivering is later than 

t2, it will cause a penalty for the overdue date. The objective function is to minimize 

sums of transporting-commodity cost, holding-commodity cost, overdue-date cost, 

transferring-mode cost, transporting-vehicle cost, and holding-vehicle cost. 

 

3.3 Model Assumption and Input Data 

This model assumes that (a) holding and transporting costs for commodities are 

proportional to the amount of commodities, (b) holding and transporting costs for 

vehicles are proportional to the amount of vehicles, and (c) overdue-date penalty per 

time period is proportional to the amount of commodities. 

The following information is necessary for constructing the model: (a) 

origin-destination matrix for each commodity, (b) known number of vehicles on each 

mode at time 0, (c) loss factor for each commodity on each arc, and (d) the length of 

planning time periods. 

 

3.4 Model Formulation 

In the mathematical model formulation, assume that A and A’ are m × n matrices; X 

and Y are n × 1 matrices; and b, r, and U are m × 1 matrices. This model includes three 

decision variables. The first decision variable, mk
ttjix   
'    , denotes flow of k delivered by m 

from i to j during the [t, t’] period, where mk
ttjix   
'     ∈ X and mk

ttjix   
'     is nonnegative. The 

second decision variable, m
ttjiy   
'    , denotes flow of vehicles on m from i to j during the [t, t’] 



 

 

16
 

period, where m
ttjiy   
'     ∈ Y and m

ttjiy   
'     is a nonnegative integer. The third decision 

variable, m
ttjiu   
'    , denotes flow of unused vehicles on m from i to j during the [t, t’] period, 

where m
ttjiu   
'     ∈ U and m

ttjiu   
'     is a nonnegative integer. 

 

Notation: 

 i, j =  index of node. 

 k =  index of commodity. 

 m, m’ =  index of vehicle on mode. 

 t, t’ =  index of time period. 

 k
jiTCC  

   =  transporting cost for k on (i, j). 

 k
tODC  
  =  overdue-date cost for k at t, where t is greater than its due date. 

 k
mmTMC  

'   =  transferring-mode cost of k from m to m’. 

 k
iHCC  
  =  holding cost for k on i. 

 m
jiTVC  

   =  transporting cost for each vehicle on m on (i, j). 

 m
iHVC  
  =  holding cost for each vehicle on m on i. 

    mkV  =  vehicle capacity on m for k. 

 mW  =  weight of vehicle on m. 

 tjiAC      =  capacity of (i, j) during the [t-1, t] period. 

 m
ttjiCA  
'     =  capacity of vehicles on m for (i, j) during the [t, t’] period. 
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 m
ttjiL 
'     =  lower bound of vehicles on m for (i, j) during the [t, t’] period. 

 m
ttjiU  
'     =  upper bound of vehicles on m for (i, j) during the [t, t’] period. 

 kED  
    =  the earliest day for k being able to be delivered to its destination. 

 T  =  planning time periods. 

 

The generic model, Problem (P), is formulated as follows: 

 

Problem (P)  

Minimize 

    )(  
    

  
'    

 
 

 
'  

 
 

 
  

  
'    

∑
∈

+++
Xx

mk
ttji

k
i

k
mm

k
t

k
ji

mk
ttji

xHCCTMCODCTCC

 m
ttji

m
i

Yy

m
ji yHVCTVC

m
ttji

  
'     

 
 

    

 
    )(    

 
'    

++ ∑
∈

  (7) 

Subject to 

 b    X  A =  (8) 

 U    r    Y 'A +=   (9) 

 0      )   /   (   
'     

   
'    ≤−∑ m

ttji
k

mkmk
ttji yVx   for all m, i, j, t, t’ (10) 

 tji
m tttTt

m
ttji

m ACyW
211

21     
     ,  

  
     

           ≤∑ ∑
≤≤∈

  for all i, j, t   (11) 

 m
ttji

m
ttji CAy   

'      
  

'         ≤   for all m, i, j, t, t’   (12) 

 m
ttji

m
ttji

m
ttji UyL   

'     
  

'     
  

'             ≤≤  for all m, i, j, t, t’   (13) 
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 0     
 
   '  ,

  
'    =∑

< kEDtm

mk
ttjix   for all k, i, j, t  (14) 

   0      
'    ≥mk

ttjix   for all k, m, i, j, t, t’   (15) 

 integer and  0    ,   
'     

  
'     ≥m

ttji
m

ttji uy   for all m, i, j, t, t’   (16) 

 

Constraint (7) is the objective function. Constraint (8) and (9) are the flow 

conservation of commodities and vehicles, respectively. Constraint (10) is that required 

vehicles must be less than or equal to used vehicles on each mode, arc, and time period. 

Constraint (11) represents the congestion of vehicle flows, which means vehicles on all 

modes must be less than or equal to the arc capacity for each time period, where t2 = t1 + 

tij and tij is the traveling time from i to j. Constraint (12) is the capacity of vehicles on 

each mode, arc, and time period. Constraint (13) is the lower and upper bound of 

vehicles on each mode, arc, and time period. Constraint (14) is the earliest time for each 

commodity being able to be delivered to its destination. Constraint (15) is the 

nonnegative flow of each commodity transported by vehicles on each mode, arc, and 

time period. Constraint (16) is the nonnegative and integral flows of vehicles and unused 

vehicles on each mode, arc, and time period. 

 

3.5 Solution Procedures of HA 

Before applying Lagrangian relaxations, the original physical network needs to be 

transformed into the transformed network. Problem (P) is formulated according to the 

transformed time-space network. Constraint (10) of Problem (P) in Phase 1 is relaxed 
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by Lagrangian relaxations and the new problem becomes the Lagrangian Dual (LD) 

problem. The LD problem is separated into two subproblems. One subproblem consists 

of variables of commodities and related constraints; the other includes variables of 

vehicles and related constraints. The former is a multi-commodity generalized flow 

problem, which is a linear programming problem. Therefore, it can easily be solved by 

the simplex method. Then, values of commodities in Problem (P) are substituted by 

those of commodities from the simplex method. After solving Problem (P), whether or 

not the upper bound needs to be updated is checked. The latter is a multi-vehicle integer 

problem and can be solved by the Mixed Integer Problem (MIP) module in the CPLEX 

software. Similar to the former, values of vehicles in Problem (P) are substituted by 

those of vehicles from the Mixed Integer Problem module. After solving Problem (P), 

whether or not the upper bound needs to be updated is checked. 

If the sum of objective values of two subproblems is greater than the lower bound, 

the new lower bound is set as the sum. It checks the stop criteria, GAP1 = (LB – UB) / 

LB ≤ threshold 1 (ε1). If it satisfies the stop criteria, the procedure is terminated. 

Otherwise, the number of iterations is checked. 

If it is less than max iterations, the step size, λ, needs to be updated and µ needs to 

be recomputed by the new value of λ. Moreover, σ is divided by a factor of 2 if the lower 

bound does not improve in five consecutive iterations. The number of iterations is to 

increase one. After updating λ and µ, a new LD problem is formulated and the above 

procedures are repeated. Otherwise, if GAP1 > threshold 2 (ε2), then enter Phase 2. 

Otherwise, the procedure is terminated. Here, ε1 is less than ε2. 
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Two heuristic methods in Phase 2 are proposed to search for improved feasible 

solutions of upper bounds. The concept of Phase 2 is to decompose a multi-commodity, 

multi-mode problem into multiple single-commodity, single-mode subproblems. 

Problem (P) is a cost minimization problem and its objective function is related to 

transportation, holding, and overdue-date costs. Therefore, one method is based on early 

due date (EDD) with overdue-date costs to sort commodities. The other is based on total 

transportation costs to sort commodities by high costs first. Hence, two methods provide 

two sorting sequences. 

According to each sorting sequence, the first commodity is assigned to the cheapest 

available mode and this subproblem is solved by the CPLEX software. After solving a 

single-commodity, single-mode problem, remaining vehicles on each arc are calculated. 

The second commodity is assigned to the cheapest available mode and the above 

procedures are repeated until all remaining commodities are assigned. The reason for 

computing remaining resources is to avoid over-the-limit of vehicles on any arc and to 

guarantee obtaining a feasible solution.  

From each single-commodity, single-mode problem, optimal values of commodities 

are obtained and substituted into Problem (P). Due to two methods, two optimal 

solutions of Problem (P) are found. If the minimum of two optimal solutions is less than 

the upper bound, it is set as the new upper bound and the procedure is terminated. 

Otherwise, there is no improvement on the upper bound in Phase 2 and the procedure is 

also terminated. Fig. 4 is the flowchart of HA. 
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No improvement
in UB

Reach max
 iterations?

(UB - LB)/LB > ε1?

Start

Formulate the Lagrangian Dual (LD) problem,
and initilize values of parameters

Solve two subproblems and update LB
and UB if necessary

Yes

Update  λ and µ,
and update σ if

necessary

No

Stop

Yes

No

Set iteration =
iteration +1

(UB - LB)/LB > ε2?

Yes

No

Apply two methods to sort commodities

Solve each subproblem by each sorting order and
calculate  remaining resources and repeat this procedure

until all subproblms are solved

Substitute all values of commodities from each
subproblem into  Problem (P)

z* < UB?

Yes
Set UB = z*

Obtain two optimal solutions of  Problem (P) from two
methods; z* is the minimum of two optimal solutions

Obtain an approximate
optimal solution

No

 

Fig. 4. Flowchart of HA. 
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3.6 Summary 

    This chapter contains the scope of problems, assumptions, and formulations. It also 

proposes a solution approach and its flowchart figure helps understand fundamental 

procedures. The solution approach in Phase 1 can provide lower and upper bounds. In 

addition, if the lower bound is a feasible solution of Problem (P), it must be an optimal 

solution of Problem (P). Moreover, the upper bound must be a feasible solution if it 

exists.  

Phase 2 provides two opportunities to improve the upper bound in order to enhance 

the quality of the solution of HA. Detailed solution procedures are described in Chapter 

IV. An example for executing an iteration of Phase 1 and 2 of HA is also shown in 

Chapter IV. 
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CHAPTER IV 

DEVELOPMENT OF SOLUTION PROCEDURES OF HA 

4.1 Introduction 

    The purpose of this chapter is to develop a heuristic algorithm, HA, to solve 

multi-commodity, multi-mode generalized networks with time windows problems. HA is 

a two-phase procedure. Phase 1 is based on Lagrangian relaxations with subgradient 

methods and provides lower and upper bounds for Problem (P). The upper bound is also 

a feasible solution for Problem (P). There is a threshold (ε2) between Phase 1 and 2. If 

GAP1 > ε2, then it enters Phase 2. Otherwise, the procedure is terminated. Two heuristic 

methods, early due date with overdue-date costs and total transportation costs, are used 

to search for improved upper bounds. Fig. 5 is the conceptual flowchart of HA.  

 

 

Fig. 5. Conceptual flowchart of HA. 

Phase 2: Improve the upper 
bounds found in Phase 1 

GAP1 > ε2 ? 

Yes 

No

Phase 1: Find upper and lower 
bounds for Problem (P) 

Obtain an approximate  
optimal solution 

Stop 
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There are two network applications for HA in this research. One is a 1-origin, 

2-destination, and 3-mode network seen in Fig. 6; the other is a 2-origin, 3-destination, 

and 4-mode network shown in Fig. 7. 

 

 

Fig. 6. 1-origin, 2-destination, and 3-mode network. 

 

 

Fig. 7. 2-origin, 3-destination, and 4-mode network. 
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4.2 Procedures of HA 

Problem (P) is reformulated in Phase 1 into the Lagrangian Dual (LD) problem. 

The LD problem can be separated into two subproblems. The first subproblem contains 

variables of commodities and related constraints of commodities. Since variables of 

commodities are nonnegative, this subproblem is a linear programming problem, which 

can easily be solved by the simplex method. The second subproblem includes variables 

of vehicles and related constraints of vehicles. Since variables of vehicles are required to 

be integers, this subproblem is an integer problem, which can be solved by the Mixed 

Integer Problem module (MIP) in the CPLEX software. Detailed procedures of HA are 

as follows: 

 

  Phase 1 

 Step 1. Set initial values of s, µs, UB, LB, α, ε1, ε2, and σ, where s means the 

number of iteration, µs is a Lagrangian multiple, UB and LB are the 

current upper and lower bound, α is the max iteration, ε1 and ε2 are the 

given thresholds, and σ is a scale and 0 < σ < 2. 

 Step 2. Relax Constraint (10) in Problem (P), multiply by µs, and add this item 

to the objective function. It becomes the LD problem. 

 Step 3. Separate the LD problem into two subproblems. The first subproblem 

contains variables of commodities and related constraints of commodities, 

including Constraints (8), (14), and (15). The second subproblem 

includes variables of vehicles and related constraints of vehicles, 
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including Constraints (9), (11), (12), (13), and (16). 

 Step 4. Add a new constraint, (17), to the first subproblem and solve it by the 

simplex method in CPLEX. 

 Step 5. Solve Problem (P) with fixed values of commodities obtained from Step 

4. If it is optimal and less than UB, set it as a new UB. 

 Step 6. Add two new constraints, (18) and (19), to the second subproblem and 

solve it by the Mixed Integer Problem module (MIP) in CPLEX. 

 Step 7. Solve Problem (P) with fixed values of vehicles obtained from Step 6. If 

it is optimal and less than UB, set it as a new UB. 

 Step 8. Sum up optimal solutions from Step 4 and Step 6. If the sum is greater 

than LB, set it as a new LB. 

 Step 9. Check stop criteria. If (UB − LB) / LB ≤ ε1 for a small ε1 > 0, an 

approximate optimal solution is found and the procedure is terminated. 

Otherwise, go to Step 10. 

 Step 10. If s < max iterations (α), then calculate λs, update µs+1 by µs+1 = max (0, 

µs + λs), and set s = s + 1. Here, λs is the step size in Proposition 2.  Go 

to Step 11. Otherwise, go to Step 12. 

 Step 11. If LB is not improved in five consecutive iterations, let σ = σ/2 and go 

back to Step 2. Otherwise, directly go back to Step 2. 

 Step 12. If (UB − LB) / LB ≤ ε2, the current upper bound is an approximate 

optimal solution. Otherwise, go to Phase 2. Fig. 8 is the flowchart of 

Phase 1. 
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9. (UB - LB)/LB < ε1?

Transformed time-space network

2. Use Lagrangian relaxations to relax Constraint (10)
 in Problem (P), multiply by µs,  and add this item to

objective function to be  the new LD problem

 3. Separate the LD problem into two subproblems

8. Sum up objective values of two subproblems
and set it as a new LB if the sum > LB

Yes

No

4. Use simplex method
in the CPLEX software
to solve subproblem 1

6. Use MIP module in
the CPLEX software
to solve subproblem 2

5. Solve P with fixed
variables of commodities
and set it  as a new UB if
the optimal solution < UB

7. Solve P with fixed
variables of vehicles and
set it  as a new UB if the
optimal solution < UB

Enter Phase 2
Yes

No

10. Calculate λs, update
µs+1 , and set s = s +1

12. (UB - LB)/LB > ε2?

10. Reach max
 iteration?

Yes

No

1. Set initial values of  s, µs, UB, LB, α, ε1, ε2, and σ

 12. Obtain an
approximate

optimal solution

11. Not improved in LB
 in 5 consecutive iterations?

11. Set σ = σ/2

No

Yes

 
 

Fig. 8. Flowchart of Phase 1. 
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Phase 2 proposes two methods to sort commodities and to dispatch each commodity 

to the cheapest available mode. The basic concept of Phase 2 is to decompose a 

multi-commodity, multi-mode problem into multiple single-commodity, single-mode 

subproblems. Vehicles are viewed as resources in the model. According to two methods 

to sort commodities, it obtains two sequences. For each sequence, the first-order 

commodity is assigned to the cheapest available mode. Then, each subproblem is solved 

by the CPLEX software and remaining resources on all arcs are computed. The 

second-order commodity is assigned to the cheapest available mode and the above 

procedures are repeated until there is no commodity left. 

After all subproblems of each method are solved, values of commodities in 

Problem (P) are substituted by values of commodities obtained from all subproblems of 

each method. Two problems, P, are solved. If the minimum, z*, of two problems, P, is 

less than UB, then a new UB is set to z*. Hence, UB is improved and GAP1 is reduced. 

The reason for decomposing a multi-commodity, multi-mode problem into multiple 

single-commodity, single-mode subproblems is that it is easier to solve each subproblem 

than the original problem. In addition, if a subproblem is feasible, it is guaranteed to 

have an optimal solution. Two methods can provide two opportunities to improve GAP1. 

If vehicles are viewed as resources, multiple single-commodity, single-mode 

problems are similar to multi-job, multi-machine scheduling problems. In order to search 

for a feasible and near-optimal solution, early due date and total transportation costs are 

applied according to dispatching rules. They are used to sort commodities and to assign 

each commodity to the cheapest available mode. Since the objective function of 
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Problem (P) includes transportation, holding, and overdue-date costs related to 

commodities, the early due date (EDD) rule focuses on reducing overdue-date costs. If 

due dates of commodities are tied, the sequence order is sorted by high overdue-date 

costs first. The total transportation costs (TTC) rule consists of transportation costs of 

commodities and transportation costs of vehicles divided by the number of commodities 

transported by vehicles. If total transportation costs are tied, the sequence order is sorted 

arbitrarily to break a tie. Fig. 9 is the flowchart of Phase 2. 

 

Phase 2 

 Step 1.1 Apply the early due date rule to sort commodities into {1, … , k}. If due 

dates of commodities are tied, choose the commodity with the highest 

overdue-date cost to break it. 

 Step 1.2 Set j = 1. 

 Step 1.3 Assign commodity j to the cheapest available mode and solve this 

subproblem j to obtain optimal values of commodities, xj
*. 

 Step 1.4 Calculate remaining arc resources of all arcs of vehicles on all modes. 

Step 2 If j = k, then go to Step 3. Otherwise, set j = j +1. Go back to Step 1.3. 

 Step 3 Substitute values of commodities from all subproblems in Step 1.3 into 

Problem (P). 

 Step 4 Solve Problem (P) in Step 3 and obtain an optimal solution, z1
*. 

 Step 5.1 Apply the total transportation costs rule to sort commodities into {1, … , 

k}. If tie, break it arbitrarily. 
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* )
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*
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Fig. 9. Flowchart of Phase 2. 
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 Step 5.2 Set l = 1. 

 Step 5.3 Assign commodity l to the cheapest available mode and solve this 

subproblem l to obtain optimal values of commodities, xl
*. 

 Step 5.4 Calculate remaining resources of all arcs of vehicles on all modes. 

 Step 6 If l = k, then go to Step 7. Otherwise, set l = l +1. Go to Step 5.3. 

 Step 7 Substitute values of commodities from all subproblems in Step 5.3 into 

Problem (P). 

 Step 8 Solve Problem (P) in Step 7 and obtain an optimal solution, z2
*. 

 Step 9 Set z* = min (z1
*, z2

*). 

 Step 10 If z* < UB, then go to Step 11. Otherwise, there is no improved solution 

found for the current upper bound and the procedure is terminated. 

 Step 11 Set a new UB = z* and the procedure is terminated. 

 

4.3 Example of HA 

    Fig. 6 is used as the original network to execute one iteration of HA. Before 

applying HA, this network needs to be changed into two transformed networks, Fig. 10 

and 11. Fig. 10 is the transformed network for commodities and Fig. 11 is the 

transformed network for vehicles. This example includes 5 commodities and 3 modes. 

After the transformation, origin nodes are A1, A2, and A3 and destination nodes are H1, 

H2, and K. The planning time periods are 20 periods. Appendix A1 and A2 are the 

transformed networks of Fig 7. for commodities and vehicles. 
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Fig. 10. Transformed network of Fig. 6 for commodities. 

 

 

Fig. 11. Transformed network of Fig. 6 for vehicles. 
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4.3.1 Example of Phase 1 

Initially, LB is set as -1.0e+018, UB as 1.0e+012, µ0 as 0, α as 200, s as 1, ε1 as 

0.0001, ε2 as 0.1, and σ as 1 in Step 1 of Phase 1. After Step 2 and Step 3, the LD 

problem is separated into two subproblems. Step 4 adds a new constraint, (17). 

Constraint (17) represents the minimum between capacities and upper bounds of 

commodities on each mode, arc, and time period. It ascribes from Constraints (10), (12), 

and (13). The purpose of adding Constraint (17) is to reduce the feasible region and to 

shorten solving times. Then, the new problem is solved by the CPLEX software. The 

optimal solution is round to 1,527,031. Since, Step 5 obtains an infeasible solution, UB 

is not updated. 

 )  , ( min      )   /   (   
'      

  
'      

   
'    

m
ttji

m
ttji

k

mkmk
ttji UCAVx ≤∑   for all m, i, j, t, t’   (17) 

Two new constraints, (18) and (19), are added in Step 6. Constraint (18) is desired 

for vehicles for demands and Constraint (19) is the restriction of vehicles for delivery 

dates. Both constraints help reduce the feasible region. An optimal integer solution is 

415,080. Step 7 obtains an infeasible solution. The sum in Step 8 is 1,942,111, which is 

greater than the lower bound. Thus, a new lower bound is set as 1,942,111. (UB − LB) / 

LB = (1e+12 − 1,942,111) / 1,942,111 = 514,903 > 0.0001 = ε1 in Step 9. Thus, go to 

Step 10. Since s = 1 < 200 in Step 10, values of λ1 are needed to be calculated. The step 

size, λ1, is (1e+12 − 1,942,111) / 38,846 = 25,742,626, where 
2 ˆ kg  is 38,846. Then, 

1 
'    ttjiµ  is updated as max (0, 0 

'    ttjiµ  + 25,742,626) for all i, j, t, t’. Then, s is set as 2. It 
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has found a new LB in this iteration and the procedure goes back to Step 2. An iteration 

of Phase 1 is finished. Here, DEk is the demand of k. 

   *    

'

 
'    

kmk

t,t

m
ttji DEVy ≥∑   for j in destination set  (18) 

    0    
    =m
Ttjiy   for all m, i, j, t < EDk   (19) 

 

4.3.2 Example of Phase 2 

    After 200 iterations of Phase 1, LB is 1,942,111 and UB is 2,237,394. GAP1 = (UB 

− LB) / LB = 0.1520 > 0.1 = ε2. Therefore, the procedure is needed to enter Phase 2. The 

EDD rule in Step 1.1 is applied to sort 5 commodities. The sequence is 2 → 4 → 1 → 3 

→ 5. Commodity 2 is assigned to mode 2 in Step 1.3. Commodity 4 is assigned to mode 

3. Commodity 1 is assigned to mode 1. Commodity 3 is assigned to mode 3. Commodity 

5 is assigned to mode 3. Therefore, z1
* = 2,154,408 in Step 4.  

Similarly, from Step 5.1 to Step 5.4, the sequence by the TTC rule is 2 → 3 → 1 → 

5 → 4. Commodity 2 is assigned to mode 2. Commodity 3 is assigned to mode 3. 

Commodity 1 is assigned to mode 1. Commodity 5 is assigned to mode 3. Commodity 4 

is assigned to mode 3. Hence, z2
* = 2,154,408 in Step 8. z* = min (z1

*, z2
*) = 2,154,408 in 

Step 9. Since z* = 2,154,408 < 2,237,394 in Step 10, the procedure goes to Step 11. A 

new UB is set as 2,154,408 in Step 11 and the procedure is terminated. Hence, Phase 2 

indeed obtains an improved upper bound. 
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4.4 Computational Complexity of HA 

Since the multi-commodity, multi-mode networks with a time windows problem is 

a mixed integer problem, it is NP-complete. The computational complexity of HA can 

be separated by two phases. Two subproblems and two problems, P, with fixed values 

need to be solved in Phase 1. The first subproblem is related to commodities and the 

second subproblem is related to vehicles. The former is a multi-commodity generalized 

flow problem and can be solved in polynomial times. The latter is a multi-mode integer 

flow and NP-complete problem. Problem (P) with fixed commodity values is a 

multi-mode integer problem, which is a NP-complete problem. Problem (P) with fixed 

vehicle values is a multi-commodity generalized problem, which can be solved in 

polynomial times. Operations for calculating values of λ and updating values of µ can be 

done in polynomial times. 

Multiple single-commodity, single-mode subproblems in Phase 2 need to be solved. 

Each subproblem can be solved in polynomial times. Although the complexity of HA is 

still NP-complete, total running times of HA are very stable under the same scenario and 

are quicker than those of solving Problem (P) directly by the CPLEX in the worst case. 

Detailed total running times of different scenarios are summarized in Chapter V. 

 

4.5 Summary 

In general, the traditional Lagrangian relaxations with subgradient methods only 

provide lower bounds for Problem (P). There is no way to know how tight lower bounds 

are unless an optimal solution of Problem (P) is obtained. Nevertheless, Phase 1 of HA 
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provides both lower and upper bounds for Problem (P). If GAP1 is too large, there are 

two methods in Phase 2 applied to improve the upper bound. If an improved upper 

bound is found, GAP1 will be reduced. In other words, it implies that the quality of the 

solution provided by HA is enhanced. 
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CHAPTER V 

COMPUTATIONS AND ANALYSES IN HA 

5.1 Introduction 

    The computer used in this research is a computer with Pentium 4 CPU 3.2 GHz 512 

MB of RAM. HA is written by the AMPL 9.0 scripts and its solver is the CPLEX 9.0 

software. Two network applications, Fig. 6 and 7, are used for generating different 

scenarios. The number of commodities and the length of planning time periods are the 

given parameters. Results include values of lower and upper bounds, total solving times, 

and total running times. Here, total solving times consist of solving time by the “solve” 

command in the AMPL codes. Total running times include input/output times, operation 

times for calculating values of λ and updating values of µ, and solving times by the 

CPLEX solver. 

 

5.2 Results of Phase 1 

For the network application of Fig. 6, it runs the 5-, 10-, and 15-commodity for 10- 

and 20-planning-time-period scenarios. Max iterations are set as 200 iterations for all 

runs. After Phase 1, results of solutions in 5-commodity, 10- and 

20-planning-time-period scenarios are summarized in Table 3 and 4, respectively. Values 

of lower and upper bounds are rounded to integers. The other scenarios are summarized 

in Appendix B1 and B2.  
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Table 3 
5-commodity, 10-planning-time-period scenario in Phase 1 

Seed LB UB GAP1 Total solving 
times (seconds) 

Total running 
times (seconds)

1 1,285,612 1,296,482 0.0085 71.14 274.50 
2 1,009,004 1,016,305 0.0072 70.05 272.86 
3 1,164,821 1,173,927 0.0078 72.08 277.28 
4 1,047,729 1,064,333 0.0158 73.09 273.17 
5 852,385 856,779 0.0052 73.42 277.09 
6 1,213,930 1,217,122 0.0026 71.69 274.03 
7 1,087,437 1,235,441 0.1361 70.34 284.31 
8 1,137,633 1,145,321 0.0068 71.70 274.80 
9 1,002,444 1,008,527 0.0061 72.13 279.53 
10 1,033,500 1,040,782 0.0070 74.30 268.75 
  Average 0.0203 71.99 275.63 
  Variances 0.0017 1.7775 17.8950 

 

Table 4 
5-commodity, 20-planning-time-period scenario in Phase 1 

Seed LB UB GAP1 Total solving 
times (seconds) 

Total running 
times (seconds)

1 1,990,812 2,039,472 0.0244 90.89 433.91 
2 1,457,712 1,470,399 0.0087 91.34 467.70 
3 1,752,458 1,766,059 0.0078 89.31 490.30 
4 1,582,588 1,591,935 0.0059 93.17 436.63 
5 1,437,083 1,449,538 0.0087 89.06 452.17 
6 1,942,111 2,237,394 0.1520 89.20 452.14 
7 1,222,970 1,549,062 0.2666 96.06 530.31 
8 1,726,965 1,915,282 0.1090 100.83 506.38 
9 1,745,483 1,762,788 0.0099 136.09 444.08 
10 1,679,690 1,990,176 0.1848 90.14 497.61 
  Average 0.0778 96.61 471.12 
  Variances 0.0090 206.2508 1,094.7845 

 

GAP1 of seed 7 in Table 3 and seeds 6, 7, 8, and 10 in Table 4 are over the threshold 

of ε2 = 0.1. These runs are needed to enter Phase 2. GAP1 of other runs are within the 

threshold of ε2 = 0.1 and procedures are terminated. Total running times of 5-, 10-, and 

15-commodity, 10-planning-time-period scenarios are shown in Fig. 12. It shows two 



 

 

39
 

observations where the more the number of commodities, the more total running times it 

takes and variances of total running times of 15-commodity scenarios are larger than 

those of total running times of 5- and 10-commodity scenarios. Fig. 13 displays that total 

running times of 5-, 10-, and 15-commodity, 20-planning-time-period scenarios. It has 

similar observations to total running times of 5-, 10-, and 15-commodity, 

10-planning-time-period scenarios. 
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Fig. 12. Total running times of 5-, 10-, and 15-commodity, 10-planning-time-period scenarios. 
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Fig. 13. Total running times of 5-, 10-, and 15-commodity, 20-planning-time-period scenarios. 
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Fig. 14. Total running times of 6-commodity, 10-, 20-, and 30-planning-time-period scenarios. 

 

Fig. 14 and 15 are network applications of Fig. 7. Fig. 14 compares total running 

times of 6-commodity, 10-, 20-, and 30-planning-time-period scenarios. Fig. 15 
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compares total running times of 12-commodity, 10-, 20-, and 30-planning-time-period 

scenarios. Fig. 14 and 15 display that when the length of planning time periods increases, 

total running times also increase. 
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Fig. 15. Total running times of 12-commodity, 10-, 20-, and 30-planning-time-period scenarios. 

 

5.3 Results of Phase 2 

The network application of Fig. 6 has 9 runs are needed to enter Phase 2 of HA. 

Similarly, the network application of Fig. 7 has 12 runs are needed to enter Phase 2. 

Results of Phase 2 are summarized in Table 5 and 6. After Phase 2, only one upper 

bound of these runs is not improved. Furthermore, GAP1 of all runs of 5-, 10-, and 

15-commodity scenarios are between [0.0019, 0.1393] and the average GAP1 is 0.0190. 

Similarly, GAP1 of all runs of 6- and 12-commodity scenarios are between [0.0007, 

0.3330] and the average GAP1 is 0.0288. 
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Table 5 
GAP1 in Phase 2 for the network applications of Fig. 6 
Commodity_ 
Period_Seed 

EDD with 
overdue-date cost

Total 
transportation cost New UB New GAP1

5_10_7 1,264,878 1,264,878 Not found − 
5_20_6 2,154,408 2,154,408 2,154,408 0.1093 
5_20_7 1,686,934 1,314,821 1,314,821 0.0751 
5_20_8 2,084,387 1,813,131 1,813,131 0.0499 
5_20_10 1,704,900 1,704,900 1,704,900 0.0150 
15_10_4 2,905,414 2,916,061 2,905,414 0.0338 
15_10_6 3,582,038 3,588,967 3,582,038 0.0201 
15_20_3 4,704,616 4,419,479 4,419,479 0.0685 
15_20_6 5,387,581 4,990,029 4,990,029 0.1393 

 

Table 6 
GAP1 in Phase 2 for the network applications of Fig. 7 
Commodity_ 
Period_Seed 

EDD with 
overdue-date cost

Total 
transportation cost New UB New GAP1

6_10_7 1,170,022 1,170,022 1,170,022 0.0151  
6_20_8 1,771,750 1,771,750 1,771,750 0.0172  
6_30_9 4,828,038 4,683,088 4,683,088 0.1213  
12_10_1 2,358,806 2,358,806 2,358,806 0.2759  
12_10_4 3,771,023 3,820,354 3,771,023 0.3330  
12_10_9 2,223,956 2,240,105 2,223,956 0.2018  
12_20_1 3,143,917 3,143,917 3,143,917 0.0181  
12_20_7 3,101,188 3,100,805 3,100,805 0.0248  
12_20_10 3,149,989 3,149,989 3,149,989 0.0048  
12_30_2 7,773,376 7,721,244 7,721,244 0.0051  
12_30_4 9,173,844 9,445,223 9,173,844 0.0953  
12_30_10 7,628,901 7,630,530 7,628,901 0.0389  

 

GAP1 of 5-, 10-, and 15-commodity scenarios for network applications of Fig. 6 are 

displayed in Fig. 16(a), (b), and (c), respectively. Fig. 16 (a) GAP1 of all runs are within 

0.04 except 4 runs. Fig. 16 (b) has 1 run with larger GAP1 than other runs. Fig. 16 (c) has 

2 runs with larger GAP1 than other runs. Similarly, GAP1 of 6- and 12-commodity 

scenarios for network applications of Fig. 7 are displayed in Fig. 17 (a) and (b). Fig. 17 

(a) has 2 runs with larger GAP1 than other runs. Fig. 17 (b) has 4 runs with larger GAP1 
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than other runs. Therefore, there are 12 runs needed to advance analyses in the later 

section. 
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Fig. 16. (a) GAP1 of 5-commodity, 10- and 20-planning-time-period scenarios. (b) GAP1 of 10-commodity, 

10- and 20-planning-time-period scenarios. (c) GAP1 of 15-commodity, 10- and 20-planning-time-period 

scenarios. 
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Fig. 17. (a) GAP1 of 6-commodity, 10-, 20-, and 30-planning-time-period scenarios. (b) GAP1 of 

12-commodity, 10-, 20-, and 30-planning-time-period scenarios. 

 

5.4 Analyses and Conclusions of HA 

After Phase 2, 12 runs with larger GAP1 are needed to calculate their optimal 

solutions. 12 original problems, Problem (P), are solved by the CPLEX software for 

comparison with HA. In the CPLEX software, it defines that optimal solutions are 

satisfied with either of three situations. The first condition is that value of absmipgap is 0. 

The second condition is that the value of mipgap is 0.0001. The third condition is that 

the value of timelimit is 1.0e+75 seconds.  Absmipgap means the absolute value 

between best integer solution and best node solution found. Mipgap represents that |best 

node solution found − best integer solution| / (1.0 + |best node solution found|). 

Timelimit means the limit of total running times. If timelimit is too large, it will cost a 

lot of memory space and may cause the termination of a program because of running out 

of memory. Thus, the default value of timelimit in this research is 14,400 seconds. After 

the optimal solution is obtained, it can compare lower and upper bounds of HA with an 
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optimal solution. 

There are two definitions given for analyzing relationships among the lower bound, 

upper bound, and optimal solution. GAP2 is defined as |UB − Optimal solution| / 

(Optimal solution) and the definition of GAP3 is (Optimal solution − LB) / (Optimal 

solution).  

 

Table 7 
GAP2 and GAP3 of 12 runs with larger GAP1 after Phase 2 
Commodity_ 
Period_Seed LB new UB OP GAP2 GAP3 

5_10_7 1,087,437 1,235,441 1,219,893 0.0127 0.1086 
5_20_6 1,942,111 2,154,408 2,019,508 0.0668 0.0383 
5_20_7 1,222,970 1,314,821 1,313,273 0.0012 0.0688 
5_20_8 1,726,965 1,813,131 1,768,013 0.0255 0.0232 
15_20_3 4,136,007 4,419,479 4,391,821 0.0063 0.0582 
15_20_6 4,379,719 4,990,029 4,685,205 0.0651 0.0652 
6_30_8 4,892,077 5,369,557 4,965,393 0.0814 0.0148 
6_30_9 4,176,342 4,683,088 4,514,575 0.0373 0.0749 

12_10_1 1,848,676 2,358,806 2,145,408 0.0995 0.1383 
12_10_4 2,828,994 3,771,023 3,476,939 0.0846 0.1864 
12_10_9 1,850,534 2,223,956 2,030,451 0.0953 0.0886 
12_30_4 8,375,532 9,173,844 8,504,906 0.0787 0.0152 

 

GAP2 and GAP3 of these 12 runs are shown in Table 7. The only run, which can not 

find an improved solution in Phase 2, is the 7th run of the 5-commodity, 

10-planning-time-period scenario. GAP2 of this run is 0.0127. It means the gap between 

the upper bound and optimal solution is small. Therefore, it makes sense that there is no 

improvement on the upper bound found in Phase 2. Values of GAP2 in Table 7 are 

between [0.0012, 0.0995]. Therefore, the maximal upper bound in both network 
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applications by HA is within 9.95% ranges of optimal solutions. Since threshold 2 is 0.1 

for both applications, it means that GAP2 of other runs are within 10% ranges of their 

optimal solutions. Hence, HA for both network applications indeed provides good upper 

bounds, which are close to 10% ranges of optimal solutions. Similarly, Values of GAP3 

are between [0.0148, 0.1864]. Since threshold 2 is 0.1 for both network applications, it 

means that GAP3 of other runs must be within 10% ranges of their optimal solutions. 

Hence, lower bounds provided by HA for both network applications are close to 20% 

ranges of their optimal solutions.  

 

Table 8 
Total solving times (seconds) of Problem (P) in the network application of Fig. 6 

Run 5_c_10_p 5_c_20_p 10_c_10_p 10_c_20_p 15_c_10_p 15_c_20_p
Seed 1 2.02 0.25 0.64 6,311.91 51.03 48.52  
Seed 2 0.13 0.88 0.23 1.39 0.27 8.80  
Seed 3 0.13 0.72 0.17 0.91 1.81 0.86  
Seed 4 0.44 0.91 4,205.47 2.05 0.36 3.89  
Seed 5 0.14 0.47 0.17 1.78 8,632.58 7,406.11 
Seed 6 5.41 0.31 0.2 2.23 0.66 1.91  
Seed 7 0.14 0.39 370.99 14,400.02 0.28 1.06  
Seed 8 0.11 0.8 0.16 1.44 0.45 47.50  
Seed 9 0.13 0.66 0.3 1.73 0.64 3.81  

Seed 10 0.14 1.19 0.16 13,544.91 0.27 8.08  
Average 0.88  0.66  457.85 3,426.84 868.84  753.05 

Std. 1.70  0.30  1,321.92 5,899.47 2,727.95  2,337.72 
 

Results for total solving times for optimal solutions are recorded in Table 8 and 9. 

The worst case of total solving times is over the limit, 14,400 seconds. This means that 

even through 14,400 seconds, some cases still can not find the optimal solution to meet 
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the stop criteria. It is shown that standard deviations of total solving times in Table 8 and 

9 are large, except three of 5-commodity, 10-planning-time-period, 5-commodity, 

20-planning-time-period, and 6-commodity, 10-planning-time-period scenarios. 

 

Table 9 
Total solving times (seconds) of Problem (P) in the network application of Fig. 7 

Run 6_c_10_p 6_c_20_p 6_c_30_p 12_c_10_p 12_c_20_p 12_c_30_p
Seed 1 0.13  1.02  67.22  0.25  22.27  11.94  
Seed 2 0.11  14,400.20 4,856.20 12.75  14,400.13  5,342.00 
Seed 3 2.19  9.39  2.22  0.84  7,627.00  6,739.69 
Seed 4 0.11  10.53  1.55  0.14  2.30  2.70  
Seed 5 5.92  5,744.67 13.61  5.08  14,400.16  22.88  
Seed 6 9.92  4.17  2.70  0.56  22.86  7.78  
Seed 7 0.67  4,631.50 0.59  0.23  1,878.08  13,022.52 
Seed 8 0.17  2.22  14,400.02 14,400.05 4.17  4.25  
Seed 9 0.13  9,945.49 0.36  1.03  43.33  6,249.31 
Seed 10 1.20  1,999.06 14,400.01 1.09  5.55  5.16  
Average 2.06  3,674.83 3,374.45 1,442.20 3,840.59  3,140.82 

Std. 3.30  5,051.77 6,004.07 4,552.93 6,045.46  4,520.98 
 

5.5 Scale Size of the Problem 

    Fig. 10 is a graph of 17 nodes, including 3 origin nodes, 1 transshipment node, and 

3 destinations. Under the 512 MB RAM and 1,455 MB virtual memory, the maximal 

scale size for the network application of Fig. 6 is either a 15-commodity, 3-mode, and 

100-planning-time-period or 50-commodity, 3-mode, and 20-planning-time-period 

scenario. Appendix A1 is a graph of 21 nodes, including 4 origin nodes, 2 transshipment 

nodes, and 4 destinations. Under the 512 MB RAM and 1,455 MB virtual memory, the 

maximal scale size for the network application of Fig. 7 is either a 12-commodity, 
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4-mode, and 100-planning-time-period or 50-commodity, 4-mode, and 

30-planning-time-period scenario. 

 

5.6 Summary 

    After implementing HA, results of lower and upper bounds are recorded and 

analyzed. It demonstrates that HA can provide tight upper bounds for all runs in both 

network applications. If optimal solutions are known, upper bounds are close to 10% 

ranges of optimal solutions for all scenarios. If optimal solutions are unknown, the 

average gap between lower and upper bounds is 0.0239. Minimal and maximal gaps are 

[0.0007, 0.3330]. 

Procedures in Phase 2 can improve upper bounds except one run. Total running 

times of HA increase either when the number of commodities increases or when the 

length of planning time periods increases. Moreover, standard deviations of total solving 

times by solving Problem (P) directly in most scenarios are very large. Total solving 

times of solving Problem (P) directly in some runs are larger than the average total 

running times of HA. Therefore, applying HA not only provides good lower and upper 

bounds, but also prevents unpredicted total solving times of solving Problem (P) 

directly. 
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CHAPTER VI 

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

6.1 Summary 

    This research focuses on multi-commodity, multi-mode generalized networks with 

time windows problems. These problems are complex mixed integral and NP-complete 

problems. Moreover, the traditional Lagrangian relaxations only provide the lower 

bound of the original minimal problem and this bound is usually infeasible, except when 

it is an optimal solution. Therefore, this research is to develop a heuristic algorithm, HA, 

to solve these problems. 

    Phase 1 of HA is based on applying Lagrangian relaxations to find lower bounds. 

According to lower bounds, it obtains upper bounds for feasible solutions. Hence, it not 

only can provide lower and upper bounds for the original problem, but also can give a 

useful feasible solution for references. After Phase 1, if the gap between lower and upper 

bounds is too large, procedures are needed to enter Phase 2. Phase 2 provides 

opportunities to improve upper bounds by two methods. One method is based on early 

due date with overdue-date costs; the other is based on total transportation costs. Chapter 

IV describes detailed procedures of two phases of HA and draws flowcharts of 

procedures to help understand overall concepts of HA. 

    Two network applications, Fig. 6 and 7, are used to test HA in this research. One is 

a 1-origin, 2-destination, and 3-mode network; the other is a 2-origin, 3-destination, and 

4-mode network. The programs are written by the AMPL 9.0 scripts. It can generate 
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different random variables for needed parameters based on various random seeds. Each 

scenario has 10 runs and data are recorded in the AMPL output files. It tests different 

numbers of commodities and various lengths of planning time periods and summarizes 

results in Chapter V.  

    The programs used in this research are executed on a computer with Pentium 4 

CPU 3.2 GHz 512 MB of RAM. The software used includes the AMPL 9.0 and CPLEX 

9.0. For comparison purposes, Problem (P) is also solved directly by the CPLEX 

software. It provides an optimal solution for some specific runs to calculate the gap 

between the lower bound and optimal solution and the gap between the upper bound and 

optimal solution. Moreover, it also provides total solving times of solving Problem (P) 

directly. Thus, total running times of implementing HA can be compared with total 

solving times of solving Problem (P) directly. It shows that HA can provide a good 

feasible solution within reasonable ranges of optimal solutions under reasonable running 

times. Chapter VI gives conclusions, points out contributions, and recommends future 

research and applications. 

 

6.2 Conclusions and Contributions 

    Results in Chapter V show that HA can provide good lower and upper bounds for 

original problems. This two-phase algorithm can provide a feasible solution based on the 

upper bound and within a reasonable range of an optimal solution. For different numbers 

of commodities, the graphs display that the larger the number of commodities, the longer 

the total running times it takes. For various lengths of planning time periods, the figures 
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show that the longer the length of planning time periods, the longer the total running 

times it takes. 

The most significant contributions of this research are as follows: first, it develops a 

procedure that considers multiple commodities, multiple modes, commodity losses, and 

time windows. Because only a few papers combine with all four factors simultaneously, 

this research can provide more insights in this area. Second, the procedure in this 

research is more computational efficiency than solving original problems directly. This 

procedure is a heuristic algorithm and provides good heuristic feasible solutions instead 

of optimal solutions.  

Third, it improves procedures for lower bound generations of subgradient methods. 

Because the step size in this research is adopted in Proposition 2, this step size is larger 

than the traditional step size. Larger step sizes will reduce convergence times. Finally, it 

is an effective procedure for the reduction of upper bounds. Two methods, early due date 

with overdue-date costs and total transportation costs in Phase 2 of HA, are applied to 

seek an improved upper bound. Testing runs generated in Chapter V show that most 

upper bounds are improved in Phase 2. 

 

6.3 Recommendations for Future Research 

    Since multi-commodity, multi-mode generalized networks with time windows 

problems are NP-complete, it still has a lot of spaces to develop different heuristic 

algorithm to reduce total solving times. The extension researches are as follows: first, for 

special cases, when the gain/loss factor is equal to 1 in all arcs, it means that 
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commodities are not damaged during transportation. For example, the term 

“commodity” represents customers and the term “mode” represents buses or subways. 

Therefore, variables of commodities are required to be integers. It becomes a 

multi-commodity, multi-mode pure network with time windows problem. It may be 

useful for real practical situations and worth doing further research in this area. 

    Second, the special structure of multi-commodity, multi-mode generalized networks 

with time windows problems is that one decision variable is a non-integer, the others are 

integers, and there is a constraint among them. This structure is similar to traditional 

location problems. The only difference is that the integer variable in traditional location 

problems is a binary variable. It may be easier to branch and bound for traditional 

location problems than for multi-commodity, multi-mode networks with time windows 

problems. In other words, traditional locations problems can be viewed as a special case 

of multi-commodity, multi-mode generalized networks with time windows problems. 

Therefore, it may get a lot inspiration from algorithms developed for traditional location 

problems and apply them to solve multi-commodity, multi-mode generalized networks 

with time windows problems. 

    Finally, the network can be considered adding the uncertainties for arcs and modes 

into the model. In this research, arcs and modes are viewed as known parameters. In the 

real world, there may be uncertainties for availabilities or reliabilities of arcs and modes. 

This is also a popular research area, which needs further studies. 
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APPENDIX A1 

 2−ORIGIN, 3−DESTINATION, AND 4−MODE TRANSFORMED 

NETWORK FOR COMMODITIES 
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APPENDIX A2 

 2−ORIGIN, 3−DESTINATION, AND 4−MODE TRANSFORMED 

NETWORK FOR VEHICLES 
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APPENDIX B1 

DATA OF THE NETWORK APPLICATION OF FIG. 6 

10-commodity, 10-planning-time-period scenario in Phase 1 

Seed LB UB GAP1 Total solving times Total running times

1 1,378,140 1,381,124 0.0022 91.16 367.84 

2 1,798,515 1,807,676 0.0051 81.72 360.25 

3 1,607,849 1,612,124 0.0027 81.61 353.28 

4 1,837,019 1,859,426 0.0122 84.77 358.20 

5 1,646,075 1,651,313 0.0032 80.86 360.42 

6 1,766,924 1,775,779 0.0050 84.20 358.89 

7 2,114,611 2,119,199 0.0022 88.72 366.42 

8 2,174,250 2,178,282 0.0019 81.55 357.33 

9 1,539,485 1,557,471 0.0117 89.08 351.58 

10 1,761,070 1,768,652 0.0043 88.38 365.20 

  Average 0.0050 85.21 (seconds) 359.94 (seconds) 

  Variances 0.00001463 14.6022 28.6202 

 

10-commodity, 20-planning-time-period scenario in Phase 1 

Seed LB UB GAP1 Total solving times Total running times

1 3,333,195 3,379,438 0.0139 216.20 708.92 

2 4,097,613 4,177,729 0.0196 122.00 722.16 

3 3,392,406 3,441,578 0.0145 145.69 730.75 

4 2,229,500 2,243,384 0.0062 214.92 761.33 

5 3,531,723 3,569,902 0.0108 154.55 714.69 

6 3,939,470 4,069,389 0.0330 158.73 728.64 

7 4,391,479 4,415,827 0.0055 137.06 739.66 

8 3,519,998 3,537,750 0.0050 125.09 700.13 

9 3,629,948 3,684,010 0.0149 182.08 680.28 

10 3,101,907 3,121,706 0.0064 165.97 753.77 

  Average 0.0130 162.23 (seconds) 724.03 (seconds) 

  Variances 0.00007356 1,119.2577 598.9338 
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15-commodity, 10-planning-time-period scenario in Phase 1 

Seed LB UB GAP1 Total solving times Total running times

1 2,124,049 2,133,373 0.0044 170.70 434.81 

2 2,533,780 2,541,158 0.0029 126.52 475.81 

3 2,910,547 2,916,794 0.0021 125.86 495.30 

4 2,810,507 3,256,290 0.1586 113.33 551.17 

5 2,438,013 2,449,621 0.0048 145.34 530.88 

6 3,511,417 4,060,382 0.1563 115.30 524.48 

7 2,334,082 2,342,584 0.0036 121.03 457.64 

8 2,120,239 2,132,633 0.0058 189.28 433.36 

9 2,120,175 2,150,454 0.0143 134.17 458.92 

10 3,110,860 3,126,120 0.0049 120.89 451.39 

  Average 0.0358 136.24 (seconds) 481.38 (seconds) 

  Variances 0.0041 635.6707 1,760.5694 
 

 

15-commodity, 20-planning-time-period scenario in Phase 1 

Seed LB UB GAP1 Total solving times Total running times

1 3,874,182 3,997,726 0.0319 373.94 1,298.09 

2 6,978,762 7,078,418 0.0143 1,357.38 1,144.00 

3 4,136,007 5,406,521 0.3072 480.14 1,155.94 

4 3,631,018 3,702,960 0.0198 190.19 1,134.61 

5 4,684,073 4,719,720 0.0076 266.14 1,327.48 

6 4,379,719 5,712,791 0.3044 370.92 1,282.75 

7 6,390,000 6,424,466 0.0054 172.69 1,124.83 

8 5,537,116 5,649,129 0.0202 246.14 1,122.88 

9 5,529,344 5,635,522 0.0192 273.36 1,151.38 

10 5,126,667 5,218,051 0.0178 318.91 1,019.58 

  Average 0.0748 404.98 (seconds) 1,176.15 (seconds)

  Variances 0.0149 123,101.8307 6415.5682 
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APPENDIX B2 

 DATA OF THE NETWORK APPLICATION OF FIG. 7 

6-commodity, 10-planning-time-period scenario in Phase 1 

Seed LB UB GAP1 Total solving times Total running times

1 908,361 915,072 0.0074 71.88 292.89 

2 1,306,366 1,311,951 0.0043 72.06 302.70 

3 866,240 868,688 0.0028 75.44 293.63 

4 1,006,729 1,010,423 0.0037 71.92 294.56 

5 1,056,615 1,065,789 0.0087 72.25 293.20 

6 835,213 837,347 0.0026 71.45 293.08 

7 1,152,812 1,370,887 0.1892 72.72 301.19 

8 1,131,779 1,134,922 0.0028 73.14 292.25 

9 1,208,294 1,215,494 0.0060 71.95 294.14 

10 781,809 785,245 0.0044 72.48 294.70 

  Average 0.0232 72.53 (seconds) 295.23 (seconds) 

  Variances 0.0034 1.2751 13.2111 
 
 
 
6-commodity, 20-planning-time-period scenario in Phase 1 

Seed LB UB GAP1 Total solving times Total running times

1 1,235,657 1,238,267 0.0021 89.78 516.05 

2 1,356,245 1,360,790 0.0034 87.09 506.64 

3 1,603,081 1,627,539 0.0153 90.16 507.53 

4 1,024,329 1,035,859 0.0113 88.73 538.92 

5 1,566,571 1,592,959 0.0168 90.47 516.20 

6 1,667,238 1,683,642 0.0098 87.23 508.70 

7 1,493,591 1,498,288 0.0031 86.91 50177 

8 1,741,733 1,981,240 0.1375 89.86 539.20 

9 1,645,657 1,678,660 0.0201 87.98 502.95 

10 1,698,156 1,738,802 0.0239 87.30 516.25 

  Average 0.0243 88.55 (seconds) 515.42 (seconds) 

  Variances 0.0016 1.9990 182.8617 
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6-commodity, 30-planning-time-period scenario in Phase 1 

Seed LB UB GAP1 Total solving times Total running times

1 3,684,252 3,699,096 0.0040 111.69 770.08 

2 4,065,968 4,166,040 0.0246 108.78 781.98 

3 3,793,007 3,845,117 0.0137 111.52 763.73 

4 3,109,990 3,123,554 0.0044 105.03 738.59 

5 3,227,884 3,291,373 0.0197 113.08 757.50 

6 3,723,158 3,820,729 0.0262 111.22 799.52 

7 4,940,613 4,969,269 0.0058 102.09 696.66 

8 4,892,077 5,369,557 0.0976 108.64 777.84 

9 4,176,342 5,470,370 0.3098 109.27 772.23 

10 3,453,175 3,517,062 0.0185 106.53 744.58 

  Average 0.0524 108.78 (seconds) 760.27 (seconds) 

  Variances 0.0089 11.6033 815.8216 
 

 

12-commodity, 10-planning-time-period scenario in Phase 1 

Seed LB UB GAP1 Total solving times Total running times

1 1,848,676 2,811,328 0.5207 83.23 441.81 

2 1,856,943 1,864,051 0.0038 77.77 388.17 

3 1,839,938 1,849,030 0.0049 79.64 388.00 

4 2,828,994 3,863,170 0.3656 81.88 391.98 

5 2,231,047 2,238,208 0.0032 81.11 394.25 

6 1,838,989 1,843,646 0.0025 78.28 388.50 

7 2,582,083 2,589,648 0.0025 77.39 387.81 

8 1,494,906 1,499,787 0.0033 80.95 388.28 

9 1,850,534 2,423,343 0.3095 82.09 414.98 

10 2,540,019 2,541,742 0.0007 78.45 385.45 

  Average 0.1217 80.08 (seconds) 396.93 (seconds) 

  Variances 0.0392 4.1870 321.0040 
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12-commodity, 20-planning-time-period scenario in Phase 1 

Seed LB UB GAP1 Total solving times Total running times

1 3,087,930 3,593,790 0.1638 120.41 881.30 

2 2,645,635 2,701,095 0.0210 115.16 845.63 

3 3,264,770 3,298,322 0.0103 105.61 843.23 

4 2,648,994 2,694,851 0.0173 103.05 844.27 

5 2,895,344 2,923,176 0.0096 103.00 853.94 

6 2,682,773 2,695,517 0.0048 101.83 846.06 

7 3,025,781 3,409,229 0.1267 128.31 913.14 

8 2,658,741 2,703,497 0.0168 103.66 830.72 

9 2,397,368 2,439,986 0.0178 115.31 804.11 

10 3,134,827 3,928,959 0.2533 128.09 866.97 

  Average 0.0641 112.44 (seconds) 852.94 (seconds) 

  Variances 0.0075 109.9412 863.8127 
 

 

12-commodity, 30-planning-time-period scenario in Phase 1 

Seed LB UB GAP1 Total solving times Total running times

1 7,286,808 7,362,572 0.0104 132.67 1,568.11 

2 7,682,412 8,678,134 0.1296 160.66 1,490.09 

3 5,829,220 5,891,358 0.0107 131.27 1,430.89 

4 8,375,532 10,210,964 0.2191 202.53 1,341.53 

5 6,918,224 7,054,205 0.0197 166.27 1,696.25 

6 6,726,256 6,794,477 0.0101 229.59 1,360.88 

7 7,499,361 7,604,373 0.0140 130.25 1,499.80 

8 7,823,209 7,937,334 0.0146 131.14 1,466.27 

9 6,343,088 6,450,199 0.0169 132.53 1,526.78 

10 7,343,188 8,361,351 0.1387 180.84 1,687.05 

  Average 0.0584 159.78 (seconds) 1,506.76 (seconds)

  Variances 0.0057 1,241.1990 14,319.9547 
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