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ABSTRACT 

 
Modifications to a Two-Control-Volume, Frequency Dependent, Transfer-Function 

Analysis of Hole-Pattern Gas Annular Seals. (December 2005) 

Yoon Shik Shin, B.S., Yonsei University 

Chair of Advisory Committee: Dr. Dara W. Childs 

 
 A rotordynamic analysis of hole-pattern gas annular seals using a two-control-

volume model, Ha and Childs and frequency dependent transfer-function model, 

Kleynhans and Childs is modified with four features. The energy equation is added, and 

real gas properties are used instead of the ideal gas equation of state. The depth of the 

hole-pattern is made variable with the axial distance along the seal. And last, the 

addition of deep grooves to hole-pattern seals is analyzed, and the code’s predictions for 

the influence of a groove are compared with test data.  
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NOMENCLATURE 

 

Roman 

C, c  Direct and cross-coupled damping coefficient, [FT/L] 

C   Effective damping coefficient introduced in Eq. (31), [FT/L] eff

C   Seal radial clearance, [L] r

c   Non-dimensional seal radial clearance introduced in Eq. (A7), [-] r

Cv  Specific heat at constant volume, [L2/(T2Θ)] 

D  Seal diameter, [L] 

D  Direct force impedance due to displacement, [F/L] 

D   Direct force impedance due to tilting, [F] εα

D   Direct moment impedance due to displacement, [F] αε

D   Direct moment impedance due to tilting, [FL] α

2e  Internal energy introduced in Eq. (12), [L /T2] 

E  Cross-coupled force impedance due to displacement, [F/L] 

E   Cross-coupled force impedance due to tilting, [F] εα

E   Cross-coupled moment impedance due to displacement, [F] αε

E   Cross-coupled moment impedance due to tilting, [FL] α

f  Non-dimensional frequency introduced in Eq. (A78), [-] 

fs, f   Friction factor of stator and rotor introduced in Eqs. (20)-(21), [-] r

XF , YF  Components of seal reaction force introduced in Eqs. (A97)-(A98), [F] 

YFXF ,  Non-dimensional components of seal reaction force introduced in Eqs. 

(A93)-(A94), [-] 

H  Local clearance [L] 

h  Non-dimensional local clearance introduced in Eq. (A5), [-] 

H   Hole depth, [L] d

h   Non-dimensional hole depth introduced in Eq. (A6), [-] d

1−j   

K, k  Direct and cross-coupled stiffness coefficient, [F/L] 
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K   Effective stiffness coefficient introduced in Eq. (30), [F/L] eff

L  Seal length, [L] 

l  Non-dimensional seal length introduced in Eq. (A8), [-] 

M  Direct added mass coefficient, [M] 

, XM YM  Components of seal reaction moment introduced in Eqs. (A99)-(A100), 

[FL] 

XM YM,  Non-dimensional components of seal reaction moment introduced in Eqs. 

(A95)-(A96), [-] 

Ma  Mach number, [-] 

n  Blasius friction factor coefficient, [-] 

m  Blasius friction factor exponent, [-] 

m   Mass flow rate, [M/T] 

m   Non-dimensional mass flow rate introduced in Eq. (A50), [-] 

P  Pressure, [F/L2] 

p  Non-dimensional pressure introduced in Eq. (A2), [-] 

Pc  Pressure coefficient introduced in Eq. (A19), [-] 

R  Seal radius, [L] 

Re  Reynolds number, [-] 

T  Temperature, [Θ] 

t  Time, [T] 

U  Circumferential bulk fluid velocity, [L/T] 

u Non-dimensional circumferential bulk fluid velocity introduced in Eq. 

(A3), [-] 
2û   Internal energy introduced in Eq. (13), [L /T2] 

û   Non-dimensional internal energy introduced in Eq. (A12), [-] 

ˆcu   Internal energy coefficient introduced in Eq. (A20), [-] 

V  Radial bulk fluid velocity, [L/T] 

  Volume, [L3] ∀



  xii 

W  Axial bulk fluid velocity, [L/T] 

w  Non-dimensional axial bulk fluid velocity introduced in Eq. (A1), [-] 

X, Y  Relative displacement between stator and rotor, [L] 

x, y  Non-dimensional relative displacement between stator and rotor, [-] 

Z  Axial coordinate, [L] 

z  Non-dimensional axial coordinate introduced in Eq. (A9), [-] 

z0  Non-dimensional center-position of tilting motion, [-] 

Zc  Compressibility factor, [-] 

  

Greek 

 Relative seal rotations about transverse X, Y axes, [-] , Xα Yα

γ  Specific heat ratio, [-] 

γc  Ratio of hole-pattern area to total stator surface area, [-] 

ε  Perturbation eccentricity ratio, [-] 

κ  Viscosity power law exponent, [-] 

μ  Fluid viscosity, [FT/L2] 

ρ   Fluid density, [M/L3] 

ρ   Non-dimensional fluid density introduced in Eq. (A4), [-]  

τ  Non-dimensional time introduced in Eq. (A10), [-] 

τsz, τrz, τsθ, τrθ Shear stress introduced in Eqs. (14)-(17), [F/L2] 

Ω  Rotor precessional frequency, [1/T] 

Φ  Flow coefficient introduced in Eq. (33), [-] 

ω  Rotor rotational frequency, [1/T] 

 

Subscripts 

in, ex  Inlet and exit, respectively 

R, S  Denotes reservoir and sump, respectively 

r, s  Denotes rotor and stator, respectively 

z, θ  Axial and circumferential, respectively 



  xiii 

α  Moment component due to tilting motion 

αε  Moment component due to displacement motion 

εα  Force component due to tilting motion 

0, 1 Zeroth-order and first-order perturbations in the dependent variables, 

respectively 
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1. INTRODUCTION 

 

 The function of annular seal is leakage control between different pressure regions 

in turbomachinery. Figure 1 shows a hole-pattern seal and a smooth rotor. Seals can also 

affect rotordynamic performance significantly. Historically, labyrinth seals are used 

widely because of lower cost and good leakage control. However, labyrinth seals have 

relatively low effective damping which can cause instability in high performance 

turbomachinery. Childs and Moyer [1] discussed the replacement of labyrinth seals with 

honeycomb seals in the HPOTP (High Pressure Oxygen Turbopump) of the SSME 

(Space Shuttle Main Engine) to resolve synchronous and subsynchronous vibration 

problems.  Recently, hole-pattern seals are more widely used because of close 

performance to honeycomb seals and even lower cost, Yu and Childs [2]. 

 

 

 
Figure 1  Hole-pattern seal and rotor 

 

________________ 

This thesis follows the style of the ASME Journal of Tribology. 
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 A full analysis of gas annular seal is first presented by Nelson [3], [4]. Nelson’s 

bulk flow, one-control-volume model gave reasonable predictions for smooth 

stator/smooth rotor seals. However, for honeycomb stator/smooth rotor seals, the 

honeycomb surface was regarded as a ‘rough surface’, and the prediction was poor. The 

two-control-volume model is provided by Ha and Childs [5], but no solution is given. 

Kleynhans and Childs [6] introduced frequency dependent, transfer-function model, 

because the traditional force/motion relationship of Eq. (1) is not valid for two-control-

volume analysis results. 

X

Y

F K k X C c X X
M

F k K Y c C Y Y
⎧ ⎫ ⎧⎧ ⎫ ⎡ ⎤ ⎧ ⎫ ⎡ ⎤

− = + +⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎩ ⎭ ⎣ ⎦⎩ ⎭ ⎩ ⎭ ⎩ ⎭

⎫
  (1) 

Kleynhans and Childs [6] developed a solution code using two-control-volume, constant 

temperature model that produced a frequency dependent, transfer-function model. The 

solution showed a very good match with test results by Childs and Wade [7]. 
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2. OBJECTIVES 

 

 This study starts from the following questions: 

 

(a) Comparing to the isothermal model of Kleynhans and Childs [6], how do property 

changes due to temperature distribution affect the zeroth and first order perturbation 

solutions? 

(b) For high-pressure gas mixtures, how large is the difference between an ideal gas 

solution and a solution with real gas properties? 

(c) If a hole-pattern seal has varying hole-depth along the axial direction, would it 

improve any performance features of the seal? What kind of hole-depth axial 

variation is ideal? 

(d) Considering a hole-pattern seal with a deep annular groove somewhere along the 

surface, what is the best location for the groove? How are characteristics of gas 

annular seal affected by a deep annular groove? 
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3. GOVERNING EQUATIONS 

 

 The governing equations start from those presented by Ha and Childs [5]. Figure 

2 shows the location of control volumes. Note that the clearance is exaggerated for 

clarity. 

 

 

 
Figure 2  Cross-sectional view of hole-pattern seal/smooth rotor 

 

 

 The integral forms of bulk-flow governing equations are: 

Continuity 

0
C CS

d v
t

ρ ρ
∀

dA∂
= ∀ + ⋅
∂ ∫ ∫  (2)  

Axial Momentum 

Z C CS
F Wd Wv dA

t
ρ ρ

∀

∂
= ∀ + ⋅
∂∑ ∫ ∫  (3) 

Circumferential Momentum 

C CS
F Ud Uv dA

tθ ρ ρ
∀

∂
= ∀ + ⋅
∂∑ ∫ ∫  (4) 
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Energy 

v C CS

PW e d e v
t

ρ
ρ∀

⎛ ⎞∂
− = ∀ + + ⋅⎜ ⎟∂ ⎝ ⎠

∫ ∫ dAρ . (5) 

The flows shown in Figure 3 are expressed in differential forms: 

 

 

 
Figure 3  Flow in and out through control volume surface 
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Continuity Equation for control volume A 

( ) ( ) ( )1 0H UH WH V
t R Z
ρ ρ ρ ρ

θ
∂ ∂ ∂

+ + +
∂ ∂ ∂

 =  (6) 

Continuity Equation for control volume B 

c dV H
t
ρρ γ ∂

=
∂

  (7) 

Axial momentum equation 

( ) ( ) ( )2

sz rz

HWHW HWUPH WV
Z t R Z

ρρ ρ
τ τ ρ

θ

∂∂ ∂∂
− = + + + + +

∂ ∂ ∂
 

∂
 (8) 

Circumferential momentum equation 

( ) ( ) ( )2

s r

HUHU HH P UV
WU

R t R Zθ θ

ρρ ρ
τ τ ρ

θ θ

∂∂ ∂∂
− = + + + + +

∂ ∂ ∂
 

∂
 (9) 

Energy equation 

( ) ( )10 c d r
De eH H PWH PUH R
Dt t Z R θρ ργ ωτ

θ
∂ ∂ ∂

= + + + +
∂ ∂ ∂

  (10) 

where, 

D U W
Dt t R Zθ

∂ ∂
= + +

∂
∂ ∂ ∂

  (11) 

2 2

ˆ
2 2

U We u= + +  (12) 

( )
1ˆ

1v
c

Pu C T
Z γ ρ

= =
−

 . (13) 

 The variable V, transient radial velocity from Control Volume A to Control 

Volume B, can be eliminated by substituting V from Eq. (7) into Eqs. (6), (8) and (9). 

 For the analysis using general real gas properties, the internal energy  and its 

partial derivatives are directly obtained with the code by Huber 

û

[8] (NIST 

SUPERTRAPP) instead of ideal gas relationship. Following the analyses of Nelson [3], 

[4] and Ha and Childs [5], the energy balance is modeled as adiabatic flow; therefore, no 

heat flow rate term appears in the energy equation. 
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 The hole-depth H  appearing in Eq. (7)d  was treated as constant in prior analyses, 

but in Section 6 of this thesis, Hd is considered to vary with axial position in the seal. 

Accordingly, H  is function of Z. The functions for H (Z) are specified in Section 6. d d

 Shear stresses are expressed as: 

1
2sz WU fτ ρ= s s  (14) 

1
2rz r rWU fτ ρ=  (15) 

1
2s s sUU fθτ ρ=  (16) 

1 ( )
2r U R U fθτ ρ ω= − r r  (17) 

where, 

2
sU W U= + 2  (18) 

2 (rU W U R 2)ω= + − . (19) 

D’Souza and Childs [9] compared various friction factor models and concluded that the 

Blasius’ model showed good result with the following relatively simple formulas. 

2 sm
s

s s
U H

f n
ρ
μ

⎛ ⎞
= ⎜

⎝ ⎠
 ⎟  (20) 

2 rm
r

r r
U H

f n
ρ
μ

⎛ ⎞
= ⎜

⎝ ⎠
 ⎟  (21) 

Temperature dependent viscosity, μ is directly obtained from NIST SUPERTRAPP code. 

The viscosity also can be calculated with a common approximation of Eq. (22). 

R R

T
T

κ
μ
μ

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

  (22) 

where, κ is fluid’s own constant. For air, κ = 0.7.  

 The sudden contraction with loss at the inlet is modeled as 

21(0) (0) (0)
2RP P Wξ ρ+

− = , (23) 
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and an ideal gas isentropic relationship is used between just before and just after the inlet. 

(0) (0)

R R

P
P

γ
ρ
ρ

⎛
= ⎜
⎝ ⎠

⎞
⎟  (24)  

Exit recovery is modeled as 

21
(1) (1) (1)

2
e

SP P W
ξ

ρ
−

− = . (25) 

Nelson [3], [4] introduced a gas-dynamic model of Mach number dependent inlet loss 

boundary conditions for pressure and density, instead of Eqs. (23) and (24). Since, 

Nelson’s model showed even less realistic results, Kleynhans and Childs [6] used simple 

approximations as Eqs. (23) and (25) which is based on liquid seal model, and showed 

good predictions. 

 The solution procedure of zeroth and first order perturbation governing equation 

is given in Appendix A. The solution in Appendices is extended to force and moment 

coefficients due to displacement and tilting motion. Once the solution is obtained, the 

first order perturbation pressure is integrated to get perturbation reaction force. The 

general transfer function on two-control-volume is, 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

X

Y

j j j X j
j j j Y j
Ω Ω Ω Ω⎧ ⎫ ⎡ ⎤ ⎧ ⎫

− =⎨ ⎬ ⎨⎢ ⎥Ω ⎬− Ω Ω Ω⎣ ⎦ ⎩ ⎭⎩ ⎭

F D E
F E D

 , (26) 

where, Ω is rotor precession frequency, FX (jΩ)and FY (jΩ) are reaction force vector 

components, and X(jΩ), Y(jΩ) are the components of the relative displacement vector 

between stator and rotor. In terms of frequency dependent rotordynamic coefficients, the 

model is, 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

X

Y

K k X C c X
k K Y c C Y
Ω Ω Ω Ω ⎧ ⎫⎧ ⎫ ⎡ ⎤ ⎧ ⎫ ⎡

− = +⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢− Ω Ω − Ω Ω⎣ ⎦ ⎩ ⎭ ⎣⎩ ⎭ ⎩ ⎭

F
F

⎤
⎥
⎦

 . (27) 

Therefore, 

( ) ( ) ( )j K jCΩ = Ω + ΩD  (28) 

( ) ( ) ( )j k jcΩ = Ω + ΩE . (29) 

The frequency dependent force effective stiffness and effective damping are calculated 

as following: 
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 ( ) ( ) ( )effK K cΩ = Ω + Ω Ω  (30) 

( )( ) ( )eff
kC C Ω

Ω = Ω −
Ω

 . (31) 
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4. EFFECT OF THE ENERGY EQUATION 

 

 In this section, the effect of energy equation is examined by performing 

numerical experiment with both the new model and the isothermal model of Kleynhans 

and Childs [6] in the same conditions. The predictions of two models are compared with 

test results by Kerr and Childs [10], and Childs and Wade [7].  

 

4.1. Static Solution 

 The running conditions and geometries are, 

 PR = 70 bars 

 PS = 34.3 bars 

 D = 114.74 mm 

 L = 86.055 mm 

 Hd = 3.3 mm 

 γc= 0.684 

 μ = 1.876E-5 Pa sec 

 Preswirl ratio = 0.303 

 Molecular weight = 28.96 

 γ = 1.4 

 ms = -0.1101 

 ns = 0.0785 

 mr = -0.217 

 nr = 0.0586. 

Pressure and density distributions along the axial direction decide the temperature 

distribution. Exit temperatures are predicted for adiabatic flow. The predictions of exit 

temperature and mass flow rate are compared in Table 1 with test results by Childs and 

Wade [7]. ‘ISOT’ represents the code developed by Kleynhans and Childs [6], with 

constant temperature and ideal gas equation. ‘ENERGY’ is the modified code that 
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contains the energy equation. However, real gas properties are not considered in this 

section. Namely, ‘ENERGY’ has the energy equation and the ideal gas equation of state. 

 

 

Table 1  Temperature drop and leakage comparison - using default values for 

Blasius coefficients 

mExit Temperature (˚C)  (Kg/s) Inlet T C ω r 

(mm) (rpm) (˚C) Test ENERGY Test ISOT ENERGY

0.1 10,200 10.34 6.13 14.88 0.197 0.165 0.140

0.1 15,200 10.08 6.70 28.42 0.190 0.162 0.133

0.1 20,200 11.87 6.20 53.72 0.175 0.161 0.124

0.2 10,200 17.44 15.18 11.70 0.436 0.448 0.409

0.2 15,200 19.94 15.68 18.93 0.429 0.444 0.400

0.2 20,200 19.06 15.71 25.70 0.409 0.437 0.389

 

 

 Exit temperature and leakage predicted with new model is not very close to test 

data. The data are saying that the Blasius friction factor coefficients currently used for 

the stator are not suitable for this situation. Childs and Fayolle [11] stated that friction 

factor is also dependent on running speed, and clearance as well. Namely, there is no 

constant Blausius coefficient that can predict for various running speeds and clearances. 

To get better results for clearance of 0.1 mm, trial-and-error study is done using 

Moody’s pipe friction factor chart, and some constants are found that make prediction 

more realistic for each model of ‘ISOT’ and ‘ENERGY’. The predictions with new 

constants are compared to test data again in Table 2 (ISOT) and Table 3 (ENERGY).  
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Table 2  Leakage comparison using new values for Blasius coefficients (ns = 0.035, 

ms = -0.1101) 

C r ω Inlet T
(mm) (rpm) (˚C) Test ISOT

0.1 10,200 10.34 0.197 0.176
0.1 15,200 10.08 0.19 0.183
0.1 20,200 11.87 0.175 0.175

 (Kg/s)m

 
 

 

Table 3  Temperature drop and leakage comparison using new values for Blasius 

coefficients (n  = 0.03, ms s = -0.1101) 

C r ω Inlet T
(mm) (rpm) (˚C) Test ENERGY Test ENERGY

0.1 10,200 10.34 6.13 7.93 0.197 0.197
0.1 15,200 10.08 6.7 15.86 0.19 0.19
0.1 20,200 11.87 6.2 30.66 0.175 0.18

Exit Temperature (˚C)  (Kg/s)m

 
 

 

 These choices for Blausius friction factor give better results. Further, providing 

running speed dependent Blausius constants will make prediction even better. 

 

4.2. Dynamic Solution 

 Force coefficients with ‘ISOT’ and ‘ENERGY’ are compared for a smooth seal 

and a hole-pattern seals. Seal geometry is same as that of static solution above. Running 

conditions are: 

 PR = 70 bars 

 P  = 32 bars S

 TR = 19°C (smooth seal), 10°C (hole-pattern seal) 

 ω = 10,200 rpm 

 H  = 3.3 mm (hole-pattern seal) d

 C  = 0.1 mm r
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 Preswirl ratio = 0 

 m  = -0.217 (smooth seal), -0.1101 (hole-pattern seal) s

 n  = 0.0586 (smooth seal), 0.0785 (hole-pattern seal). s

The rotordynamic coefficients of direct and cross-coupled stiffness and damping (K(f), 

k(f), C(f), c(f)) are plotted with respect to non-dimensional frequency f defined in Eq. 

. Effective stiffness K  and effective damping C(A78)  which are defined in Eqs. (30), eff eff

(31) also plotted. 

 

4.2.1 Smooth Seal 

 Predictions are performed up to f = 10. The test results by Kerr and Childs [10] 

are available up to f = 2. The comparisons of rotordynamic coefficients are shown in 

Figure 4 through Figure 10. 
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Figure 4  Direct stiffness K(f) vs. non-dimensional frequency f for smooth seal 
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Figure 5  Cross-coupled stiffness k(f) vs. non-dimensional frequency for smooth seal 
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Figure 6  Direct damping C(f) vs. non-dimensional frequency f for smooth seal 
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Figure 7  Cross-coupled damping c(f) vs. non-dimensional frequency f for smooth 

seal 
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Figure 8  Effective stiffness Keff(f) vs. non-dimensional frequency f for smooth seal 
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Figure 9  Effective damping Ceff(f) vs. non-dimensional frequency f for smooth seal 
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Figure 10  Effective damping Ceff(f) vs. non-dimensional frequency f for smooth seal 

(detail) 
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 For smooth seals at this condition, two models works fairly well through 0＜f＜1. 

The ‘ENERGY’ model predicts slightly better than the ‘ISOT’ model. Direct stiffness is 

under-predicted with both models, but the ‘ENERGY’ model shows more realistic 

prediction. Effective stiffness is well predicted with the ‘ENERGY’ model at the non-

dimensional frequency range below f = 0.5. At the range of f = 1 and higher frequencies, 

the ‘ISOT’ model shows closer prediction of effective damping to the test result. Still, 

the differences are very small. 

 

4.2.2 Hole-pattern seal (hd = 3.3mm) 

 The same seal as the smooth seal of the previous section now has 3.3 mm hole-

pattern and is predicted with two models. In Figure 11 through Figure 22, rotordynamic 

coefficients are predicted and compared to test data in the same manner as the previous 

section. The test results are from Childs and Wade [7]. 

 The ‘ENERGY’ model also shows better predictions than the ‘ISOT’ model for 

hole-pattern seals. However, differences between the two models are not significant for 

the non-dimensional frequency range below f = 2, which is the range of interest. 

 The difference in rotordynamic coefficients between the two models is less for 

hole-pattern seals than for smooth seals. This study shows that both the ‘ISOT’ model 

and the ‘ENERGY’ model predicts rotordynamic coefficients fairly well for the 

frequency range of 0＜f＜2, and that the ‘ENERGY’ model gives modestly better 

predictions. 
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Figure 11  Direct stiffness K(f) vs. non-dimensional frequency f for hole-pattern seal 
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Figure 12  Direct stiffness K(f) vs. non-dimensional frequency f for hole-pattern seal 

(detail) 
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Figure 13  Cross-coupled stiffness k(f) vs. non-dimensional frequency f for hole-

pattern seal 
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Figure 14  Cross-coupled stiffness k(f) vs. non-dimensional frequency f for hole-

pattern seal (detail) 
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Figure 15  Direct damping C(f) vs. non-dimensional frequency f for hole-pattern 

seal 

 

 

0.E+00
1.E+04
2.E+04
3.E+04
4.E+04
5.E+04
6.E+04
7.E+04
8.E+04
9.E+04
1.E+05

0 0.5 1 1.5 2

Nondim. Frequency, f

D
ire

ct
 D

am
pi

ng
, C

 [N
.s

/m
]

TEST

ISOT

ENERGY

 
Figure 16  Direct damping C(f) vs. non-dimensional frequency f for hole-pattern 

seal (detail) 
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Figure 17  Cross-coupled damping c(f) vs. non-dimensional frequency f for hole-

pattern seal 
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Figure 18  Cross-coupled damping c(f) vs. non-dimensional frequency f for hole-

pattern seal (detail) 
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Figure 19  Effective stiffness Keff(f) vs. non-dimensional frequency f for hole-pattern 

seal 
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Figure 20  Effective stiffness Keff(f) vs. non-dimensional frequency f for hole-pattern 

seal (detail) 
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Figure 21  Effective damping Ceff(f) vs. non-dimensional frequency f for hole-

pattern seal 

 

 

-5.0E+03

0.0E+00

5.0E+03

1.0E+04

1.5E+04

2.0E+04

2.5E+04

0 0.5 1 1.5 2

Nondim. Frequency, f

E
ffe

ct
iv

e 
D

am
pi

ng
, C

ef
f [

N
.s

/m
]

TEST

ISOT

ENERGY

 
Figure 22  Effective damping Ceff(f) vs. non-dimensional frequency f for hole-

pattern seal (detail) 
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5. EFFECT OF REAL GAS PROPERTIES 

 

 In this section, example predictions are compared for a methane gas compressor 

seal with real gas model, ‘REAL’ and ideal gas model, ‘IDEAL’. Here, both models 

include the energy equation, but ‘REAL’ uses real gas properties from NIST 

SUPERTRAPP, while ‘IDEAL’ gets gas properties from the ideal gas equation of state. 

‘IDEAL’ model is the exact same model as ‘ENERGY’ in the previous section but 

named differently for clarity. In Figure 23 through Figure 28, and Figure 29 through 

Figure 34, comparisons are done with two different ΔP’s of 150 bars and 100 bars. The 

running condition and geometry for this application is: 

 PR = 250 bars 

 PS = 100 bars (Through-flow or series application), 

 150 bars (Back-to-back application) 

 TR = 400K 

 ω = 10,000 rpm 

 D = 250 mm 

 L = 150 mm 

 Cr = 0.3 mm 

 Hd = 2 mm 

 γc= 0.684 

 μ = 2.0E-5 Pa sec 

 Preswirl ratio = 0 

 Molecular weight = 16.043 

 γ = 1.299 

 ms = -0.1101 

 ns = 0.0785 

 mr = -0.217 

 nr = 0.0586. 
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Through-flow or series application (P  = 100 bars, ΔP = 150 bars) S
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Figure 23  Direct stiffness K(f) vs. non-dimensional frequency f for through flow 

application 
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Figure 24  Cross-coupled stiffness k(f) vs. non-dimensional frequency f for through 

flow application 
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Figure 25  Direct damping C(f) vs. non-dimensional frequency f for through flow 

application 
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Figure 26  Cross-coupled damping c(f) vs. non-dimensional frequency f for through 

flow application 
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Figure 27  Effective stiffness Keff(f) vs. non-dimensional frequency f for through 

flow application 
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Figure 28  Effective damping Ceff(f) vs. non-dimensional frequency f for through 

flow application 
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Back-to-back application (PS = 150 bars, ΔP = 100 bars) 
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Figure 29  Direct stiffness K(f) vs. non-dimensional frequency f for back-to-back 

application 
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Figure 30  Cross-coupled stiffness k(f) vs. non-dimensional frequency f for back-to-

back application 
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Figure 31  Direct damping C(f) vs. non-dimensional frequency f for back-to-back 

application 
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Figure 32  Cross-coupled damping c(f) vs. non-dimensional frequency f for back-to-

back application 
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Figure 33  Effective stiffness Keff(f) vs. non-dimensional frequency f for back-to-

back application 
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Figure 34  Effective damping Ceff(f) vs. non-dimensional frequency f for back-to-

back application 
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 The plots show that predictions for ‘IDEAL’ and ‘REAL’ differ slightly. IDEAL 

tends to predict less direct stiffness at running speed and higher frequencies, and predict 

less effective damping at the non-dimensional frequency ranges of 0.5＜f＜1.5 (through-

flow) and 0.5＜f＜2 (back-to-back). The difference of direct damping at zero frequency 

is 2-5%. The crossover frequency, which is the frequency that effective damping turns 

from negative to positive, does not change much between two models. 
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6. EFFECT OF STATOR-HOLE-DEPTH VARIATION 

 

 In this section, the effect of varying hole-depth of seal is examined. The purpose 

of this study is finding the most helpful configuration of hole-depth variation. For trial 

configurations of Hd(z), five simple functions are presented for linear, convex, concave, 

convex-and-concave, and concave-and-convex curves. Each function will form two 

curves in each case of Hd,in＜Hd,ex and Hd,in＞Hd,ex. The hole-depth equations and 

schematics are provided in Table 4. A unique name is assigned to each function, which 

appears in the first column of Table 4. The configuration will be named with 

combinations of function name and ‘IN’ for increasing or ‘DE’ for decreasing. 

 Rotordynamic coefficients are predicted with ‘ISOT’ model of  section 4, 

because ‘ISOT’ gives the nicest curves for frequency dependent rotordynamic 

coefficients, and as shown in section 4, hole-pattern seals at frequency of running speed 

and below are fairly close to ‘ENERGY’ model. The prediction is performed in the same 

condition of section 4 except Hd and Running Speed. 

 Running Speed = 15,200 rpm 

 ‘ISOT’ Hd = 3.3 mm 

 ‘IN’ Hd,in = 1.65 mm, Hd,ex = 4.95 mm 

 ‘DE’ Hd,in = 4.95 mm, Hd,ex = 1.65 mm 

This arrangement for Hd,in and Hd,ex causes the seals to have approximately the same 

average hole depth. Predictions of effective damping and direct stiffness coefficients 

with eleven configurations of Hd(z) are plotted in Figure 35 and Figure 36 respectively. 
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Table 4  Trial configurations of H  variationd

 ‘IN’      , ,d in d exH H<  ‘DE’       , ,d in d exH H>

‘LINEAR’   

, ,
,

d ex d in
d d in

H H
H H Z

L
−

= +  

 

 

‘SQUARE’ 

, , 2
, 2

d ex d in
d d in

H H
H H Z

L
−

= +  

  

‘SQRT’ 

, ,
,

d ex d in
d d in

H H
H H Z

L

−
= +  

  

‘COS’ 
, ,

, ,

cos
2

2

d in d ex
d

d in d ex

H H ZH
L

H H

π−
=

+
+

 

  

‘ARCCOS’ 
, , 1

,

2cos 1d ex d in
d

d in

H H ZH
L

H
π

−− ⎛ ⎞= −⎜ ⎟
⎝ ⎠

+

1 20 cos 1 Z
L

π−⎛ ⎞⎛ ⎞≤ − ≤⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

  

Flow Flow 

Flow Flow 

Flow Flow 

Flow Flow 

Flow Flow 
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Figure 35  Effective damping Ceff(f) vs. non-dimensional frequency f for various 

hole-depth variations 
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Figure 36  Direct stiffness K(f) vs. non-dimensional frequency f for various hole-

depth variations 
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 Figure 35 and Figure 36 show that varying the hole-depth axially has a dramatic 

impact on the frequency dependent rotordynamic coefficients. The crossover frequency 

for the best variable-depth seal drops to 0.37 from 0.42 for the constant hole-depth case. 

The peak damping increases from 1,200 Ns/m to 3,000 Ns/m, an increase of 125%. The 

‘SQRT-DE’ configuration has highest effective damping at wide range of frequency, and 

its crossover frequency is one of the lowest. The ‘COS-DE’ configuration has high 

effective damping, but direct stiffness is a bit lower than average. The best choice among 

given configuration is ‘SQRT-DE’. 
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7. EFFECT OF DEEP ANNULAR GROOVE 

 

 According to Childs [12], as a liquid seal gets longer, its direct stiffness tends to 

decrease, and become negative.  To resolve this problem, some pump company put a 

deep annular groove in the seal to break a long seal into shorter seals. 

 A deep annular groove makes the pressure not perturbed at the groove; therefore, 

a grooved seal can be regarded as two consecutive seals with the same leakage. Figure 

37 shows a grooved hole-pattern seal. The grooved-seal analysis is nothing but 

successive solutions of two seals, sharing pressure, temperature and circumferential 

velocity at the groove, namely, at the exit of seal #1 and the inlet of seal #2. To find 

mass flow rate, pressure at the groove is used for comparison. The algorithm for 

grooved-seal is as following. Firstly, the zeroth order equation of seal #1 is solved with 

∆Ptemp which is an half of given ∆P, and the mass flow rate is stored. Now the discharge 

pressure, exit temperature and exit circumferential velocity of the seal #1 substitute the 

reservoir pressure, inlet temperature and preswirl of seal #2 respectively, and the zeroth 

order solution of seal #2 is computed. The mass flow rates of seal #1 and seal #2 are 

compared to be equal, and this block of calculation is repeated with different ∆Ptemp’s 

until the difference of mass flow rates are within the given tolerance. Finally, both seals 

are calculated with the found pressure at the groove, and the rotordynamic coefficients 

are summed up for entire grooved seal solution. 

 In this section, the running condition and seal geometry for tests and predictions 

are the same as Section 4 except for following data: 

 PR = 70 bar 

 PS = 18.9 bar 

 ω = 10,200 rpm  

 Cr = 0.1 mm 

 Preswirl = 0 

 Groove width = 5.5 mm 
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Figure 37  Grooved hole-pattern seal 



  39 

 

7.1 Optimal Groove Position 

 The first issue for this study is the optimal groove position. The primary purpose 

of putting a groove in an annular seal is elevating stiffness at zero frequency. To 

determine the optimal position, the code is run for 10 groove positions that are equally 

distributed through seal, then effective stiffness is plotted to determine the optimal 

position of groove. Frequency dependent rotordynamic coefficients for grooved seal are 

computed and compared with test data. The position of a groove is defined as, 

(   #1) (   #(  )
( #1) ( #2) (  )

length of seal length of sealgroove position
length of  seal  + length of  seal L groove width

= =
−

1) . (32) 
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Figure 38  Effective stiffness at zero precessional frequency vs. non-dimensional 

groove position  

  

 

         Figure 38 shows that putting a groove at 60% from the inlet of a seal is most helpful. 

The comparison between prediction and experiment is done with two seals grooved at 

60%. 
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7.2 Grooved Seal Analysis 

 For each case of un-grooved and grooved, frequency-dependent direct stiffness 

K(f), effective stiffness K (f), direct damping C(f) and effective damping Ceff eff(f) are 

measured, and predicted with ‘ENERGY’ model of section 4. The plots in Figure 39 

through Figure 42 are named as, 

 ‘TEST’: test result for normal hole-pattern seal, 

 ‘TEST-G’: test result for grooved-seal, 

 ‘ENERGY’: predicted data for normal hole-pattern seal with ‘ENERGY’, 

 ‘ENERGY-G’: predicted data for grooved-seal with ‘ENERGY’. 

 As expected, at zero frequency, direct stiffness of grooved-seal is higher than that 

of un-grooved seal, and they cross as increasing frequency. Even though test results do 

not show stiffness at zero frequency, they are about to cross each other. Once a seal is 

grooved, the seal loses large amount of damping below running speed. ‘ENERGY’ is 

predicting crossover frequency 40% (un-grooved) and 50% (grooved) lower. 

 Leakage predictions for un-grooved and grooved seals are compared with test 

results in Figure 43. Leakage is normalized to flow coefficient. The flow coefficient is 

defined as, 

r

m RT
DC Pπ

Φ =
Δ

  (33) 

 Leakage is well predicted with the ‘ENERGY’ code. Both of ‘TEST’ and 

‘ENERGY’ show that grooved-seal has a bit higher leakage, but the leakage increase 

due to a groove is not significant.  
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Figure 39  Direct stiffness K(f) vs. non-dimensional frequency f for un-grooved and 

grooved seals (ω = 336.67 Hz) 

 

-10

-5

0

5

10

15
20

25

30

35

40

45

0 0.5 1 1.5 2

Nondim. Frequency, f

E
ffe

ct
iv

e 
S

tif
fn

es
s,

 K
ef

f [
M

N
/m

]

TEST
TEST-G
ENERGY
ENERGY-G

 
Figure 40  Effective stiffness Keff(f) vs. non-dimensional frequency f for un-grooved 

and grooved seals (ω = 336.67 Hz) 
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Figure 41  Direct damping C(f) vs. non-dimensional frequency f for un-grooved and 

grooved seals (ω = 336.67 Hz) 
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Figure 42  Effective damping Ceff(f) vs. non-dimensional frequency f for un-grooved 

and grooved seals (ω = 336.67 Hz) 
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Figure 43  Flow coefficient Φ vs. ΔP for un-grooved and grooved seals 
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9. SUMMARY 

 

 Modifications to gas seal analysis of Kleynhans and Childs [6] are presented in 

this thesis. This study showed that considering temperature change of seal flow is 

important. Static solution and dynamic coefficients are moderately affected by 

temperature change. Including real gas properties is also important especially for high 

pressure gas application.  

 The hole-pattern depth variation turned out to be also an influencing parameter of 

seal prediction. Effective damping and direct stiffness coefficients are dramatically 

changed with different configuration of hole-depth variation, which can cause significant 

change of seal performance. There is no explicit relationship found between change of 

rotordynamic coefficients and hole-depth variation geometry. 

 Grooved seal is well predicted with given model through zero to running speed 

frequency range. Low stiffness problem can be resolved at low frequency range, but the 

seal loses direct stiffness and slightly gains leakage rate. 
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APPENDIX A 

SOLUTION OF GOVERNING EQUATIONS 

 

A.1. Non-dimensional Governing Equations 

 Non-dimensionalized parameters are defined as following: 

Ww
Rω

=  (A1) 

R

Pp
P

=  (A2) 

Uu
Rω

=  (A3) 

R

ρρ
ρ

=  (A4) 

r

Hh
C

=  (A5) 

d
d

r

H
h

C
=  (A6) 

r
r

C
c

R
=  (A7) 

Ll
R

=  (A8) 

Zz
L

=  (A9)  

tτ ω=  (A10) 

S
S

R

P
p

P
=  (A11)  

ˆˆ
ˆR

uu
u

= . (A12) 

Non-dimensionalized governing equations for the combined control volume is expressed 

for 
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Continuity: 

[ ] ( ) ( )1( )c dh h uh wh
l z

ρ γ ρ ρ
τ θ
∂ ∂ ∂

+ + + =
∂ ∂ ∂

 0  (A13) 

Axial Momentum: 

( )2 2 2 2( 1)
2

c
s r

r

P p w Du w f u w f
l z c h D

w
ρ τ
∂

− = + + − + +
∂

  (A14) 

Circumferential Momentum: 

( )2 2 2 21 ( 1) ( 1)
2

c
s

r

P
r

p Duu u w f u u w f
c h Dρ θ τ

∂
− = + + − − + +

∂
 (A15)  

Energy - Real Gas: 
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ˆˆ

ˆˆ
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c d
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τ ρ τ τ τ

ρ

∂
= −
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⎡ ⎤∂ ∂ ∂ ∂⎛ ⎞+ − + +⎢ ⎥⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦
⎡ ⎤− + + − +⎢ ⎥⎣ ⎦

 (A16)  

Energy - Ideal Gas: 
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τ
∂  (A17)  

where, 

D u
D l

w
zτ τ θ

∂ ∂
= + +

∂
∂ ∂ ∂

  (A18) 
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ρ
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Non-dimensionalized hole-pattern depth variations are expressed for, 

( ), , ,d d in d ex d inh h h h= + − z a. linear:  (A21) 

( ) 2
, , ,d d in d ex d inh h h h z= + −  (A22)  b. square: 

( ), , ,d d in d ex d inh h h h z= + −  (A23)  c. sqrt: 

( ), , , ,cos
2 2

d in d ex d in d ex
d

h h h h
h zπ

− +
= + d. cos:  (A24) 

( ), , 1
,cos 1 2d ex d in

d

h h
h

π
−

d inz h
−

= − e. arccos: + . (A25) 

Non-dimensional entrance loss and exit recovery equations are:  

211 (0) (0) (0)
2 c

p
P

wξ ρ+
− =  (A26) 

  (A27) (0) (0)p γρ=

21
(1) (1) (1)

2
e

S
c

p p w
P
ξ

ρ
−

− = −  (A28) 

 

A.2. Perturbation Analysis 

 Perturbation variables are introduced here, 

0h h h 1ε= +  (A29) 

0w w w 1ε= +  (A30) 

 0 1p p pε= +  (A31) 

0u u u 1ε= +  (A32) 

 0 1ρ ρ ερ= +  (A33) 

0ˆ ˆ ˆu u u1ε= +  (A34) 

where, ε is the perturbed eccentricity ratio, which is very small number. With the 

variables (A29)-(A34), the governing equations are separated into zeroth and first order 

perturbation equations. 
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A.2.1 Zeroth Order Equations 

 Zeroth order perturbation equations are given here, 

Continuity: 

0 0
0 0 0 0 0 00

h w
w w h h 0

z z z
ρ

ρ ρ
∂ ∂ ∂

= + +
∂ ∂ ∂

 (A35)  

Axial momentum: 

( )0 0 0
0 0 0 0

0 02
c

s s r r
r

P p w w w
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Circumferential momentum: 

( ) 0 0
0 0 0 0 0 0
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c h l z
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Energy - Real Gas: 
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Energy - Ideal Gas: 
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where, 

2
0 0 0su u w= + 2  (A40) 

( )2 2
0 0 1ru u w= − + 0  (A41) 

( )0 0 0 0
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s s sf n g h uρ=  (A42) 

( )0 0 0
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ρ ω
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Matrix form of zeroth order perturbation governing equations are as follows: 
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Ideal Gas: 
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Zeroth order entrance and and exit conditions: 

2
0 0
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Non-dimensional mass-flow-rate is expressed with a production of non-dimensional 

density, axial velocity and local clearance. 
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DC R

ρ
π ωρ

= = w h  (A50) 

 

The zeroth order solution is solved iteratively by increasing  from very small value. If 

the calculated exit pressure is equal to sump pressure, or the calculated exit Mach 

number is equal to 1.0, whichever comes first, the iteration stops and the flow rate is 

saved. The case of exit Mach number being 1.0, is choked condition.  

m

 

A.2.2 First Order Governing Equations 
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Circumferential momentum 
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Energy - Real Gas 
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⎢ ⎥⎝ ⎠⎣ ⎦

  

  (A54) 

where, 

0 0 0 0 0 0
1 1

0 0

ˆ ˆ( , ) ( , )ˆ u p u p
u p

p
ρ

1
ρ

ρ
ρ

∂ ∂
= +

∂ ∂
. (A55)  

Substituting (A55) into (A54) yields, 
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0 0 0 01 1 1 1 1
0 0 0 1 0

0 0 0

0 01 1 1 1
0 0 0 1 0

0 0

0 1 1 1
0 0 1

0

ˆ 1ˆ

ˆ 1ˆ

1

c

c

p u p ph p p p
u u w w w

h p l z z z

u
u u w w w

l z z z

p
u w w

l z

ρ
ρ

τ τ θ ρ

ρ ρρ ρ ρ ρ
ρ

ρ τ θ ρ

ρ ρ ρ
ρ τ θ

⎡ ⎤⎛ ⎞∂ ∂∂ ∂ ∂ ∂
= + + + +⎢ ⎥⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞∂ ∂∂ ∂ ∂
+ + + + +⎢ ⎥⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

∂∂ ∂ ∂
− + + +

∂ ∂ ∂

0

∂

∂

( )

0 01 1
0 0

0 0

0 0 0 01 1 1
0 0 0 0

0 0 0 0

2 30 1 1
0 0 1 1 0 0 0

0 0 0

ˆ ˆ
ˆ ˆ

3
2

c d
c c

c

s s s s s s s
c r

p
w w

z p z z

h u u pp u
u u u w

h p P

h
u u f u f u f

P c h h

ρ ρ ρρ
ρ

γ ρρ
ρ ρ

0

1w
τ ρ ρ τ τ τ

ρ ρ
ρ

⎡ ⎤⎛ ⎞∂ ∂
+ −⎢ ⎥⎜ ⎟∂ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞∂ ∂∂ ∂ ∂⎛ ⎞+ + − + +⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎛ ⎞

− + + −⎢ ⎜ ⎟
⎝ ⎠⎣

 
∂

( )2 30 1 1
0 0 1 1 0 0 0

0 0 0

3
2 r r r r r r r

c r

h
u u f u f u f

P c h h
ρ ρ

ρ

⎤
⎥

⎢ ⎥⎦
⎡ ⎤⎛ ⎞

− + + −⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 

  (A56) 

Energy - Ideal Gas 

( )

( )

( ) ( )

0 01 1 1 1
0 0 1

0

0 01 1 1 1 1
0 0 1 0 0

0 0

01

0 0

1 1
1

1 11
1

1 1 1
1 1

c

c

c d

c c

p ph p p p
u w w

h Z l z z

p p
u w w w w0 0

0Z l z z p z z

h pp
h Z Z

τ γ τ θ

ρ ρ ρρ ρ ρ ρ
γ ρ τ θ ρ

γ
γ τ γ ρ

⎡ ⎤∂∂ ∂ ∂ ∂⎛ ⎞= + + +⎢ ⎥⎜ ⎟∂ − ∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦
⎛ ⎞ ⎡ ⎤⎛ ⎞∂ ∂ ∂∂ ∂ ∂

− + + + + + −⎜ ⎟ ⎢ ⎥⎜ ⎟⎜ ⎟− ∂ ∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦⎝ ⎠

⎛ ⎞∂ ∂
+ − +⎜ ⎟⎜ ⎟− ∂ −⎝ ⎠

∂

( )

( )

01 1 1
0 0

2 30 1 1
0 0 1 1 0 0 0

0 0 0

2 30 1 1
0 0 1 1 0 0 0

0 0 0

3
2

3
2

c

s s s s s s s
c r

r r r r r r r
c r

u w
u w

P

h
u u f u f u f

P c h h

h
u u f u f u f

P c h h

ρρ
τ τ τ

ρ ρ
ρ

ρ ρ
ρ

⎡ ⎤∂ ∂⎛ ⎞+ +⎢ ⎥⎜ ⎟∂ ∂ ∂⎝ ⎠⎢ ⎥⎣ ⎦
⎡ ⎤⎛ ⎞

− + + −⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞

− + + −⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

  (A57) 

where, 

0 1 0 1
1

0
s

s

u u w w
u

u
+

=  (A58) 
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( )0 1 0
1

0

1
r

r

u u w w
u

u
− +

= 1  (A59) 

and, 

11 1
1 0

0 0 0

s
s s s

s

uh
f m f

h u
ρ
ρ

⎛ ⎞
= + +⎜

⎝ ⎠
 ⎟  (A60) 

1 1 1
1 0

0 0 0

r
r r r

r

h u
f m f

h u
ρ
ρ

⎛ ⎞
= + +⎜

⎝ ⎠
 ⎟ . (A61) 

Clearance function with tilting motion of rotor is, 

0 0( ) cos ( ) sinY X
r r

L Lh h x z z y z z
C C 0α θ α

⎡ ⎤ ⎡⎛ ⎞ ⎛ ⎞
= − + − − − −⎢ ⎥ ⎢⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣
θ

⎤
⎥
⎦

. (A62)  

(A29), Comparing to 

1 0( ) cos ( ) sinY X
r r

L Lh x z z y z z
C C 0ε α θ α θ

⎡ ⎤ ⎡⎛ ⎞ ⎛ ⎞
= − + − − − −⎢ ⎥ ⎢⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣

⎤
⎥
⎦

. (A63)  

Assuming the dependent perturbation variables as, 

1 1 1( , , ) ( , ) cos ( , ) sinc sw z w z w zτ θ τ θ τ θ= +  (A64) 

1 1 1( , , ) ( , ) cos ( , )sinc sp z p z p zτ θ τ θ τ θ= +  (A65) 

1 1 1( , , ) ( , ) cos ( , )sinc su z u z u zτ θ τ θ τ θ= +  (A66) 

1 1 1( , , ) ( , ) cos ( , ) sinc sz z zρ τ θ ρ τ θ ρ τ θ= + . (A67)  

Complex variables are introduced as following: 

1 1 1cw jw s= +w  (A68)  

 1 1 1c sp jp= +p  (A69) 

1 1 1cu ju s= +u  (A70)  

 1 1 1c sjρ ρ= +ρ  (A71) 

1 ( )ε = − +h r α  (A72)  

x jy= +r  (A73)  

 Y Xjα α= −α . (A74) 
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Assumimg a pressional seal motion of the form, the displacement motion and tilting 

motion are expressed as, 

0
jfr e τ=r  (A75)  

0
jfe τα=α  (A76) 

1 10
jfh e τ=h  (A77) 

where, 

f
ω
Ω

= . (A78)  

Introducing the following complex variables: 

1 1
jfw e τ=w  (A79) 

1 1
jfp e τ=p  (A80) 

1 1
jfu e τ=u  (A81) 

1 1
jfe τρ=ρ . (A82) 

 
The first order governing equations are expressed in matrix form. 

[ ] [ ]
51 1 1

61 1 20 0

71 1 3

81 1 4

( , )( , )
( , )( , )

( ) ( , )
( , )( , )
( , )( , )

r

g z fw w g z f
g z fp p g z frd Lz z f
g z fu u g z fdz C
g z fg z f

α
ε ε

ρ ρ

⎧ ⎫⎧ ⎫ ⎧ ⎫ ⎧ ⎫
⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+ = +⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭ ⎩ ⎭ ⎩ ⎭

A B  (A83)  

The components of matrix A, B and vector g are given in the Appendix B. 

 There are four boundary conditions for first order perturbation governing 

equations. The first one states that circumferential velocity at the inlet does not perturb. 

1 (0) 0u =  (A84)  

The second and third boundary conditions come from inlet pressure loss model and 

isentropic relationship between pressure and density at the inlet. 

( )2
1 1 0 0 0

1 1(0) (0) (0) 2 (0) (0) (0)
2 c

p w w
P 1wξ ρ ρ+

= − +  (A85) 

  (A86) 1
1 1 0(0) (0) (0)p r γρ ρ −=
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The last one is presented for each case of choked and unchoked condition. For unchoked 

situation, the exit pressure recovery model is presented for exit boundary condition. 

( 2
1 1 0 0 0

1 1(1) (1) (1) 2 (1) (1) (1)
2

e

c

p w w
P )1w

ξ
ρ ρ

−
= − +  (A87) 

In case the flow is choked at the exit, Mach number will not perturb at the exit. 

1 (1) 0Ma =  (A88)  

using the ideal gas mach number,  

c

Ma W w
P P p
ρ ρ
γ γ

= = . (A89) 

The zeroth and first perturbation version of Mach is, 

0
0 0

0c

Ma w
P p
ρ

γ
= , (A90)  

1 1 1
1 0

0 0 02 2
w p

Ma Ma
w p

ρ
ρ

⎛ ⎞
= + −⎜

⎝ ⎠
 ⎟ . (A91) 

These yield the last boundary condition for choked condition. 

1 1 1

0 0 0

(1) (1) (1)
0

2 (1) (1) 2 (1)
w p
w p

ρ
ρ

+ − =

f dz

f dz

0

  (A92) 

The missing boundary conditions are found by transition matrix approach, Childs [12]. 

Once frequency dependent first order perturbation solutions are found, non-dimensional 

reaction force and moment components for each frequency are obtained by integrating 

first order pressure through the whole seal length. 

  (A93) [ ]
1

10
Re ( )XF pπ= − ∫

  (A94) [ ]
1

10
Im ( )YF pπ= − ∫

[ ]
1

10
Re ( ) ( )YM p f z z dzπ= ∫ −  (A95) 

[ ]
1

1 00
Im ( ) ( )XM p f z z dzπ= − −∫  (A96) 
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To get frequency dependent 4×4 full rotordynamic coefficients, force and moment of 
0 0

α
ε

=(A93)-(A96) are calculated for displacement motion without tilting ( ), and tilting 

motion with no displacement ( 0 0
r
ε
= ). Now dimensional force and moment components 

are found as following: 

2
R

X
r

P LD
F

C
= XF  (A97) 

2
R

Y
r

P LD
F

C
= YF  (A98) 

2

2
R

X
r

P L D
XM M

C
=  (A99) 

2

2
R

Y
r

P L D
YM M

C
=  (A100) 

The general transfer function on two-control-volume is, 

  

  (A101) 

( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( )( ) ( )

X

Y

Y Y

X X

j j j jj X
j j j jj Y
j j j jj j
j j j jj j

εα εα

εα εα

αε αε α α

αε αε α α

α
α

Ω Ω Ω − ΩΩ Ω⎡ ⎤⎧ ⎫ ⎧
⎢ ⎥⎪ ⎪ ⎪− Ω Ω − Ω − ΩΩ Ω⎪ ⎪ ⎪⎢ ⎥− =⎨ ⎬ ⎨⎢ ⎥Ω Ω Ω − ΩΩ Ω⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪Ω − Ω Ω ΩΩ Ω⎩ ⎭ ⎩⎣ ⎦

D E D EF
E D E DF

D E D EM
E D E DM

j
j

⎫
⎪
⎪
⎬
⎪
⎪⎭

where, 

 ( ) ( ) ( )j K jCΩ = Ω + ΩD  (A102) 

 ( ) ( ) ( )j k jcΩ = Ω + ΩE  (A103) 

 ( ) ( ) ( )j K jCεα εα εαΩ = Ω + ΩD  (A104) 

 ( ) ( ) ( )j k jcεα εα εαΩ = Ω + ΩE  (A105) 

 ( ) ( ) ( )j K jCαε αε αεΩ = Ω + ΩD  (A106) 

 ( ) ( ) ( )j k jcαε αε αεΩ = Ω + ΩE  (A107) 

 ( ) ( ) ( )j K jCα α αΩ = Ω + ΩD  (A108) 

 ( ) ( ) (j k jcα α α )Ω = Ω + ΩE  (A109) 
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In terms of frequency dependent rotordynamic coefficients, the model is, 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( )

X

Y

Y Y

X X

K k K k X
k K k K Y

K k K k
k K k K

C c C c
c C c C

C c

εα εα

εα εα

αε αε α α

αε αε α α

εα εα

εα εα

αε αε

α
α

Ω Ω Ω − Ω⎡ ⎤⎧ ⎫ ⎧
⎢ ⎥⎪ ⎪ ⎪− Ω Ω − Ω − Ω⎪ ⎪ ⎪⎢ ⎥− =⎨ ⎬ ⎨⎢ ⎥Ω Ω Ω − Ω⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪Ω − Ω Ω Ω⎩ ⎭ ⎩⎣ ⎦

Ω Ω Ω − Ω
− Ω Ω − Ω − Ω

+
Ω

F
F
M
M

( ) ( ) ( )
( ) ( ) ( ) ( )

Y

X

⎫
⎪
⎪
⎬
⎪
⎪⎭

X
Y

C c
c C c C

α α

αε αε α α

α
α

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥ ⎨ ⎬⎢ ⎥Ω Ω − Ω ⎪ ⎪⎢ ⎥ ⎪ ⎪Ω − Ω Ω Ω⎣ ⎦ ⎩ ⎭

  (A110) 
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APPENDIX B 

MATRIX AND VECTOR ELEMENTS FOR FIRST ORDER SOLUTION 

 

B.1 Real Gas 

Matrix A 

0 0
11

h
A

l
ρ

=  (B1) 

12 0A =  (B2) 

13 0A =  (B3) 

0 0
14

w h
A

l
=  (B4) 

0
21

w
A

l
=  (B5)  

22
0

cP
A

lρ
=  (B6)  

23 0A =  (B7) 

24 0A =  (B8) 

31 0A =  (B9) 

32 0A =  (B10) 

0
33

w
A

l
=  (B11) 

34 0A =  (B12) 

41 0A =  (B13) 

0 0 0
42

0

ˆ
ˆc

u w
A u

p l
ρ∂

=
∂

  (B14) 

43 0A =  (B15) 

0 0 0 0 0
44

0 0

ˆ
ˆc

u w p w
A u

l l
ρ

ρ ρ
∂

= −
∂

  (B16) 
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Matrix B 

0 0 0 0
11

h h
B

l z l z
ρ ρ∂ ∂

= +
∂ ∂

  (B17) 

12 0B =  (B18) 

[ ]13 0 0B j hρ= −  (B19) 

( )0 0 0 0
14 0 0 0c d

w h h w
B j f h h u h

l z l z
γ

∂ ∂
⎡ ⎤= + + + −⎣ ⎦∂ ∂

  (B20) 

( ) [ ]
2

0 0 0 0
21 0 0 0 0 0

0 0 0 0

( 1) ( 1)1 1
2 2

s s r r
s s r r

r s r r

w w m f m f
B u f u f j f u

l z c h u u c h
⎛ ⎞∂ + +

= + + + + + −⎜ ⎟∂ ⎝ ⎠
  

  (B21) 

22 0B =  (B22) 

0 0 0 0
23

0 0 0

( 1) ( 1)( 1)
2

s s r r

r s r

w m u f m u f
B

c h u u
⎛ ⎞+ + −

= +⎜ ⎟
⎝ ⎠

0  (B23) 

(0 0
24 0 0 0 02

0 00 2
c

s s s r r r
r

P p w )B m u f m u f
z c hl ρρ

∂
= − + +

∂
 (B24)  

0 0 0 0 0 0
31

0 0 0

( 1) ( 1)( 1)1
2

s s r r

r s r

u w m u f m u f
B

l z c h u u
⎛ ⎞∂ + + −

= + +⎜ ⎟∂ ⎝ ⎠
 (B25)  

32
0

cP
B j

ρ
⎡ ⎤

= −⎢ ⎥
⎣ ⎦

 (B26)  

 ( ) [ ]
2 2

0 0 0 0
33 0 0 0 0 0

0 0 0 0

( 1) ( 1)( 1)1 1
2 2

s s r r
s s r r

r s r r

m u f m u f
B u f u f j f u

c h u u c h
⎛ ⎞+ + −

= + + + +⎜ ⎟
⎝ ⎠

−  

  (B27) 

(34 0 0 0 0 0 0
0 0

1 ( 1)
2 s s s r r r

r

)B m u u f m u u f
c h ρ

= + −  (B28)  
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( )0 0 0 0 0 0 0 0 0
41 0 0 0 0

0 0 0 0

0 0

0

ˆ ˆ ˆ
( 3) ( 3)

2
c

s s s r r r
c r

c d

c

u u p u p w
B m u f m u f

l p z z l z P c h

h w
j f

P h

ρ ρ ρ ρ
ρ ρ

γ ρ

⎛ ⎞∂ ∂ ∂ ∂ ∂
= + − − + + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

⎡ ⎤
+ ⎢ ⎥

⎣ ⎦

  

  (B29) 

0 0 0 0
42 0 0 0

0 0 0 0

ˆ ˆ
ˆ ˆ1 c d

c c
w u h u

B j fu u u
l z p h p

ρ γ
ρ

ρ
ρ

⎡ ⎤⎛ ⎞∂ ∂ ∂
= − + + −⎢ ⎥⎜ ⎟∂ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

  (B30) 

( )0 0 0
43 0 0 0 0 0 0

0 0

( 3) ( 3)( 1)
2

c d
s s s r r r

c r c

h u
B m u u f m u u f j f

P c h P h
ρ γ ρ⎡ ⎤

= − + + + − + ⎢ ⎥
⎣ ⎦

  (B31) 

 

( )3 30 0 0 0 0 0 0 0
44 0 0 0 02

0 0 00

0 0 0 0 0
0 0 0

0 0 0 0 0

ˆ ˆ ˆ 1 ( 1) ( 1)
2

ˆ ˆ
ˆ ˆ1

c
s s s r r r

c r

c d
c c

u w u p u p w
B m u f m u f

l p z z z P c hl

u p h u p u
j f u u u

h

ρ ρ
ρ ρ

γ
ρ ρ

ρ ρ ρ ρ

⎛ ⎞∂ ∂ ∂ ∂ ∂
= + + − + + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

⎡ ⎤⎛ ⎞⎛ ⎞∂ ∂
+ − + − +⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

  (B32) 

Vector g 

 

[0 0 0 0
1

w w
g j f

l z l z
]0 0 0u

ρ ρ
ρ ρ

∂ ∂
= + + −

∂ ∂
  (B33) 

(0
2 0 02

0

( 1) ( 1)
2 s s s r r r

r

w
g m u f m u

c h
= − + − )0 0f  (B34) 

( )3 0 0 0 02
0

1 ( 1) ( 1)( 1)
2 s s s r r

r

g m u u f m u u
c h

= − + − − 0 0rf  (B35) 

( )3 30 0
4 0 0 0 02

00

( 1) ( 1)
2 s s s r r r

c r

p
g m u f m u f j

hP c h
ρ

f
⎡ ⎤

= − − + − + −⎢ ⎥
⎣ ⎦

 (B36)  

(0 0
5 1

w
g g z

l
)0z

ρ
= + −  (B37)  

( )6 2 0g g z z= −  (B38)  
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( )7 3 0g g z z= −  (B39)  

( )8 4 0g g z z= −  (B40) 

 

B.2 Ideal Gas 

The rest of components other than those given here are not changed. 

0
42 ( 1)c

w
A

lZ γ
=

−
  (B41) 

( ) 0 0
44

0

1 ( 1)
( 1)

c

c

Z p w
A

lZ
γ
γ ρ

+ −
= −

−
 (B42)  

( ) ( )00 0 0 0
41 0 0 0 0

0 0

0 0

0

1 ( 1)1 ( 3) ( 3)
( 1) ( 1) 2

c
s s s r r r

c c c r

c d

c

Z pp w
B m u f m u f

lZ z lZ z P c h

h w
j f

P h

γ ρ ρ
γ γ ρ

γ ρ

+ −∂ ∂
= − − + + +

− ∂ − ∂

⎡ ⎤
+ ⎢ ⎥

⎣ ⎦

  

  (B43) 

( ) 0 0 0 0
42

0 0

1 ( 1)
( 1) ( 1) ( 1)
c c d

c c

Z w h h u
B j f

lZ z Z h Z
γ ρ γ
γ ρ γ γ

+ −

c

⎡ ⎤∂ +
= − + −⎢ ⎥− ∂ − −⎣ ⎦

 (B44)  

( ) ( )
( )( ) ( )

0 0 3 30
44 0 0 0 02

00

0 0 0 0

0 0 0

1 ( 1) 1 ( 1) ( 1)
2( 1)

1 ( 1) 1 ( 1)
( 1) ( 1)

c
s s s r r r

c rc

c c d c

c c

Z p w
B m u f m u f

z P c hlZ

Z h h p Z p u
j f

Z h Z

γ ρ
γ ρ

γ γ γ
γ ρ γ ρ

+ − ∂
= − + +

∂−

⎡ ⎤+ − + + −
+ − +⎢ ⎥− −⎣ ⎦

+

  (B45) 
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