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ABSTRACT 

 

Novel Instrumentation for a Scattering Independent Measurement of the Absorption 

Coefficient of Natural Waters, and a New Diffuse Reflector for Spectroscopic 

Instrumentation and Close Cavity Coupling.  (December 2006) 

Joseph Alan Musser, B.S., West Texas State University 

Chair of Advisory Committee:  Dr. Edward S. Fry 

 
 

We report results for the development of a flow-through integrated cavity absorption 

meter (ICAM.)  Absorption measurements have been made with 2% or less change in 

the signal in the presence of up to 10 m-1 of scattering in the medium.  The operating 

range of the ICAM ranges from 0.004 m-1 to over 40 m-1 of absorption.  This range 

allows one to use a single instrument to measure the absorption from sediment laden 

rivers out to the cleanest of ocean waters.  Further, the ICAM signal has been shown to 

be independent of the flow rate and turbulence in the medium.  In addition we report the 

development of a diffuse reflector which, to our best knowledge, has the highest 

measured diffuse reflectivity of 0.998 at 532 nm and 0.996 at 266 nm.  We also show 

that the average distance a photon travels between successive reflections in an 

integrating cavity of arbitrary shape is four times the volume divided by the surface area, 

4 V/S.  Further, for a cavity which is formed by planes tangent to an inscribed sphere 

and which maintains a homogeneous and isotropic field, the average distance traveled by 

a photon between successive reflections is equal to 4 V/S of the inscribed sphere.  Thus, 

each cavity has the same ratio of V/S as the inscribed sphere.  These advances lead to an 
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increase in the sensitivity of absorption spectroscopy.  The sensitivity approaches that of 

cavity ring down spectroscopy (CARS), without the adverse scattering effects 

traditionally associated with CARS. 
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CHAPTER I 

 

INTRODUCTION AND BACKGROUND 

Much of the information we gather from the natural world comes to us via scattered 

light.  From utilitarian information such as the location and identification of objects, to 

the aesthetics of viewing a beautiful sunset or marveling at a double rainbow, all of these 

are visible to us through scattered light.  Most of the light one sees is from diffuse 

scattering.  Take a moment and consider how our perception of the world would change 

if scattering was predominantly specular rather than diffuse.  The only surfaces which 

would be visible are those whose normal bisects the angle formed by the incident ray 

and the scattered ray.  It truly would be a different world, with an object’s appearance 

being highly dependent upon its position.  Of course when we say light is diffusely 

scattered we are really making a comment not so much about light, but about the object 

scattering it. 

 

1. Optical Properties 

 

The mechanism for scattering light is best explained with the dipole.  Polarized light 

interacts with the charged particles within matter.  Electromagnetic fields drive the 

charges in atoms and molecules to move and oscillate within the material, creating a 

dipole.  Thus energy from the electromagnetic field is absorbed into the material.  Just as  

____________ 
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an electromagnetic wave produces acceleration in charged objects, accelerating charges 

produce a changing electromagnetic field.  In this manner the electromagnetic wave is 

reradiated.  The direction of the wave may change as well as the phase of the wave.  This 

is affected by how the dipoles in the material are oriented, how they interact with 

neighboring dipoles, as well as how they individually interact with the light field.  When 

no energy is lost to the atom or molecule it is referred to as elastic scattering.  Light may 

also be absorbed without reradiating, causing a vibrational, rotational or electronic 

transition.  The light may be transmitted without any change in its wavelength or 

direction.  Understanding and being able to measure these three parameters - scattering, 

absorption and transmission - independently of each other provides a wealth of 

knowledge regarding the identity and characteristic behavior of the material.  Scattering, 

absorption and transmission of light can also vary as a function of wavelength.  Thus it is 

desirable to measure these quantities at multiple narrow wavelength bands across the 

spectrum.  Within the remote sensing field this type of measurement is curiously referred 

to as hyperspectral sensing.  The prefix hyper- is defined by Merriam-Webster as more 

of, above, beyond, excessive.  Unfortunately, hyperspectral is part of the vernacular and 

we are now stuck with it. 

 We are primarily concerned with scattering, absorption, and transmission in 

natural waters, part of a field more generally termed marine or ocean optics.  In natural 

waters these parameters are affected not only by the water medium itself, but also by the 

constituents within the medium; these constituents can be dissolved matter or suspended 

particulates.  Consider a collimated, monochromatic beam of light incident upon a thin 
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column of water, see Fig. 1.  It is clear from conservation of energy that the power of the 

light absorbed Pa, plus the power of the light scattered in all directions Ps, plus the power 

of the light transmitted Pt, is equal to the incident power Pi. 
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Pt 
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Fig. 1. The interaction of light with matter. 

 
 
 
 The volume scattering function βλ(θ, φ) describes the distribution of the scattered 

light.  Sometimes this much detail is not necessary and the scattering will be described 

by the scattering coefficient b, the back scattering coefficient bb, and the forward 

scattering coefficient bf as defined in the following equations, see Fig. 1: 
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       θθφθβφ≡ ∫ ∫
π π

π

dsin),(db
2

0 2

b ,       (1.3) 

       ∫ ∫
π

π

θθφθβφ≡
2

0

2

0
f dsin),(db .       (1.4) 

The absorption coefficient is defined as follows, 

               
( )

r
PP

Lima ia

0r Δ
≡

→Δ
.       (1.5) 

In Eqs. (1.2) - (1.5) we have suppressed any notation of wavelength dependence; it is to 

be understood that all these parameters are wavelength dependent.  One can now 

describe the total beam attenuation c as the sum of the absorption coefficient and the 

scattering coefficient, 

         bac += .        (1.6) 

In the ocean optics community it is customary to measure all these parameters in units of 

inverse meters, except for the volume scattering function which is typically in units of 

inverse meters-steradians.  To further describe the nature in which light is scattered we 

define a parameter g where 

          ∫
π

Ωθ
φθβ

=
4

dcos
b

),(g .       (1.7) 

Notice that g is normalized and has the range 1g1 ≤≤− .  As the scattering becomes 

strongly forward (backward) peaked g will approach 1 (-1); however, if the scattering is 

isotropic g will equal zero. 

 All of the properties we have discussed thus far have been dependent only on the 

material through which the light is propagating, not on the nature of the light field itself.  
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These types of properties are called inherent optical properties.  Conversely properties 

which depend on both the light field and the medium through which it travels are called 

apparent optical properties.  Two examples of apparent optical properties are water color 

and water visibility (Secchi depth); both of these change dramatically throughout the 

day, as the Sun traverses the sky.  When discussing apparent optical properties it is often 

useful to specify the radiance L and the irradiance E.  Radiance is the energy per unit 

time (power) per unit area emitted from a surface in a given solid angle and in a given 

direction, 

            ΩL ˆ
cosdAd

d 2

θΩ
Φ

= ,       (1.8) 

where Φ is the power, A is the area of the emitting surface and the radiance is measured 

in W/m2sr.  Irradiance is the radiant energy illuminating a given surface per unit time per 

unit area, 

           
A

E Φ
= ,        (1.9) 

and is measured in W/m2.  The term field has many meanings in physics.  When we are 

speaking of light within a cavity or a marine environment and use the term light field we 

will generally mean the radiance.  In the cases in which we are describing the field at the 

wall of a cavity or at a detector surface we generally mean the irradiance.  The term light 

field is used throughout marine optics and is generally interpreted according to the 

context. 
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2. Tools of the Trade 

 

In this day and age of remote satellite sensing it is imperative that one understand the 

propagation of light through natural waters if one is to properly interpret satellite data.  

Satellites detect light that has been backscattered from the atmosphere, the ground 

surface, the water surface and throughout the water column.  In order to solve the 

radiative transfer equation, one must know the initial radiance distribution, the 

absorption coefficient, and the volume scattering function.  Recall that both the 

absorption coefficient and the volume scattering function are characteristics of the 

natural water as well as any material dissolved or suspended in the water.  To validate 

the interpretation of satellite data these inherent optical properties must be measured 

locally.  It is not a trivial matter to measure them.  If one removes a sample from the 

ocean environment for a laboratory measurement, the results can change as particulates 

settle out of suspension or with the introduction of contaminants to the sample.  The 

introduction of something as seemingly benign as a suspension of micro-air bubbles can 

distort conventional absorption measurements.1  Therefore, it becomes necessary to 

make in situ measurements.  Previous absorption meters have often been sensitive to 

scattering as well as absorption.2  Some of the most interesting biological zones as well 

as the most sensitive environmental zones are rivers and shorelines.  These environments 

can range from relatively low levels of absorption, ~0.005 m-1, to levels of over 40 m-1 

for both absorption and scattering.3-5

 Several designs have been put forth to deal with these difficulties.  The designs  
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tend to fall into three categories:  those which try to capture the forward scattered light 

and reintroduce it into the sample without concern for the homogeneity of the light field; 

those which measure both the attenuation and some amount of the scattering; and finally 

those which use an integrating cavity to prevent losses due to scattering. 

 An example of the first category is the liquid core waveguide, LCW.3  These 

devices use either total internal reflection or a reflective outer wall to guide the light 

through the medium.  They lose the backscattered light as well as some of the light 

scattered near 90°.  The forward scattered light, near 90°, is either outside the critical 

angle for waveguiding or can leak out through the water outflow port.  Depending on the 

type of waveguide used, one must also be concerned that the optical path length varies 

depending on the volume scattering function of the sample. 

 In the second category, devices measure the attenuation of a collimated beam and 

then subtract from it an approximation of the scattered light.  The devices usually rely on 

either the “magic angle” method for approximating the scattering or collecting the 

forward scattering via a reflective tube wall.6-8  Both of these cases are somewhat 

distasteful and involve empirical modeling, based on assumed scattering and absorption 

characteristics of the sample.  Thus, for example, in the “magic angle” approach, if 

something of interest does exist in the volume scattering function it will almost certainly 

be missed and the correction to obtain the absorption value will be wrong.  This 

calibration method can yield measurements with negative absorption coefficients for 

dissolved materials.1
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 There have been very few in situ category three designs.  One commercially 

available now, introduces the light into the cavity in an anisotropic manner.9  In any 

cavity the light field will not be homogeneous or isotropic when the inverse of the 

absorption coefficient is of the order of the cavity diameter.  This problem becomes even 

more pronounced when the light is introduced in a nonhomogeneous matter.  Another 

complication arises because the cavity diameter is much larger than the input and exit 

ports for the medium, raising questions of sample integrity as one moves the device from 

one water zone to another. 

 Although our flow-through ICAM design also falls into this third category, it 

illuminates the integrating cavity with a homogeneous and isotropic field.  It was 

Elterman10 who suggested the use of an isotropic and homogeneous field, produced 

within an integrating cavity, to measure the absorption coefficient of samples 

independently of their scattering coefficient.  Over twenty years later Pope et al.11, 12 

showed how to adapt this concept to obtain the most accurate measurements ever made 

of the absorption coefficient of water.  In Fig. 2, the data from Pope et al.12 clearly shows 

the harmonics of the O-H stretching and scissors vibrational modes. 
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Fig. 2. Pope et al., absorption data of “pure” water. 

 
 
 
 Integrating cavities are powerful tools when assessing light fields.  Their ability 

to gather light from all directions and integrate it into a single signal, independent of its 

original propagation and proportional to the total intensity, allows them a wide range of 
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applications:  radiometry, spectroscopy, cosine illumination sources, close cavity 

coupling, etc.  One of the primary ingredients in an integrating cavity is the Lambertian 

reflector.  A Lambertian reflector reflects light proportional to the cosine of the reflected 

angle and independent of the angle of incidence, see Fig. 3. 

 
 
 

 

Fig. 3. Geometry of a Lambertian reflector.  Pi is the incident power, Ps is the scattered 

power, θi is the incident angle, and θs is the scattering angle. 
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3. Monte Carlo Simulation of the Flow-Through Integrating Cavity 

 Absorption Meter 

 

The Monte Carlo simulations for the flow-through integrating cavity absorption meter 

(ICAM) were performed by Gray13, and Gray et al.14  The basic geometry of the ICAM 

consists of a quartz tube surrounded by two cylindrical diffuse reflectors separated by a 

small air gap, see Fig. 4.  The uniform cross section of the flow-through tube allows for 

a smooth flow of water without concerns regarding trapping or mixing of different 

samples.  The outer surface of the quartz tube is ground.   

 
 
  

 

Fig. 4. The flow-through ICAM design. 
 
 
 
 The light is introduced into the small air gap between the two cylindrical diffuse 

reflectors.  The light that is transmitted from this outer integrating cavity, through the 

Reference fiber Input fibers

Signal fibers 

Quartz tube
L

Diffuse reflector 

Quartz tube outer radius 
Quartz tube inner radius 
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diffuse wall and into the inner cavity, produces an isotropic and homogeneous field in 

the inner cavity.  A fiber optic cable samples the inner cavity’s light field at the midpoint 

of the quartz tube.  A reference signal is collected by a fiber optic cable located in the 

outer cavity.  To obtain the raw absorption signal the inner cavity signal is divided by the 

reference signal.  Gray normalized his signal by dividing the raw absorption signal by 

the signal achieved when the cavity is filled with an absorptionless fluid having an index 

of refraction equivalent to water.  Although this is an impossible task in the lab, it is 

trivial in the Monte Carlo code.  I will refer to this signal as the absorption signal for 

now and address experimental methods of calibration later.  Gray used a 50 cm long tube 

with a radius of 15 mm as his standard geometry.  He fit the absorption signal as follows 

        
qa

p
)0a(Flux

)a(Flux
==χ ,     (1.10) 

−=

where p and q are fitting parameters and a is the absorption coefficient.   The response of 

the standard geometry ICAM is shown in Fig. 5. 
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Fig. 5. Monte Carlo simulation of the ICAM. 

 
 
 
 In Fig. 6 one can see the response of the ICAM as a function of the radius of the 

tube.  At large radius, end effects become pronounced and the device decreases in 

sensitivity as more light escapes out the ends.  As the radius decreases the optical path 

length also decreases.  The optimal radius for signal discrimination with a 50 cm long 

tube is about 1 cm.  In Fig. 7, the detector flux is plotted vs. the length of the cavity.  

One can see that for a given diameter, a longer tube will always provide greater 

sensitivity.  Of course the goal is not to have the greatest sensitivity possible, but the 

most sensitive instrument that is practical in the environment to be used.  Gray et al. 

suggested a 50 cm tube is sufficiently sensitive while still short enough to use in natural 
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 waters. 
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Fig. 6. Monte Carlo simulation of the ICAM response vs. diameter. 
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Fig. 7. Monte Carlo simulation of the ICAM response vs. length. 

 
 
 
 In Fig. 8, the percentage of the power that is lost through the diffuse reflector, 

that which is lost out the open ends of the tube, and that which is absorbed in the 

medium is plotted as a function of the absorption coefficient.  Most of the power is lost 

through the ICAM walls or lost out the ends of the device at low absorptions.  At high 

absorption most of the power is absorbed by the medium, as expected.  The medium’s 

fraction of the power absorbed does not approach one, instead it approaches 0.96.  The 

reason is that the quartz tube waveguides a certain amount of light out the end of the 

tube without it ever having sampled the medium.   
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Fig. 8. Monte Carlo results for the fraction of power absorbed by the medium, lost via 

the Spectralon wall, and escaping out the ends of the tube. 

 
 The detector’s response as a function of the scattering coefficient of the medium 

is shown in Fig. 9.  The results are shown for two g values of the Henyey-Greenstein 

phase function, 0 (isotropic scattering) and 0.95 (highly forward peaked as is the case 

with natural waters).  The question naturally arises, why does the forward peaked 

scattering have such a small impact on the absorption measurements?  As Gray pointed 

out, a photon headed toward the open end of the tube or to the opposite side of the tube 

will, after scattering, be most probable to continue in the same general direction thus 

having little impact on the optical path length or its tendency to escape out the end of the 

tube.  On the other hand, if the scattering is isotropic it is very likely that its direction 
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and hence its path length will change, thus we see a markedly different impact for the g 

= 0 case, see Fig. 10.  In practice, scattering in natural waters is always highly peaked in 

the forward direction. 
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Fig. 9. Monte Carlo simulation of the ICAM response vs. the scattering coefficient. 
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Fig. 10. Gray et al. Monte Carlo results for the fraction of power escaping out the ends 

of the ICAM as a function of the scattering coefficient for both highly forward peaked 

scattering, g=0.95, and isotropic scattering, g=0. 

. 
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 CHAPTER II 

 

INTEGRATING CAVITIES I, DYNAMICS* 

 

1. The Time Response of an Integrating Cavity 

 

Integrating cavities, as mentioned in the introduction, are used in several areas of optics, 

including:  radiometry, photometry, spectroscopy and materials characterization.  

Integrating cavities generally use cw illumination.  Provided an integrating cavity has a 

wall reflectivity near unity, the decay of a temporally short pulse in an empty cavity can 

provide a measure of the absolute reflectivity of the cavity wall.  Once the reflectivity is 

known, the integrating cavity can be used to make highly sensitive measurements of 

weak absorption by monitoring the decaying field of a temporally short pulse in the 

presence of a weakly absorbing medium.  In the derivation to determine the temporal 

response of an integrating cavity the following variables are defined: 

E = irradiance on the wall of the cavity, i.e. the radiation energy incident on 

 the wall per unit area per unit time (W/m2)  

ρ  =  average reflectivity of the Lambertian surface of the cavity (assumed 

  constant and independent of the angle of incidence),  10 ≤ρ≤

 

____________ 

*Reprinted with permission from “Integrating cavities - temporal response,” by E. S. 
Fry, J. A. Musser, G. W. Kattawar, P. W. Zhai, 2006. Applied Optics, accepted for  
Publication 



 20

τ =  time constant of the cavity ≡ time for irradiance to decrease to 1/e 

n =  average number of reflections in time τ  

d  =  average distance traveled between successive reflections at the cavity 

  wall 

c =  speed of light 

t =  time 

t  = average time between reflections. 

The average time between reflections is given by 

            
c
dt = .        (2.1) 

The following derivation is the widely accepted time response of an integrating 

cavity;16,17 it is reproduced here based on a slide presentation by Arecchi.18  Assume the 

irradiance EI incident on the cavity walls decays exponentially 

     τ−
=

t

0I eE)t(E        (2.2) 

where E0 is the irradiance incident on the cavity walls at time t = 0.  At time t the 

irradiance leaving the wall is 

               τ−
ρ=

t

0L eE)t(E .       (2.3) 

During a time t equal to the decay constant τ there will be n reflections in which the 

irradiance EL leaving the cavity wall after each reflection is the incident irradiance 

multiplied by the reflectivity ρ.  There are two choices one could take for the zero of 

time:  at the instant of the first reflection, or such that the first reflection occurs at t . 
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 In the first case we consider the zero of time to be at the instant of the first 

reflection, thus at the (n+1)th reflection, t = n t  = τ, and 

           ,    .        (2.4) n
0I E)(E ρ=τ 1n

0L E)(E +ρ=τ

From Eqs. (2.2) and (2.3), the irradiances at t = τ are 

           ,    .      (2.5) 1
0I eE)(E −=τ 1

0L eE)(E −ρ=τ

Recalling that n t  = τ and combining Eqs (2.4) and (2.5) yields 

        
ρ

−=
ln
1n ,       

c
d

ln
1t

ln
1

1 ρ
−=

ρ
−=τ .      (2.6) 

The subscript 1 has been added to τ to signify this is the τ from the first case.  If the 

reflectivity ρ = 0, Eq. (2.6) gives n = 0 and τ1 = n t = 0.  Physically this is reasonable.  If 

at time t = 0 the photons are all incident on the wall and the reflectivity is zero, the field 

will immediately drop to zero.  For ρ near unity both n and τ1 are large.  Eq. (2.6) is the 

standard result found in the literature for the time constant of an integrating cavity.16,17

 One can gain further insight by not assuming an exponential solution.  A Taylor 

series expansion of EI(t + t ) about the time t yields 

   ∑
∞

=

+=+
1k

k
I

kk

II dt
)t(Ed

!k
t)t(E)tt(E .      (2.7) 

Introducing a change of variables ξ = t/ t , Eq. (2.7) can be rewritten as 

            ∑
∞

= ξ
+=+

1k
k
I

k

II d
)t(Ed

!k
1)t(E)tt(E .      (2.8) 
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Recall that the amount of light lost at each instant is the irradiance, hitting the cavity 

wall at that instant, multiplied by ρ - 1.  Thus, EI(t + t ) - EI(t) = EI(t)[ρ -1], and Eq. (2.8) 

becomes 

              ( ) 01)t(E
d

)t(Ed
!k

1
I

1k
k
I

k

=ρ−+
ξ∑

∞

=

.      (2.9) 

Notice that Eq. (2.9) is a homogeneous infinite order differential equation with constant 

coefficients and suggests solutions of the form eγξ.  Substituting this into Eq. (2.9) yields  

           ∑
∞

=

=ρ−+γ
1k

k 0)1(
!k

1 .     (2.10) 

This equation is 

        e =ρ− .      (2.11) 0γ

Thus the solution to Eq. (2.9) is 

       t
lnt

0
t

t

0I eEeE)t(E
ργ

== .     (2.12) 

Recall that EI(t) = E0 e-t/τ , thus we have 

        
ρ

−=τ
ln

t ,      (2.13) 

which is the same as that derived earlier in Eq. (2.6). 

 In the second case we pick t = 0 such that the average first reflection occurs at the 

time t .  Thus the nth reflection occurs at t = n t  = τ and 

           ,     .    (2.14) 1n
0I E)(E −ρ=τ n

0L E)(E ρ=τ

Combining Eqs. (2.14) and (2.5), which still holds, we have 
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ρ

−=⎟⎟
⎠

⎞
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⎝

⎛
ρ

−=τ ,   (2.15) 

for both EI and EL, with τ2 distinguishing this as the second case.  Clearly τ1 differs from 

τ2.  In the second case, when the reflectivity ρ = 0 Eq. (2.15) gives n = 1 and τ2 = t .  

This too is reasonable.  At time t = 0 the photons must travel an average time t  before 

hitting the cavity wall, thus τ2 ≈ t .  For ρ near unity n will be large and Eqs. (2.6) and 

(2.15) will have negligible differences. 

 To resolve whether Eq. (2.6) or Eq. (2.15) is most appropriate, Fry et al.15 carried 

out Monte Carlo simulations of the decay of the irradiance in an integrating cavity.  

They performed the simulations for two different cases.  In the first case, the cavity wall 

was given a reflectivity of near unity (ρ = 0.9999).  The photons were started from 

random locations throughout the cavity and with initial directions to insure a 

homogeneous and isotropic field.  A detector on the wall of the cavity measured the 

fractional energy it received (the total number of photons it received divided by the total 

number of photons processed) as a function of the total distance S traveled by the 

photons.  The cavity radius was unity.  The simulation was run until the initial transients 

stabilized; this point was chosen at S = 50.  At this moment the wall reflectivity was 

changed from ρ = 0.9999 to the value of interest and the decay of the radiation field was 

monitored.  In this manner, the true behavior of the cavity as a function of reflectivity 

could be determined. 

 The results of the first simulation are shown in Fig. 11.  One can see a signal 

indicative of a homogeneous isotropic field just prior to S = 50.  For ρ = 0 one sees the 
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irradiance becomes zero after one cavity diameter (S = 52, diameter = 52 - 50(startup 

distance)).  This is expected as this is the farthest distance a photon can travel before 

striking the wall where it is absorbed.  This curve is not exponential, but parabolic.  Even 

with ρ ≠ 0 the decay is not immediately exponential but requires a few wall collisions 

before it follows an exponential decay.  The Monte Carlo time constants τMC were 

determined by fitting the decay after s = 52.      

 
 
 

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

40 45 50 55 60 65 70 75 80

S (Distance traveled by photon)

Fr
ac

tio
na

l E
ne

rg
y

ρ = 0
ρ = 0.2
ρ = 0.5
ρ = 0.8
ρ = 0.9
ρ = 0.99

 
Fig. 11. Monte Carlo simulation for the decay of the radiation in an integrating cavity. 

 
 
 
 These time constants are compared to those calculated from Eqs. (2.6) and (2.15) 

for several cavity reflectivities, see Table 1.  One will notice that for high reflectivities 

the agreement between all three is quite good indicating that the assumption of an 
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exponential decay is appropriate.  As the reflectivity decreases from unity so does the 

agreement between the time constants.  Notice that cτ1 ≤ cτMC ≤ cτ2 for all ρ > 0.  

Further, one can see that case 1 provides much better agreement with the Monte Carlo 

simulation.  One should be cautious regarding the exponential decay assumption.  

Clearly it was shown to be valid with the Monte Carlo simulation; however, the initial 

conditions chosen for the simulation have a subtle link to the exponential decay 

assumption.  The initial conditions were chosen such that the radiation field was 

homogeneous and isotropic.  Just how critical is this condition? 

 
 
 

Table 1. A comparison of the decay constants from case 1 and 2 to the Monte Carlo 

simulation. 

ρ cτMC cτ1 Case 1 Error cτ2 Case 2 Error
0.0 0.544 0.000 100% 1.333 145.1% 
0.20 0.902 0.828 -8.2% 2.162 139.7% 
0.50 2.001 1.924 -3.9% 3.257 62.8% 
0.80 6.056 5.975 -1.3% 7.309 20.7% 
0.90 12.738 12.655 -0.65% 13.998 9.8% 
0.99 132.75 132.67 -0.06% 134.00 0.94% 

 
 
 

 In the second Monte Carlo simulation the conditions were more akin to what 

might be found in an experimental setup.  In this case a pulse of photons with a 

Lambertian distribution over 2π steradians was launched into the cavity from a point on 

the cavity wall.  The detector was located 90° from the launching point.  The results for 

the second simulation are shown in Fig. 12.  There is a sharp peak at s = 21/2 which is the 
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most direct path for a photon to travel to the detector.  The width of this peak is due to 

the width of the detector.  A finite detector produces a slight spread in the paths which 

can reach the detector directly from the point source where the light was injected.     
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Fig. 12. Monte Carlo simulation of the decay of an injected pulse, S = 1.2 to 2.0. 

 
 
 
 There is a secondary weaker peak at s = 3.7, see Fig. 13.  This is the farthest 

distance a photon can travel and reach the detector with only one reflection.  In a few 

more reflections the signal smoothes to a near exponential curve, see Fig. 14.  This is 

indicative of a homogeneous and isotropic radiation field having been established in the 

cavity.  The experimentalist should keep these nuances in mind, we will return to them 
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later.  Once the detected energy began to decay exponentially, it was fitted to obtain the 

decay constant cτMC.   
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Fig. 13. Monte Carlo simulation of the decay of an injected pulse, S = 2.0 to 5.0. 
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Fig. 14. Monte Carlo simulation of the decay of an injected pulse, S = 5 to 50. 

 
 
 
 In Table 2, the new Monte Carlo decay constants are compared to those for Eqs. 

(2.6) and (2.15).  The results agree well for reflectivities near unity and become worse as 

ρ decreases.  One will notice that the decay constants of the Monte Carlo simulation for 

the injected pulse are almost identical to those of the Monte Carlo simulation for the 

uniform field.  This is an artifact of the choice to fit the decay constant after the 

simulation had approached an exponential decay.  In other words, once the second 

simulation had achieved a uniform field (the condition of the first simulation) the decay 

constant was determined.  At low reflectivities this condition is never met and the Monte 

Carlo simulations differ.  This shouldn’t be too surprising since at low reflectivities the 

cavity does not decay exponentially, nor should it be expected to.  What one really 
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measures at low reflectivities is the geometric relationship between the location where 

the light pulse was introduced and the available paths to the detector for the given 

number of reflections.  This is seen in the Monte Carlo data as multiple peaks in the 

signal.  This effect is actually seen in all of the data, regardless of ρ.  It is the reason for 

waiting for the energy to begin to decay exponentially before fitting it to obtain the time 

constant. 

 The following points should be taken away from this analysis.  The manner in 

which the light is launched into and detected in the cavity is critical to the initial 

response of the cavity.  The assumed exponential decay of the cavity is a valid 

assumption provided ρ ≥ 0.5 and it is nearly identical to the results from the Monte Carlo 

simulations as the reflectivity approaches unity. 

 
 
 

Table 2. Monte Carlo simulation results for the decay constants of the injected pulse. 

ρ cτMC cτ1 Case 1 Error cτ2 Case 2 Error 
0.2 0.892 0.828 -7.1% 2.162 142% 
0.5 2.000 1.924 -3.8% 3.257 63.0% 
0.8 6.056 5.975 -1.3% 7.310 20.7% 
0.9 12.740 12.655 -0.67% 13.99 9.8% 
0.99 132.75 132.67 -0.06% 134.00 0.94% 
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2. The Average Distance Between Reflections in a Spherical Shell 

 

Cavity geometry, as mentioned in the above discussion, is critical to the temporal 

response of an integrating cavity.  One of the important features used to describe an 

integrating cavity’s geometry is the average distance d  that a photon travels between 

reflections.  Fig. 15 shows the cross-section of a spherical shell with inner radius R1 and 

outer radius R2.  It is convenient to calculate d  in three separate regions I, II, and III as 

depicted in the diagram.  

 
 
 

 
Fig. 15. Regions I, II and III for the calculation of d  for a spherical shell. 

 
 
 

 The normalized probability function for photons emitted with a Lambertian 

distribution, from a wall surface, is 
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where μ = cos θ and the point of emission is taken as the origin of the spherical 

coordinate system.  Consider a unit area P from which photons are reflected, in a 

Lambertian manner, into a full 2π steradians.  In region I the reflections are restricted to 

angles θ such that 2c
π≤θ≤θ  where θc is the angle formed by the normal at point P 

and a ray originating from point P and tangent to the inner circle.  In region I we have: 

         ∫ ∫
πμ

π
φμμ

==
2

0 0
II

c ddd l
l ,     (2.17) 

and from Fig. 15, we see that for region I 

           μ=θ= 22 DcosR2l ,     (2.18) 

where D2=2R2 is the diameter of the outer cavity.  Solving Eq. (2.17) yields, 

      
3

D2 3
c2

I

μ
=l .     (2.19) 

 In region II, θ is restricted to c0 θ≤θ≤ and using the law of cosines 

( ) we find θRRR cos2 2
22

2
2

1 ll −+=

       ( )( )22
2 1R β+−μ−μ=l ,     (2.20) 

where β = R1/R2. 

Substituting Eq. (2.20) into Eq. (2.17) with φ running from 0 to 2π and μ running from 

μc to 1 yields,  

         ( 33
c

2
II

1
3

D
β−μ−=l ) .     (2.21) 

Combining the results for region I and II yields, 
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        ( 33
c

2
III

1
3

D
β−μ+=

+
l ).     (2.22) 

 We now consider photons reflected from a point Q on the inner sphere, see Fig. 

15.  In region III θ is restricted to 0 ≤ θ ≤ π/2 and again using the law of cosines 

( ))180cos(R2RR 1
2
1

22
2 θ−−+= ll  we have 

    ( )( )11R 22
2 +−μβ+μβ−=l .    (2.23) 

Subtituting Eq. (2.23) into Eq. (2.17) with φ from 0 to 2π and θ from 0 to π/2 yields, 

    ( ) ( )⎟⎟
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32

2
III

11
3

D11
3

D
l .   (2.24) 

 To combine the average distances from region I, II, and III they must be 

weighted by the probability of a reflection from their respective surfaces, that is the 

probability is equal to the fraction of the region’s surface area to the cavity’s whole 

surface area.  Thus region I + II must be weighted by 1/(1 + β2) and region III by β2 /(1 + 

β2), and we have, 

     ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
β+
β−

==
++ 2

3
2

IIIIII 1
1

3
D2dl .    (2.25) 

In the case of β = 0, d  = 2D2/3 which is the well known case for a spherical cavity.  

Notice that Eq. (2.25) reduces to 4V/S where V is the volume of the cavity and S is the 

total surface area of the cavity. 
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3. The Average Distance Between Reflections in a Right Circular Cylinder 

 

Consider a right circular cylinder of diameter D and height H, see Fig 16.  The cylinder’s 

axis lies along the z-axis of a cylindrical coordinate system.  Consider any two walls of 

the cavity labeled i and j (they may be the same wall).  Take the source point P located 

on wall i and the end point Q located on wall j.    

 
 
 

x̂

ŷ  

ẑ

I 

III 

 
Fig. 16. Regions I, II and III for the calculation of d  for a right circular cylinder. 

 
 
 
 The unit normal to each wall is  and .  The vector from P to Q is r.  With 

respect to P, an element of area dA

iPn̂ jQn̂

j at Q on wall j subtends a solid angle 

      
r

rn̂

r
dA jQ

2
j

r
⋅

.      (2.26) 
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For a Lambertian surface, the differential probability of emission from point P in the 

direction r is 

          
r

rn̂ iP
r

⋅
.       (2.27) 

Thus the differential probability dpj of reflection from P to Q in the solid angle dAj is 

    
r

rn̂
r

rn̂

r
dA

π
1dp iPjQ

2
j

j

rr
⋅⋅

= ,     (2.28) 

where the normalization is provided by 1/π.  The Lambertian weighted distance from P 

to Q averaged over all points Q on wall j is given by 
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==
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j
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r
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π
1rdpd

rr

.    (2.29) 

 Since wall i is assumed to be uniformly illuminated, Pjd  can be averaged over it 

using the differential probability dp = dAi/Ai.  Therefore, the result for the average 

Lambertian weighted distance a photon travels between wall i and wall j is 

   ∫∫ ∫∫ ∫∫
⋅⋅

==→
i i j

j
iPjQ

i
i

iPj
i

ji dA
r

rn̂
r

rn̂

r
1dA

πA
1dAd

A
1d

rr

.   (2.30) 

Since the Lambertian cosine factors are always positive the directions of the normals are 

chosen such that the dot products are always positive quantities.  The unit vectors are , 

 and ; the corresponding vector components are represented by {ρ, ϕ, z}.  There are 

three surfaces I, II, and III from which light can reflect.  As in the case of the spherical 

shell, the associated surface areas of the regions are needed to determine the probability 

of a photon originating from the given region.  Their areas are 

n̂

l̂ k̂
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          DHAI π= ; 
4
DAA

2

IIIII
π

== .    (2.31) 

A photon can be reflected from the cavity wall in three unique ways from region I to 

region I, from region I to region II and from region II to region III. 

 Consider IId → .  The source point for such a reflection is {R,0,z0} where we are 

free to choose ϕ0=0 due to symmetry.  The end point is {R, ϕ, z}.  The normal to the 

cavity wall at the source and end points is ={1,0,0}, see Fig. 17.  The components in 

the directions ,  and  of the vector from the source to the end point are given by 2R 

sin

In̂

n̂ l̂ k̂

2 ϕ/2, 2R sin ϕ/2 cos ϕ/2, and (z-z0), respectively.  Therefore, r1 = {R(1- cos ϕ), Rsin 

ϕ, z-z0} and its magnitude is 2
0

2
1 )zz()cos1(R2r −+ϕ−= .  The Lambertian cosine 

factor as well as the component of infinitesimal area dAI perpendicular to rI is 11I /rrn̂ r
⋅ , 

         
2

0
2
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II

)z(z)cos1(R2
)cos1R(

r
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−+ϕ−

ϕ−
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⋅
r

.    (2.32) 
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Fig. 17. Cross-sectional view of a cylindrical cavity at a height of zo.  The source point P 

is located on the wall at a distance of zo above the base.  The end point Q is also located 

on the wall; however, it is at a distance of z above the base. 

 
 
 

 Introducing the normalized coordinates 
H
z

=ζ and 
H
z0=ν , where 1,0 ≤νζ≤ , 

and the dimensionless parameter 
H
D

H
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==α  yields 22
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2
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Thus, 
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Averaging over all source points P on the region I wall yields IId → , 
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giving 
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Integrating over ζ and ν yields 

     
π
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for the average distance traveled by photons reflecting off the cylinder wall and hitting 

elsewhere on the cylinder wall.  The integral in Eq. (2.36) is a hypergeometric function, 

but for our purposes will be evaluated numerically. 
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ϕρ−ρ+ cosR2R 22  

 
Fig. 18. Base of the cylindrical cavity.  The source point P is on the wall a distance zo 

above the base.  The end point Q is on the base (z=0) a distance ρ from the cylinder axis. 
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 Consider IIId → , from a source point on the cylinder wall to an end point on the 

base of the cylinder, see Fig. 18.  Notice that IIId →  is equivalent to IIIId → .  The source 

point is located at {R,0,z0}; the end point is at {ρ, ϕ,0}.  The normals are { }0,0,1n̂ I =  

and .  The vector, from the source point to the end point, in the direction 

of ,  and k  is 

{ 1,0,0n̂ II −= }

n̂ l̂ ˆ ( )0II z,sin,ρcosρRr −ϕϕ−=
r ; its magnitude is 

2
0

22
II zcosR2Rr +ϕρ−ρ+= .  Thus the Lambertian cosine factor is  
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r
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⋅
r

    (2.37) 

and the component of infinitesimal area dAII on the bottom face that is perpendicular to 

rII is  
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Again we introduce normalized coordinates 
R
ρ

=η and 
H
z0=ν , where 1,0 ≤νη≤  and 

H
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Averaging over all source points on the cylinder wall is done just as before in Eq. (2.34), 

thus the average distance is 
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Integration yields the following 
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This integral will be numerically integrated. 

 
 
 

 
Fig. 19. Cross-sectional view of the cylindrical cavity.  The source point P is on the base 

(z=0) at a distance of ρo from the axis.  The end point Q is on the top (z=H) at a distance 

ρ from the cylinder axis. 

 
 
 

 Finally consider IIIIId → , where the source points are located on the lower end face 

and the end points are located on the upper end face, see Fig. 19.  The source point is 

{ρ0,0,0} and the end point is {ρ ,φ, H}.  The normals are = {0,0,-1} and = 

{0,0,1}.  The vector from the source point to the end point is 
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{ ,Hsin,ρcosρρr 00III ϕϕ−=
r } and its magnitude is 2
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Again we introduce normalized coordinates 
R
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=η  and 
R
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Next we must average over all source points on the base, 
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Plugging Eq. (2.43) into Eq. (2.44) yields 
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Integrating over μ yields 
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We will leave the remaining integrals to be done numerically. 
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 For rays originating on the cylinder wall, the average Lambertian weighted travel 

distance to all cavity surfaces is 

        IIIIIIIIIW dddd →→→ ++= .     (2.47) 

For rays originating on the bottom face, the average Lambertian weighted travel distance 

to all cavity surfaces is 

             IIIIIIIIB ddd →→ += .     (2.48) 

Symmetry dictates that BT dd = ; that is, the average Lambertian weighted travel 

distance from the bottom face to the top face must be equal to that from the top face to 

the bottom. 

It is also clear that the average Lambertian weighted travel distance from the wall to 

either end face is equal to that from the end face to the wall when multiplied by the ratio 

of the end face surface area to the wall surface area; or, put more succinctly, 
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A
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The cavity radiation is isotropic, therefore the probability PW that a source point is on the 

wall is 
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and the probability PB = PT that a source point is on an end face is 
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Thus the average distance between reflections, for a cylindrical cavity with Lambertian 

walls, is 

             TTBBWW PdPdPdd ++=  
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Since AI/AII = 4/α Eq. (2.52) can be simplified to  
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Using Eqs. (2.36), (2.41), and (2.46) with Eq. (2.53) gives 
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Numerically integrating the terms in the curly brackets yields zero for all 0 ≤ α ≤ ∞.  

Recall α = 2R/H, thus the curly bracket term is zero for all α and the average distance 

between reflections in a cylindrical cavity is 

           
DH2

DH2
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D2d
+

=
+α

= .     (2.55) 

In the special case in which α = D/H = 1, 

       D
3
2d HD == .      (2.56) 
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This is exactly the same as the average distance traveled between reflections in a 

spherical cavity, with a diameter D, inscribed within the cylinder.  Note that all of the 

cylinder’s surfaces are tangent to the sphere’s surface. 

 

4. The Average Distance Between Reflections in a Cavity of Arbitrary Shape 

 

Consider a cavity of arbitrary shape whose volume is V and surface area is S.  Let the 

cavity contain n photons per unit volume, distributed such that L(r,Ω), the radiance, is a 

constant throughout the cavity.  Consider an infinitesimal element of area dS on the wall 

of the cavity and the infinitesimal cylindrical volume shown in Fig. 20.  The number of 

photons in the cylinder is n(cΔt)(μdS) where μ = cosθ.  The photon propagation 

directions are uniformly distributed over a 4π solid angle at any point within the cavity; 

thus, the fraction of the photons propagating in the direction (θ, φ) in the solid angle dΩ 

= dμdφ is 

     ϕμ
π

= dd
4
1Pu .     (2.57) 
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Fig. 20. Geometry for the photon flux incident on the wall of a cavity. 

 
 
 
 Therefore, in a uniform distribution, the number of photons in the cylinder in Fig. 

20 that travel in the direction (θ, φ) in an infinitesimal solid angle dμdφ is 

         ( )( ) ( )dSdtdd
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Since there is no photon-photon scattering within the volume, these photons must be 

supplied by reflection from the surface. 

 Consider the photons reflected from the surface.  The total number of photons in 

the cavity is nV and these photons will, on average, be incident on the wall in a time 

cd , where d  is the average distance between collisions with the cavity wall.  

Therefore, the total number of photons incident on the wall per unit time per unit area is 

     ( ) Sd
ncV

Sc
d

nV
= .     (2.59) 
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Let us assume the surface is Lambertian, that is constant L(r, Ω).  Thus the probability 

that photons will be reflected from the surface at an angle θ to the normal is proportional 

to μ and is independent of the angle of incidence.  The probability that photons will be 

reflected at angles θ, φ into an infinitesimal solid angle dΩ = dμdφ is then 

     ϕμμ
π

= dd1Pr ,     (2.60) 

where the factor 1/π provides normalization.  Photons reflected at angles θ, φ into the 

infinitesimal solid angle dμdφ from the element of the cavity surface area dS in time dt 

are contained in the cylinder shown in Fig. 20.  From Eqs. (2.59) and (2.60), the number 

of these photons is  
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Maintaining constant radiance requires dNu = dNr.  Clearly, it is possible to satisfy this 

condition because the θ, φ dependences in dNu and dNr are identical in Eqs. (2.58) and 

(2.61), and we find 

          
S
V4d = .      (2.62) 

This is a completely general result for d  independent of cavity shape and depending 

only on the volume to surface ratio and the condition that the field in the cavity be 

maintained as homogeneous and isotropic.  This result has also been obtained from 

neutron transport theory.19  We point out that Hobbs and McCormick20 also recognized 

the correlation between the result from neutron diffusion and the average path length in 

an integrating cavity.  The assumption of a Lambertian surface provided the μ factor 
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needed in Eq. (2.61) for the comparison with Eq. (2.58); however, Eq. (2.58) can be 

satisfied by other types of surfaces.  A specular reflector will maintain an isotropic 

radiance distribution but will not convert an anisotropic radiance distribution into an 

isotropic one, whereas a Lambertian surface will asymptotically convert an anisotropic 

distribution into an isotropic distribution. 

 

5. The General Result for a Cavity Formed by Planes Tangent to an Inscribed 

 Sphere 

 

Consider an arbitrary cavity shape for which each flat face is tangent to a single 

inscribed sphere of diameter D, radius R (a curved surface is considered to be an infinite 

number of flat surfaces).  It will be shown that for such a cavity d  = 2D/3; this is 

identical to d  for the inscribed sphere. 

 The cavity has volume V and surface area S.  Suppose the areas of the flat faces 

(each face has 3 or more sides) for this cavity are denoted by Si.  Consider lines drawn 

from the center of the inscribed sphere to each vertex in the cavity wall.  If there are M 

flat faces, these lines define M pyramidal shaped objects whose bases have area Si, and 

whose volumes are Vi, where 

           , and ∑ .    (2.63) ∑
=

=
M

1i
i VV

=

=
M

1i
i SS

Each of these pyramidal objects has a height equal to the inscribed sphere’s radius R, 

which is perpendicular to the face at the tangent point.  At a distance r from the apex of 
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one of these pyramidal objects, the cross-section parallel to the base has dimensions 

directly proportional to r; hence the area si(r) of such a cross-section is proportional to r2.  

The boundary condition at r=R is si(R) = Si, hence 

      2

2

ii R
rS)r(s = .     (2.64) 

The volume of these pyramidal objects is then  

           ∫ ==
R

0
iii 6

DSdr)r(sV .     (2.65) 

Summing over all M objects that make up the cavity and using Eqs. (2.63) yields 

          
6
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S
V

= ,      (2.66) 

which is identical to V/S for the inscribed sphere.  This is a general result for any object 

all of whose faces are tangent to a single inscribed sphere.  The result for d  in such a 

cavity then follows from Eq. (2.62), 
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3
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Eq. (2.62) is completely general.  Consider a cylinder of arbitrary height H and diameter 

D; the volume to surface area ratio is 
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Eq. (2.62) then yields 
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which is identical to the brute force derivation resulting in Eq. (2.55).  It is interesting to 

note that if H»D, then d ≈D.  Compare this result to a torus.  The volume to surface ratio 

of a torus is ( ) 4/DS
V

torus
= , where D is the diameter of the ring cross-section.  It is 

completely independent of the radius used to generate the torus.  Using Eq. (2.62), we 

find that d  = D, which is exactly the same as a long cylinder.  This should not be too 

surprising.  In the case of the cylinder, the longer it gets the less the end caps affect the 

dynamics of the cavity.  The torus, when cut open, can be viewed as a cylinder with the 

boundary condition that the radiance out one end is retro-reflected back into the cavity.  

That is, it behaves as if it were cut open and then stretched into a long cylinder while 

maintaining its cross-sectional diameter. 

 To sum things up we see that, provided the reflectivity of an integrating cavity is 

near unity, the simple models for the cavity decay constant agree well with the Monte 

Carlo simulations.  As the reflectivity decreases the agreement decreases as well.  It 

should be noted that if a sphere of diameter D can be inscribed inside an integrating 

cavity so that it is tangent at one point to every flat surface then the average distance 

traveled between reflections d  in the cavity is 2D/3.  Finally, for any cavity with a 

Lambertian surface and a reflectivity near unity, d  will equal 4V/S, independent of the 

cavity’s shape.  If a nonhomogeneous field is injected into a cavity (which is incapable 

of converting the field into a homogeneous and isotropic field due to either the 

reflector’s characteristics or the level of absorption in the sample) then d  ≠ 4V/S.  One 

would hardly think this obvious statement warrants any attention; however, a quick 
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overview of some of the commercial instruments in the marketplace reveals the 

necessity of such a statement.  Thus the experimentalist should always be aware of the 

impact upon the dynamics of the integrating cavity due to the following:  the given 

reflectivity, the absorption of the sample, and the manner in which the field is injected 

into the cavity. 
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 CHAPTER III 

 

INTEGRATING CAVITIES II, 

A HIGHLY EFFICIENT LAMBERTIAN REFLECTOR 

One of the key ingredients to the success of any integrating cavity device is the quality 

of the diffuse reflector.  It is this diffuse reflectivity which allows one to integrate signals 

over all angles.  Spectralon ®, by Labsphere*, is the world leader in diffuse reflectivity.  

Spectralon is composed of polytetrafluoroethylene PTFE, a powder which has been 

pressed into machinable blocks.  Spectralon has an effective spectral range of 250 nm to 

2500 nm.21  Although Spectralon is an outstanding diffuse reflector it has a couple of 

issues which cause concern.  If exposed to ultraviolet light it can undergo photolytic 

degradation22,23 and its performance will diminish over time.  Spectralon has a 

reflectivity of 99.0-99.2% across the visible spectrum, while in the ultraviolet range it 

decreases to 95.0% at 250 nm and then drops rapidly.21  At 500 nm the optical path 

length in a 5 cm integrating sphere, made from Spectralon, is 3.69 m.  If one were able 

to increase the reflectivity from 99.1% to 99.9% or 99.99% the path length would 

increase to 33 m and 333 m respectively.  The 10 to 100 fold increase in the optical path 

length would greatly enhance the sensitivity of the integrating cavity.  This raises the 

question, can we make a better diffuse reflector, one that works farther into the 

ultraviolet and with a higher reflectivity? 

 

____________ 

*Spectralon ® is produced by Labsphere, Inc., North Sutton, NH. 
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1. A Simple Model of a Retro-Reflector 

 

We present a simple model to facilitate our understanding of a high efficiency diffuse 

reflector.  Consider a beam of light at normal incidence to 1, 2, 3 or N sheets of glass.  

Let η be the reflectivity of a surface behind the last plate of glass and let ρ be the 

reflectivity at each glass-air interface.  Let in be the intensity of the light in the 

successive locations, and traveling in the directions shown in Fig. 21.  The intensity of 

light leaving upward from the nth plate is i4n, the intensity of light incident from above on 

the nth plate is i4n+1, the intensity of light going upward within the nth plate is i4n-2, etc. 

Let us assume the glass plates have no absorption.  In the case of 1 layer of glass, see 

Fig. 22, we can solve for the total reflection with the following equations: 

             )1(iii 301 ρ−+ρ=        (3.1) 

             )1(iii 032 ρ−+ρ=        (3.2) 

             )1(iii 523 ρ−+ρ=        (3.3) 

             )1(iii 254 ρ−+ρ=        (3.4) 

             η= 45 ii .         (3.5) 

These simultaneous equations can be solved for the total reflected light R = i1/i0, 

             
ηρ−ρ+
ηρ−ρ+η

=
21
32R .       (3.6) 
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Back Surface, reflectivity =  η   
i4N i4N+1  

 
i 4N-1i4N-2 plate N 

 i4N-3i4N-4 
 
 
 
 i12 i13 
 

i 11i10 plate 3 
 i8 i9 
 

i 7i6 plate 2 
 i4 i5 
 

i 3i2 plate 1 
 i1

 
i0 reflectivity of plate-air interface = ρ  

Fig. 21. Geometry for calculating the reflectivity of N plates. 
 
 
 

Back Surface, reflectivity =  η  

i4 i5 

 
Figure 22. Geometry for calculating the reflectivity of 1 plate. 

 
 
 
 To solve the case of 2 layers of glass Eqs. (3.1) - (3.4) remain the same, Eq. (3.5) 

is replaced with Eq. (3.7) and Eqs. (3.8) - (3.11) are added to the list: 

             )1(iii 745 ρ−+ρ=        (3.7) 

i3i2 plate 1 
i1i0

reflectivity = ρ  

reflectivity =   ρ
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             ρ)(1iρii 476 −+=        (3.8) 

             ρ)(1iρii 967 −+=        (3.9) 

             ρ)(1iρii 698 −+=      (3.10) 

             ηii 89 = .       (3.11) 

Solving for the total reflected light we find 

              
ηρ−ρ+
ηρ−ρ+η

=
431
54R .     (3.12) 

Continuing in this vein yields the following solutions: 

 1 layer of glass           
ηρ−ρ+
ηρ−ρ+η

=
21
32R      (3.13) 

 2 layers of glass           
ηρ−ρ+
ηρ−ρ+η

=
431
54R      (3.14) 

 3 layers of glass           
ηρ−ρ+
ηρ−ρ+η

=
651
76R      (3.15) 

 4 layers of glass           
ηρ−ρ+
ηρ−ρ+η

=
871
98R      (3.16) 

 N layers of glass           
ηρ−ρ−+
ηρ+−ρ+η

=
N2)1N2(1

)1N2(N2R .    (3.17) 

 Let us consider some test cases.  If N = 0 the reflectivity goes to η.  If ρ = 0, the 

reflectivity goes to η.  If ρ or η = 1 the reflectivity goes to 1.  All these results are as 

expected.  In Fig. 23, the reflectivity is plotted for ρ = 0.04 (the typical reflectivity at a 

glass-air interface) and for η = 0, 0.04, 0.1, 0.2, 0.4, 0.8 and 0.9.  Notice that as N grows 

large, η plays little role in the overall value of the reflectivity.  In Fig. 24, the reflectivity   
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is plotted for η = 0 and for ρ = 0.04, 0.1, 0.2, 0.4, 0.8 and 0.9.  Once again the overall 

value of the reflectivity depends little on ρ as N grows.  In the limit of large N the 

reflectivity approaches unity even if ρ is small and η is 0.  Consider ρ = 0.04 (the typical 

reflectivity for a quartz-air interface); a reflectivity of 0.999 is achieved with N just 

under 12,000, see Fig 25.  Of course 12,000 layers of quartz glass plates are not 

practical, but the equivalent of twelve thousand layers could easily be achieved with 

micron sized quartz powder.  Although a powder is not a retro-reflector as is a glass 

plate, the correspondence to multiple scatterings (reflections) provides a baseline to the 

concept.    
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Fig. 23. Reflectivity vs. layers of glass as a function of η, with ρ = 0.04. 
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Fig. 24. Reflectivity vs. layers of glass as a function of ρ, with η = 0.0. 
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Fig. 25. Reflectivity of a stack of glass plates vs. the number of layers, with ρ = 0.04. 

 
 
 



 56

 If one is to have a mirror of a reasonable thickness, say 2.54 cm, how thin must 

each glass layer be to have a reflectivity of 0.999 or 0.9999?  Dividing the mirror 

thickness by the number of layers needed to achieve the given reflectivity yields a 

thickness of order 1 μm to 0.1 μm, respectively.  Thus fine quartz powder should work 

well.  The fact that powders or small droplets can provide a Lambertian surface has been 

known for a long time.  Why then is this considered new?  We hinted at it earlier with 

the comment about absorption.  The diffuse reflector works via the index of refraction 

mismatch between the powder and the background medium, with the caveat that 

absorption be negligible.  With thousands of reflections occurring in the powder layers, 

any absorption at all will quickly diminish the intensity of the light.  Thus, the real 

search is for ultra pure powder with a high transmission in the wavelength of concern, 

i.e. fumed silica, magnesium fluoride, lithium fluoride, etc. 

 

2.  Reflectivity Tests of Fumed Silica 

 

To begin our search we made our own fumed silica and qualitatively observed the high 

reflectivity and the diffuse nature of the powder.  It became quickly obvious that it 

would have taken a monumental effort for us to produce the volume of fumed silica we 

desired.  Fortunately we found two sources of ultra pure silica.  The first was a special 

production run by Pegasus Glassworks Incorporated from Sturbridge, MA.  They used a 

sol-gel process to produce the silica.  The second source was the Degussa Corporation 

from Parsippany, NJ.  Degussa mass produces a line of fumed silica products called 



 57

Aerosil.  We tested three of their product lines, Aerosil 380, Aerosil 90, and Aerosil 

EG50.  The numbers refer to the surface area per mass (m2/g) of that grade.  Fig. 26 and 

27. show SEM images of fumed silica aggregates and agglomerates.24  The base particles 

are approximately 40 nm and are not found alone.  The base particles form aggregates 

and which then form agglomerates. 

 
 
 

 

Fig. 26. Fumed silica aggregate ~ 1/3 μm. 
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Fig. 27. Fumed silica agglomerate ~ 8.5 μm. 
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Fig. 28. Experimental setup for measuring the relative reflectivities of our samples. 

 
 
 
 The first test was a comparison of the reflectivity of the different powders as 

compared to Spectralon.  This test was conducted by rotating the samples underneath a 

small port of an integrating cavity.  A laser beam was incident on the sample at an angle 

of 8° from normal.  On the side of the integrating cavity and shielded from any direct 

reflections was a Hamamatsu 1P21 photomultiplier tube, see Fig. 28.  Fig. 29 shows the 

data for Spectralon vs. Aerosil 380, Aerosil 90, and Aerosil EG50.  The “dog ears” in the 

data are due to specular reflections from a metal ring which is supporting the quartz 

powder.  Both Aerosil 90 and EG50 outperformed Spectralon.  In Fig. 30 one can see 

that the Pegasus quartz power also outperformed Spectralon. 
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Fig.29. Relative reflectivity measurement for Spectralon vs. the Aerosil products. 

 
 
 
 The powders have a large surface area per unit mass and readily absorb moisture 

and other volatile materials.  Thus, it became necessary to bake the powders and protect 

them from contamination.  Fig. 31 compares the performance of each powder, which is 

normalized to Spectralon’s reflectivity.  The baked Aerosil EG 50 outperformed all other 

samples.  The baked Aerosil 90 and baked Pegasus also performed well and are suitable 

for a variety of applications. 
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Fig. 30. Relative reflectivity measurements for Spectralon vs. the Pegasus product. 
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Fig. 31. Relative reflectivity comparison of all products at 532 nm. 
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3. Transmission vs. Pressure Test 

 

Transmission measurements were made to determine the optimal pressure with which to 

press the powder.  The Aerosil 90 and Aerosil EG50 were pressed into metal rings 1 cm 

tall and 2.54 cm inner diameter.  The rings were illuminated from above with a 532 nm 

laser.  The transmission through the sample was measured directly beneath the ring.  As 

can be seen in Fig. 32, there is a wide range in which the reflectivity is fairly constant for 

the Aerosil 90 sample.  Fig. 33 shows the low pressure range of Fig. 32.  
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Fig. 32. Transmission vs. pressure for Aerosil 90. 
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Fig. 33. Expanded low pressure range of Fig. 32. 

 
 
 
 Fig. 34 shows the transmission vs. pressure for Aerosil EG50.  It should be noted 

the powder does have a tendency to relax and expand after being pressed.  Although 

quartz is quite hard (H=7 on the Mohs scale), it did behave at the macroscopic level as 

though it were somewhat elastic.  Like a rubber block it would partially expand back as 

pressure was removed from the powder.  The powder can be machined after it has been 

pressed; however, it is a delicate process, similar to carving a bar of soap. 
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Fig. 34. Transmission vs. pressure for Aerosil EG50. 

 
 
 

4.  BRDF Measurements 

 

The character of a diffuse scatterer can be quantified with the bi-directional reflectance 

distribution function, BRDF, as proposed by Nicodemus in 1977 and now widely used as 

an industry standard for describing diffusely reflective material.21,25,26

     
)cos(dP

P
AP

d)cos(A
P

irradiance
),(radiance

),(BRDF
si

s

i

s

s

ss
ss θΩ

=
⎟
⎠
⎞⎜

⎝
⎛

Ωθ
=

φθ
≡φθ .  (3.18) 

In general the BRDF can be a function of both θ and φ, but usually the φ dependence is 

neglected, see Fig. 35. 
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Fig. 35. Geometry for BRDF. 

 
 
 

 Ps is the power scattered into the solid angle dΩ.  A is the area of the sample 

illuminated.  θs is the angle formed by the z axis and the unit vector , along the 

scattering direction.  φ

Ω̂

s is the azimuthal angle.  Unless stated otherwise, we will only 

concern ourselves with the in plane BRDF; that is, when θi and θs lie in the same plane. 

 Recall that a Lambertian reflector is a reflector in which the number of photons 

scattered, at an angle θs, is proportional to the cosine of the scattering angle θs.  Consider 

a surface which is uniformly illuminated.  If one views a small circle from directly above 

it, one will see a circle; however, as one views this circle from some other angle one sees 

a smaller area, an ellipse.  This is the projection of the circle along a vector directed 

toward the viewer.  The area decreases as the cos(θ), where θ is the viewing angle.  

Since both the number of photons scattered and the area decrease as cos(θ) the apparent 
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brightness, that is the radiance, remains the same regardless of the viewing angle.  This 

is evidenced in the BRDF as a constant value, BRDFLambertian=ρ/dΩ, where ρ is the 

reflectivity of the Lambertian surface.  A specular reflection, on the other hand, is 

represented in the BRDF as a delta function. 

 There are several issues which cause an experimental measurement of the BRDF 

to deviate from these expected results.  Nicodemus points out that some of the 

assumptions he made are not truly valid.  His derivation assumes a uniform beam 

illuminates the surface; this is not generally the case, usually one has a Gaussian beam.  

He also points out that scattering is not limited to the surface of the material, but also 

involves bulk scattering in which case both the area being illuminated and the area 

scattering light are poorly defined.  The assumption that the surface is uniform is not 

true.  Even with these concerns the BRDF is still a useful and standard tool to quantify 

reflecting surfaces.  Stover fully discusses the following additional sources of error:  

finite detector aperture, scatter created from the apparatus, calibration inaccuracies, noise 

detection nonlinearities and mechanical errors26. 

 We will concern ourselves with one of the errors, that introduced by the finite 

size of the detector.   For a true Lambertian material the scattered light goes to zero as θ 

goes to ± 90°, (cos(±90°) = 0).  Thus the BRDFLambertian goes to Ps/PidΩcos(θs) = 

ρPicos(θs)/PidΩcos(θs)=ρ/dΩ.  When measuring the BRDF, Ps(θ) is the measured 

quantity.  The problem is that a finite sized detector never sees Ps go to zero.  At θ = 

±90° one half of the detector is still visible to the sample, see Fig. 36. 
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Fig. 36. Detector still “sees” light at 90°. 

 
 
 
 By dividing the small but finite value of Ps by cos(± 90°) the BRDF(±90°) grows 

to infinity.  This problem can be easily solved by replacing cos(θ) in the BRDF with a 

weighted cosine function, cosw(θ).  The cosw(θ) function accounts for the varying 

detector area visible as a function of θ.  Since cosw(θ) is an even function we only need 

to define cosww((θθ))  ffoorr  00°°  ≤≤  θθ  ≤≤  9900°°.  Thus, 

        

[ ]

∫

∫

−

−θ

≡θ

visiblearea

22

visiblearea

22

w
dyyr2

dyyr2)y(cos

)(cos ,,          ((33..1199))  

wwhheerree  tthhee  nnuummeerraattoorr  iiss  tthhee  iinntteeggrraall  ooff  tthhee  ccoossiinnee  ooff  tthhee  ssccaatttteerriinngg  aannggllee,,  wwhhiicchh  iiss  

iilllluummiinnaattiinngg  aa  hhoorriizzoonnttaall  sseeccttiioonn  ooff  tthhee  ddeetteeccttoorr,,  wweeiigghhtteedd  bbyy  tthhaatt  ssaammee  ddeetteeccttoorr  

aarreeaa,, dyyr2xdy2 22 −= ,,  sseeee  FFiigg..  3377..    TThhee  ddeennoommiinnaattoorr  iiss  tthhee  iinntteeggrraall  oovveerr  tthhee  vviissiibbllee  
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rreeggiioonn  ooff  tthhee  ddeetteeccttoorr  aanndd  nnoorrmmaalliizzeess  tthhee  wweeiigghhtteedd  ccoossiinnee  ffuunnccttiioonn..    TThhee  lliimmiittss  ooff  tthhee  

iinntteeggrraall  aarree  ddeeffiinneedd  bbyy  tthhee  aarreeaa  ooff  tthhee  ddeetteeccttoorr  tthhaatt  iiss  vviissiibbllee..    FFoorr  00  ≤≤  θθ  ≤≤  9900--αα the limits 

run from y = -r to r, where α = arctan(r/R).  For θ ≥ 90-α the limits run from y1 to r 

where y1 = -R tan(90-θ).  By plotting 1/cos(θ) vs. 1/ cosww((θθ))  oonnee  ccaann  sseeee  tthhaatt  tthhee  

ssiinngguullaarriittyy  aatt  θθ  ==  ±±9900°°  iiss  aavvooiiddeedd..    TThhiiss  pprroobblleemm  ccaann  aallssoo  bbee  mmiinniimmiizzeedd  bbyy  tthhee  pprrooppeerr  

cchhooiicceess  ffoorr  tthhee  ddeetteeccttoorr  rraaddiiuuss  rr  aanndd  tthhee  ddeetteeccttoorr  ddiissttaannccee  RR  iinn  tthhee  eexxppeerriimmeennttaall  sseettuupp..  

  
  
  

  
FFiigg..  3377..  GGeeoommeettrryy  ffoorr  tthhee  lliimmiittss  ddeeffiinniinngg  tthhee  aarreeaa  vviissiibbllee  oonn  tthhee  ddeetteeccttoorr..  

  
  
 
  TThheerree  aarree  vveerryy  ssmmaallll  eerrrroorrss  iinnttrroodduucceedd  tthhrroouugghhoouutt  tthhee  BBRRDDFF  bbyy  aapppprrooxxiimmaattiinngg  

tthhee  ccoorrrreecctt  ccoossww((θθ))  aass  ccooss((θθ))..    TThhiiss  iiss  bbeeccaauussee  tthhee  ccoossiinnee  ffuunnccttiioonn  iiss  nnoott  ssyymmmmeettrriicc  aabboouutt  

aann  aarrbbiittrraarryy  vvaalluuee  θθ..    IInn  oouurr  eexxppeerriimmeennttaall  sseettuupp  tthhiiss  mmaakkeess  aa  ddiiffffeerreennccee  ooff  aabboouutt  11  ppaarrtt  iinn  

1100,,000000  ffoorr  aallll  bbuutt  θθ  nneeaarr  ±±9900°°..    TThhee  oonnllyy  eerrrroorr  tthhee  ccaallccuullaattiioonn  ddooeess  nnoott  ttaakkee  iinnttoo  aaccccoouunntt  

rreeggaarrddiinngg  tthhee  ffiinniittee--ssiizzeedd  ddeetteeccttoorr  iiss  tthhee  aapppprrooxxiimmaattiioonn  tthhaatt  tthhee  ssuurrffaaccee  ooff  iinntteeggrraattiioonn  iiss  

nnoorrmmaall  ttoo  tthhee  oouuttggooiinngg  rraayy  aalloonngg  θθ((yy))..    TThhiiss  eerrrroorr  aallssoo  eexxiissttss  ffoorr  tthhoossee  uussiinngg  ccooss((θθ))  aass  aann  

aapppprrooxxiimmaattiioonn..    PPrroovviiddeedd  oonnee  cchhoooosseess  eexxppeerriimmeennttaall  ppaarraammeetteerrss  ssuucchh  tthhaatt  aarrccttaann((rr//RR))  ««  11  
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tthhee  eerrrroorr  iiss  nneegglliiggiibbllee..    IInn  oouurr  eexxppeerriimmeennttaall  sseettuupp  tthhee  ddeevviiaattiioonn  ffrroomm  ppeerrppeennddiiccuullaarr  iiss  aa  

mmaaxxiimmuumm  ooff  00..66°°..    TThhee  pprroojjeeccttiioonn  ooff  aann  aarreeaa,,  aatt  aann  aannggllee  ooff  00..66°°,,  iiss  ooffff  bbyy  aa  ffaaccttoorr  ooff  

oonnllyy  00..00000011..    IInn  FFiigg..  3388  wwee  pplloott  tthhee  11//ccooss((θθ))  ffuunnccttiioonn  vvss..  tthhee  11//ccoossww((θθ))  ffoorr  aa  22..5544  ccmm  

ddiiaammeetteerr  ddeetteeccttoorr  tthhaatt  iiss  3300..55  ccmm  aawwaayy  ffrroomm  tthhee  ssaammppllee..    NNoottiiccee  tthhaatt  tthhee  wweeiigghhtteedd  ccoossiinnee  

ffuunnccttiioonn  aalllloowwss  tthhee  BBRRDDFF  ttoo  rreemmaaiinn  ffiinniittee,,  jjuusstt  aass  iitt  pphhyyssiiccaallllyy  ddooeess..    IInn  oouurr  sseettuupp  tthhee  

11..33  ccmm  ddeetteeccttoorr  wwaass  5566  ccmm  ffrroomm  tthhee  ssaammppllee..  
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FFiigg..  3388..  IImmppaacctt  ooff  11//ccoossiinnee  vvss..  11//  wweeiigghhtteedd  ccoossiinnee..  

  
  
  
  AAnnootthheerr  ddiiffffiiccuullttyy  iinn  mmeeaassuurriinngg  tthhee  BBRRDDFF  iiss  sseeccoonnddaarryy  ssccaatttteerriinngg..    AA  ggoooodd  

LLaammbbeerrttiiaann  ssuurrffaaccee  ssccaatttteerrss  aa  ggrreeaatt  ddeeaall  ooff  lliigghhtt  iinn  aallll  ddiirreeccttiioonnss..    TThheerreeffoorree  iitt  iiss  qquuiittee  

ppoossssiibbllee  tthhaatt  tthhiiss  lliigghhtt  wwiillll  tthheenn  rreefflleecctt  ooffff  ooff  tthhee  rreesstt  ooff  tthhee  iinnssttrruummeenntt..    DDeeppeennddiinngg  oonn  

tthhee  iinnssttrruummeenntt’’ss  ggeeoommeettrryy  tthhiiss  ccaann  iinnccrreeaassee  tthhee  mmeeaassuurreedd  ssiiggnnaall  iinn  aann  aassyymmmmeettrriicc  
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mmaannnneerr..    TThheerreeffoorree  iitt  iiss  ccuussttoommaarryy  ttoo  mmeeaassuurree  aa  ttrraacceeaabbllee  ssttaannddaarrdd  aanndd  ssuubbttrraacctt  tthhee  

ddiiffffeerreennccee  bbeettwweeeenn  tthhee  mmeeaassuurreedd  ssttaannddaarrdd’’ss  ssiiggnnaall  aanndd  tthhee  ssaammppllee’’ss  ssiiggnnaall..    TThhiiss  

ddiiffffeerreennccee  ssiiggnnaall  iiss  tthheenn  aaddddeedd  ttoo  tthhee  ssttaannddaarrdd’’ss  kknnoowwnn  BBRRDDFF  ssiiggnnaall..    TThhiiss  iiss  nnoott  aa  bbaadd  

mmeetthhoodd  pprroovviiddeedd  tthhee  ssaammppllee  aanndd  tthhee  ssttaannddaarrdd  ddoonn’’tt  ddiiffffeerr  ttoooo  mmuucchh  iinn  tthheeiirr  BBRRDDFF..    IIff  

tthhee  ssaammppllee  ddooeess  ddiiffffeerr  ssiiggnniiffiiccaannttllyy  ffrroomm  tthhee  ssttaannddaarrdd  iitt  iiss  nnoott  ttrruuee  tthhaatt  tthhee  ssaammee  aammoouunntt  

ooff  sseeccoonnddaarryy  ssccaatttteerriinngg  wwiillll  bbee  pprreesseenntt  aatt  eeaacchh  aannggllee..    CCoonnssiiddeerr  aa  cclleeaann  ppoolliisshheedd  mmiirrrroorr  

aass  aann  eexxaammppllee..    IIttss  ssppeeccuullaarr  rreefflleeccttiioonn  mmiigghhtt  nnoott  eevveenn  hhiitt  tthhee  aappppaarraattuuss  aanndd  tthheerreeffoorree  iitt  iiss  

cclleeaarr  tthhee  ttwwoo  ssaammpplleess  wwiillll  nnoott  hhaavvee  tthhee  ssaammee  lleevveell  ooff  eerrrroorr  dduuee  ttoo  sseeccoonnddaarryy  ssccaatttteerriinngg..    

WWee  ddiidd  nnoott  uussee  aa  ttrraacceeaabbllee  ssttaannddaarrdd  wwiitthh  wwhhiicchh  ttoo  mmeeaassuurree  aabbssoolluuttee  vvaalluueess  ooff  tthhee  BBRRDDFF;;  

tthhuuss  tthhee  mmeeaassuurreemmeennttss  sshhoouulldd  nnoott  bbee  uunnddeerrssttoooodd  aass  aabbssoolluuttee  mmeeaassuurreemmeennttss..    IInn  oouurr  

eexxppeerriimmeenntt,,  wwee  mmeerreellyy  wwiisshh  ttoo  ccoommppaarree  tthhee  BBRRDDFF  ffoorr  oouurr  ddiiffffuussee  qquuaarrttzz  ppoowwddeerr  

rreefflleeccttoorrss  wwiitthh  tthhaatt  ooff  SSppeeccttrraalloonn..      

  IInn  FFiigg..  3399  tthhee  BBRRDDFF  ooff  bbootthh  SSppeeccttrraalloonn  aanndd  AAeerroossiill  9900  aarree  sshhoowwnn  aatt  88°°  oouutt  ooff  

ppllaannee,,  3300°°  iinncciiddeennccee  aatt  440044,,  553322  aanndd  663333  nnmm  wwiitthh  ppeerrppeennddiiccuullaarr  ppoollaarriizzaattiioonn..    TThhee  

BBRRDDFFss  aatt  eeaacchh  wwaavveelleennggtthh  hhaavvee  bbeeeenn  ooffffsseett  ttoo  aaiidd  tthhee  vviissuuaall  pprreesseennttaattiioonn..    IInn--ppllaannee  

mmeeaannss  tthhaatt  tthhee  aannggllee  ooff  iinncciiddeennccee  aanndd  tthhee  aannggllee  ooff  ssccaatttteerriinngg  lliiee  iinn  tthhee  ssaammee  ppllaannee..    

PPeerrppeennddiiccuullaarr  ppoollaarriizzaattiioonn  ddeessccrriibbeess  tthhee  ssiittuuaattiioonn  iinn  wwhhiicchh  tthhee  eelleeccttrriicc  ffiieelldd  vveeccttoorr  iiss  

ppeerrppeennddiiccuullaarr  ttoo  tthhee  iinncciiddeenntt  ppllaannee..      
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FFiigg..  3399..  BBRRDDFF,,  --3300°°  iinncciiddeennccee  wwiitthh  ppaarraalllleell  ppoollaarriizzaattiioonn..    DDaattaa  sseettss,,  ffoorr  eeaacchh    

  
wwaavveelleennggtthh,,  hhaavvee  bbeeeenn  ooffffsseett  ffoorr  tthhee  vviissuuaall  pprreesseennttaattiioonn..  

  
  
  
  FFiiggss..  4400  --  4422  sshhooww  tthhee  ssaammee  iinnffoorrmmaattiioonn  ffoorr  3300°°  iinncciiddeennccee  wwiitthh  ppaarraalllleell  

ppoollaarriizzaattiioonn  aanndd  6600°°  iinncciiddeennccee  wwiitthh  ppeerrppeennddiiccuullaarr  aanndd  ppaarraalllleell  ppoollaarriizzaattiioonn  rreessppeeccttiivveellyy..    

FFrroomm  tthheessee  pplloottss  oonnee  ccaann  sseeee  tthhaatt  tthhee  qquuaarrttzz  ppoowwddeerr  ddiiffffuussiivveellyy  rreefflleeccttss  aass  wweellll  aass  oorr  

bbeetttteerr  tthhaann  tthhee  SSppeeccttrraalloonn..    9900°°  oouutt  ooff  ppllaannee  BBRRDDFFss  ddiiddnn’’tt  vvaarryy  ssuuffffiicciieennttllyy  ttoo  wwaarrrraanntt  

tthheeiirr  ddiissppllaayy..    IInn  9900°°  oouutt  ooff  ppllaannee  BBRRDDFFss  oonnee  tteennddss  ttoo  mmiissss  aannyy  kknnoowwlleeddggee  rreeggaarrddiinngg  

ccoonncceerrnnss  ooff  ssppeeccuullaarr  rreefflleeccttiioonnss..    AAss  mmeennttiioonneedd  aabboovvee  tthhee  BBRRDDFF  ddaattaa  ppllootttteedd  wwaass  ttaakkeenn  

aatt  88°°  ffrroomm  iinn--ppllaannee..    PPrreevviioouuss  mmeeaassuurreemmeennttss  wweerree  ttaakkeenn  iinn--ppllaannee;;  tthhee  pprriimmaarryy  ddiiffffeerreennccee,,  

ffrroomm  tthhee  ddaattaa  sshhoowwnn,,  iiss  tthhaatt  tthheeyy  hhaavvee  aa  bblliinndd  ssppoott  aatt  tthhee  aannggllee  ooff  iinncciiddeennccee..  
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FFiigg..  4400..  BBRRDDFF,,  --3300°°  iinncciiddeennccee  aanndd  ppeerrppeennddiiccuullaarr  ppoollaarriizzaattiioonn..    DDaattaa  sseettss,,  ffoorr  eeaacchh    

  
wwaavveelleennggtthh,,  hhaavvee  bbeeeenn  ooffffsseett  ffoorr  tthhee  vviissuuaall  pprreesseennttaattiioonn  
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FFiigg..  4411..  BBRRDDFF,,  --6600°°  iinncciiddeennccee  aanndd  ppaarraalllleell  ppoollaarriizzaattiioonn..    DDaattaa  sseettss,,  ffoorr  eeaacchh    
  

wwaavveelleennggtthh,,  hhaavvee  bbeeeenn  ooffffsseett  ffoorr  tthhee  vviissuuaall  pprreesseennttaattiioonn..  
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FFiigg..  4422,,  BBRRDDFF,,  --6600°°  iinncciiddeennccee  aanndd  ppeerrppeennddiiccuullaarr  ppoollaarriizzaattiioonn..    DDaattaa  sseettss,,  ffoorr  eeaacchh    

  
wwaavveelleennggtthh,,  hhaavvee  bbeeeenn  ooffffsseett  ffoorr  tthhee  vviissuuaall  pprreesseennttaattiioonn..  

  
  
  
  IInn  tthhee  ffllooww--tthhrroouugghh  IICCAAMM  tthhee  qquuaarrttzz  ppoowwddeerr  aanndd  SSppeeccttrraalloonn  wwiillll  bbee  hheelldd  iinn  

ppllaaccee  bbyy  aa  qquuaarrttzz  ttuubbee..    TThhuuss,,  wwee  nneeeedd  ttoo  kknnooww  hhooww  aa  qquuaarrttzz  sshheeeett  oorr  aa  ggrroouunndd  qquuaarrttzz  

sshheeeett  wwiillll  aaffffeecctt  tthhee  BBRRDDFF..    IInn  FFiigg..  4433,,  tthhee  BBRRDDFF  hhaass  bbeeeenn  ppllootttteedd  ffoorr  AAeerroossiill  9900  wwiitthh  

nnoo  ccoovveerr  sslliiddee  aanndd  AAeerroossiill  9900  wwiitthh  aa  ccoovveerr  sslliiddee  hhaavviinngg  aa  ggrroouunndd  ssuurrffaaccee  ffaacciinngg  tthhee  

qquuaarrttzz  ppoowwddeerr..    NNoott  ttoooo  ssuurrpprriissiinngg,,  tthhee  ssmmooootthh  uuppppeerr  ssuurrffaaccee  ooff  tthhee  qquuaarrttzz  ccoovveerr  sslliiddee  

iinnttrroodduucceess  ssoommee  ssppeeccuullaarr  rreefflleeccttiioonn  uuppoonn  tthhee  oovveerraallll  ddiiffffuussee  rreefflleeccttiioonn  ooff  tthhee  uunnddeerrllyyiinngg  

ppoowwddeerr  ssaammppllee..    TThhiiss  iimmpplliieess  tthhaatt  iitt  wwoouulldd  ttaakkee  aa  ffeeww  mmoorree  rreefflleeccttiioonnss  iinnssiiddee  aann  

iinntteeggrraattiinngg  ccaavviittyy  wwiitthh  aa  ssmmooootthh  iinnnneerr  wwaallll  ttoo  aacchhiieevvee  aann  iissoottrrooppiicc  hhoommooggeennoouuss  lliigghhtt  

ffiieelldd  ffrroomm  aa  wweellll  ccoolllliimmaatteedd  bbeeaamm..    IInn  tthhee  eevveenntt  ooff  mmooddeerraattee  ttoo  hhiigghh  aabbssoorrppttiioonn  oonnee  

sshhoouulldd  nnoott  eexxppeecctt  ttoo  aacchhiieevvee  aa  uunniiffoorrmm  lliigghhtt  ffiieelldd  ffrroomm  aa  LLaammbbeerrttiiaann  rreefflleeccttoorr  ppllaacceedd  

bbeehhiinndd  aa  ggllaassss  ccoovveerriinngg  oorr  lliikkee  mmaatteerriiaall..    MMooddeerraattee  ttoo  hhiigghh  aabbssoorrppttiioonn  iiss  ddeeffiinneedd  hheerree  ttoo  
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bbee  wwhheenn  tthhee  iinnvveerrssee  ooff  tthhee  aabbssoorrppttiioonn  ccooeeffffiicciieenntt  iiss  ooff  tthhee  ssaammee  rreellaattiivvee  ssiizzee  aass  tthhee  

ddiiaammeetteerr  ooff  tthhee  iinntteeggrraattiinngg  ccaavviittyy  ((ccaavviittyy  ddiiaammeetteerr  ≈≈  11//aa))..    HHoowweevveerr,,  iiff  oonnee  iinnttrroodduucceess  

tthhee  lliigghhtt  iinn  aa  mmaannnneerr  wwhhiicchh  iiss  aallrreeaaddyy  nneeaarrllyy  iissoottrrooppiicc  aanndd  hhoommooggeenneeoouuss  tthhee  iimmppaacctt  wwiillll  

bbee  mmiinniimmaall,,  rreessuullttss  ddeemmoonnssttrraattiinngg  tthhiiss  wwiillll  bbee  pprreesseenntteedd  SSeeccttiioonn  44..22..  
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Fig. 43. BRDF showing the impact of a quartz cover slide over the Aerosil 90 powder.  

Data is taken at 404 nm, with -60° incidence and perpendicular polarization.  The quartz 

cover slide has a ground surface facing the powder.  
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55..  MMeeaassuurreemmeenntt  ooff  tthhee  AAbbssoolluuttee  RReefflleeccttiivviittyy  ooff  AAeerroossiill  EEGG5500  

  

IInn  SSeeccttiioonn  22..11,,  tthhee  wweellll--kknnoowwnn  mmeetthhoodd  ffoorr  ddeetteerrmmiinniinngg  tthhee  aabbssoolluuttee  rreefflleeccttiivviittyy  ooff  aann  

iinntteeggrraattiinngg  ccaavviittyy  wwaass  ddeerriivveedd..    IItt  wwaass  sshhoowwnn  tthhaatt  tthhee  ddeeccaayyiinngg  ffiieelldd  ooff  aa  tteemmppoorraallllyy  

sshhoorrtt  ppuullssee  iiss  rreellaatteedd  ttoo  tthhee  aabbssoolluuttee  rreefflleeccttiivviittyy  bbyy  EEqq..  ((22..66)),,  
ρ

−=τ
lnc
d

..    AAppppllyyiinngg  EEqq..  

((22..5511))  ffoorr  aa  ccyylliinnddeerr  wwiitthh  bbootthh  tthhee  hheeiigghhtt  aanndd  tthhee  ddiiaammeetteerr  eeqquuaall  ttoo  55  ccmm  yyiieellddss  

ns
ln9
1

cylcm5 ρ
=τ ..    TThhuuss  oonnee  nneeeedd  oonnllyy  ffiitt  tthhee  ttrraaiilliinngg  eeddggee  ooff  tthhee  mmeeaassuurreedd  oouuttppuutt  

ppuullssee  ttoo  ddeetteerrmmiinnee  ττ11,,  tthhee  ttiimmee  nneecceessssaarryy  ffoorr  tthhee  ppuullssee  ttoo  ddrroopp  ttoo  11//ee  ooff  iittss  oorriiggiinnaall  vvaalluuee..  

  AA  sseeccoonndd  mmeetthhoodd  ccaann  bbee  uusseedd  ttoo  ffiitt  tthhee  ddeeccaayy  ccoonnssttaanntt..    LLeett  uuss  ddeeffiinnee  tthhee  

ffoolllloowwiinngg  tteerrmmss::  

  TT          ==      tthhee  ttiimmee  ffrroomm  tthhee  ssttaarrtt  ooff  tthhee  iinnppuutt  ppuullssee  ttoo  tthhee  eenndd  ooff  tthhee  oouuttppuutt  ppuullssee  

  ΔΔtt        ==      tthhee  ttiimmee  iinntteerrvvaall  ooff  tthhee  oosscciilllloossccooppee  

  NN          ==      tthhee  ttoottaall  nnuummbbeerr  ooff  iinntteerrvvaallss  ==  TT//ΔΔtt  

  nn            ==      tthhee  nnthth  iinntteerrvvaall  

  SSnn        ==      tthhee  aammpplliittuuddee  ooff  tthhee  iinnppuutt  ppuullssee  aatt  tthhee  ttiimmee  tt  ==  nnΔΔtt..  

TThhiiss  mmeetthhoodd  ttaakkeess  eeaacchh  iinntteerrvvaall  ooff  tthhee  iinnppuutt  ppuullssee  aanndd  iimmmmeeddiiaatteellyy  bbeeggiinnss  ttoo  ccaallccuullaattee  

tthhee  ddeeccaayy  ooff  iitt  dduurriinngg  aann  iinntteerrvvaall  ΔΔtt..    AAss  mmoorree  lliigghhtt  ccoommeess  iinn  iitt  ssuummss  iitt  wwiitthh  tthhee  lliigghhtt  

rreemmaaiinniinngg  ffrroomm  tthhee  pprreevviioouuss  iinntteerrvvaallss  aanndd  ccaallccuullaatteess  iittss  ddeeccaayy  dduurriinngg  tthhee  iinntteerrvvaall..    TThhuuss,,  

tthhee  ccuurrvvee  ttoo  bbee  ffiitt  ttoo  tthhee  oouuttppuutt  ppuullssee  iiss  
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                    ∑
Δ

=

τ
Δ−−

=
t

t

1n

t)1n(

n
2eS)t(Fit ,,          ((33..2200))  

wwhheerree  ττ22  iiss  tthhee  ddeeccaayy  ccoonnssttaanntt  ddeetteerrmmiinneedd  bbyy  tthhiiss  sseeccoonndd  mmeetthhoodd..  

  AA  ccyylliinnddrriiccaall  ccaavviittyy  55  ccmm  iinn  ddiiaammeetteerr  bbyy  55  ccmm  hhiigghh  wwaass  pprreesssseedd  oouutt  ooff  bbaakkeedd  

AAeerroossiill  EEGG5500..    TThhee  ccaavviittyy  wwaass  pprreesssseedd  iinn  ttwwoo  ppiieecceess..    TThhee  ffiirrsstt  ppiieeccee  wwaass  sshhaappeedd  aass  aa  

bbeeaakkeerr  aanndd  tthhee  sseeccoonndd  aass  aa  lliidd..    TThhee  ccaavviittyy  wwaallllss  wweerree  55  ccmm  tthhiicckk..    LLiigghhtt  wwaass  iinnttrroodduucceedd  

iinnttoo  tthhee  ccaavviittyy  wwiitthh  aa  222255  μμmm  mmuullttiimmooddee  ffiibbeerr..    AAnn  iiddeennttiiccaall  ffiibbeerr  wwaass  llooccaatteedd  9900°°  aappaarrtt  

ffrroomm  tthhee  iinnppuutt  ffiibbeerr..    TThhee  ffiibbeerrss  wweerree  iinnsseerrtteedd  bbeettwweeeenn  tthhee  lliidd  aanndd  tthhee  wwaallllss  ooff  tthhee  ccaavviittyy..    

FFrroomm  pprreevviioouuss  eexxppeerriimmeennttss  iitt  wwaass  ddeetteerrmmiinneedd  tthhiiss  ppllaacceemmeenntt  ooff  tthhee  ffiibbeerrss  bbeehhaavveess  tthhee  

ssaammee  aass  ccaavviittiieess  iinn  wwhhiicchh  tthhee  ffiibbeerrss  wweerree  iinnsseerrtteedd  iinn  tthhee  mmiiddppooiinntt  ooff  tthhee  wwaallll..      

  HHaammaammaattssuu  11PP2211  pphhoottoommuullttiipplliieerr  ttuubbeess  wweerree  uusseedd  aass  ddeetteeccttoorrss..    TThhee  553322  nnmm  

iinnppuutt  ppuullssee  wwaass  mmeeaassuurreedd  bbyy  ddeetteeccttiinngg  tthhee  eevvaanneesscceenntt  wwaavvee  aass  tthhee  ppuullssee  ppaasssseedd  tthhrroouugghh  

tthhee  ffiibbeerr  nneexxtt  ttoo  tthhee  ddeetteeccttoorr..    AAnnyy  iinnppuutt  ffiibbeerr  ffoorr  tthhee  ccaavviittyy  iiss  aallssoo  aann  oouuttppuutt  ffiibbeerr  ffoorr  tthhee  

ccaavviittyy;;  tthheerreeffoorree,,  tthhee  ssiiggnnaall  mmeeaassuurreedd  ffrroomm  tthhee  iinnppuutt  ffiibbeerr  iiss  aa  ccoonnvvoolluuttiioonn  ooff  tthhee  iinnppuutt  

ppuullssee,,  tthhee  oouuttppuutt  ppuullssee,,  aanndd  aannyy  bbaacckk--rreefflleeccttiioonnss  iinn  tthhee  ffiibbeerr..    LLiigghhtt  ttrraavveellss  aatt  

aapppprrooxxiimmaatteellyy  2200  ccmm//nnss  iinn  qquuaarrttzz,,  hheennccee  tthhee  ffiirrsstt  bbaacckk  rreefflleeccttiioonn  ooff  tthhee  iinnppuutt  ppuullssee''ss  

ppeeaakk  wwiillll  hhaavvee  ttrraavveelleedd  ddoowwnn  tthhee  ~~  6600  ccmm  ffiibbeerr  aanndd  bbaacckk  iinn  66  nnss..    TThhiiss  ttrriipp  ccoonnttaaiinnss  ttwwoo  

rreefflleeccttiioonnss  ooffff  tthhee  eennddss  ooff  tthhee  ffiibbeerr..  TThhuuss  iittss  iinntteennssiittyy  wwiillll  hhaavvee  ddeeccrreeaasseedd  bbyy  aa  ffaaccttoorr  ooff  

00..004422  ((tthhee  ttyyppiiccaall  rreefflleeccttiivviittyy  aatt  aa  ggllaassss--aaiirr  iinntteerrffaaccee))  oorr  11..66**1100-3-3  iinn  66  nnss..    TThhuuss,,  oonnllyy  tthhee  

oouuttppuutt  ppuullssee  iiss  ssiiggnniiffiiccaanntt  iinn  mmiixxiinngg  wwiitthh  tthhee  iinnppuutt  ssiiggnnaall  oonn  tthhee  ddeetteeccttoorr..    TToo  ddeetteerrmmiinnee  

wwhheetthheerr  tthhee  oouuttppuutt  ppuullssee  ssiiggnniiffiiccaannttllyy  aaffffeecctteedd  tthhee  mmeeaassuurreemmeenntt  ooff  tthhee  iinnppuutt  ppuullssee,,  tthhee  

iinnppuutt  ssiiggnnaall  wwaass  mmeeaassuurreedd  ddiirreeccttllyy  ffrroomm  tthhee  eexxiitt  ooff  tthhee  iinnppuutt  ffiibbeerr,,  bbootthh  pprriioorr  ttoo  aanndd  aafftteerr  
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tthhee  ccaavviittyy  mmeeaassuurreemmeennttss..    TThheessee  mmeeaassuurreemmeennttss  sshhoowweedd  tthhaatt  tthhee  oouuttppuutt  ppuullssee  hhaadd  lliittttllee  

iimmppaacctt  oonn  tthhee  mmeeaassuurreemmeenntt  ooff  tthhee  iinnppuutt  ppuullssee  vviiaa  tthhee  eevvaanneesscceenntt  wwaavvee..    DDuurriinngg  tthhee  226666  

nnmm  ccaavviittyy  mmeeaassuurreemmeennttss  tthhee  iinnppuutt  ssiiggnnaall  wwaass  mmoonniittoorreedd  bbyy  ddeetteeccttiinngg  aa  rreefflleeccttiioonn  ooffff  ooff  

tthhee  ffaaccee  ooff  tthhee  iinnppuutt  ffiibbeerr  wwhheerree  tthhee  llaasseerr  bbeeaamm  wwaass  ccoouupplleedd  iinnttoo  tthhee  ffiibbeerr..    TThhiiss  ppuullssee  

wwaass  iinn  aaddvvaannccee  ooff  tthhee  ttrruuee  iinnppuutt  ppuullssee  eenntteerriinngg  tthhee  ccaavviittyy  bbyy  aapppprrooxxiimmaatteellyy  33  nnss..  
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Fig. 44. 532 nm pulse in laser, pulse in fiber and output pulse from the cavity averaged  

 
1024 times. 

 
 
 
  LLaasseerr  ppuullsseess,,  1100  --  2200  nnss  wwiiddee  aatt  553322  nnmm  aanndd  llaatteerr  aatt  226666  nnmm,,  wweerree  iinnjjeecctteedd  iinnttoo  

tthhee  ccaavviittyy..    TThhee  CCoonnttiinnuuiiuumm  PPoowweerrlliittee  99001100  llaasseerr  hhaass  aa  rreeppeettiittiioonn  rraattee  ooff  1100  HHzz,,  tthhuuss  

tthheerree  iiss  nnoo  oovveerrllaapp  bbeettwweeeenn  ppuullsseess  wwiitthhiinn  tthhee  ccaavviittyy..    AAnn  aavveerraaggee  ooff  11,,002244  llaasseerr  sshhoottss  aatt  
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553322  nnmm  aarree  sshhoowwnn  iinn  FFiigg..  4444  aalloonngg  wwiitthh  tthhee  ccaavviittyy’’ss  rreessppoonnssee..    TThhee  oouuttppuutt  ppuullssee  wwaass  

mmuullttiipplliieedd  bbyy  aa  ssccaallee  ffaaccttoorr  ssoo  tthhaatt  iitt  ccoouulldd  bbee  mmoorree  eeaassiillyy  ccoommppaarreedd  ttoo  tthhee  iinnppuutt  ppuullssee..  

  
  
 

 

Fig. 45. Single pulse shot.  The green pulse is from the laser cavity, the purple pulse is 

from the input fiber, and the gold pulse is the output pulse from the integrating cavity. 

 
 
 
  FFiigg..  4455  iiss  tthhee  oosscciilllloossccooppee  ttrraaccee  ooff  aa  ssiinnggllee  sshhoott  aatt  553322  nnmm..    IInn  FFiiggss..  4466  aanndd  4477  tthhee  

ttwwoo  ffiittss  ffoorr  tthhee  ccaavviittyy  rreessppoonnssee  aatt  553322  nnmm  aarree  sshhoowwnn..    AAtt  553322  nnmm  ττ11  ==  6688  nnss  aanndd  ττ22  ==  6666  

nnss..    RReeccaallll  tthhaatt  ττ11  iiss  tthhee  ffiitt  ttoo  tthhee  eexxppoonneennttiiaall  ttaaiill  ooff  tthhee  oouuttppuutt  ppuullssee  aanndd  ττ22  iiss  tthhee  ffiitt  ttoo  
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tthhee  ffuullll  oouuttppuutt  ppuullssee..    FFoorr  tthhee  ffuullll  ccuurrvvee  ffiitt  tthhee  iinnppuutt  ppuullssee  wwaass  sshhiifftteedd  bbyy  33  nnss..    BBootthh  

ffiittttiinngg  mmeetthhooddss  yyiieelldd  aann  aavveerraaggee  ccaavviittyy  rreefflleeccttiivviittyy  ooff  00..999988..    TThhiiss  iiss,,  ttoo  tthhee  aauutthhoorr’’ss  bbeesstt  

kknnoowwlleeddggee,,  tthhee  hhiigghheesstt  ddiiffffuussee  rreefflleeccttiivviittyy  eevveerr  mmeeaassuurreedd  aatt  553322  nnmm..  
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FFiigg..  4466..  EExxppoonneennttiiaall  ffiitt  ttoo  tthhee  oouuttppuutt  ppuullssee’’ss  ttaaiill  aatt  553322  nnmm,,  ττ1  1 ==  6688  nnss..  
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FFiigg..  4477..  EExxppoonneennttiiaall  ffiitt  ttoo  eennttiirree  ccuurrvvee  aatt  553322  nnmm,,  ττ2  2 ==  6666  nnss..  

  
  
  
  WWhheenn  ttaakkiinngg  tthhee  ddaattaa  ffoorr  tthhee  aabbssoolluuttee  rreefflleeccttiivviittyy  aatt  226666  nnmm  aa  ddiiffffeerreenntt  

oosscciilllloossccooppee  wwaass  uusseedd..    TThhiiss  pprreevveenntteedd  tthhee  ccaappttuurree  ooff  aallll  tthhrreeee  ppuullsseess  aatt  oonnccee  oonn  tthhee  

oosscciilllliissccooppee..    TToo  aaddjjuusstt  ffoorr  tthhiiss,,  tthhee  ppuullssee  iinntteerrnnaall  ttoo  tthhee  llaasseerr  ccaavviittyy  wwaass  uusseedd  aass  tthhee  

ttrriiggggeerr  aass  wweellll  aass  aa  ddeetteerrmmiinnaattiioonn  ooff  tthhee  ttiimmiinngg  bbeettwweeeenn  tthhee  ffiibbeerr  iinnppuutt  ppuullssee  aanndd  tthhee  

ccaavviittyy  oouuttppuutt  ppuullssee..    IInn  FFiiggss..  4488  --  5500  tthhee  ddaattaa  ffoorr  tthhee  226666  nnmm  rreessppoonnssee  iiss  sshhoowwnn..    AAtt  226666  

nnmm  ττ11  ==  2288..55    nnss  aanndd  ττ22  ==  3311  nnss,,  tthhuuss  bbootthh  ffiittttiinngg  mmeetthhooddss  yyiieelldd  aann  aavveerraaggee  rreefflleeccttiivviittyy  iinn  

tthhee  ccaavviittyy  ooff  00..999966..    TThhiiss  iiss,,  ttoo  tthhee  aauutthhoorr’’ss  bbeesstt  kknnoowwlleeddggee,,  tthhee  hhiigghheesstt  ddiiffffuussee  

rreefflleeccttiivviittyy  eevveerr  mmeeaassuurreedd  aatt  226666  nnmm..      
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FFiigg..  4488..  LLaasseerr  ccaavviittyy  ppuullssee,,  iinnppuutt  ffiibbeerr  ppuullssee  aanndd  ccaavviittyy  oouuttppuutt  ppuullssee  ffoorr  tthhee  226666  nnmm  

aabbssoolluuttee  rreefflleeccttiivviittyy  mmeeaassuurreemmeenntt..    LLaasseerr  ppuullssee  11  aanndd  llaasseerr  ppuullssee  22,,  wwhhiicchh  oovveerrllaapp  

iiddeennttiiccaallllyy,,  wweerree  uusseedd  ttoo  ddeetteerrmmiinnee  tthhee  ttiimmiinngg  ccoorrrreellaattiioonn  bbeettwweeeenn  tthhee  ffiibbeerr  iinnppuutt  ppuullssee  

aanndd  tthhee  ccaavviittyy  oouuttppuutt  ppuullssee..  
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FFiigg..  4499..  EExxppoonneennttiiaall  ffiitt  ttoo  ttaaiill  ffoorr  tthhee  aabbssoolluuttee  rreefflleeccttiivviittyy  aatt  226666  nnmm,,  ττ1  1 ==  2288..55  nnss..  
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Fig. 50. Exponential fit to entire pulse for the absolute reflectivity at 266 nm, τ2 = 31ns. 
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CHAPTER IV 

 

FLOW-THROUGH INTEGRATING CAVITY ABSORPTION METER 

 

1. Design of the Flow-Through ICAM 

 

The length of the prototype design is longer than that which was suggested to be optimal 

by Gray et al.13,14  This was done in part so that we can experimentally monitor the 

absorption signal as a function of its distance from the end of the tube.  The sample 

flows through a 122 cm long quartz tube which has a 2.54 cm inner diameter.  The 

quartz tube has a ground outer surface to aid in diffusing the light field.  The inner 

surface has not been altered so as to aid in cleaning and to prevent fouling in natural 

waters.  The quartz tube is surrounded by two cylindrical diffuse reflectors separated by 

a small air gap, see Fig. 51.  The cylindrical reflectors are 102 cm long.  The inner 

diffuse reflector has a 6 mm wall thickness and is made from Spectralon.  It has an 

albedo of 0.992.  The second diffuse reflector is made from a 2.54 cm thick layer of 

Aerosil 90, its albedo is ~ 0.997.  The width of the air gap separating the two layers is 

2.54 cm.  The choice to use Spectralon for the inner diffuse reflector was made prior to 

our development of the quartz powder reflectors.  The light is introduced into the air gap 

between the two diffuse reflectors.  Six separate wavelengths were used to span the 

visible spectrum, see Fig. 52.  For the prototype we used 6 LEDs per wavelength on each 

end of the ICAM.  The light that is transmitted through the diffuse wall, from this outer 
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integrating cavity and into the inner integrating cavity, produces an isotropic and 

homogeneous field in the inner cavity. 

 
 
 

 
Figure 51. Flow-through ICAM design. 

 
 
 
 A 1 mm plastic fiber optic cable, Lumileen PRM 1640,* is placed in contact 

against the outer wall of the quartz tube to sample the intensity in the inner cavity.  The 

fibers were located at 5.2 cm, 10.5 cm, 27.5 cm, 37 cm, and 50 cm respectively from the 

end of the diffuse reflector.  An identical fiber is located at the midpoint of the outer 

cavity to measure a reference signal.  These fibers are sheathed to prevent unwanted  

____________ 

*Lumileen PRM-1640 is a discontinued product of Poly-Optical Products, Inc., a 

division of Lumitex, Inc., Irvine, CA. 

Reference fiber 

Signal fibers Diffuse reflector 

Quartz tube outer radius 
Quartz tube inner radius 

Quartz tube
L

LED 

Spectralon reflector 
Quartz powder reflector 
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light from coupling into the fiber.  The Absorption signal is taken to be the signal from  

the inner cavity divided by the signal from the outer cavity.  The output of the signal 

fiber is passed through a neutral density filter wheel to prevent saturation of the 

Hamamatsu 1P21 photomultiplier tube.  Depending on the position of the filter wheel, 

the transmission of the signal fiber to the PMT is 0%, 10%, 32%, 50%, 79%, or 100%.  

Neutral density filters are used to limit the transmission of the reference fiber to 0.1% 

when the ICAM is illuminated with the 443, 465 and 525 nm LEDs and to 10% when 

the ICAM is illuminated with the 570, 595 and 609 nm LEDs. 
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Fig. 52. LED spectrum. 
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2. Uniformity of the Light Field 

 

A 1mm plastic optical fiber was sheathed inside a thin wall stainless steel capillary tube 

and used to test the uniformity of the light field in the inner cavity.  The stainless steel 

tube insures the light can only couple into the fiber through its end face.  The fiber has a 

small 90° bend at the end.  Of course introducing the stainless steel capillary tube into 

the cavity will disturb the field to some degree.  In Fig. 53, a plot of the intensity is 

shown as it was measured along the length of the tube, at the bottom of a cross section of 

the tube, while looking radially inward toward the center of the tube.  The two 

pronounced peaks indicate the location of the LEDs.  The distance is referenced to the 

location just before the first set of LEDs.  The middle 50 cm of the light field appears 

relatively uniform.  In Fig. 54 the intensity vs. the direction of the detector is shown.  

This measurement is from the bottom of a cross-section of the tube located at the 

midpoint along the tube’s length.  Notice how the light field is independent of the 

viewing direction. 
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Fig. 53. Longitudinal inspection of the uniformity of the light field in the ICAM. 

 
 
 
 Fig. 55 displays the results of a measurement of the intensity vs. the height of the 

detector.  This measurement was taken at the midpoint of the tube.  One will notice that 

the first data point comes from a height of 1 cm; this is an artifact of the 1 cm length of 

the bend in the optical fiber used to sample the light field.  One can see that the field is 

uniform in the middle of the tube both as a function of the radial position and sampling 

direction.  These measurements were made with a background medium of air. 

 
 



 88

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 60 120 180 240 300 360

Direction of detector, degrees

In
te

ns
ity

, a
rb

. u
ni

ts

 

cross-sectional view 
of quartz tube, at the 
midpoint of its length 

90° 

270° 
0° 180° 

detector 

Fig. 54. Uniformity of the field in the cavity as a function of viewing angle. 
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Fig. 55. Uniformity of the light field in the cavity as a function of the radial position. 
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 Consider a spherical coordinate system with the origin located at the exact center 

of the tube, and the direction of the ray along θ = 0 to point along the axis of the tube.  

With this reference frame in mind we discuss the nature of the homogeneity of the field.   

The absorption of rays traveling across the quartz tube is significant when the absorption 

increases to a level in which the inverse of the absorption coefficient is of the order of 

the tube’s diameter.  If one were located at the origin of the spherical coordinate system 

and looked in the direction along (θ = π/2, φo) one would still see a uniform intensity of 

light regardless of φo.  If one were to look at another angle, e.g. along (θo, φo), one would 

again see a uniform intensity regardless of φo.  One would not see a uniform intensity if 

θo is varied.  As θo varies the path length the photon travels varies, and in a highly 

absorbing medium this will produce nonuniformity in the radiance.  One should also 

note that the field will vary as a function of the radial position from the centerline of the 

tube.  Although the radiation field is varying there is still a great deal of symmetry in the 

field.  The radiant energy sampled by a detector located on the cylinder wall at the 

midpoint of the tube is independent of φ.  There is no position at the midpoint of the tube 

wall which would introduce some asymmetry in the ICAM’s detected signal.  This is not 

true for integrating cavities which introduce the light in an asymmetric manner. 
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3. Calibration Procedure 

 

The ICAM was calibrated using solutions of “pure” water and irgalan black.  For our 

purposes “pure” water will be taken to mean water purified by a Milli-Q®* system to 

less than 3 ppb total organic content and greater than or equal to 18 MΩ-cm of 

resistance.  The full dye solution consists of 112 mg of irgalan black in 4 liters of “pure” 

water.  The irgalan black powder is mixed with 150 ml of “pure” water.  This solution is 

then placed in a sonic bath and then filtered through a qualitative P5 filter.  The filtered 

dye solution is then mixed with 3.85 liters of “pure” water.  The full dye solution is 

repeatedly cut in half by volumetric dilution with “pure” water until a solution with a 

concentration of 1/1024th of the original irgalan black solution is produced.  The 

absorption spectrum of irgalan black is shown in Fig. 56.  The absorption coefficient of 

the full dye solution was measured by a SpectraMax Plus384 absorption spectrometer**.  

The absorption of each sample is determined as follows, 

water"pure"n

n

dyefullndilutionnth a
2

12a
2
1a −

+= , where n = 1 is the first dilution of the fully 

concentrated solution.  We took a“pure” water as that as measured by Pope et al.12

 
 
 
 
____________ 

* Milli-Q® is produced by the Millipore Corporation, Billerica, MA. 

** SpectraMax Plus384 is produced by Molecular Devices Corporation, Sunnyvale, CA. 
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Fig. 56. Absorption spectrum of irgalan black. 

 
 
 
 The ICAM measures the absorption of solutions in either a static or a flow 

through manner.  The data presented in this dissertation has been measured in a static 

manner except for the flow rate data in section 4.5.  As section 4.5 indicates, this does 

not alter the data significantly.  The ICAM requires a 1 liter sample.  The ICAM is held 

in a vertical position throughout the measurements to prevent trapping of air bubbles 

along the tube.  In Situ absorption meters are typically operated vertically for similar 

reasons as well as to prevent settling out of particulates on the walls of the device.  Each 

sample was loaded into the ICAM from the bottom by a manometer-type device to 

minimize the introduction of air bubbles to the ICAM.  After a “pure” water sample was 

measured by the ICAM each dye solution was then measured, beginning with the least 

concentrated.  Figs. 57 - 62 show the absorption signal vs. the absorption coefficient. 
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Fig. 57. ICAM response at 443 nm. 
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Fig. 58. ICAM response at 465 nm. 
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Fig. 59. ICAM response at 525 nm. 
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Fig. 60. ICAM response at 570 nm. 
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Fig. 61. ICAM response at 595 nm. 
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Fig. 62. ICAM response at 609 nm. 
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 The data was fit with two different equations.  The first fit was that described by 

Gray et al.13,14, 

     b
aa

mS
i

+
+

=         (4.1) 

in which S is the signal (signal fiber/reference fiber); a is the absorption coefficient; and 

ai, m, and b are fitting parameters.  The fits are outstanding.  The fitting parameter ai can 

be thought of as indicative of permanent loss mechanisms which are seen by the detector 

just as if they were an absorption baseline.  For example, the quartz tube waveguides a 

nonzero amount of light out of the ICAM, and thus prevents that light from “sampling” 

the absorption level of the medium.  The ICAM “sees” this loss of light just the same as 

if it were due to absorption.  The fitting parameter b results from an offset in the signal.  

One source of this offset can come from the dark current of the PMT.  Of course the dark 

current could be subtracted out to remove its contribution to this parameter.  Other 

factors which affect b are the PMT’s response curve, the coupling differences between 

the two fibers, and light reflecting back off the quartz tube directly into the signal fiber.  

The fitting parameter m describes the overall response of the ICAM and is primarily a 

function of the geometry of the cavity. 

 The second fit does not force the (a+ai)-1 relationship.  Instead it allows the 

power factor to be fit by the data.  The second fitting equation is  

    b
aa

mS
p

i

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

= .        (4.2) 

A comparison between the two fitting equations is given in Table 3.  As one can see the 

second fit is the better fit.  Of course the fit with the parameter p = 1 is a little easier to 
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explain qualitatively; for if the cavity reflectivity was unity and no light escaped out the 

ends of the quartz tube one would expect the optical path length to be 1/a.  It is 

interesting to note that the power parameter p from Eq. (4.2) is nearly 1.  It should also 

be pointed out that although this calibration run only measured absorption coefficients 

out to 40 m-1, the ICAM can measure higher absorption coefficients.  Other calibration 

runs measured absorption coefficients out to 70 - 80 m-1. 

 
 
 

Table 3. Comparison between the two fitting methods. 

      
 Fit 1 Fit 2  Fit 1 Fit 2 

443 nm   465 nm   
ai 0.596 0.598 ai 0.510 0.459 
m 22.65 22.83 m 11.05 10.63 
b -0.288 -0.356 b -0.096 -0.243 
p 1 0.9898 p 1 0.9306 
R2 0.9999 1.0000 R2 1.0000 1.0000 
      

525 nm   570 nm   
ai 0.405 0.398 ai 0.286 0.270 
m 18.91 18.77 m 16.13 15.66 
b -0.307 -0.303 b -0.303 -0.246 
p 1 0.9899 p 1 0.989 
R2 .9999 1.0000 R2 0.9997 0.9998 
      

595 nm   609 nm   
ai 0.216 0.150 ai 0.142 0.0815 
m 10.02 9.20 m 5.53 5.13 
b -0.160 -0.194 b -0.089 -0.108 
p 1 0.9294 p 1 0.9321 
R2 0.9999 0.9999 R2 0.9998 0.9999 
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4. Blind Measurement Test 

 

A blind test of the ICAM was performed in order to ascertain the reliability of the 

ICAM.  A dye solution was mixed up as per the standard calibration procedure.  A 

fellow graduate student, Jeffrey Katz, then discreetly added an additional volume of 

“pure” water to the master solution.   The true value of the absorption of the master 

solution can only be determined with knowledge of this additional volume of “pure” 

water.  A range of volumetric dilutions were then produced from this master solution.  

The absorption signal was then measured for all of the samples.  The amount of water 

added to the master solution was revealed after the absorption coefficients were 

calculated from the absorption signals.  Table 4 reveals the results of the blind test.  

Except for the sample with a = 0.0702 m-1 the results are remarkable.  One should keep 

in mind that water with an absorption coefficient of 0.0702 m-1 is impossible to keep at 

0.0702 m-1.  Leaving such a sample in a chemically cleaned quartz container overnight 

will alter the measurement.27  The contamination from the oil of a fingerprint on a quartz 

container filled with 1 liter of “pure” water (a443 = 0.007 m-1) is enough to increase the 

absorption over an order of magnitude. 
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Table 4. Blind test of ICAM. 

    
 true absorption 

(1/m) 
measured a (1/m) % error 

    
443 nm 0.070 0.079 12.15 

 0.260 0.262 0.82 
 1.018 1.000 1.70 
 4.050 4.021 0.73 
 8.094 8.014 0.98 
    

525 nm 0.111 0.114 3.11 
 0.317 0.319 0.70 
 1.142 1.174 2.77 
 4.444 4.418 0.59 
 8.847 8.747 1.13 
    

609 nm 0.343 0.345 0.73 
 0.579 0.582 0.50 
 1.526 1.508 1.15 
 5.312 5.364 0.98 
 10.360 10.420 0.58 

 

 

5. Hardware Issues 

 

It is not uncommon for instruments to have a warm up period or to experience signal 

drift.  Tests were conducted to determine if any signal drift occurs.  The absorption 

signals for three different levels of absorption were measured over a ten minute period.  

The samples were then diluted by 10% of their volume and then re-measured with the 

ICAM.  The results for the 525 nm data are shown in Fig. 63 and are characteristic for 

the data from each set of LEDs.  We could see a small drift in the PMT’s signal 

throughout the ICAM’s testing.  The cause was due to drifts or noise between the two 
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PMTs.  This irregularity only proved problematic when dealing with the cleanest of 

waters (a ≤ 0.09 m-1).  This has been resolved by measuring both signals on a single 

PMT.  
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Fig. 63. Signal stability of the ICAM.  The absorption signal has been scaled so that all 

three absorption levels can be seen on one graph. 

 
 
 
 The absorption signal vs. the LED voltage was investigated to insure that there 

are no saturation problems with the PMTs.  One can see in Fig. 64 that once the voltage 

is sufficient to drive the LEDs (~10 V) the slope is nearly zero.  This indicates that there 

is no saturation occurring in the PMTs.  The slight rise of the slope from horizontal can 

be explained by the behavior of the LEDs.  The wavelength of an LED is both a function 
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of its driving current as well as the ambient temperature.  From 10 V to 24 V the driving 

current of the LEDS goes from 100 mA to 240 mA.  Since the response of the ICAM is 

slightly dependent on the driving current, the LEDs are always operated at 240 mA.  A 

possible change in the hardware system under consideration is the use of a fiber-coupled 

halogen bulb to illuminate the ICAM rather than LEDs.  This would remove any 

concerns regarding the warm-up cycle of the LEDs.  In this case the wavelength 

selectivity will be provided with a filter wheel or monochromator. 
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Fig.64. Absorption signal as a function of LED voltage. 

 
 
 
 Absorption instruments which are adversely affected by scattering generally have 

to restrict the flow rate through the instrument to prevent any turbulence or density 
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fluctuations.  If turbulence or density fluctuations are introduced into these devices light 

will scatter off of these inhomogeneities and dramatically alter the absorption signal.  

Thus, a test was conducted to determine the impact of the flow rate upon the ICAM’s 

absorption signal.  In Fig. 65 one can see that the flow rate has a negligible effect on the 

absorption signal.  Further tests taken out to 333 ml/s showed less than 3% change in the 

absorption signal.  It should be pointed out that these measurements were made with the 

two-PMT detection system and therefore include more signal drift than would 

measurements made in the present ICAM. 
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Fig. 65. Flow rate test of ICAM. 
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6. ICAM Signal vs. Scattering 

 

Three sets of tests were carried out to determine the impact of scattering upon the 

ICAM.  In the first two experiments, samples with respective absorptions of ~ 10 m-1 

and ~ 45 m-1 were tested.  At each of these absorption levels additional samples were 

produced by adding various amounts of polystyrene spheres (PSLs) to the samples.  The 

PSLs increase the scattering coefficient of the sample with negligible increase in the 

absorption coefficient.  Fig. 66 shows the measured absorption vs. the scattering 

coefficient.  Clearly for mid to high levels of absorption the ICAM results are virtually 

independent of the scattering coefficient, just as predicted by Gray et, al.13, 14  In fact the 

percent change in the measured apparent absorption was less than two percent for all of 

the data.  
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Fig. 66. Measured absorption vs. scattering for high and medium absorption levels. 
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 The third experiment involved a low absorption sample, i.e. a ~ 0.3 m-1.  In this 

case separate samples were not prepared; instead, one sample was used in which 

additional PSLs were added to it while the sample was in the ICAM.  This procedure 

required stirring the sample in the ICAM to ensure the PSLs were thoroughly dispersed.  

A clean glass rod was used for this purpose.  The results are presented in Fig. 67.  Again, 

one can see that the centrally located detector gives results that are nearly independent of 

scattering affects over the 0 to 40 m-1 scattering range.  The measured apparent 

absorption coefficient, at 525 nm, had at most a 5% change in its value.  The detector 5.2 

cm from the end of the ICAM had a maximum 11% change in the measured apparent 

absorption coefficient.  The central detector results are remarkable.  Leathers et, al.28 

have pointed out that as scattering increases in a spherical integrating cavity the average 

path length will increase.  Although the ICAM is not a closed cavity this could explain 

why we see an increase in the measured absorption coefficient at high scattering 

coefficients as each photon samples a greater path through the medium between wall 

reflections.  At low scattering coefficients the response of the ICAM is more subtle.  

 
 
 



 104

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 10 20 30 40

Scattering coefficient, 1/m

M
ea

su
re

d 
ab

so
rp

tio
n,

 1
/m

detector 5 cm from end

detector 50 cm from end

 
Fig. 67. Measured absorption at 525 nm vs. scattering at low absorption. 

 
 
 
7. Error Analysis 

 

In Section 4.3, in which we discussed the calibration procedure, we simplified the 

presentation, omitting some pertinent details.  We were more concerned with 

communicating the general overview of the ICAM’s operational features rather than 

getting bogged down in the minutiae of the calibration.  Let us now get bogged down in 

the minutiae. 

 In Section 4.1 we said the ICAM was illuminated by 12 LEDs at 525 nm this 

was, of course, not quite true.  Each LED may have a slightly different profile from the 

next due to manufacturing variances.  The LEDs also have a finite spectral width Δλ.  

Thus it is not appropriate to simply use the absorption of “pure” water at 525 nm for 

calibration purposes.  Instead the actual spectral output of each set of LEDs was 
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measured by an Ocean Optics USB2000* spectrometer directly from the inner cavity 

signal fiber.  The spectrum of the LEDs was split into N subdivision 2.5 nm wide (the 

“pure” water data is in 2.5 nm wide increments).  The absorption at the midpoint of each 

subdivision was then used to determine a weighted absorption value for “pure” water 

with each set of LEDs.  The absorption coefficient for the set of 525 nm LEDs was 

determined by,   

    
∑

∑

=

=
λ

= N

1n
n

N

1n
)n(n

nm525

h

ah
a ,        (4.3) 

where hn is the height of the nth subdivision and aλ(n) is the absorption coefficient for 

“pure” water at the wavelength of the nth  subdivision.  Further, when interpreting data 

from the ICAM, one should remember that they are not measuring the absorption at 525 

nm, rather they are measuring the absorption within the spectral width of the LEDs 

which are centered at 525 nm. 

 Let us determine the uncertainty in the calibration data.  We will concern 

ourselves just with the first fitting equation for this analysis.  Recall Eq. (4.1), 

b
aa

mS
i

+
+

= , where m, b and ai are fitting parameters.  The uncertainty in the 

measured absorption of the dye solution propagates as follows, 
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a
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Δ
+

−=Δ .       (4.4)   

____________ 

*Ocean Optics USB2000 is produced by Ocean Optics, Inc., Dunedin, FL. 
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To determine Δa we recall that each dye solution was volumetrically diluted from a full 

dye solution, whose uncertainty we know from the absorption spectrometer 

measurements.  We shall call the uncertainty for the full dye solution δafd.  We shall call 

the uncertainty from the “pure” water data δapw.  To determine the uncertainty of the nth 

dilution we first determine the absorption of the nth solution, 

    pw
T

pw
fd

T

fd
n

pw
n

n
fd

n a
V
V

a
V
V

2
a)12(

2
a

a +=
−

+= ,      (4.5) 

where Vfd is the volume of the original full dye solution in the nth dilution, Vpw is the 

volume of “pure” water in the nth dilution and VT is the total volume of the solution.  The 

uncertainty of the nth dilution is ( ) 2
pw

2n2
fdnn a12a

2
1a δ−+δ=Δ .  Fig. 68 shows the 

calibration data with Δa and ΔS plotted. 

 Now we determine the uncertainty of an absorption measurement of the ICAM.  

One must consider other sources of error in the ICAM besides δapw and δafd.  To 

determine an experimental uncertainty we first note that measurements of the signal 

fiber and the reference fiber were averaged over ten second time periods and were stable 

over such a period.  The uncertainty of the oscilloscope measurement is taken to be half 

of the smallest increment of the scale we were operating on.  The absorption signal S is 

equal to the inner cavity signal Si divided by the reference signal Sr; therefore, 

2
r

2
i SSS Δ+Δ=Δ   and 

( )
S

bS
ma 2 Δ−

−=Δ .  It should be pointed out that the 

uncertainty ΔS calculated from the oscilloscope’s smallest increment is one order of 

magnitude larger than the uncertainty ΔS determined during the calibration from δapw 
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and δafw.  Fig. 69 shows a plot of the blind test data at 525 nm along with the 

uncertainty.  
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Fig. 68. ICAM calibration at 525 nm with uncertainties plotted. 
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Fig. 69. ICAM blind test at 525 nm with uncertainties. 
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CHAPTER V 

 

SUMMARY AND CONCLUSIONS 

We have calculated the average behavior of photons in an integrating cavity, developed 

a new and improved diffuse reflector and constructed a flow-through integrating cavity 

absorption meter for use in natural waters. 

 

1. Integrating Cavity Behavior 

 

We demonstrated that the decay of radiation in an integrating cavity is not truly 

exponential; however, in cavities with a reflectivity near unity the radiation field is well 

modeled with an exponential decay.  It was shown that the average distance a photon 

travels between reflections in an integrating cavity is 4V/S, regardless of the cavity 

geometry, provided the cavity reflectivity is near unity.  Further, for any integrating 

cavity in which a sphere can be inscribed inside the cavity such that each face is in 

contact with the sphere at a minimum of one point, d =2/3 of the diameter of the sphere. 

 

2. Diffuse Reflector 

 

A diffuse reflector was developed that has the highest known diffuse reflectivity across 

the visible spectrum and on down to 266 nm.  The key to such a reflector was the 

development of a material with ultra-high purity as well as high transmission at the 

wavelength of interest.  To have reflectors of reasonable thickness the powder particles 
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must have dimensions of the order of 1 micron or less.  Utilizing this material as we 

prescribed greatly enhances the performance of integrating cavities, increasing the 

optical path length by one to two orders of magnitude. 

 

3. Flow-Through Integrating Cavity Absorption Meter 

 

We built a flow-through integrating cavity absorption meter for natural waters.  It was 

demonstrated to have a large dynamic range as well as high sensitivity. It has a constant 

cross-sectional throughput, eliminating any concerns of sample trapping during flow-

through measurements.  Further, it was shown to be largely independent of scattering 

affects over a wide range of scattering.  This ability to measure such a large range of 

absorption levels with few detrimental scattering effects uniquely positions the ICAM 

for use not only in the ocean environment but also in the much more difficult river and 

shoreline environments. 
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