

MULTI-COMMODITY FLOW ESTIMATION WITH PARTIAL

COUNTS ON SELECTED LINKS

A Dissertation

by

DONG HUN KANG

Submitted to the Office of Graduate Studies of

Texas A&M University
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

December 2005

Major Subject: Industrial Engineering

MULTI-COMMODITY FLOW ESTIMATION WITH PARTIAL

COUNTS ON SELECTED LINKS

A Dissertation

by

DONG HUN KANG

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Alberto Garcia-Diaz
Committee Members, César O. Malavé
 Amarnath Banerjee
 Ken Kihm
Head of Department, Brett A. Peters

December 2005

Major Subject: Industrial Engineering

 iii

ABSTRACT

Multi-Commodity Flow Estimation with Partial Counts on Selected Links.

(December 2005)

Dong Hun Kang, B.S., Hanyang University, Korea;

M.S., Hanyang University, Korea

Chair of Advisory Committee: Dr. Alberto Garcia-Diaz

The purpose of this research is to formulate a multi-commodity network flow model

for vehicular traffic in a geographic area and develop a procedure for estimating traffic

counts based on available partial traffic data for a selected subset of highway links. Due

to the restriction of time and cost, traffic counts are not always observed for every

highway link. Typically, about 50% of the links have traffic counts in urban highway

networks. Also, it should be noted that the observed traffic counts are not free from

random errors during the data collection process. As a result, an incoming flow into a

highway node and an outgoing flow from the node do not usually match. They need to

be adjusted to satisfy a flow conservation condition, which is one of the fundamental

concepts in network flow analysis.

In this dissertation, the multi-commodity link flows are estimated in a two-stage

process. First, traffic flows of “empty” links, which have no observation data, are filled

with deterministic user equilibrium traffic assignments. This user equilibrium

assignment scheme assumes that travelers select their routes by their own interests

without considering total cost of the system. The assignment also considers congestion

effects by taking a link travel cost as a function of traffic volume on the link. As a result,

the assignment problem has a nonlinear objective function and linear network constraints.

The modified Frank-Wolfe algorithm, which is a type of conditional gradient method, is

used to solve the assignment problem.

 iv

The next step is to consider both of the observed traffic counts on selected links and

the deterministic user equilibrium assignments on the group of remaining links to

produce the final traffic count estimates by the generalized least squares optimization

procedure. The generalized least squares optimization is conducted under a set of

relevant constraints, including the flow conservation condition for all highway

intersections.

 v

To my parents and my family

for their steadfast love and support

 vi

ACKNOWLEDGEMENTS

I would like to give all my thanks to God who is faithful to answer my prayers

during the journey of my Ph.D. program. I also want to express my deep appreciation to

Dr. Alberto Garcia-Diaz for being my advisor and giving me his sincere guidance, care

and encouragement throughout the years at Texas A&M. He was a good mentor in many

aspects of a graduate student’s life. Special thanks should be extended to Dr. César O.

Malavé, Dr. Amarnath Banerjee, and Dr. Kenneth Kihm for serving on my advisory

committee. Thanks to Judy Meeks for her administrative help over the years.

In my eight and half years at College Station, I have been helped by many friends

and pastors. Their encouragement and friendship have made me keep going up the hill. I

am in great debt of love and prayer to them.

I thank my wife, Ran-Yeong, and my son, Jee-Ho, for their love, patience and

support to complete my degree. Finally, I want to thank my mother, father and parents-

in-law for their endless love and support.

 vii

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION..1

I.1. Problem Definition...2
I.2. Research Significance and Contributions ..3
I.3. Organization of Dissertation ..4

II LITERATURE REVIEW...5

II.1. Introduction ..5
II.2. Literature on the Traffic Count Estimation ..5
II.3. Literature on the Frank-Wolfe Algorithm ..7
II.4. Literature on the Multiple Vehicle Classes ..8

III MODEL AND SOLUTION APPROACH...9

III.1. Introduction ...9
III.2. Mathematical Models ..9
III.3. Overall Solution Approach..15
III.4. Summary ...20

IV DEVELOPMENT OF SOLUTION PROCEDURES21

IV.1. Introduction ...21
IV.2. Deterministic User Equilibrium (DUE) Assignment21
IV.3. Modification of the Frank-Wolfe Algorithm ..25
IV.4. Lagrangian Relaxation of Problem ...27

V COMPUTERIZATION AND APPLICATIONS...33

V.1. Introduction ..33
V.2. Illustration of Real Field Application...33

VI SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS.................53

VI.1. Summary and Contribution...54

 viii

 Page

VI.2. Conclusions ...55

VI.3. Recommendations for Further Research...57

REFERENCES...57

APPENDIX A FRANK-WOLFE ALGORITHM ..60

APPENDIX B COMPUTER IMPLEMENTATION ...73

APPENDIX C COMMON SOLUTION APPROACHES FOR MULTI-

 COMMODITY NETWORK PROBLEMS..................................92

VITA ..113

 ix

LIST OF FIGURES

FIGURE Page

III.1. Travel Cost of a Link Due to Congestion ..11

III.2. Overall Conceptual Approach ...16

IV.1. Example of Path Flows ...22

IV.2. Example of Possible Path Flows at User Equilibrium22

IV.3. Importance of O-D Traffic Demand Matrix ..23

IV.4. Improvement by the Modified Frank-Wolfe Algorithm26

IV.5. GLS Optimization Example with 2-Commodity Arc Flow Observations30

IV.6. Traffic Count Estimates of the GLS Example IV.1. ...32

V.1. Map of a Metro Area Highway Network ...34

V.2. Network Model of the Selected Area in Figure V.1...36

A.1. Graph of a Frank-Wolfe Algorithm Example ..62

A.2. Feasible Direction of Example A.1. ...64

A.3. New Iteration Point x1. ...65

A.4. Finding Feasible Direction y1 from x1. ...66

A.5. New Iteration Point x2. ...67

A.6. Finding Feasible Direction y2 from x2. ...69

A.7. New Iteration Point x3. ...70

A.8. Finding Feasible Direction y3 from x3. ...71

 x

 Page

A.9. New Iteration Point x4. ...72

B.1. Diagram of Matlab Program Modules..74

C.1. Two Commodity Minimum Cost Flow Problem..96

C.2. Matrix Represenatation of Example C.1. ...97

C.3. Network Representation of Subproblem 1 of Iteration 1....................................99

C.4. Network Representation of Subproblem 2 of Iteration 1..................................100

C.5. Network Representation of Subproblem 1 of Iteration 2..................................102

C.6. Network Representation of Subproblem 2 of Iteration 2..................................103

C.7. Network Representation of Subproblem 1 of Iteration 3..................................105

C.8. Network Representation of Subproblem 2 of Iteration 3..................................106

C.9. Network Representation of Subproblem 1 of Iteration 4..................................108

C.10. Network Representation of Subproblem 2 of Iteration 4109

 xi

LIST OF TABLES

TABLE Page

III.1. Notation for Problem (P1)...11

V.1. O-D Demand Matrix ..37

V.2. Observed Link Flows for Commodity 1...38

V.3. Observed Link Flows for Commodity 2...39

V.4. Link Time Parameters for Commodity 1 ...40

V.5. Link Time Parameters for Commodity 2 ...41

V.6. User Equilibrium Link Flows for Commodity 1 ..45

V.7. User Equilibrium Link Flows for Commodity 2 ..46

V.8. Final Traffic Estimates for Commodity 1 ...49

V.9. Final Traffic Estimates for Commodity 2 ...51

C.1. Simplex Tableau of the Master Problem ...98

C.2. Simplex Tableau of the Iteration 1 ..101

C.3. Simplex Tableau of the Iteration 2 ..104

C.4. Simplex Tableau of the Iteration 3 ..107

 1

CHAPTER I

INTRODUCTION

There are multiple classes of vehicles transporting passengers and goods along their

paths in the highway network system. Traffic flows on highway segments are one of the

most commonly used data for transportation planning and analysis. Hence, the problem

of estimating the number of vehicles traverse on a highway segment (traffic link) is an

important issue commanding a great attention from many transportation agencies like the

U.S. Federal Highway Administration (FHWA) and the state Department of

Transportation (DOT). Many state highway agencies commit a significant portion of

their resources to collect data and to determine traffic flow parameters, such as the

average annual daily traffic, and the average daily traffic. Usually, the number of

vehicles (traffic counts) are collected along major roads and branches to cover the

transportation network of interest. However, due to personnel and financial restrictions,

not all of the highway links have traffic counts. Approximately half of the links are

missing traffic monitoring systems and an accurate analysis of these links require the

development of count estimates.

The main objective of this research is to develop a combination of network flow

optimization and statistical analysis methods to estimate multi-commodity link flows for

a given transportation network with partial sets of link flow observations. Usually

transportation system is well described by operation research techniques (Toint, 1997).

Traffic flows of a link usually consist of several vehicle classes and each of the vehicle

classes is considered as a commodity in the proposed model. The research is motivated

by the fact that: (1) highway segments and traffic flows are well suited to network

modeling and optimization methods since they are precisely represented by nodes and

 This dissertation follows the format and style of European Journal of Operational
Research.

 2

arcs; (2) traffic count of multiple vehicle classes may be viewed as multi-commodity

network flows in the modeling; (3) link flow observations, which are collected at some

links of a transportation network, are not free from observational errors. Hence it is

more appropriate to deal with them by statistical analysis technique.

I.1. Problem Definition

The purpose of this research is to develop a model and solution methodology to

estimate multi-commodity traffic link flows for a given transportation network with O-D

demands and partial sets of link flow observations on selected highway links. Given a

transportation network it is assumed that there are two sets of links, a set of links having

traffic flow observations and a set of links without any observations. A traffic count is a

number of vehicles observed by their type (vehicle classes) on a highway link during a

certain period of time. It is also assumed that all traffic demands between origins and

destinations are known, deterministic values. Considering congestion effect, the travel

cost of a link is a function of traffic volume on the link.

The estimation is based on the deterministic user equilibrium assignment and

generalized least squares (GLS) optimization. User equilibrium state is achieved when

travelers choose their routes with the least possible travel costs without considering the

total system cost. At user equilibrium, for each O-D pair, the traffic flows are such that

the travel costs of the routes taken are equal to or less than those of unused routes.

Another type of equilibrium is the system equilibrium (or system optimum) which leads

to a different assumption on travelers’ behavior. At this equilibrium, traffic flows are

distributed along the routes of a transportation network in such a manner that the sum of

the travel times of all travelers is minimized (Soroush and Mirchandani, 1990). Hence,

some travelers may experience relatively high costs of traveling at system equilibrium.

Since it is more natural to assume that travelers are free to choose their least cost routes

(usually the shortest path) along the given O-D demand matrix, user equilibrium is

 3

adopted for our model. The user equilibrium assignment is also modeled to consider

congestion due to high volume of traffic.

Traffic flows are usually observed by automatic traffic sensors installed in the road

links, which are partial sets of a specific transportation network. The problem with the

observed flows is that they are subject to observation errors and therefore do not satisfy

flow conservation condition, which is pursued by the network flow optimization field.

In other words, the sum of the incoming flow to a node is not equal to the sum of the

outgoing flow from the node. Therefore the observed traffic counts on selected links as

well as the user equilibrium assignments on the remaining links must to be adjusted to

yield accurate traffic count estimates. This is achieved by using the GLS optimization

technique. By GLS optimization the link flow estimates are determined in such a way

that the deviation between observational data and the final estimates are minimized.

I.2. Research Significance and Contributions

According to highway statistics 2001 prepared by the Federal Highway

Administration (2002), $452.4 million were spent on “Planning and Research” category

in federal-aid account by all state governments. Among those states, State of Texas

spent $31.7 million on “Planning and Research” during Fiscal Year 2000. Considering

many state highway agencies use a significant portion of their personnel and financial

resources to data collection and analysis which is performed by transportation planning

divisions, a systematic and quantifiable method for estimating current traffic flows is

important. It is especially true when only partial set of highway segments has traffic

counts and the traffic flows of the remaining segments have to be estimated based on the

current available observations.

The overall contributions of this research are summarized as follows.

• Use of multi-commodity traffic flows in traffic count estimation: So far, traffic

counts are collected and analyzed regardless of the vehicle classes. If individual

 4

traffic count data are needed they have to be split from the whole traffic count

data.

• Development of a computationally efficient solution procedure: The coverage of

transportation network grows as traffic monitoring systems are installed in more

areas along the highway. As a result transportation network problem can be

large in terms of number of nodes and links or of the O-D pairs. The proposed

approach uses computationally efficient method based on network flow

optimization methodology.

• Possible applicability of the proposed procedure: multi-commodity network flow

model is widely used in many areas such as data communication network in

which multiple types of signals are carried and need to be estimated.

I.3. Organization of Dissertation

This research is organized as follows: Chapter I has the problem definition, the

significance of the research and expected contributions. Chapter II reviews relevant

literatures on Traffic Count Estimation Problem. Chapter III presents the mathematical

formulation of the problem and the overall solution approach. In Chapter IV the

development of each procedure of the proposed solution methodology is provided.

Chapter V presents implementation and computational results. Finally, summary,

conclusions, and future research are presented in Chapter VI. In addition to the six

chapters, detailed Frank-Wolfe Algorithm and actual computer codes implemented in

MATLAB are provided in the appendices.

 5

CHAPTER II

LITERATURE REVIEW

II.1. Introduction

The literature on different types of approaches to traffic count estimation problem

will be reviewed in this section. Then, several studies on the modification of Frank-

Wolfe algorithm to accelerate the slow convergence will be presented in the last section.

II.2. Literature on the Traffic Count Estimation

Numerous researches on traffic count estimation are based on the application of

statistical analysis. Shen et al. (1999) developed regression analysis models, which

classify roads into several categories and find parameters of each highway category

which can be used to estimate annual average daily traffic for the off-system roads in

Florida. Ivan and Allaire (2001) also used linear regression analysis to predict traffic

volumes for all network links. Their study focused on peak-hour traffic volumes which

affect the congestion on the highway links. In the effort to analyze the relationship

between the traffic monitoring system location and traffic count estimation errors,

Sharma et al. (1996) investigated the statistical precision of annual average daily traffic

estimates from short period traffic count observations. Recently, Gazis and Liu (2003)

applied Kalman filter for estimating vehicle counts for two roadway sections in tandem.

The Kalman filter “is recursive estimator used to estimate the state of a linear time-

varying state equation, in which the states are driven by noise and observations are made

in the presence of noise” (Moon and Stirling, 2000). The fore mentioned studies used

statistical tools to estimate certain type of traffic flows from the observational data.

 6

Since they do not view the flow observations from the highway segments related by

network structure, their flow estimation results are inconsistent. That is, there is a

discrepancy between the sum of incoming flows into a certain intersection (network

node) and the sum of outgoing flows from the intersection. By contrast, Wells and Evans

(1989) proposed generalized least squares (GLS) optimization to solve the inconsistency

problem in observational data. They estimated link flows and totals flows in a directed

acyclic network when the measurement errors on the links are correlated. They used

observed link flows and used covariance matrix to formulate a simple quadratic

objective function, which gives minimum variances while satisfying network flow

conservation constraints and nonnegativity constraints.

Another type of research in traffic flow estimation problem is closely related to the

Origin-Destination (O-D) matrix estimation problem. The transportation engineering

framework, O-D demand matrix, along with the path choice model and the network

model, is an important input to the assignment problem which distributes appropriate

traffic flows on the network links. Reversely, measured link flows, along with the path

choice model and the network model, are main inputs to O-D estimation problem, which

generates traffic demand estimates from every origin to every destination in the network.

This relationship is well summarized by Cascetta E. (2001).

Cascetta (1984) introduced GLS estimator into O-D matrix estimation problem. In

his work, a GLS estimator was used to combine trip table’s direct estimation with traffic

counts via an assignment model. Yang et al. (1992) studied the estimation of O-D trip

matrices from traffic counts for a congested network case. Yang and Sasaki (1994)

extended uncongested estimation model with a linear assignment map to the case with a

user equilibrium assignment map, which is formulated as a bilevel optimization problem.

In their bilevel optimization model, the upper-level problem seeks to minimize the sum

of distance measurements between the observed values to the decision variables, while

the lower-level problem represents a user optimal assignment which guarantees that the

estimated O-D matrix and the corresponding link flows satisfy the user equilibrium

conditions. In their continued study about O-D matrix estimation, Yang (1995)

 7

transformed a bilevel optimization problem, which is computationally and analytically

complex, into a single convex program under the assumptions that the traffic counts on

each network link are available and constitute a user optimal flow pattern. Compared to

the previous nonlinear approach, Sherali et al. (1994) proposed the linear programming

approach for estimating O-D trip tables. Their procedure utilizes shortest path network

flow programming subproblems to determine a path decomposition of flow that

reproduces the observed flows as closely as possible, while seeking a user equilibrium

based solution that comes closest to a specified target trip table. Their approach has an

advantage of finite convergence of linear programming, while it has the weakness that it

requires fairly reliable link flow estimates for the model to be meaningful. Also their

approach does not always guarantee the user equilibrium solutions.

II.3. Literature on the Frank-Wolfe Algorithm

The Frank-Wolfe algorithm is one of the approximation algorithms in nonlinear

optimization. It generates a feasible direction that minimizes the nonlinear objective

function at each iteration to find the solution until it satisfies a predefined termination

criterion. Since LeBlanc et al. (1975) used the Frank-Wolfe algorithm to solve the

traffic assignment problem in their early research, the algorithm has been widely used in

the transportation field, because it accounts the network flows problem structure into the

approximation and is a relatively effective method in terms of easy procedure and

moderate amount of data storage. Hearn and Ribera (1981) showed the convergence of

the Frank-Wolfe algorithm when it was modified to include capacity restrictions on

some links of a traffic assignment problem. Although the Frank-Wolfe algorithm has

advantages for solving traffic assignment problems, it has a problem of slow

convergence approaching the optimal point. Several modifications in this approach have

been proposed to improve the convergence.

Fukushima (1984) proposed a modified Frank-Wolfe algorithm which utilizes the LP

subproblem solutions in some previous iterations to improve search direction from the

 8

current iteration point. Weintraub et al. (1985) suggested using different step sizes

during the iteration. They experimented with various step sizes to find the best

combination for a set of traffic assignment problems. Another modification to previous

studies that did not use the path flow information during iteration was made by Chen et

al. (2002), who proposed an algorithm utilizing the path flow information to accelerate

the slow convergence.

II.4. Literature on the Multiple Vehicle Classes

So far, there was no distinction of vehicle types for traffic flows occurred in a

transportation network. That means that each origin-destination pair has only one type

of traffic flow on the paths. However, in some literature, multiple vehicle classes has

been considered in the transportation network. Dafermos (1972) presented a multiclass-

user model that considered different driver-vehicle combinations sharing a transportation

network. Each combination has an individual cost function in an individual way. Her

model is also viewed as a multi-commodity model having each combination as a single

commodity and formulated to find a system optimization flow pattern for the network.

Marcotte and Wynter (2004) portrayed the multiclass network equilibrium problem as a

nonmonotone, asymmetric, a variational inequality problem. They showed that the

problem may have a weaker property in certain conditions and proposed an algorithm

utilizing the single-class network equilibrium problem solution technique.

 9

CHAPTER III

MODEL AND SOLUTION APPROACH

III.1. Introduction

Traffic flow estimation problem can be modeled as the application of network flow

optimization methods. Since highway intersections and roads can be easily and

accurately translated into nodes and links of a network, network flow optimization is a

popular tool in the modeling and the analysis of transportation systems. In this chapter,

mathematical formulation of models to solve the current problem is described; then the

overall conceptual solution approach is presented; and a brief summary of the chapter

closes the chapter.

III.2. Mathematical Models

The traffic flow estimation problem goes through two major steps. First, all of the

missing link flows are calculated by multi-commodity deterministic user equilibrium

assignment (MDUE) problem. Then, the assigned link flows and the observed link

counts are adjusted by the GLS optimization problem to produce final estimates. These

two steps are modeled and represented as mathematical formulation in the following

sections.

III.2.1. Deterministic user equilibrium assignment

Transportation planners, after determining the traffic demands between origin and

destination nodes, use a traffic assignment model to distribute the traffic demands to

 10

traffic links of the transportation network. This assignment model helps the planners

determine the performance of various routes and road segments of the current

transportation network. Since the traffic flows are generated by travelers, an assignment

model has to reflect the actual behavior of the travelers’ route choice as close as possible.

Traffic assignment model can be classified by system optimum assignment and user

equilibrium assignment.

System optimum assignment assumes that travelers choose their routes for the benefit

of the whole system. Hence, at system optimum assignment, traffic flows are distributed

to minimize the total cost in the system. The system optimum may be achieved at the

expense of some travelers unreasonably high cost. This assignment would be suitable

when all trips can be managed by a supervisor regardless of the travelers’ preferences,

such as the transportation schedule of a trucking company.

User equilibrium assignment, on the other hand, assumes that travelers choose their

route separately for their own interests. In this case, each traveler compares all possible

paths connecting the origin and the destination nodes and selects a minimum cost path.

At user equilibrium state, all paths of an origin-destination taken by travelers cost the

same or less than those not chosen. For example, suppose there are five paths, r1, r2, r3,

r4 and r5, where only r1, r2, and r3 are used to satisfy the demand between the origin and

the destination.. Then, at equilibrium, paths r1, r2 and r3 cost less than or equal to the

travel costs of path r4 and r5. Moreover, the travel costs of r1, r2 and r3 are the same.

Since user equilibrium assignment reflects travelers’ behavior more realistically, it is

used in our assignment model. In the assignment model, travel costs of the links are not

constant due to the congestion effect. A link travel cost remains constant until the traffic

flow on the link reaches at certain congestion point and then increases exponentially as

the traffic flow increases. Figure III.1shows the relationship between cost function and

traffic flow of a link.

 11

Figure III.1. Travel Cost of a Link Due to Congestion

III.2.2. Formulation of MDUE assignment

Table III.1. shows the parameters and decision variables. Suppose that there is a

transportation network G(N, A) where N and A are defined in Table III.1.

Table III.1. Notation for Problem (P1)

Parameters

 A set of links, indexed by a

 D set of destination, indexed by j

 K set of commodities, indexed by k

 N set of nodes

 O set of origins, indexed by i

 k

ijR
set of all possible paths connecting O-D pair (i, j) for
commodity k on link a, indexed by r

 k

ijt demand from origin i to destination j for commodity k

 k
ijarδ 1 if k

ijrh passes through arc a, and 0 otherwise

)(vc
k

a travel cost of commodity k on link a when traffic volume is v

m total number of links

n total number of nodes

Decision Variables

 k

ax traffic flow on link a for commodity k

k

ijrh r
th path flow from origin i to destination j for commodity k

Traffic flow

T
ra

v
el

 c
o

st

 12

Also suppose that there are traffic flow demands from the origin Oii ∈, to the

destination Djj ∈, for each commodity Kkk ∈, .

The decision variable xk
a is traffic flow on link a for commodity k. When the cost

functions are monotonically increasing and separable for all links, Problem (P1)

becomes a MDUE traffic assignment problem.

Problem (P1)

 ∑∑∫
∈ ∈

=
Kk Aa

x
k

a
x

k
a

dvvcfMin
0

)()(x (III.1)

 s.t. ∑∑∑
∈ ∈ ∈

=
Oi Dj Rr

k

ijr

k

ijar

k

a
k
ij

hx δ KkAa ∈∈∀ , (III.2)

 k

ij

Rr

k

ijr th
k
ij

=∑
∈

 KkDjOi ∈∈∈∀ ,, (III.3)

 0,0 ≥≥ k

ijr

k

a hx k

ijRrKkDjOiAa ∈∈∈∈∈∀ ,,,, (III.4)

 where k

ijarδ = 1 if k

ijrh passes through arc a, and 0 otherwise.

In the formulation of the Problem (P1) shown above, the single commodity

formulation of the object function was first introduced by Beckmann et al. (1956) and

commonly used in transportation engineering discipline. In the objective function

(III.1), multi-commodity index k is used to consider multiple vehicle classes for each O-

D pair. Appendix C.1 shows the general solution procedures for multi-commodity

problems. Notice that current object function is different from the one used in system

optimum assignment problem having the form:

 ∑∑∑∑
∈ ∈ ∈ ∈Oi Dj Kk Rr

k

ijr

k

ijr
h k

ij

hhcMin)((III.5)

 where)(k

ijrhc is a path cost and k

ijrh is path flow shown in Table III.1.

 13

The constraints (III.2) characterize the conservation of flow between the link flows

and path flows. That is, a traffic flow on link a for commodity k is the sum of the all

path flows about commodity k passing through link a. The Problem (P1) is represented

as a path-flow formulation because a link-flow representation can not depict individual

O-D demand flows in the transportation network. Another type of flow conservation

constraints between path flows and traffic demands is shown in (III.3). These

constraints set the flow between any origin and destination for commodity k equal to the

sum of the flows for that commodity on all paths connecting a specific origin to its

destination.

III.2.3. Generalized least squares (GLS) optimization problem

By user equilibrium assignment, every link has assigned link flows for each

commodity. Even though current assignment could be a reasonable approximation of

the actual traffic occurred in the transportation network, it can be improved by exploiting

the traffic count data which are collected from different part of the network. In order to

do so, any assigned link flow is replaced by the corresponding observational traffic

count. Afterwards, the combined link traffic flows will be adjusted to produce the final

traffic count estimates by GLS optimization procedure.

GLS optimization is conducted under a set of relevant constraints, including the

flow-conservation condition for all highway intersections. Additional constraints could

be formulated to represent multiple types of vehicle classes.

Suppose that we have an actual traffic count observation ya, Aa ∈ . In general, ya is

not the true flow on link a due to unknown errors and has a variance 2

aσ . We assume

that the observation of the flow on a link a, ya is a random variable which is modeled as

 aaa xy ε+= , Aa ∈ (III.6)

 14

where xa is true flow on link a, εa is a normal random variable with mean 0 and variance

2

aσ . By taking expectations on (III.6) we can confirm ya is an unbiased estimator of xa.

 aaaa xxEyE =+=)()(ε , Aa ∈ (III.7)

The variance is a measure of the amount of variability inherent in observing the flow

along link a. There may also be covariance between the link flow observations. In this

situation, the mathematical modeling of the GLS optimization is shown in the matrix

form of Problem (P2).

Problem (P2)

 ∑
∈

− −′−
Kk

kkkkk

x
Min)()()(xyVxy 1 (III.8)

 s.t. k k k=A x b Kk ∈∀ (III.9)

 ux ≤∑
∈Kk

k (III.10)

 0x ≥k Kk ∈∀ (III.11)

Suppose that there is a set of links P with traffic flow observations, Q without

observations, and p and q, the respective number of elements of set P and Q.

Here, AQP ≡∪ and p + q = m. In the objective function (III.8), the observation vector

y
k consists of

k

Py , the vector of actual flow observation for commodity k and k

Qy , the

vector of user equilibrium traffic flows given from the solution of Problem (P1). Vk is a

variance-covariance matrix of commodity k, whose diagonal elements represent the

variances of the link flow observations, and the remaining elements show covariance

between the link flows. In the model, we take the inverse of the matrix to give more

weight on the flow observation with less variance. Constraints (III.9) indicate that flow

conservation should be met at each node for all commodity k, meaning the sum of

 15

incoming flows into a node is equal to the sum of outgoing flows from the node. This

holds for each commodity. Here, A
k is the node-link incident matrix for the given

network G(N,A) and it has the same elements for all commodity. All or most of the

constraints (III.10) would not be bound, since an assigned or observed link flow would

not exceed the link capacity. In the user equilibrium assignment, link capacity is

maintained implicitly by nonlinear link cost functions. Observed link flows also satisfy

link capacity by nature. Thus, constraints (III.10) could be changed with other types of

restrictions imposed on the arc in accordance with multi-commodity flows.

III.3. Overall Solution Approach

Traffic flow estimates are obtained by sequentially solving the previous two

problems, Problem (P1) and Problem (P2). First, the MDUE traffic assignment

Problem (P1) is solved to distribute traffic flows based upon the user equilibrium

scheme. Using the calculated MDUE assignment solution, partial link counts and a

variance-covariance matrix, the GLS optimization Problem (P2) is solved to obtain final

link flow estimates.

Due to the adoption of nonlinear cost functions, which take congestion effects into

account, the traffic assignment Problem (P1) has a nonlinear objective function with

linear network flow constraints. An efficient approach to solving this nonlinear

optimization problem is to use a linear approximation methodology known as the

conditional gradient method or, the Frank-Wolfe algorithm. The Frank-Wolfe algorithm

solves a linear programming problem (network flow optimization problem in the current

case) and a line search repeatedly until a predefined stopping criterion is satisfied (Bell

and Iida, 1997).

So far partial link flow observations are not used in Problem (P1) above because the

observational data are incompatible with the deterministic network modeling structure.

This prompts the use of a GLS optimization method as a next step. GLS estimation is

used to find estimators which minimize the weighted sum of squared distances between

 16

observed values and estimated variables. The GLS estimation was utilized in the current

problem to give observed data with smaller variance the more weight and to consider the

possible covariance between the link flows.

Figure III.2 shows the overall conceptual approach of the proposed methodology.

Figure III.2. Overall Conceptual Approach

(P1) Multi-commodity User Equilibrium Traffic Assignment Problem

Start

Input: O-D matrix, Cost Functions

(P2) Generalized Least Squares Optimization Problem

Input: Partial link flow
observations, var-cov matrix

Initialization: determination of
starting feasible solution, x'

Determine search direction: solve multi-
commodity traffic assignment problem, x"

Generate next iteration point: line search, x'

Is

stopping criterion
met?

yes

no

Stop

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Step 7.

 17

The proposed approach starts with the preparation of input data. In step 1, O-D

matrix gives the multi-commodity traffic demands between every origin-destination pair

in the transportation network. Regarding cost functions, each link may have different

parameters considering the congestion effects on it. Furthermore, the sensitivity of the

cost function in response to congestion may be different for each vehicle classes. One of

the widely used cost function is suggested by Bureau of Public Roads (BPR) (1964):























+=

γ

β
a

a

aaa
u

v
ocvc 1)()((III.12)

where ca(0) is a free flow travel cost on link a, ua is the a flow capacity of link a.

Here, β and γ are pre-given parameters and set to β = 0.15 and γ = 4. Since the BPR cost

function does not give different link costs for different commodities (vehicle classes) on

the same link, the BPR function is modified to include indices for multi-commodity

flows as shown below.

 () () 1
k

k k k a

a a a k

a

v
c v c o

u

γ

β
  
 = +  
   

 (III.13)

From Step 2 to Step 5, MDUE traffic assignment Problem (P1) is solved. Problem

(P1) is solved by Frank-Wolfe algorithm which is customized to solve our traffic

assignment problem. In Step 2, a starting feasible solution (x') is determined by solving

Problem (P3) with initial flows of zero on all links. The Problem (P3) is having an

objective function of the first-order Taylor expansion around k

a
x of the Problem (P1)

with identical constraints. The more detailed description of the Frank-Wolfe algorithm is

explained in the Appendix.

 18

Problem (P3)

 ∑∑
∈ ∈Kk Aa

k

a

k

a

k

a
x

xxcMin)((III.14)

 s.t. ∑∑∑
∈ ∈ ∈

=
Oi Dj Rr

k

ijr

k

ijar

k

a
k
ij

hx δ KkAa ∈∈∀ , (III.15)

 k

ij

r

k

ijr th =∑ KkDjOi ∈∈∈∀ ,, (III.16)

 0,0 ≥≥ k

ijr

k

a hx k

ijRrKkDjOiAa ∈∈∈∈∈∀ ,,,, (III.17)

 where k

ax (or x' in vector form) is the solution from Step 2 and

 k

ijarδ = 1 if k

ijrh passes through arc a, and 0 otherwise.

In Step 3, the algorithm determines the search direction of our linear approximation

scheme. The starting feasible flows (x') in Step 2 generate new link cost coefficients that

convert the original nonlinear Problem (P1) to a linear programming problem, more

specifically, a multi-commodity traffic assignment Problem (P3).

In order to consider O-D demand flows explicitly, current multi-commodity traffic

assignment Problem (P3) is represented by the path-flow based formulation. Since the

problem is a variation of a multi-commodity network flows optimization problem, any

solution technique used for multi-commodity network flows optimization problem, such

as the column generation procedure could be used. The column generation procedure

generates the columns “as needed” bases during the solution process. After solving

Problem (P3), new link flows solution (x") is generated. In Step 4, a convex

combination of the current link flows (x") and the previous link flows x' is sought to

minimize the original objective function (III.1) as shown in Problem (P4).

Problem (P4)

))1((λλ −′′+′= xxxfMin (III.18)

 s.t. 0 ≤ λ ≤ 1

 19

Problem (P4) is an simple nonlinear optimization problem in one variable, λ, for

which a number of techniques are available such as the Golden Section search method

and the bisection method. This generates a new link flows solution (x') with which

convergence test is performed in Step 5. In Step 5, newly obtained link flows (x') and

the link flows solution from Step 3 (x") are compared. If the predefined convergence

condition is met, the procedure goes to Step 7 along with the inputs from Step 6.

Otherwise the algorithm returns to Step 3 with the current solution x' as an input to the

step. There is a number of ways to access the degree of convergence. One way is to

observe the relative changes in the vector of current link flows between iterations.

Another way is to compare the changes in the final trip costs resulted from the current

link flows.

After completing Step 1 through 5, we obtain user equilibrium link flows based on a

given O-D demand matrix and link cost functions. These flows, however, may be

different from the true traffic volumes of the links, since there always exist a possibility

that O-D matrix and/or link cost functions are inaccurately describe a given

transportation network. Therefore, current link flows must be adjusted to comply with

the real network behavior as closely as possible. This process is performed by

considering the partial link flow observations in the GLS optimization model (P2). The

actual observation data replace the corresponding link flows, which are calculated from

the first 5 steps. Also, variance-covariance matrix is given as an input to the GLS

optimization problem.

In Step 7, GLS estimation starts with the inputs of link flows calculated from the

previous assignment problem, partial link flow observations, and variance-covariance

matrix, V, of the network links. The GLS optimization Problem (P2) reduces to a

quadratic programming with linear constraints. This quadratic programming can be

solved with the Lagrangian relaxation method without considering multi-commodity

capacity constraints (III.10). The solution vector of the Lagrangian relaxation problem

is as follows:

 20

 x = [I – VA' (AVA')-1 A] y + VA' (AVA')-1 b (III.19)

Detailed equations of the solution steps are given in Chapter IV. Notice that

constrains (III.10) will not be active in general, since the user equilibrium link flows

calculated from Problem (P1) implicitly consider the link capacity by flow-dependent

nonlinear cost functions. However, if any of the capacity constraint is active after

replacing user equilibrium link flows with the partial link flow observations, the

quadratic programming problem can be solved by the active set method.

III.4. Summary

Multi-commodity deterministic user equilibrium (MDUE) traffic assignment is

formulated to allocate the traffic demands to the traffic links, based on the selfish route

choice assumption. The problem also take congestion effects into account in the flow

volume dependent cost function. The formulation of the assignment problem turns out

to be a nonlinear programming problem with linear network flow constraints and is

solved by a linear approximation method called Frank-Wolfe algorithm using the

conditional gradient method.

As a second stage of the proposed traffic flow estimation procedure, GLS

optimization is formulated to determine the final traffic flow estimates, that minimizes

the total deviation between the observational data and the final estimates. The proposed

solution approach is described in detail in Chapter IV.

 21

CHAPTER IV

DEVELOPMENT OF SOLUTION PROCEDURES

IV.1. Introduction

In this chapter, the procedure of the solution approach for algorithm described in the

previous chapter is explained in detail. Section IV.2. describes the basic assumptions

and properties of the deterministic user equilibrium assignment. Section IV.3 presents a

modified Frank-Wolfe algorithm, which is based on the heuristic method by Weintraub

et al. (1985), to accelerate the slow convergence near optimal point. Section IV.4 shows

that GLS optimization problem is solved by Lagrangian relaxation method in detail.

IV.2. Deterministic User Equilibrium (DUE) Assignment

A transportation network G(N, A) consists of a set of nodes, N, and a set of links, A.

Nodes represent conceptual or physical intersections in the transportation network and

links represent road segments connecting the nodes. A link cost represents the sum of

all costs required to travel the link. An origin is a node where traffic flows are generated

and a destination is a node where the traffic flows terminate. In the proposed model, all

network links are directed links in order to represent the real highway network. Also, a

commodity represents a type of vehicle classes.

Path-flow representation is important for modeling DUE assignment since all

selected paths of an O-D pair should have the same travel cost at user equilibrium.

Figure IV.1 shows an example of path flows between origin node 1 and destination node

3 in a transportation network.

 22

Figure IV.1. Example of Path Flows

In the Figure IV.1, hijr represents a rth path flow from origin i to destination j. Even

though there are four possible paths in the example above, all paths do not necessarily

have to be taken for traveling between the O-D pair at user equilibrium.

Figure IV.2. Example of Possible Path Flows at User Equilibrium

Figure IV.2. shows one of possible scenarios of user equilibrium when it is assumed

that three path, h131, h132, and h133, are selected. However, the travel cost between the

selected paths must the same at user equilibrium condition.

4

3

2

1

h134

h133

h131

h132

4

3

2

1

C(h131) = C(h132) = C(h133)

h134

h133

h131

h132

 23

Another important assumption for DUE is that O-D traffic demand are given as fixed

values. Consider the following example shown in Figure IV.3.

 O\D 3 4

1 5 5

2 10 10

Figure IV.3. Importance of O-D Traffic Demand Matrix

In the above Figure IV.3, cij is total link costs required to travel link (i, j) and xij is a

assigned link flows. The two problems have the same network with identical link costs

1

2

3

4

15

15

10

20

c13 = 5

c24 = 5

c23 = 6

c14 = 8

c43 = 2 c12 = 2

(A) Min cost assignment

1

2

3

4

15

15

10

20

c13 = 5

c24 = 5

c23 = 6

c14 = 8

c43 = 2 c12 = 2

(B) Min cost assignment with O-D demand matrix

1

2

3

4

15

15

10

20

x13 = 10

x24 = 15

x23 = 5

x14 = 0

x43 = 0 x12 = 0

Total cost = 155

1

2

3

4

15

15

10

20

x13 = 5

x24 = 15

x23 = 10

x14 = 0

x43 = 0 x12 = 5

Total cost = 170

 24

except the second one is given an O-D traffic demand matrix. As shown in the Figure

above, the two problem have different link flow assignments and total minimum costs.

Notice that the problem with O-D traffic demand matrix has a higher total minimum cost

of 170 due to additional constraints by the O-D matrix.

IV.2.1 Variational inequality formulation for DUE

Consider link flows, x, path flows, h, link cost, c, and path cost, g. Then the

variational inequality is formulated as follows:

 (x – x
)' c(x) ≥ 0 (IV.1)

or

 (h – h
)' g(h) ≥ 0 (IV.2)

where x* is the vector of DUE link flows and h* is the vector of DUE path flows.

The variational inequality describes that, given user equilibrium path costs (link

costs), any deviation from the user equilibrium path flows (link flows) can not reduce

total costs. That is, at user equilibrium, any traveler can not reduce his trip cost by

changing his path.

IV.2.2 Existence of DUE link flows

Theorem 1. The variational inequality (IV.1) and (IV.2) have at least one solution if the

cost functions are continuous functions, defined on the non-empty, compact and convex

set of the feasible link flows or path flows

Proof. See Cascetta, E. (2001).

 25

IV.2.3 Uniqueness of DUE link flows

Theorem 2. Given the existence of a DUE assignment, if the Jacobian of the link cost

functions is positive definite then the assignment is unique and vice versa.

Proof. See Bell, M. G. and Iida, Y. (1997).

IV.3. Modification of the Frank-Wolfe Algorithm

Frank-Wolfe algorithm is a popular algorithm for solving nonlinear programming

problems. It is especially advantageous in traffic assignment problems because it does

not need enumerating all possible paths between origins and destinations, which could

be very demanding work as the size of the network grows. Also, it allows to use very

efficient network flows algorithms as its subproblems. However, it has a tendency that

the convergence becomes slow as it approaches to the optimal point. In this section, the

modification of the Frank-Wolfe algorithm is proposed based on Weintraub et al.’s

(1985) approach by a using different step sizes.

The modified Frank-Wolfe algorithm:

0. Choose a starting feasible solution x1 of Problem (P1)

 Let iteration counter k = 1

1. Solve Problem (P3). Let yk be the solution.

 Search direction dk = yk - xk

2. Solve Problem (P4). Let λ0 be the solution.

3. Let λk = αk λ0, α
k is a predefined modification for kth step size where αk > 1.

4. Let λk
 = min (λk, 1)

5. Calculate the next iteration point.

 x
k+1 = xk + λk

 d
k

6. Check the improvement by new step size.

 If f(xk+1) < f(xk) then xk+1 = xk+1. Otherwise xk+1 = xk + λ0 d
k

 26

0 10 20 30 40 50 60 70
100

105

110

115

120

125

130

135

140

Iterations

L
in

k
 F

lo
w

Original F-W algorithm

Modified F-W algorithm

The modified Frank-Wolfe algorithm uses, whenever possible, the larger step sizes

than the original one. The motivation of this heuristic is based on the observation that

the step sizes of the original Frank-Wolfe algorithm diminishes while approaching the

optimal point. By using the larger step sizes, the modified Frank-Wolfe algorithm

compensate the diminishing effect.

Figure IV.4. Improvement by the Modified Frank-Wolfe Algorithm

Figure. IV.4. shows outputs from the original F-W algorithm and the modified F-W

algorithm. As shown in the graph above, the modified F-W algorithm reaches an

optimal point around after 20 iterations. However, the original F-W algorithm shows it

 27

is still seeking the optimal point after 60 iterations. Notice that the modified F-W

algorithm has wider zigzag pattern than the original F-W algorithm.

IV.4. Lagrangian Relaxation of Problem

In order to solve the GLS optimization Problem (P2), the Lagrangian relaxation

approach is used. A Lagrangian relaxation method removes the constraints and include

them in the objective function by adopting Lagrangian multipliers for each constraints.

Therefore, a constrained optimization problem is reduced to an optimization of the

Lagrangian function.

For the sake of simplicity, following conversions are made from the GLS

optimization formulation.

1

k

 
 

=  
 
 

y

y

y

M ,

1

k

 
 

=  
 
 

x

x

x

M ,

1

k

 
 

=  
 
 

V 0 0

V 0 0

0 0 V

O ,

1

*

k

 
 

=  
 
 

A 0 0

A 0 0

0 0 A

O ,

1

*

k

 
 

=  
 
 

b

b

b

M

In the notations above, node-are incident matrices A1 , …, Ak are not full rank (see

Bazaraa et al. (1990)) since the sum of its rows is zero vector. Therefore, in actual

calculation, one constraint from the node-arc incident matrix for each commodity is

removed to make it nonsingular. Let’s assume that A and b are a resulting matrix and a

vector after removing k rows from A* and from b*. Then, the GLS optimization can be

reformulated as:

Problem (GLS)

 1() ()Min −′− −y x V y x (IV.3)

 . .s t =Ax b (IV.4)

 ≥x 0 (IV.5)

 28

where y is a vector obtained by combining observed counts and traffic assignments. V is

a variance-covariance matrix. A is a node-link incidence matrix of the network. b is a

vector having elements of zero when a node is a transshipment node, positive-value

when a node is an origin (or source) node, and negative-value when a node is a

destination (or terminal) node.

The constraints (IV.4) are included in the objective function by multiplying

Lagrangian multipliers λ. Then the following unconstrained minimization problem is

obtained by equation:

Problem (LR)

 Min L(x, λ) = (y – x)'V-1(y – x) – λ' (Ax – b) (IV.6)

Notice that the inequality constraints (IV.5) are not considered in (IV.6) for a

practical situation, where the solution of Problem (GLS) would not be bound by

constraints (IV.5). If we assume that x* and λ* as the optimal solution of Problem (LR),

then they must satisfy the following conditions:

*/L∂ ∂ =x 0 and

*/L∂ ∂ =λ 0 .

By differential operations for vectors (see Searle, 1982), it is obtained that:

 * * * 1 * * */ / ()' () ()L − ′∂ ∂ = ∂ ∂ − − − −
 

x x y x V y x λ Ax b

* 1 * 1 * * */ (')() ()− − ′ ′= ∂ ∂ − − − −
 

x y V x V y x λ Ax b

* 1 * 1 1 * * 1 * * * */ ' '− − − − ′ ′ ′ ′= ∂ ∂ − − + − −
 

x y V y x V y y V x x V x λ Ax λ b

 29

1 1 1 * *(') 2 ()− − − ′′ ′= − − + −V y y V V x λ A

1 1 * *2 2− − ′= − + −V y V x A λ

1 * *2 ()− ′= − − − =V y x A λ 0

Then, 1 * *2 ()− ′− =V y x A λ

 * *1

2
′− =y x VA λ

 * *1

2
′= −x y VA λ (IV.7)

Also,

* * * 1 * * */ / ()' () ()L − ′∂ ∂ = ∂ ∂ − − − −
 

λ λ y x V y x λ Ax b

* * */ () ′= ∂ ∂ − −
 

λ λ Ax b

*= − =b Ax 0

Hence, *=b Ax (IV.8)

From (IV.7) and (IV.8)

 * *1
()

2
′= = −b Ax A y VA λ

 *1

2
′= −Ay AVA λ

By solving about λ*,

*1

2
′− =Ay AVA λ b

 * 2()′ = −AVA λ Ay b

 * 12() ()−′= −λ AVA Ay b (IV.9)

 30

By applying λ* to (IV.7),

* *1

2
′= −x y VA λ

1() ()−′ ′= − −y VA AVA Ay b

1 1() ()− −′ ′ ′ ′= − +y VA AVA Ay VA AVA b

1 1[()] ()− −′ ′ ′ ′= − +I VA AVA A y VA AVA b (IV.10)

Since V-1 is positive definite (AVA)-1 is also a positive definite matrix and therefore

nonsingular. Thus (IV.9) and (IV.10) hold for optimal solution λ* and x*.

Example IV.1. Consider the following two-commodity transportation network

with the given link flow observation data and a variance-covariance matrix. Due

to unknown observation errors, as shown in the Figure IV.5, the link flows do not

satisfy flow conservation condition.

Figure IV.5. GLS Optimization Example with 2-Commodity Arc Flow Observations

1

2

3

4

y
1

1=2
x2

1=4

y
1

2=3
y

 2
2=5

y
 1

3=1

y
 2

3=2

y
 1

4=3
y

 2
4=4

y
 1

5=3
y

 2
5=5

b
2=10

b
1=6 b

 1=6

b
2=10

 31

a) For commodity 1

 1 -.5 0 0 0
 -.5 1 0 0 0
 V

1 = 0 0 .75 0 0
 0 0 0 .5 -.2
 0 0 0 -.2 .5

 1 1 0 0 0
 -1 0 1 1 0
 A

1 = 0 -1 -1 0 1 Ar
1 =

 0 0 0 -1 -1

 b

1 = br
1 = x

1 =

b) For commodity 2

 1 -.5 0 0 0
 -.5 1 0 0 0
 V

2 = 0 0 .75 0 0
 0 0 0 .5 -.2
 0 0 0 -.2 .5

 1 1 0 0 0
 -1 0 1 1 0
 A

2 = 0 -1 -1 0 1 Ar
2 =

 0 0 0 -1 -1

1 1 0 0 0

-1 0 1 1 0

0 -1 -1 0 1

6

0

0

6

6

0

0

2

3

1

3

3

1 1 0 0 0

-1 0 1 1 0

0 -1 -1 0 1

 32

 b

2 = br
2 = x

2 =

x = [I – VAr'(ArV Ar')
-1

 Ar]y + VAr'(ArV Ar')
-1

br

 = [5.3108 4.6892 1.1892 4.1216 5.8784

 3.1081 2.8919 0.3919 2.7162 3.2838]'

In the above solution (x), the final traffic count estimates satisfy the network

flow conservation constraints. For example, an incoming flow estimate (x1
1), of

node 2 is the sum of the outgoing flows, x1
3 and x1

4 (3.1081 = 0.3919 + 2.7162).

Figure IV.6. Traffic Count Estimates of the GLS Example IV.1

Figure IV.6. shows the solution of the GLS optimization problem. The link

flows are adjusted by the given variance-covariance matrix in order to minimize

the total deviation between the original flows and the estimates.

10

0

0

10

10

0

0

4

5

2

4

5

1

2

3

4

x
 1

1=3.1081

x
2

1=5.3108

x
 1

2=2.8919

x
 2

2=4.6892

x
 1

3=0.3919

x
 2

3=1.1892

x
 1

4=2.7162

x
 2

4=4.1216

x
 1

5=5.8784

x
 2

5=6.2838

b
2=10

b
1=6 b

1=6

b
2=10

 33

CHAPTER V

COMPUTERIZATION AND APPLICATIONS

V.1. Introduction

The proposed procedures have been computerized and run under various scenarios to

test the performance of the proposed methodology. Such scenarios include the changes

in number of commodities (vehicle classes), different variance-covariance matrices

between network link flows, and various cost functions by changing the parameters

corresponding to different road conditions. All procedures are written in MATLAB

language and run on a personal computer with Intel Pentium IV 3.06 processor. In the

following sections, the computer implementation of the proposed methodology is

described.

V.2. Illustration of Real Field Application

A metro area was randomly selected to show the computational procedure of the

methodology in real highway network. In Figure V.1, the circled area is considered as a

specific region for which traffic counts are going to be estimated based on partial traffic

counts. It is assumed that the network has 6 origins and 8 destinations per each

commodity, total 96 O-D pairs.

In the map, the thicker lines (red in color) represent the links without traffic count

data and the thin lines (gray in color), the links with traffic count observations.

 34

Figure V.1. Map of a Metro Area Highway Network

 35

V.2.1. Constructing a network modeling

A network model is constructed based on the highway network shown in Figure V.1.

In the map each intersection becomes a node. Also, a starting or an ending point of an

unobserved link becomes a node. Figure V.2 shows the network model of the circled

area in the above map. The traffic demands are assumed to have 6 origins and 8

destinations as shown in Figure V.2. In order to satisfy the traffic demands between the

6 origins and the 8 destinations, some links need to be bi-directional. In that case, the

nodes and the links are divided into two separate nodes and links in order to consider

inbound and outbound flows separately. In Figure V.2, dotted lines represents links

without counts. The different thickness of the links also represents different road

capacity, which is explained in “Link Cost Flow” subsection below. The node numbers

and the link numbers are randomly assigned and do not follow any specific sequential

scheme.

V.2.2. Origin-destination demand matrix

For simplicity of the example, it is assumed that incoming flows toward downtown

area originate from the suburban areas. That is, the six origins, node 1, node 2, node 10,

node 13, node 28, and node 42, are located in south-west side of the map and the eight

destinations, node 58, node 59, node 60, node 64, node 65, node 66, node 68, and node

9, in north-east side of the map shown in Figure V.2.

 3
6

34

21

140

153

148

102

70

149

155

154

152

151

142

143

144

145

146

46

135

45

111

110106

23
107

9

125

14

124

15

129

16 20

28

133

132
105

126

26 32

139

109

52

53

33

54

147

95

64

2

55

79

156

157

158

159

160

161

162

93

7
94

10091

99
89

98
82

9780

9677

76

84
128 130

134

141 150 8368

112

42
113

35

108

3019171 3

4

2

5

10

4

10

7 8

8

6

11
11

12

12

13

14
13

16

15

17

18

18

78

77

22

76

75

24

74

25

27

73

27

28

19

29

20

2141

30 84

83

36

82

37

81

38

80

79

39

40

92

91

90

57

89

58

88

59

87

86

61

60

56

3843 44

39

31

40

47

48 49

50

41

51

85

62

37

58

52

63

65

93

66

53
67

54

72

55

73

51
69

56

74

57
71

75

108

107
78

106

61

81

62 105

63
85

86

87

104
88

103

67

90

69

102

92

101
103

104

114

115

116

117

118

119

120

121

122 123

127

Road Type A

Road Type B

Road Type C

72

71

70

59

60

64

65

66

68

9

101

100

99

98

97

96

95

94

22

23

24

25

26

29

131

31

32

33

34

35

36

136

137

138

43

44

45

46

47

48

49

50

42

1 3 5 6

Figure V.2. Network Model of the Selected Area in Figure V.1

37

The demands are given in Table V.1. The demands in Table V.1 are assumed for

two commodities.

Table V.1. O-D Demand Matrix

D
O

58 59 60 64 65 66 68 9 Total

1 100 50 70 150 200 170 160 180 1080

2 40 20 25 50 70 60 60 75 400

10 50 20 30 80 100 90 80 80 530

13 60 30 40 90 120 100 90 100 630

28 280 70 90 180 250 210 240 260 1580

42 80 50 70 100 130 120 110 120 780

Comm.
1

Total 610 240 325 650 870 750 740 815 5000

1 75 37 53 110 145 120 116 130 786

2 30 15 18 30 50 45 45 55 288

10 35 15 20 60 75 63 60 60 388

13 45 21 30 60 90 75 62 75 458

28 200 50 61 135 182 158 180 189 1155

42 60 32 50 72 91 90 82 90 567

Comm.
2

Total 445 170 232 467 633 551 545 599 3642

V.2.3. Observed link flows

Table V.2 and Table V.3 show the observed link counts for each commodity. It is

assumed that all count data are directional data. Also, there could be a sizable difference

between the inbound count and the outbound count of a link. According to the map

shown in Figure V.1, 107 links are assumed to have link counts. Like O-D demand

matrix, link counts are randomly generated numbers and assumed to be given as input

values of the traffic count estimation problem.

38

Table V.2. Observed Link Flows for Commodity 1

Link No Counts Link No Counts Link No Counts Link No Counts

1 1050 44 454 99 571 137 178

2 80 48 276 103 250 138 40

3 1030 49 291 104 240 139 853

5 900 50 99 105 619 140 528

6 520 51 237 108 250 141 140

10 520 53 194 109 402 142 320

11 1440 54 627 110 332 143 478

12 525 56 81 112 220 144 100

14 6 61 76 113 4 145 309

15 537 62 81 114 268 146 338

17 1548 63 301 115 310 147 900

18 573 64 548 120 400 148 318

20 1048 65 2 121 386 149 250

22 141 66 58 123 140 150 1139

25 3 67 598 124 109 151 580

27 210 68 1146 125 108 152 378

29 572 69 579 126 617 153 434

30 1083 71 562 127 1 154 1164

31 515 75 9 128 1438 155 628

32 845 77 483 129 1171 156 89

33 1139 78 476 130 838 157 386

36 410 86 52 131 136 158 707

37 160 87 51 132 853 159 300

39 41 88 480 133 1779 160 1176

40 9 89 249 134 680 161 374

41 572 92 188 135 229 162 1300

42 678 96 150 136 430

39

Table V.3. Observed Link Flows for Commodity 2

Link No Counts Link No Counts Link No Counts Link No Counts

1 788 44 341 99 428 137 134

2 60 48 207 103 188 138 30

3 773 49 218 104 180 139 640

5 675 50 74 105 464 140 396

6 390 51 178 108 188 141 105

10 390 53 0 109 302 142 240

11 1080 54 146 110 249 143 359

12 394 56 61 112 165 144 75

14 5 61 57 113 3 145 232

15 403 62 61 114 201 146 254

17 1161 63 226 115 233 147 675

18 430 64 411 120 300 148 239

20 786 65 2 121 290 149 188

22 106 66 44 123 105 150 854

25 2 67 449 124 82 151 435

27 158 68 860 125 81 152 284

29 429 69 434 126 463 153 326

30 812 71 422 127 1 154 873

31 386 75 9 128 1079 155 471

32 634 77 362 129 878 156 67

33 854 78 357 130 629 157 290

36 308 86 39 131 90 158 530

37 120 87 38 132 600 159 225

39 31 88 360 133 1334 160 882

40 7 89 187 134 510 161 281

41 429 92 141 135 172 162 975

42 509 96 113 136 323

40

V.2.4. Link cost functions

This example uses common BPR cost function with link parameters shown in Table

V.4 and Table V.5. In order to represent different classes of roads, three different types

of roads, which have ua values of 30, 45 and 60, are assumed. In Figure V.2, the thickest

line corresponds to road type A, which has largest capacity of 60, and the thinnest line to

road type C, which has smallest capacity of 30.

Table V.4. Link Time Parameters for Commodity 1

Link No Ca(0)
*

Ua
**

Link No Ca(0) Ua Link No Ca(0) Ua

1 3 60 55 8 60 109 7 45

2 6 45 56 2 30 110 7 45

3 4 60 57 3 30 111 4 45

4 6 30 58 4 30 112 5 45

5 4 30 59 2 30 113 2 45

6 4 30 60 3 30 114 7 30

7 3 60 61 5 30 115 5 30

8 2 60 62 7 30 116 3 30

9 3 30 63 6 30 117 2 30

10 24 30 64 5 45 118 4 30

11 12 60 65 4 30 119 3 30

12 24 30 66 8 30 120 2 30

13 7 60 67 8 30 121 4 30

14 8 45 68 4 60 122 5 30

15 13 45 69 2 30 123 5 30

16 8 45 70 4 30 124 13 45

17 4 60 71 6 30 125 8 45

18 10 30 72 4 30 126 8 45

19 3 60 73 4 30 127 11 45

20 5 45 74 5 30 128 0 n/a

21 4 30 75 4 30 129 0 n/a

22 7 45 76 10 60 130 0 n/a

23 5 45 77 3 60 131 0 n/a

24 7 45 78 8 30 132 0 n/a

25 3 45 79 3 30 133 0 n/a

26 4 45 80 3 60 134 0 n/a

27 8 45 81 1 30 135 0 n/a

28 4 60 82 3 60 136 0 n/a

41

Table V.4. Continued

Link No Ca(0)
*

Ua
**

Link No Ca(0) Ua Link No Ca(0) Ua

29 6 30 83 2 60 137 0 n/a

30 6 60 84 3 60 138 0 n/a

31 10 30 85 3 30 139 0 n/a

32 6 45 86 4 30 140 0 n/a

33 7 60 87 5 30 141 0 n/a

34 3 30 88 4 30 142 0 n/a

35 1 60 89 2 60 143 0 n/a

36 2 45 90 7 30 144 0 n/a

37 5 45 91 2 60 145 0 n/a

38 4 45 92 4 30 146 0 n/a

39 7 45 93 3 45 147 0 n/a

40 7 45 94 3 60 148 0 n/a

41 2 30 95 10 45 149 0 n/a

42 11 45 96 3 60 150 0 n/a

43 4 30 97 3 60 151 0 n/a

44 4 30 98 3 60 152 0 n/a

45 6 30 99 2 60 153 0 n/a

46 4 30 100 2 60 154 0 n/a

47 4 30 101 4 30 155 0 n/a

48 7 30 102 4 30 156 0 n/a

49 2 30 103 4 30 157 0 n/a

50 8 30 104 8 30 158 0 n/a

51 6 30 105 3 45 159 0 n/a

52 6 30 106 7 45 160 0 n/a

53 7 45 107 5 45 161 0 n/a

54 7 45 108 7 45 162 0 n/a
 * Ca(0) : Free Flow travel cost on link a
 ** Ua : Level of service of link a

Table V.5. Link Time Parameters for Commodity 2

Link No Ca(0)
*
 Ua

**
 Link No Ca(0) Ua Link No Ca(0) Ua

1 6 48 55 15 48 109 13 36

2 11 36 56 4 24 110 13 36

3 8 48 57 6 24 111 8 36

4 11 24 58 8 24 112 10 36

5 8 24 59 4 24 113 4 36

6 8 24 60 6 24 114 13 24

7 6 48 61 10 24 115 10 24

8 4 48 62 13 24 116 6 24

9 6 24 63 11 24 117 4 24

42

Table V.5. Continued

Link No Ca(0)
*
 Ua

**
 Link No Ca(0) Ua Link No Ca(0) Ua

10 46 24 64 10 36 118 8 24

11 23 48 65 8 24 119 6 24

12 46 24 66 15 24 120 4 24

13 13 48 67 15 24 121 8 24

14 15 36 68 8 48 122 10 24

15 25 36 69 4 24 123 10 24

16 15 36 70 8 24 124 25 36

17 8 48 71 11 24 125 15 36

18 19 24 72 8 24 126 15 36

19 6 48 73 8 24 127 21 36

20 10 36 74 10 24 128 0 n/a

21 8 24 75 8 24 129 0 n/a

22 13 36 76 19 48 130 0 n/a

23 10 36 77 6 48 131 0 n/a

24 13 36 78 15 24 132 0 n/a

25 6 36 79 6 24 133 0 n/a

26 8 36 80 6 48 134 0 n/a

27 15 36 81 2 24 135 0 n/a

28 8 48 82 6 48 136 0 n/a

29 11 24 83 4 48 137 0 n/a

30 11 48 84 6 48 138 0 n/a

31 19 24 85 6 24 139 0 n/a

32 11 36 86 8 24 140 0 n/a

33 13 48 87 10 24 141 0 n/a

34 6 24 88 8 24 142 0 n/a

35 2 48 89 4 48 143 0 n/a

36 4 36 90 13 24 144 0 n/a

37 10 36 91 4 48 145 0 n/a

38 8 36 92 8 24 146 0 n/a

39 13 36 93 6 36 147 0 n/a

40 13 36 94 6 48 148 0 n/a

41 4 24 95 19 36 149 0 n/a

42 21 36 96 6 48 150 0 n/a

43 8 24 97 6 48 151 0 n/a

44 8 24 98 6 48 152 0 n/a

45 11 24 99 4 48 153 0 n/a

46 8 24 100 4 48 154 0 n/a

47 8 24 101 8 24 155 0 n/a

48 13 24 102 8 24 156 0 n/a

49 4 24 103 8 24 157 0 n/a

50 15 24 104 15 24 158 0 n/a

43

Table V.5. Continued

Link No Ca(0)
*
 Ua

**
 Link No Ca(0) Ua Link No Ca(0) Ua

51 11 24 105 6 36 159 0 n/a

52 11 24 106 13 36 160 0 n/a

53 13 36 107 10 36 161 0 n/a

54 13 36 108 13 36 162 0 n/a
 * Ca(0) : Free Flow travel cost on link a
 ** Ua : Level of service of link a

Regarding the link numbers from 128 to 162, link travel times are assumed to be

zero since the links are imaginary links and do not reflect actual roads in the original

road network.

V.2.5. Connectivity list of the network model

In order to keep track of the connections between the nodes and the links,

connectivity lists are used in the model.

List 1: - - 1 2 10 3 4 5 …… 21

Node 1 2 3 4 4 5 5 6 ……108

 List 2: 0 0 1 2 2 1 …… 1

 Node 1 2 3 4 5 6 ……108

The first list keeps the node numbers at the beginning of directed arcs going into

nodes 1,2,3,...,108. The second list records the number of directed arcs into nodes

44

1,2,3,...,108. For example, the fourth and the fifth value of 2 and 10 in list 1 represent

node 4 having two incoming links from node 2 and node 10.

V.2.6. Multi-commodity user equilibrium traffic assignment problem

The vehicle count assignment for those links without actual count data is carried out

by using a traffic assignment problem based on Wardrop's user equilibrium condition.

Following formulation uses time functions and parameters defined in Table V.4 and

Table 5 in the objective function.

1 2
1 1271 2

1 127
0 0

() () ... ()
x x

Min f x c v dv c v dv= + +∫ ∫

44 21

12713 1 0.15 ... 21 1 0.15
60 36

xx      
  = + + + +   
        

1 1 1 1 1

1 1 2 57 58. .s t x h h h h= + + + +L

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 2 4 6 8 10 11 12 13 60 62 64 66 68 69 70 71

1 1 1 1 1 1 1 1 1 1

118 120 122 124 126 129 175 755 1407 1408

x h h h h h h h h h h h h h h h h

h h h h h h h h h h

= + + + + + + + + + + + + + + + +

+ + + + + + + + + +L

1 1

3 1x x=

1 1 1

4 59 116x h h= + +L

 :

2 2 2 2 2

1 1 2 57 58x h h h h= + + + +L

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 4 6 8 10 11 12 13 60 62 64 66 68 69 70 71

2 2 2 2 2 2 2 2 2 2

118 120 122 124 126 129 175 755 1407 1408

x h h h h h h h h h h h h h h h h

h h h h h h h h h h

= + + + + + + + + + + + + + + + +

+ + + + + + + + + +L

 :

 :

 xi≥0 , hi ≥0

45

Table V.6 and Table V.7 shows the output of the computer program which solves the

problem above. Since the assignment is generated from the pre-given O-D demands and

the time functions, the accuracy of the assignment relies on them. If a link seems to

have an unreasonable assignment, it is beneficial to review the corresponding time

parameters and O-D demands at this stage and adjust them as necessary.

Table V.6. User Equilibrium Link Flows for Commodity 1

Link No Counts Link No Counts Link No Counts Link No Counts

1 1080 42 704 83 1205 124 252

2 138 43 484 84 1087 125 252

3 1080 44 484 85 593 126 624

4 400 45 456 86 112 127 44

5 930 46 456 87 121 128 1290

6 579 47 0 88 515 129 1350

7 651 48 307 89 373 130 822

8 1431 49 307 90 219 131 120

9 579 50 131 91 856 132 924

10 530 51 273 92 219 133 1790

11 1431 52 273 93 1061 134 645

12 579 53 179 94 405 135 281

13 1541 54 763 95 842 136 420

14 141 55 403 96 176 137 187

15 720 56 89 97 214 138 105

16 1099 57 252 98 213 139 896

17 1541 58 213 99 731 140 457

18 565 59 54 100 362 141 190

19 977 60 72 101 425 142 320

20 1099 61 72 102 206 143 495

21 565 62 106 103 308 144 158

22 155 63 320 104 323 145 289

23 155 64 590 105 685 146 371

46

Table V.6. Continued

Link No Counts Link No Counts Link No Counts Link No Counts

24 35 65 69 106 685 147 1047

25 35 66 108 107 291 148 262

26 863 67 565 108 291 149 279

27 210 68 1268 109 443 150 1248

28 1580 69 582 110 417 151 545

29 565 70 582 111 297 152 430

30 1113 71 569 112 261 153 387

31 514 72 303 113 59 154 1196

32 863 73 24 114 319 155 714

33 1166 74 43 115 369 156 64

34 565 75 81 116 369 157 287

35 1113 76 565 117 658 158 652

36 511 77 501 118 248 159 352

37 230 78 468 119 161 160 1118

38 324 79 498 120 481 161 451

39 137 80 682 121 430 162 1466

40 32 81 694 122 382

41 565 82 725 123 199

Table V.7. User Equilibrium Link Flows for Commodity 2

Link No Counts Link No Counts Link No Counts Link No Counts

1 786 42 520 83 878 124 185

2 100 43 348 84 795 125 185

3 786 44 348 85 427 126 462

4 288 45 337 86 89 127 39

5 676 46 337 87 71 128 945

6 414 47 0 88 370 129 975

7 461 48 230 89 286 130 592

47

Table V.7. Continued

Link No Counts Link No Counts Link No Counts Link No Counts

8 1048 49 230 90 158 131 97

9 414 50 92 91 636 132 658

10 388 51 188 92 158 133 1312

11 1048 52 188 93 772 134 459

12 414 53 134 94 288 135 184

13 1130 54 555 95 614 136 334

14 103 55 295 96 123 137 146

15 517 56 61 97 192 138 78

16 790 57 214 98 129 139 648

17 1130 58 172 99 527 140 323

18 417 59 34 100 264 141 144

19 713 60 47 101 306 142 195

20 790 61 47 102 172 143 378

21 417 62 72 103 230 144 138

22 121 63 241 104 244 145 218

23 121 64 424 105 501 146 255

24 25 65 51 106 501 147 760

25 25 66 91 107 221 148 173

26 620 67 415 108 221 149 224

27 157 68 925 109 326 150 910

28 1155 69 419 110 312 151 392

29 417 70 419 111 227 152 309

30 814 71 408 112 224 153 269

31 376 72 241 113 61 154 896

32 620 73 18 114 237 155 498

33 849 74 32 115 251 156 47

34 417 75 59 116 251 157 162

35 814 76 417 117 469 158 530

36 393 77 369 118 198 159 235

37 210 78 346 119 158 160 814

48

Table V.7. Continued

Link No Counts Link No Counts Link No Counts Link No Counts

38 252 79 357 120 353 161 348

39 105 80 552 121 309 162 1060

40 28 81 498 122 274

41 417 82 521 123 129

V.2.7. Generalized least squares (GLS) optimization problem

Up to this point, the observed counts were not directly used in traffic assignments.

Furthermore, the user equilibrium traffic assignments shown in Table V.6 and Table V.7

do not agree with the observed counts shown in Table V2. and Table V3. It is because

the observed counts are usually involved with observation errors and the traffic

assignments are also estimates based on limited information such as time functions and

O-D demand matrix. Therefore, it is desirable to adjust the current user equilibrium

solution using observed link counts. The adjustment is done by solving GLS

optimization problem, which is formulated in Chapter III. The following sections

explain variance-covariance matrix and node-link incident matrix used in GLS

optimization problem.

V.2.8. Variance-covariance matrix between links

A variance is a measure of the amount of variability inherent in observing the flow of

a link. There may also be a certain relationship between two link counts, which will

incur covariance between the two links. The following variance-covariance matrix, (V)

is assumed to be given for 162 links to solve the GLS optimization problem. Each row

(or column) shows the relationship between the link and all other links in the network.

49

Below is the matrix showing the variances and covariances between first five link flows

of the network.

 V =

V.2.9. Final traffic flow estimates

Table V.8 and Table V.9 shows the final traffic count estimates, which satisfy the

network flow conservation condition.

Table V.8. Final Traffic Estimates for Commodity 1

Link No Estimates Link No Estimates Link No Estimates Link No Estimates

1 1080 42 579 83 689 124 108

2 103 43 690 84 1183 125 108

3 1080 44 469 85 1095 126 639

4 400 45 469 86 593 127 2

5 930 46 467 87 53 128 1457

6 553 47 452 88 50 129 1183

7 606 48 15 89 496 130 838

8 1457 49 286 90 318 131 127

9 553 50 302 91 198 132 882

10 530 51 112 92 804 133 1794

11 1457 52 263 93 198 134 686

1 0 0 0.8 0 …

0 1 0 0 0 …

0 0 1 0 0.4 …

0.8 0 0 1 0 …

0 0 0.4 0 1 …

50

Table V.8. Continued

Link No Estimates Link No Estimates Link No Estimates Link No Estimates

12 553 53 263 94 1042 135 242

13 1565 54 200 95 379 136 418

14 0 55 661 96 844 137 223

15 553 56 493 97 170 138 53

16 1075 57 87 98 175 139 866

17 1565 58 255 99 147 140 547

18 579 59 216 100 646 141 145

19 986 60 81 101 291 142 301

20 1075 61 64 102 403 143 492

21 579 62 64 103 180 144 135

22 148 63 72 104 238 145 318

23 148 64 302 105 233 146 368

24 21 65 555 106 662 147 933

25 21 66 14 107 662 148 316

26 859 67 73 108 263 149 274

27 214 68 619 109 263 150 1181

28 0 69 1187 110 404 151 607

29 579 70 591 111 344 152 390

30 1101 71 591 112 281 153 444

31 527 72 569 113 231 154 1185

32 859 73 303 114 4 155 643

33 1155 74 29 115 274 156 70

34 579 75 35 116 339 157 320

35 1101 76 19 117 339 158 678

36 416 77 579 118 658 159 372

37 174 78 509 119 224 160 1104

38 283 79 496 120 124 161 425

39 60 80 497 121 425 162 1421

40 7 81 685 122 390

41 1080 82 682 123 404

51

Table V.9. Final Traffic Estimates for Commodity 2

Link No Estimates Link No Estimates Link No Estimates Link No Estimates

1 786 42 346 83 868 124 83

2 79 43 346 84 803 125 83

3 786 44 343 85 434 126 485

4 288 45 331 86 42 127 2

5 676 46 12 87 38 128 1060

6 398 47 210 88 367 129 860

7 438 48 222 89 243 130 616

8 1064 49 80 90 141 131 89

9 398 50 187 91 596 132 625

10 388 51 187 92 141 133 1327

11 1064 52 146 93 754 134 505

12 398 53 492 94 283 135 173

13 1143 54 350 95 613 136 302

14 3 55 66 96 134 137 165

15 402 56 207 97 149 138 35

16 777 57 169 98 99 139 636

17 1143 58 59 99 472 140 396

18 419 59 47 100 206 141 103

19 725 60 47 101 296 142 205

20 777 61 53 102 147 143 369

21 419 62 221 103 173 144 110

22 109 63 408 104 171 145 234

23 109 64 16 105 487 146 262

24 20 65 57 106 487 147 690

25 20 66 453 107 196 148 221

26 622 67 876 108 196 149 205

27 172 68 426 109 304 150 873

28 0 69 426 110 258 151 440

29 419 70 410 111 213 152 285

30 812 71 232 112 172 153 312

52

Table V.9. Continued

Link No Estimates Link No Estimates Link No Estimates Link No Estimates

31 381 72 26 113 0 154 872

32 622 73 29 114 203 155 471

33 842 74 16 115 243 156 36

34 419 75 419 116 243 157 217

35 812 76 383 117 477 158 517

36 308 77 369 118 177 159 260

37 135 78 354 119 120 160 817

38 214 79 535 120 325 161 314

39 48 80 485 121 285 162 1037

40 14 81 503 122 291

41 419 82 346 123 104

Notice that the figures in Table V.6 and Table V.8 are similar in this example. There

are two major reasons for this similarity. First, the variance-covariance matrix was

assumed to have a simple form, whose main diagonal has the value of one, the rest of the

elements are mostly zero. Second, some link flows are considered fixed constants under

the given network structure.

53

CHAPTER VI

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

VI.1. Summary and Contribution

The purpose of this dissertation is to develop a model and solution methodology for

estimating multi-commodity traffic flows in a transportation network having traffic

counts on selected links. It is assumed that there are known, fixed demands between

multiple origins and destinations. Considering congestion effects, a link cost is not a

fixed value but rather a function of link traffic volume. Moreover, it is assumed

separable with respect to traffic links. Travelers’ are considered to choose the minimum

cost route at the beginning of their travel without considering other travelers. Based on

the assumptions above a MDUE assignment is formulated as a nonlinear programming

problem with linear multi-commodity network constraints, and solved by a linear

approximation method using the Frank-Wolfe algorithm. The Frank-Wolfe algorithm is

a conditional gradient method that uses the gradient of the original objective function

conditioned at any given iteration point in determination of a search direction. Due to

the slow convergence, the Frank-Wolfe algorithm is modified by a heuristic method

using different step size during iteration.

At the second stage of the proposed approach, a GLS optimization problem is

modeled to consider actual traffic count observations and the user equilibrium solution

from the assignment problem simultaneously to find final traffic count estimates for all

highway links from the given variance-covariance matrix between the links. The final

traffic count estimates are determined to minimize the deviations between traffic counts.

The problem is a quadratic programming equation with network flow conservation

constraints and is solved by a Lagrangian relaxation method.

54

The proposed model is developed to utilize a network flow optimization and a

statistical analysis method. In addition to this model, several contributions are made;

first, multiple vehicle classes (multi-commodities) are explicitly considered in the model.

In general, traffic counts are collected and analyzed regardless of the vehicle classes.

Second, a computationally efficient solution procedure is devised. Due to the

multiplicative property of multi-commodity flow problem, actual application of the

algorithm could be restricted by its size. Proposed approach uses the modified Frank-

Wolfe algorithm, which has a fast convergence yet does not require the enumeration of

all possible paths between origins and destinations, in the solution procedure.

The proposed algorithm is implemented in the MATLAB language on a personal

computer equipped with an Intel Pentium IV 3.06 GHz processor. Tests for the

proposed solution methodology were performed with fictitious scenarios on a real

highway network.

VI.2. Conclusions

In this dissertation, a model and solution algorithm is developed to obtain multi-

commodity traffic flow estimates from the given traffic counts on selected highway links.

Most traffic count estimation methods use a traffic assignment approach or a statistical

methodology, such as the regression analysis in determination of traffic link flows.

Traffic assignment approaches calculate traffic link flows based on the given link cost

function and origin-destination traffic demands. The limiting factor of the approaches is

that they do not utilize additional information from traffic count observations in their

procedures. On the other hand, most statistical estimation procedures rely only on

observed traffic counts and are difficult to produce estimates on links without

observational data. They also fail to satisfy the flow conservation condition, which is a

plausible assumption in transportation network modeling.

The proposed algorithm utilizes the data mentioned in the approaches mentioned

above by solving a MDUE assignment problem and a GLS optimization problem in

55

sequence. The MDUE assignment problem is solved by the modified Frank-Wolfe

algorithm. Then, the GLS optimization problem is solved by Lagrangian relaxation

method.

In the experiments testing the algorithm, direct comparison with other traffic count

estimation algorithm is not possible, since there is no corresponding algorithm

considering multi-commodity traffic flows. Also, it is regretful that real data was not

available to test this algorithm in spite of the efforts to receive inputs from the real field.

However, it can be concluded that there are improvements and changes by this algorithm.

The modified Frank-Wolfe algorithm, compared to the original one, reduces the number

of iterations by a range of 38 % - 94 %. The effect of the GLS optimization, which

utilizes the traffic count observation and the relationship between traffic links, is

observed by the changes in the final traffic count estimates from the user equilibrium.

VI.3. Recommendations for Further Research

Future research efforts to the extension of the proposed model and solution

methodology are suggested on the following issues:

• More efforts to elaborate the modified Frank-Wolfe algorithm. In the proposed

approach, the Frank-Wolfe algorithm is modified by heuristic method using different

step sizes to rectify its slow convergence problem while approaching the optimal

point. Even though the heuristic turned out to be effective with carefully selected

step sizes, it needs further research on finding the appropriate step size.

• Considering non separable link cost functions. Current model assumes the link cost

functions are separable. That is, the cost function of a link is only affected by the

traffic flow on the link. However, in real highway network, a flow of a link could

affect the cost of the other highway links. In this case, more sophisticated cost

function needs to be formulated. Also, even in the separable cost function case, the

fixed parameters in BPR link cost function may need to be adjusted to accommodate

different link conditions in real field application.

56

• Considering when the origin-destination traffic demands matrix is not available.

The O-D traffic demand matrix is a major input to the user equilibrium assignment in

the proposed approach. Hence, the credibility of the given O-D traffic demands is

very important to the resulting link flow assignments. However, there could be some

cases when O-D traffic demand matrix is not available for all O-D pairs or is not

accurate enough to be used as an input to the problem. In such cases, the constraints

of the user equilibrium assignment are not valid. Therefore, another type of

assignment methodology, such as stochastic assignment model, will be needed to

find a user equilibrium solution.

57

REFERENCES

Bazaraa, Mokhtar S., Jarvis, John J., and Sherali, Hanif D. 1990. Linear Programming

and Network Flows, John Wiley & Sons Inc., New York, NY.

Beckmann M. J., McGuire C.B., and Winsten C. B. 1956. Studies in the Economics of

Transportation, Yale University Press, New Haven, CT.

Bell, M. G., Iida, Y. 1997. Transportation Network Analysis, John Wiley & Sons Inc.,

New York, NY.

Bell, M., Shield, C. M., Busch, F., and Kruse, G. 1997. A stochastic user equilibrium

path flow estimator, Transportation Research C 5, 197-210.

Bureau of Public Roads 1964. Traffic Assignment Manual, U.S. Department of

Commerce, Urban Planning Division, Washington, DC.

Cascetta, E. 1984. Estimation of trip matrices from traffic counts and survey data: A

generalized least squares estimator. Transportation Research B 18, 289-299.

Cascetta E. 2001. Transportation Systems Engineering: Theory and Methods, Kluwer

Academic Publishers, Boston, MA.

Chen, A., Jayakrishnan, R., and Tsai, W. K. 2002. Faster Frank-Wolfe traffic assignment

with new flow update scheme. Journal of Transportation Engineering, 31-39.

Dafermos, S. C. 1972. The traffic assignment problem for multiclass-used transportation

networks. Transportation Science 6, 73-87.

Federal Highway Administration 2002. Highway Statistics 2001. Federal Highway

Administration, Washington, DC.

Fukushima, Masao 1984. A modified Frank-Wolfe algorithm for solving the traffic

assignment problem. Transportation Research B 1, 169-177.

Gazis, D. and Liu, C. 2003. Kalman filtering estimation of traffic counts for two network

links in tandem. Transportation Research B 37, 737-745.

58

Hearn, D. W., and Ribera, J. 1981. Convergence of the Frank-Wolfe method for certain

bounded variable traffic assignment problems. Transportation Research B 15, 437-

442.

Ivan, J. N., and Allaire, S. A. 2001. Regional and area-type modeling of peak spreading

on Connecticut freeways. Journal of Transportation Engineering, 223-229.

LeBlanc, L. J., Morlol, E. K., and Pierskalla, W. P. 1975. An efficient approach to

solving the road network equilibrium traffic assignment. Transportation Research 9,

309-318.

Marcotte, P., Wynter, L. 2004. A new look at the multiclass network equilibrium

problem. Transportation Science Vol. 38, No. 3, 282-292.

Moon, T. K., and Stirling, W. C. 2000. Mathematical Methods and Algorithms for

Signal Processing, Prentice Hall, Upper Saddle River, NJ.

Searle, Shayle R. 1982. Matrix Algebra Useful for Statistics, John Wiley & Sons Inc.,

New York, NY.

Sharma, S. C., Gulati, B. M., Rizak, S. N. 1996. Statewide traffic volume studies and

precision of AADT estimates, Journal of Transportation Engineering, 430-439.

Shen, LD., Zhao, F. and Ospina, DI. 1999. Estimation of annual average daily traffic for

off-system roads in Florida. Florida Department of Transportation, Tallahassee, FL.

Sherali, H., Sivanandan, R., and Hobeika, A.G. 1994. A linear programming approach

for synthesizing origin-destination trip tables from link traffic volumes.

Transportation Research B 28, 213-233.

Soroush, H. and Mirchandani, P. B. 1990. The stochastic multicommodity flow problem.

Networks Vol. 20, 121-155.

Toint, P. L. 1997. Transportation modeling and operations research: A fruitful

connection. Proceedings of the NATO Advanced Study Institute on Operations

Research and Decision Aid Methodologies in Traffic and Transportation

Management, 1-27.

Weintraub, A., Ortiz, C., and González, J. 1985. Accelerating convergence of the Frank-

Wolfe algorithm. Transportation Research B 19, 113-122.

59

Wells, C.E. and Evans, J.R. 1989. Statistical procedure for estimating branch flows and

total network flow. Networks Vol. 19, 481-491.

Yang, H. 1995. Heuristic algorithms for the bilevel origin-destination matrix estimation

problem. Transportation Research B 29, 231-242.

Yang, H., Ilda, Y., and Sasaki, T. 1994. The equilibrium-based origin-destination matrix

estimation problem. Transportation Research B 28, 23-33.

Yang, H., Sasaki, T., Ilda Y., and Asakura Y. 1992. Estimation of origin-destination

matrices from link traffic counts on congested networks. Transportation Research B

26, 417-434.

60

APPENDIX A

FRANK-WOLFE ALGORITHM

Frank-Wolfe algorithm is widely used algorithm for traffic assignment problems as

well as many other applications. The use of Frank-Wolfe algorithm for solving traffic

assignment problem is especially beneficial because it does not need to enumerate all

possible paths between origins and destinations which could be very cumbersome work

as the size of network grows. Also, it allows using very efficient shortest path algorithm

to solve the traffic assignment problem with nonlinear objective function which is

inevitable to consider traffic congestion on highway links.

The algorithm is also called conditional gradient method since it is devised to use the

gradient of the original objective function to determine a search direction. Lets consider

the problem:

 Minimize f(x) (A1)

 s.t. x F∈ . (A2)

where convex set F is a feasible region and where function f is continuously

differentiable and is convex over F. Then, the minimization problem can be solved by

linear approximation using the Taylor expansion of the function f. Detailed steps of the

algorithm are as follows:

0. Choose a starting point (initial solution): xo

 Any feasible solution, xo ∈ F, could be a starting point.

 Set k = 0.

1. Find a search direction: dk

61

 The Frank-Wolfe algorithm uses a first-order Taylor expansion of the function f

around xk to determine a feasible direction which improves the current evaluation

of the function. That is,

 Minimize ()
k

g y = ()
k

f x + ()
k

f x ′∇ (y -
k

x) (A3)

 s.t. y F∈ . (A4)

After xk is fixed as a constant, the above problem reduces to:

 Minimize ()
k

g y = ()
k

f x ′∇ y (A5)

 s.t. y F∈ . (A6)

This is a linear programming problem. When the feasible region F is subject to

network constraints the problem becomes a network flow optimization problem

which could be solved more efficiently with specialized algorithm such as a

shortest path algorithm. A feasible direction is dk = yk – xk.

2. Calculate next iteration point: xk+1

Next iteration point is determined by finding appropriate step length, αk, which

satisfies the following condition:

 f(xk + αk dk) < f(xk). (A7)

This is a simple line search problem;

 Minimize f(xk + α dk) (A8)

 s.t. 0 ≤ α ≤ 1. (A9)

After finding α, next iteration point is:

 xk+1 = xk + α dk. (A10)

62

1 2 3 4 5 6

1

2

3

4

5

6

x1

x2

3. Test a stopping criterion.

If a stopping criterion is satisfied, then stop with current iteration point xk+1 as the

solution. Otherwise, let iteration counter k = k +1 and go to step 1.

(Example A.1) In order to illustrate the Frank-Wolfe algorithm, let’s consider the

following minimization problem:

 Minimize f(x) = 2 4

1 1 2 23 24 2 64x x x x− + − (A11)

 s.t. 5x1 + 4 x2 ≤ 20 (A12)

 x1 − x2 ≤ 2 (A13)

 x1 ≥ 0, x2 ≥ 0. (A14)

Figure A.1 shows the graphical representation of the above example. The shaded

area indicates the feasible region and the dot represents the minimum point without

constrains.

Figure A.1. Graph of a Frank-Wolfe Algorithm Example

63

From the partial derivatives of the objective function the unconstrained minimum of

f(x) is easily found at x* = (x1, x2) = (4, 2). However, the optimal point of the example,

which is limited by the constraints (A10) – (A13), should be placed in the shaded area.

Now, let’s follow the steps of the Frank-Wolfe algorithm to find the solution.

(Iteration 1)

0. Choose a starting point (initial solution): x0

Set x = (x1, x2) = (0, 0).

 Set k = 0.

1. Find a search direction: d0

Partial derivatives of the function f at x0 = (0, 0) are:

1

f

x

∂

∂
 = 6x1 – 24 = -24, and

2

f

x

∂

∂
 = 8 3

2x – 64 = -64.

Using the derivatives evaluated at x0 as cost coefficients solve the following

minimization problem:

 Minimize g0(y) = -24 y1 − 64 y2

 s.t. 5y1 + 4 y2 ≤ 20

 y1 − y2 ≤ 2

 y1 ≥ 0, y2 ≥ 0.

The above LP minimization problem is easily solved and its solution is y0 = (y1,

y2) = (0, 5) as shown in Figure A.2.

64

Figure A.2. Feasible Direction of Example A.1

A feasible direction is a vector d0 = y0 – x0 = (0, 5) – (0, 0) = (0, 5). Next step is

to find a minimum point between x0 and y0.

2. Calculate next iteration point: x1

Perform the line search to find a step size α which gives minimum value of the

function f.

 f(x0 + α d0) = f(0, 5α)

 = 2(5α)4 – 64(5α)

 = 1250α4 – 320α

Then,

 Minimize f(x0 + α d0) = 1250α4 - 320α

 s.t. 0 ≤ α ≤ 1.

The solution is α* = 0.4. Hence, by equation (A.10), the new iteration point is

x1 = (0, 0) + 0.4(0, 5) = (0, 2).

1 2 3 4 5 6

1

2

3

4

5

6

x1

x2

x0

y0

65

Figure A.3. New Iteration Point x1

3. Test a stopping criterion.

Calculate the following termination rule which do the ratio test on the relative

improvement by new iteration point:

 (f(xk) – fk(xk+1)) / | fk(xk+1)| ≤ ε, where ε is a small positive value.

Then,

 (f(x0) – f(x1)) / | f(x1)| = (0 – (-96))/|-96| = 1.

For the purpose of the example set ε = 0.01. Since the ratio is larger than ε =

0.01 continue the algorithm with the new iteration point x1 and let k = k +1 = 1.

Go to step 1.

(Iteration 2)

1. Find a search direction: d1

Partial derivatives of the function f at x1 = (0, 2) are:

1 2 3 4 5 6

1

2

3

4

5

6

x1

x2

x0

y0

x1

66

1

f

x

∂

∂
 = 6x1 – 24 = -24, and

2

f

x

∂

∂
 = 8 3

2x – 64 = 0.

Using the derivatives evaluated at x1 as cost coefficients solve the following

minimization problem:

 Minimize g1(y) = -24 y1 − 0 y2

 s.t. 5y1 + 4 y2 ≤ 20

 y1 − y2 ≤ 2

 y1 ≥ 0, y2 ≥ 0.

The above LP minimization problem is easily solved and its solution is y1 = (y1,

y2) = (3.111, 1.111) as shown in Figure A.4.

Figure A.4. Finding Feasible Direction y1 from x1

A feasible direction is a vector d1 = y1 – x1 = (3.111, 1.111) – (0, 2) = (3.111,

-.889). Next step is to find a minimum point between x1 and y1.

1 2 3 4 5 6

1

2

3

4

5

6

x1

x2

x0

y1

x1

67

2. Calculate next iteration point: x2

Perform the line search to find a step size α which gives minimum value of the

function f.

 x1 + α d1 = (0, 2) + α (3.111, -.889)

 = (3.111α, 2 – .889α)

Then,

 f(x1 + α d1) = f (3.111α, 2 – .889α)

 = 3(3.111α)2 -24(3.111α) + 2(2 – .889α)4

 – 64(2 – .889α)

 = 32 – 131.56α + 66.9684α 2 – 11.2416α 3 + 1.2492α 4

Now solve

 Minimize 32 – 131.56α + 66.9684α 2 – 11.2416α 3 + 1.2492α 4

 s.t. 0 ≤ α ≤ 1.

The solution is α* = 0.655. Hence the new iteration point is

x2 = (0, 2) + .655(3.111, -.889) = (2.0377, 1.4177).

Figure A.5. New Iteration Point x2

1 2 3 4 5 6

1

2

3

4

5

6

x1

x2

x0

y1

x1

x2

68

3. Test a stopping criterion.

 (f(x1) – f(x2)) / | f(x2)| = (-96 – (-119.1018))/| -119.1018|

 = .194 ≥ ε = .01

Since the ratio is larger than ε = 0.01, continue the algorithm.

Let k = k +1 = 2 and go to step 1 for next iteration.

(Iteration 3)

1. Find a search direction: d2

Partial derivatives of the function f at x2 = (x1, x2) = (2.0377, 1.4177) are:

1

f

x

∂

∂
 = 6x1 – 24 = -11.7738, and

2

f

x

∂

∂
 = 8 3

2x – 64 = -41.2048.

Using the derivatives evaluated at x2 as cost coefficients solve the following

minimization problem:

 Minimize g2(y) = -11.7738 y1 − 41.2048 y2

 s.t. 5y1 + 4 y2 ≤ 20

 y1 − y2 ≤ 2

 y1 ≥ 0, y2 ≥ 0.

The solution of the above LP minimization problem is y2 = (y1, y2) = (0, 5) as

shown in Figure A.6.

69

Figure A.6. Finding Feasible Direction y2 from x2

A feasible direction is a vector d2 = y2 – x2 = (0, 5) – (2.0377, 1.4177) = (-2.0377,

3.5823). Next step is to find a minimum point between x2 and y2.

2. Calculate next iteration point: x3

Perform the line search to find a step size α which gives minimum value of the

function f. Then,

 f(x2 + α d2) = f (2.0377 – 2.0377α, 1.4177 + 3.5823α)

Now solve

 Minimize f (2.0377 – 2.0377α, 1.4177 + 3.5823α)

 s.t. 0 ≤ α ≤ 1.

The solution is α* = .1393 Hence the new iteration point is

x3 = x2 + α d2

 = (2.0377, 1.4177) + .1393(-2.0377, 3.5823)

 = (1.7538, 1.9168).

1 2 3 4 5 6

1

2

3

4

5

6

x1

x2

x0

y2

x1

x2

70

Figure A.7. New Iteration Point x3

3. Test a stopping criterion.

 (f(x2) – f(x3)) / | f(x3)| = (-119.1018 – (-128.5406))/|-128.5406|

 = .0734 ≥ ε = .01.

Since the ratio is still larger than ε = 0.01, continue the algorithm.

Let k = k +1 = 3 and go to step 1 for next iteration.

 (Iteration 4)

1. Find a search direction: d3

Partial derivatives of the function f at x3 = (1.7538, 1.9168) are:

1

f

x

∂

∂
 = 6 x1 – 24 = -13.4771, and

2

f

x

∂

∂
 = 8 3

2x – 64 = -7.6624.

Using the derivatives evaluated at x3 as cost coefficients solve the following

minimization problem:

1 2 3 4 5 6

1

2

3

4

5

6

x1

x2

x0

y2

x1

x2

x3

71

 Minimize g2(y) = -13.4771 y1 − 7.6624 y2

 s.t. 5y1 + 4 y2 ≤ 20

 y1 − y2 ≤ 2

 y1 ≥ 0, y2 ≥ 0.

The solution of the above LP minimization problem is y3 = (y1, y2) = (3.111,

1.111) as shown in Figure A.8.

Figure A.8. Finding Feasible Direction y3 from x3

A feasible direction is a vector d3 = y3 – x3 = (3.111, 1.111) – (1.7538, 1.9168) =

(1.3573, -0.8057). Next step is to find a minimum point between x3 and y3.

2. Calculate next iteration point: x4

Perform the line search to find a step size α which gives minimum value of the

function f. Then,

 f(x3 + α d3) = f ((1.7538, 1.9168) + α (1.3573, -0.8057))

Now solve

1 2 3 4 5 6

1

2

3

4

5

6

x1

x2

x0

y3

x1

x2

x3

72

 Minimize f (1.7538 + 1.3573α, 1.9168 – .8057α)

 s.t. 0 ≤ α ≤ 1.

The solution is α* = .1898 Hence the new iteration point is

x4 = x3 + α d3

 = (1.7538, 1.9168) + .1898 (1.3573, -0.8057)

 = (2.0115, 1.7638).

Figure A.9. New Iteration Point x4

3. Test a stopping criterion.

 (f(x3) – f(x4)) / | f(x4)| = (-128.5406 – (-129.6646))/|- 129.6646|

 = .0087 ≤ ε = .01

Since the stopping rule is satisfied the algorithm stops with the current solution,

x4 and the function value f(x4) = -129.6646.

1 2 3 4 5 6

1

2

3

4

5

6

x1

x2

x0

y3

x1

x2

x3
x4

73

APPENDIX B

COMPUTER IMPLEMENTATION

B.1. Introduction

Due to the size of the network in real life situation the proposed algorithm needs to

be implemented by a computer. This appendix shows the general description of the

computer code along with the input requirement and the structure of subroutines.

B.2. General Description of the Code

The computer program was coded in the MATLAB 6.5 scripts. It was developed

and tested on a computer with an Intel Pentium IV 3.06 GHz processor and 512

megabytes of main memory. Currently the program is customized to fit the need of

individual problem with different network configurations and input parameters.

However it can be modified to handle more general problems. The maximum size of the

problem, but not necessarily limited by that number, solved by the program is a network

with 108 nodes, 162 links 6 sources, 8 destinations, and 2 vehicle classes.

During a computer program is being developed there is always a trade-off between

memory usage and a CPU time. Currently the code does not thoroughly consider the

trade-off since it is developed in the MATLAB environment which governs the major

performance. In order to save time and effort to develop MATLAB script files,

whenever it is possible, built-in MATLAB function was used in the code. In the

implementation of the modified Frank-Wolfe algorithm, a shortest path problem is

solved as a sub-problem of the given nonlinear problem. The shortest path problem is

coded with the well-known Dijkstra's algorithm.

74

B.3. Flow of Program and Relationship between MATLAB Script Files

All subroutines and functions used in MATLAB are called script and saved with file

extension of “.m”. The multi-commodity traffic flow estimation program consists of

many scripts which returns the variables with their values changed after execution of the

codes in the scripts. Figure B.1 shows the relationship between MATLAB scrip files.

Figure B.1. Diagram of Matlab Program Modules

[MTFE] is a main control unit which accepts input variables, call [MUE_main] to

obtain MDUE solution, call [GenX] to combine Xue and Xob as an input to [MGLSO]

and generates final flow estimates. Variables exchanged between the major function

modules are shown next to the arrows in Figure B.1

MTFE

MUE_main

MUE_costcoef

MUE_obj_fun

MUE_costfun

SEARCH: fminbnd

MGLSO

Link Flow
Estimation

GenPathCost

k, m, n, OD,
D, connect

Xue, Xuelinkcost,
Xuetotalcost

ODpairs,
ODdemand,
connect

V, A, b, Xob

Ar,br,X,V XGLSO

GenX

X Xob,Xue

MCPF

GenCmatrix

GenPathList

MCR

75

Each module contains brief explanation of the codes in it. The actual codes are listed

in section B.4.

B.4. Script Files of MATLAB Code

This section shows the actual MATLAB code to run a sample program with 108 nodes,

162 links, 6 origins, 8 destinations, and 2 vehicle classes (commodities) which is

illustrated in Chapter V. Some of the lengthy repetitive codes are omitted from the

routines to enhance the readability of the program.

[MTFE.m]

% Master script file which runs the overall algorithm.
% 108 nodes, 162 links, 6 origins, 8 destinations, 2 commodities
%============================
% Index & Initial definition of variables
%============================
% n : number of nodes
% m : number of links
% k : number of commodities
% l : number of O-D pairs for commodity k
% f : Original non-linear cost function
% g : Gradient of f used in min-cost path problem
% Ar : Reduced node-arc incident matrix. To be full rank, one row
% of each commodity will be removed from the original matrix
% br : Reduced RHS of the constraints.
% x0 : initial starting value
% xob : Observed link flows on selected links
% xue : User equilibrium solution from MCUE function
% x : Combined matrix of 'xue' and 'xob'. x=[x1,x2,...,xk];
% Input to MGLSO module. x(k,i)=x(commodity,arc)
% y : Final MGLSO solution
% h(k,i)=h(commodity,path#) : Path flow
% V : Variance-covariance matrix between links
% p : index of O-D pair
% OD(:,:,k) : 3-dimensional O-D node vectors
% D(p, k): Demand vector of O-D pairs of commodity k
% D = [d(OD1);d(OD2);...;d(ODp)]
% connect(:,:,k): matrix of interconnecting links between nodes

76

% y(k, i) = y(commodity, link) : Link flow
% h(k, i) = h(commodity, path#) : Path flow
% xprime(:,1) : x' (or x) in the algorithm (Iteration Point)
% xprime(:,2) : x" (or y, or xx) in the algorithm (Search Direction)

%=============
% Set initial inputs
%=============
global xprime xiter
global pathlist1...(omitted for editing purpose)…pathlistt48
global pathcost1…(omitted for editing purpose)…pathcostt48

%--
disp ('<> Start Finding UE Solution, xue <>')
%--
k=2; % # of commodities
m=162; % # of links
n=108; % # of nodes

%Set all path lists for 48 O-D pairs to zero
pathlist1=zeros(0); %path list for OD(1,58) for comm 1
pathlist2=zeros(0); %path list for OD(1,59) for comm 1
pathlist3=zeros(0); %path list for OD(1,60) for comm 1
pathlist4=zeros(0); %path list for OD(1,64) for comm 1
pathlist5=zeros(0); %path list for OD(1,65) for comm 1
pathlist6=zeros(0); %path list for OD(1,66) for comm 1
pathlist7=zeros(0); %path list for OD(1,68) for comm 1
pathlist8=zeros(0); %path list for OD(1,9) for comm 1
pathlist9=zeros(0); %path list for OD(2,58) for comm 1
pathlist10=zeros(0); %path list for OD(2,59) for comm 1
pathlist11=zeros(0); %path list for OD(2,60) for comm 1
pathlist12=zeros(0); %path list for OD(2,64) for comm 1
pathlist13=zeros(0); %path list for OD(2,65) for comm 1
pathlist14=zeros(0); %path list for OD(2,66) for comm 1
pathlist15=zeros(0); %path list for OD(2,68) for comm 1
pathlist16=zeros(0); %path list for OD(2,9) for comm 1
pathlist17=zeros(0); %path list for OD(10,58) for comm 1
pathlist18=zeros(0); %path list for OD(10,59) for comm 1
pathlist19=zeros(0); %path list for OD(10,60) for comm 1
pathlist20=zeros(0); %path list for OD(10,64) for comm 1
pathlist21=zeros(0); %path list for OD(10,65) for comm 1
pathlist22=zeros(0); %path list for OD(10,66) for comm 1
pathlist23=zeros(0); %path list for OD(10,68) for comm 1

77

pathlist24=zeros(0); %path list for OD(10,9) for comm 1
pathlist25=zeros(0); %path list for OD(13,58) for comm 1
pathlist26=zeros(0); %path list for OD(13,59) for comm 1
pathlist27=zeros(0); %path list for OD(13,60) for comm 1
pathlist28=zeros(0); %path list for OD(13,64) for comm 1
pathlist29=zeros(0); %path list for OD(13,65) for comm 1
pathlist30=zeros(0); %path list for OD(13,66) for comm 1
pathlist31=zeros(0); %path list for OD(13,68) for comm 1
pathlist32=zeros(0); %path list for OD(13,9) for comm 1
pathlist33=zeros(0); %path list for OD(28,58) for comm 1
pathlist34=zeros(0); %path list for OD(28,59) for comm 1
pathlist35=zeros(0); %path list for OD(28,60) for comm 1
pathlist36=zeros(0); %path list for OD(28,64) for comm 1
pathlist37=zeros(0); %path list for OD(28,65) for comm 1
pathlist38=zeros(0); %path list for OD(28,66) for comm 1
pathlist39=zeros(0); %path list for OD(28,68) for comm 1
pathlist40=zeros(0); %path list for OD(28,9) for comm 1
pathlist41=zeros(0); %path list for OD(42,58) for comm 1
pathlist42=zeros(0); %path list for OD(42,59) for comm 1
pathlist43=zeros(0); %path list for OD(42,60) for comm 1
pathlist44=zeros(0); %path list for OD(42,64) for comm 1
pathlist45=zeros(0); %path list for OD(42,65) for comm 1
pathlist46=zeros(0); %path list for OD(42,66) for comm 1
pathlist47=zeros(0); %path list for OD(42,68) for comm 1
pathlist48=zeros(0); %path list for OD(42,9) for comm 1
%----------------------------
pathlistt1=zeros(0); %path list for OD(1,58) for comm 2
pathlistt2=zeros(0); %path list for OD(1,59) for comm 2
pathlistt3=zeros(0); %path list for OD(1,60) for comm 2
pathlistt4=zeros(0); %path list for OD(1,64) for comm 2
pathlistt5=zeros(0); %path list for OD(1,65) for comm 2
pathlistt6=zeros(0); %path list for OD(1,66) for comm 2
pathlistt7=zeros(0); %path list for OD(1,68) for comm 2
pathlistt8=zeros(0); %path list for OD(1,9) for comm 2
pathlistt9=zeros(0); %path list for OD(2,58) for comm 2
pathlistt10=zeros(0); %path list for OD(2,59) for comm 2
pathlistt11=zeros(0); %path list for OD(2,60) for comm 2
pathlistt12=zeros(0); %path list for OD(2,64) for comm 2
pathlistt13=zeros(0); %path list for OD(2,65) for comm 2
pathlistt14=zeros(0); %path list for OD(2,66) for comm 2
pathlistt15=zeros(0); %path list for OD(2,68) for comm 2
pathlistt16=zeros(0); %path list for OD(2,9) for comm 2
pathlistt17=zeros(0); %path list for OD(10,58) for comm 2

78

pathlistt18=zeros(0); %path list for OD(10,59) for comm 2
pathlistt19=zeros(0); %path list for OD(10,60) for comm 2
pathlistt20=zeros(0); %path list for OD(10,64) for comm 2
pathlistt21=zeros(0); %path list for OD(10,65) for comm 2
pathlistt22=zeros(0); %path list for OD(10,66) for comm 2
pathlistt23=zeros(0); %path list for OD(10,68) for comm 2
pathlistt24=zeros(0); %path list for OD(10,9) for comm 2
pathlistt25=zeros(0); %path list for OD(13,58) for comm 2
pathlistt26=zeros(0); %path list for OD(13,59) for comm 2
pathlistt27=zeros(0); %path list for OD(13,60) for comm 2
pathlistt28=zeros(0); %path list for OD(13,64) for comm 2
pathlistt29=zeros(0); %path list for OD(13,65) for comm 2
pathlistt30=zeros(0); %path list for OD(13,66) for comm 2
pathlistt31=zeros(0); %path list for OD(13,68) for comm 2
pathlistt32=zeros(0); %path list for OD(13,9) for comm 2
pathlistt33=zeros(0); %path list for OD(28,58) for comm 2
pathlistt34=zeros(0); %path list for OD(28,59) for comm 2
pathlistt35=zeros(0); %path list for OD(28,60) for comm 2
pathlistt36=zeros(0); %path list for OD(28,64) for comm 2
pathlistt37=zeros(0); %path list for OD(28,65) for comm 2
pathlistt38=zeros(0); %path list for OD(28,66) for comm 2
pathlistt39=zeros(0); %path list for OD(28,68) for comm 2
pathlistt40=zeros(0); %path list for OD(28,9) for comm 2
pathlistt41=zeros(0); %path list for OD(42,58) for comm 2
pathlistt42=zeros(0); %path list for OD(42,59) for comm 2
pathlistt43=zeros(0); %path list for OD(42,60) for comm 2
pathlistt44=zeros(0); %path list for OD(42,64) for comm 2
pathlistt45=zeros(0); %path list for OD(42,65) for comm 2
pathlistt46=zeros(0); %path list for OD(42,66) for comm 2
pathlistt47=zeros(0); %path list for OD(42,68) for comm 2
pathlistt48=zeros(0); %path list for OD(42,9) for comm 2

load .\InputData\ODpairs; %|ODpairs|=(48x1x2)
load .\InputData\ODdemand; %|ODdemand|=(48x1x2)
load .\InputData\connect; %|connect|=(108x108x1)

%---
%| Initial input data file could be acquired by the following commands. |
%|--|
%| disp('<> Select input data file for UE <>'); |
%| [filename,path]=uigetfile('*.mat','Pick data file for UE problem'); |
%| UEdata=[path,filename]; |
%| load UEdata; |

79

%| disp('== Input data, A,Aeq,b,beq,lb,x0, are acquired =='); |
%---

%=====================
%Generate UE_solution, xue
%=====================

 disp('<> Start MUE_main.m <>');
[xue,xuelinkcost,xuetotalcost,lambda,stepsize]=MUE_main(k,m,n,OD,D,connect);
%|xue|=(162x1x2)
%|xuelinkcost|=(162x1x2)
disp ('<> Returned to MTFE.m <>')
disp('Saved: xue Link Cost Coeff --> xueLinkCostCoeff.mat')
save .\Outputs\xueLinkCostCoeff.mat xuelinkcost
disp('Saved: xue Total Cost --> xueTotalCost.mat')
save .\Outputs\xueTotalCost.mat xuetotalcost
disp('Saved: UE Link Flows --> xue.mat')
save .\Outputs\xue.mat xue

%==============================
% MTFE_GLSO.m (Traffic Flow Estimation)
%==============================
disp ('<> Start MTFE_GLSO (GLS Optimization) <>')

load .\InputData\V %V : variance-covariance matrix
load .\InputData\A.mat %A : node-arc incident matrix
load .\InputData\b %b=RHS vector
load .\InputData\xob %observed link flows;
load .\Outputs\xue.mat %user equilibrium assignment

xuered=[xue(1:162,:,1);xue(1:162,:,2)]; %reduced matrix of xue
Ar = [A(1:107,:);A(109:215,:)]; %reduced matrix of A
br = [b(1:107,:);b(109:215,:)]; %reduced vector of b

%==
% Combine xue with xob to make input variable x for GLS optimization
%==
x=GenX(xuered,xob);
disp('Saved: Combined x for GLSO input --> xCombined.mat')
save .\Outputs\xCombined.mat x

%===============================
%Generate GLSO solution using QUADPROG

80

%===============================
H=2*inv(V);
C=-2*x'*inv(V);
lb=zeros(324,1);
Aineq=zeros(1,324);
Aineq(1,11)=1;
Aineq(1,173)=1;
bineq=[2300];
%additional constraints for multi-commodity flows x(1,11)+x(2,11)<=2300 is added.

%call "quadprog" which is a built-in MATLAB function.
xGLSO=quadprog(H,C,Aineq,bineq,Ar,br,lb);

disp('<> Start GLSO_solution.m <>');
disp ('<> Returned to STFE_TTI1_2ndHalf.m <>')
disp('Saved: Final GLSO solution --> xGLSO.mat')
save .\Outputs\xGLSO_quad_multiconstraints.mat xGLSO
disp('Saved: Whole Variables --> WholeVariables.mat')
save .\Outputs\WholeVariables_quad_multiconstraints.mat
disp('<><><> End of the program <><><>');

[GenCmatrix.m]
function costmatrix=GenCmatrix(n,connect,cc);
%Generate cost matrix between the nodes
%if two nodes are not directly connected then put infinite cost
%otherwise, the cost is the cost of the connecting link
for (r=1:1:n);
 for (c=1:1:n);
 if connect(r,c)==0;
 costmatrix(r,c,1)=inf;
 costmatrix(r,c,2)=inf;
 else
 costmatrix(r,c,1)=cc(connect(r,c),1,1);
 costmatrix(r,c,2)=cc(connect(r,c),1,2);
 end
 end
end

[GenPathcost.m]

function Genpathcost(xueCostCoef,connect)
% Generate Path costs for each O-D pair using xueCostCoef and connect

81

global pathlist1...(omitted for editing purpose)…pathlistt48
global pathcost1…(omitted for editing purpose)…pathcostt48

%Calculation for Commodity 1
%OD pair No.1
npaths=size(pathlist1,1);
nnodes=size(pathlist1,2)-1;;
pathcost1=zeros(npaths,1);
for (row=1:1:npaths)
 pathcost1(row,1)=0;
 col=1;
 for (col=1:1:nnodes);
 if pathlist1(row,col+1)==0
 break
 end
 linknow=connect(pathlist1(row,col),pathlist1(row,col+1));
 pathcost1(row,1)=pathcost1(row,1)+xueCostCoef(linknow,1,1);
 col=col+1;
 end
end
 …
 (omitted for editing purpose: do the above routine for the remaining O-D pairs)
 …
%--
%Calculation for Commodity 2
%OD pair No.1
npaths=size(pathlistt1,1);
nnodes=size(pathlistt1,2)-1;;
pathcostt1=zeros(npaths,1);
for (row=1:1:npaths)
 pathcostt1(row,1)=0;
 col=1;
 for (col=1:1:nnodes);
 if pathlistt1(row,col+1)==0
 break
 end
 linknow=connect(pathlistt1(row,col),pathlistt1(row,col+1));
 pathcostt1(row,1)=pathcostt1(row,1)+xueCostCoef(linknow,1,2);
 col=col+1;
 end
end
 …
 (omitted for editing purpose: do the above routine for the remaining O-D pairs)

82

 …

[GenPathlist.m]

function GenPathlist(s,d,minpath,kk)
%==
% Generate the paths during the algorithm and adds the new paths to the current list
% Check if current minpath is in the pathlist.
% If current minpath is newly generated then add the minpath in the pathlist
%==

global pathlist1...(omitted for editing purpose)…pathlistt48

% origin from node 1
if (kk= =1) % for commodity 1
 if (s= =1)&(d= =58)
 size0=size(pathlist1,1);
 size1=size(pathlist1,2);
 size2=size(minpath,2);
 if size1>size2
 minpath=[minpath,zeros(1,size1-size2)];
 elseif size1<size2
 pathlist1=[pathlist1,zeros(size0,size2-size1)];
 end
 exist=0;
 for (row=1:1:size0)
 if isequal(pathlist1(row,:),minpath)
 %check whether current minpath exist in the list
 exist=1;
 break
 end
 end
 if exist~=1 %if current minpath is new one, add it to the pathlist
 pathlist1=[pathlist1;minpath];
 end
 end
 …
 (omitted for editing purpose: do the above routine for the remaining O-D pairs)
 …
%-------------------------------
else % for commodity 2
%-------------------------------
 if (s==1)&(d==58)

83

 size0=size(pathlistt1,1);
 size1=size(pathlistt1,2);
 size2=size(minpath,2);
 if size1>size2
 minpath=[minpath,zeros(1,size1-size2)];
 elseif size1<size2
 pathlistt1=[pathlistt1,zeros(size0,size2-size1)];
 end
 exist=0;
 for (row=1:1:size0)
 if isequal(pathlistt1(row,:),minpath)
 exist=1;
 break
 end
 end
 if exist~=1
 pathlistt1=[pathlistt1;minpath];
 end
 end
 …
 (omitted for editing purpose: do the above routine for the remaining O-D pairs)
 …
end

[GenX.m]
function [x] = GenX(xuered,xob)
%===
% Combine xue with xob to make input variable x for GLSO
%===
sxob=size(xob);
x=zeros(sxob);
for(ii=1:1:sxob(1))
 if(xob(ii,1)<=0)
 x(ii,1)=xuered(ii,1);
 else
 x(ii,1)=xob(ii,1);
 end
end

[GLSO.m]

function [GLSO_LinkFlows] = GLSO(Ar,br,x,V)

84

%===============================
% Min (y-x)inv(V)(y-x)
% s.t. Ay=b
% y>=0
%===============================
% y : Decision variable of the GLSO problem, xGLSO
% Ar : Reduced node-arc incident matrix.
% br : Reduced RHS of the constraints.
% x : Combined matrix of links flows of all commodities.
% V : Variance-covariance matrix of all commodities.

szAr = size(Ar);
i = eye(szAr(2));
p = V*Ar';
q = Ar*V*Ar';
GLSO_LinkFlows = [i-p*(q\Ar)]*x + p*(q\br);

[MCPF.m]

function [y]=MCPF(k,m,n,cc,OD,D,connect)
% returns Min Cost Link flows [y]
%===
% Problem formulation (Min-Cost Path Flow Formulation: Subproblem:p2)
%===
% Min g(x)=c1(x0)x(1)+...
% s.t. x(1) = h...
% :
% x>=0, h>=0
% ---
% Notation:
% x(k,i)=x(commodity,link) : Link flow
% h(k,i)=h(commodity,path#) : Path flow
% cc : original cost coefficient
% y : link flows (return value to caller module)
% h : path flows (return value to caller module)
% connect(:,:,k): shows interconnecting links between nodes
% D(pp,k): Demand vector of O-D pairs of commodity k.
% pair=size(OD,1) : # of O-D pairs of a commodity
% OD(pp,st,k) : 3-dimensional O-D node vectors
% (pp=pair#, st=1:source, 2:terminal, k=commodity)
% costmatrix(f,t,k) : link cost matrix from current link flows
% (f=from node,t=to node,k=commodity)

85

global pathlist1...(omitted for editing purpose)…pathlistt48

%==============================
% initial matrices used in the MCR routine
%==============================
costmatrix=GenCmatrix(n,connect,cc);
y=zeros(m,1,k); % initialize link flow y to 0

% find minimum path of O-D pair (s,d)
%---
kk=1; %counter for WHILE loop for commodity change
pair=size(OD,1); %OD=(48,2,2)
while (kk<=k)
 cmatrix=costmatrix(:,:,kk); %costmatrix for kk-th commodity.
 pp=1;
 while (pp<=pair)
 s=OD(pp,1,kk); % source node of 1st pair of kk-th commodity
 d=OD(pp,2,kk); % destination node of 1st pair of kk-th commodity
 [minpath]=MCR(n, cmatrix, s, d);

 %Generate Path List
 Genpathlist(s,d,minpath,kk) % add current one, if it's new path.
 counter=size(minpath,2)-1; %counter=# of min path links

 % assign demand to min-path links
 for (index=1:1:counter);
 linkno=connect(minpath(index),minpath(index+1));
 y(linkno,1,kk)=y(linkno,1,kk)+D(pp,1,kk);
 end
 pp=pp+1;
 end
 kk=kk+1;
end

[MCR.m]

function [path, totalCost] = MCR(n, Distance, s, d)
% This MCR codes was found MATLAB user library and modified for the current
problem.
% Returns min-path node list
% Minimum Cost Route (shortest path) algorithm: Dijkstra's algorithm
% path: the list of nodes in the path from source to destination;

86

% totalCost: the total cost of the path;
% n: the number of nodes in the network;
% s: source node;
% d: destination node;
% DistMatrix: distance matrix between nodes

%======================
% Initialization
%======================
visited(1:n) = 0; % set all the nodes un-visited;
distance(1:n) = inf; % set distance between s to i to infinity;
predec(1:n) = 0; % set predecessor nodes to all zero
distance(s) = 0; % set distance from s to itself to zero

for ii = 1:(n-1),
 temp = [];
 for jj = 1:n,
 if visited(jj) == 0;
 temp=[temp distance(jj)];
 else
 temp=[temp inf];
 end
 end;
 [t, u] = min(temp);
 visited(u) = 1;
 for v = 1:n,
 if ((DistMatrix(u,v) + distance(u)) < distance(v))
 % update the shortest distance when a shorter path is found;
 distance(v) = distance(u) + DistMatrix(u,v);
 predec(v) = u; % update its predecessor;
 end;
 end;
end;
% generate node list in the shortest path
path = [];
if predec(d) ~= 0
 t = d;
 path = [d];
 while t ~= s
 p = predec(t);
 path = [p path];
 t = p;
 end;

87

end;
totalCost = distance(d);
return;

[MUE_costcoef.m]

function costcoef = MUE_costcoef(z)
% returns costcoef matrix
c1=3*(1+0.15*(z(1,1,1)/60)^4);
…
(omitted for editing purpose)
…
c289=21*(1+.15*(z(127,1,2)/36)^4);

costcoef=zeros(162,1,2); % initialize
%--
% cost coef. for 1st commodity
costcoef(1:127,1,1)=[c1;c2;c3;c4;c5;c6;c7;c8;c9;c10;
 c11;c12;c13;c14;c15;c16;c17;c18;c19;c20;
 c21;c22;c23;c24;c25;c26;c27;c28;c29;c30;
 c31;c32;c33;c34;c35;c36;c37;c38;c39;c40;
 c41;c42;c43;c44;c45;c46;c47;c48;c49;c50;
 c51;c52;c53;c54;c55;c56;c57;c58;c59;c60;
 c61;c62;c63;c64;c65;c66;c67;c68;c69;c70;
 c71;c72;c73;c74;c75;c76;c77;c78;c79;c80;
 c81;c82;c83;c84;c85;c86;c87;c88;c89;c90;
 c91;c92;c93;c94;c95;c96;c97;c98;c99;c100;
 c101;c102;c103;c104;c105;c106;c107;c108;c109;c110;
 c111;c112;c113;c114;c115;c116;c117;c118;c119;c120;
 c121;c122;c123;c124;c125;c126;c127];

costcoef(128:162,1,1)=0; % set zero costs for imaginary links

%--
% cost coef. for 2nd commodity
costcoef(1:127,1,2)=[c163;c164;c165;c166;c167;c168;c169;
 c170;c171;c172;c173;c174;c175;c176;c177;c178;c179;
 c180;c181;c182;c183;c184;c185;c186;c187;c188;c189;
 c190;c191;c192;c193;c194;c195;c196;c197;c198;c199;
 c200;c201;c202;c203;c204;c205;c206;c207;c208;c209;
 c210;c211;c212;c213;c214;c215;c216;c217;c218;c219;
 c220;c221;c222;c223;c224;c225;c226;c227;c228;c229;
 c230;c231;c232;c233;c234;c235;c236;c237;c238;c239;

88

 c240;c241;c242;c243;c244;c245;c246;c247;c248;c249;
 c250;c251;c252;c253;c254;c255;c256;c257;c258;c259;
 c260;c261;c262;c263;c264;c265;c266;c267;c268;c269;
 c270;c271;c272;c273;c274;c275;c276;c277;c278;c279;
 c280;c281;c282;c283;c284;c285;c286;c287;c288;c289];
costcoef(128:162,1,2)=0; % set zero costs for imaginary links

[MUE_costfun.m]

function f = MUE_costfun(z)
% Link cost function gives total link cost.
% Returns value of the function
% Using 2-dimensional variable: z

f= z(1,1,1) * (3*(1+0.15*(z(1,1,1)/60)^4))+
 …
 (omitted for editing purpose)
 …
 + z(127,1,2) * (21*(1+.15*(z(127,1,2)/36)^4));

[MUE_main]

function [xueLinkFlow,xueCostCoef,xueTcost,lambda,stepsize] = …
MUE_main(k,m,n,OD,D,connect)
% UE main module to solve UE problem
%==
% Deterministic User Equilibrium Problem: Master Problem, P1
%
% Min f(x)
% s.t. x = h...
% :
% x>=0, h>=0
%==
% Min-Cost Path Flow Formulation: Sub problem, P2
%
% Min g(x)=c1(x0)x(1)+...
% s.t. same constraints as in P1

global xprime xiter
global pathlist1...(omitted for editing purpose)…pathlistt48
global pathcost1…(omitted for editing purpose)… pathcost48
global pathcostt1…(omitted for editing purpose)…pathcostt48
%================================

89

% Finding initial starting feasible solution x'
%================================
disp('[Start Finding Initial Feasible Solution]')
cc=[MUE_costcoef(zeros(m,1,2))];
% find initial cost coefficient based on initial zero link flows
[x]=MCPF(k,m,n,cc,OD,D,connect); %Initial Feasible Solution: min cost path solution,
x
%-----------------------
% main iteration loop
%-----------------------
ratio=1;
iteration=1; % iteration counter
kappa=1;
alpha=1;
stepsize=1;
iterations4old=0;
xiter=x;
while (ratio>0.0001) %stopping criterion
 disp(' ITERATION')
 disp(iteration)
 %=====================
 % finding search direction: x"
 %=====================
 %disp('[Find New Search Direction x"]')
 cc=[MUE_costcoef(x)]; % cost coef. from x' to find x"
 [xx]=MCPF(k,m,n,cc,OD,D,connect); % find search direction, x"

 % Find the Lambda by golden section search algorithm embedded in MATLAB
% and also find next iteration point
 xprime(:, 1, :)=x; % current iteration point
 xprime(:, 2, :)=xx; % search direction
lambda(iteration)=fminbnd(@MUE_Obj_fun,0,1);
%find lambda maximizing f(x) between x' and x"

 kappa=2.0; % this kappa can be changed by modified F-W scheme
 alpha=lambda(iteration)*kappa;
 stepsize(iteration)=min(alpha,1);
 newiterpoint=xprime(:,1,:)+stepsize(iteration)*(xprime(:,2,:)-xprime(:,1,:));
 tcost0=MUE_costfun(xprime(:,1,:)); % single value
 tcost1=MUE_costfun(newiterpoint);
 if(tcost1>=tcost0) %If new solution is worse than the old one
newiterpoint=xprime(:,1,:)+lambda(iteration)*(xprime(:,2,:)- xprime(:,1,:));
 tcost1=UE_MTFE3_costfun(newiterpoint);

90

 iterations4old=iterations4old+1;
 end
 %======================
 % Evaluate the stopping criteria
 %======================
 ratio=(tcost0-tcost1)*100/abs(tcost1);
 if (tcost1<tcost0) %If new solution is better than the old one, continue algorithm
 x=newiterpoint;
 else % If new solution is worse than the old one, STOP.
 disp('<>Since the ratio is negative<>')
 disp('<>Improvement can not be made further more<>')
 newiterpoint=x;
 end
 %
 % If ratio is small enough then current newiterpoint is optimal solution and stop.
 %
 xxx(:,iteration,:)=x; %Matrix to save x values during iterations
 TotalCost(iteration,:)=tcost1; %Vector to save total costs during iterations
 iteration=iteration+1;
 xiter(:,iteration,:)=newiterpoint;
end

%===========================
% display and save the outputs
%===========================
iteration=iteration-1
disp('=====================')
disp('Total Number of Iterations =')
disp(iteration)
save .\Outputs\iteration.mat iteration

disp('Using Modified Frank-Wolfe Strategy')
disp('--')
disp('kappa=2.0')
disp('--')
disp('Number of iterations using conventional Method')
disp(iterations4old)
save .\Outputs\iteration4old.mat iterations4old

xueLinkFlow=newiterpoint;
disp('Saved: UE Link Flows --> "xueLinkFlow" ')
save .\Outputs\xueLinkFlow.mat xueLinkFlow
xueCostCoef=UE_MTFE3_costcoef(newiterpoint);

91

disp('Saved: UE Link Cost Coefficients --> "xueCostCoef"')
save .\Outputs\xueCostCoef.mat xueCostCoef

%=================================
% Calculate path costs
%=================================
Genpathcost(xueCostCoef,connect);
disp('Saved: UE Path lists --> "UEPathList"')
save .\Outputs\UEPathList.mat pathlist*
disp('Saved: UE Path Costs --> "UEPathCost"')
save .\Outputs\UEPathCost.mat pathcost*
xueTcost=tcost1;

[MUE_Obj_fun.m]

function f = MUE_Obj_fun(w)
% Objective function of Traffic Assignment Problem (P1)
% Using 1-dimensional variable: w

global xprime;

z = (xprime(:,2,:)-xprime(:,1,:))*w+xprime(:,1,:);
f = MUE_costfun(z);

92

APPENDIX C

COMMON SOLUTION APPROACHES FOR MULTI-COMMODITY

NETWORK PROBLEMS

A multi-commodity problem can be represented by the following equations:

 minimize ∑
k

kk xc (C.1)

 subject to Ax
k = bk

, k = 1,…,K (C.2)

 ≤∑
k

kk xD u (C.3)

 kk
ux0 ≤≤ , k = 1,…,K (C.4)

where A is a node-arc incidence matrix for the network and D

k for k=1,…,K are

diagonal matrices. Usually the diagonal matrices D
k are identity matrices. The jth

component of u is called mutual (common) arc capacity of arc j. The flow of all

commodities on the arc j is constrained by the arc capacity. The constraint (C.2) is called

flow conservation constraint and the constraint (C.3) is called bundle (capacity)

constraint. Different commodities interact with each other by the set of bundle

constraints. In order to eliminate the inequality constraint in (C.3) we add nonnegative

slack variables. When there is no weighting factor for an arc the diagonal matrices D
k

reduce to identity matrices. Now we can rewrite the equation (C.3) into the equations

(C.5) and (C.6).

 ∑
k

kx + s = u (C.5)

 s ≥ 0 (C.6)

93

Even though multi-commodity flow problems do not have the same nice properties

as single-commodity flow problems they still have some special structure that we can

exploit to solve the problem efficiently. There are several common approaches for

solving the multi-commodity flow problem. The solution methods generally attempt to

exploit the network flow structure of the individual single commodity flow problems. In

the following sections we will briefly explain the underlying concepts and algorithms of

the decomposition methods.

C.1. Price-Directive Decomposition Method

 Decomposition method places multi-commodity network flow problem in a form

where a master optimization problem coordinates the solution of subproblems and each

subproblem is a minimal cost network flow problem. This approach is divided into

price-directive and resource-directive methods. Price-directive decomposition

approach places the prices (dual variables) on the bundle constraints and brings these

into the objective function. It removes (relaxes) the complicating capacity constraint and

charges each commodity for the use of the arc. The objective is to obtain a set of prices

such that the combined solution for all subproblems yields an optimum for the original

problem.

 For each commodity, k = 1,…,K, let Xk = {x
k : Ax

k = bk , 0 ≤ xk ≤ uk } and let x1
k,…,

xq
k denote the extreme points of Xk. If Xk is the null set for any k, then the original

problem has no solution. Suppose λ is dual variable associated with the bundle

constraints (C.5) and Xk is not the null set and bounded, then any xk can be expressed as

a convex combination of the extreme points of xj
k as follows,

 Minimize xk = ∑
j

k

j

k

jx λ

 where ∑
j

k

jλ = 1, all k (C.7)

 λj

k ≥ 0, all j, k

94

Substituting (C.7) in the multi-commodity minimal cost flow problem, (C.1)-(C.6), we

obtain the following:

 minimize ∑
kj

k

j

k

j

k
x

,

)(λc (C.8)

 subject to ∑ =+
kj

k

j

k

j bsx
,

λ (w) (C.9)

 ∑
j

k

jλ = 1, all k (αααα) (C.10)

 λj

k ≥ 0, all j, k. (C.11)

where w and ααααk are dual variables.

Suppose we have a basic feasible solution to the multi-commodity minimal cost flow

problem in terms of the λλλλj
k and w and αk are dual variables of (C.9) and (C.10),

respectively. Then dual feasibility associated with the above problem is:

(i) wm ≤ 0 corresponding to each slack variable, sm, and

(ii) (w - ck) yj
k + αk ≤ 0 corresponding to each λj

k.

Any variable violating any of these conditions is a candidate to enter the master

basis. Finding the most violating variable for any λj
k involves solving following

subproblems.

 minimize (ck - w) xk + αk (C.12)

 subject to Ax
k = bk (C.13)

 kk
ux0 ≤≤ , k = 1,…,K (C.14)

95

Problem (C.8)-(C.11) is called the master problem and the problems (C.12)-(C.14)

are called the subproblems. The master problem is solved by the revised simplex method

with the subproblems, which are used to test for optimality and select candidates for

entering the master problem basis. The subproblems are single-commodity problems and

can be solved efficiently by any well-known techniques such as out-of-kilter algorithm

or primal simplex algorithm for network optimization.

C.2. Price-Directive Decomposition Algorithm.

Initialization: Find an initial feasible basis for the master problem and the

corresponding dual variables. If a feasible basis is not available, then one may use

artificial variables and a two-phase method to find a starting feasible solution for the

master problem.

Step 1. Pricing: Let xk denote an optimum extreme point for zk = min {(ck - w) xk :

Ax
k = bk , 0 ≤ xk ≤ uk }. If there is no solution, then the master problem has

no solution. If (w - ck) xj
k + αk > 0 (or αk – zk > 0), then λk is a candidate to

enter the basis of the master. Otherwise, no extreme point of Xk is a candidate

for basis entry. If wm > 0, then the corresponding slack, sm, is a candidate for

basis entry. Does there exist at least one candidate for basis entry? If so,

continue with step 2. If not, terminate; optimality has been obtained.

Step 2. Pivot in Master : Select an eligible variable for basis entry. Update the chosen

column, pivot in the master program, and return to step 1 with a new set of

dual variables.

(Example C.1) Price-directive decomposition method

We will consider the numerical example shown in Figure C.1. The network problem

has two source nodes, 1 and 2, and two terminal nodes, 3 and 4, for commodity 1. The

96

second commodity has a source node 2 and a terminal node 3. Notice that the optimal

solution of this problem can not be solved separately for each commodity. This is

because the capacity of a certain arc may be insufficient to serve the flow of two

commodities.

Figure C.1. Two Commodity Minimum Cost Flow Problem

The above problem is assumed to have zero lower bounds for their arc flows and

fixed flows for their nodes without loss of generality. The matrix representation of the

problem is shown in Figure C.2. By network transformation procedure we add one

imaginary arc, x1
1 and x2

1 in Figure C.2., to the original network to make the node-arc

matrix full rank. For simplicity, this matrix representation does not show the upper

bound constraints.

 1 3

 2 4

[2,3] [-3,0]

[-1,-3] [2,0]
(4,4,1,2,1)

(3,4,3,1,3)

(7,5,3,2,1) (5,3,4,4,2)
(8,3,4,3,5)

(uij,u
1
ij, u

2
ij, c

1
ij,

c2)

[b1
i, b

2
i]

97

 x1
13 x

1
14 x

1
21 x

1
24 x

1
43 x

1
1 x2

13 x
2

14 x
2

21 x
2

24 x
2

43 x
2

1 s13 s14 s21 s24 s43 RHS
 --
 1 1 -1 0 0 -1 2
node-arc matrix 0 0 1 1 0 0 2
for commodity 1 -1 0 0 0 -1 0 -1
 0 -1 0 -1 1 0 -3
 --

 1 1 -1 0 0 -1 0
node-arc matrix 0 0 1 1 0 0 3
for commodity 1 -1 0 0 0 -1 0 -3
 0 -1 0 -1 1 0 0
 --
 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 4
 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 8
bundle constraints 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 5
 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 3
 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 7
 --

Figure C.2. The Matrix Representation of Example C.1

Initialization

In this stage, we build the revised simplex tableau of the master problem. It starts

with the finding a feasible solution of the problem. In order to do that, we can use

conventional LP methods such as two-phase method to find a starting feasible solution.

In our example we use the following solutions: x1
1=(0, 2, 0, 2, 1)T, and x2

1=(0, 2, 2,

1, 3)T where xk
iteration= (xk

13, x
k
14, x

k
21, x

k
24, x

k
43). Cost vectors are c1=(2, 3, 4, 1, 2), c2=(1,

5, 2, 3, 1) where ck=(ck
13, c

k
14, c

k
21, c

k
24, c

k
43).

From the master problem formulation we can have the following basis and the inverse.

∅∅∅∅ ∅∅∅∅

∅∅∅∅ ∅∅∅∅

98

 1 0 0 0 0 0 0 1 0 0 0 0 0 0
 0 1 0 0 0 2 2 0 1 0 0 0 -2 -2
 0 0 1 0 0 0 2 0 0 1 0 0 0 -2
 B = 0 0 0 1 0 2 1 B-1 = 0 0 0 1 0 -2 -1
 0 0 0 0 1 1 3 0 0 0 0 1 -1 -3
 0 0 0 0 0 1 0 0 0 0 0 0 1 0
 0 0 0 0 0 0 1 0 0 0 0 0 0 1

From the given problem condition we have

c
1
 x

1
1 = 10, c2

 x
2
1 = 20

(w,αααα) = cB' B-1 = (0, 0, 0, 0, 0, 10, 20)

b' = (4, 8, 5, 3, 7, 1, 1)

B
-1 b' = (4, 4, 3, 0, 3, 1 ,1)T

cB' B-1 b' = 30.

We are now ready to make a revised simplex tableau of the master problem shown in

Table C.1.

Table C.1. Simplex Tableau of the Master Problem

 w13 w14 w21 w24 w43 α1 α2 RHS
 --
 z 0 0 0 0 0 10 20 30
 --
 s13 1 0 0 0 0 0 0 4
 s14 0 1 0 0 0 -2 -2 4
 s21 0 0 1 0 0 0 -2 3
 s24 0 0 0 1 0 -2 -1 0
 s43 0 0 0 0 1 -1 -3 3

 λ1
1 0 0 0 0 0 1 0 1

 λ2
1 0 0 0 0 0 0 1 1

 --

99

Iteration 1

In the above revised simplex tableau, all wij ≤ 0. That is, all wij satisfy dual

feasibility. Therefore we need, now, to solve subproblems for commodity 1 and 2, which

are two individual single-commodity flow problems. If we find any positive zk
j - ck

j

value, then λk
j can be a candidate to enter the basis.

Subproblem 1

 w – c1 = (0, 0, 0, 0, 0) – (2, 3, 4, 1, 2) = (-2, -3, -4, -1, -2).

This cost term consists of the following single-commodity minimum cost flow problem

as showun

Figure C.3. Network Representation of Subproblem 1 of Iteration 1

This problem can be easily solved by out-of-kilter algorithm or network simplex

algorithm. The minimum cost optimal solution is x1
2 = (1, 1, 0, 2, 0)T.

z1
2 – c1

2 = (w – c1) x
1

2 + α1 = -7 + 10 = 3.

Since z1
2 – c1

2 is greater than zero, λ1
2 could be a candidate to enter. Let's continue to

subproblem 2.

[2] [-3]

[-1] [2]
(4,2)

(4,1)

(5,2) (3,4)
(3,3) (u1

i,j, c
1

i,j)

[b1
i]

1

2

3

4

100

 1 3

 2 4

[3] [0]

[-3] [0]
(1,1)

(3,3)

(3,1) (4,2)
(4,5) (u2

i,j, c
2

i,j)

[b2
i]

Subproblem 2

 w – c2 = (0, 0, 0, 0, 0) – (1, 5, 2, 3, 1) = (-1, -5, -2, -3, -1).

We have the following single-commodity minimum cost flow problem for commodity 2.

Figure C.4. Network Representation of Subproblem 2 of Iteration 1

The minimum cost optimal solution is x2
2 = (1, 0, 1, 2, 2)T.

z2
2 – c2

2 = (w – c2) x
2

2 + α2 = -11 + 20 = 9.

Since z2
2 – c2

2 is greater than z1
2 – c1

2, we choose λ2
2 as an entering variable to the

master problem basis. Next, we generate the column and perform pivoting process. The

column for λ2
2 is calculated by

B

-1 (x2
2, e

2)T = B-1 (1, 0, 1, 2, 2, 0, 1)T = (1, -2, -1, 1, -1, 0, 1)T.

101

Table C.2. Simplex Tableau of Iteration 1

 w13 w14 w21 w24 w43 α1 α2 RHS λ2
2

 -- -----
 z 0 0 0 0 0 10 20 30 9
 -- -----
 s13 1 0 0 0 0 0 0 4 1
 s14 0 1 0 0 0 -2 -2 4 -2
 s21 0 0 1 0 0 0 -2 3 -1
 s24 0 0 0 1 0 -2 -1 0 1
 s43 0 0 0 0 1 -1 -3 3 -1

 λ1
1 0 0 0 0 0 1 0 1 0

 λ2
1 0 0 0 0 0 0 1 1 1

 -- -----

 w13 w14 w21 w24 w43 α1 α2 RHS λ2
2

 -- -----
 z 0 0 0 -9 0 28 29 30 0
 -- -----
 s13 1 0 0 -1 0 2 1 4 0
 s14 0 1 0 2 0 -6 -4 4 0
 s21 0 0 1 1 0 -2 -3 3 0

 λ2
2 0 0 0 1 0 -2 -1 0 1

 s43 0 0 0 1 1 -3 -4 3 0

 λ1
1 0 0 0 0 0 1 0 1 0

 λ2
1 0 0 0 -1 0 2 2 1 0

 -- -----

Iteration 2

Still all wij ≤ 0. Thus proceed to solve subproblems to find a candidate to enter the

master basis.

Subproblem 1

 w – c1 = (0, 0, 0, -9, 0) – (2, 3, 4, 1, 2) = (-2, -3, -4, -10, -2).

102

 1 3

 2 4

[2] [-3]

[-1] [2]
(4,2)

(4,10)

(5,2) (3,4)
(3,3) (u1

i,j, c
1

i,j)

[b1
i]

This cost term consists of the following single-commodity minimum cost flow problem.

Figure C.5. Network Representation of Subproblem 1 of Iteration 2

The optimal solution is x1
3 = (1, 3, 2, 0, 0)T.

z1
3 – c1

3 = (w – c1) x
1

3 + α1 = -19 + 28 = 9.

Since z1
3 – c1

3 is greater than zero, λ1
3 could be a candidate to enter. Continue to

subproblem 2.

Subproblem 2

 w – c2 = (0, 0, 0, -9, 0) – (1, 5, 2, 3, 1) = (-1, -5, -2, -12, -1).

We have the following single-commodity minimum cost flow problem.

103

 1 3

 2 4

[3] [0]

[-3] [0]
(1,1)

(3,12)

(3,1) (4,2)
(4,5) (u2

i,j, c
2

i,j)

[b2
i]

Figure C.6. Network Representation of Subproblem 2 of Iteration 2

The minimum cost optimal solution is x2
3 = (1, 2, 3, 0, 2)T.

z2
3 – c2

3 = (w – c2) x
2

3 + α2 = -19 + 29 = 10.

Since z2
3 – c2

3 is greater than z1
3 – c1

3, we choose λ2
3 as an entering variable to the

master problem basis. Next, we generate the column and perform pivoting process. The

column for λ2
3 is calculated by

B
-1 (x2

3, e
2)T = B-1 (1, 2, 3, 0, 2, 0, 1)T = (2, -2, 0, -1, -2, 0, 2)T.

104

Table C.3. Simplex Tableau of Iteration 2

 w13 w14 w21 w24 w43 α1 α2 RHS λ2
3

 -- -----
 z 0 0 0 -9 0 28 29 30 10
 -- -----
 s13 1 0 0 -1 0 2 1 4 2
 s14 0 1 0 2 0 -6 -4 4 -2
 s21 0 0 1 1 0 -2 -3 3 0

 λ2
2 0 0 0 1 0 -2 -1 0 -1

 s43 0 0 0 1 1 -3 -4 3 -2

 λ1
1 0 0 0 0 0 1 0 1 0

 λ2
1 0 0 0 -1 0 2 2 1 2

 -- -----

 w13 w14 w21 w24 w43 α1 α2 RHS λ2
3

 -- -----
 z 0 0 0 -4 0 18 19 25 0
 -- -----
 s13 1 0 0 0 0 0 -1 3 0
 s14 0 1 0 1 0 -4 -2 5 0
 s21 0 0 1 1 0 -2 -3 3 0

 λ2
2 0 0 0 1/2 0 -1 0 1/2 0

 s43 0 0 0 0 1 -1 -2 4 0

 λ1
1 0 0 0 0 0 1 0 1 0

 λ2
3 0 0 0 -1/2 0 1 1 1/2 1

 -- -----

Iteration 3

Still all wij ≤ 0. Thus proceed to solve subproblems to find a candidate to enter the

master basis.

Subproblem 1

 w – c1 = (0, 0, 0, -4, 0) – (2, 3, 4, 1, 2) = (-2, -3, -4, -5, -2).

105

 1 3

 2 4

[2] [-3]

[-1] [2]
(4,2)

(4,5)

(5,2) (3,4)
(3,3) (u1

i,j, c
1

i,j)

[b1
i]

This cost term consists of the following single-commodity minimum cost flow problem.

Figure C.7. Network Representation of Subproblem 1 of Iteration 3

The optimal solution is x1
4 = (1, 1, 0, 2, 0)T.

z1
4 – c1

4 = (w – c1) x
1

4 + α1 = -15 + 18 = 3.

Since z1
4 – c1

4 is greater than zero, λ1
4 could be a candidate to enter. Continue to

subproblem 2.

Subproblem 2

 w – c2 = (0, 0, 0, -4, 0) – (1, 5, 2, 3, 1) = (-1, -5, -2, -7, -1).

We have the following single-commodity minimum cost flow problem.

106

 1 3

 2 4

[3] [0]

[-3] [0]
(1,1)

(3,7)

(3,1) (4,2)
(4,5) (u2

i,j, c
2

i,j)

[b2
i]

Figure C.8. Network Representation of Subproblem 2 of Iteration 3

The minimum cost optimal solution is x2
4 = (1, 0, 1, 2, 2)T.

z2
4 – c2

4 = (w – c2) x
2

4 + α2 = -19 + 19 = 0.

Since z2
4 – c2

4 is zero, λ2
4 can not be a candidate to enter the master problem basis. Thus

λ1
4 is selected. Calculated column for λ1

4 is

B
-1 (x1

4, e
1)T = B-1 (1, 1, 0, 2, 0, 1, 0)T = (1, -2, 0, -1, -2, 0, 2)T.

107

Table C.4. Simplex Tableau of Iteration 3

 w13 w14 w21 w24 w43 a1 a2 RHS λ1
4

 -- -----
 z 0 0 0 -4 0 18 19 25 3
 -- -----
 s13 1 0 0 0 0 0 -1 3 1
 s14 0 1 0 1 0 -4 -2 5 -1
 s21 0 0 1 1 0 -2 -3 3 0

 λ2
2 0 0 0 1/2 0 -1 0 1/2 0

 s43 0 0 0 0 1 -1 -2 4 -1

 λ1
1 0 0 0 0 0 1 0 1 1

 λ2
3 0 0 0 -1/2 0 1 1 1/2 0

 -- -----

 w13 w14 w21 w24 w43 a1 a2 RHS λ1
4

 -- -----
 z 0 0 0 -4 0 15 19 22 0
 -- -----
 s13 1 0 0 0 0 -1 -1 2 0
 s14 0 1 0 1 0 -3 -2 6 0
 s21 0 0 1 1 0 -2 -3 3 0

 λ2
2 0 0 0 1/2 0 -1 0 1/2 0

 s43 0 0 0 0 1 0 -2 5 0

 λ1
4 0 0 0 0 0 1 0 1 1

 λ2
3 0 0 0 -1/2 0 1 1 1/2 0

 -- -----

Iteration 4

Still all wij ≤ 0. Thus proceed to solve subproblems to find a candidate to enter the

master basis.

Subproblem 1

108

 1 3

 2 4

[2] [-3]

[-1] [2]
(4,2)

(4,5)

(5,2) (3,4)
(3,3) (u1

i,j, c
1

i,j)

[b1
i]

 w – c1 = (0, 0, 0, -4, 0) – (2, 3, 4, 1, 2) = (-2, -3, -4, -5, -2).

This cost term consists of the following single-commodity minimum cost flow problem.

Figure C.9. Network Representation of Subproblem 1 of Iteration 4

The optimal solution is x1
5 = (1, 1, 0, 2, 0)T. Notice that there is no change in the

optimal solution from the previous iteration. However we have different zk
j - c

k
j due to

the change in α1 value.

z1
5 – c1

5 = (w – c1) x
1

5 + a1 = -15 + 15 = 0.

Since z1
5 – c1

5 is zero, λ1
5 can not be a candidate to enter. Continue to subproblem 2.

Subproblem 2

 w – c2 = (0, 0, 0, -4, 0) – (1, 5, 2, 3, 1) = (-1, -5, -2, -7, -1).

We have the following single-commodity minimum cost flow problem.

109

 1 3

 2 4

[3] [0]

[-3] [0]
(1,1)

(3,7)

(3,1) (4,2)
(4,5) (u2

i,j, c
2

i,j)

[b2
i]

Figure C.10. Network Representation of Subproblem 2 of Iteration 4

The minimum cost optimal solution is x2
5 = (1, 0, 1, 2, 2)T.

z2
5 – c2

5 = (w – c2) x
2

5 + α2 = -19 + 19 = 0.

Since z2
5 – c2

5 is zero, λ2
5 can not be a candidate to enter the master problem basis. Thus

there is no candidate for further pivoting. Finally, we have the following optimal

solution:

 z* = 22

 x
*
1 = λ1

4 x
1
4 = (1, 1, 0, 2, 0)T

 x
*
2 = λ2

2 x
2
2 + λ2

3 x
2
3 = (1/2)(1, 0, 1, 2, 2)T + (1/2)(1, 2, 3, 0, 2)T

 = (1, 1, 2, 1, 2)T.

C.3. Resource-Directive Decomposition Method

Resources-directive decomposition method views the problem as a capacity

allocation problem, in which all commodities are competing for fixed capacity of every

arc of the network. It initially allocates capacity to commodities and decomposes the

110

problem into a set of K independent single commodity problems. At each iteration an

allocation is made and K single-commodity minimal cost flow problems are solved. The

sum of the capacities allocated to an arc over all commodities is less than or equal to the

arc capacity in the original problem. Hence the combined flow from the solutions of the

subproblems provides a feasible flow for the original problem. Optimality is tested and

the procedure either terminates or a new arc-capacity allocation is developed.

After the artificial variables are added, (C.1)-(C.6) becomes

 minimize ∑∑ +
k

k

k

kk a1γxc

 subject to Ax
k + ak = bk

, k = 1,…,K

 ∑
k

kx + s = u (C.15)

 kk
ux0 ≤≤ , k = 1,…,K

 a
k, s ≥ 0

where γ is a large positive scalar, ak is a vector of artificial variables, and 1 is a vector of

ones. An equivalent statement of (C.15) is

 minimize ∑
k

k

k yV)(

 subject to ∑ +
k

k sy = u (C.16)

 kky u0 ≤≤ , k = 1,…,K

 s ≥ 0

where Vk(y
k) = min { ckxk + γ1ak : Axk + ak = bk, 0 ≤ xk ≤ yk } = max { bkµK - ykνk : µKA

- νk ≤ ck, µK ≤ γ1, νk ≥ 0 } by duality theory. We can show the function V(y1,…,yk) is

111

convex. Different resource-directive techniques differ in the manner in which (C.16) is

solved. We will see the tangential approximation method.

Method of Tangential Approximation. [1]

Let Rk = { (µk, νk): µkA - νk ≤ ck, µk ≤ γ1, νk ≥ 0, and (µk, νk) an extreme point }.

Then (C.16) may stated as

 minimize ∑
k

kσ (C.17)

 subject to σk ≥ bkµk - ykνk, all (µk, νk) ∈ Rk and all k (C.18)

 ∑ +
k

k sy = u (C.19)

 kky u0 ≤≤ , k = 1,…,K (C.20)

 s ≥ 0 (C.21)

Suppose Qk ⊂ Rk. Let z(r) denote the optimal objective value of (C.17)-(C.21) and let

z(Q) denote the optimal objective value of (C.17) with Qk substituted for Rk in (C.18).

Then z(Q) ≤ z(R) provides a lower bound for (C.15).

Resource-Directive Decomposition Algorithm Using Tangential Approximation

Initialization. Set i = 0 and let y0 = (y0
1, …, y0

k) be any element of {(y0
1, …, y0

k): Σk

yk ≤ u, 0 ≤ yk ≤ uk}. Set Qk = Φ and σk = -∞ for each k.

Step 1. Solve Subproblems (Determine upper bound). Solve

112

 Vk(yi
k) = min ckxk + γ1ak

 s.t. Axk + ak = bk (µi
k, dual var.)

 xk ≤ yk (νi
k, dual var.)

 0 ≤ xk

 for each k=1,...K.

Step 2. Check Optimality (check Lower bound = Upper bound). ∑
k

kσ =∑
k

k

ik yV)(?

If so, terminate. The optimum is given by (xi
1, ..., xi

k) and (ai
k,..., ai

k). If not, add (µi
k, νi

k)

to Qk for each k and continue with step 3.

Step 3. Solve Master Program. Set i = i + 1. Solve

 Minimize ∑
k

kσ

 subject to σk ≥
kk

i

kk
yb νµ − , for each k and all (µk, νk)∈Qk

 ∑ +
k

k

i sy = u

 kk

iy u0 ≤≤ , k = 1,…,K

 s ≥ 0

and return to step 1.

The K subproblems to be solved in step 1 are single-commodity problems and can be

solved efficiently by any popular algorithm.

113

VITA

Dong Hun Kang, son of Sun Kyu Kang and Myoung Soon Kim, was born on July 2,

1965, in Daejon, Korea. He obtained a B.S. and an M.S. degree in industrial engineering

from Hanyang University, Korea in 1987 and 1989, respectively. After graduation, he

served as an administrative sergeant in the Republic of Korea Army for more than 2

years, and worked as an independent contractor in the database engineering field before

he began his Ph.D. program at the University of Michigan in August 1993. While

majoring in Human Factors at the University of Michigan, his interest changed to the

operations research area, and he transferred to Texas A&M University. In August, 1997,

he began his Ph.D. work in operations research in the Department of Industrial

Engineering at Texas A&M University. He worked for the Economics & Policy

Division of Texas Transportation Institute (TTI) for two years and for the Multimodal

Freight Transportation Program of TTI for three years as a graduate assistant. His email

address is dhkang@tamu.edu

His permanent mailing address is:

 Hyundai Hometown 1-Cha 105-404, Dongchun-Dong,

 Yong-In-Si, Kyung-Ki-Do, 449-514

 South Korea

