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ABSTRACT 

 
A Categorical Model for Traffic Incident Likelihood Estimation. 

 (December 2006) 

Shamanth Kuchangi, B.Tech, Regional Engineering College, Warangal 

 Chair of Advisory Committee: Dr. Paul Nelson 

 

In this thesis an incident prediction model is formulated and calibrated. The 

primary idea of the model developed is to correlate the expected number of crashes on 

any section of a freeway to a set of traffic stream characteristics, so that a reliable 

estimation of likelihood of crashes can be provided on a real-time basis. Traffic stream 

variables used as explanatory variables in this model are termed as “incident precursors”. 

The most promising incident precursors for the model formulation for this research were 

determined by reviewing past research. The statistical model employed is the categorical 

log-linear model with coefficient of speed variation and occupancy as the precursors. 

Peak-hour indicators and roadway-type indicators were additional categorical variables 

used in the model. The model was calibrated using historical loop detector data and 

crash reports, both of which were available from test beds in Austin, Texas. An 

examination of the calibrated model indicated that the model distinguished different 

levels of crash rate for different precursor values and hence could be a useful tool in 

estimating the likelihood of incidents for real-time freeway incident management 

systems.  



 iv

DEDICATION 

 
 

 

 

 

 

 

 

 

To My Parents:  

Smt Prema and Sri K Prabhu  



 v

ACKNOWLEDGMENTS 

I would like to thank my advisor and committee chair, Dr. Paul Nelson for his 

guidance in completing my thesis. I am highly indebted to him for his openness in 

discussing his thoughts on several topics in traffic and transportation, which has helped 

me learn and refine my scientific thought process to a great extent. I would like to 

specifically acknowledge him for inspiring and rekindling my interest in traffic flow 

theory and for guiding me to a wealth of knowledge. More so, he has personally touched 

and inspired me by his thoughtfulness and understanding towards his students and by his 

modesty. I consider it an honor to have been associated with him and having him as my 

mentor at Texas A&M.  

I would like to thank my committee members, Dr. Yunlong Zhang and Dr. 

Michael Sherman for reviewing my thesis and providing insightful comments, which 

helped me refine the clarity of my thesis. I would like to thank all my team members at 

TTI for their technical input and for critiquing my document. I would also like to thank 

all the faculty members in the Transportation Engineering division at Texas A&M 

University, specifically Dr. Mark Burris, for his help in academic related advising and 

the Civil Engineering faculty at the Regional Engineering College, Warangal for the help 

in building my technical expertise. 

I’m also grateful to Dr. Gordon Newell, Dr. Carlos Daganzo, Dr. Joseph 

Sussman, Dr. John R. Meyer and Dr. S. Raghavachari with whom I never personally 

interacted or had little interaction, but their books and writings I happened to read have 



 vi

deeply influenced my thoughts and views about traffic theory and several aspects in 

transportation engineering. 

As always, I remain truly indebted to my dear parents, my brother, Jayanth, my 

family and friends, specifically Ms. Amruthavani, for their love, support and 

encouragement in all phases of my life. 



 vii

TABLE OF CONTENTS 

 Page 

ABSTRACT ..................................................................................................................... iii 

DEDICATION ..................................................................................................................iv 

ACKNOWLEDGMENTS..................................................................................................v 

TABLE OF CONTENTS.................................................................................................vii 

LIST OF FIGURES...........................................................................................................ix 

LIST OF TABLES .............................................................................................................x 

1 INTRODUCTION......................................................................................................1 

1.1 Research Objective...........................................................................................1 
1.2 Background and Motivation.............................................................................2 
1.3 Scope of Research and Report Organization....................................................4 

2 LITERATURE REVIEW...........................................................................................7 

2.1 Freeway Management ......................................................................................7 
2.2 Incident Detection ..........................................................................................11 
2.3 Incident Prediction .........................................................................................16 

3 STUDY METHODOLOGY ....................................................................................21 

3.1 Precursor Selection.........................................................................................21 
3.2 Log-Linear Models.........................................................................................23 

3.2.1 Generalized Linear Models ................................................................23 
3.2.2 Log-Linear Models for Contingency Tables......................................25 
3.2.3 Goodness-of-Fit Tests ........................................................................26 

3.3 Incident Likelihood Model.............................................................................28 
3.4 Model Assumptions........................................................................................29 

4 DATA ANALYSIS AND REDUCTION ................................................................30 

4.1 Study Area and Data Description...................................................................30 
4.2 Data Reduction...............................................................................................33 

4.2.1 Precursor Calculation from the Data..................................................33 
4.2.2 Identification of Incidents ..................................................................35 
4.2.3 Determining the Boundary Values for Precursors .............................37



 viii

Page 
 

4.2.4 Determining Exposure .......................................................................38 

5 RESULTS AND DISCUSSIONS ............................................................................41 

5.1 Model Calibration Results..............................................................................41 
5.2 Discussion of Parameter Estimates ................................................................42 

5.2.1 Physical Interpretation of Estimated Parameters ...............................43 
5.2.2 Statistical Significance of Estimated Parameters...............................45 
5.2.3 Comparison of Results with Canadian Model ...................................47 

5.3 Alternate Reduced Category Model ...............................................................48 
5.3.1 Calibration for Reduced Model..........................................................48 
5.3.2 Discussion of Results for Reduced Model .........................................50 

5.4 Limitations .....................................................................................................52 

6 CONCLUSIONS......................................................................................................55 

6.1 Summary ........................................................................................................55 
6.2 Future Work ...................................................................................................58 

REFERENCES.................................................................................................................60 

VITA ................................................................................................................................64 

 

 



 ix

LIST OF FIGURES 

 
 Page 
 
FIGURE 2.1 Causes of Highway Congestion in United States (12)..................................9 

FIGURE 2.2 Incident Management Processes (13) .........................................................11 

FIGURE 4.1 Two Test Beds for Obtaining Data .............................................................31 

FIGURE 4.2 Speed Profile at Detector 6006822 (speed in MPH)...................................36 

FIGURE 4.3 Speed Profile at Detector 6005721 (speed in MPH)...................................37 

FIGURE 5.1 Residual Analysis for Full-Scale Model .....................................................51 

FIGURE 5.2 Residual Analysis for Reduced Model .......................................................52 

 



 x

LIST OF TABLES 

 
Page 

 
TABLE 3.1 Review of Precursors Used for Incident Prediction .....................................23 

TABLE 3.2 Two-way Contingency .................................................................................25 

TABLE 4.1 Boundary Values for the Precursors.............................................................38 

TABLE 4.2 Input Data for Model Calibration.................................................................40 

TABLE 5.1 Results of Parameter Estimation ..................................................................42 

TABLE 5.2 Boundary Values for 2-Level CVS ..............................................................49 

TABLE 5.3 Parameter Estimation for Reduced Model ...................................................49 

TABLE 5.4 Goodness of Fit ............................................................................................50 

 



 1

1 INTRODUCTION 

1.1 Research Objective 

 
The objective of this thesis was to develop and calibrate a categorical log-linear 

model to estimate the likelihood of incidents on a real-time scale for freeway sections in 

the State of Texas. The methodology used here closely followed that suggested by Lee et 

al. (1, 2). However the model was slightly modified, in terms of the number of 

categorical variables, and was calibrated with a dataset that was available for urban 

freeway traffic in the State of Texas. This work also derived its content in congruence 

with the requirements of a project at Texas Transportation Institute (TTI), where this 

model was intended to be used for the development of an Incident Detection and Short-

Term Congestion Prediction prototype for Texas Department of Transportation 

(TxDOT). 

This thesis also served the purpose of validating the possible use of the proposed 

methodology to integrate with the Freeway Management Systems in the United States. 

However in the scope of this work, the developed model has not been validated against 

any site data other than that used for calibration, due to the constraints in obtaining data 

and time constraints within the overall project framework. 

 
 
 
 
 
_______________ 
This thesis follows the style of Transportation Research Record. 



 2

1.2 Background and Motivation 

 
Accidents are a common scenario on freeways in the United States. There has 

been an increase in the number of highway related fatalities over the past 10 years, 

which is attributed to the increase in population (3). National statistics shows that there 

also has been a reduction in fatality rate per capita (3). But still a significant number of 

fatalities are observed, even after the conventional safety measures have been 

implemented. Increased use of freeways has not only made our freeways unsafe, but also 

contributes to the frequent congestion and hence increased delays, adding to the travel 

time. National Highway Safety Administration has ranked road accidents as the number 

one cause of death among several age groups (3). Studies on incident detection and 

development of highway safety models have been in vogue before the 1970’s (4); 

however, these techniques in philosophy focus on reducing the post crash effects, which 

can only marginally reduce deaths due to incidents on freeways, rather than on 

proactively reducing the crash rate. With the development of real-time and intelligent 

transportation systems, it has been the perspective of researchers and architects of 

transportation system to focus on crash avoidance, rather than on reducing consequences 

of crashes (5). It is hoped that such a transition would not only save many more lives on 

freeways, but also avoid frequent congestion due to incidents and hence add value to the 

overall economy of the country. 

Over the past decade fewer research attempts have been made in developing the 

ability to predict the likelihood of incidents for application in real-time Freeway 

Management Systems than that is required, to make any conclusive remarks on the 
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possibility of incident prediction. There have been some successful models correlating 

crash rate with certain precursors of traffic flow. One of the earliest among these, 

especially for a real-time application was reported by Oh et al. (6). In their study the 

probability of disrupted traffic is estimated parametrically using Bayesian methodology 

with longitudinal coefficient of variation of speed (CVS) as a precursor. In this context, 

a “precursor” is a traffic stream variable or some combination of the traffic stream 

variables, the values of which are expected to correlate with incidents. The result showed 

that the proposed model captures a significant number of accidents (6). Other successful 

and more elaborate studies reported with regard to real-time incident likelihood 

prediction were by Lee et al., (1, 2). These studies used a categorical model to relate 

crash rate with certain precursors, such as coefficient of variation of speed, occupancy, 

spatial difference in speed between adjacent detectors along a lane, and other factors 

such as peak hour factor and roadway geometric factor. Data from a Canadian 

Expressway with three lanes (and short sections of four lanes) in each direction over a 13 

month period were used.  

In contrast to the successful models that have been highlighted in the previous 

paragraph, there have been a few others that have shown less confidence in the 

possibility to predict likelihood of accidents for applicability in real-time systems. The 

most striking contrast can be seen in the study reported by Kockelman et al. (7). This 

study uses a set of conventional models (non categorical), such as Binomial and others, 

in attempt to relate potential crash precursors to likelihood of crashes. Speed variation, 

and average speed along the lane, as well as their section averages were considered as 
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the precursors for this study. Data from a freeway test bed in California has been used 

for this study. However the researchers in this study concluded that there is no evidence 

from their data that speed or speed variations correlated with crashes (7). A detailed note 

on these models is provided in the literature review of Section 2 below. 

It was observed that all models cited above were sensitive to the selected site 

conditions and quality of data.  Not only the quality of data obtained was of concern, but 

the different aggregation periods chosen for a specific study could also result in varied 

correlation between the precursors and the crash rate. This was a possible reason for the 

varied research results that have been reported in the past. In view of the sensitivity of 

these real-time incident likelihood models to the site, data quality and aggregation period, 

it was deemed essential to evaluate the incident likelihood models with specific site 

conditions to establish their general use on Texas freeways.  

 

1.3 Scope of Research and Report Organization 

 
In this research the potential capabilities of using a categorical modeling 

technique to estimate the crash rate on freeway sections are demonstrated. In the above 

mentioned context the effectiveness of selected incident precursors is also examined. 

The model was validated by examining the statistical significance of the parameters, the 

overall model fit and the physical interpretation of the parameters. However in this 

research the model is not validated with historical data or in real-time field conditions 
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due to lack of data for validation and time constraints. The report is organized in the 

following order.  

 In this introductory section the precise objective of the research work is specified. 

Also, here the general background to the current work and the motivation for taking 

up this research is provided.  

 The introductory section is followed by a literature review section, where a detailed 

state-of-the-art review on incident management is provided and the development of 

the transition from incident detection to incident prediction is traced. Here a fit for the 

current work in the overall practice of incident management is provided. 

 A study methodology section contains information on the framework for the 

developed model. In this section an explanation of the procedure undertaken for 

incident precursor selection is given. It also contains some background to log-linear 

models as a first step toward introducing the concepts and terminologies used in the 

model formulated in this research work. Finally in this section, details of the 

categorical model formulated for this research in correlating number of crashes to the 

selected precursors, including the assumptions underlying in the model formulation is 

provided. 

 A section on the data reduction procedures that were employed for model calibration 

is provided. This section starts with a brief introduction to the study site from which 

the required data were obtained. Also in this section, details of the data that was 

available for this study are described. Following this, the data processing that was 
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carried out on the raw data to obtain the required input for model calibration is 

elaborated.  

 A results and discussion section contains information on the calibration procedure 

and presents the model calibration results. A detailed discussion on the significance 

of the model parameters is provided, based on the calibration results and relating 

those results to the general observation of traffic flow characteristics. Finally, the 

limitations of this modeling approach are discussed. 

 This thesis concludes with a brief section related to conclusions. In this section a 

summary of the research problem, research process and research findings are 

provided. Also some pointers to future work as an extension to this thesis are listed. 
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2 LITERATURE REVIEW 

This section is a brief review of freeway management, from a broad perspective. 

The literature review presented here builds the motivation for research needs in 

developing efficient freeway management strategies. A top-down approach is adopted to 

provide a discussion on the general aspects of freeway management in Subsection 2.1; 

Subsection 2.2 more specifically treats the incident management process. In Subsection 

2.3, a review of incident detection algorithms is presented. Finally in Subsection 2.4, a 

detailed review on selected state-of-art models related to incident forecasting and 

prediction is presented. 

 

2.1 Freeway Management 

 
As civilization grows, there is always a growing need for transportation. Mobility 

of goods, safe and reliable passenger travel, accessibility and security are essential 

contributing factors for economic development of any society. The contribution of 

transportation systems to the societal development is as important in Texas and the 

United States as it is elsewhere. This is manifested by the vast surface transportation 

system, such as the interstate highway and freeway networks that have grown to now 

being approximately 55,000 centerline miles (8). Freeways are less than 2.4% of the 

total road network yet carry about 20% of the traffic throughout the United States (8). 
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By any measure the freeway network forms the backbone for the transportation needs in 

the United States. 

However with the increasing population and economic prosperity in the United 

States, there has also been an increasing demand in freeway usage over the years. It was 

reported that from 1980 to 1999 there was 76% increase in vehicle miles of travel, while 

during the same period the increase in highway miles constructed was 1.5% (8). Another 

report indicated that between years 1993 and 2000 there was an anticipated increase of 

50% in vehicular traffic (9). In the current day situation the traffic on most of the 

freeways has reached to its maximum capacity limits, specifically at peak hours. 

Because less can be done in expanding the freeway system, due to lack of space, the 

focus now has turned to effective management of the freeway system, for efficient 

operation in order to provide a better quality of travel and reliable travel time for road 

users. 

Ever increasing demand on US freeways has posed a real challenge in freeway 

management. Travel congestion studies conducted by the Texas Transportation Institute 

estimated that in the year 2000, 75 metropolitan areas experienced a travel delay of 3.6 

billion vehicle-hours, 5.7 billion gallons wastage in fuel and around $67.5 billion loss in 

productivity (10). In addition to the severe congestion and loss in productivity, the 

National Highway Traffic Safety Administration has reported that more than 42,000 

people died on highways and 3 million people are injured due to traffic related crashes in 

the year 2002 (11). The economic cost of these crashes is estimated to be more than 

$230 billion per year (9). 
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To combat congestion, many freeway management programs have been put in 

place. These management strategies can be broadly classified as 

 Travel demand management 

 Traffic responsive operations 

 Freeway incident management 

Figure 2.1 shows the contributing factors for freeway congestion (12). As can 

seen from Figure 2.1, incidents are the second major cause for highway congestion, and 

incidents are accountable for 25% of the time congestion is observed on highways. This 

emphasizes the important role of freeway incident management for reducing highway 

congestion by reducing highway crashes. 

 

 

FIGURE 2.1 Causes of Highway Congestion in United States (12) 
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Congestion due to incidents can be minimized by diverting traffic to reduce the 

propagation of shock waves, and by clearing the incident as quickly as possible. Such 

measures can avoid secondary crashes and also save human life. But the length of time 

required in reporting an incident and the resulting response time is high in manual 

surveillance and traditional police reporting. Such delayed responses may substantially 

compound the problem of congestion and lead to fatalities. As such, in recent years 

many major metropolitan cities throughout the country have been establishing efficient 

incident management programs to reduce congestion and manage freeway incidents (9). 

These incident management programs generally involve the following four stages of 

management (9): 

 Incident detection to reduce the time it takes to detect and verify incidents 

 Incident response to identify the nature of an incident and initiate appropriate 

response 

 Incident clearance to clear an incident quickly completely from the roadway 

 Traffic management and motorist information to minimize the traffic 

disruption on the highway 

 The complete process involved in incident management is shown in Figure 2.2. 

The primary purpose of efficient incident management program is to minimize the total 

incident duration.  
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FIGURE 2.2 Incident Management Processes (13) 
 
 

2.2 Incident Detection 

 
Incident detection is an important component of freeway incident management, 

and also a challenging task for efficient incident management. Many of the techniques 

used for incident detection can also be useful for incident prediction, which is the focus 

of this thesis. Hence a brief review of some incident detection techniques is presented 

here. Several researchers have developed incident detection algorithms to for efficient 

detection of incidents. Efficiency in detection is determined by factors such as 

percentage of time incident is detected, false alarm rate, and time to detect incidents. A 
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brief review of some incident detection algorithms is provided here. Incident detection 

algorithms described here are classified based on their underlying techniques as (14)  

 Statistics-based algorithms 

 Smoothing-based algorithms  

 Artificial-intelligence-based algorithms, and  

 Probe-based methods 

Statistical algorithms in principle determine the deviance of the observed traffic 

data from the predicted data using some standard statistical techniques. One of the 

earliest notable statistical methods was derived by Dudek et al. at Texas Transportation 

Institute in 1974 called the standard normal deviate algorithm (SND) (15). The SND 

algorithm is based on the principle that incidents trigger a sudden change in the traffic 

stream variables. The SND algorithm computes the number of deviations in the 1-minute 

occupancy from the detectors with the mean value of the 1-minute occupancy for 

historical data at that location. A threshold is defined in the SND for the allowable 

deviance. When the measured SND exceeds some critical value, algorithm indicates the 

presence of an incident. Two successive 1-minute intervals are used to make a 

consistency test. Other statistical incident detection algorithms are based on Bayesian 

techniques (16, 17). In Bayesian algorithm, frequency distributions for the upstream and 

downstream occupancies during incident and incident-free conditions are developed, and 

the likelihood of incidents is estimated by computing conditional probability using 

Bayesian techniques. Time-series algorithms are another statistical related technique 

where time-series models are employed to predict normal traffic conditions and detect 
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incidents when detector measurements deviate significantly from model outputs. The 

autoregressive integrated moving-average (ARIMA) model is one of the popular time 

series model. ARIMA model assumes that differences in a traffic variable measured in 

the current time slice (t) and the same traffic variable in the previous time slice (t-1) can 

be predicted by averaging the errors between the predicted and observed traffic variable 

from the past three time slices (18). These errors are expected to follow a normal pattern 

under incident-free conditions, and any deviation from the normal distribution of errors 

indicates a possible incident occurrence. 

Smoothing techniques in principle filter short-term noises or non-homogenous 

conditions from traffic data that cause false alarms, and allow traffic patterns to be more 

clearly visible in order to detect true incidents (19). Some of the smoothing/filtering 

algorithms employed are double exponential smoothing (DES) algorithm, low-pass filter 

(LPF) algorithms and the discrete wavelet transform and linear discriminant analysis 

(DWT-LDA) algorithm (14). The DES algorithm weights the preceding and present 

traffic stream variables obtained from the detector data for forecasting short-term traffic 

conditions that are expected to reflect actual traffic conditions. This algorithm is 

expressed as a double exponential smoothing function, with a constant, which weights 

all the observations over the time window considered for smoothing. Incidents are 

detected using a tracking signal, which is the algebraic sum of errors between the 

predicted and observed traffic variable over a 12 minute window. Under incident-free 

conditions, the tracking signal should dwell around zero since predicted and observed 

traffic conditions should be similar. LPF algorithms are also known as “Minnesota 
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algorithms” (14). This algorithm distinguishes noise as high frequency fluctuations in 

the data and the low frequency fluctuations that are typically characterized as incident 

conditions. Three types of smoothing techniques were used to distinguish incidents and 

recurring congestion to reduce false alarm rate (14). The DWT-LDA algorithm consists 

of two components and uses the techniques of signal processing. The DWT component 

is used to filter raw traffic data, and the random fluctuations of traffic are discarded. 

Then, the LDA component is used on the filtered traffic data for feature extraction to 

identify incidents. 

Many artificial intelligence techniques also have been applied in incident 

detection, including neural networks, fuzzy logic and their combinations. The commonly 

used neural network algorithms for incident detection include multi-layer fee-forward 

neural networks (MLF) and probabilistic neural networks (PNN) (14). Neural network 

algorithms require substantial training through trial-and-error to optimize weights in 

order to distinguish free flow and bottleneck traffic conditions. To improve incident 

detection efficiency, neural networks have been combined with other techniques such as 

wavelet transform (20) or probe vehicle data (21), to improve incident detection 

efficiency. As traffic data from loop detectors are usually not of good quality, fuzzy 

logic is a useful tool for applications involving imperfect data. In fuzzy logic a set of 

rules are determined to process imperfect data and determine thresholds. Decisions on 

incident and non-incident states can be determined with varying confidence levels.  

Fuzzy logic has also been combined with neural networks (22) to improve the 

performance of incident detection. Image processing techniques have been applied to 
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video images for automatic incident detection. The autoscope incident detection 

algorithm (AIDA) is one such notable algorithm using image processing techniques (23). 

Most of the above mentioned incident detection algorithms are based on loop-

detector data, and are prone to a high false-alarm rate. To overcome this probe-based 

incident detection systems have been tried. Probes, such as toll transponders and GPS 

receivers mounted on vehicles, are being tested, as they are increasingly available 

because of the popularity of electronic toll collection deployments throughout United 

Sates. Probes provide better information than loop detectors on traffic conditions, 

including travel times and other spatial traffic measures. TTI developed a probe-based 

incident detection system using cellular phone and automated vehicle identification 

(AVI) system installed on freeway facilities in Houston (24). Deviation in actual travel 

time from mean travel time between two destinations was used to identify traffic 

conditions. This is based on the premise that incidents cause travel time to increase 

significantly over the normal travel time under incident-free conditions at the same time 

of day and day of week. Several other probe-based systems have been tried, such as the 

E-ZPass electronic toll tags used in the TRANSMIT algorithm (25), vehicle-equipped 

radio transponders used in a algorithm developed by University of California at Berkeley 

(26), and GPS data in the ADVANCE algorithm (27). Details on the above mentioned 

algorithms and other probe based incident detection systems can be found on other 

references (14, 19). 
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2.3 Incident Prediction 

 
Most of the research related to freeway incident management in the past decade 

has focused on developing efficient incident detection algorithms. However, incident 

detection algorithms have had a setback from lack of confidence among freeway 

operators due to high false alarm rate. In addition to that, the focus in incident 

management has transitioned from reducing crash effects to crash avoidance, to make 

our highways safer (5). In this regard there has been some limited research effort to 

develop crash forecasting or prediction models. Some of the significant models are 

reviewed in this section. 

Before we review some models related to incident prediction, it is essential to 

distinguish two kinds of data aggregation that would be involved in most of these 

models. Data can be aggregated at the controller unit of the detector system, and this will 

be termed as “system aggregation”. Data is also commonly further aggregated for study 

purposes, which is termed in this report as “study aggregation”. A few of the models 

reviewed here have already been introduced to a brief extent in Section 1.2. Here a more 

detailed review of previously introduced models is presented, and a broader spectrum of 

incident prediction models is covered, as this topic is the central theme of this thesis. 

One of the notably early efforts regarding real-time incident prediction modeling was 

reported by Oh et al. (6). Their study estimates parametrically the probability of 

disrupted traffic using Bayesian methodology with coefficient of variation of speed 

(CVS) along the lane as a precursor. In this context, a “precursor” is a traffic stream 

variable or some combination of the traffic stream variables, which is expected to 
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precede incidents. The freeway section that was considered in (6) was a 4-lane 

directional freeway, where probe vehicles were used to record the incident cases. The 

incident data and the traffic stream data from double loop detectors were collected over a 

one month period, at morning and evening peak hours only. The detector data available 

for the study were 10-second system-aggregated data in every 5-minute period, and 

averaged across the lanes. The result shows that the proposed model captures significant 

number of accidents (6). Other successful and more elaborate studies reported with 

regard to real-time incident likelihood prediction were by Lee et al. (1, 2). These studies 

use a categorical model to relate crash rate with certain precursors, such as coefficient of 

variation of speed over the study aggregation time, density, spatial difference in speed 

between adjacent detectors along a lane, and other factors such as peak hour factor and 

roadway geometric factor. An earlier study by Lee et al. (1) also used coefficient of 

variation in speed across the lanes, but was later dropped as it was found to be 

insignificant. Data from a Canadian Expressway with three lanes (and short sections of 

four lanes) in each direction over a 13 month period were used. Data were obtained 

using double-loop detectors along the section in intervals of 20 seconds; study-

aggregation used were 5 minutes (1), 8 minutes, 3 minutes, and 2 minutes (2). In 

calculating the precursors, the traffic stream data were averaged across all the lanes to 

obtain the station average. In this model different possible categorical values were 

defined, and boundary values for each of these categories were found from the detector 

data. The model parameters were then estimated. The best-fit model was chosen by 

comparing the model goodness of fit parameters such as likelihood ratio and p-value.  
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Another technique that has been used by at least a couple of researchers for real-

time incident prediction is the spatio-temporal analysis preceding crashes (28, 29). Pande 

et al. (28) have used Log CVS, average values of speed, occupancy and volume, 

standard deviation of speed, volume and occupancy as precursors, with a study 

aggregation of 5 minutes. Efforts were made to individually correlate each of these 

putative precursors to crash risk. The crash risk was here represented as hazard ratio, 

defined as the resultant change in the log odds for observing a crash by changing the 

precursor by one unit. The hazard contour is then plotted to obtain spatio-temporal 

patterns from which high crash risk situations are identified in real-time. The results of 

the study have shown that Log CVS, and standard deviation of volume and average 

occupancy are significantly correlated to crash occurrence (28). Ishak et al., (29) 

attempted to use second-order statistical measures derived from spatio-temporal speed 

contour maps to investigate the characteristics of pre-incident, post-incident and non-

incident conditions. The second order statistical measures are Angular Second 

Momentum (measure of smoothness), Contrast (measure of local variance), Inverse 

Difference Moment and Entropy (measure of uncertainty) (29). The data used for the 

study came from loop detectors, with a system-aggregation period of 30 seconds; a 5-

minute interval was used as the study-aggregation period. These data were collected for 

10 minutes prior to crashes in pre-incident analysis, 10 minutes after the crashes for 

post-incident analysis. The results for this model failed to establish confidence in 

predicting incidents, as the spatio-temporal patterns were not consistently discernable 

between pre-incident, post-incident and non-incident cases (29). 
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Traffic volume has been a widely used variable in crash models related to safety 

research. Though most of models using AADT (average annual daily traffic) are 

conventionally developed for intersection or road segment safety improvement studies, a 

few models that use shorter time frame of volume counts, such as hourly volume, are 

reviewed here for possible use in real-time crash prediction. Persaud et al. (30) have 

developed two models, regression and Bayesian models using both macroscopic (AADT) 

and microscopic volume (hourly volume) variables. The models have been applied to 

different roads such as collector roads and expressways, and crashes have been 

distinguished as severe and non-severe. Validation results for the microscopic model, 

which is of some interest for real-time application, show promise, with the regression 

model being close to reality than Bayesian model (30). Another successful model has 

been demonstrated by Cedar et al. (31), using hourly flow. Hourly flow could be a useful 

precursor, if prediction is required over larger prediction time window. 

The most striking contrast to some of the successful models described above can 

be seen in the study reported by Kockelman et al. (7). This study uses a set of 

conventional models (non categorical), such as Binomial and others, to relate potential 

crash precursors to likelihood of crashes. The precursor used in this approach is 

coefficient of speed variation. Data from a freeway test bed in California have been used 

for this study. Traffic stream data other than speed were obtained over 30-second 

system-aggregation intervals. Since the data were obtained with single-loop detectors, 

the speed component for obtaining coefficient of speed variation has been derived using 

standard methods with 150 sec study-aggregation (7). However the conclusion of this 
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study says that “...there is no evidence in or across these crash data sets and observations 

of their corresponding series of 30-second traffic conditions that speeds or their variation 

trigger crashes” (7). 

This review of literature has traced the trends in freeway and incident 

management systems. It has shown the importance of incident prediction capabilities in 

managing freeway congestion and reducing fatalities on highways. This review gives the 

state-of-art in real-time crash prediction models, with specifics of some critical 

components of such models. It also gives a sense of current research needs for 

developing efficient crash prediction capabilities.  
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3 STUDY METHODOLOGY 

In this thesis an attempt has been made to develop an incident prediction model 

using the historical traffic and incident data that were obtained from two freeway test 

beds in Austin, Texas. In this approach a categorical log-linear model was formulated 

and was calibrated to be able to estimate incident likelihood. A detailed account of the 

methodology involved in developing the model is presented in this section. In 

Subsection 3.1 details of the literature survey that was carried out to select incident 

precursors to be included in the model is given. A brief introduction to the concepts 

underlying log-linear models is given in Subsection 3.2. This section also serves the 

purpose of establishing terminology and notation that will be used in discussing incident 

prediction models. Following this, a description of the model formulated for this 

research is provided in Subsection 3.3. Finally model assumptions are discussed in 

Subsection 3.4. 

 

3.1 Precursor Selection  

 
A detailed survey of literature on previous studies on incident detection and 

forecasting was conducted to identify possible incident precursors in correlating traffic 

stream variables with incident occurrence. While reviewing several traffic flow variables 

(and their combinations) as a potential precursors for accident prediction, every study in 

this process was reviewed for the extent of predictability, and was accordingly classified 
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as positive (‘+’) if results showed satisfactory correlation between incident precursors 

and occurrence of incidents, negative (‘-’) if no correlation was found and zero (‘0’) for 

indeterminate cases. It was observed that there was a greater amount of confidence 

among researchers with coefficient of speed variation along a lane as a precursor than 

any other precursor. Table 3.1 gives the summary of the review that was conducted. The 

most common precursors seen in incident-prediction models were speed variation, 

occupancy, volume and hourly flow (1, 2, 6, 7, 30, 31). Among these, volume and hourly 

flow have been traditional factors in incident correlation for long-term safety studies. 

Hourly flow is measured as the number of vehicles per hour at a section on a roadways 

and volume is the average annual daily traffic. These factors are less suitable for real-

time incident prediction, as they are based on measurement over longer intervals. They 

become insensitive in prediction on a real-time scale. It can be seen from the table that 

speed variation is a widely used precursor and has shown promising correlations in many 

cases in the past. Density (or occupancy) has also been used as precursor, and has shown 

good correlations in incident predictions, when used along with coefficient of speed 

variation. For these reasons, coefficient of speed variation along the lanes (CVS) and 

occupancy have been chosen as the potential precursors along with other factors such as 

roadway type and time of the day for this study.  (Occupancy was preferred to density, 

because the former is directly available from our selected dataset.). It should be noted 

that in some studies time of day indicator and roadway-type could be referred to as 

precursor. However in this they are referred to as indicators, though they are treated 

similar to the precursors such as CVS and Occ in the model. 
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TABLE 3.1 Review of Precursors Used for Incident Prediction 

Precursors 

Number of 
studies 
reviewed 

Positive 
Results 

Negative 
Results 

Neutral/Weak 
Results 

Speed Variation along the lane 8 6 2 - 
Speed Variation across the 
lane 1 - - 1 
Occupancy or Density 2 2 - - 
Volume 2 2 - - 
Hourly Flow 2 2 - - 
Headway 1 1 - - 

 

3.2 Log-Linear Models 

 
Log-linear models are a class of Generalized Linear Models. These models are 

used for Poisson distributed data, and describe the association and interaction patterns 

between a set of variables (32). In this section some details are provided regarding log-

linear models to establish the terminology that will be used further in describing the 

incident prediction model developed in this thesis. Much of the discussion in this section 

is adapted from Agresti (32) 

 

3.2.1 Generalized Linear Models 
 

A generalized linear model is usually described using three components, a 

random component, a systematic component and a function. (32) 

The random component of a generalized linear model consists of the response 

variable and information on the distribution of the response variable. The response 
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variable could have any kind of distribution depending on the application. If the 

response variable is a non-negative number, a Poisson distribution might be appropriate 

for the random component. It is a common practice to use a Poisson distribution for 

modeling vehicle crash counts. 

The systematic component of a generalized linear model is denoted by a set of 

explanatory variables. A linear combination of the explanatory variables leads to a linear 

model, or a second order combination of variables leads to a canonical model. 

The final component of a generalized linear model is the function that relates the 

random component to the systematic component. This component is also referred to as a 

link, as it links the expected value of the response variable (mean of the probability 

distribution of the response variable) to the explanatory predictor variables. The link 

function can take any form; the simplest link is the one which relates the explanatory 

variables to the mean of the response variable as given in the Equation 3.1. 

 1 1 2 2... i iC X X Xμ β β β= + + +          (3.1) 

Where: 

X’s : Explanatory variables 

β's : Coefficients for the explanatory variables 

C : Constant 

μ : Mean response variable 

The link used in Equation 3.1 is called as an identity link. Similarly a log-link is defined 

when the response variable is taken as log (µ), where µ is the mean of a response 
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distribution, and µ is a positive number. Therefore a log-linear model in general is 

represented as given in Equation 3.2 

1 1 2 2log( ) ... i iC X X Xμ β β β= + + +           (3.2) 

 

3.2.2 Log-Linear Models for Contingency Tables 
 

The most common use of log-linear models is in the modeling of cell counts in a 

contingency table. The fundamentals of log-linear model can be easily understood using 

two-way contingency tables. A contingency table of two categorical variables, each 

having two categories, is shown in Table 3.2. In the table, πi+ and π+j are the conditional 

probabilities of the respective row (i) and column (j). 

 
TABLE 3.2 Two-way Contingency 

X  

 1 2  

1     πi+
Y 

2      
  π+j   

 
 

If the two variables X and Y are statistically independent then the joint 

probability πij for the cells in the Table 3.2 is 

 ij i jπ π π+ += ∗             (3.3) 

So if ”n” is the total sample size, then the expected cell frequency is obtained as 
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ij ij i jn nμ π π π+ += ∗ = ∗ ∗                            (3.4) 

Taking logs on both sides of Equation 3.4 yields 

( ) ( )log( )ij x i y jCμ λ λ= + +            (3.5) 

This is called an independence log-linear model. In the Equation 3.5, λX is the effect 

parameter for the variable X and λY is the effect parameter for variable Y. As an 

alternative to the independence model, log-linear models can also contain interaction 

parameters. The interaction parameter gives the combined effect of the variables used. 

When all possible combinations of the interaction parameters are used, the model is 

termed as a “saturated log-linear model”. For a two-way contingency table the saturated 

model is given by 

( ) ( ) ( )log( )ij x i y j xy kCμ λ λ λ= + + +          (3.6) 

These concepts can be extended to three-way, four-way or higher-order 

contingency tables. As the order of the contingency table increases, the model becomes 

more complex due to the possibilities of multiple combinations of interaction parameters. 

 

3.2.3 Goodness-of-Fit Tests 
 

The statistical models estimated are assessed for significance of the estimated 

model parameters and for the overall fit of the model. The significance of the model 

parameters are assessed by indicators “Z” or “sig.”. Z is defined as the ratio of the 

estimate to the standard error for the estimate. For a large sample, Maximum Likelihood 

estimate, Z is assumed to follow a standard normal distribution. Hence for any given 
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confidence level, if the absolute value of Z calculated is greater than critical Z value 

form standard normal table, for the chosen confidence level then the estimated parameter 

is considered to be significant. For a 95% confidence level, critical value of Z is 1.96. 

“Sig.”, also referred as p-value should be greater than 0.05 at 95% confidence level for 

estimated parameter to be significant.  

Two commonly used overall goodness-of-fit tests for log-linear models are the 

likelihood ratio and the Pearson statistics. The goodness of fit tests assesses the model by 

comparing the cell fitted values to the observed counts. These test statistics are useful in 

comparing best fit models for the given data. Usually the model that has lowest value for 

the test statistics is considered to be best fit model. The test statistics for the likelihood 

ratio (G2) and Pearson (Χ2) are given as (32) 

2 2 log ij
ij

ij

nG n
μ

⎛
= ⎜

⎝ ⎠
∑ ⎞

⎟             (3.7) 

and 

2
2 ( ij ij

ij

n μχ
μ
−

=∑ ) .            (3.8) 

Where: 

nij : Observed cell count 

µij : Expected value for cell count 
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3.3 Incident Likelihood Model 

 
A categorical log-linear model was chosen to predict the likelihood of crash rate 

using the precursors selected from the previous task. As indicated in the beginning of 

this thesis, the model very closely follows the categorical model that was suggested by 

Lee et al. (2); however, one of the additional precursors used by Lee et al. (2), the speed 

difference between the two adjacent detectors along a lane at a given point in time, was 

not considered in this study due to the difficulty in the computation of this precursor 

from the data that was available for calibration. The functional form of the model 

considered for this study is. 

( ) ( ) ( ) ( )( )CVS i Occ j R k P l
N f C

EXPβ λ λ λ λ= ∗ ∗ ∗ ∗            (3.9) 

Here: 

N  : Expected number of crashes over the two year analysis time frame; 

EXP  : Exposure in vehicle-miles of travel over two year time period; 

C  : Constant, which in this model represents the highest possible crash rate; 

λCVS(i) : Effect of the crash precursor variable CVS having i levels; 

λOcc(j)  : Effect of the crash precursor variable Occ having j levels; 

λR(k)   : Effect of road geometry (control factor) having k levels; 

λP(l)  : Effect of time of day (control factor) having l levels; 

β  : Coefficient for exposure 

f : Mathematical function  
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Using a logarithmic function, Equation 3.7 can be expressed statistically as 

( ) ( ) ( ) ( )exp( ln( ))CVS i Occ j R k P l ijklN C EXPλ λ λ λ β= + + + + + ∗ + ε (3.10)  

Here: 

εijkl : Random error term 

In the above model, λCVS(i), λOcc(j), λR(k), λP(l), β are the parameters to be fitted using the 

data. N and EXP are inputs to the model estimation process. 

 

3.4 Model Assumptions 

 
Some assumptions made in the model described in the previous section are listed 

here. Firstly it was assumed that N, number of accidents in each category follows a 

Poisson distribution. This is a reasonable assumption, knowing that number of accidents 

is a non-negative count. Also crashes in roadway safety are typically modeled using 

Poisson distribution. A second assumption that is made in the model is independence. 

That is, none of the interaction parameters are considered in the model. Two reasons for 

the use of independence model assumption were to follow closely the model form 

suggested by Lee et al., and more importantly inclusion of interaction parameters makes 

it difficult to interpret the model in terms of observable traffic behavior. It was deemed 

important to develop a model that can be simple to interpret in-terms of practical 

observation, as can be seen from the interpretation given for the developed model in 

Subsection 5.2. 



 30

4 DATA ANALYSIS AND REDUCTION 

In the previous section the parameters were identified and model parameters 

were defined with their categories. In this section, description of the study site 

characteristics and related data are given. The data that were available from the study 

site are described in Subsection 4.1. In Subsection 4.2 detailed process for the data 

reduction that was carried out in this study is explained. This explanation details the 

process that was adopted in reducing the raw detector data and the incident log data to 

obtain the input data that were used for the model calibration. 

 

4.1 Study Area and Data Description 

 
Data for the model development were obtained from two selected study sites in 

Austin, Texas. The two study sites were the freeway sections of US 183 and Loop 1, 

which connects US 183 to US 290. The map of the two freeway sections that were 

selected as study sites for this work is shown in Figure 4.1. The alignment indicated as a 

dotted line in the figure is Loop 1 and the alignment indicated as dashed line is the 

section of US 183 under study. The entire length of Loop 1 was considered as a study 

section, traversing a length of 9.7 miles, with 40 detector stations and overall 149 

freeway detectors. The section of US 183 spanned 9.2 miles, starting from the junction 

of IH 35. This section contained 54 detector stations, with overall 174 detectors along 
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the freeway, and stations spaced approximately 0.35 – 0.5 miles. In both of the sections, 

detectors on the on-ramps, off-ramps and frontage road were not considered in the study. 

 

Loop - 1 

US 183 

 FIGURE 4.1 Two Test Beds for Obtaining Data 
 

 

Detector data from the two study sites, the section of US 183 and Loop 1, were 

obtained from TxDOT. The traffic flow data available from the detectors were volume 

(in vehicles per minute), occupancy (in percent of time), speed (in miles per hour) and 

percentage of trucks. Although controllers use an aggregation period of 20 seconds, the 

historical data were aggregated (system-aggregated) over a period of one minute.  These 



 32

system-aggregated data were rounded off to the nearest integer value and presented 

against a time stamp for every one minute interval. The one-minute system-aggregated 

data are archived by TxDOT before being fed to the ATMS system. In this study one 

minute system-aggregated data on all the detectors along the section of US 183 and 

Loop 1 over a two-year period were considered, specifically for the years 2003 and 2004, 

from January through December for both years. The detector data were available in 

comma separated text files (CSV) format. 

Apart from the detector data, incident log data for the two study sites during the 

year 2003 and 2004 were obtained. This incident log primarily consisted of the 

following information: 

• Approximate location of the incident 

• Date incident occurred 

• Time of incident 

• Time incident was cleared 

• Lanes affected 

• Direction affected 

• Type of incident (collision or stalled or congestion) 

The location of the incident in the log was indicated by the nearest cross road to 

the incident spot. The log also indicated if the incident was upstream or downstream of 

the cross road or exactly at the cross road (“Cross roads” are the arterial roads 

perpendicular to the freeway, but essentially outside the freeway system. Normally these 

cross roads are taken as a reference point when logging freeway incident location in 
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incident reports.). However there was no information available as to how far upstream or 

downstream of the cross road was the exact incident location along the freeway section. 

The reasons for the incident were mainly classified as “collision” or “congestion” or 

“stalled vehicles”. The “lanes affected” column in the incident log contains indications if 

the affected lanes were freeway or cross street or ramps or frontage roads. The affected 

direction gave information as to whether the incident had occurred on the southbound 

lanes or the northbound lanes. The incident log was available as an Excel spread sheet. 

 

4.2 Data Reduction  

 
This section contains a description of the process that was involved in reducing 

the base data that was obtained from TxDOT system to a form that can be used as an 

input for the calibration of the model. Some of the process involved semi-automation, 

but a few processes had to be manually carried out. The Statistical Analysis Software 

package (SAS, 34) and Excel macro were used for most of the automated processes.  

 

4.2.1 Precursor Calculation from the Data 
 

The raw data from the detectors were sorted based on the detector number and 

time stamp. The 24-hour data for each detector were stored as a single file, in Excel data 

sheet (.xls) format. Therefore each file had information on a particular detector for a 

particular day. In each of these files for every minute, a moving average coefficient of 

variation of speed and average occupancy was calculated and stored in different columns. 



 34

The moving average was calculated over a 5-minute period window, starting from the 

time interval against which the precursors were reported and the preceding four intervals. 

Coefficient of variation of speed (CVS) was calculated as 

2
2
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         (4.1)  

Here 

S  : Mean speed, 

S.D : Represent standard deviation, 

Si : Speed in MPH at time i, and 

n : Number of time intervals 

CVS defined as in Equation 4.1 gives the fluctuation of speed over 5 minutes with 

respect to the mean speed at a given location for that time period. Speed fluctuation 

could occur due to acceleration or deceleration of vehicles. Deceleration can be expected 

at stations with increasing occupancy, for example at a shock wave. Hence situations of 

high speed fluctuations with high occupancy could possibly indicate a situation highly 

prone to crashes. 

The precursors obtained were tagged with either “peak” or “non-peak” for time-

of-day consideration. Precursors occurring anytime between 6:30 AM to 9:30 AM and 

4:00 PM to 7:00 PM were considered as peak, and precursors obtained at other times 

were considered as non-peak. The roadway-type indicator does not vary with each and 
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every recording of data, but is fixed for every detector location. The roadway type was 

classified as either “straight” or “other” against each detector considered for this study. 

This classification was based on the horizontal alignment of the roadway section and the 

presence of ramps nearby to the detector station. A detector station on a straight 

alignment and far from the influence area of the ramps was tagged as “straight”, and 

otherwise was tagged as “other”.  

 

4.2.2 Identification of Incidents 
 

From the information obtained through the incident log files, it was necessary to 

verify two aspects of the logged incidents, to the best attainable accuracy. The two 

important aspects were firstly the exact location of the incident in terms of the detectors 

that could have first identified the incident and secondly the exact time of incident. It 

was necessary to verify the manually recorded incident logs for location and time, as the 

location description provided in the incident log was not accurate enough to pin-point 

the exact location (in terms of the detector). In order to exactly locate the incidents from 

the rough identification obtained from the logs, all detector stations near to the location 

of the reported incident were noted. For these possibly affected detectors, speed profiles 

were generated from the detector data for the incident day. The speed profiles were then 

examined for any drop in speed during the time around the logged incident time. The 

detector station where speed drop was observed approximately near to the incident log 

time was identified as the affected detector station. From the speed profiles, not only the 

incident location were identified, but also the time of incident were verified in few cases 
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by looking at the time when the speed drop occurred on a particular affected detector 

station. Figure 4.2 shows a typical speed profile for incident conditions, where incident 

details are easily verifiable.  In a few other cases, details of the incident were difficult to 

identify or distinguish from congestion. A typical speed profile where distinguishing 

incident from congestion is difficult is shown in Figure 4.3. In a strict sense, the time it 

takes for speed drop to propagate to the nearest upstream detector from the incident 

location should be deducted from the time the speed drop was noticed in the speed 

profile plot. 
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FIGURE 4.2 Speed Profile at Detector 6006822 (speed in MPH) 
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FIGURE 4.3 Speed Profile at Detector 6005721 (speed in MPH) 

 
 
 

However this procedure of deducting the time taken by the shock wave to reach nearest 

upstream detector from the incident log time was not carried out, due to the uncertainty 

in determining that time period. 

 

4.2.3 Determining the Boundary Values for Precursors 
 

Lee et al. (2) found that a proportion of 50:30:20, low, medium and high values of 

precursors respectively, gave the best fit for the categorical model that was developed in 

their study. Carrying forward with this suggestion, for each of the precursors, coefficient 

of variation of speed and occupancy, the boundary values for the lowest 50% of the 

precursor values and next 30% of the precursor values were determined from the 
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processed detector data. In order to minimize the computation time in determining the 

boundary values using a very large dataset, 24-hour data on a random sample of 10 

detectors were taken. Using this sample, representative boundary values were obtained 

for both of the precursors CVS and Occ, as shown in Table 4.1. 

 

TABLE 4.1 Boundary values for the Precursors 
Category CVS Occ (%) 

 
L (50) or 1 <= 0.043 <= 3.6 
M (30) or 2 > 0.043 & <= 0.227 > 3.6 & <= 5.8 
H (20) or 3 > 0.227 > 5.8 

Note: Proportion of 50:30:20 (L:M:H) was recommended as the best fit (Chris Lee et al., (2)) 

 

4.2.4 Determining Exposure 
 

As described in the earlier sections, the suggested categorical model has a 

dependent variable crash rate, which is defined as the number of crashes over a certain 

exposure. Exposure is defined for a category ‘i’ as the product of the proportion of time 

the category existed during the total time of study, the number of vehicles recorded 

during that proportion of time and the aggregate distance traveled by the vehicles in that 

category. Boundary values for the precursors, CVS and occupancy were determined as 

explained in the previous section, each of these having three categories (Low, Medium 

and High). Apart from that two indicators, to incorporate the effect of roadway geometry 

and peak traffic conditions as defined earlier, each have two categories. In all any instant 

of the exposure could lie in one of the 36 possible categories. 
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In this manner, exposure for each of the 36 possible categorical values was 

determined using the processed detector data. To determine the roadway geometry factor, 

all the detectors were classified either as a straight or other section by identifying the 

location of the station from the detector map. A detector station was labeled as straight if 

it existed on a straight section of the road and not influenced by the on-ramps or off-

ramps. Otherwise that station detectors were labeled as “other”. For the precursor to 

incorporate the effect of peak hour on incident, all the data collected between 6:30am to 

9:30am and 4:00pm to 7:00pm will be classified as peak time data, while data that were 

collected other than these periods was classified as “non-peak”. With this it was possible 

to count the proportion of time and the number of vehicles in each of these 36 possible 

categories. The distance traversed was taken as the average length between the two 

detector stations. In order to reduce the computation time in calculating the exposure for 

two years period, exposure was determined over three months period and averaged by 

the number of days. The daily average was extrapolated for 2 year period for use in the 

model. 

The final data after all the necessary reduction that was used for the model 

calibration are shown in Table 4.2.  
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TABLE 4.2 Input Data for Model Calibration 
N CVS Occ R P ln(EXP) in VMT 
5 3 3 0 0 10.089 
12 3 3 0 1 8.274 
14 3 3 1 0 10.171 
27 3 3 1 1 8.605 
0 1 1 0 0 14.797 
0 1 1 0 1 10.145 
1 1 1 1 0 15.623 
0 1 1 1 1 11.343 
4 2 2 0 0 11.664 
3 2 2 0 1 8.436 
0 2 2 1 0 12.363 
0 2 2 1 1 9.270 
1 3 1 0 0 12.708 
0 3 1 0 1 4.280 
1 3 1 1 0 13.560 
1 3 1 1 1 6.359 
0 3 2 0 0 7.741 
0 3 2 0 1 3.187 
3 3 2 1 0 7.939 
7 3 2 1 1 4.505 
9 2 3 0 0 13.204 
11 2 3 0 1 11.282 
8 2 3 1 0 13.303 
11 2 3 1 1 11.505 
2 2 1 0 0 13.441 
4 2 1 0 1 7.388 
3 2 1 1 0 14.169 
1 2 1 1 1 8.975 
0 1 3 0 0 15.509 
5 1 3 0 1 13.092 
4 1 3 1 0 15.691 
9 1 3 1 1 13.278 
0 1 2 0 0 14.169 
1 1 2 0 1 10.779 
1 1 2 1 0 14.530 
1 1 2 1 1 11.472 



 41

5  RESULTS AND DISCUSSIONS 

This section contains the results of the calibration for the parameters used in the 

incident prediction model. It also briefly details the software environment used for 

calibration of the model. A detailed discussion is provided in Subsection 5.2 on the 

significance of the parameters used in the model as interpreted from the calibration 

results. The significance is discussed from a physical standpoint, where the parameters 

are examined to see how well the model can explain the effects of the parameters in 

terms of what occurs in traffic stream. Also a statistical discussion of the model 

parameters is made based on the ‘Z’ values and “P-value” obtained from the model 

calibration results. The model calibration result from this research is compared with the 

results of model calibration obtained by Lee et al. (2). The result of an alternative 

reduced category model is presented in Subsection 5.3. The final Subsection 5.4 

highlights some of the limitations in the modeling approach undertaken in this research 

work. 

 

5.1 Model Calibration Results 

 

The input data shown in Table 4.2 were used to calibrate the model parameters. 

The parameters for all the precursors and the β for exposure given in Equation 2 were 

determined using the Statistical Package for Social Sciences (SPSS) (34). SPSS package 

is a menu driven software application with several tools for statistical analysis of data.  
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SPSS also has an analysis tool specifically for general log-linear models, which was 

used in this research for parameter calibration. In this software, the estimates for the 

parameters are determined by Maximum Likelihood methodology. The estimated 

parameters for the proposed model, and the significance of these parameters i.e. values, 

are presented in the Table 5.1 

 

TABLE 5.1 Results of Parameter Estimation 
95% Confidence 

Interval 
Parameter 
  

Estimate 
  

Std. 
Error 
  

Z 
  

Sig. 
  

Lower 
Bound 

Upper 
Bound 

C 2.693 .832 3.237 .001 1.062 4.324
λCVS = 1 -1.395 .566 -2.466 .014 -2.504 -.286
λCVS = 2 -.373 .357 -1.045 .296 -1.071 .326
λCVS = 3 0(a) . . . . .
λOcc = 1 -2.059 .299 -6.884 .000 -2.646 -1.473
λOcc = 2 -1.632 .361 -4.522 .000 -2.339 -.924
λOcc = 3 0(a) . . . . .
λP = 0 -.615 .301 -2.047 .041 -1.205 -.026
λP = 1 0(a) . . . . .
λR = 0 -.462 .173 -2.670 .008 -.801 -.123
λR = 1 0(a) . . . . .
β .043 .099 .437 .662 -.151 .237

  Note: Estimates marked ‘a’ are aliased cells 
 

5.2 Discussion of Parameter Estimates 
 

The estimated parameters (λ’s) for the model are shown in Table 5.1. CVS and 

Occ parameters with subscript 1 indicate the lowest level of that precursor, 2 indicates 

medium level, and 3 indicate highest or most severe level. While subscript ‘0’ for peak-

time factor (λP) indicates a non peak hour and ‘1’ indicates peak hour. Similarly 
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subscript ‘0’ for roadway type (λR) indicates straight section of road without any on-

ramps or off-ramps. β is the exponential parameter for exposure, which would have a 

value zero if the categorical variable selected were perfectly explanatory. C is a constant, 

which in the present model setup can be interpreted as the maximum crash rate at which 

incidents are predicted to occur. The information contained in Table 5.1 is useful in 

analyzing two different aspects of the model parameter estimates. Firstly the effect of 

different categorical values in a given precursor can be analyzed, and as well the effect 

of different categorical variables to the extent they influence incident prediction can be 

analyzed. Secondly the statistical significance of each of the parameters can be assessed. 

Both of these types of analyses are presented in the following paragraphs of this section. 

 

5.2.1 Physical Interpretation of Estimated Parameters  
 

Any traffic model can be valid, which is to say it can reflect what can be 

observed in real-time, or which can explain some observed phenomenon. This kind of 

verification, we term here as physical interpretation of the model. It can be observed in 

the estimated parameters that one category in each precursor is set to zero value. This 

category is referred to as aliased cell, and all other estimates will be with reference to the 

respective precursor’s aliased cell. Each precursor is examined here for understanding its 

physical significance. Parameters for CVS shows that medium and low category have 

negative sign with decreasing value (real scale) as we move from high to low category. 

This means that when the traffic state transitions from high category of CVS to medium 
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category, the rate of incident occurrence decreases by an amount. A further transition 

from medium state to low CVS results in further decrease in the possible rate of incident 

occurrence. The results very much agree with the general observation one can make out 

on a highway. Many other studies too have shown results that as CVS increases there is 

a higher probability of incidents than under lower CVS (2). A quantitative measure for 

the decrease in the crash rate is indicated by the numerical values of the estimated 

parameters. The model also indicates that the reduction in crash rate is less from high to 

medium CVS when compared to the reduction in crash rate from medium to low CVS 

category. 

Occupancy also shows a similar trend to CVS. As we move from higher to lower 

occupancy the rate of crash occurrence decreases. However the calibrated model shows 

that reduction in probability of crash occurrence is more significant as we move from 

higher occupancy state to a medium occupancy state than CVS. And the same is true 

when there is a transition from medium occupancy state to low occupancy state. The 

results are aligned with expectations. It is more likely we encounter accidents on 

highways during high occupancy level than during low occupancy, as high occupancy 

requires high attention from the drivers so as to not involve in accidents. Our model very 

much reflects this obvious observation. But comparing the values of CVS categories 

with occupancy categories, it could be noted that occupancy has higher range between 

maximum and minimum estimates and hence is a stronger precursor to predict incidents 

than CVS. The range of the estimated λ values between high and low levels is much 

larger for occupancy than CVS. On the contrast by reducing the occupancy on a section 
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there is a high likelihood that probability in number of crashes can be considerably 

reduced, more than what we could achieve by controlling speed variation. 

From the results we could see that peak-hour indicator and roadway-type 

indicator have a negative value for the estimated parameters with subscript ‘0’. This 

means that non-peak hours have less chance of incidents to occur than during peak hours. 

Also we can state from the results that straight sections of roadway, without on-ramps 

and off-ramps have lesser likelihood of incident occurrence than curved sections or 

sections near to ramps. The overall results shows that roadway-type indicator and peak-

hour indicator are less sensitive when compared to crash precursors, such as CVS and 

occupancy. However peak-hour factor and roadway-type are still significant precursors 

in forecasting incidents, for the developed model. 

 

5.2.2 Statistical Significance of Estimated Parameters 
 

Another useful view of the model results comes from the statistical significance 

of the parameter estimates. The columns ‘Z’ and ‘Sig.’ in Table 5.1 are the primary 

indicators to measure the significance of the estimated parameters as was explained in 

Section 3.2. Looking at the ‘Z’ values every parameter except λCVS = 2 and β are 

statistically significant with ‘Z’ values having magnitude greater than 1.96 at 95% 

confidence level. Correspondingly the significance (Sig.) also indicates about the same 

about parameter significance as was seen with the ‘Z’ values. This is based on the 

criterion that significance value of less than 0.05 declares any parameter used in the 

model as statistically significant.  
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In the above context λCVS = 2 and β are statistically less significant. However λCVS 

= 2   is still included in the model, for two reasons. Firstly, reduction in the number of 

CVS categories would mean lesser number of states to represent traffic flow, and 

removal of λCVS = 2 would reduce the total possible states to two-third’s of the current 

possible states. This means that overall model is less sensitive to the change in traffic 

state to predict the likelihood of accidents, which is not desirable. Secondly, to be 

consistent with the source model upon which the present model is based. The estimate 

for β being not significant indicates that β is not different from zero. This is acceptable 

as the dependent variable; N (number of crashes in two year period) is denominated in 

terms of exposure of time. In that case it should be noted that the model results cannot be 

used on any other section of roadway as exposure is not denominated in vehicle miles of 

travel, but is denominated only by time. Hence the model is not transferable to sections 

with different traffic flow condition from that of the test bed used for calibration.  On the 

other hand, justification for retaining the exposure parameter β should be made in order 

for the model to be valid for use in freeway sections other than the test bed. This is 

because number of accidents by itself gives insufficient information for any logical 

decision making.  As we can see that two roads with similar number of accidents, but 

first road reported over 2 year period and second road over 1 year period means different 

in terms of crash rate. In the example second road has higher crash rate or likelihood of 

incident than the first road. Hence exposure is an important factor in explaining the risk 

component in incident reporting. As such even though β is statistically not significant, it 

has a significant role for the physical interpretation of the overall model. 
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5.2.3 Comparison of Results with Canadian Model 
 

Here comparison in parameter estimates between the model presented above and 

a similar Canadian model (2), with similarly defined categorical values. The model 

developed for this thesis will be referred to as Texas model. Such a comparison is 

interesting, as the Texas model is based on similar lines as the Canadian model, but with 

a little modification and calibrated with completely different data. This could provide 

insight into the sensitivity of the model to different data conditions. Details of the 

Canadian model are provided in Section 2.3. 

 In contrast to the Texas model, Canadian model shows that likelihood of 

incident occurrence is more sensitive to the level of CVS precursor than to density. The 

Canadian model indicates that reduction in crash rate between high and medium level of 

density is minimal, that means to say high and medium level of density pose more or less 

equal probability of involving in crashes. But low densities pose a considerably smaller 

crash rate. While the Texas model shows that there is a considerable reduction in crash 

rate as level of occupancy (substitute for density of Canadian model) reduces from high 

to medium and also from medium to low compared to Canadian model. Another distinct 

feature between the two models was that Texas model indicated that crash rate was more 

sensitive to peak hour indicator than roadway-type indicator, while Canadian model 

indicated the reverse. Coefficient for the exposure variable has values of the same order 

(close to zero) in both the models. 
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The Canadian model uses an additional precursor, the speed difference between 

longitudinally adjacent detectors (Q), and this precursor is found to be a significant 

precursor in capturing incident conditions. Lack of this precursor Q in Texas model 

could have resulted in slightly varied calibration results. Apart from that, data quality 

can be a significant reason for the observed differences. However, it is difficult to 

ascertain an exact reason at this level of analysis. But at a broader look, the models seem 

to be mutually consistent in terms of the effect of the categorical variables on crash rate.  

 

5.3 Alternate Reduced Category Model 
 

It was observed from the model result that was presented in Table 5.1 that level 2 

for CVS is statistically not significant. This means that the numerical estimate for λCVS = 

2 is not significantly different from zero in a statistical sense. This can be interpreted to 

say that one cannot be sure a reduction in CVS from high to medium would not decrease 

the crash rate. Because level 2 and 3 for CVS had same effect on crash rate, an attempt 

was made to combine these two categories of CVS and estimate model parameters for 

the reduced model.  

 

5.3.1 Calibration for Reduced Model 
 

On a logical basis, for determining the boundary values for the two categories of 

CVS a 50:50 (low: high) was considered. As explained in Subsection 4.2 of this report, 

boundary values for the new proportion of CVS were determined using the same 
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historical data available from study site. The boundary values for CVS in the model are 

given in Table 5.2. The proportion and boundary values for the remaining precursors 

remained the same as in the previous model. 

 
TABLE 5.2 Boundary Values for 2-Level CVS 

Category CVS 

L (50) or 1                  <= 0.043 
 

H (50) or 2                   > 0.043  
 

 
 
 

Once the boundary values were determined, input data for the model calibration 

was prepared in the same procedure as explained in Subsection 4.2. Calibration results 

for the reduced model with new set of data are presented in Table 5.3. 

 

TABLE 5.3 Parameter Estimation for Reduced Model 
95% Confidence 

Interval 
Parameter 
  

Estimate 
  

Std. 
Error 

  
Z 
  

Sig. 
  

Lower 
Bound 

Upper 
Bound 

Constant 3.075 .479 6.417 .000 2.136 4.014
λCVS = 1 -1.243 .477 -2.606 .009 -2.177 -.308
λCVS = 2 0(a) . . . . .
λOcc = 1 -2.075 .284 -7.310 .000 -2.631 -1.518
λOcc = 2 -1.492 .320 -4.661 .000 -2.119 -.864
λOcc = 3 0(a) . . . . .
λP = 0 -.759 .270 -2.810 .005 -1.288 -.230
λP = 1 0(a) . . . . .
λR = 0 -.443 .171 -2.592 .010 -.779 -.108
λR = 1 0(a) . . . . .
β .006 .005 1.209 .227 -.004 .015

   Note: Estimates marked ‘a’ are aliased cells 
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5.3.2 Discussion of Results for Reduced Model 
 

It can be seen in Table 5.3 that the estimate for the constant term in the reduced 

model is higher than in the “full-scale” model (of Section 5.2). This indicates that the 

maximum crash rate is comparatively higher in the reduced model than in the full-scale 

model. The physical interpretation of the parameters that was made for the full-scale 

model holds good for the reduced model too. All parameters, except β are statistically 

significant here. That leads to the conclusion that β is not significantly different from 

zero at 95% confidence level. 

The overall model fit was examined using the goodness of fit parameter like 

likelihood ratio. The definition of likelihood ratio was introduced in Section 3. The 

likelihood ratio for full-scale model and the reduced model is given in Table 5.4. It can 

be seen from the table that reduced model has a lesser likelihood ratio than the full-scale 

model. The lesser the likelihood ratio better is the overall model fit. Hence among the 

two models the reduced model seems to be a better fit for the data used from the test-bed 

in Texas.     

 

TABLE 5.4 Goodness of Fit 
  Likelihood Ratio 
Full-scale model 53.95 
Reduced Model 14.15 
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Goodness of fit for the models developed here can also be compared using 

residual analysis. Advantage of residual analysis is that the influence of each categorical 

value on the over all model fit can be assessed. The Normal Q-Q plots of adjusted 

residuals for full-scale model and the reduced model are shown in Figure 5.1 and Figure 

5.2 respectively. The adjusted residual is defined as the difference between the estimated 

value for a precursor category and the mean value for category divided by standard error 

for the estimate. In the Figure 5.1 and Figure 5.2, closer the adjusted residuals are to the 

straight line, better is the model fit. It can be noted from the residual analysis that 

reduced model has better fit than full-scale model. 
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FIGURE 5.2 Residual Analysis for Reduced Model 
 

5.4 Limitations 

 
The model developed in this thesis has some critical components that 

significantly influence the model parameters. First among those critical components is 

the study-level aggregation. In the current study, 5 minutes was chosen as the study-

aggregation period. However there is no set rule for choosing study-aggregation period. 

It is usually found that smaller aggregation periods give rise to lot of noise that makes it 

difficult to distinguish the traffic patterns, while aggregation periods that are too large 

will be insensitive to changes in traffic within the aggregation period. Hence an optimal 

study-aggregation period should be selected based on engineering judgment or on an 
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empirical basis. It is also noted that optimal study-aggregation period may be different in 

different applications. However in the current study there was no systematic effort to 

identify the optimal study-aggregation period. 

A second critical component in the categorical model structure is the definition 

of appropriate categorical variables and their boundary values. In this thesis, a 

proportion of 50:30:20 low, medium and high values of precursor were used for the full-

scale model. This proportion was based on the recommendation by Lee et al., as this 

proportion gave the best fir model for their data. However the results of the model in this 

thesis show that for the data used here, a proportion of 50:30:20 is not necessarily the 

best choice. However different proportions for category were not experimented with in 

this thesis, due to time limitations. But certainly experimentation with different 

categories could yield a better fit model.  

It needs no mention that quality of the data is a primary concern in calibrating the 

incident prediction model used in this thesis. In the process of data reduction, it was 

noticed that there were several issues with the data obtained from loop detectors. 

Broadly speaking, some major concerns noted in the loop detector data used for this 

thesis were missing data, erroneous data and mismatch of data with detectors. Data were 

missing either for a complete day with no response from a few detectors, due to 

malfunctioning of detectors, or often some variables were just missing. For example, 

volumes and occupancy were recorded but there was no speed reported. Erroneous data 

that were noticed for example were numbers appearing for speed such as ‘88’ or ‘44’ 

over long periods of time, which appeared erroneous. Other examples of erroneous data 
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were logical errors such as low volumes, low speed, but zero occupancy. Such errors 

significantly prevailed in the loop-detector data used here. Some of the errors were 

cleaned in the data reduction, to an extent. For example, detector data files with no 

response were excluded while processing. Also use of 5-minute study aggregation 

smoothened the fluctuations in the data values that were noticed due to missing data. 

Still the quality of data is of importance in order to have confidence in incident 

prediction models. Dealing with improving the quality of data remains a practical issue 

in calibrating incident prediction or detection models. Effects of data quality should be 

borne in mind when interpreting incident prediction models, such as the model described 

in this thesis, in terms of reliability. 

Another limitation of this thesis was that there was no validation done to evaluate 

the performance of the model. Although it is possible to evaluate the model either with 

the historical data or in field conditions, neither of these was conducted. Evaluation of 

the model with historical data was not in scope of this thesis as the model requires at 

least two years of historical data, which was not available. Field evaluation was deemed 

impractical within the project time frame and cost constraints. Some possible validations 

for future study are highlighted in Subsection 6.2. 
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6 CONCLUSIONS  

6.1 Summary 

 
In this thesis a categorical log-linear model was formulated and calibrated to 

predict likelihood of crashes on freeways. The model formulated here was based similar 

to model demonstrated by Lee et al. (1, 2) for Canadian roadway data. Some specific 

issues that were addressed in this thesis were 

 To determine if it was possible to develop satisfactory model for incident 

prediction  

 To examine incident precursors that might be useful for incident prediction 

 To calibrate the model with data available on freeway section in Texas 

 To interpret the model parameters to understand traffic characteristics during 

incident and non-incident conditions 

A detailed review of literature was conducted to enlist the possible incident 

precursors that could be used in the model. After a careful examination of the past 

studies, coefficient of variation in speed (CVS) and density were found to be the most 

promising precursors, specifically for real-time applications. In the current model CVS 

and occupancy were used as the precursors considering their capabilities as 

demonstrated in past studies, and also in view of the ease in which they can be derived 

from the available loop detector data. Apart from the two precursors, two other 

indicators were used in the model. These indicators were peak-hour indicator and 

roadway-type indicator to incorporate the effect of peak hour and roadway geometrics in 
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predicting incidents. Exposure (in vehicle miles of travel) was another explanatory 

variable used in the model. While CVS, occupancy, peak-hour indicator and roadway-

type were categorical variables, exposure was a continuous variable.  

Two sections of freeway in Austin, Texas were used as a test bed for this study. 

Historical 1-minute traffic data from loop detectors and crash reports were used for 

calibration of the model. Data for years 2003 and 2004 were specifically used. In all 154 

collisions were identified over this period in the study site that were used for model 

calibration. An aggregation time of 5 minutes was used for deriving the precursors from 

the traffic data. The precursors CVS and occupancy were categorized using 50:30:20 

proportion of low, medium and high values respectively for the full scale model. This 

proportion was used carrying forward the recommendation of Lee et al., as it gave the 

best fit model in their case. A second model was calibrated with a different proportion of 

50:50 for occupancy only, while other specifications remaining same as the full-scale 

model. Historical data from study site were used to determine the boundary values for 

the categorical values. The two indicators, each had two categories, peak and non-peak, 

straight road or other. So in all the full-scale model was designed to allow 36 possible 

categorical values to define a traffic state at any instant of time. The reduced model was 

designed to allow 24 possible categorical values. 

The model parameters were estimated using Maximum Likelihood Method and 

were examined for determining their statistical significance as well as their ability to 

explain observable reality on freeways. The statistical examination indicated that 

medium and high level of CVS were not distinguishable with the current categorization 
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criteria. The parameter for exposure showed a value close to zero, and also was 

statistically insignificant. However it was deemed important to retain coefficient for 

exposure in the model to make meaningful physical interpretation of the model. A 

detailed explanation of this is given in Section 5.2.2. An alternative model was also tried 

with a reduced number of categorical values for CVS in response to the observations 

from statistical inference for the full-scale model. In both the models calibrated for this 

thesis, all parameter estimates were found to be meaningful in terms of their physical 

interpretation. Models indicated that if CVS or occupancy level increases, the rate of 

crash occurrence also increases. It was also observable from model parameters that peak 

hours and freeway sections with curvature or ramps were prone to high crash rate. All 

these observations validate the models and strengthen the confidence in ability of the 

models to predict incidents realistically.  

Some important lessons learned from this modeling exercise were to clean the 

data, if required to ensure good quality data for calibration. Incident prediction models, 

specifically categorical models are sensitive to aggregation period and the proportions 

for categorical variables. Hence sufficient care should be taken after examining the data 

to identify appropriate aggregation period and category boundaries. 

Work done in this thesis has reaffirmed that categorical models are a useful tool 

for incident prediction. More broadly this thesis demonstrates that it is quite possible to 

estimate the likelihood of incident on freeway sections, provided sufficient attention is 

paid to data quality and certain model design parameters such as precursors, study 

aggregation period and proportions for categorical values. 
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6.2 Future Work 

 
From the lessons learned in this thesis, possible future work that could be 

extended are identified here and enlisted below. 

 In this research only aggregation periods of 5 minutes were used. However a 

more appropriate aggregation time could be determined by experimenting 

with different aggregation times. With such an effort one can examine how 

aggregation time could actually influence the model results. 

 Another controlling element in the developed model is the categorical 

boundaries. It was seen from the initial model results that 50:30:20 

proportions was not the most appropriate one for the data used here. Though a 

reduced category model was tried as an alternative here, several other 

alternative categories are possible with three levels or two levels. Also, in the 

model tried here and both CVS and occupancy are categorized with the same 

proportions. But it could be possible to obtain optimal results by defining 

categorical values distinctly for CVS and Occupancy. 

 An important observation that was made in this research was that expected 

crashes and exposure have a nonlinear relationship (β << 1). This topic, 

whether expected crashes and exposure follow linear or nonlinear relation is 

been in debate for while among transportation safety professionals (35, 36). 

Some light can be thrown to the debate by doing a controlled experiment, by 

keeping β constant at different values and examine the relevance of model 

parameters.   
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 Currently with the available two-year data, the model could not be validated 

by splitting the data in two parts, due to insufficient crash samples. But upon 

availability of sufficient additional data, the developed model can be validated 

to see how well the model estimates the actual incident conditions. Model can 

also be tested in field conditions by integrating the model with TxDOT’s 

Advanced Traffic Management Systems. 
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