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ABSTRACT 
 
 
 

Concerning Brucella LPS: Genetic Analysis and Role in Host-Agent 

Interaction.  (August 2005) 

Joshua Edward Turse, B.S., Bates College 

Chair of Advisory Committee: Dr. Thomas A. Ficht 
 
 
 
Brucella lipopolysaccharide is an important component of virulence in 

brucellosis.  Recent research in macrophage models has shown that Brucella 

LPS does not behave like classical LPS by stimulating potent inflammatory 

responses.  The central hypothesis of this work is that O-antigen is dynamic 

signaling molecular and participates in complex interactions with the host to 

promote productive infection.  A corollary to this is that the host environment is 

dynamic, and Brucella has evolved mechanisms to cope with changing 

environments.  In an effort to understand the contribution of Brucella LPS to 

virulence and pathogenesis, the function of a metabolic locus important in the 

synthesis of LPS has been demonstrated and complemented.  The spontaneous 

loss of LPS expression has been characterized.  Contribution of LPS to 

acquisition of the host environment in tissue culture and mouse models has 

been explored.  This work demonstrated that genes outside the O-antigen 

biosynthesis (manBA) cluster contribute to LPS biosynthesis.  Further high 
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frequency mutation involving manBA is partly responsible for observed 

dissociation of Brucella strains.  Finally, work herein attempts to look at the role 

of LPS in acquisition of the host environment and shows that LPS is important 

for recruiting particular cell populations within a host model of brucellosis. 
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INTRODUCTION AND LITERATURE REVIEW 

 

BACKGROUND 

Taxonomy.  Members of the genus Brucellae are small, non-motile, gram-

negative, non-encapsulated, intracellular zoonotic pathogens that 

opportunistically infect humans.  Phylogenetically, Brucella is grouped with the 

α-Proteobacteria, order Rhizobiales (56).  Related organisms include 

Agrobacterium, Rhizobium, and Bartonella.  Classically, the genus is divided into 

six species, B. abortus, B. suis, B. melitensis, B. neotomae, B. canis, and B. 

ovis.  Brucella abortus and Brucella melitensis are the two most studied of these 

species.  Brucella abortus is the causative agent of infectious bovine abortion, 

Bang’s disease.  Brucella melitensis is an important goat and human pathogen, 

first identified during the Crimean War as causing “Mediterranean gastric 

remittent fever” or Malta fever (19).  There is discussion of the addition of a 

seventh specie to the genus, and whether it should be added as Brucella maris, 

a specie affecting whales or pinnipeds, B. pinnipediae, affecting pinnipeds or B. 

cetaceae, affecting whales (27).  The Brucellae are further discriminated into 

biovars, based upon dye uptake, metabolic processes, such as the ability to 

grow in the absence of carbon dioxide, and susceptibility to phage.  Biovar 1 

This dissertation follows the style of Infection and Immunity. 
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strains are typically used for laboratory research and include the strains focused 

on in this work, Brucella melitensis 16M and Brucella abortus S2308.  

Molecular biology.   Characteristic of Brucellae are two chromosomes of 

1.17 and 2.1 Mb, (102) with the same G + C content and similar proportion of 

potential coding regions (1,138 and 2,059, respectively) (35, 69).  From the 

sequence of Brucella melitensis, several inferences about virulence 

determinants could be made.  Type I, II, and III secretion systems are not 

expressed (2), though genes encoding sec-dependent, sec-independent, and 

flagella-specific type III, type IV, and type V secretion systems as well as 

adhesins, invasins, and hemolysins were identified.  Identification of loci 

encoding essential metabolic and replicative functions is suggestive that both 

genetic elements are chromosomes rather than mega-plasmids (35, 69).   

The disease.  The host range of the genus is broad, comprising dogs, swine, 

sheep, goats, cattle, deer, and humans; producing chronic infection punctuated 

by periods of recurring acute infection.  In humans, the symptoms of brucellosis 

include undulant fever, arthritis and dementia.  Rarely, human cases of 

Brucellosis will progress to meningitis or endocarditis (85, 136).  If left untreated, 

Brucellosis can develop into debilitating chronic infection, resulting in death.  In 

agriculturally important animals, Brucella infection can lead to sterility.  

Pathogenesis.  Common routes of infection include via the conjunctivae, the 

alimentary tract, inhalation and broken skin (122), from contact with 
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contaminated animals and animal products.  The organism is then spread 

throughout the host by way of the lymphatic system: bacteria are phagocytosed 

by macrophages at the primary site of infection and, transported to regional 

lymph nodes where Brucellae have been shown to persist and multiply within the 

phagolysosomal compartment (8, 24).  The phylogenetic relationship between 

Brucella and the α-subdivision of the Proteobacteriaceae suggests an organism 

capable of quickly adopting changes in response to changing environments.  

Most proteobacteria live in soil; as such must adapt to changing conditions 

present in this environment including reduced nutrient availability.  The ability to 

adapt to nutrient poor conditions is a major contributor to intracellular survival of 

Brucella. 

Threat assessment.  Brucellosis continues to be a major health threat world 

wide among humans and domestic animals.  Human brucellosis has always 

been associated with animal disease (60).  The principal threats to humans are 

B. melitensis, B. suis, and B. abortus.  Incidence and prevalence vary from 

country to country, with small-ruminant brucellosis being the most widespread 

infection.  This is remarkable since eradication programs for bovine brucellosis 

have been largely successful in developed countries (100).  Areas considered to 

have high brucellosis prevalence include the Middle East, countries surrounding 

the Mediterreanean Sea, Southeastern Europe, Sub-Saharan Africa, and South 
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and Central America (including Mexico) (60).  Brucellosis in these areas is 

typically small-ruminant brucellosis, caused by B. melitensis.  

Brucella [suis], weaponized in 1954, was the first biological agent in the 

United States’ arsenal.  Several other countries have been suspected of 

studying the agent as a biological weapon, but to date, no use of Brucella in a 

bioterrorist attack has been reported (67), though there was suspicion of such an 

undertaking in 1999(1).  Since Brucella can be weaponized and delivered by 

aerosol via commonly available equipment (81), there is potential for this 

organism to be deployed as a tactical [battlefield] weapon (60, 67).  In a 

theoretical attack on a population of 100,000 people, 82,500 cases of brucellosis 

requiring extending supportive therapy are predicted, with 413 deaths (82).  In 

1997, the projected economic loss in the case of such an attack was $477.7 

million.  

Brucella virulence factors.  To date, there are two only confirmed virulence 

determinants, the lipopolysaccharide (LPS), which exhibits antigenic and 

dissociation (7), and Type IV secretion system (virB).  Brucellae demonstrate 

antigenic variation in two distinct ways: A versus M epitopes of the O-

polysaccharide and rough versus smooth LPS (12, 41, 42).  Antigenic variation 

may account for the appearance of some Brucella biovars in which A-antigen 

predominates over M-antigen and vice versa.  For example B. abortus biovar 1 

produce predominately A-antigen, while B. abortus biovar 2 produce M-antigen 
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and B. abortus biovar 3 produce roughly equal amounts of both.  One 

component of the LPS that has not been definitively demonstrated is the 

presence of an exopolysaccharide.  Rosinha et al. (125) demonstrated that B. 

abortus strains deficient in the polysaccharide transporter, ExsA, are attenuated 

in mice.  In Rhizobium meliloti, exsA genes are involved in the transport of the 

exopolysaccharide succinoglycan.  Speculation is that exsA mutants in Brucella 

may have altered polysaccharide architecture. 

There is a third antigen that deserves some mention since much literature 

has been devoted to it; native hapten and polysaccharide B were thought to be 

antigenic determinants until Moriyón et al., performed a meticulous study 

comparing outer membranes of B. abortus and B. melitensis (106).  Native 

hapten and polysaccharide B were found to be byproducts of the chemical 

reactions used to analyze Brucella LPS. 

Rough Brucellae are characterized by the lack of O-antigen.  The term 

“rough” is a historical term and is based on observations of colony morphology 

under obliquely reflected light (74).  Henry found that rough colonies were 

yellow-white in color and have a dry, granular appearance, whereas smooth 

colonies are small, round, glistening and blue to blue-green in color.  Some basic 

phenotypic tests include agglutination of roughs by acriflavine and staining of 

rough colonies with crystal violet.  Rough Brucellae are immune to lysis by 

Berkeley phage BK-2.  Rough Brucella abortus, but not Brucella melitensis are 
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susceptible to killing by serum complement (4, 50).  In the host, infection by 

rough Brucella is seemingly inconsequential, since it is cleared at early time 

points.  Yet interest in the use of rough mutants as vaccines persists due to their 

lack of interference with standard diagnostic tests (4, 5, 21, 114, 128, 134, 138). 

Genetics of Brucella O-antigen synthesis.  Brucella O-antigen is required 

for persistence in the host and based on studies with rough derivatives of 

classical smooth strains this survival was thought to originate with increased 

resistance to intracellular killing mechanisms.  However, loss of O-antigen from 

transposon-derived rough mutants revealed little effect on intracellular survival in 

macrophages in several separate studies and in at least one study reportedly 

replicate intracellularly (4, 5, 59, 78, 112, 115).  These data suggest that O-

antigen may play an important role in survival, but one that is different than 

originally predicted.  In order to understand the role of Brucella LPS in survival 

and virulence it is important to know something about its synthesis and structure.  

The nature of the steps leading to the production of Brucella O-antigen are 

not known with certainty, but the following enzymatic functions have been shown 

to be important.  GDP-D-mannose is required for the mannosylation of many 

bacterial cell surface repeat unit polysaccharides and acts as the precursor for 

other nucleotide sugars (GDP--fucose, GDP-colitose, GDP-perosamine and 

GDP--rhamnose) involved in polysaccharide biosynthesis.  Fructose 6-

phosphate feeds a biosynthetic pathway consisting of the following steps: manA, 
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converts fructose 6-phosphate to mannose 6-phosphate; manB, mannose 6-

phosphate to mannose 1-phosphate; manC, mannose 1-phosphate to GDP--

mannose.  Catabolism is not the only method Brucella can use to acquire 

mannose-6-phosphate.  Studies have demonstrated the presence of hexose 

permeases, as well as the ability to grow on a number of carbon sources (47, 

48). 

Phosphomannose isomerase, manA, is responsible for the enzymatic 

conversion of fructose 6-phosphate to mannose 6-phosphate.  ManA is required 

in both the glyocolytic pathway (116) and the pathway leading to O-antigen 

biosynthesis.  ManA has been identified in several enteric bacteria as being 

important to the production of O-antigen, but is not often mapped to 

polysaccharide gene clusters (77), as in Brucella.  

Phosphomannomutase, manB, is responsible for the inter-conversion of 

mannose 6-phosphate to mannose 1-phosphate in the production of precursors 

for LPS.  Much literature from studies of the opportunistic pathogen 

Pseudomonas aeruginosa and the economically important bacterium 

Xanthomonas campestris focus on manB.  In Pseudomonas, the gene encoding 

phosphomannomutase, AlgC (61) is associated with exopolysaccharide and 

lipopolysaccharide virulence determinants.  AlgC deficient Pseudomonads do 

not produce LPS or exopolysaccharide (30, 62).  Knockouts of algC have been 
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shown to be less virulent in mouse models of infection (61, 133), demonstrating 

the importance of phosphomannomutase to LPS biosynthesis and virulence.  

GDP-mannose pyrophosphorylase (GMP), manC (BMEI0344), and transfers 

a guananyl residue to the mannose 1-phosphate synthesized by manB, 

completing synthesis of GDP--mannose.  Phosphomannomutase and GDP-

mannose pyrophosphorylase are thought to participate solely in the production 

of GDP--mannose (77) (FIG. 1).  Other genes implicated in O-antigen 

biosynthesis are identified in Table 1. 

O-antigen dissociation.  The phenomenon of Brucella spontaneous smooth 

to rough transition (dissociation) is well documented (74).  However, the genetic 

basis for these changes (if any) remains undefined.  Alternatively, the 

spontaneous appearance of rough variants could result from a response to 

changing environment and preferential growth in the absence of in vivo selection 

pressure.  As a result, reversion to smooth phenotype may also be explained by 

recognition of changing environmental conditions or reversion of mutants
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FIG. 1. Schematic showing O-antigen biosynthesis steps in Brucella spp. Phosphomannose 
isomerase, manA, is responsible for conversion of fructose 6-phosphate to mannose 6-
phosphate in the Embden-Meyerhof pathway (a).  Phosphomannomutase, manB, is responsible 
for the inter-conversion of mannose 6-phosphate to mannose 1-phosphate in the production of 
precursors for LPS (b).  GDP-mannose pyrophosphorylase (GMP), manC (BMEI0344), transfers 
a guananyl residue to the mannose 1-phosphate from manB, completing synthesis of GDP--
mannose (c).  Phosphomannomutase and GDP-mannose pyrophosphorylase are thought to 
participate solely in the production of GDP--mannose.  The pathway is completed in 
subsequent steps, including elongation of the O-side chain.  Allen et al. demonstrated 
interruption of the phosphomannomutase BMEII0899 (manB) locus by the transposon Tn5 
causes attenuation and shift from smooth LPS (sLPS) to rough LPS (rLPS) (5), (4).  Using similar 
transposon based techniques or allelic exchange with antibiotic resistance markers, additional 
loci (Table 1) have been shown to cause defects in O-antigen synthesis.  
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Table 1.  Summary of genes implicated in rough phenotype. This table was adapted from 

Delrue et al. (33). 
Gene Function B. melitensis ORF 

lpsB, lpcC Mannosyltransferase, Core Biosynthesis 
 

BMEI0509 

wbdA Mannosyltransferase, conversion of GDP--
mannose to mannan, O-chain biosynthesis 
 

BMEI0997 

lpsA Putative glycosyltransferase, O-Antigen polymerase 
(13), O-chain biosynthesis 
 

BMEI1326 

wbpZ O-chain biosynthesis, mannosyltransferase C 
 

BMEI1393 

manB Phosphomannomutase, uses GTP and mannose-6-
phosphate to produce mannose-1-phosphate, O-
chain biosynthesis 
 

BMEI1396 

wbkA Mannosyltransferase, O-chain biosynthesis 
 

BMEI1404 

rfbD GDP-mannose 4,6-dehydratase, converts GDP-
mannose to GDP-4-dehydro-6-deoxy-D-mannose + 
H2O, O-chain biosynthesis 
 

BMEI1413 

perA Perosamine synthetase, converts GDR-4-keto-6-D-
deoxymannose to 4-amino-4,6,dideoxymannose 
(GDP perosamine), O-chain biosynthesis 
 

BMEI1414 

wbpL Putative undecaprenyl-phosphate α-N-
acetylglucosaminyltransferase, catalyzes the 
attachment of the N-actyleglucosamine to the 
undecaprenol carrier for O-chain biosynthesis 
 

BMEI1426 

pgm Phosphoglucomutase converts α-D-glucose 1-
phosphate to α-D-glucose 6-phosphate, O-chain 
biosynthesis 
 

BMEI1886 

manB, pmm Phosphomannomutase converts α-D-mannose-6-
phosphate to α-D-mannose-1-phosphate, O-chain 
biosynthesis. 
 

BMEII0899 

manA, wbpW, 
pmi 

Phosphomannose isomerase converts α-D-
mannose-1-phosphate to GDP-mannose O-chain 
biosynthesis 

BMEII0900 
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(primary or secondary sites) to smooth character.  For example, the former 

vaccine strain 45/20 is a spontaneously appearing rough strain, derived from B. 

abortus 45 after 20 in vitro passages.  The cause of the rough phenotype of 

45/20 is unknown, however, its reversion to virulent smooth form resulted in its 

discontinued use as a vaccine strain shortly after introduction (129).  In contrast, 

RB51, a current vaccine strain, is also a natural attenuated rough mutant of B. 

abortus S2308 that contains a transposon (IS711) insertion in the wboA gene, 

encoding glycosyltransferase (139).  Reversion to smooth phenotype has not 

been reported for RB51 and the insertion in wboA appears to be one of several 

defects resulting in the rough phenotype (138, 139). 

Mechanisms responsible for dissociation may include the activity of 

transposases, recombinases, resolvases, and integrases to facilitate illegitimate 

recombination.  Analysis of the B. melitensis genome indicates 41 transposases 

(35).  Transposases are typically encoded by the transposon they facilitate.  The 

transposase recognizes the cognate element (particular sequences are 

recognized by different transposon families), breaks the DNA and inserting the 

transposon (116).  To date, only one transposon-like element has been 

demonstrated in Brucella (71); tn2020 is 815bp.  Recently, with the completion 

of the B. abortus genomic sequence, deletion events that may be important for 

speciation have become apparent (69).  Similar events could be responsible for 

the loss of O-antigen expression. 
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Recombinases catalyze strand exchanges between specific DNA sequences, 

and can be broken into two categories, resolvases and invertases.  No 

recombinases have been demonstrated in Brucella, but a BLAST search with the 

B. melitensis genome suggests several may be present.  For our purposes, the 

most interesting may be the invertases, since they are well characterized in the 

Salmonellae (Hin, Gin, Pin, Cin) (94).  Brucella possesses several palindromic 

repeat elements, which form stem loop structures within themselves (70).  One 

could postulate that two of these repeat elements in close proximity could form a 

larger stem loop structure, essentially deleting the intervening structure by 

“looping out” (tandem repeat deletions) (17).  Authors T. Ficht and C. Allen 

appear to suggest this possibility in their 1998 publication on transposon derived 

rough mutants, wherein they identify a Bru-RS1-like repeat near the manBA 

locus in B. abortus (5).  The situation at manBA almost directly reflects that in 

Salmonella at the H2 locus.  The H2 locus possesses an upstream element, the 

H segment that is flanked by two inverted repeats.  Inversion of the H segment 

between the inverted repeats controls the expression at H2.  Resolvases are 

another class of recombinase that shows homology to the Hin, Gin, Pin, and Cin 

invertases (14).  They are mainly associated with transposons. 

Other possibilities for genomic modifications exist; for example, Brucellae 

also possess the insertion elements IS711 (71), or IS6501 (110), about 900bp in 

length.  IS6501/711 has been speculated to encode a transposase, similar to a 
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transposases found in Mycobacteria.  A genomic island containing several 

insertion sequences was identified as containing the O-antigen coding genes of 

Brucella (26, 58).  Most attention around Brucella insertion sequences has 

focused on IS6501/711, since it may contribute to the attenuation of the current 

vaccine strain, RB51 (137, 139).  

Integrases are typically associated with phage, though horizontal transfer 

from phage to Brucella could conceivably introduce integrases to the genome.  

Integrases recognizes a specific site in DNA, and integrate viral DNA into the 

genome of the viral host.  In their analysis of the B. melitensis genome, Del 

Vechhio et al., identified 16 ORFs related to phage on chromosome I. 

Detailing modes of chromosomal rearrangement would not be complete 

without mentioning two other organisms.  Prokaryotes are not known to exhibit 

programmed changes to their DNA.  Two notable exceptions are the 

cyanobacteria Anabaena 7120, which excises two nitrogen fixation elements 

during heterocyst formation (63) and Bacillus subtilis, which excises 42kb from 

the sigK gene during sporulation.  (88).  Rearrangement of the nitrogen fixation 

gene in Anabaena is mediated by transposase-like elements, xisA and xisC as 

part of the programmed rearrangement cyanobacteria undergo in heterocyst 

formation.  XisA was characterized by transposon and site directed 

mutagenesis, while xisC has only been characterized by its homology to xisA. 



14 

 

Mutation of Gram-negative bacteria from smooth to rough phenotype may be 

the result of random events or a response to changing environments.  Brucella 

may need to be rough in order to adapt the host as a suitable environment.  In 

the paradigm learned from enteric bacteria, an antigenic switch from smooth 

LPS to rough LPS would cause the host to switch from an inflammatory 

response, TH1, to TH2 response, during which IL-10 would be released.  IL-10 

functions to down-regulate TH1 responses and inhibits cytokine release, 

increasing the chances for colonization of the host.  These rough organisms 

would almost certainly be susceptible to killing, but having served the purpose of 

modulating the host immune response, chronic infection with the surviving 

smooth Brucellae could be established.  
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SPECIFIC AIMS 

 
This research focuses on the initial interactions between Brucella and the 

target cells that control the host’s innate immune response.  O-antigen produces 

the majority of antibody response Brucella, highlighting intimate processing of 

LPS by host cells.  Recent observations demonstrate significant differences in 

the host response to smooth and rough Brucella (21, 112, 121), suggesting an 

important signaling role for O-antigen during these initial interactions.  Ultimately, 

these tentative exchanges may control survival of Brucella, but the exact 

mechanism(s) remains undefined.  The work proposed explores the contribution 

of O-antigen in establishing a productive infection.  The central hypothesis of this 

work is that O-antigen restricts macrophage activation and promotes productive 

infection.  A corollary to this is that the host environment is dynamic, and 

Brucella has evolved mechanisms to cope with changing environments.  To 

explore this hypothesis, these aims are proposed: 

 
A.1 Demonstrate, definitively, the link between manBA expression and 

LPS biosynthesis. 
 
A.2 Determine the rate of appearance of spontaneous, rough isolates 

and identify genetic changes associated with their appearance. 
 
A.3 Evaluate the role of Brucella LPS in uptake and survival of the 

organism through comparison of survival of smooth and rough 
variants in vitro and in vivo. 
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ManBA (BMEII0899-0900) IS ESSENTIAL FOR LPS BIOSYNTHESIS 

 
INTRODUCTION 

The lipopolysaccharide of Brucella is a classical gram negative LPS in form 

only: it is a tripartite structure consisting of lipid A, core oligosaccharide and O-

antigen.  At the molecular level and with respect to activity it is clearly non-

classical.  Compared to enterobacterial LPS, Brucella LPS contains only amide 

bonds as opposed to the typical amide and ester bonds, Brucella Lipid-A is a 

diaminoglucose rather than glucosamine, and the acylation of the Lipid A is 

much greater (C18-19, C28, rather than C12 and 14)(91).  The activity of 

Brucella LPS is much lower than enterobacterial LPS’ (23, 104, 119).  O-antigen 

produces the primary antibody response in the host.  In Brucella abortus, the O-

antigen consists of a homopolymer of 4,6-dideoxy-4-formamido-D-

mannopyranose (N-formyl perosamine) linked in an α-1,2 fashion (A antigen), 

while the N-formyl perosamine homopolymer found in Brucella melitensis 

consists of 4 residues linked in an α-1,2 fashion with a fifth in an α-1,3 fashion 

(91, 101, 104, 106) (FIG. 2). 
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The decreased activity of Brucella LPS can be correlated with an increased 

acylation state of the lipid A moiety (46, 66, 80).  Lipid A interacts with host cells 

primarily through TLR-4.  Altering the pattern of lipid A on the surface of the 

bacterium changes the dynamic between the TLR-4 receptor and the pathogen 

(83). 

The phosphomannomutase/phosphomannose isomerase locus (manBA) has 

been implicated as being important for the production of LPS in models that use 

a transposon to interrupt the gene.  Allen et al. and Monreal et al. studied 

transposon mutants of B. abortus (4, 5, 103) while Foulonge et al. characterized 

manBA transposon mutants in B. suis (53).  The goal of this study was to knock 

out manBA, complement the loss of activity.  This will definitively demonstrate 

the role of manBA in the production of Brucella LPS in B. abortus and B. 

melitensis.  In these models, LPS has been shown to play an important role in 

resistance to complement-mediated killing, survival in macrophage models and 

animal models.  Based on these studies, our hypothesis is that manBA 

(BMEII0899-900) is important for LPS biosynthesis. 
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FIG. 2. Molecular schematic of A- and M-antigen.  Found in the lipopolysaccharide of Brucella 
abortus and Brucella melitensis, respectively.  Brucella O-antigen is a homopolymer of 4-
formamido-4,6-dideoxymannose (N-formyl perosamine), repeating approximately 100 residues.  
In B. abortus, the homopolymer is linked predominantly in an -1,2 fashion, while B. melitensis N-
formyl perosamine is four units linked in -1,2 with a fifth unit linked -1,3.  This heterologous 
linkage in M-Antigen is displayed in red.  
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MATERIALS AND METHODS 

Bacteria, plasmids, growth conditions and restriction endonucleases.  

All bacteria and plasmids used during the course of this investigation are 

listed in Table 2.  All of the restriction endonucleases used in this study were 

purchased from Roche Biochemicals, with the exception of Asc I, which was 

purchased from New England Biolabs.  FastStart Taq was purchased from 

Roche Biochemicals.  AccuTaq LA was purchased from Sigma Chemicals.  T4 

DNA Ligase was purchased from Promega.  

Virulent B. abortus S2308 (B. Deyoe, NADC) and B. melitensis 16M (ATCC), 

were re-isolated from aborted fetuses of cattle or goats, respectively.  Brucella 

strains used in this study, or their derivatives were grown on tryptic soy agar 

(TSA, Difco Laboratories, Detroit, MI) medium with appropriate antibiotics, 

except where noted.  Liquid cultures of Brucella were grown in tryptic soy broth 

(TSB, Difco Laboratories, Detroit, MI) or SOC-B [6% (w/v) trypticase soy broth, 

10 mM NaCl, 2.5 mM KCl, 10 mM MgCl2, 10 mM MgSO4, 20 mM glucose](89).  

E. coli DH10B, DH5a, β2155, bacterial cultures were routinely diluted in either 

peptone saline [1% Bacto peptone (w/v), 0.5% NaCl (w/v/)], or phosphate 

buffered saline (PBS, 137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 2 mM 

KH2PO4 ).  All Brucella cultures were inactivated by autoclaving or heat killing in 

phenol saline [0.05% (v/v) phenol/0.85% (w/v) NaCl] at 65°C for a minimum of 2 

hours.  E. coli cultures were incubated on Luria-Bertani (LB, Difco Laboratories) 
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Table 2. List of bacterial strains and plasmids used in this study. 

Strain/Plasmid Relevant Markers Source 
B. abortus   

S2308 
B. abortus wild-type isolate, type strain (biovar 
1) Lab stock, bovine isolate 

S2308∆manBA S2308 ∆manBA::KmR This study 
B. melitensis   

16M 

 
B. melitensis wild-type isolate, type strain 
(biovar 1) Lab stock, goat isolate 

16M∆manBA 
 
16M ∆manBA::KmR This study 

E. coli   

DH10B 

 
F- mcrA ∆(mrr-hsdRMS-mcrBC) 80lacZ∆M15 
∆lacX74 recA1 endA1 ara∆139 ∆(ara-
leu)7697 galU galK rpsL nupG Invitrogen 

TOP10 

 
F- mcrA ∆(mrr-hsdRMS-mcrBC) 80lacZ∆M15 
∆lacX74 recA1 ara139 ∆(ara-leu)7697 galU 
galK rpsL endA1 nupG Invitrogen 

DH5α 

 
F- 80lacZ∆M15 ∆(lacZYA-argF) U169 recA1 
endA1 hsdR17(rk-, mk+) phoA supE44 - thi-1 
gyrA96 relA1 Invitrogen 

β2155 

 
ThrB1004 pro thi strA hsdS lacZDM15 (F’ 
lacZ∆M15 lacIq trajD36 proA1 proB1) 
∆dapA::erm (ErmR) pir::RP4 (::kan (KmR) from 
SM10) Dehio et al.(32) 

pBBR1MCS6-y 
 
Cloning vector, CmR, GFP P. Elzer (107) 

pBluescript KS 
II(+) 

 
Cloning vector Stratagene 

pKD4 
 
Source of nptII cassette and FRT sites B. Wanner (31) 

pJET1445 

 
B. melitensis manBA operon in pBBR1MCS6-
y, CmR This study 

pJET931MA 

 
pBluescript containing manBA 3’ and 5’ 
fragments, used to construct pJET940MA, 
AmpR This study 

pJET940MA 

 
Suicide vector for deletion of manBA, KanR, 
AmpR This study 
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plates for 18 hours with appropriate antibiotics.  When appropriate, antibiotics 

were added to the following final concentrations: kanamycin, 100 µg/ml; 

chloramphenicol, 30µg/ml and ampicillin, 100 µg/ml. Unless otherwise noted, all 

bacterial strains were grown at 37°C, 5% (v/v) CO2. 

Molecular biology, polymerase chain reaction, and primers.  Genetic 

manipulations were carried out using standard techniques (127).  Primers used 

in this study can be found in Table 3.  All primer design was performed using 

Accelrys MacVector™.   

DNA was digested with selected restriction endonucleases using 1U of 

enzyme per microgram DNA.  Ligations were performed in a total volume of 

20µl, containing 2µl 10X ligase buffer, 6U of T4 ligase and 3:1 molar ratios of 

insert:vector DNA.  Total DNA was between 150-500ng.  Ligation mixtures were 

incubated at 14°C for 18 hours before transformation.  Typical PCR reactions 

contained reaction mixture contained 50-200ng target DNA, 0.5µM of each 

primer, 200µM of each deoxyribonucleoside triphosphate, 2U of FastStart Taq 

polymerase, 1x PCR buffer, 2mM MgCl2.  As necessary, PCR products and 

digested vectors were gel purified and extracted using the QIAGEN QIAEXII gel 

purification kit. 

Southern blotting is a routine technique and was used for examining the 

presence or absence of genes in total genomic DNA.  
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Table 3. List of primers used in this study 
Primer Sequence Purpose 
TAF204 GGCGCGCCACGTCTTGAGCGATTGTGTAGG 
TAF205 GGCGCGCCGGACAACAAGCCAGGGATGTAAC 

nptII amplification 
 
 

TAF234 GCTCTCCATGATTTCGGGTA 
TAF235 CGCTTCGCAAAATTGAAAAT 

Amplification of 
nylC 
 
 

TAF251 CGGGATCCCGGCAAAGGGTTCCGCAATAC 
TAF254 GGCAAAATACCGGCGCGCCGCAAATCCCTGCCGACAAAC 

5’ manBA 
fragment 
 
 

TAF252 CGGGATCCCGGGTCAGTCATCAGTTGCGGATTC 
TAF253 GCAGGGATTTGCGGCGCGCCGGTATTTTGCCCCTCGTCCTG 

3’ manBA 
fragment 
 
 

TAF419 TTCCAGGCAGATACAGG 
TAF420 ATCCCAATAGGCCGAATGCCAA 

Amplification of 
manBA 
 

TAF433 GAAGATCTTCCAGGCAGATACAGG 
TAF434 GAGATCTATCCCAATAGGCCGAATGCCAA 

manBA 
expression 
construct 

 
 
 
Production of hybrid PCR products.  Hybrid PCR products were produced 

in order to construct an allelic exchange knockout vector.  Primers were 

designed to amplify regions of DNA flanking the 5’ and 3’ ends of manBA.  

Specifically, the reverse primer of the 5’ region and forward primer of the 3’ 

region have been designed to contain complementary sequences, with an 

engineered restriction site.  Products from this PCR reaction were diluted 1:100 

and used as template in a subsequent reaction to create a hybrid PCR product, 

consisting of the 5’ product and 3’ product, joined.  This hybrid product contains 

a restriction site in the center that was exploited to clone in a selectable marker 

(FIG. 3).  
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Transformation and selection of recombinant plasmids.  Following 

ligations, 20 µl of cells (TOP10, DH5α, or DH10B) were mixed with a 1µl portion 

of the ligation mixture and kept on ice for 30 minutes.  Samples were heat 

shocked at 42°C for 1 minute, then immediately placed on ice for 2 minutes.  

Two hundred and fifty microliters of SOC [6% (w/v) trypticase soy broth (w/v), 

10mM NaCl, 2.5mM KCl, 10mM MgCl2 and 20mM glucose] were added to the 

samples, which were then incubated at 37°C with agitation for one hour.  

Samples were plated on plates containing appropriate antibiotics and screened 

the following day by preparing mini-preparations of plasmid DNA followed by 

digestion with restriction endonucleases to map the product.  Recombinant 

plasmids in E. coli hosts are frozen in 50% peptone saline/glycerol and stored at 

-80°C. 
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FIG. 3. Production of hybrid PCR products.  In the first round of amplification, regions flanking 
the gene of interest are amplified.  In this cartoon, the 5’ product is AB and the 3’ product is CD.  
In the second round of amplification, product AB and product CD are used as the template, with 
the forward primer for product AB and the reverse primer for product CD.  The result is  a hybrid 
PCR product that joins AB and CD.  Wavy lines signify restriction endonulcease recognition sites 
that were introduced during primer design. 



25 

 

Transformation and selection of Brucella mutants.  The knockout vector 

was delivered to virulent B. abortus S2308 and B. melitensis16M via 

electroporation.  Strains were grown for electroporation by one of two methods.  

In the first approach, Brucella was grown from the frozen stocks on tryptic soy 

agar to confluence for 72 hours at 37°C.  Bacteria were re-suspended by 

scraping off the plate into 5 ml of PBS.  The resulting suspensions, containing 

approximately 5 x 1011 CFU/ml, were transferred from the plate into a 50ml 

conical tube.   

Alternatively, isolated colonies were selected following 72 hours of growth 

and used to inoculate 5 ml of fresh TSB.  These cultures were grown for 48 

hours to achieve saturation.  Fifty microliters of the saturated culture was used to 

inoculate 10 ml of fresh TSB.  Cultures were incubated at 37°C for 18 hours, 

achieving a density of approximately 2x109 CFU/ml.   

Once the bacterial suspensions were prepared, they were pelleted by 

centrifugation at 3800g x 15 minutes in a Jouan CR 4.12 preparative centrifuge 

equipped with a M4 swinging bucket rotor.  From this point forward, all reagents 

were kept at 4°C.  The supernatant was removed and the pellet was washed 

three times with 50ml ice-cold molecular biology grade water (Mediatech, 

Herndon, VA).  After the final wash, the pellet was re-suspended in 1 ml of ice-

cold molecular biology grade water.  Two microliters of RNA-free plasmid (~0.1-

0.3 µg) was added to 70 µl washed cells in a sterile microfuge tube.  This 
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mixture was stirred with a pipet tip and placed in a chilled electroporation cuvette 

with a 1 mm gap (VWR, West Chester, PA).  Current was applied from a BTX 

600 electroporation generator set to 265 ohms, 25 µF, 2.5 kV (BTX, Holliston, 

MA) in a BL3 biological safety cabinet.  One milliliter of SOC-B was used to 

remove cells from the cuvette to a sterile microfuge tube.  Cells were allowed to 

recover at 37°C, with shaking, 6 to 18 hours.  After the recovery period, 

electroporants were plated on TSA with appropriate antibiotics.  Colonies arose 

between 3-8 days and were screened by various techniques.  Knockouts were 

confirmed by PCR analysis and Southern blotting. 

Transformation of Brucella strains by conjugation.  Brucellae were 

incubated on TSA for 72 hours to achieve confluence.  The donor E. coli strain 

β2155, was incubated on plates containing appropriate antibiotics and 50µg/ml 

diaminopimelic acid (DAP) for 24 hours.  To prepare the conjugations, both 

strains, donor and recipient, were harvested from plates in approximately 2 ml 

peptone saline with DAP.  The bacterial suspensions were pelleted for 2 minutes 

x 12,000G in a microfuge.  The pellets were re-suspended in 100µl of peptone 

saline containing 50µg/ml DAP.  The bacterial suspensions were combined and 

applied to NC20 nitrocellulose filters (Schleicher and  Schuell, Dassel, Germany) 

on a TSA plates containing 50µg/ml DAP.  Mating was allowed to occur over a 

2-hour period, after which the filter was harvested, placed in a microfuge tube, 

and the bacteria washed off with 1 ml peptone saline without DAP.  Conjugants 
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were recovered by plating the entire suspension TSA with appropriate 

antibiotics.  Screening of conjugants was performed by crystal violet staining (6).  

Molecular detection of LPS.  Five milliliters of TSB with appropriate 

antibiotics were inoculated with Brucella.  After the culture reached saturation, 

48-72 hours, the bacteria were killed by the combination of heat and exposure to 

phenol.  Cultures were pelleted at 3800g x 15 minutes in a Jouan CR 4.12 

preparative centrifuge equipped with a M4 swinging bucket rotor.  The pellets 

were re-suspended in phenol saline and incubated in a 65° water bath for 18 

hours.  The heat killed Brucella were pelleted and washed with PBS to remove 

residual phenol saline as previously described.  After the final wash, pellets were 

re-suspended in PBS to achieve an optical density of 0.8 at a wavelength of 

420nm.  One and one-half milliliter of this suspension was pelleted at 13,000g x 

2 minutes in a microfuge using a fixed angle rotor.  The supernatant was 

aspirated.  Fifty microliters of PBS, pH 7.2, was used to re-suspend the pellet; 

50 µl of 2x Laemmli sample buffer was added to the suspension.  Samples were 

heated at 100 °C for 15 min, allowed to cool, spun briefly in a microfuge.  A 

volume of 15µl of each sample was loaded onto an SDS-PAGE gel.  The gel 

was electrophoresed at 200V until the dye front reached the bottom edge of the 

gel.  Characterization of LPS occurred using one of the two following methods: 

In the first method, fluorescent labeling of LPS was performed directly in 

polyacrylamide gels, utilizing the fluorescent hydrazide, Pro-Q Emerald 300 dye.  



28 

 

This dye can be conjugated to glycoproteins.  The reaction generates a highly 

fluorescent conjugate that can be visualized easily (132), using a standard gel 

documentation setup for agarose gels, with UV transilluminator, as described by 

the manufacturer, Molecular Probes. 

For the second method, Brucella LPS was visualized by Western blotting 

utilizing antibody to Brucella LPS.  The electrophoresed lysates were transferred 

to a PVDF membrane (Immobilon-P, Millipore) using a semi-dry procedure.  The 

stacking gel was removed from the polyacrylamide gel containing the 

electrophoresed samples.  The gel was equilibrated in cathode buffer [25 mM 

Tris, 20% (v/v) methanol, 40 mM 6-amino-N-hexanoic acid, pH not adjusted] for 

10 minutes.  The transfer membrane was soaked in absolute methanol for 10 

seconds, and then moved to anode buffer 2 [25 mM Tris, 20% (v/v) methanol, 

pH 10.4] for 5 minutes.  Simultaneously, wicks were prepared by soaking two 

pieces of filter paper (3mm Whatman Chromatography Paper) in anode buffer 1 

[300 mM Tris, 20% (v/v) methanol, pH 10.4], one piece of filter paper in anode 

buffer 2, and three pieces of filter paper in cathode buffer.  The proportions of 

each component of the transfer stack were the same as the polyacrylamide gel.  

The transfer stack was assembled on the anode plate of a semi-dry transfer cell 

(Owl Separation Systems, Portsmouth, NH), placing the two pieces of filter 

paper soaked in anode buffer 1, followed by the piece of filter paper soaked in 

anode buffer 2, the transfer membrane, the gel, the three pieces of filter paper 
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soaked in cathode buffer, and finally the cathode plate.  Protein was transferred 

to the transfer membrane using constant current of 2 mA/cm2 of gel area for one 

hour. 

Unbound sites on the membrane were blocked by incubation for 30 minutes 

in PBS with 3% (w/v) bovine serum albumin (SIGMA, cat# A7030).  The 

membrane was washed in PBS containing 0.05% (v/v) Tween-20 (PBS-T).  

Depending on the species, the whole blot was incubated 2 hours to overnight in 

either sensitized anti-Brucella melitensis goat sera (diluted 1:200 in PBS-T) or 

anti-Brucella  abortus LPS mouse monoclonal antibody 39 (diluted 1:200 in PBS-

T, kindly provided by Dr. L.G. Adams).  After being washed in 3 times in PBS-T, 

the blot was incubated 2 hours to overnight with a secondary antibody, either 

1:5000 rabbit anti-goat or 1:2000 goat anti-mouse, conjugated to alkaline 

phosphatase.  The secondary antibody was removed and the blots were washed 

2x in PBS, 1x in molecular biology grade water.  Signal was visualized by 

reaction with NBT-BCIP solution prepared according to manufacturer 

instructions (Roche Biochemicals).  The alkaline phosphatase reaction was 

stopped by the addition of TE (10mM Tris, 1mM EDTA, pH 8.0). 

Phenotypic confirmation of rough mutants.  The rough phenotype of 

selected mutants was confirmed by acriflavine agglutination (6).  Ten microliters 

of bacteria from an 18-24 hour liquid culture, was spotted onto a glass slide.  
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This sample was mixed with 10µl of a 0.1% (wt/vol) aqueous solution of 

acriflavine.  Agglutination is consistent with a rough phenotype (6). 

Complement mediated killing.  Fresh serum was collected from goat, cow 

and human donors for use in these experiments.  Complement mediated killing 

was measured as per Corbeil et al. (29) Bacteria were incubated for 24 hours on 

solid media as appropriate for the strains being tested.  The bacteria were 

harvested tryptone-phosphate buffer, pH 8.0 [25mM Na2HPO4, 25mM NaH2PO4, 

0.1% tryptone (w/v)].  The cell concentration was adjusted to a reading of 0.125 

at OD610 (2 x 109 cfu/ml).  Bacteria were diluted 1:10 with tryptose-phosphate 

buffer.  50µl of dilute bacteria were added to 50µl of fresh, undiluted serum in the 

wells of a microdilution plate.  Control assays included heat inactivated sera.  

Mixtures were incubated for 4 hours at 37°.   

RESULTS 

Targeting of manBA for deletion by allelic exchange.  Primers suitable 

for this study were designed with the aid of Accelrys MacVector™.  Amplification 

of nptII from pKD4 was performed using primers TAF204 and TAF205, each of 

which contains an AscI restriction endonuclease recognition site to facilitate 

cloning.  The 5’ and 3’ manBA knockout products were amplified using primer 

pairs TAF251/TAF254 and TAF252/TAF253 respectively.  Primers TAF251 and 

TAF253 contain a BamHI restriction endonuclease recognition sequence to 

facilitate cloning.  Primers TAF254 and TAF252 contain complementary regions 
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consisting of an AscI restriction endonuclease recognition site to both facilitate 

cloning of the nptII cassette and cross-priming of PCR products to produce a 

hybrid product.  The reaction mixture contained 1µl B. melitensis crude extract 

DNA from a lyzozyme/proteinase K digestion, 0.5µM of each primer, 200µM of 

each deoxyribonucleoside triphosphate, 2U of FastStart Taq polymerase, 1x 

PCR buffer, 2mM MgCl2. Amplification of the hybrid product was achieved using 

a reaction mixture containing 1µl of 1:100 fold diluted PCR product for the 5’ and 

3’ regions. 

Construction of manBA knockout vector.  A vector that is non-replicative 

in Brucella was constructed to knockout manBA (FIG. 4).  A hybrid PCR product 

consisting of the 5’ and 3’ regions flanking manBA was cloned into the BamHI 

restriction endonuclease site of pBluescript II KS(+), and transformed into E. coli.  

Thermal cycler conditions for amplification of the 5’ and 3’ flanking regions from 

genomic DNA included initial activation of FastStart Taq, 4 minutes at 95°C, 30 

cycles of amplification that included a 30 second denaturing step at 95°, 30 

seconds of annealing at 63°C, 2 minutes of elongation at 72°C.  Final extension 

was carried out for 1 cycle at 72°C for 7 minutes.  In a second round of PCR the 

5’ and 3’ regions amplified during the first round PCR are used as template, with 

the forward primer from the 5’ region and the reverse primer from the 3’ region.  

Clones were verified for the presence of the hybrid PCR product, and the 
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resultant plasmid, pJET931MA, was prepared for subsequent cloning steps 

(FIG. 5) 

The second step consisted of amplifying the nptII cassette from pKD4 (31) 

with primers that contain restriction sites matching the restriction site in the 

middle of the hybrid product from step 1.  The primers for amplifying the KmR 

cassette from pKD4 amplify a 1600bp fragment that contains two FRT sites in 

addition to the nptII cassette.  Thermal cycler conditions for amplification of nptII 

from pKD4 included initial activation of FastStart Taq, 4 minutes at 95°C, 30 

cycles of amplification that included a 30 second denaturing step at 95°, 30 

seconds of annealing at 65°C, 1.5 minutes of elongation at 72°C.  Final 

extension was carried out for 1 cycle at 72°C for 10 minutes.  Though not used 

in this study, FRT sites can be used to excise the KmR cassette by use of the 

flippase recombinase.  After the KmR cassette was amplified, it was cloned into 

the vector containing the hybrid product from first step.  This marked plasmid, 

pJET940MA (FIG. 5), was isolated from the appropriate E. coli hosts for 

electroporation into both B. abortus and B. melitensis.  
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FIG. 4. The manBA locus.  Panel A, the manBA locus was amplified using primers TAF433 and 
TAF434.  The promoter predicted by the Baylor College of Medicine Neural Network Promoter 
Prediction tool is displayed as an open circle on a stem.  Panel B, the complete vector for 
complementation of manBA knockouts. 
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FIG. 5. Vectors constructed for knocking out manBA.  pJET931MA was a stepping-stone to 
pJET940MA. 
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The manBA expression vector, pJET1445, was constructed in the broad-

host-range plasmid, pBBR1MCS6-y (107).  The vector and manBA PCR 

products were digested with Bgl II, and ligated.  Primers (TAF433/434) for 

amplifying manBA exclude the putative promoter site predicted by the Neural 

Network Promoter Prediction tool, with a threshold of 0.80, hosted by the Baylor 

College of Medicine (131).  A schematic is displayed in FIG. 4 and the exact 

sequence amplified is in Appendix A-1.  The reaction mixture was optimized for 

production of a long-template product and contained 1µl B. melitensis crude 

extract DNA from a lysozyme/proteinase K digestion, 0.5µM of each primer, 

500µM of each deoxyribonucleoside triphosphate, 2U of AccuTaq polymerase, 

1x PCR buffer, 2mM MgCl2. Thermal cycler conditions for amplification of 

manBA included initial activation of AccuTaq LA, 4 minutes at 95°C, 30 cycles of 

amplification that included a 30 second denaturing step at 95°, 30 seconds of 

annealing at 63.9°C, 4 minutes of elongation at 68°C.  Final extension was 

carried out for 1 cycle at 68°C for 10 minutes.  All samples were held at 20°C 

until being removed from the thermal cycler. 

Brucella knockout mutants were screened for ampicillin sensitivity and 

kanamycin resistance.  Southern blotting, using nylC as a probe, and PCR using 

primers TAF419/TAF420 were used to screen suspected knockouts (FIG. 6).  

Knockouts were screened phenotypically by use of acriflavine agglutination. 



36 

 

Results for the PCR screen (FIG. 6, Panel I) showed the presence of the 

anticipated 2.9kb fragment from the wild-type strain and the presence of a 1.9kb 

PCR product, indicative of the knockout.  Results from the Southern blot  (FIG. 6, 

Panel II) with the nylC probe on Hind III digested genomic DNA demonstrated 

the anticipated 10.2kb fragment from the wild-type strain the 14.8kb from the 

knockout strains. 

Complementation test confirms restoration of LPS expression in rough 

Brucella.  Knockout strains of B, abortus and B. melitensis were transformed by 

conjugation with E. coli strains carrying pJET1445.  Complementation of rough 

defect was confirmed by several phenotypic tests, including acriflavine 

agglutination, Western Blotting and direct fluorescent labeling of Brucella LPS 

(FIG. 7). 
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FIG. 6. Screening manBA knockouts.  ManBA knockouts were screened by PCR and Southern 
Blotting.  Panel I, agarose gel with PCR products A) Lambda HindIII/EcoRI, B) Distilled water 
control, C) TSB control, D) Brucella melitensis 16M wild-type product, E) Brucella abortus S2308 
wild type product, F) Brucella melitensis ∆manBA, G) Brucella abortus ∆manBA.  These results 
show the presence of the anticipated 2.9kb fragment from the wild-type strain and the presence 
of a 1.9kb PCR product, indicative of the knockout.  In Panel II, results from the Southern blot  
(FIG. 6, Panel II) with the nylC probe on Hind III digested genomic DNA demonstrated the 
anticipated 10.2kb fragment from the  wild-type strain the 14.8kb from the knockout strains.
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FIG. 7. Western blots of Brucella.  Top: Western blots of Brucella melitensis and Brucella 
abortus.  Bottom: ProQ-Emerald 300 glycoprotein staining of Brucella run on SDS-PAGE.  Lanes 
are M – Marker, A – B. melitensis 16M, B– B. melitensis ∆manBA, C– B. melitensis 16M 
∆manBA/pJET1445, D – B. melitensis 16M ∆manBA/pBBR1MCS6–y, E – B. abortus S2308, F – 
B. abortus ∆manBA, G – B. abortus 16M ∆manBA/pJET1445 H – B. abortus 16M 
∆manBA/pBBR1MCS6–y, E.c. – E. coli O55:B5 smooth strain LPS. 

   M      A      C      B     D     M    M      E      G      F     H     M 
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Results from the acriflavine agglutination showed no agglutination with 

complemented strains.  LPS production, as observed by Western Blotting and 

Pro-Q Emerald 300 staining was indistinguishable in complemented strains 

versus wild-type smooth strains. 

Complement mediated killing of rough Brucella strains.  Normal cow, 

human, and goat sera from healthy donors were tested for the ability to kill 

smooth and rough B. abortus and B. melitensis strains, as described in the 

Materials and Methods.  As shown in FIG. 8 rough B. abortus strains were 

sensitive to serum complement, whereas B. melitensis is generally resistant to 

serum-mediated killing.  Rough B. abortus strains were killed approximately 3 

logs, while smooth strains were immune to killing.  Smooth and rough B. 

melitensis strains were reduced at most by 0.3 log.  The result with B. melitensis 

mirrors results with the naturally rough, virulent B. ovis and B. canis strains (22, 

117). 
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FIG. 8. Serum mediated killing of Brucella.  Smooth and rough Brucella strains were incubated 
at 37°C with 50% normal cow, normal goat, and normal human serum for 4 hours.  Portions of 
each suspension were plated, and bacterial counts enumerated.  Values shown in the graph are 
the log of the CFU/ml in fresh serum subtracted from the log CFU/ml in heat-inactivated serum.  
The values shown for the inoculum are the CFU/ml in tryptone phosphate buffer after four hours.
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DISCUSSION 

In this study, the connection between phosphomannomutase and 

phosphomannose isomerase and LPS expression was definitively explored by 

constructing genetically defined mutants in both Brucella abortus and Brucella 

melitensis.  Previous studies looking at the connection between this locus and 

LPS biosynthesis have relied on transposon mutants, which may suffer 

downstream effects as the result of transposon insertion (4, 53, 103).  

Understanding expression of LPS biosynthesis genes is an important first step 

to being able to control biosynthesis of LPS for either vaccines or understanding 

Brucella LPS’ contribution to virulence.  

Rough strains of B. abortus and B. melitensis were derived by allelic 

exchange of the manBA locus with a kanamycin resistance cassette.  Further, 

trans-complementation of the genetic defect was achieved, restoring full 

biosynthetic properties.  Western blotting and fluorescent labeling of Brucella 

LPS demonstrated restoration of phenotype.  A functional assay examining 

resistance to serum-mediated killing showed that trans-complementation was 

effective in restoring phenotypic properties characterized for smooth Brucella 

strains (16, 29, 49, 104). 

This study opens the door to construct Brucella strains with controllable LPS 

biosynthesis to investigate the role LPS plays in Brucella virulence. 
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GENETIC CHANGES AT manBA ARE RESPONSIBLE FOR HIGH 

FREQUENCY LOSS OF LPS EXPRESSION 

 
INTRODUCTION 

The appearance of rough Brucellae in culture has been regarded as a 

random occurrence attributable to changing environmental conditions.  

Dissociation in Brucella has previously been documented for the rough vaccine 

strain, 45/20.  Unpredictable reversion to smooth phenotype was the main 

reason for discontinued use of strain 45/20 (105, 128, 129).  The genetic basis 

for smooth to rough transition in strain 45/20 remains uncharacterized. 

RB51, a spontaneously appearing rough variant of B. abortus was found to 

contain a transposon insertion in the wboA gene (139).  Complementation 

experiments attempting to restore the function of this locus did not restore the 

organism’s normal smooth phenotype.  Additional defects may have occurred 

because of in vitro passage.  The rate of appearance of rough mutants has 

never been described in the literature although anecdotal evidence suggests that 

it is significant.  The experiments described below were designed to determine 

the rate of appearance of rough variants and to determine whether this variation 

differs under in vivo conditions. 

In experiments with T-1 phage, Luria and Delbrück established the number of 

mutations per genome per generation is equivalent to the number of phage 

resistant mutant bacteria compared to the total number of bacteria in the culture 
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(97).  Further, they found that the phage resistant mutants were already in the 

bacterial culture rather than being induced by the presence of the phage.  

Generally, this frequency is 10-8 mutant bacteria per generation.  Drake has 

extended this research to find that the range for background mutation in bacteria 

is 10-6 to 10-8 mutations per generation (39, 40).  Mutation rates higher than 10-6 

mutations per genome per generation are considered mutators.   

Hypermutation in pathogenic bacteria is not unknown, and can be a method 

to affect dissociation.  Oliver et al. have conducted extensive investigations 

examining the mutation of Pseudomonas in cystic fibrosis patients, wherein they 

characterized the mutation rate to Rifampin resistant strains as 3.2 × 10-6 (109).  

One aspect of these hypermutable Pseudomonas strain is changes in the 

expression of LPS and EPS on the surface of the bacterium (118).  In fact, the 

mutation that allows Pseudomonas to adapt in cystic fibrosis patients is often the 

development of mucoid phenotype resulting from loss of control of algC, an 

ortholog of manB.  A mutation that has been shown to bring this phenotype 

about is a C to T transition in the phosphomannomutase gene (142).  Similarly, 

studies focused on Salmonella and E. coli have demonstrated hypermutable 

phenotypes in pathogenic strains, that confer an adaptive advantage to the 

bacterium in the host (15, 20, 57, 93, 108, 135). 

The work presented here paralleled the work of Luria and Delbrück, utilizing 

BK-2 Brucella phage isolated from the Isfahan strain of B. melitensis (37, 38) to 
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establish the rough content of smooth colonies.  The receptor(s) for BK-2 phage 

is largely uncharacterized, but one component is smooth LPS.  Since the 

recognition incorporates smooth LPS, only smooth strains are susceptible to 

phage-mediated killing.  This phage also has broad specificity enabling 

comparison of multiple Brucella species. 

MATERIALS AND METHODS 

Molecular biology, polymerase chain reaction, and primers.  Genetic 

manipulations were carried out as described above.  DNA Sequencing was 

performed on an ABI 3100 Genetic Analyzer at the DNA Technologies Lab , 

Department of Veterinary Pathobiology, Texas A&M University College of 

Veterinary Medicine and Biomedical Sciences.  Primers used for amplification 

with were also used for sequencing.  Sequence analysis was performed using 

Accelrys MacVector™ and DNAStar Lasergene™. 

Bacteria, plasmids, growth conditions and restriction endonucleases.  

In addition to the strains and plasmids listed in Table 2, E. coli strain AT2538 

(CGSC), Brucella melitensis 16M∆manBA, Brucella abortus S2308∆manBA 

were used.  The two manBA knockout strains are described in the previous 

chapter.  Strain 20D2 is a transposon mutant with a transposon insertion in pleD 

(BMEII0660).  All strains were grown as previously described. 

The Brucellaphage, BK2, was obtained from J. Douglas (37, 38).  

Propagation of BK-2 phage was carried out in tryptic soy broth inoculated with a 
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suspension from a 24-hour culture of B. abortus S2308, so that the final bacterial 

concentration was approximately 5 x 108 cfu/ml.  Phage was added to give a 

concentration of approximately 109 plaque-forming units.  The culture was 

incubated at 37°C, with agitation, for 18 hours.  The broth was then centrifuged 

to remove gross cellular debris and filtered through a 0.2µm polyethersulfone 

(PES) (Nalgene, Rochester, NY) membrane syringe filter. 

Rough mutant isolation from smooth colonies.  Brucella abortus and 

Brucella melitensis virulent isolates were grown on TSA to isolate individual 

colonies.  Isolation of rough mutants was carried out using independent smooth 

Brucella colonies.  Five individual colonies from each plate were suspended in 

1ml of peptone saline, each, serially diluted, and plated on TSA in the presence 

of absence of BK-2 phage.  Plates were overlaid with soft agar [7% (w/v) Bacto 

agar, 15 g/L TSB] containing at least 600,000 pfu of BK2-phage.  After 72 hours, 

the total colony forming units were enumerated. 

Determination of the background mutation rate in Brucella: Antibiotic 

resistance.  Brucella melitensis and Brucella abortus were each grown on TSA, 

verified as antibiotic sensitive, and harvested (individual colonies or whole 

plates) into peptone saline after 72 hrs at 37°C.  These bacterial suspensions 

were serially diluted and portions plated on TSA with and without antibiotics, 

including rifampin (100µg/ml), spectinomycin (100µg/ml), or gentamicin 

(10µg/ml).  The number of colonies appearing on each of these substrates was 
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enumerated.  The background mutation rate is equal to the number of colonies 

appearing on selective media divided by the number of colonies appearing on 

permissive media. 

Determination of the background mutation rate in Brucella: Pyrimidine 

auxotrophy.  To measure background mutation rate, pyrimidine auxotrophy was 

used through selection on 5-fluororotic acid (40µg/ml) in Brucella minimal media 

[BMM, 1.5% Bacto agar (w/v), 100mM NaCl, 60mM K2HPO4, 30% glycerol (w/v), 

5% lactic acid (w/v), 10mM glutamic acid, 10mM MgCl2, 5mM FeSO4, 10mM 

MnCl2, 60µM thiamine, 160µM nicotinic acid, 84µM Ca2+-pantothenate, 8µM 

biotin] containing 50µg/ml uracil.  

For determination of pyrimidine auxotrophy as a result of pyrE mutation (FIG. 

9), independent Brucella colonies were re-suspended in 200 µl peptone saline.  

This suspension was then diluted 1000-fold in fresh peptone saline.  A final 10-

fold dilution was made into 200 µl aliquots of TSB in the wells of an ELISA plate.  

The resulting cultures, each inoculated with about 1000 cells, were incubated for 

2 days, yielding visible turbidity.  Cultures were removed from incubation when  
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the cell density reached approximately 5 x 107/ml.  The density of viable cells 

was determined by plating a subset of these cultures on non-selective media.  A 

70-µl aliquot of each culture was plated on selective medium, and FOA-resistant 

colonies were analyzed after 8-10 days of incubation unless otherwise noted.  

As a positive control, the E. coli, uracil auxotroph strain, AT2538 was carried 

through all steps of the experiment.  The pyrE mutation rate was calculated from 

a total of 94 independent B. abortus and B. melitensis colonies respectively.  

Mutants from the pyrE study were randomly chosen for sequence analysis by 

applying the technique of Grogan et al. (65).  Mutants were chosen for 

sequencing by marking a small dot on the back of the Petri plates on the day 

that cultures were plated.  The colony closest to the dot was chosen for 

sequencing.  Portions of each of the clonally pure culture were preserved at -

70°C. Total genomic DNA was extracted from the remainder of the culture by 

use of lysozyme digestion followed by proteinase K digestion. 
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FIG. 9. Co-opting the pyrimidine biosynthetic pathway.  The normal pyrimidine biosynthetic 
pathway in Brucella melitensis is shown on the left.  The addition of 5-fluoroorotic acid (FOA) co-
opts the pathway, resulting in cell death.  Cells may avoid death by inactivation of either pyrE or 
pyrF (shown in red).  The gene designations are as follows: pyrA, carbamoyl-phosphate 
synthase (EC 6.3.5.5, BMEI0522, BMEI0526, BMEI1781); pyrB aspartate carbamoyltransferase 
(EC 2.1.3.2, BMEII0670); pyrC, dihydroorotase (EC 3.5.2.3, BMEI1281, BMEII0669); pyrD, 
dihydroorotate dehydrogenase (EC 1.3.3.1, BMEI1611); pyrE, orotate phosphoribosyltransferase 
(EC 2.4.2.10, BMEI1295); pyrF, orotidine 5'-phosphate decarboxylase (EC 4.1.1.23, BMEI1999); 
pyrH, uridylate kinase (EC 2.7.4.4, BMEI0825); pyrG, CTP synthetase (EC 6.3.4.2, BMEI0850). 
Adapted from (84, 90). 
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Phenotypic confirmation of rough mutants.  Rough mutants from were 

confirmed for rough phenotype by acriflavine agglutination (6).  Ten microliters of 

bacteria from an 18-24 hour liquid culture, is spotted onto a glass slide.  This 

sample is mixed with 10µl of a 0.1% (wt/vol) aqueous solution of acriflavine.  

Agglutination indicates a rough phenotype (6).  Alternatively, crystal violet 

staining was used to test the presence of rough colonies on plated media, when 

harvesting a single colony was undesirable.  The dye [2%(wt/vol) crystal violet 

dye, 20% (vol/vol) ethanol, 0.8% (wt/vol) ammonium oxalate] was used to flood a 

Petri plate containing the bacteria; colonies formed from rough mutants will 

absorb the dye readily and turn a dark purple.  This dye is excluded by smooth 

colonies.   

Genotypic tests for rough mutants.  The presence of manBA was 

determined for all spontaneous rough isolates by PCR amplification.  Cultures 

were grown 16-24 hours in tryptic soy broth.  Samples were applied to an FTA 

CloneSaverTM card, which inactivates the bacteria (Whatman).  Two-millimeter 

punches were taken from each sample and used in a subsequent PCR.  

Complementation tests with the expression vector pJET1445 were performed for 

each mutant as previously described 

Recovery of rough isolates from mice.  Bacterial strains were grown on 

TSA plates and harvested in 5 ml of PBS.  The bacterial concentration of 

suspension was estimated with an absorbance spectrophotometer, and adjusted 
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to a concentration of approximately 5 x106 CFU/ml.  Plating the inocula and 

enumerating total CFU confirmed the infectious dose.  Six to eight week old mice 

were injected with 100µl, in six parallel groups.  The different inocula consisted 

of pure populations of Brucella melitensis 16M, Brucella melitensis 

16M∆manBA, 1:1 B. melitensis 16M wild type and ∆manBA and the same 

strains on a B. abortus background.  The mice were sacrificed at 1 and 8 weeks 

post-inoculation by CO2 asphyxiation.  Spleens were collected from each group, 

spleen weight was determined, and spleens were homogenized with a tissue 

homogenizer (Omni 2000; Omni International, Inc.) for determining bacterial 

load.  In addition to plating on TSA with appropriate antibiotics, a portion of each 

homogenate was plated on BK-2 phage as previously described, for 

enumeration of total rough bacteria.  Data are the average log10 value of CFU 

per spleen over five mice. 

In vitro competitive growth.  Genetically engineered rough B. melitensis 

was mixed with wild-type B. melitensis 1:1 in 5 ml of TSB.  After 48 hours, 50µl 

was removed and passaged to fresh TSB for further culture.  This was repeated 

for three passages.  The rough content of each passage was ascertained by 

differential plating. 
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RESULTS 

Dissociation rate determination.  The dissociation rate for 60 B. melitensis 

and 59 B. abortus individual smooth colonies was determined.  The number of 

rough colonies derived from each single smooth colony was enumerated, the 

ratio, rough cfu/smooth cfu from each smooth colony is the dissociation rate.  

The rate of dissociation for B. melitensis is 1.15 x 10-4, while the frequency of 

dissociation of B. abortus rough variants is 1.27 x10-5.   

In order to assess the appearance of rough mutants in vivo, mice were 

inoculated with 5 x105 CFU of each strain (smooth, rough) or a 1:1 mixture of 

smooth and rough.  The survival and virulence characteristics were compared 

over eight weeks.  The rate of dissociation remained similar to the in vitro model.  

After 1 week, rough mutants were isolated from mice infected with smooth B. 

melitensis at frequency of 5.94 x 10-3 and mice infected with B. abortus had a 

dissociation rate of 9.95x 10-3.  After 8 weeks, these frequencies changed only 

slightly to 1.42 x 10-2 and 6.44 x 10-4 respectively.  Mice infected with pure rough 

populations eliminated the bacteria rapidly; both B. melitensis and B. abortus 

rough strains were below the limit of detection after 1 week, and B. abortus 

rough mutants recovered slightly towards 8 weeks.  In mice infected with 1:1 

ratios of smooth and rough bacteria, rough strains were recovered out to 8 

weeks, at similar frequencies to animals infected with pure populations of 

smooth strains.  Since the marked mutant was not recovered from these 
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animals, these roughs represent newly derived mutants from the smooth portion 

of inoculum (FIG. 10). 

Mutation rate estimation.  Luria-Delbrück fluctuation calculations were 

applied to multiple independent cultures to estimate the rates of pyrE or manBA 

mutation.  The method of the median is generally accepted as an unbiased 

method to determine the mutation rate in bacterial populations (86, 124).  The 

method consists of calculating the median number of mutants and using that 

number to find the theoretical number of mutants per culture from the tables of 

Lea (92).  Attempts to establish the background mutation rate of Brucella by 

spontaneous appearance of antibiotic resistant colonies were inconclusive due 

to the lack of isolation of resistant colonies.  Based on the median culture size 

(approximately 108/ml), the rate from this test is less than 10-8 mutations per 

genome per generation.   
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FIG. 10.  Recovery of rough Brucella in mice at 1 and 8 weeks.  Data is presented as 
log10 value of bacteria present in spleens, averaged over 5 mice.  The limit of detection (L.O.D.) 
is less than 50 organisms.  Solid arrows represent the initial inoculum. 
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An alternative approach utilizing auxonography was utilized.  Growth on the 

toxin 5-fluororotic acid selects mutants deficient in either of two UMP 

biosynthetic enzymes: orotate phosphoribosyl transferase (OPRTase) and 

orotidine 5'-monophosphate decarboxylase, encoded by the pyrE and pyrF 

genes, respectively (65).  FOA is not toxic outright, but the 5-F-UMP made from 

it by sequential action of the two enzymes kills cells (FIG. 9).  Loss of either 

enzyme thus spares the mutant in the presence of FOA, but also renders it 

dependent on exogenous uracil for growth.  The parameters needed to calculate 

the background mutation rate were derived from 94 independent B. abortus and 

B. melitensis cultures.   

With the exception of jackpot cultures (>>3000 colonies/plate), 261 mutant 

colonies were collected from B. abortus, and 930 mutant colonies were collected 

from B. melitensis.  Median numbers of mutants for these cultures were 2 and 

18.5, respectively.  The most probable number of mutational events per culture 

for the set, m, was determined by using the method of the median of Lea and 

Coulson (92, 97, 124).  This leads to an estimation of 1.32 and 6.07 mutational 

events per culture for B. abortus and B. melitensis respectively.  To calculate the 

average number of cells per culture, the viable titers were determined by serial 

dilution and plating on nonselective medium.  Values were averaged, deriving 

the average number of bacteria in a given culture (Nav).  Mutation rate per cell 

generation, µ, was calculated by using the relationship µ = (ln2)(m/Nav).  For B. 
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abortus this value was 1.63 x 10-8, and for B. melitensis 7.48x 10-8 mutations per 

genome per generation.  This indicates an extremely stable genome.Similar 

experiments were carried out to estimate the mutation rate for manBA.  The 

theoretical number of mutations per culture (m) was found in two ways.  Using 

the median of all rough colonies (B. melitensis or B. abortus) to find m, led to m= 

293 mutations per culture, for B. melitensis and m=312 mutations per culture for 

B. abortus.  Using the median of only those colonies complemented by manBA 

in trans, m=197 mutations per culture for B. melitensis and 331 mutations per 

culture for B. abortus.  Luria-Delbrück mutation frequencies, µ, were calculated 

for each method.  In general the rate of mutation is about 6 times greater than 

that observed for reversion of E. coli auxotrophy and 2 times greater than the 

rate observed for S. typhimurium (39).  Mutation rates for manBA are about 100-

1000 times greater than the rate of mutation resulting in loss of function of lacI in 

E. coli (39).  These rates, summarized in Table 4, are consistent with a mutator 

phenotype.  

Genotypic tests for rough mutants.  Contribution of genetic events at the 

manBA locus was assessed by PCR, Southern blotting, and a complementation 

test for each mutant.  For the complementation test, plasmid pJET1445 (Table 2, 

FIG. 4) was introduced into each rough isolate to determine if a defect in manBA 

was the reason these strains had lost LPS expression.  Indeed, 36.67% of B. 

melitensis, 20.34% of B. abortus, and 28.57% overall rough mutants
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Table 4. Dissociation frequency, mutation rate, mutation frequency and complementation 

test results for B. melitensis and B. abortus.  
In the column for mutation frequency, column A represents all rough, while column B 

represents only those rough complemented by manBA in trans. 
Species Dissociation 

frequency 
Mutation 

Rate 
Mutation Frequency Complementation 

Test 
   A B  

B. melitensis 1.15 x 10-4 293 1.27 x 10-3 1.25 x 10-3 36.67% 
B. abortus 1.27 x10-5 312 1.95 x 10-4 2.06 x 10-4 20.34% 
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were complemented by manBA in trans.  This complementation test represents 

the first time LPS expression has been fully restored to any O-antigen deficient 

Brucella strain.  The ability of this expression vector to restore 

lipopolysaccharide expression in manBA deficient strains was confirmed by both 

Western blotting (FIG. 7) and staining with Pro-Q Emerald 300, a glycoprotein 

stain (FIG. 7).  

PCR and Southern blots failed to show gross rearrangements at manBA, but 

sequencing did show change that may be related to the loss of function.  In 

sequenced roughs, two transitions, T135C and G335A were found.  These 

transitions cause a coding shift from serine to leucine and glutamic acid to 

glycine, respectively.  Both transitions are found within the putative 

phosphoglucomutase/phosphomannomutase, alpha/beta/alpha domain I of 

phosphomannomutase (manB, BMEII0899) (98).  Presumably, similar 

polymorphisms exist in spontaneous roughs that still need to be sequenced.  

Thermal cycler conditions for amplification of manBA for screening spontaneous 

rough isolates, using primers TAF419 and TAF420 were developed.  The 

reaction mixture contained a 2mm punch from a Whatman FTA CloneSaverTM 

card that had sample applied to it from a liquid Brucella culture.  Punches were 

prepared for PCR according to manufacturer instructions.  Further, the reaction 

mixture contained 0.6µM of each primer, 500µM of each deoxyribonucleoside 

triphosphate, 1U of AccuTaq LA polymerase, 1x PCR buffer, 2mM MgCl2.  
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Instrument conditions included activation of the polymerase at 98°C for 30 

seconds, 30 cycles of amplification with 94°C x 30 seconds melting, 58°C 

annealing x 30 seconds, and 68°C x 3 minutes elongation.  A final elongation 

was performed one time at 68°C for 10 minutes. 

Rough B. melitensis grow faster than smooth strains.  The ability of 

rough strains to outgrow smooth strains was test in a competitive assay over five 

passages.  Starting with a ratio of 1:1, the engineered rough mutant was found 

to outgrow the smooth variant 2:1 by the end of three passages (FIG. 11). 

Creation of non-dissociative Brucella  strains.  To see if dissociation 

could be prevented, smooth Brucella melitensis isolates were transformed with 

pJET1445, containing wild-type copies of the B. melitensis manBA genes.  BK-2 

phage was used to test the rate of appearance of rough isolates from this non-

dissociative strain.  Dissociation rates of these strains were indistinguishable 

from wild-type B. melitensis. 
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FIG. 11. Rough Brucellae outgrow smooth Brucellae over time.  Smooth and rough 
strains were mixed 1:1 and grown in 5 ml of TSB.  Strains were passaged every 48 hours.  
Bacterial CFU were enumerated by differential plating.  Each data point is the average of two 
independent trials, ± standard deviation. 
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FIG. 12. Preliminary screen of Brucella rough mutants.  A) Spontaneous rough isolates 
contain a 12kb deletion.  Genomic DNA was prepared and digested from virulent Brucella and 
rough isolates (R1-R13).  The digested DNA was electrophoresed and Southern blotted.  
Detection was performed by using a randomly 32P labeled probe for type-6-aminohexanoate, 
immediately upstream of manBA.  The full extent of the deletion was characterized by primer 
walking.  B) the manBA locus, showing the full extent of the deletion that was originally 
characterized.  The dark blue genes are undeleted, the light blue genes are partially deleted and 
red genes are completely removed. 
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DISCUSSION 

Preliminary analysis revealed that there were two genotypes associated with 

spontaneous rough mutants present in stock cultures obtained from ATCC.  One 

of these genotypes is a deletion of a 12kb region of the genome encompassing 

a region that includes the manBA locus as revealed by Southern blots of 

genomic DNA, cloning and sequencing (FIG. 12).  The second genotype 

contained no detectable rearrangement when measured at the manBA locus.  

This fits the expectation that more than one locus is involved in the loss of O-

antigen, though trans-complementation restored LPS expression in each of 

these strains (both types).  In the process of collecting additional, non-sibling, 

rough mutants from a virulent isolates of B. melitensis and B. abortus, we were 

unable to show a large deletion, but were able to demonstrate trans-

complementation of LPS deficient strains in approximately 30% of isolates.  

Deletion events could represent rare endpoints of smooth to rough transition. 

Utilizing a Poisson approximation for the binomial distribution, we calculated 

the number of rough mutants needed in order to investigate all twelve of the 

known genes that could cause a rough phenotype.  A listing of these genes is in 

Table 1.  Using Poisson’s distribution, sample size can be chosen for the 

probability of showing a defect in at least one individual.  This is an extension of 

the methods used to estimate the number of mutants needed to saturate a 

genome during signature tagged mutagenesis: 
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! 

n = "
ln(1" #)

p
 (i) 

where n= sample size, γ=probability of finding at least one defective gene, 

p=estimated proportion of defective genes in our population (1 out of 12 genes).  

For 99% confidence: 

! 

n = "
ln(1" 0.99)

1

12

=
4.61

0.08
= 57.63 # 58 mutants (ii) 

The number of mutants needed to reach saturation increases rapidly with the 

number of potential targets (Table 5). 

In vitro growth characteristics of rough strains were established in 

competition to smooth strains (FIG. 11).  Though the rough mutant outgrows the 

smooth strain, the rate is linear, as opposed to the logarithmic dissociation 

frequency.  In vivo, it is anticipated that the rough would not outgrow the smooth 

strain since the rough mutant is readily killed.
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Table 5. Increase in the number of mutants that needed to be screened in proportion to 
the suspected contributing genes. 

Confidence Level Number of Candidate 
Genes 99% 95% 90% 

12 55 36 28 
13 60 39 30 
25 115 75 58 
50 230 150 115 

100 461 300 230 
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In vivo, the frequency of dissociation was found to be similar to the frequency 

with which rough isolates were found in smooth colonies.  Smooth to rough 

transition is not simply an in vitro artifact, as has been suggested, but represents 

a real event that may be the result of adaptation to the host environment.  The 

role that LPS plays in acquiring the host is just beginning to be understood, and 

some modification of the LPS may occur within the host.  Dissociation has been 

demonstrated in many gram-negative bacteria.  The major difference between 

this and other regulatory mechanisms is that it is mediated by changes to the 

DNA, which can occur during replication, rather than in response to a stimulus 

(44, 73, 126).  There are many mechanisms for dissociation including inversions 

and transposon movement.  The Brucella genome is replete with transposons 

and repeat regions that could be involved.  Bacteria have diverse methods for 

changing the expression of their genes by changing their genomes. 

Establishing the background mutation rates for Brucella is an important 

component of the overall project goal of determining the significance of the rate 

of appearance of rough variants.  To accomplish this, a bank of antibiotics was 

used.  This method has been successful in determining the frequency of mutator 

phenotypes of pathogenic forms of E. coli, Salmonella, and Pseudomonas from 

108 bacteria (93, 130).  The selection of these antibiotics was determined by 

their mechanism of action, in order to compare as wide a variety of cellular 

functions (replication, transcription, and translation) as possible.  However, 
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Brucella cultures failed to produce any mutants by this method.  Instead, 

conversion to pyrimidine auxotrophy was used to examine the background 

mutation rate.  As expected, Brucella demonstrated a very low rate of mutation.   

In order to determine what the rate of appearance of rough variants is under 

in vivo growth conditions, mice were infected with smooth, pure rough and mixed 

smooth and rough inocula.  Spleens of infected mice were harvested at 1 or 8 

weeks post inoculation.  There was essentially no difference in the rate of 

smooth to rough transition in the host compared to isolation from smooth 

colonies. 

Attempts undertaken to prevent the appearance of rough mutants by 

inclusion of manBA in trans in smooth strains were unsuccessful.  The 

appearance of rough mutants from transformed smooth strains was essentially 

the same as from wild-type strains.  Since this genetically modified smooth strain 

contains approximately ten copies of each plasmid, the appearance of rough 

mutants was expected to be a rare event.  Loss of the plasmid is a possibility.  In 

order to assure plasmid retention, chloramphenicol was maintained during in 

vitro studies.  Failure to maintain the plasmid will produce results 

indistinguishable from smooth or rough organisms depending on the genetic 

background employed.  A second mechanism that could limit interpretation is 

silencing of essential gene functions by trans acting factors including DNA 

methylation or gene regulation.  In such a case the presence of multiple gene 
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copies may not be sufficient to counteract such a mechanism and rough variants 

may still appear. 

Emergence of spontaneous rough mutants could involve changes at a single 

locus or at multiple loci.  Current evidence suggests major rearrangements are 

possible, whether this is a rare event or part of a programmed process is not 

clear.  Furthermore, large deletions would appear to limit survival unless the 

presence of these rough organisms enhances survival of the overall population.  

In this study, rough mutants were found to be the result of base transitions 

occurring within the active site of phosphomannomutase.  Both base transitions 

replace a hydrophobic residue within the active site.   

Evidence described elsewhere suggests the presence of a population of 

spontaneous rough organisms that revert to full virulence (128, 129).  However, 

the frequency of such events is not known.  It is clear that rough mutants induce 

greater levels of inflammatory cytokines upon interaction with macrophages 

indicating presence of O-antigen is important for preventing cellular activation 

(121).  Prevention of activation enhances survival.  The fact that rough mutants 

are observed at the same frequency in vivo as in vitro argues for a role in 

survival or dispersion of the bacteria throughout the host.  Hypermutation can 

offer substantial improvement in adaptive potential.  Preservation of this 

hypermutable trait may reflect the ancestry of the strain, as the closely related 

Rhizobia (55) also dissociate from LPS.  Loss of LPS in Rhizobium has been 
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shown to cause defects in colonizing the root nodule.  The ultimate pathogen 

would possess transient mutation that confers adaptive advantage in the host 

environment.   

During the course of this work, the signature-tagged mutagenesis project 

revealed a rough mutant that could be complemented by manBA in trans, but 

was not defective in manBA.  A two-component response regulatory element, 

pleD, was inactivated by insertion of mini-tn5.  Acriflavine agglutination revealed 

that this strain was rough, and attempts to complement this rough defect with 

pJET1445 were successful.  The role of pleD in LPS expression, is unclear, but 

studies in other organisms have shown that it plays a role in cell division in 

Caulobacter crescentus and cellulose biosynthesis in Rhizobia  (3, 9, 99).  

Rhizobia pleD null mutants produce long cellulose tendrils from the surface of 

the bacterium, rather than a uniform capsule.  The role of pled needs further 

investigation.  Mutations at second sites in the genome may affect the 

expression of manBA at its native promoter, contributing to dissociation.  This 

may account for lack of gross rearrangements at manBA, though pJET1445 was 

able to complement loss of function.  The complementation plasmid, pJET1445 

does not carry the putative promoter for manBA. 
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LPS PROMOTES ‘PROPER’ INNATE IMMUNE RESPONSE 

 
INTRODUCTION 

Lipopolysaccharide is commonly accepted as an essential virulence factor for 

Gram-negative bacteria because it is necessary for survival of classical strains 

(B. suis, B. abortus, B. melitensis).  Contradictory to LPS’ classical role as an 

inflammatory agent, Brucella LPS actually limits macrophage activation, which is 

the hallmark of its traits as a virulence factor (91).  In this aim, the main goal of 

the experiments were to characterize the role of Brucella LPS articulating uptake 

and survival of smooth organisms.  Nitric oxide and cytokine production levels 

were also measured.  Finally, the ability of smooth and rough to recruit the 

macrophage in the host was compared by using a short-term mouse model that 

looked mainly at invasion. 

Though trafficking of Brucella is documented in several cell types, 

macrophages appear to be particularly important to the spread of Brucella 

throughout the host (95).  To illustrate the connection between Brucella LPS with 

uptake and survival, LPS knockout mutants with or without complementing 

plasmid were compared to survival of the parental smooth strain.  The murine 

macrophage cell-line, J774A.1 is well characterized and widely used for 

screening Brucella mutants and was used here for comparative purposes (8, 34, 

68, 72, 78, 79, 96, 112). We observed restricted activation of macrophages by 

smooth Brucellae characterized by reduced production of reactive nitrogen 
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intermediates and reduced cell death (necrosis).  Understanding the function of 

Brucella LPS in a productive infection compared to the abortive infection 

observed with rough Brucella will provide greater insight about the role LPS 

plays in acquiring the host. 

The mouse model is well established in Brucella research.  With previous 

murine models of brucellosis, it has been shown Brucella administered 

intraperitoneally results in colonization of the spleen and peripheral lymph (4, 5).  

This study used two approaches to the mouse model, to answer distinctly 

separate questions.  One of the issues approached was to assess the survival of 

B. melitensis smooth and rough mutants at acute (1 week) and chronic (5 

weeks) stages of infection in the mouse.  Since this study is seeking to define 

the role of LPS in host cell/bacterial interaction, the more important question 

asked was about the acquisition or recruitment of the host environment by the 

pathogen.  This experiment was designed to ask which host cells were recruited 

to the site of infection and what cytokine responses were elicited in the host.  

Innate immune response to Brucella is mediated by professional phagocytes 

(8, 11, 18, 87).  In macrophages, cytokines typically studied include the 

proinflammatory cytokines, IL1α, TNFα, IFNγ, and the proinflammatory cytokine 

antagonist, IL10.  Compared to E. coli, Brucella strains are poor inducers of 

cytokines in the macrophage model (121).  However, work in the mouse model 

has shown that smooth Brucella LPS is an antagonist of proinflammatory 
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cytokines (21).  This inflammatory response appears to be mediated through the 

toll-like receptor 4 pathways.  Herein, data is presented from infection of mice, 

that corroborates the proinflammatory nature of Brucella LPS in the mouse 

model. 

MATERIALS AND METHODS 

Bacteria, plasmids, growth conditions and restriction endonucleases.  

All bacterial strains used in this study are listed in Table 2.  Additionally the 

16M∆manBA, 16MR1, 16MR6, and S2308∆manBA from the second study were 

used in this study.  16MR1 and 16MR6 are spontaneous roughs isolates that 

can be complemented by manBA in trans.  All strains were grown as previously 

described.  

Macrophage infection.  Macrophage infection by Brucella is standard 

practice.  Monolayers of cells are cultured in tissue culture plates; bacteria were 

added to J774A.1 macrophages at multiplicity of infection (MOI) of 100.  The 

infected cell culture plate was centrifuged (room temperature, 200g, 5 minutes) 

to associate the bacteria with the macrophage monolayer.  Cell cultures were 

placed in a 37°C incubator in the presence of 5% CO2 for 20 minutes.  The 

infected monolayers were then washed three times with peptone saline.  Tissue 

culture media containing Gentamicin was added back to monolayer, killing 

bacteria external to the macrophage.  At each time point, the cell supernatant 

was removed to determine cytokine levels, nitric oxide levels or lactate 
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dehydrogense (LDH) response, as appropriate.  Invasion was judged after 1 

hour by lysing the macrophage monolayer and plating the lysate on TSA with or 

without appropriate antibiotics.  To measure uptake, the recovered bacterial CFU 

is compared with the infectious dose.  Survival was judged at later time points.  

Supernatants collected at indicated time points were stored at –80°C for cytokine 

and nitric oxide detection. 

LDH assay to measure cell death.  Cells cultured in 24-well plates were 

infected with B. abortus in triplicate wells as described above.  Culture 

supernatants were collected at various time points post-infection, and the lactate 

dehydrogenase (LDH) release was determined by use of the CytoTox 96 non-

radioactive cytotoxicity assay (Promega, Madison, Wisconsin) according to the 

manufacturer's instructions.  Cell death is expressed as a percentage of 

maximum LDH release, i.e., 100 x (optical density at 490 nm [OD490] of infected 

cells - OD490 of uninfected cells)/(OD490 of lysed uninfected cells - OD490 of 

uninfected cells).  This assay was performed in triplicate; data shown is the 

average of three independent experiments, ± the standard deviation. 

Assay to measure release of nitric oxide.  Nitric oxide in tissue culture 

supernatants was detected using Griess Reagent (Sigma).  Fifty microliters of 

the culture supernatants were mixed with 50 µl of Griess regent in 96-well assay 

plate and incubated for 15 min at room temperature.  Sodium nitric solutions with 

1 to 50 µM concentrations were included as standards.  This assay was 
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performed in triplicate; data shown is the average of three independent 

experiments, ± the standard deviation. 

Murine infection assay (Long-term).  Bacterial strains were grown on TSA 

plates and harvested in 5 ml of PBS.  The bacterial concentration of suspension 

was estimated with an absorbance spectrophotometer, and adjusted to a 

concentration of approximately 5 x 107 cfu/ml of Brucella melitensis wild type or 

5 x 108 cfu/ml Brucella melitensis rough mutant.  Plating the inocula and 

enumerating total CFU confirmed the infectious dose.  Four groups of 5 mice 

each, 6 week old BalbC/ByJ mice were injected with 100µl, in parallel groups.  

The mice were sacrificed at 1 and 5 weeks post-inoculation by CO2 

asphyxiation.  Spleens were collected from each group and homogenized with a 

tissue homogenizer (Omni 2000; Omni International, Inc.) for determining 

bacterial load.  Data are represented as average log10 value of CFU per spleen 

for each mouse. 

Murine infection assay (Short-term).  To evaluate uptake in the mouse 

model, two groups of 8 mice each were infected parenterally via peritoneal 

injection with either B. melitensis wild type or the manBA deletion mutant with 1 

x 108 cfu/mouse.  Mice were sacrificed at 1-, 4-, 8-, 24-, and 72-hour time points.  

Samples from the mice were evaluated for bacterial survival, cellular infiltration 

of the peritoneum, and cytokine responses.  Cell-mediated responses were 

quantified using differential cell analysis based on morphology, a common 
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clinical approach used to distinguish different cytological populations.  Samples 

of spleen, liver, and mesenteric lymph node were collected, fixed in 10% 

formalin.  Texas A&M University’s College of Veterinary Medicine histology 

service performed the embedding and sectioning of these tissues for later 

analysis. 

Cytokine analysis.  Initial characterization of cytokine response was carried 

out using the RayBio® Mouse Cytokine Antibody Array II from RayBiotech 

(Atlanta, GA), as per manufacturer instruction.  The sample applied was ascitic 

fluid from infected mice. 

Evaluation of cytokine production was carried out by way of a sandwich 

ELISA.  Whole animal cytokine profiles were developed on recovered ascites 

and serum (51, 111).  All cytokines, unless otherwise stated, were detected 

using sandwich ELISA development kits purchased from PeproTech, Inc. (Rocky 

Hill, NJ), following the manufacturer’s instructions. 

RESULTS 

Evaluation of infection by rough and smooth B. melitensis in murine 

macrophages.  Both rough and smooth bacteria were internalized by the mouse 

macrophage cell-line J774A.1.  At early time points, 0, 4, and 8 hours, it was 

apparent that rough bacteria were being internalized approximately 10-fold more 

than smooth bacteria.  After 24 hours, the outcome for rough bacteria was 

markedly different from smooth bacteria, with a sharp reduction in bacterial 



74 

 

numbers recovered, with the exception of the rough strain 16MR6.  Smooth 

bacteria appear to have begun to replicate within the macrophage environment, 

as evidenced by an increase of one order of magnitude (FIG. 13). 

Infection of macrophages with rough B. melitensis causes macrophage 

death.  Inspection of infected macrophages revealed that macrophages infected 

with rough B. melitensis were undergoing cell death.  This was quantitated using 

an assay that measured the release of LDH to the media.  High quantities of 

LDH in the media of macrophages infected with rough strains after 24 hours 

indicated that these cells were dying, while cells infected with smooth strains 

showed little cell death (FIG. 14).  In fact, observations of cells infected with 

smooth strains showed that there was no gross morphological difference 

between these cells and uninfected cells.  Cell death may be the endpoint of 

activation.  Consistent with activation mediated death of macrophages was the 

release of reactive nitrogen intermediates, as measured by Griess reagent.  

Generally, more reactive nitrogen was observed from macrophages infected with 

rough Brucella (FIG. 15). 

Survival of rough Brucellae in mice (long-term).  The survival 

characteristics of rough and smooth Brucella melitensis were assessed in the 

mouse model of brucellosis.  Since the literature concerning rough mutant 

survival in mice has already made apparent that rough mutants are attenuated, 

the rough mutant dose was increased relative to the smooth inoculum.  The 
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result was a significant decrease of spontaneous rough isolates in the mice by 1 

week, with all rough mutants being significantly attenuated at 5 weeks (FIG. 16).  
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FIG. 13. Infection of murine macrophages by rough and smooth B. melitensis.  Bacteria 
were grown overnight at 37°C, then left in contact with macrophages for 1 hour.  Monolayers 
were washed and further incubated with gentamicin containing media for the specified amount of 
time.  At the selected time points, macrophages were lysed and total numbers of bacteria were 
enumerated by plating serial dilutions on TSA.  Data shown are the mean ± standard deviation 
(error bars). 
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FIG. 14. Rough Brucella melitensis are cytotoxic in macrophages.  J774A.1 
macrophages are infected with Brucella at an MOI of 1:100.  To synchronize infection, the 
infected cells were centrifuged 5 minutes, incubated 20 minutes.  The tissue culture media is 
removed and replaced with media containing Gentamicin, which kills all the extracellular 
bacteria.  At each time point, media is removed from each well and assayed for the release of 
lactate dehydrogenase, an indicator of host cell lysis.  The bright field microscopy images are 
smooth and rough Brucella infected macrophages at 24 hours post infection, respectively.  In the 
graph, LDH values are shown as they relate to the percent cell death of the macrophage 
monolayer.  Values with a single asterisk are significant for all rough strains versus the wild-type 
smooth strain, 16M.  Values with a double asterisk are significant for the manBA allelic exchange 
knockout mutant.  This assay included Brucella melitensis 16M, 16MﾆmanBA::KmR, and one 
each type of the spontaneous rough isolates of Brucella melitensis, R1 and R6 
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FIG. 15. Release of nitric oxide is greater in macrophages infected with rough Brucella.  
J774A.1 macrophage-like cells were infected as described in the Materials and Methods.  
Supernatants were assayed for reactive nitrogen 24 hours post-infection.  Data is averaged over 
three independent assays ± standard deviation.  Differences between isogenic smooth and 
rough strains are significant (p<0.05) by use of Student’s t test.  Differences between all strains 
and uninfected control are significant. 
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FIG. 16. Rough B. melitensis is attenuated in the mouse model of infection at both acute 
and chronic time points.  Mice were infected with smooth and rough B. melitensis as indicated in 
the materials and methods.  Spleens were removed at the indicated time points and total 
bacterial load per spleen was determined.  Data on the graph indicate recovery from individual 
mice, with a solid bar to indicate median infection level.  At one week post-infection, significant 
differences between the smooth and rough are indicated with an asterisk.  At five weeks post 
infection all rough strains a significantly attenuated.  Significance was judged using Student’s t  t-
test and p<0.05. 



79 

 

Acquisition of the host environment.  As a measure of the bacterium’s 

ability to acquire cellular targets in a host model of brucellosis 8 mice were 

infected parentally with wild-type B. melitensis 16M and 8 mice with the 

engineered rough strain, 16M∆manBA.  Within 1 hour of infecting the mice, there 

was a 1-log difference between smooth and rough strains, reflecting the severe 

attenuation of rough Brucella in an animal model. 

Consistent with the observations in the macrophage model, rough bacteria 

acquired the host cell sooner than smooth bacteria, as measured by the use of 

gentamicin to treat recovered ascities (FIG. 17).  At early time points there was 

one order of magnitude more extracellular smooth bacteria in the ascities than 

intracellular bacteria.  In the case of rough bacteria, most had acquired a host 

cell.  Both populations decrease in the ascities, presumably as the bacteria are 

trafficked to peripheral organs (FIG. 17). 

Bacterial load in the spleen and liver essentially parallel one another.  In the 

case of both the smooth and rough, bacterial load in the spleen and liver 

essentially remain the same from 1 hour until about day 7.  Rough strains never 

colonize these organs to the same extent as smooth strains, presumably to 

killing as the bacteria traffic to these organs.  Interestingly, there is an increase 

in rough bacteria present in the spleen between day 3 and day 7, while there is a 

decrease in rough bacteria present in the liver (FIG. 17). 
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Total cellularity was assessed in mice infected with both rough and smooth 

bacteria.  There were no significant differences in total cellular numbers elicited 

by smooth or rough bacteria or from mice injected with a similar volume of PBS.  

However, differential cell analysis found differences in the cellular populations 

recruited by smooth and rough bacteria.   

In mice infected with smooth bacteria, the major cell populations present 

between 24 and 72 hours were macrophages, while mice infected with rough 

bacteria presented more neutrophils in their ascities.  By 24 hours, differential 

cell count in animals infected with smooth bacteria revealed approximately 60% 

of neutrophils, 25% of macrophages, and 15% of other nucleated cells including 

mesothelial cells and lymphocytes.  By contrast, the cellularity in mice infected 

with rough Brucella revealed approximately 70% of neutrophils, 20% of 

macrophages, and 10% of other nucleated cells including mesothelial cells and 

lymphocytes.  For both strains at this time point, macrophages often contained 

large numbers of intracytoplasmic bacteria and clear vacuoles.  By 72 hours, the 

population of cells found in the peritoneum of mice infected with smooth bacteria 

had not changed, 60% of macrophages, 25% of neutrophils, and 15% of other 

nucleated cells including mesothelial cells and lymphocytes.  Meanwhile, mice 

infected with rough bacteria showed peritoneal population consisting of 75% of 

neutrophils, 15% of macrophages, and 10% of other nucleated cells including 

mesothelial cells and lymphocytes.  In uninfected mice, the vast majority 
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(approximately 90%) of the nucleated cells present were medium-sized round 

cells with a single, blue, hyperchromatic, round nucleus, moderate amounts of 

pale to blue cytoplasm containing a peripheral red rim, presumably mesothelial 

cells.  Macrophages and neutrophils were rarely observed (FIG. 18). 

Mice release higher amounts of proinflammatory cytokines on 

challenge with smooth organism.  Gram-negative bacteria usually stimulate 

high levels of pro-inflammatory cytokines, owing to the activity of Lipid A.  

Difference in cytokine expression, because of infection by rough or smooth 

bacteria could account for the difference in virulence between bacterial strains.  

To narrow the scope of pro-inflammatory cytokines screened from the mouse 

model of infection, a protein based cytokine array was used to determine 

differential expression of cytokines in mice infected with rough or smooth 

Brucella.  Samples applied to these arrays were pooled from mice from each 

group over all time points.  The output from this array (FIG. 19) showed 

increased induction of the pro-inflammatory cytokines IL6, IL12, IFNγ, MIP2, and 

TNFα in mice infected with smooth strains.  Levels of some key chemokines, 

KC, MCP1, TIMP1, were greater in rough Brucella infected mice. 
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FIG. 18. Total cellularity as the result of infection.  The total cells per milliliter PBS were 
collected to assess whether smooth or rough Brucella elicited inflammatory cells to the 
peritoneum in different quantities.  Values shown are the average and the standard deviation.  
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ELISA was performed on a subset of these cytokines to characterize the 

temporal expression of pro-inflammatory cytokines and smooth or rough 

Brucella infection (FIG. 20).  Proinflammatory cytokines responded as expected 

for gram-negative bacteria.  In general, there was increased expression of pro-

inflammatory cytokines in mice infected with smooth Brucella melitensis.  The 

difference between parental smooth strains and constructed rough strains was 

apparent from the outset, particularly in MIP1α.  TNFα showed a somewhat 

delayed increase, but still quite profoundly different between the two strains.  

TNFα levels peaked early, by four hours, and then began a gradual decline, 

which is characteristic of this cytokine (121).  MIP1α and IL12 show a gradual 

peak over the 72-hour timeframe, while IL1α seems to show a gradual increase 

for smooth strains.  There is sudden, early peak in IL1α for mice infected with 

rough strains, which quickly declines at later time points. 
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FIG. 19. Induction of different cytokine and chemokine responses by Brucella melitensis 
16M wild type and the deletion mutant Brucella melitensis 16M∆manBA::KmR.An antibody-based 
array containing specific antibodies for 32 different cytokines/chemokines was used to determine 
differences in expression of cytokines/chemokines in mice infected with smooth or rough 
bacteria.  Samples applied to the blots were pooled ascitic fluid of mice over the entire 7-day 
time course.  Key differences were seen between the pro-inflammatory cytokines, IL6, IL12, 
IFNγ, MIP2, and TNFα as well as differences in levels of the chemokines, KC, MCP1, and 
TIMP1. 
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FIG. 20. Increased levels of pro-inflammatory cytokines from mice infected with smooth 
bacteria.  Sera were taken from mice infected with 108 smooth or rough bacteria.  Cytokine 
concentration was determined by sandwich ELISA, as described in the Materials & Methods.  
Smooth Brucella consistently induces higher levels of proinflammatory cytokines.  The bimodal 
distribution apparent with levels of TNFα and IL1α is probably due to circulation of resident 
phagocytic cells from the initial site of infection, to the peripheral blood and recruitment of 
peripheral phagocytic cells to the peritoneum.  Data are the average of pooled samples from 
duplicate experiments ± standard deviation. 
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DISCUSSION 

In this study, invasion and survival phenotypes of rough Brucella mutants 

were investigated in macrophage and mouse models of brucellosis.  Brucella 

has two predominant host cell types that it inhabits in vivo, macrophages and 

trophoblasts (123).  The macrophage appears to be the primary residence of 

Brucella in experimental hosts (45), while in pregnant animals the trophoblast 

has been shown to play host to Brucella (36).  This study shows that lack of LPS 

does not permit Brucella to recruit the correct cell type to establish infection. 

First, macrophage-like cell lines were used to characterize the survival 

phenotype of smooth Brucella melitensis and an isogenic manBA knockout.  

Knocking out the manBA operon has been shown to ablate LPS biosynthesis, 

with the resultant immunological consequences being reduced survival in serum 

mediated killing assays, macrophages, and the host model (4, 5, 50, 53).  Rough 

mutants were found to have impaired survival, but possibly only as result of the 

death of the host cell.  This cytotoxic phenomenon was observed over 40 years 

ago by Freeman et al. (54), and has only been recently rediscovered (50, 112).  

Death of the host cell in this experimental system would expose the bacterium to 

gentamicin in the media, killing the bacteria.  In vitro, the reduction of rough 

Brucellae by macrophages, although significant, is not very great. 

Rough mutants were also found to have increased uptake at early time points 

in the macrophage and acute mouse model, by an unknown mechanism.  
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Fernandez-Prada et al. showed that Brucella rough mutants have increased 

affinity for serum complement (50) (49).  Enhanced uptake due to complement 

may play a role in increased uptake in vivo.  Presence of serum complement is 

one of the key differences between the in vivo mouse model and in vitro 

macrophage model.  This phenomena needs to be investigated more carefully, 

as characterization of uptake differences between smooth and rough bacteria 

may help elucidate immunological responses to virulent organism.  

In an acute model of disease, differences in cellular recruitment were evident 

by differential cellular analysis.  Smooth Brucella recruited macrophages to the 

site of infection, while rough Brucella recruited larger numbers of neutrophils.  

This dichotomy in cellular recruitment is most likely the root of decreased 

survival of rough Brucella.  Generally, neutrophils exhibit much greater killing 

ability compared to macrophages, though Brucella has evolved some defense 

mechanisms to prevent neutrophil degranulation (95).  One of these defenses is 

LPS; increased killing of rough Brucella by neutrophils has previously been 

demonstrated (87).  Other aspects of Brucella’s defense against neutrophils 

include the secretion of GMP and adenine (95).   

These differences in cellular recruitment were borne out by observations from 

an antibody based array assessing the chemokines and cytokines present 

during the course of infection.  On the array, pro-inflammatory cytokines were 

up-regulated in mice infected with smooth strains, while a basal level of 
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expression was apparent on the array treated with ascitic fluid from mice 

infected with rough Brucella.  However, the real difference between these arrays 

was in the up-regulation of neutrophil specific chemokines. 

In rough Brucella infected mice, there is increased expression of TIMP-1 and 

the mouse CXCL1 chemokine, KC. TIMP-1 degrades basement membrane, 

promoting infiltration of inflammatory cells (25).  The presence of KC is indicative 

of neutrophil influx.  In fact, in murine models of anthrax, KC has been shown to 

cause influx of neutrophils, followed by neutrophil mediated killing of bacteria 

(113).  Differences in cellular recruitment probably account for differences in the 

cytokine and chemokine profile measured by ELISA, as the proinflammatory 

cytokines measured in this experiment are primarily secreted by macrophages. 

Modifications to the bacterial cell surface would most certainly change the 

way the host perceives Brucella.  Current insights into innate immunity suggest 

that the primary receptor for gram negative LPS is TLR-4 mediated (10, 75).  In 

the past six months, data has shown temporal involvement of TLR-2 then TLR-4 

in the stimulation of innate immunity by gram-negative pathogens (141).  Indeed, 

CHO cells transfected with TLR-2 and TLR-4 show a response to the presence 

of both smooth and rough LPSs from Brucella.  However, rough LPS alone is 

insufficient to stimulate TLR-4 (21). 

Brucella LPS plays an important role in acquisition of the host environment.  

LPS is protective against macrophage killing, complement mediated killing and 
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reactive nitrogen and oxygen intermediates.  More importantly, it appears to play 

a role in recruitment of the ‘correct’ cellular partner to advance brucellosis from 

an acute infection to a chronic infection. 
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CONCLUSIONS AND FUTURE WORK 

 

Lipopolysaccharide is the major component of Gram-negative cell walls and 

as a result, is an active participant during the early stages of host agent 

interaction.  O-antigen is the immunodominant antigen on the Brucella surface 

and as a result, the serological response is dominated by antibody to O-antigen.  

This body of work has demonstrated that the metabolic locus, manBA, 

participates in the synthesis of O-antigen.  The manBA locus is subject to higher 

than expected mutation rates, and is a substantial participant in the phase-

variant nature of pathogenic Brucella melitensis and Brucella abortus strains.  

Further, manBA may be subject to regulation by a trans-acting factor, pleD. 

The role of O-antigen in acquisition of the host was tested using macrophage 

and mouse models.  In both mice and macrophages, rough bacteria are more 

readily taken up.  Contradictory to indications from the macrophage model, 

smooth strains of Brucella stimulated more proinflammatory cytokine activity in 

the mouse.  Smooth LPS appears to be important in recruiting macrophages to 

the site of infection, in contrast to the neutrophils recruited by rough strains, to 

effectively colonize the host.  This data adds credence to the adage that LPS 

plays an important role in the intracellular trafficking of Brucella (52, 64, 121), 

although not in a traditional role of protecting the bacterium from physical effects 
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of host killing mechanisms.  Rather, the role of Brucella LPS as a signaling 

molecule needs to be explored. 

Signaling through toll-like receptors needs to be studied in more detail.  The 

deep rough strains presented in this work are ideal for carrying these signaling 

studies forward, since unlike RB51, they make no lipopolysaccharide (28).  From 

the literature, there are implications that the toll-like receptors are important for 

processivity of Brucella (21, 43, 76).  Toll-like receptors are pattern recognition 

receptors, and as such have been shown to have affinities for particular 

Pathogen Associated Molecular Patterns (PAMPs).  For gram-negative bacteria, 

the essential PAMPs are lipids and LPS.  Lipids activate macrophages through 

TLR2 and LPS activates macrophages through TLR4.  So far, studies 

investigating Brucella and TLR’s are limited in scope and have concentrated on 

cementing the link between TLR4 and Brucella LPS, rather than focusing on 

TLR mediated signaling in the presence of live bacteria.  Campos et al. have 

taken the first look at live Brucella in a mouse model, and present cytokine data 

is contradictory to the accepted paradigm from macrophage models, though it 

agrees with the data presented here.  The disjoint between macrophage derived 

data and data from animal models is a dangerous pitfall, and displays the 

limitations of both systems. 

Experimental Salmonella infections have been shown to include temporal 

involvement of both TLR4 and TLR2 (141).  Toll-like receptors are expressed at 
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low level on resting macrophages (140).  Upon activation, TLR4 is expression 

down-regulated early (6 hours), while TLR2 expression comes up gradually (by 

24 hours).  In this particular line of experimentation, the early involvement of 

TLR4 is largely responsible for control of the bacterium.  TLR4 knockout mice 

did not produce the same inflammatory response as TLR4 competent mice, 

though both TLR4 and TLR2 were necessary to clear the infection.  The roles of 

TLR4 and 2 could be investigated for Brucella infections using similar 

techniques.  Rough Brucellae should be unable to signal through the TLR4 

mediated pathway.  This may be the source of the decreased cytokine 

production by the rough mutant in the mouse, despite profound activation in 

vitro. 

The dynamics of Brucella LPS expression, as a line of investigation, have 

been opened up by the current study.  Regulation of LPS expression/phase is 

the next logical step.  A clear link between the appearance of rough forms and 

dissociation has yet to be established; fluorescence microscopy appears to be 

the tool of choice to make these observations with antibody specific to smooth 

LPS.  Already, from the signature-tagged mutagenesis bank, it appears a 

candidate gene, the transcriptional regulator, pleD, has been found.  Loss of 

function at pleD resulted in a rough phenotype that was complemented in trans 

by manBA.  LPS control by a transcriptional network has huge implications for 

the virulence model.  Fluorescence microscopy assays can be put to work 
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immediately to look at dissociation inside host cells.  Currently, transcriptional 

regulation of LPS biosynthesis in Brucella is “black box”.  In other species, 

dissociation is an integral component of virulence.  

With the advent of microarray technologies, picking apart the LPS 

biosynthesis pathway may become more feasible.  For instance, Vibrio cholerae 

has both smooth and rugose forms.  Rugosity actually has been found to confer 

an advantage to Vibrio in the environment (120).  In 2004, Yildiz et al. used 

microarray analysis and determined that there are significant changes in 

bacterial transcriptional networks, beyond the scope of the predicted LPS 

biosynthesis genes. 

Lipopolysaccharide plays an important role in the pathogenesis of 

brucellosis.  This study has established the central role of a metabolic locus in 

the formation of LPS and the importance of LPS for acquisition of the host.  

Further questions to be asked include the regulation of LPS biosynthesis in 

Brucella as well as the importance of Brucella LPS as a signaling molecule. 
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APPENDIX A 

 
A-1 Exact sequence of manBA amplified from Brucella melitensis 
 
 
                                     25                         50 
            TTCCAGGCAG ATACAGGTTC GATGGCAGCA TGAGCAGCAA TTCCCTCAAA 
            AAGGTCCGTC TATGTCCAAG CTACCGTCGT ACTCGTCGTT AAGGGAGTTT 
 
                                     75                        100 
            TTTGGCACGA GCGGCCTTCG CGGGCTGGCG GTAGAACTGA ACGGCCTGCC 
            AAACCGTGCT CGCCGGAAGC GCCCGACCGC CATCTTGACT TGCCGGACGG 
 
                                    125                        150 
            CGCCTATGCC TATACGATGG CCTTTGTGCA GATGCTTGCT GCAAAAGGGC 
            GCGGATACGG ATATGCTACC GGAAACACGT CTACGAACGA CGTTTTCCCG 
 
                                    175                        200 
            AGTTGCAGAA GGGCGACAAG GTGTTTGTCG GCAGGGATTT GCGCCCCTCC 
            TCAACGTCTT CCCGCTGTTC CACAAACAGC CGTCCCTAAA CGCGGGGAGG 
 
                                    225                        250 
            AGCCCTGATA TTGCAGCCCT TGCCATGGGT GCCATCGAAG ATGCCGGCTT 
            TCGGGACTAT AACGTCGGGA ACGGTACCCA CGGTAGCTTC TACGGCCGAA 
 
                                    275                        300 
            CACACCGGTC AATTGCGGCG TCCTGCCCAC GCCTGCGCTG AGCTATTATG 
            GTGTGGCCAG TTAACGCCGC AGGACGGGTG CGGACGCGAC TCGATAATAC 
 
                                    325                        350 
            CGATGGGCGC GAAAGCACCC AGCATCATGG TCACGGGAAG CCATATTCCA 
            GCTACCCGCG CTTTCGTGGG TCGTAGTACC AGTGCCCTTC GGTATAAGGT 
 
                                    375                        400 
            GATGATCGCA ACGGGCTGAA ATTCTATCGC CGCGACGGTG AAATCGACAA 
            CTACTAGCGT TGCCCGACTT TAAGATAGCG GCGCTGCCAC TTTAGCTGTT 
 
                                    425                        450 
            GGATGATGAG GCGGCAATCA GTGCAGCCTA TCGCAAGCTG CCTGCCATTC 
            CCTACTACTC CGCCGTTAGT CACGTCGGAT AGCGTTCGAC GGACGGTAAG 
 
                                    475                        500 
            TCGCTGCCCG CAAACATGTC GGCTCCACCG AAACCGATGC GGCCTTGCAG 
            AGCGACGGGC GTTTGTACAG CCGAGGTGGC TTTGGCTACG CCGGAACGTC 
 
                                    525                        550 
            GCTTATGCCG ATCGCTATGC AGGTTTTCTT GGGAAAGGGA GCCTGAATGG 
            CGAATACGGC TAGCGATACG TCCAAAAGAA CCCTTTCCCT CGGACTTACC 
 
                                    575                        600 
            CCTGCGGGTC GGCGTTTATC AACATTCTTC CGTGGCGCGC GATCTTCTGA 
            GGACGCCCAG CCGCAAATAG TTGTAAGAAG GCACCGCGCG CTAGAAGACT 
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                                    625                        650 
            TGTACCTGCT CACGACACTC GGCGTGGAAC CCGTGGCGCT CGGACGATCC 
            ACATGGACGA GTGCTGTGAG CCGCACCTTG GGCACCGCGA GCCTGCTAGG 
 
                                    675                        700 
            GATATATTCG TGCCGGTCGA TACCGAGGCA TTGCGCCCCG AAGACATTGC 
            CTATATAAGC ACGGCCAGCT ATGGCTCCGT AACGCGGGGC TTCTGTAACG 
 
                                    725                        750 
            GCTGCTTGCC CAATGGGGCA AAAGCGACAG GCTTGATGCC ATCGTCTCCA 
            CGACGAACGG GTTACCCCGT TTTCGCTGTC CGAACTACGG TAGCAGAGGT 
 
                                    775                        800 
            CCGACGGAGA CGCGGATCGC CCGCTGATTG CCGATGAGCA TGGACAATTC 
            GGCTGCCTCT GCGCCTAGCG GGCGACTAAC GGCTACTCGT ACCTGTTAAG 
 
                                    825                        850 
            GTTCGCGGCG ATCTTGCTGG CGCCATCACC GCCACATGGG TGGGGGCGGA 
            CAAGCGCCGC TAGAACGACC GCGGTAGTGG CGGTGTACCC ACCCCCGCCT 
 
                                    875                        900 
            TACGCTCGTC ACGCCAGTCA CCTCCAACAC CGCATTGGAA AGCCGCTTTC 
            ATGCGAGCAG TGCGGTCAGT GGAGGTTGTG GCGTAACCTT TCGGCGAAAG 
 
                                    925                        950 
            CCAAGGTTTT GAGAACGCGC GTCGGTTCGC CTTATGTCAT CGCAAGCATG 
            GGTTCCAAAA CTCTTGCGCG CAGCCAAGCG GAATACAGTA GCGTTCGTAC 
 
                                    975                       1000 
            GCACAGGTAT CCACGGGCAA TTCCGGCCCG GTCATCGGGT TTGAGGCCAA 
            CGTGTCCATA GGTGCCCGTT AAGGCCGGGC CAGTAGCCCA AACTCCGGTT 
 
                                   1025                       1050 
            TGGCGGCGTT CTGCTTGGCA GCACGGTCGA GAGGAATGGA CGAAGCCTGA 
            ACCGCCGCAA GACGAACCGT CGTGCCAGCT CTCCTTACCT GCTTCGGACT 
 
                                   1075                       1100 
            CGGCCCTGCC GACGCGCGAC GCCTTGTTGC CCATTCTGGC TTGCCTTGCC 
            GCCGGGACGG CTGCGCGCTG CGGAACAACG GGTAAGACCG AACGGAACGG 
 
                                   1125                       1150 
            ACGGTTCACG AAAAGAAAAC GCCGCTTTCA ACAATCGCCC GGTCCTATGG 
            TGCCAAGTGC TTTTCTTTTG CGGCGAAAGT TGTTAGCGGG CCAGGATACC 
 
                                   1175                       1200 
            CTTCCGCGTC GCGCTTAGCG ACCGGCTGCA AAACATTCCG CAGGAGGCGA 
            GAAGGCGCAG CGCGAATCGC TGGCCGACGT TTTGTAAGGC GTCCTCCGCT 
 
                                   1225                       1250 
            GCACCGCCTT CCTCGCGCTC TTGGAGGATG CGGATAAACG CGCCTCGCTC 
            CGTGGCGGAA GGAGCGCGAG AACCTCCTAC GCCTATTTGC GCGGAGCGAG 
 
                                   1275                       1300 
            TTTCCTGCTG GCGACGCAAT CGTGCGGGTG GAAACCATCG ACGGCGTGAA 
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            AAAGGACGAC CGCTGCGTTA GCACGCCCAC CTTTGGTAGC TGCCGCACTT 
 
                                   1325                       1350 
            GCTTTTCTTT CAATCAGGCA ATGCGGTTCA TTATCGGGCA TCGGGCAATG 
            CGAAAAGAAA GTTAGTCCGT TACGCCAAGT AATAGCCCGT AGCCCGTTAC 
 
                                   1375                       1400 
            CGCCGGAACT GCGCTGCTAT GTGGAATCTT CGGATGACAC ACAAGCCGCC 
            GCGGCCTTGA CGCGACGATA CACCTTAGAA GCCTACTGTG TGTTCGGCGG 
 
                                   1425                       1450 
            AAGCTTCAGG CGCTTGGCTT GGAAATCGCA CGCAAAGCAC TAAAGGATGC 
            TTCGAAGTCC GCGAACCGAA CCTTTAGCGT GCGTTTCGTG ATTTCCTACG 
 
                                   1475                       1500 
            GACGAGGCCA TGAGTTTCAT ACCGGTAATT ATCAGCGGGG GATCGGGTTC 
            CTGCTCCGGT ACTCAAAGTA TGGCCATTAA TAGTCGCCCC CTAGCCCAAG 
 
                                   1525                       1550 
            AAGGCTTTGG CCGCTTTCGC GGGATGCACA TCCAAAACCC TTTATCAAAC 
            TTCCGAAACC GGCGAAAGCG CCCTACGTGT AGGTTTTGGG AAATAGTTTG 
 
                                   1575                       1600 
            TGCCGGATGG CGAAACACTC ATCGGCAAGA CCTATGCGCG CGCTTCGCGC 
            ACGGCCTACC GCTTTGTGAG TAGCCGTTCT GGATACGCGC GCGAAGCGCG 
 
                                   1625                       1650 
            CTTGTAAACG CCGAACAGAT CCTTACGGTT ACGAACCGCG ATTTTCTTTT 
            GAACATTTGC GGCTTGTCTA GGAATGCCAA TGCTTGGCGC TAAAAGAAAA 
 
                                   1675                       1700 
            CCTGACGCTC GACGCTTATG CGGCGGCAGG TGCCGCGCAG ATGGAAAACA 
            GGACTGCGAG CTGCGAATAC GCCGCCGTCC ACGGCGCGTC TACCTTTTGT 
 
                                   1725                       1750 
            CTTTCCTTCT GGAGCCGCTT GGCCGCGACA CCGCGCCCGC AGTGGCGCTT 
            GAAAGGAAGA CCTCGGCGAA CCGGCGCTGT GGCGCGGGCG TCACCGCGAA 
 
                                   1775                       1800 
            GCCGCCCTTC ATGCCGCTGA AGCCTATGGG CCGGATGCCA CGCTTCTGGT 
            CGGCGGGAAG TACGGCGACT TCGGATACCC GGCCTACGGT GCGAAGACCA 
 
                                   1825                       1850 
            CATGCCGGCC GATCACCTGA TCGAGGATGA ACAAGCCTTC GCGGAAGCGG 
            GTACGGCCGG CTAGTGGACT AGCTCCTACT TGTTCGGAAG CGCCTTCGCC 
 
                                   1875                       1900 
            TTGCGAAAGC GCGCGCGCTT GCCGAGGCAG GGCGCATCGT CACCTTCGGC 
            AACGCTTTCG CGCGCGCGAA CGGCTCCGTC CCGCGTAGCA GTGGAAGCCG 
 
                                   1925                       1950 
            ATTGTGCCGG ATCGGCCCGA GACCGGCTTC GGCTATATCG AAGTGCAAGG 
            TAACACGGCC TAGCCGGGCT CTGGCCGAAG CCGATATAGC TTCACGTTCC 
 
                                   1975                       2000 
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            TACGGATGTT CAGCGATTTG TCGAAAAGCC GGATGAGGCC ACCGCCCAGA 
            ATGCCTACAA GTCGCTAAAC AGCTTTTCGG CCTACTCCGG TGGCGGGTCT 
 
                                   2025                       2050 
            CCTATGTGGA AAGCGGACGC TATTTCTGGA ATTCCGGCAT GTTCTGCTTC 
            GGATACACCT TTCGCCTGCG ATAAAGACCT TAAGGCCGTA CAAGACGAAG 
 
                                   2075                       2100 
            AAGGCATTGA GCATGATCGA CGCCATGCAG CGTTACGCAC CGCAGGTACT 
            TTCCGTAACT CGTACTAGCT GCGGTACGTC GCAATGCGTG GCGTCCATGA 
 
                                   2125                       2150 
            GGCAGGCGCT AGGGCTGCCC TCGCCCAGGC CCGGCGTGGC AATAACGGCG 
            CCGTCCGCGA TCCCGACGGG AGCGGGTCCG GGCCGCACCG TTATTGCCGC 
 
                                   2175                       2200 
            AGACCAAAAC CCTTGAAATC GCCAGGGACG AGTTTGCCGC AACGCCTGCC 
            TCTGGTTTTG GGAACTTTAG CGGTCCCTGC TCAAACGGCG TTGCGGACGG 
 
                                   2225                       2250 
            ATTTCCATCG ACTACGCAGT CATGGAAAAG GCGGACAATA TGGCCTGCGT 
            TAAAGGTAGC TGATGCGTCA GTACCTTTTC CGCCTGTTAT ACCGGACGCA 
 
                                   2275                       2300 
            GCCCGTTTCC TGCGGCTGGT CGGATATCGG CTCATGGGCG GCGATGGCCG 
            CGGGCAAAGG ACGCCGACCA GCCTATAGCC GAGTACCCGC CGCTACCGGC 
 
                                   2325                       2350 
            ATCTCGTGAC ACCCGATGAA AACGGCAATC GCCTGCGCGG AGAAACTGTT 
            TAGAGCACTG TGGGCTACTT TTGCCGTTAG CGGACGCGCC TCTTTGACAA 
 
                                   2375                       2400 
            CTGGAAGATA CGACCAACAG TTTCGTCCTT TCTGAAACCC GTCTGGTGAG 
            GACCTTCTAT GCTGGTTGTC AAAGCAGGAA AGACTTTGGG CAGACCACTC 
 
                                   2425                       2450 
            CCTTGTCGGT GTGCATGATC TTCTCGTGGT TGACACGCCG GACGCCCTTC 
            GGAACAGCCA CACGTACTAG AAGAGCACCA ACTGTGCGGC CTGCGGGAAG 
 
                                   2475                       2500 
            TCGTCGCTCA TCGCGACAAA GCGCAGGAAG TACGCAGCGT TTTCAACAAA 
            AGCAGCGAGT AGCGCTGTTT CGCGTCCTTC ATGCGTCGCA AAAGTTGTTT 
 
                                   2525                       2550 
            TTGCGCAAGC AAGGTCATGA AGCTGCAAAG CTGCACCGCA CAGCCCATCG 
            AACGCGTTCG TTCCAGTACT TCGACGTTTC GACGTGGCGT GTCGGGTAGC 
 
                                   2575                       2600 
            CCCATGGGGC ACCTATACCG TGCTGGAAGA GGGCGACGGC TTCAAGATCA 
            GGGTACCCCG TGGATATGGC ACGACCTTCT CCCGCTGCCG AAGTTCTAGT 
 
                                   2625                       2650 
            AACGGATCGA GGTAAAGCCA GGGCGGCGCC TCAGCCTTCA GGCCCATCAC 
            TTGCCTAGCT CCATTTCGGT CCCGCCGCGG AGTCGGAAGT CCGGGTAGTG 
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                                   2675                       2700 
            CACCGCTCCG AACACTGGAT CGTGGTGTCC GGCACGGCAA AGGTGACGAA 
            GTGGCGAGGC TTGTGACCTA GCACCACAGG CCGTGCCGTT TCCACTGCTT 
 
                                   2725                       2750 
            TGGCGACCGG GAAATCCTGC TCACCACCAA TCAGTCAACC TATATTCCCT 
            ACCGCTGGCC CTTTAGGACG AGTGGTGGTT AGTCAGTTGG ATATAAGGGA 
 
                                   2775                       2800 
            GCGGTTTCCG CCACCGGTTG GAAAATCCCG GTATTTTGCC CCTCGTCCTG 
            CGCCAAAGGC GGTGGCCAAC CTTTTAGGGC CATAAAACGG GGAGCAGGAC 
 
                                   2825                       2850 
            ATCGAGGTGC AGAGCGGCGA ATATCTCGGT GAAGACGACA TCGTGCGCTA 
            TAGCTCCACG TCTCGCCGCT TATAGAGCCA CTTCTGCTGT AGCACGCGAT 
 
                                   2875                       2900 
            TGACGATGTT TACGGACGCG TTTGAAACAT ATTCAGCCAA ATGCGAACCG 
            ACTGCTACAA ATGCCTGCGC AAACTTTGTA TAAGTCGGTT TACGCTTGGC 
 
                                   2925 
            GCTTTGGCAT TCGGCCTATT GGGAT 
            CGAAACCGTA AGCCGGATAA CCCTA 
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