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ABSTRACT 

Top Hole Drilling with Dual Gradient Technology 

to Control Shallow Hazards. (August 2006) 

Brandee Anastacia Marie Elieff, B.S., Texas A&M University 

Chair of Advisory Committee: Dr. Jerome J. Schubert 

 

Currently the “Pump and Dump” method employed by Exploration and 

Production (E&P) companies in deepwater is simply not enough to control increasingly 

dangerous and unpredictable shallow hazards.  “Pump and Dump” requires a heavy 

dependence on accurate seismic data to avoid shallow gas zones; the kick detection 

methods are slow and unreliable, which results in a need for visual kick detection; and it 

does not offer dynamic well control methods of managing shallow hazards such as 

methane hydrates, shallow gas and shallow water flows.  These negative aspects of 

“Pump and Dump” are in addition to the environmental impact, high drilling fluid (mud) 

costs and limited mud options. 

Dual gradient technology offers a closed system, which improves drilling simply 

because the mud within the system is recycled.  The amount of required mud is reduced, 

the variety of acceptable mud types is increased and chemical additives to the mud 

become an option.  This closed system also offers more accurate and faster kick 

detection methods in addition to those that are already used in the “Pump and Dump” 

method.  This closed system has the potential to prevent the formation of hydrates by 

adding hydrate inhibitors to the drilling mud.  And more significantly, this system 
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successfully controls dissociating methane hydrates, over pressured shallow gas zones 

and shallow water flows. 

Dual gradient technology improves deepwater drilling operations by removing 

fluid constraints and offering proactive well control over dissociating hydrates, shallow 

water flows and over pressured shallow gas zones. There are several clear advantages for 

dual gradient technology: economic, technical and significantly improved safety, which 

is achieved through superior well control.  
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CHAPTER I 

INTRODUCTION 

 

In order to meet the world’s increasing demand for energy, the search for oil and 

gas extends into increasingly hostile and challenging environments.  Among these 

problematical environments are the deepwater regions of the world.  As technology 

progresses the definition of deepwater becomes greater and greater every day, and as the 

water depth increases, the associated technical, economic and safety complexities 

increase proportionately.  This has led to a high demand for new technologies 

throughout the oilfield, but with a specific focus on improving drilling technologies.  

The industry wide goals are to: increase accessibility to reserves, improve wellbore 

integrity, reduce overhead costs and, most importantly, provide a safe working 

environment.  Applying a dual gradient technology to offshore drilling is not a new 

concept, but one that is being addressed with new fervor and can help meet all of these 

industry goals. 

 

1.1 Dual Gradient Drilling Technology 

One of the many challenges faced when drilling deepwater offshore wells is the 

decreasing window between formation pore pressures and formation fracture pressures.  

“In certain offshore areas with younger sedimentary deposits, the presence of a very 

narrow margin between formation pore pressure and fracture pressure creates 

____________ 
This thesis follows the style and format of SPE Drilling and Completion. 
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tremendous drilling challenges with increasing water depths.”1 This occurrence is 

explained as being the result of the lower overburden pressures, due to the lower 

pressure gradient of seawater, than that which is exerted by typical sand-shale 

formations.  The resulting situation is that the overburden and fracture pressures in an 

offshore well are significantly lower, than those of an onshore well of a similar depth, 

and it is more difficult to maintain over pressure drilling techniques without fracturing 

the formations.2 Typically, the method for combating this problem has been to fortify the 

wellbore casing, by increasing the number of casing strings set in the well during drilling 

and completions operations.  However, this can be extremely costly, both from a 

materials cost perspective and a time cost perspective.  It has been proven that the 

number of casing strings set in a well can be reduced if the difference between the pore 

pressure and fracture pressure can be managed better.  This has resulted in the 

development of new Managed Pressure Drilling (MPD) techniques.  The International 

Association of Drilling Contractors (IADC) Underbalanced Operations Committee 

defines MPD as: an adaptive drilling process used to precisely control the annular 

pressure profile throughout the wellbore. The objectives are to ascertain the downhole 

pressure environment limits and to manage the annular hydraulic pressure profile 

accordingly.3,4 One MPD technique that is being pursued for commercial use in 

deepwater environments is dual gradient drilling. 
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1.2 Dual Gradient Drilling Advantages 

A dual gradient system removes the mud filled riser from the typical deepwater 

drilling system.  In a conventional system the annulus section of the riser is filled with 

mud, and below the sea floor the pressure within the annulus is so high, that to avoid a 

pressure in the wellbore that exceeds the formation fracture pressure, it is necessary to 

set casing strings more frequently than is technically and economically desirable. 

When using a dual gradient drilling system the riser is removed from the system 

(figuratively and/or literally depending upon the variation of the dual gradient system).  

This allows the pressure at the sea floor to be lower (salt water pressure gradient is lower 

than most drilling fluids’ pressure gradient) than in a conventional system, and this 

allows the driller to more accurately navigate in the pressure window between formation 

fracture pressure and formation pore pressure.  As long as there is a safe margin of 

approximately 0.5 ppg gradient between the wellbore annular pressure gradient and the 

fracture pressure gradient it is unnecessary to set casing strings as often as in the 

conventional system.  An illustration of how the pressures are managed so that annular 

pressure remains above pore pressure at drilling depth but below fracture pressure at 

shallower depths in the well, can be seen in Fig. 1. 
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Fig. 1 - Illustration of Wellbore Pressures in a Dual Gradient System 

 

 

 

Managing the pressure window between the formation fracture and pore 

pressures decreases the number of casing strings required to maintain wellbore integrity 

while drilling.  A comparison between conventional deepwater drilling casing 

requirements and dual gradient deepwater drilling casing requirements can be seen in 

Fig. 2 and Fig. 3. 
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Fig. 2 - Graphical Casing Selection in a Conventional System 

 
 

 

Fig. 3 - Graphical Casing Selection in a Dual Gradient System 
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When drilling conventionally in deepwater conditions the riser is treated as part 

of the wellbore and as the water depth increases the pressures within the wellbore 

change as though the depth of the well is increasing as well.  However, when using the 

dual gradient drilling system procedures, the depth of the water is no longer a factor 

affecting wellbore pressure.  It’s like “taking water out of the way” (from the SubSea 

MudLift Drilling Joint Industry Project (SSMLDJIP) Phase III: Final Report through 

personal communication). Many benefits are realized by employing dual gradient 

drilling technology in a deepwater environment.  A few of these benefits are: 

• Fewer required casing strings 

• Larger production tubing (accommodates higher production rates) 

• Improved well control and reduction of lost circulation setbacks 

• Lower costs, as the “water depth capabilities of smaller rigs may be 

extended”.5,6,7,8  

 

1.3 Dual Gradient Drilling History and Evolution 

The concept of dual gradient drilling was first considered in the 1960s.  At the 

time the idea was to simply remove the riser and therefore the technology was referred to 

as riserless drilling.  The technology, however, was not pursued at the time, as there was 

no driving economic or technical need for improving offshore drilling.  As offshore 
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drilling progressed into deeper water the desire to improve project development 

economics and technical characteristics resurrected the technology in the 1990s. 

Beginning in 1996, four main projects began in an effort to improve deepwater 

drilling technology by implementing dual gradient systems.  The four projects were: 

Shell Oil Company’s project, the Deep Vision project, Maurer Technology’s Hollow 

Glass Spheres project and the SubSea MudLift Joint Industry Project.9 

The most extensive study was the SubSea MudLift Joint Industry Project (JIP) 

that began in 1996 when a group of deepwater drilling contractors, operators, service 

companies and a manufacturer gathered to discuss the merits of riserless or dual gradient 

drilling.  The result was an extensive system design, construction and field test that 

would span five years.  The main reason the group was interested in developing this 

technology was the promise it held to potentially reduce the necessary number of casing 

strings, specifically in the Gulf of Mexico, where high pore pressures and low formation 

strengths require operators to set casing strings often during drilling and completion 

operations.5,6,7 

The SubSea MudLift JIP was charged with the tasks of designing the hardware 

and the necessary procedures to effectively and safely operate the dual gradient drilling 

system.  Phase I of the project took place from September, 1996 to April 1998 and cost 

approximately $1.05 million.  Phase I was the Conceptual Engineering Phase and the 

participants were to create a dual gradient drilling design that: was feasible, considered 

well control requirements, and was adaptable to a large rig fleet (not just a few 

specialized rigs).5,6,7 Phase I is considered to have been very successful and resulted in a 
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design for drilling extended reach, 12¼” holes at TD, in 10,000 ft of water.  One of the 

most challenging design issues was how to lift the mud after it had been circulated 

through the wellbore. 

Once circulated, through the wellbore, the mud or drilling fluid, is loaded with 

free gases, metal shavings, rock chips and other drilling debris.  What kind of pump is 

capable of pumping the mud from the sea floor back to the rig floor?  The JIP answered 

this question in Phase I with the response of a positive displacement diaphragm pump.  

However, no such pump existed that met the JIP’s needs, so it was concluded that the JIP 

would have to design and build one.  Other conclusions of Phase I were: this technology 

is more than feasible, however, well control procedures would need to be modified, and 

a field test is necessary, specifically in the Gulf of Mexico where the driving need for 

this technology is based. 

Phase II, or Component Design, Testing, Procedure and Development, began in 

January of 1998 and continued until April of 2000 and cost approximately $12.65 

million.  The purpose of Phase II was to actually design, build and test the subsea 

pumping system, create all the drilling operations and well control procedures and to 

determine the best methods for incorporating the dual gradient drilling technology onto 

existing drilling rigs.  Phase II resulted in: a proven reliable seawater-driven diaphragm 

pumping system, drilling and well control procedures capable of withstanding potential 

equipment failure cases, and an understanding that system training program was 

necessary. 
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Phase III, or System Design, Fabrication and Testing, began in January of 2000 

and was completed in November of 2001 with a budget of $31.2 million.  The purpose of 

Phase III was to validate the design of the technology through an actual field application.  

This goal was accomplished and the first dual gradient test well was spudded on August 

24th, 2001 and by August 27th, 2001 the 20” casing had been run and cemented.  On 

August 29th, the JIP SubSea MudLift Drilling system was finally put to test in the field.  

Although there were many problems initially (especially with the electrical system), 

“Once a problem was identified and repaired, it stayed repaired.” (From the SSMLDJIP 

Phase III: Final Report through personal communication).  Ultimately ninety percent of 

the field test objectives were met and considered successful.  Although still requiring 

industry support, dual gradient drilling was proven a viable and useful technology.   

Another JIP project began in 2000 and culminated with a successful test 

application in 2004.  This was the development of AGR Ability Group’s (AGR) 

Riserless Mud Recovery System (RMR).  The system was designed and tested 

specifically for the application of drilling the top hole portion of a wellbore.  The desired 

results were to increase control over shallow water and gas flows, and to increase the 

depth of the surface casing strings by reducing the number of dynamically selected seats.  

The RMR system was rated to a depth of 450 meters of seawater, but was tested in only 

330 meters of seawater.  The successful field test took place in December of 2004 in the 

North Sea.10 The conclusions of this JIP were that using dual gradient technology for top 

hole drilling results in: 

• Improved hole stability and reduced washouts 
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• Improved control over shallow gas and water flows 

• Improved gas detection (due to accurate flow checks and improved mud volume 

control) 

• Prevention of the accumulation of mud and cuttings on subsea templates and 

preventing the dispersion of drilling fluids into environmentally sensitive areas 

• Reduced number of necessary surface casing strings. 

The most current research being done in the dual gradient drilling area is a 

project through the Offshore Technology Research Center (OTRC), a division of the 

National Science Foundation (NSF) that is a joint partnership between Texas A&M 

University and the University of Texas.  The project the OTRC is pursuing, which is 

initially funded by the Minerals Management Service (MMS), is called the “Application 

of Dual Gradient Technology to Top Hole Drilling”.  The purpose of the project is to 

begin a JIP that results in the design and test of a dual gradient drilling system geared 

specifically to drilling the top hole portion of the wellbore in a deepwater environment.  

Although this has already been done in shallow water, this OTRC project is to focus on 

the application of a Dual Gradient Top Hole Drilling System (DGTHDS) in deepwater.  

The driving factors for this project are the increasingly hazardous shallow hazards 

commonly found in deepwater environments, especially in the Gulf of Mexico.  These 

shallow hazards: over pressured shallow gas zones, shallow water flows and methane 

hydrates are jeopardizing drilling activities in deepwater.  It is hypothesized that a 

DGTHDS can control these shallow hazards while drilling in deepwater.  The project 
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will explore increasing control over these hazards in two ways: one is in the increased 

well control available from a DGTHDS and the second is to improve the wellbore 

integrity by setting surface casing deeper than in conventional drilling applications.  

Once the shallow hazards are controlled and the conductor and surface casing are set 

deeper this will also allow for safer drilling of the intermediate depth portions of the well 

and ultimately reduce the number of casing strings used throughout the well. 

 

1.4 Achieving the Dual Gradient Condition 

There are different methods used to achieve the dual gradient condition when 

drilling offshore.  Basically, a dual gradient is achieved when there are two different 

pressure gradients in the annulus, the volume between the wellbore inner diameter (ID) 

and the drill string (DS) outer diameter (OD).  The condition can be achieved by: 

reducing the density of the drilling fluid in a portion of the wellbore or riser, removing 

the riser completely and allowing sea water to be the second gradient, or managing the 

level of the mud within the riser and allowing the second gradient within the riser to be 

that of another fluid.11 

  One method, nitrogen injection, is based on air drilling procedures and 

underbalanced drilling techniques.  This technique uses nitrogen to reduce the weight of 

the mud in the riser.6 In an effort to reduce the amount of nitrogen required to lower the 

mud pressure gradient in the riser, a concentric riser system is considered the most 

economical.  In this system a casing string is placed inside the riser with a rotating BOP 
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at the top of the riser (in the moonpool) to control the returning flow.  The mud is held in 

the annulus between the casing string and the riser, and nitrogen is injected at the bottom 

of the riser into the annulus.  Buoyancy causes the nitrogen to flow up the annulus which 

reduces the density and pressure gradient of the drilling fluid as a result of nitrogen’s 

liquid holdup properties.  The injection of nitrogen can reduce the weight of a 16.2 ppg 

mud to 6.9 ppg.  This is can be applied when the second gradient is desired to be even 

lower than that of seawater, which has a typical pressure gradient of 8.55 ppg.  The most 

noteworthy characteristic about this method of using nitrogen injection to create two 

gradients is that the formation is not underbalanced, as one might initially conclude.  The 

cased hole is underbalanced to a depth, but below the casing, in the open hole, the 

wellbore is actually overbalanced, which prevent an influx of fluids from the formation 

into the wellbore.  One serious concern with this method of creating a dual density 

system is the uncertainty as to whether or not well control and kick recognition will be 

more difficult.  In this case, the system is very dynamic and well control and kick 

detection are definitely more complex, however, not necessarily unsafe.12 

Another method of creating a dual gradient system is to begin by drilling the 

upper portions of the well without a riser and by simply returning the drilling mud to the 

sea floor.  In this setup the pressure inside the wellbore at the seafloor is the same as the 

pressure at the sea floor.  In other words the pressure gradient from the ocean surface to 

the sea floor is that of the seawater pressure gradient.  Then, inside the wellbore a 

heavier than typical mud is used to maintain proper pressures while drilling.  Once the 

initial spudding has taken place and the structural pipe has been set, the subsea BOP 
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stack is installed with some variation on a typical system.  The mud returns are moved, 

from the wellhead by a rotating diverter, to a subsea pump which returns the mud to the 

rig floor through a 6” ID return line.  Drilling continues with this setup and the 

remaining casing strings are set using this dual gradient system where mud returns, to 

the rig, through a separate line.6 An illustration of this system can be seen in Fig. 4.   

 

Fig. 4 - Illustration of a Riserless Dual Gradient System12 
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Initially, this method was regarded with skepticism because of the perceived 

difficulty of kick detection.  However, with more advanced technology, and the ability to 

monitor pressure in the subsea BOP accurately, kick detection and the detection of 

circulation loss is reliable and safe.  In fact, it is possible for the riser to act as a trip tank 

in this system.12 

Another method of creating a dual gradient system is similar to that of the 

nitrogen injection.  A Department of Energy (DOE) project was done to test how the 

injection of hollow spheres into the mud returning through the riser can create a dual 

gradient system.  This system is similar to the nitrogen injection method, but separating 

the gas from the mud at the rig floor is simplified because dissolved gas in the drilling 

fluid is not a concern.  The glass spheres are separated from the mud and re-injected at 

the base of the riser.  Fig. 5 illustrates a typical Hollow Glass Sphere Injection system. 

 

 

 

Fig. 5 - Illustration of a Hollow Sphere Injection Dual Gradient System13 
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1.5 A Typical Dual Gradient System and Components 

The most commonly researched and pursued method of achieving a dual gradient 

system is the riserless system, described in Chapter I (1.4) and shown in Fig. 4.  This 

system pumps the drilling mud through the drill string, out the drill bit nozzles, into the 

open hole, up the annulus, into the BOP stack, through the rotating head, into the subsea 

mud pump, and up the 6” return line to the rig floor.  The mud is then cleaned at the rig 

floor and recycled back to the drill string to be circulated again. 

The main components in this system that are unique to the dual gradient system 

are: the drill string valve, the rotating head, the subsea mud pump, and the mud return 

line. 

Once the drilling mud flows up the annulus to the BOP it must be diverted so that 

it can be pumped up the return line.  In the SubSea MudLift Drilling JIP this was 

accomplished through a rotating head referred to as the SubSea Rotating Diverter (SRD).  

This SRD is capable of handling 65/8” 5½” and 5” drill pipe and has a retrievable 

rotating seal rated to 500 psi.  Although, typically, the pressure difference across this 

seal is less that 50 psi.  Once the mud is diverted to the SubSea Mud Pump the main 

concern is handling of solids.  This was addressed through the addition of a SubSea 

Rock Crusher Assembly.  Basically, as the returning mud passes through this assembly 

any rock chips are crushed between two rotating spheres with teeth.  A photo of this rock 

crusher assembly can be seen in Fig. 6. 
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Fig. 6 - SubSea Rock Crushing Assembly Used in SubSea MudLift JIP I 

 

 

Once the cuttings are crushed and processed through the unit they have been 

reduced to small pieces.  The crushed cuttings and mud are then passed through into the 

SubSea MudLift Pump.  The requirements that the pump is subject to are very 

demanding.  The pump must be able to pump up to 5% volume of mud cuttings, produce 

a flow rate between 10 and 1,800 gallons per minute, operate to a maximum pressure of 

6,600 psi, within a temperature range between 28 ºF and 180 ºF, and finally be able to 

pump 100% gas when the need arises to circulate a gas kick out of the well.  As 

mentioned earlier in Chapter I (1.3) the necessary result is a positive displacement 

diaphragm pump that is hydraulically powered by seawater.  The seawater providing 

hydraulic power is pumped from the rig floor using conventional surface mud pumps 
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down an auxiliary line to the mud pump.  In Fig. 7 you can see a cross section 

illustration of the mechanisms at work within this diaphragm pump. 

 

 

Fig. 7 - Illustration of a Cross Section of a Diaphragm Positive Displacement PumpI 

 

This pump also acts as a check valve by preventing the hydrostatic pressure of 

the drilling fluid within the return line from impacting on the pressure within the 

wellbore.  This pump is normally run in an automatic mode, which means it is set to run 

at a constant inlet pressure, and the pump rate is automatically altered to maintain a 

constant inlet pump pressure.  This allows the driller to change the surface mud pumping 

rates as if the system were conventional.14 During well control procedures the pump can 

be switched from a constant inlet pressure mode to a constant pump rate mode in the 
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advent that a kick enters the well and annulus pressure needs to be increased to maintain 

a desirable annulus/pore pressure balance. 

The last main component of the riserless dual gradient drilling system is the Drill 

String Valve (DSV).  The DSV was developed to control the U-tube effect, which is 

often encountered in drilling and completion operations.  The U-tube effect is cause 

when the total hydrostatic pressure (HSP) of the fluid in the DS is different than the total 

HSP of the fluid in the annulus.  In response the fluid will flow through the drill bit 

nozzles from the region (DS/annulus) with the higher HSP to the region with the lower 

HSP.  In conventional operations the U-tube effect only occurs occasionally and most 

commonly during cementing.  However, in riserless dual gradient drilling, the U-tube 

effect is always a factor, as the HSP of the fluid in the DS is often more than the HSP of 

the fluid in the wellbore annulus plus the HSP at the seafloor.  The concern is, when mud 

circulation is stopped to make or break a drill pipe connection, the mud within the drill 

string will drain into the wellbore and up the annulus.  The DSV assembly is placed 

inline with the drill string, and when mud circulation is stopped the DSV is closed to 

prevent the free fall of drilling fluid within the drill string (from the SSMLDJIP Phase 

III: Final Report through personal communication).   An illustration of the system with 

the DSV assembly in place can be seen in Fig. 8. 
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Fig. 8 - Illustration of Dual Gradient System w/ Drill String Valve I 

 
 
 

1.6 Dual Gradient Operations versus Conventional Operations 

There are several aspects of dual gradient drilling that are different from that of 

conventional drilling operations.  Regarding general drilling operations a smaller rig 

may be used for applying dual gradient technology than what would be conventionally 

used.  There are a couple of reasons for this: one is in order to support a 21” riser 

(common size used in conventional drilling) the rig must be large enough to support the 

weight of the riser.  In a riserless dual gradient drilling system the weight hanging from 

the rig is reduced to that of the drill string, the mud return line and the umbilical control 

lines.  Also contributing to the large rig size, necessary for conventional drilling, are the 
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deck space limitations that are caused by the necessity of having large drilling fluid 

volumes on hand.  In a conventional drilling system a large volume of mud is necessary 

in order to fill the riser.   Also a problem, is that a high volume of mud is lost during the 

“Pump and Dump” method for drilling the tophole portion of the wellbore.  In a 

DGTHDS only the drill string must be filled with mud and the mud is returned to the rig 

floor where it is cleaned and recycled.  This reduces the necessary deck space and the 

costs associated with supplying the necessary mud.  Reducing the weight rating of the 

rig and the necessary deck space allows for the use of a smaller rig. 

Another difference between a conventional drilling system and a dual gradient 

drilling system is that removing the riser leaves only the drill string to be affected by the 

forces exerted by the ocean currents.  Since the diameter of the drill string is 

considerably smaller than that of a 21” riser, the impact these forces have on drilling 

operations is reduced. 

Perhaps the most time and cost saving benefit that results from the application of 

dual gradient drilling, over conventional drilling is how the necessary number of casing 

strings is reduced.  This does two things, first this allows for the final tubing size to be 

larger, which increases production flow rates, and second the amount of time necessary 

to drill a deepwater well is reduced, because less time is spent on completions. 

From a safety perspective the main differences between dual gradient drilling and 

a conventional drilling system are the well control procedures.  Basically, a dual gradient 

system, as a managed pressure drilling technique, improves well control.  A Modified 
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Driller’s Method employed by riserless dual gradient drilling is described in Chapter I, 

Section 1.7. 

The similarity between the two systems is that the drilling program is not 

significantly altered.  Trips and connections are handled in the same manner and the 

basic acts of drilling, such as bit selection and general rig procedures, are not altered.9 

 

1.7 Dual Gradient Systems’ Well Control Procedures 

Well control is not simply something that must be implemented in the eventuality 

of a kick.  Proper well control must be considered throughout all phases of drilling 

operations.  This means from the initial planning, through the well completion and into 

the abandonment stages.  The basic purpose of proper well control is to prevent 

blowouts, and create a quality wellbore.  This is best accomplished through proper 

prediction of formation pore and fracture pressures, the design and use of the proper 

equipment (BOP, kick detection devices and casing) and proper kick detection and kill 

procedures.9,15 

Taking a kick while drilling is common and must be prepared for.  Quick kick 

detection and proper well control response is imperative.  Kicks may be detected through 

several different observations and the driller must be aware of all inconsistencies 

experienced while drilling.  The most common methods of kick detections are: a drilling 

break, a flow increase, a mud pit gain, a decrease in circulating pressure that is 

accompanied by an increase in pump speed within the surface pumps, well flows when 
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the surface pumps are off, an increase in rotary torque, drag and fill and an increase in 

drill string weight. 

These kick detection techniques are just as applicable, if not more so, in dual 

gradient drilling as in conventional drilling.  The major difference between dual gradient 

drilling and conventional drilling is the U-tube effect.  The U-tube effect occurs when 

drilling mud circulation through the drill string, up the annulus and through the subsea 

mud pump is stopped.  The U-tube effect causes the system to try and equalize the 

pressure difference between the hydrostatic pressure within the drill string and the 

hydrostatic pressure in the annulus by draining the drilling fluid contained within the 

drill string, through the drill bit nozzles, into the annulus.  Again, this occurs any time 

the HSP of the fluid in the DS is different than the HSP of the fluid in the annulus.  The 

solution to the U-tube effect is simply a drill string valve (DSV), which is described in 

Chapter I, Section 1.5.  There is however, a benefit to the U-tube effect that occurs in 

dual gradient drilling.  This effect allows for lower circulating pressures by the rig 

pumps and makes small changes in pressures easier to detect.  These pressure changes 

often serve as excellent kick detectors. 

Another method of kick detection involves the inlet and outlet pressure of the 

subsea mud pump.  When a kick enters the wellbore the annular flow rate of the drilling 

fluid increases by an amount that is equal to that of the kick influx rate.  Generally, while 

drilling, the subsea mud pumps are set to operate in a constant inlet pressure mode.  This 

means, if the rate of flow increases due to a kick influx the pumping rate of the subsea 

mud pumps will automatically increase as well, to maintain a constant subsea pump inlet 
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pressure.  This is an excellent indicator to the driller that a kick is occurring and the 

driller can then take the measures necessary to stop the kick influx into the annulus. 

Approximately half of all kicks occur while tripping the drill pipe into or out of 

the hole.  The best method, which is also the earliest, of determining a kick has taken 

place is to measure the volume of mud required to fill the hole after removing some of 

the pipe.  This is usually done every five stands of drill pipe.  If the mud required to fill 

the hole is less than the volume of the drill pipe removed, a kick has entered the 

wellbore.  This is a kick detection employed by conventional drilling practices.  In dual 

gradient drilling this kick detection procedure must be considered for use both with a 

DSV and without a DSV.  When operating without a DSV an accurate determination of 

the amount of mud necessary to fill the wellbore is not possible until after the U-tube 

effect has ceased.  When operating with a DSV, the volume of mud to fill the hole is 

equal to the volume of a cylinder with a diameter equal to the OD of the pipe removed.  

The only major change from conventional operations is that more frequent hole fill 

intervals are necessary and if possible continuous fill of the hole is even more desirable. 

As soon as a kick is detected it is necessary to take the necessary actions to stop 

the influx, so that excessive casing pressures can be avoided.  Excessive casing pressures 

can result in lost circulation, formation fracturing and the worst case scenario of a 

surface blowout.  When a kick is initially detected usually the response is to shut-in the 

well by closing the BOP stack.  When shutting in a dual gradient drilling system 

immediate shut-in should not be performed unless a DSV is in place.  The DSV must be 

closed before shut-in to ensure that the hydrostatic pressure of the mud within the drill 
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string does not cause formation fracturing.  If there is no DSV in place it is necessary to 

allow the U-tube effect to take place and then to shut-in the well by closing the BOP.  

When the U-tube effect is taking place it is difficult to prevent any additional influx from 

entering the wellbore.  This is why it is recommended to employ the use of a DSV in all 

dual gradient drilling operations.  A DSV allows immediate shut-in of the well and 

killing procedures can then commence in a manner more similar to that of conventional 

drilling.  However, the following procedures should be adhered to when the driller is not 

employing a complete shut-in scenario, i.e. no DSV.9,16,17,18 This is known as a modified 

Driller’s Method, and is considered the most effective and common in a dual gradient 

system. 

1 Slow the subsea pumps to the pre-kick rate (maintain the rig pumps at constant 

drilling rate). 

2 Allow the drillpipe pressure to stabilize, and record this pressure and the 

circulating rate. 

3 Continue circulating at the drillpipe pressure and rate recorded in step 2 until 

kick fluids are circulated from the wellbore. 

4 The constant drillpipe pressure is maintained by adjusting the subsea pump inlet 

pressure in a manner similar to adjusting the casing pressure with the adjustable 

choke on a conventional kill procedure. 
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5 After the kick fluids are circulated from the wellbore, a kill fluid of higher 

density is circulated around to increase the hydrostatic pressure imposed on the 

bottom hole. 

Other methods such as the Wait and Weight Method and the Volumetric Method 

are applicable to a riserless dual gradient system.  However, these methods both require 

the use of a DSV.  Although the DSV is applicable with the Driller’s method it is 

unnecessary and it is always good to ensure that proper well control relys on as few of 

pieces of equipment as possible. 

 

1.8 Dual Gradient Drilling Challenges 

The main challenges that are associated with dual gradient drilling are basically 

those that are associated with all new technologies.  The technology has been designed, 

developed and successfully field tested.  The key now is to streamline the equipment and 

procedures to ensure that dual gradient technology is seamlessly the next step forward in 

deepwater drilling. 

In the field test of the SubSea MudLift Drilling JIP the main delay while drilling 

the test hole was equipment commissioning problems.  The technology successfully 

functioned the way it was designed but had electrical and commissioning delays.  Once 

these “kinks” were worked out of the system the test hole was drilled with minimal 

delays (from the SSMLDJIP Phase III: Final Report through personal communication).   
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In order for the industry to embrace a new technology such as dual gradient 

drilling, the “kinks” must be all worked out and the new technology must offer 

substantial benefits over conventional technologies. 

An interesting point is that a dual gradient system will need to be somewhat 

customized depending on: water depth, temperatures above and below the mud line, 

formation pressures, ocean conditions and a number of other conditions.  However, even 

in conventional technology, no two wells are ever drilled with the exact same equipment 

or procedures.  The difference is that personnel are familiar with how to alter 

conventional technology to fit with the current drilling environment.  In order for 

personnel to become as familiar with dual gradient technology as conventional 

technology, training is a necessity (from the SSMLDJIP Phase III: Final Report through 

personal communication).    

Eventually, dual gradient technology will become a conventional technology and 

be one of the many tools in a driller’s toolbox.  The remaining obstacles are equipment 

commissioning, personnel training and overcoming initial industry resistance. 
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CHAPTER II  

SHALLOW HAZARDS 

 

The category of shallow hazards includes three main subcategories: methane 

hydrates, shallow gas zones and shallow water flows.  These hazards can be found in 

deepwater environments and generally between the mudline and approximately 5,000 ft 

below the mudline.  Each of these hazards create a different problem for exploration and 

production (E&P) companies, which are pursuing oil and gas fields in deepwater.  

Shallow hazards may appear to cause problems only during drilling and completion 

operations, but in reality can have long term ramifications that affect production long 

into the life of the field.  Shallow hazards compromise: the safety of operations, well 

control, wellbore integrity and reservoir accessibility. 

 

2.1 Methane Hydrates 

Hydrates are natural gases, typically methane, that are trapped within ice crystals.  

Since most of the hydrates that are found are methane gas, this shallow hazard is 

commonly referred to as methane hydrates.  Methane hydrates form in low temperature, 

high pressure zones where water and methane are present together.  Above 68 ºF 

methane hydrates cannot exist, however below 68 ºF methane hydrates can exist 

depending on the pressure within the zone.  Typically methane hydrates are found along 
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the sea floor and in isolated pockets below the mud line until the geothermal gradient 

causes the formation temperature to increase above 68 ºF.  Methane hydrates can cause 

problems in two ways: by forming within equipment or by dissociating during drilling 

operations. 

 

2.1.1 Formation of Hydrates Within Drilling Equipment 

The most common way methane hydrates impact on drilling operations is when 

hydrates form within the drilling system.  Particularly critical is if they form in the 

Blowout Preventer (BOP) stack or in the choke and kill lines.  These hydrates can block 

the lines and BOP and prevent the BOP from functioning properly (closing in the case of 

an emergency).  It is necessary, for the safety of the drilling and completions crew, that a 

system be in place that can prevent the formation of hydrates within equipment.  

Chemicals known as hydrate inhibitors can be added to the drilling fluid to prevent the 

formation of hydrates within the equipment, but in a conventional top hole drilling 

system, these chemicals are not an option, because of environmental restrictions.  

However, if a closed system is used and the drilling fluid is returned to the rig floor, 

hydrate inhibitors can be added to the drilling fluid. 
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2.1.2 Dissociation of Hydrates into the Wellbore During Drilling Operations 

The second way hydrates can compromise the safety of operations is less 

common, but equally dangerous.  When hydrates are lying on the sea floor or within the 

formation, the gas is trapped within the ice.  Drilling through these hydrates breaks the 

ice crystals imprisoning the gas and allows the gas to dissociate from the ice and into the 

wellbore.  This dissociating gas acts like a shallow gas kick and the driller is 

immediately faced with the complication of handling gas within the annulus.  If the gas 

is not controlled and the pressures within the wellbore annulus are not stabilized more 

reservoir fluid (gas/oil/water) may enter the wellbore and further complicate well control 

procedures. 

 

2.2 Shallow Gas Flows 

Shallow gas flows are another common shallow hazard.  It is even hypothesized 

that shallow gas flows are a result of methane hydrates that have been buried within the 

formation, and as the formation temperature increases the gas is released from the ice 

crystals and trapped within the formation.  Shallow gas zones are often over pressured 

and pose a serious well control risk.  Once a gas kick enters the wellbore the annulus 

pressure begins to decrease, which allows more gas to enter the wellbore.  If the driller 

does not apply a well control method to increase annular pressure, prevent further influx 

and circulate the gas kick safely out of hole, disastrous events such as surface and 

underground blowouts can be the result.  Not only can blowouts destroy the rig, but they 
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can also result in the loss of life.  One particularly catastrophic event was the explosion 

of the Piper Alpha rig in the North Sea in 1988.19 The remnants of this disaster can be 

seen in Fig. 9.  Events such as this are completely unacceptable and any method of 

preventing such an event needs to be designed, tested and implemented as a high 

priority.     

 

 

Fig. 9 - The Piper Alpha Platform: North Sea – 167 Died in Explosion and Fire20 

 

2.3 Shallow Water Flows 

The third main shallow hazard is shallow water flows.  Shallow water flows do 

not generally pose a safety threat to the rig and personnel, but the conventional method 
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of dealing with shallow water flows is not conducive to high quality casing seats, and 

this can threaten the well’s safety.  In conventional top hole drilling, these water zones 

are often allowed to produce, and can cause erosion in the formation and ultimately 

compromise the integrity of the surface casing.  Eventually the casing can collapse and 

the entire wellbore may be destroyed.  This is a very time consuming and expensive 

problem that has been experienced by operators in the past.   A particularly expensive 

and complicated example of this situation was experienced by the Shell Deepwater 

Development, Inc. Company in the Ursa field, located in the Mississippi Canyon Block 

854 in the Gulf of Mexico.  The field was discovered in 1990, and the first well, MC 854 

#1 was plugged and abandoned after setting 20” surface casing as a result of buckling 

casing.  Well MC 854 #2 was successfully drilled to TD, but was also plugged and 

abandoned due to severe shallow casing wear that resulted from the buckling of casing 

across shallow sands.21  An illustration of how the production of these shallow water 

zones can cause erosion behind casing seats can be seen in Fig. 10. 

 

 



32 

 

 

Fig. 10 - Formation Erosion Behind Casing Resulting from Shallow Water Flows 
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CHAPTER III 

CONTROLLING SHALLOW HAZARDS WITH DUAL GRADIENT 

TECHNOLOGY 

 

Shallow hazards are a problem and controlling these shallow hazards has become 

a priority for E&P companies operating in deepwater environments.  That is why it is 

surprising to find the conventional method of drilling the top hole portion of the 

wellbore, “Pump and Dump”, is still used as the industry standard.  “Pump and Dump” 

is lacking in many ways and dual gradient technology can easily control shallow hazards 

with acceptable modifications to current drilling and completions equipment, drilling 

procedures and well control procedures. 

 

3.1  Conventional Technology: “Pump and Dump” Method Description 

The current “Pump and Dump” method used to drill the top hole portion of the 

wellbore in deepwater, is fairly basic.  The mud is pumped down the drill string, into the 

wellbore up the annulus and onto the seafloor.  There is no BOP stack in place and there 

is no drilling fluid return to the rig floor.  The “Pump and Dump” method can cause 

several problems.  These problems include, but are not limited to: limited well control, 

increased number of shallow casing strings, poor wellbore integrity, increased initial 
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hole size (requiring larger rigs), loss of mud and finally a negative environmental 

impact, which limits acceptable types of drilling fluids that meet regulations. 

The “Pump and Dump” method offers few methods of kick detection and limited 

well control methods when a kick does occur.  Because the mud is not returned to the rig 

floor there is limited down hole pressure information available to the driller and often 

the driller relies on visual kick detection methods to determine when an influx has 

entered the wellbore.  In an effort to avoid shallow hazards like hydrates and shallow gas 

zones, seismic data is carefully analyzed and the surface location of the rig ma be moved 

to avoid these zones.  This can result in longer measured depth (MD) direction wells.  In 

the eventuality that these zones can not be avoided the driller has no proactive well 

control methods in their “tool box”.  In the case of shallow water flows, these zones are 

generally allowed to produce until the formation pressure is reduced.  Unfortunately, by 

the time this happens erosion of the formation has often already occurred. 

Dealing with these shallow hazards can increase the number of shallow casing 

strings, when compared to drilling in normally pressured zones.  To ensure that the 

drilling fluid can be heavy enough to maintain over balanced drilling, even when drilling 

through over pressured shallow gas zones, casing must be set often to prevent shallower 

parts of the wellbore from fracturing and causing lost circulation.  Lost circulation can 

result is stuck pipe or worse, an underground blowout. 

Poor wellbore quality is also often the result of “Pump and Dump”.  The “Pump 

and Dump” method limits the use of specialty drilling fluids that lift cutting out of the 

hole at lower circulation rates.  This means, in order to lift the cutting with a less 
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specialized mud, the circulation rate is increased.  This increased drilling fluid 

circulation rate can cause wellbore erosion, and the wellbore often becomes jaggedly 

shaped, which makes a high quality cement job become difficult to implement. 

Aside from the technical, safety and economical disadvantages to “Pump and 

Dump” method, there is the obvious environmental impact, not to mention how the 

continuous loss of drilling fluid can become a high cost constraint to the development of 

a field.  The environmental restrictions placed on the types of acceptable drilling fluids 

can prevent the driller from using the optimal fluid for the formation type and also 

prevents the addition of chemicals that prevent problems such as the formation of 

hydrates within equipment.  The “Pump and Dump” method is not really a method at all.  

It is simply the standard rut that the industry has fallen into.  It is obvious, upon 

reviewing the disadvantages and lack of advantages, that a new method of top hole 

drilling is imperative. 

Applying dual gradient drilling technology to drilling the top hole portion of the 

wellbore is likely to eliminate the majority, if not all, of these associated problems.22  

Possibly the most important reason that dual gradient technology would be beneficial in 

top hole drilling is the control over shallow hazards, the improved well control and the 

improved safety. 
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3.2 Riserless Dual Gradient Drilling Technology Description 

Understanding the DGTHDS does not require a significant stretch of the 

imagination.  The flow of the drilling fluid does not vary greatly from conventional riser 

drilling.  It is, however, different than the “Pump and Dump” method.  The drilling fluid 

is pumped down the drill string, where it enters the wellbore and flows back through the 

wellbore annulus to the rotating diverter.  The rotating diverter transfers the returning 

mud to the subsea mud pump.  This subsea mud pump, when in typical drilling mode 

operations, is set to operate at a constant subsea inlet pressure.  This means the pumping 

rate is automatically altered to maintain constant pump inlet pressure.  This changes 

during well control procedures, which is discussed in Chapter III (3.2.2).  The mud is 

then pumped up a 6” return line to the rig floor, where it is recycled and pumped back 

down the drill string.  The other main line from the rig to subsea pump is the seawater 

supply line that supplies hydraulic power to the diaphragm subsea pump.  There are 

inherent benefits to this system over “Pump and Dump”, simply because the DGTHDS 

is a closed system.  The amount of required mud is reduced because the drilling fluid is 

recycled and reused.  Seafloor pollution is reduced and because there is no 

environmental impact, the number of drilling fluid type meeting regulation increase.  It 

has been proven that selecting the proper drilling fluid can significantly improve drilling 

operations.  Also important is, how the closed system allows for the admission of 

backpressure to increase the wellbore annulus pressure.  This allows the driller to 

maintain the proper wellbore annulus pressure with heavier mud at lower circulation 

rates.  This prevents the wellbore erosion that is commonly associated with the “Pump 
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and Dump” method.  This additional pressure control also improves kick detection, 

offers proactive well control methods and ultimately reduces the number of required 

shallow casing strings.   

 

3.2.1  Kick Detection 

The DGTHDS offers more accurate and faster kick detection methods in addition 

to those that are already utilized during the “Pump and Dump” method.  As, discussed 

earlier, in standard drilling mode the subsea pump is operated at a constant inlet 

pressure.  When a kick enters the wellbore the pump inlet pressure increases.  In order to 

maintain a constant inlet pressure, the subsea pump responds by increasing its pumping 

rate to compensate for the additional inlet pressure created by the influx.  This increase 

in pump rate is the first kick indicator.  As the subsea pump increases its pumping rate, 

the subsea pump’s outlet pressure increases and the levels in the mud pit increase.  These 

are the second and third kick indicators.  Finally, in response to the pressure changes 

within the wellbore the surface pump pressure decreases, the fourth kick indicator.  

When a kick is detected the system uses a modified driller’s method to prevent further 

influx and circulate the kick safely out of hole. 
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3.2.2 Well Control “Modified Driller’s Method” 

As soon as the system detects a kick, the subsea pump is returned to the pre-kick 

rate and a constant pumping rate mode is maintained, which is equal to the surface 

pumping rate.  This creates back pressure on the fluids within the wellbore annulus and 

increases bottomhole pressure until it is balanced with formation pore pressure, and 

further influx is prevented.  It is important to record the stabilized drillpipe pressure and 

the pumping rate.  Circulation of the fluids is then continued and the recorded drillpipe 

pressure is maintained at balance by changing the subsea pump rate. (This is similar to 

an adjustable choke in a conventional kill procedure.)  Circulation is continued until kick 

fluids are removed from the wellbore.  Once the kick fluids have been removed from the 

wellbore a kill weight mud is circulated to increase the hydrostatic pressure imposed on 

the bottomhole and drilling can resume.  A graphical representation of this method can 

be seen in Fig. 11. 
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Fig. 11 - Graphical Depiction of Modified Driller's Method12 

 

 

It is visible in Fig. 11, that the subsea pump rate increases, to maintain a constant 

inlet pressure, as the influx enters the wellbore.  At the same time the surface pump 

outlet pressure decreases.  Once the kick is detected and well control procedures 

commence you can see the rate of the subsea pump return to the pre-kick rate which is 

equal to that of the surface pump.  It can also be seen how this causes the subsea pump 

inlet pressure and surface pump outlet pressures to increase. 
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3.3 Dual Gradient Controlling Methane Hydrates 

As described earlier, methane hydrates impact on drilling operations by forming 

within the equipment and by dissociating within the wellbore annulus.  Dual gradient 

technology applied to top hole drilling controls both of these problems caused by 

methane hydrates. 

 

3.3.1 Preventing Hydrate Formation 

The introduction of a closed system allows for chemicals, such as hydrate 

inhibitors to be added to the drilling fluid.  These hydrate inhibitors have been proven 

very successful at preventing the formation of hydrates in drilling and production 

equipment. 

 

3.3.2 Controlling Dissociating Hydrates 

In the case of drilling through dissociating hydrates, a significant well control 

problem, dual gradient technology offers the advantage of fast kick detection.  When 

methane hydrates dissociate into the wellbore, the dual gradient drilling systems reacts 

the same was as if a gas influx has entered the wellbore.  The subsea pump inlet pressure 

will increase and the subsea pump rate will automatically increase to compensate.  Then 

the pit gain warning and increased subsea pump outlet and decreased surface pump 

outlet pressures will alert the driller to employ well control methods.  The subsea mud 
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return system supplies the driller with back pressure control over the formation that 

prevents the dissociating methane hydrates from causing other influxes.  The 

dissociating methane hydrates can be proactively and safely circulated from the wellbore 

and drilling can resume quickly. 

 

3.4 Dual Gradient Controlling Shallow Gas Flows 

A DGTHDS controls shallow gas flows the same way it controls dissociating 

methane hydrates: through effective kick detection and proactive well control methods.  

Again the gas influx into the wellbore is quickly detected and the modified driller’s 

method quickly circulates the kick from the wellbore and prevents further influx.  The 

drilling fluid weight is adjusted for the new formation pore pressure and drilling 

continues without the need to set, dynamically selected, casing seats. 

 

3.5 Dual Gradient Controlling Shallow Water Flows 

Shallow water flows are easier to control that methane hydrate dissolution or gas 

kicks.  Controlling these shallow water flows will allow the driller to prevent the erosion 

of the formation and ultimately ensure that the operator will have a wellbore of high 

quality, because the casing seats are securely cemented to the formation.23 
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3.6 Dual Gradient Drilling Controlling Shallow Hazards Summary 

This is a new technology that is still in the research and development stage, but it 

has all the signs of significantly benefiting the offshore drilling industry and to be 

adopted as a conventional technology.  The technical and safety benefits associated with 

this new technology far outweigh the inherent industry resistance to the implementation 

of a new technology.  The benefits that the industry stands to gain from the 

implementation of a DGTHDS vary from financial to safety to environmental.10 
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CHAPTER IV  

TOP HOLE DUAL GRADIENT DRILLING SIMULATION 

 

4.1 Riserless Drilling Simulator 

The Riserless Drilling Simulator used, was originally created, as part of Dr. 

Jonggeun Choe’s Ph.D. dissertation at Texas A&M University.  The simulator was later 

adapted for use in the SSMLDJIP.  A screen shot of the opening page to the simulator 

can be seen in Fig. 12. 

 

 

Fig. 12 - Riserless Drilling Simulator Introduction Page 

 



44 

 

This simulator was used, with the express permission of Dr. Jonggeun Choe and 

Dr. Hans C. Juvkam-Wold, exclusively for the purpose of researching the application of 

dual gradient technology to top hole drilling. 

 

4.2 Simulation Parameters 

After opening the simulator, the main menu is presented and several options are 

available.  The first step is to change the input data from the default options, or open 

previously saved input data if re-running a previous simulation.  The main menu can be 

seen below in Fig. 13. 

 

 

Fig. 13 - Main Menu of Riserless Drilling Simulator 
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Once the user has entered the necessary input data the gas kick simulation can be 

run by clicking the “Kick Simulation” button on the Main Menu screen.  Fig. 14, 15, 16, 

17, 18 and 19 show the input data screens and the information required to properly run a 

kick simulation.  The input data types are discussed below with each figure.   

 

 

Fig. 14 - Simulator Control Data Input Screen 

 

 

Fig. 14 shows the basic control data that needs to be entered for each simulation.  

The well control method used in all simulation runs is the “Modified Driller’s Method” 

described previously in Chapter III.  In the case of this simulation, the use of a Drill 
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String Valve (DSV) is not necessary when the “Modified Driller’s Method” is the choice 

of well control methods.  During the “Modified Driller’s Method” the well is never shut-

in, so the U-tube effect does not impact on operations.  Since the U-tube effect is not 

applicable, the use of DSV is unnecessary.  The rest of the data options selected in Fig. 

14 remained constant throughout all simulation runs. 

 

 

 

Fig. 15 - Simulator Fluid Data Input Screen 

 
 

Fig. 15 shows the fluid data input screen.  The only data, in this input screen, that 

was not held constant through all simulation runs were the Old Mud Weight, the Plastic 

Viscosity and the Yield Stress of the Mud.  These parameters varied based on the pore 
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pressures encountered at drilling depth.  The different mud properties will be discussed 

in Chapter IV.  The gas specific gravity, surface temperature, temperature gradients and 

bit nozzle sizes remained constant through all simulation runs. 

 

 

Fig. 16 - Simulator Well Geometry Data, Return Line and Control Lines Data and 
Water Data and Other Input Screen 

 
 

 

Fig. 16 shows the well geometry data as well as the return line and water data.  

The use of one 6” main return line remained constant.  Also remaining constant was the 

sea water density of 8.6 ppg and the 5 psi amount of subsea pump inlet pressure – sea 

water hydrostatic pressure.  In each simulation run the well geometry was modified, as 

well as the length of the return line, the depth of the last casing point and the depth from 

the rig to the seafloor.  After entering the well geometry data, the simulator produces a 
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visual representation of the wellbore so the user may double check for any possible 

mistakes.  An example of this visual representation of the wellbore can be seen in Fig. 

17. 

 
 
 

 

Fig. 17 - Illustration of Entered Wellbore Geometry Data 

 
 
 

Other data that is modified, for each simulation run, is the kick data and the pore 

and fracture pressures, shown in Fig. 18.  The kick data is manipulated by changing the 

amount of formation over pressure, which results in a kick intensity that is calculated in 

ppg.  The pit gain warning level can be changed, so the pit gain kick indicator is more or 

less sensitive.  Last on this input screen, the pore and fracture pressures are entered 



49 

 

manually based on sea water depth.  The pressures used varied based on water depth, but 

are analogous to a field found in the deepwater region of the Gulf of Mexico.  This field 

actually possesses a pore/fracture pressure window that is abnormally small.  The reason 

for using this window was to determine if this system (dual gradient top hole drilling) is 

capable of handling an extreme field environment.  The Pore and Fracture Pressure 

Regimes (P&F PR) can be seen in Appendix B. 

 

 

Fig. 18 - Simulator Kick Data, Formation Properties and Pore and Fracture 
Pressures Input Screen 

 
 
 

The final input screen that must be entered is the pump data, surface choke valve 

data and the types of surface conditions.  This screen can be seen in Fig. 19 and the data 

shown in this figure remained constant throughout all simulation runs. 



50 

 

 

Fig. 19 - Simulator Pump Data, Surface Choke Valve and Type of Surface 
Connections Input Screen 

 

 

Two sets of simulation runs were performed in order to determine the  well 

control limits of this Dual Gradient Top Hole Drilling System (DGTHDS).  The first set 

was designed simply to understand the limits of this system.  The second was designed 

to test the limits of this system specifically in a field with a similar pore/fracture pressure 

window to the field that was already encountered in the Gulf of Mexico.  The parameters 

of each simulation set are described in Chapter IV.   
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4.2.1 Simulation Run Set #1 

In this simulation set the system was tested in three different water depths, 

resulting in different pore and fracture pressure regimes (P&F PR) and, therefore, 

different required mud properties, three different drilling depths below mud line (BML), 

two formation overpressures and finally two different kick sizes.  One parameter that 

was chosen to remain constant based on typical wellbore schematics was the 30” 

conductor pipe set to a depth of 1,500 ft BML.  Below the conductor pipe a pilot hole 

size of 12 ¼” was drilled.   The variable parameters for each simulation are shown below 

in Table 1.  The flowchart that describes the determination of run order can be seen in 

Appendix A, and the spreadsheets showing all of the input data for each run can be seen 

in Appendix C. 

 

Table 1 - Variable Parameters of Simulation Set #1 

Run 
# 

Water 
Depth  P&F PR # Mud 

Weight 

Mud 
Plastic 

Viscosity  

Mud Yield 
Point 

Stress 

Depth of 
12 ¼” Pilot 
Hole BML 

Formation 
Over 

Pressure 

Pit Gain 
Warning 

Level 

 ft  ppg cp lbf/ 
100 sq. ft  ft ppg bbl 

1 3,000 #1 8.8 5 17 500 0.5 10 
2 3,000 #1 8.8 5 17 500 0.5 50 
3 3,000 #1 8.8 5 17 500 1 10 
4 3,000 #1 8.8 5 17 500 1 50 
5 3,000 #1 12.5 16.5 9 2,500 0.5 10 
6 3,000 #1 12.5 16.5 9 2,500 0.5 50 
7 3,000 #1 12.5 16.5 9 2,500 1 10 
8 3,000 #1 12.5 16.5 9 2,500 1 50 
9 3,000 #1 14 21 9 4,500 0.5 10 

10 3,000 #1 14 21 9 4,500 0.5 50 
11 3,000 #1 14 21 9 4,500 1 10 
12 3,000 #1 14 21 9 4,500 1 50 
13 5,000 #2 8.8 5 17 500 0.5 10 
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Run 

# 

Water 
Depth  P&F PR # Mud 

Weight 

Mud 
Plastic 

Viscosity  

Mud Yield 
Point 

Stress 

Depth of 
12 ¼” Pilot 
Hole BML 

Formation 
Over 

Pressure 

Pit Gain 
Warning 

Level 

 ft  ppg cp lbf/ 
100 sq. ft  ft ppg bbl 

14 5,000 #2 8.8 5 17 500 0.5 50 
15 5,000 #2 8.8 5 17 500 1 10 
16 5,000 #2 8.8 5 17 500 1 50 
17 5,000 #2 12.5 16.5 9 2,500 0.5 10 
18 5,000 #2 12.5 16.5 9 2,500 0.5 50 
19 5,000 #2 12.5 16.5 9 2,500 1 10 
20 5,000 #2 12.5 16.5 9 2,500 1 50 
21 5,000 #2 14 21 9 4,500 0.5 10 
22 5,000 #2 14 21 9 4,500 0.5 50 
23 5,000 #2 14 21 9 4,500 1 10 
24 5,000 #2 14 21 9 4,500 1 50 
25 10,000 #3 8.8 5 17 500 0.5 10 
26 10,000 #3 8.8 5 17 500 0.5 50 
27 10,000 #3 8.8 5 17 500 1 10 
28 10,000 #3 8.8 5 17 500 1 50 
29 10,000 #3 12.5 16.5 9 2,500 0.5 10 
30 10,000 #3 12.5 16.5 9 2,500 0.5 50 
31 10,000 #3 12.5 16.5 9 2,500 1 10 
32 10,000 #3 12.5 16.5 9 2,500 1 50 
33 10,000 #3 14 21 9 4,500 0.5 10 
34 10,000 #3 14 21 9 4,500 0.5 50 
35 10,000 #3 14 21 9 4,500 1 10 
36 10,000 #3 14 21 9 4,500 1 50 

 

 

4.2.2 Simulation Run Set #2 

Simulation Set #2 was run specifically to test the DGTHDS in a field when 

proper casing selections have been made.  This means that the casing selections should 

be determined graphically based on the pore/fracture pressure window in the top hole 

portion of the wellbore.  The graphical selection of surface casing seats for 3,000 ft of 

water depth can be seen in Fig. 20. 

Table 1 Continued 



53 

 

 

Fig. 20 - Graphical Casing Selection in 3000 ft Water Depth 

 
 

Fig. 21 shows the graphical casing selection for 5,000 ft of Water Depth and Fig. 

22 shows the graphical casing selection for 10,000 ft of Water.  It is important to note 

that while the actual pressures change with water depth, the pressure gradients remain 

the same.  This means that the pore/fracture pressure window maintains a similar shape 

at all water depths and the selected casing points remain the same when depths are taken 

BML.  The first casing seat at 200 ft BML is typical 36” Conductor Pipe that is usually 

jetted into the formation.  The second casing seat at 2,000 ft BML is 30” Conductor Pipe 

and an 8.8 ppg mud must be used in order to reach this depth.  The third and final top 

hole casing seat of 20” Conductor Pipe is at 4,200 ft BML and a 12.9 ppg mud is used to 

drill to this depth.  For the purposes of this simulation top hole is defined as the first 

6,000 ft BML.  So, in order to drill to 6,000 ft BML, a mud weight of 14.0 ppg is used.   
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Fig. 21 - Graphical Casing Selection in 5000 ft Water Depth 

 
 
 

 

Fig. 22 - Graphical Casing Selection in 10,000 ft Water Depth 
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The resulting wellbore diagrams can be seen in Fig. 23 for 3,000 ft Water depth, 

Fig. 24 for 5,000 ft water depth and Fig. 25 for 10,000 ft water depth.  Again, notice 

how the depths BML of each casing are the same no matter what the water depth is. 

 
 
 

 

Fig. 23 - 3,000 ft Water Depth Wellbore Diagram 

 
 
 

In this simulation set 18 different runs were completed, six for each water depth, 

and then two for each casing seat.  For example, the first run for 3,000 ft water depth 

was with the casing set to 200 ft BML and the 12 ¼” pilot hole at 2,000 ft.  The 

objective was to determine if the DGTHDS could drill to the depth of the next casing 

seat and successfully control a gas kick.  Typically, the kick size was set at 50 bbl or the 

largest controllable kick based on the wellbore geometry.  This was simulated with both 
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½ ppg formation overpressure and 1 ppg formation overpressure.  Then the next casing 

seat was simulated by having 30” conductor pipe set to 2,000 ft BML and the 12 ¼”  

 

 

Fig. 24 - 5,000 ft Water Depth Wellbore Diagram 
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Fig. 25 - 10,000 ft Water Depth Wellbore Diagram 

 

pilot hole drilled to a depth of 4,200 ft BML.  Finally, the last test was to drill to 6,000 ft 

BML with the 20” conductor pipe set at 4,200 ft BML.  This was then repeated for 5,000 

ft water depth and 10,000 ft water depth.  The variable parameters for each of the test 

runs can be seen in Table 2.  The flowchart that describes the determination of run order 

can be seen in Appendix A, and the spreadsheets showing all of the input data for each 

run can be seen in Appendix D. 
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Table 2 - Variable Parameters of Simulation Set #2 

Run # Water 
Depth  

Depth 
of Last 
Casing 

Seat 

P&F 
PR # 

Mud 
Weight  

Mud 
Plastic 

Viscosity  

Mud 
Yield 
Point 

Stress  

Depth 
of 12 
1/4" 
Pilot 
Hole 
BML 

Formation 
Overpressure  

Pit Gain 
Warning 

Level 

 ft ft BML   ppg cp lbf/10 0 
sq. ft  ft ppg bbl 

CS 1a 3,000 200 1 8.8 5 17 2,000 1 50 
CS 1b 3,000 200 1 8.8 5 17 2,000 0.5 50 
CS 2a 3,000 2,000 1 12.9 17.5 9 4,200 1 50 
CS 2b 3,000 2,000 1 12.9 17.5 9 4,200 0.5 50 
CS 3a 3,000 4,200 1 14 24 9 6,000 1 50 
CS 3b 3,000 4,200 1 14 24 9 6,000 0.5 50 
CS 4a 5,000 200 2 8.8 5 17 2,000 1 50 
CS 4b 5,000 200 2 8.8 5 17 2,000 0.5 25 
CS 5a 5,000 2,000 2 12.9 17.5 9 4,200 1 50 
CS 5b 5,000 2,000 2 12.9 17.5 9 4,200 0.5 50 
CS 6a 5,000 4,200 2 14 24 9 6,000 1 50 
CS 6b 5,000 4,200 2 14 24 9 6,000 0.5 50 
CS 7a 10,000 200 3 8.8 5 17 2,000 1 30 
CS 7b 10,000 200 3 8.8 5 17 2,000 0.5 15 
CS 8a 10,000 2,000 3 12.9 17.5 9 4,200 1 50 
CS 8b 10,000 2,000 3 12.9 17.5 9 4,200 0.5 50 
CS 9a 10,000 4,200 3 14 24 9 6,000 1 50 
CS 9b 10,000 4,200 3 14 24 9 6,000 0.5 50 

 

 

4.3 Simulation Procedure 

Once all the simulation input data is entered the user returns to the main menu, 

seen previously in Fig. 13, to begin the kick simulation.  The following procedure is 

followed to simulate a gas influx into the wellbore, prevent further influx, circulate the 

kick out of hole and weight up the mud and continue drilling.  The kick simulation 

control panel can be seen in Fig. 26. 
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1. Increase Simulation Ratio to 10 times real time. 

2. Increase Surface Pump rate to the standard pumping rate of 650 gpm. 

3. Click Start Simulation Button 

 

 

Fig. 26 - Kick Simulation Control Panel 

 

4. Allow Drill String (DS) to fill with drilling fluid. 

5. Once current mud level inside DS equals zero and the Subsea pump rate 

is constant at 650 gpm, set pit gain/loss to zero and then click start 

drilling button.  (The simulator will begin simulating a gas kick 

momentarily). 
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6. As the gas kick enters the wellbore the subsea pump rate and the pit gain 

level warning will increase.  While it is possible to detect the kick very 

rapidly in simulation, it is important to simulate actual drilling methods 

by waiting for the pit gain warning to go off when the pit level is 

increased by the previously specified volume.  The wellbore schematic 

also illustrates the incoming kick as seen in Fig. 27. 

 

Fig. 27 - Illustration of Wellbore Showing Gas Kick Influx 

 
 

7. Once the pit gain warning goes off, begin the “Modified Driller’s 

Method”.  The pit gain warning level will flash as seen in Fig. 28.  

Change the Subsea pump to constant pumping rate mode and return the 

pumping rate to 650 gpm.  This creates the necessary backpressure to 

prevent further influx into the wellbore. 
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Fig. 28 - Flashing Pit Gain Warning Alarm 

 
 
 

8. Monitor the annulus and formation pressures.  When these pressures are 

balanced the simulated influx will be stopped and the user can simulate 

perfect well control by clicking the “Kill the Well” Button.  (If the user 

does not properly prevent the influx a blowout can result and the 

simulator will return a warning box like what is shown in Fig. 29. 
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Fig. 29 - Simulator Blowout Warning Box 

 

 

9. Once the “Kill the Well” button has been clicked the simulator allows the 

user to circulate the kick manually or with perfect control.  For the 

purposes of testing the well control limits of the dual gradient system, 

perfect well control is selected. 

10. The user is taken to a new screen where the user then selects a simulation 

acceleration ratio of 80 times that of real time.  Then from the main menu 

the user selects: show wellbore and start circulation. 

11. The simulator controls the pumping rate of the subsea pump to maintain 

perfect pressure balance between the formation and the annulus to 

prevent further influx while circulating the kick out of the wellbore. 
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Fig. 30 - Simulator Kick Circulation Screen 

 
 
 

12. Once the kick has been removed below the mudline the user will receive 

a message as seen in Fig. 30.  The simulator then continues circulating 

the kick until the kick is completely removed from the system.  Then the 

simulator shows an automatic circulation of kill weight mud to ensure the 

prevention of more gas influxes. 

13. Now the user can continue on to analyze the data created by the 

simulator. 
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4.4 Simulation Results Analysis Procedure 

Finally, the resulting data from the simulator is analyzed to determine if the 

pressure at the casing seat pressure and the pressure at the top of the kick caused 

formation fracturing, or damage to the casing seat.  In Fig. 31 you can see the results 

data from the simulator in graphical form.  Aside from the pressure at the top of the kick 

the user can also track: standpipe pressure, choke pressure, casing shoe pressure, subsea 

inlet pump pressure, subsea outlet pump pressure, surface pump pressure, the volume of 

mud pumped, the mud and gas return rates at the rig floor, choke opening and the kick 

pressure, height, volume, and influx rate at all times during the simulation.   

 

 

Fig. 31 - Simulation Results in Graphical Form 
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All of this data is important to the driller.  The casing shoe pressure, subsea pump 

inlet and outlet pressures help to determine if the equipment pressure ratings have been 

exceeded and the mud and gas production determine necessary surface handling 

capacities.  Most importantly, however, the simulation returns information on the kick as 

it progresses through the wellbore.  You can expand each of the different plots to look at 

the graph zoomed in.  Fig. 32 shows the zoomed in version of kick pressure versus time.   

 

 

Fig. 32 - Zoomed in Graph of Pressure @ Top of Kick versus Time 
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The data can also be exported in table format.  This information is important, 

because the pressure at the top of the kick can be plotted versus the location, within the 

wellbore, the top of the kick.  Putting this plot together with a plot of formation pore and 

fracture pressures, the user can determine if circulating the kick resulted in formation 

fracture and lost circulation.  An example of this plot can be seen in Fig. 33.  In this 

example case, from simulation set #1, the sea water depth is 5,000 ft and the 30” 

conductor pipe was set 1,500 ft BML.  

 
 

 

Fig. 33 - Kick Pressure, Pore Pressure and Fracture Pressure Plotted versus Depth 
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The pressure at the top of the kick is indicated by the red line, the pore pressure 

by the blue line and the fracture pressure by the green line.  If the pressure at the top of 

the kick increases above the formation fracture pressure below the conductor pipe, the 

formation will fracture and an underground blowout could be experienced.  This graph 

clearly shows that the pressure at the top of the kick increases above the fracture 

pressure at approximately 1,800 ft BML.  In this case, the conductor pipe (set at 1,500 ft 

BML) was not set deep enough to prevent formation fracturing. 

Also a consideration, are the pressures within the wellbore and at the subsea 

pump.  These pressures are also tracked by the simulator and can be plotted versus time, 

as shown in Fig. 34.  The casing seat pressure, Bottom Hole Pressure (BHP), subsea 

pump inlet pressure and stand pipe pressure (SPP), basically follow the same pattern.  

These regions are all impacted on before the mud enters the subsea pump.  The subsea 

pump outlet pressure, however, is a pressure region located after the mud passes through 

the subsea pump.  The four pressures in the region before the subsea pump begin to 

decrease as the kick enters the wellbore and the subsea pump rate increases to 

compensate.  At the same time, a slight increase in pump outlet pressure can also be 

seen.  In this example, at approximately 21 minutes, the kick is detected and the subsea 

pump rate is decreased to pre-kick rate.  This is shown by the abrupt increase in casing 

pressure, BHP, drillpipe pressure and subsea pump inlet pressure.  (The abrupt up and 

down spike is caused by the simulator, but would not typically be seen in the actual 

wellbore conditions.)  Then as the kick is circulated these pressures become level.  The 

subsea pump outlet pressure, however, remains constant until the point when the kick is 
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circulated through the subsea pump and the pressure increases.  Which, in this example, 

occurs at approximately 45 minutes.   

 

 

Fig. 34 - Wellbore and Subsea Pump Pressures Example Graph 

 
 
 

This data is important, because it is important to track the pressure within the 

wellbore, not just the pressure at the top of the kick, to determine if there are any other 

potentially hazardous situations occurring within the system such as if the casing seat 

pressure exceeds the formation fracture pressure at the casing seat depth and an 

underground blowout occurs. 
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4.5 Simulation Results Analysis 

Simulation Set #2 was extremely necessary upon the analysis of Simulation Set 

#1.  It became obvious that an arbitrary selection of conductor pipe seat depth was 

unacceptable for the DGTHDS and the drilling program needs to be customized based 

on the P&F PR.   

 

4.5.1 Simulation Results Analysis – Simulation Set #1 

 It became evident upon examining the results that the drilling depth BML had 

more of an impact on whether a simulation resulted in formation fracture than sea water 

depth.  Runs 1 through 12 were executed in 3,000 ft of sea water at varying drilling 

depths of 2,000, 4,000 and 6,000 ft BML.  Runs 1 through 4 (2,000 ft BML) did not 

result in fracturing of the formation.  The casing seat at 1,500 ft BML was deep enough 

to prevent formation fracture.  However, Runs 5 through 12 (4,000 and 6,000ft BML) all 

resulted in a fractured formation.  The reason is that the heavier mud weights, required to 

maintain BHP above formation pore pressure, fractured the formation at shallower 

depths, and the conductor pipe was not set deep enough to prevent this formation 

fracture.  These graphs for each run, similar to the example shown in Fig. 33 can be seen 

in Appendix E.  Fig. 35 shows the pressure at the top of the kick in Run 4.  In this case 

the kick was successfully circulated without fracturing the formation.   
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Fig. 35 - Pressure at the Top of the Kick in Run 4 

 
 
 
 Runs 13 through 24 (5,000ft of sea water) had the same results as Runs 1 through 

12.  Again, Runs 13 through 16 (2,000 ft BML) did not result in fracturing of the 

formation.  Again, however, Runs 17 through 24 (4,000 and 6,000 ft BML) all resulted 

in fractured formation.  Fig. 36 shows how, in Run 24, the kick pressure, shown in red, 

rose above the fracture pressure, shown in green, below the conductor pipe seat at 1,500 

ft BML.  This signifies that the formation was fractured and an underground blowout 

would likely be the result if wellbore is not plugged rapidly.  The rest of these graphs 

can be seen in Appendix E.   

 



71 

 

 

Fig. 36 – Pressure at the Top of the Kick in Run 24 

 
 
 
 Runs 25 through 36 were performed in 10,000 ft of sea water and had the same 

results as Runs 1 through 24.  When the drilling depth was 2,000 ft BML (Runs 25 

through 28), all kicks were successfully circulated.  However, when the drilling depth 

was deeper than 2,000 ft BML (Runs 29 through 36), the formation was fractured during 

kick circulation.  These graphs can be seen in Appendix E.   Ultimately Simulation Set #1 

resulted in the obvious conclusion that casing needs to be set deeper and more often than 

only at 1,500 ft BML.   
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4.5.2 Simulation Results Analysis – Simulation Set #2 

Since the main purpose of the project is simply to prove that the DGTHDS is 

more reliable at circulating shallow hazards than the “Pump and Dump” method, it is 

acceptable to set casing more often than only at 1,500 ft BML.  In a conventional “Pump 

and Dump” system, conductor pipe and surface casing would be set often, and usually 

more frequently than what was designed in the original drilling program.  So, the key to 

a successful Simulation Set #2 was to determine the well control limits of the DGTHDS 

when a proper casing program is in place.  Runs CS1a through CS3b were performed in 

3,000 ft of sea water.  In every case the kick of 50 bbl was successfully circulated above 

the conductor pipe before the pressure at the top of the kick increased above the 

formation fracture pressure.  Runs CS3a and CS3b can be seen in Fig. 37.   

 

 

Fig. 37 - Pressure at the Top of the Kick in Runs CS3a and CS3b 
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 In Runs CS4a through CS6b (5,000 ft of Sea Water) also resulted in successful 

kick circulation.  A significant point is, in the shallow BML depths of Run CS4b the 

system was not able to successfully circulate a kick larger than 25 bbl in a 0.5 ppg over 

pressured formation.  However, a 50 bbl kick was successfully circulated when the 

formation was 1 ppg overpressure.  This can be seen in Fig. 38 and the reason a smaller 

kick size in a 0.5 ppg over pressure formation results in a simulated blowout and a larger 

kick size in a 1.0 ppg over pressure formation does not, is that the kick in the 0.5 ppg 

formation over pressure kick enters the wellbore slower than the 1.0 ppg formation over 

pressure kick.  This means that first bubble of the kick is circulated higher within the 

wellbore, in the same amount of time, even though the actual kick size is smaller.  This 

causes the simulator to react as though the user did not properly detect the kick or take 

action, and a surface blowout is simulated as an expectation.  This is a topic for future 

research that may lead the primary investigator to change some of the code in the 

riserless drilling simulator created by Dr. Choe. 
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Fig. 38 - Pressure at the Top of the Kick in Runs CS4a and CS4b 

 
 
 

In Runs CS7a through CS9b a similar result occurred.  All kicks were 

successfully circulated without formation fracturing, but again the largest kicks that 

could be circulated without formation fracturing, in drilling depths of 2,000 ft BML, 

Runs CS7a and CS7b, were 30 bbl in 1 ppg formation overpressure and 15 bbl in a 0.5 

ppg formation overpressure.  In deeper BML drilling depths, Runs CS8a through CS9b, 

50 bbl kicks were successfully circulated without formation fracturing.  The successful 

circulation of a kick at 6,000 ft BML in 10,000 ft of seawater can be seen in Fig. 39. 
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Fig. 39 - Pressure at the Top of the Kick in Runs CS9a and CS9b 

 
 
 
 The next step is to analyze the casing seat pressure as a method of double 

checking that the casing seat pressure does not rise above formation fracture pressure at 

the casing seat depth.  Casing seat pressure data from the simulator is exported and 

plotted, along with the formation fracture pressure at casing seat depth.  Fig. 40 shows 

the casing seat pressure of run CS7 with respect to time.  On the secondary y-axis the 

depth at the top of the kick, the casing seat depth and sea floor depth is plotted so that 

correlations between kick location and casing seat pressure can be drawn.  In this run it 

can be seen that there is a jump in the casing seat pressure.  This is a result of when the 
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subsea mud pump rate is slowed to increase annulus pressure and prevent the influx of 

more reservoir fluids.   

 

 

 

Fig. 40 - Casing Seat Pressure in Run CS7 

 
 
 
 Even once the casing seat pressure stabilizes, it is still very close to formation 

fracture pressure.  This is a concern and a better understanding of why this occurs is a 

good idea for future research into the implementation of a DGTHDS.  Similar results can 

be seen in Fig. 41 and Fig. 42 (results from Runs CS8 and CS9).  Is this simply a glitch 

within the simulator?  Does casing need to be set even more often?  Would a smaller 
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kick size have the same high pressure?  These are all questions that need to be answered 

in order to fully understand a DGTHDS.   

 

 

Fig.  41 - Casing Seat Pressure in Run CS8 
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Fig. 42 - Casing Seat Pressure in Run CS9 

 
 
 
 Finally, it is apparent from Simulation Set #2 that when a proper casing program 

is designed and in place kicks can be rapidly detected and circulated out of the wellbore.  

There are still uncertainties within the system that need to be further addressed.  An 

important point to note is that 50 bbl kicks are unlikely because in the DGTHDS kick 

detection happens rapidly and with a properly trained drilling crew most kicks should be 

detected and the “Modified Driller’s Method” will begin well before the kick size 

reaches even 10 bbl. 

Finally, a significant observation is that Simulation Set #2 was performed 

entirely with 12 ¼” pilot hole below the last conductor pipe seat.  This is the current 

industry standard, because it is easy to pump cement into a 12 ¼” pilot hole when a kick 
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is encountered.  However, in this system the larger the hole diameter the less impact the 

kick has on wellbore pressures, and the easier the kick is to circulate.  Conventionally, a 

smaller pilot hole resulted in safer drilling operations but, in the DGTHDS a larger pilot 

hole may result in safer drilling operations.  This could save expensive rig time that is 

required to drill a pilot hole to the next casing depth and then ream the hole out to casing 

OD size. 
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS FOR THE FUTURE 

OF DUAL GRADIENT TECHNOLOGY 

 

5.1  Conclusions 

Dual gradient drilling technology is not beyond our reach.  This technology has 

been designed, engineered and field tested for feasibility.  This technology has been 

successfully applied to the top hole portion of a wellbore in a shallow water environment 

and in a deepwater environment after conductor and surface casing have been set.  The 

riserless drilling simulator indicates that applying dual gradient technology to top hole 

drilling, when used in conjunction with a proper casing program, successfully navigates 

the narrow window between formation pore pressure and formation fracture pressure.  

The results of simulation also leads to the conclusion that the dual gradient technology 

applies safe well control methods while drilling the top hole portion and can control all 

three major shallow hazards.  Riserless Dual Gradient Top Hole Drilling results in: 

• Rapid and accurate kick detection 

• Safe Well Control Procedures 

• Successful pore/fracture pressure window navigation 

• Control over pressured shallow gas zones 
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• Control over shallow water flows 

• Control over dissociating methane hydrates 

• Improved casing seats and wellbore integrity 

• Reduced number of casing strings 

• Reduced overall costs 

• Prevention of methane hydrate formation 

• Reduced environmental impact. 

 

The advantages of the system far outweigh the reluctance of the industry to 

implementing a new technology.  The key is to continue to overcome the industries 

resistance to the new technology by education, training and gradual implementation of 

the DGTHDS into conventional practices. 

Dual gradient technology still has uncharted territory, however, a DGTHDS has 

already been proven to be substantially safer and more reliable than the current “Pump 

and Dump” technology.  The remaining questions need only be answered to streamline 

the DGTHDS.  AGR has proven that a DGTHDS is the key to improving top hole 

drilling in shallow water depths.  As AGR adapts their technology to conquer deeper 

water depths and academic research continues to improve the design of a DGTHDS for 

deepwater, a DGTHDS will cease to be a technology of the future and become the new 

industry standard that everyone strives to improve. 
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5.2 Recommendations for the Future of Top Hole Dual Gradient Drilling 

While this technology still gives every indication of being an improvement over 

the current top hole drilling practice of “Pump and Dump”, there are still some 

uncertainties regarding the DGTHDS.  There are three main questions that still remain to 

be answered.  The first, as briefly discusses in Chapter IV, is how does the location, in 

the annulus, of the first bubble of the kick impact on annulus pressures and kick 

circulation.  Is the simulator, originally created for training purposes, reacting from a 

human error point of view (meaning a lack of response results in a blowout) or from a 

technical point of view (meaning a bubble at shallow depths within the annulus will, in 

reality, result in a surface blowout).  A new research project may be launched to get deep 

into the programming of the simulator to find the answer to this question. 

The second question is regarding the tracking of the casing seat pressure.  Will 

setting casing more often and at shallower depths BML keep the casing seat pressure 

below formation fracture pressure?  Will smaller kick sizes result in lower casing seat 

pressure?  Which brings us to the third and perhaps most interesting question?  How 

does the pilot hole size affect the kick height and size and annulus pressures? 

Several simulations were ran in 10,000 ft of sea water, but instead of using the 

standard 12.25” pilot hole, a hole the size of the next casing OD size was drilled below 

the last casing seat.  The runs were done in a formation of 1.0 ppg over pressure, and the 

kick size was always as large as possible.  The results were quite interesting and can be 

seen in Fig. 43, 44 and 45.   
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Fig. 43 - Larger Hole Diameter than Run CS7 

 
 
 
 In Fig. 43 the pressure at the top of the kick in the simulation with the larger size 

pilot hole can be seen in orange.  The run with the conventional pilot size hole of 12.25” 

can be tracked in red.  In the case of the larger hole diameter, the pressure at the top of 

the kick rises above formation fracture pressure before reaching the conductor pipe set at 

200 ft BML.  This is likely because even though the kick size is the same, the larger hole 

size reduces the total height of the kick.  This means that when the subsea mud pump is 

slowed down to prevent additional influx the top of the kick is still a lot deeper than the 

last casing seat.  Then as the kick is circulated, the pressure at the top of the kick can 

easily rise about formation fracture pressure.  Which again leads to the question…  Does 

casing need to be set more often and conservatively when dealing in a deepwater 
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environment?  Fig. 44 and Fig. 45 show the results of larger hole diameter when casing 

is set at 2,000 ft BML and 4,200 ft BML, respectively.  The results are similar to those 

shown in Fig. 43.  However in Fig. 45 the difference between in the pressure at the top 

of the kick in the 12.25” pilot hole and the larger pilot hole is minimal because the 

difference (from 12.25” to 17.5”) between hole diameter is minimal.  To more fully 

understand the limitation of the DGTHDS more research into the effect of a larger pilot 

hole size is necessary. 

 

 

 

Fig. 44 - Larger Hole Diameter than Run CS8 
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Fig. 45 - Larger Hole Diameter than Run CS9 

 
 
 

To answer the questions regarding: the effect of bubble height within the well, 

the accuracy of the simulator’s casing seat pressure predictions and the possible impact 

of larger pilot hole sizes, the next step is to design and field test a system that can be 

applied to drilling the top hole portion of a wellbore in a deepwater environment.  In a 

continuation of the OTRC / MMS project “Application of Dual Gradient Technology to 

Top Hole Drilling”, the top hole dual gradient equipment should be designed, 

constructed, commissioned and field tested.  It is imperative that the industry be shown 

how beneficial the application of dual gradient technology to top hole drilling can be. 

Dual gradient technology promises to: improve safety and well control while 

drilling, decrease costs, improve wellbore quality and reduce environmental impact.  
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Even so, developing a new technology can be expensive and difficult to implement.  The 

step, that is paramount to implementing dual gradient technology into commercial use, is 

to convince the industry end users (operators and service companies alike) that dual 

gradient technology will significantly improve deepwater drilling operations through 

education and training.  This can best be done is small steps, by focusing on improving 

one part of the current technology at a time.  In this manner top hole dual gradient 

drilling will be implemented slowly, but seamlessly and to the advantage of everyone 

involved.   
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NOMENCLATURE 

 

AGR AGR Ability Group 

bbl Barrels 

BHP Bottom Hole Pressure 

BML Below Mud Line 

BOP Blow Out Preventer 

cp centipoises 

DOE Department of Energy 

DGTHDS Dual Gradient Top Hole Drilling System 

DS Drill String 

DSV Drill String Valve 

E&P Exploration and Production 

ºF Degrees Fahrenheit 

ft Feet 

gpm Gallons per Minute (gallons/minute) 

HSP Hydrostatic Pressure 

IADC International Association of Drilling Contractors 

ID inner diameter 

JIP Joint Industry Project 

lbf/100 sq.ft Pounds of Force per 100 square feet 
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MC Mississippi Canyon 

MMS Minerals Management Service 

MPD Managed Pressure Drilling 

NSF National Science Foundation 

OD Outer Diameter 

OTRC Offshore Technology Research Center 

P&F PR Pore and Fracture Pressure Regime 

ppg Pounds per Gallon (lb/gal) 

psi Pounds per Square Inch (lb/in2) 

RMR Riserless Mud Return 

SPP Standpipe Pressure 

SSMLDJIP SubSea MudLift Drilling Joint Industry Project 

SRD SubSea Rotating Diverter 

TD Total Depth 
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Fig. A1 – Simulation Set #1 Flowchart 

APPENDIX A 

SIMULATOR INPUT FLOWCHARTS 
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Fig.  A2 – Simulation Set #2 Flowchart 
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APPENDIX B 

PORE/FRACTURE PRESSURE REGIMES 

 
Table B1 - P&F R#1 – 3,000 ft Water Depth 
Pore & Fracture Pressures:  

Depth, SubSea, ft Pore P, psi Fracture P, psi 
3,000 1,349 1,349 
3,260 1,468 1,488 
3,804 1,716 1,815 
4,393 1,985 2,287 
5,025 2,276 2,798 
5,686 2,794 3,401 
6,364 3,385 4,041 
7,055 3,989 4,699 
7,760 4,631 5,382 
8,478 5,291 6,085 
9,213 5,896 6,789 
9,974 6,358 7,473 

10,763 6,948 8,222 
11,573 7,634 9,021 
12,402 8,353 9,851 
13,253 9,119 10,718 
14,131 9,850 11,602 
15,045 10,503 12,498 
15,996 11,303 13,475 
16,983 11,982 14,452 
18,000 12,959 15,552 
19,037 13,819 16,644 
20,106 14,546 17,732 
21,215 15,164 18,831 
22,373 15,653 19,945 
23,589 15,996 21,078 
24,875 16,059 22,201 
26,244 15,965 23,365 
27,667 17,136 24,977 
29,098 18,995 26,822 
30,524 20,671 28,627 
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Table B2 - P&F R#2 – 5,000 ft Water Depth 
Pore & Fracture Pressures:  

Depth, SubSea, ft Pore P, psi Fracture P, psi 
5,000 2,249 2,249 
5,260 2,368 2,387 
5,804 2,615 2,715 
6,393 2,884 3,187 
7,025 3,176 3,698 
7,686 3,693 4,300 
8,364 4,285 4,941 
9,055 4,889 5,598 
9,760 5,531 6,282 

10,478 6,191 6,985 
11,213 6,796 7,688 
11,974 7,258 8,373 
12,763 7,848 9,122 
13,573 8,534 9,921 
14,402 9,252 10,751 
15,253 10,018 11,618 
16,131 10,749 12,501 
17,045 11,402 13,397 
17,996 12,203 14,374 
18,983 12,882 15,352 
20,000 13,859 16,452 
21,037 14,719 17,544 
22,106 15,445 18,631 
23,215 16,064 19,731 
24,373 16,553 20,845 
25,589 16,896 21,977 
26,875 16,959 23,100 
28,244 16,865 24,265 
29,667 18,036 25,876 
31,098 19,894 27,721 
32,524 21,571 29,526 
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Table B3 - P&F R#3 – 10,000 ft Water Depth 
Pore & Fracture Pressures:  

Depth, SubSea, ft Pore P, psi Fracture P, psi 
10,000 4,498 4,498 
10,260 4,617 4,636 
10,804 4,864 4,964 
11,393 5,133 5,436 
12,025 5,425 5,947 
12,686 5,942 6,549 
13,364 6,534 7,190 
14,055 7,138 7,847 
14,760 7,780 8,531 
15,478 8,440 9,234 
16,213 9,045 9,937 
16,974 9,507 10,622 
17,763 10,097 11,371 
18,573 10,783 12,170 
19,402 11,501 13,000 
20,253 12,267 13,867 
21,131 12,998 14,750 
22,045 13,651 15,646 
22,996 14,452 16,623 
23,983 15,131 17,601 
25,000 16,108 18,701 
26,037 16,968 19,793 
27,106 17,694 20,880 
28,215 18,313 21,980 
29,373 18,802 23,094 
30,589 19,145 24,226 
31,875 19,208 25,349 
33,244 19,114 26,514 
34,667 20,285 28,125 
36,098 22,143 29,970 
37,524 23,820 31,775 
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APPENDIX C 

SIMULATOR INPUT DATA – SET #1 

 

 

 

 

Fig. C1 – Input Data Run #1 
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Fig. C2 – Input Data Run #2
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Fig. C3 – Input Data Run #3 
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Fig. C4 – Input Data Run #4
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Fig. C5 – Input Data Run #5    
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Fig. C6 – Input Data Run #6
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Fig. C7 – Input Data Run #7 
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Fig. C8 – Input Data Run #8
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Fig. C9 – Input Data Run #9 
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Fig. C10 – Input Data Run #10
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Fig. C11 – Input Data Run #11 
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Fig. C12 – Input Data Run #12
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Fig. C13 – Input Data Run #13 
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Fig. C14 – Input Data Run #14
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Fig. C15 – Input Data Run #15 
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Fig. C16 – Input Data Run #16
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Fig. C17 – Input Data Run #17 
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Fig. C18 – Input Data Run #18
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Fig. C19 – Input Data Run #19 
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Fig. C20 – Input Data Run #20
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Fig. C21 – Input Data Run #21 
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Fig. C22 – Input Data Run #22
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Fig. C23 – Input Data Run #23 
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Fig. C24 – Input Data Run #24
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Fig. C25 – Input Data Run #25 
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Fig. C26 – Input Data Run #26
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Fig. C27 – Input Data Run #27 
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Fig. C28 – Input Data Run #28
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Fig. C29 – Input Data Run #29 
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Fig. C30 – Input Data Run #30



129 

 

 

 

 

 

Fig. C31 – Input Data Run #31 
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Fig. C32 – Input Data Run #32
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Fig. C33 – Input Data Run #33 
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Fig. C34 – Input Data Run #34
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Fig. C35 – Input Data Run #35 
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Fig. C36 – Input Data Run #36 
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APPENDIX D 

SIMULATOR INPUT DATA – SET #2 

 

 

 

 

Fig. D1 – Input Data Runs CS1a and CS1b 
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Fig. D2 – Input Data Runs CS2a and CS2b 

 

 
Fig. D3 – Input Data Runs CS3a and CS3b 
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Fig. D4 – Input Data Runs CS4a and CS4b 

 
 
 

 
Fig. D5 – Input Data Runs CS5a and CS5b 
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Fig. D6 – Input Data Runs CS6a and CS6b 

 
 
 

 
Fig. D7 – Input Data Runs CS7a and CS7b 
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Fig. D8 – Input Data Runs CS8a and CS8b 

 
 
 

 
Fig. D9 – Input Data Runs CS9a and CS9b
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APPENDIX E 

PRESSURE @ TOP OF KICK GRAPHS – SET #1 

 
 

 
Fig. E1 – Pressure @ Top of Kick in Run 1 
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Fig. E2 – Pressure @ Top of Kick in Run 2 

 
 

 
Fig. E3 – Pressure @ Top of Kick in Run 3 
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Fig. E4 – Pressure @ Top of Kick in Run 4 

 
Fig. E5 – Pressure @ Top of Kick in Run 5 
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Fig. E6 – Pressure @ Top of Kick in Run 6 

 

  
Fig. E7 – Pressure @ Top of Kick in Run 7 
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Fig. E8 – Pressure @ Top of Kick in Run 8 

 

 
Fig. E9 – Pressure @ Top of Kick in Run 9 
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Fig. E10 – Pressure @ Top of Kick in Run 10 

 

 
Fig. E11 – Pressure @ Top of Kick in Run 11 
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Fig. E12 – Pressure @ Top of Kick in Run 12 

 

 
Fig. E13 – Pressure @ Top of Kick in Run 13 
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Fig. E14 – Pressure @ Top of Kick in Run 14 

 

 
Fig. E15 – Pressure @ Top of Kick in Run 15 
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Fig. E16 – Pressure @ Top of Kick in Run 16 

 

 
Fig. E17 – Pressure @ Top of Kick in Run 17 
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Fig. E18 – Pressure @ Top of Kick in Run 18 

 

 
Fig. E19 – Pressure @ Top of Kick in Run 19 
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Fig. E20 – Pressure @ Top of Kick in Run 20 

 

 
Fig. E21 – Pressure @ Top of Kick in Run 21 
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Fig. E22 – Pressure @ Top of Kick in Run 22 

 

 
Fig. E23 – Pressure @ Top of Kick in Run 23 
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Fig. E24 – Pressure @ Top of Kick in Run 24 

 

 
Fig. E25 – Pressure @ Top of Kick in Run 25 
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Fig. E26 – Pressure @ Top of Kick in Run 26 

 

 
Fig. E27 – Pressure @ Top of Kick in Run 27 
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Fig. E28 – Pressure @ Top of Kick in Run 28 

 

 
Fig. E29 – Pressure @ Top of Kick in Run 29 
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Fig. E30 – Pressure @ Top of Kick in Run 30 

 

 
Fig. E31 – Pressure @ Top of Kick in Run 31 
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Fig. E32 – Pressure @ Top of Kick in Run 32 

 

 
Fig. E33 – Pressure @ Top of Kick in Run 33 
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Fig. E34 – Pressure @ Top of Kick in Run 34 

 

 
Fig. E35 – Pressure @ Top of Kick in Run 35 
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Fig. E36 – Pressure @ Top of Kick in Run 36 
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APPENDIX F 

PRESSURE @ TOP OF KICK GRAPHS – SET #2 

 
Fig. F1 – Pressure @ Top of Kick in Runs CS1a and CS1b 
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Fig. F2 – Pressure @ Top of Kick in Runs CS2a and CS2b 

 
 

 
Fig. F3 – Pressure @ Top of Kick in Runs CS3a and CS3b 



161 

 

 
Fig. F4 – Pressure @ Top of Kick in Runs CS4a and CS4b 

 
Fig. F5 – Pressure @ Top of Kick in Runs CS5a and CS5b 
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Fig. F6 – Pressure @ Top of Kick in Runs CS6a and CS6b 

 
Fig. F7 – Pressure @ Top of Kick in Runs CS7a and CS7b 
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Fig. F8 – Pressure @ Top of Kick in Runs CS8a and CS8b 

 

 
Fig. F9 – Pressure @ Top of Kick in Runs CS9a and CS9b 
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