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ABSTRACT 

Linear Demultiple Solution Based on  

Bottom-Multiple Generator (BMG) Reflector Approximation:  

Subsalt Example. (August 2005) 

Abiola Omobolaji Oladeinde, 

B.S., University of Ibadan, Nigeria 

Chair of Advisory Committee: Dr. Luc T. Ikelle 

 

Significant quantities of hydrocarbons are found in complex salt environments. 

One of the modern challenges of exploration and production activities is to image below 

salt. This challenge arises from the complexities of salt structures, weak primaries from 

the subsalt, and the interference of free-surface multiples with the weak primaries of the 

subsalt.  To effectively process subsalt data, we need to develop a method of attenuating 

free-surface multiples that preserves the amplitude and phase of primaries and does not 

introduce artifacts at either near and far offsets. In this thesis, we will demonstrate that 

the weak primaries of the subsalt can be preserved while attenuating free-surface 

multiples. The method used for the demonstration is the bottom-multiple generator 

(BMG) reflector approximation. This technique requires that a portion of the data 

containing only primaries be defined. A multidimensional convolution of the data 

containing only primaries with the actual data will predict free-surface multiples and 

hence is used to attenuate free-surface multiples from the actual data. This method is one 

of the most effective methods for attenuating free-surface multiples; however, the 
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method requires muting data at the BMG location. One of the issues investigated in this 

thesis, is to establish the sensitivity of the BMG demultiple technique when the mute at 

the BMG location end up cutting some seismic reflections, which can be the case in 

complex environments such as the Gulf of Mexico and Gulf of Guinea, where free-

surface multiples interfere with primaries. For this investigation, we generated synthetic 

data through the 2D elastic finite-difference modeling technique. The synthetic seismic 

data contain primaries; free-surface multiples, and internal multiples, and direct waves 

acquired over a 2D geological model that depicts a shallow-water geology.  

In this thesis, we also investigate if the first step of the BMG demultiple 

technique can sufficiently attenuate free-surface multiples. For this investigation, we 

designed a 2D geological model, which depicts the deep offshore environment, and we 

generated synthetic data through the 2D elastic finite-difference modeling technique. 

After performing the various investigations mentioned above, the following 

conclusions were made, that the demultiple result is not affected when the mute at the 

BMG location end up cutting some primaries, that the first step of the BMG demultiple 

technique is not sufficient for the demultiple, and that the weak subsalt primaries are 

preserved during demultiple processes. We compared shot gathers and zero offset data 

before and after the demultiple. 
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CHAPTER I 

INTRODUCTION 

 

The common seismic events recorded during marine acquisition (for example 

towed-streamer data) are direct waves, primaries, free-surface multiples, internal 

multiples, and ghosts of both source and receivers. (Figure 1.1 shows an illustration of 

typical ray paths describing the seismic events in towed-streamer data). The challenges 

faced in towed-streamer data processing are to attenuate free-surface multiples and 

imaging primaries. Note that internal multiples are weak compare to the primaries and 

are therefore considered negligible. Note also that the ghosts of sources and receivers are 

treated as part of the multiple attenuation. 

 In this thesis, we focus on attenuating free-surface multiples in towed-streamer 

data.  Several demultiple techniques have been developed and new techniques are being 

proposed. Most of the demultiple techniques have underlying assumptions. It is 

important that the assumptions are taken into account when applying the demultiple 

techniques. Some demultiple techniques introduce artifacts to the data or fail in complex 

environments, such as the subsalt and sub-basalt.  

 

 

_________________ 

This thesis follows the style and format of Geophysics.  
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Figure 1.1: An illustration of ray paths common to various seismic events in towed-streamer data. 
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In thesis we considered a demultiple technique proposed by Ikelle et al. (2004) 

for free-surface multiple attenuation. The concept of the technique is that a portion of the 

data containing only primaries must be defined. This is defined by muting the data just 

above the first free-surface multiples to arrive. The muting location is called the bottom-

multiple generator (BMG) reflector (an extensive review is given in Chapter 3). 

A multidimensional convolution of the data containing only primaries with the 

actual data allow for free-surface multiples to be predicted and therefore attenuated.  

 The big challenge in the application of the BMG demultiple technique is to 

determine what happen when the mute at the BMG cuts up several seismic events. We 

investigated the sensitivity by generating synthetic data using the 2D elastic finite 

difference modeling technique over a complex 2D geology with shallow-water depth, 

where the deepest water depth of the model is 250 m. Figure 1.2a shows the 2D shallow 

geology and Figure 1.3a shows the zero offset data of the synthetic data. Note how the 

free-surface multiples interfere with subsalt layers. 

 We also investigated, if the weak primaries of the subsalt can be preserved 

during the demultiple process and if only one step of the BMG demultiple technique 

would be sufficient to attenuate free-surface multiples. We considered synthetic data 

generated using the 2D elastic finite difference modeling technique over a complex 2D 

geology with deep-water depth, where the deepest water depth of the model is 500 m, for 

the investigation. Figure 1.2b shows the 2D deep geology, and Figure 1.3b shows the 

zero offset data of the synthetic data. Note the subsalt layers cannot be easily defined 

due to free-surface multiples interference.   
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Figure 1.2: The complex 2D geological models (adapted from Lafond et al. 2004) considered for our investigations. The models consist of two 
isolated salt bodies, which lie close to the seafloor. (a) Shallow-water geology.  Layers 5, 6, 7, and 8 are the subsalt layers. (b) Deep-water geology. 
Layers 4, 5, 6, and 7 are the subsalt layers. 
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Figure 1.3: Zero offset data before demultiple. (a) Shallow-water geology. (b) Deep-water geology. 
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PROBLEM DESCRIPTION 

Multiples 

Multiples are coherent seismic energies that do not follow the ray path of their 

primaries. Two types of multiples are generated in marine acquisition; these are internal 

multiples and free-surface multiples.  

Internal Multiples 

Internal multiples are seismic events that have at least one bounce between two 

layers (Figure 1.4) and no bounce at the free surface interface. Internal multiples usually 

appear weak in seismic data as compare to the primaries and are hardly visible. As 

mentioned earlier, the internal multiples are not considered in this thesis. 

The orders of the internal multiples depend on the number of bounce between the 

layers. For example, if there is one bounce between the layers it is called first-order and 

if there are at least two bounces between layers it is called second-order. Figure 1.4 also 

illustrates the possible ways that internal multiples can be generated during marine 

seismic acquisition.  
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Figure 1.4: An illustration of different types of internal multiples common to marine acquisition.  

 

Figure 1.4: An illustration of different types of internal multiples common to marine acquisition. 

 

Free-Surface Multiples 

Free-surface multiples are seismic events that have at least one bounce at the 

free-surface interface. The free-surface multiples like the internal multiples occur in 

different orders. The orders follow the pattern as described for the internal multiples 

except that the bounce is at the free surface interface. Figure 1.5 shows an illustration of 

possible orders of free-surface multiples that can be generated during seismic acquisition 

although the orders are not limited to the illustration in Figure 1.5. 

 

  free surface 

sea surface 
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Figure 1.5: An illustration of different types of free-surface multiples common to marine acquisition.  

 

 This thesis is focused on attenuating free-surface multiples. Free-surface 

multiples has pose as a continuous challenge in petroleum seismology. For example, the 

first-order and second-order free-surface multiples of the primaries of the water-bottom 

layer can have energies stronger than the primaries of the deeper layers in the 

subsurface. For this reason, the ability to distinguish the primaries of deeper layers can 

be very challenging. If the environment is a salt-controlled basin, the weak primaries of 

the subsalt can hardly be identify because free-surface multiples appears much stronger 

first-order free-surface multiples  second-order free-surface multiples 

sea-surface 

source 

receiver 

  free-surface 
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and overshadows the weak subsalt primaries.  

In complex geology, free-surface multiples interfere with primaries; therefore it 

is critical to have an attenuation technique that preserves primaries while attenuating 

free-surface multiples. Also it is very important to attenuate free-surface multiples 

before imaging in data processing. If the attenuation of free-surface multiples is not 

carried out, we end up boosting free-surface multiples after imaging. The highly boosted 

free-surface multiples could be misinterpreted as primaries, which could lead to the 

drilling of millions of dry holes.  

 

A REVIEW OF DEMULTIPLE TECHNIQUES  

Various demultiple techniques have been developed over time. Some of these 

methods are called the traditional methods. The traditional methods have limitations and 

because there is more interest in the exploration and production (E&P) industry to 

explore for oil and gas in complex geology such as subsalt and sub-basalt, new 

demultiple techniques are being developed to meet with the challenges of multiples 

attenuation in these types of environments.  

Multiple attenuation methods have been classified into different categories by 

various authors. Weglein (1999), grouped the demultiple techniques into two broad 

groups. One broad group exploits a feature or properties that differentiate multiples from 

primaries are under filtering method. The filtering method is sub-divided into two 

groups, group that exploit periodicity and group that exploits separability of multiples 

and primaries. Multiple attenuation methods that fall under periodicity are predictive 



  

 

10 

deconvolution and tau-p ( p−τ ) transform.  Methods that exploit the separability 

features include common midpoint (CMP) stacking, frequency – wave number (f-k) 

filter and radon transform.  

The second broad group is the wavefield prediction and subtraction technique. 

Demultiple techniques under the group are the wavefield extrapolation method, the 

feedback loop and the inverse scattering series. 

For this thesis, we categorize the demultiple techniques according to the methods 

that exploit periodicity, method that exploit separability, and methods that is based on 

the prediction and subtraction of free-surface multiples.  

 

Demultiple Technique Based on Periodicity 

Demultiple techniques that are classified under periodicity are techniques which 

take advantage of free-surface multiple been periodic. The predictive deconvolution is in 

this group. 

Predictive Deconvolution 

 Predictive deconvolution can be described as a technique that employs the least-

square filters with prediction lag greater than unity to predict a seismic event (for 

example multiples) at a future time. The method depends on three key parameters, the 

operator length, the prediction lag and the pre-whitening. Some assumptions are 

considered before the technique can be applied to suppress multiples. It is assumed that 

the data is zero offset, have minimum phase wavelets, that there are horizontal layers of 

the subsurface and there are no converted P-S waves. Note that the violation of any of 
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these assumptions mentioned above, may make free-surface multiples attenuation by the 

technique questionable.   

 In practice, there are some criteria, which guide the choice of prediction lag and 

operator length. The prediction lag should be chosen to bypass the first part of the 

autocorrelation that represent the wavelets and the operator length should be chosen to 

include the primaries and the first break of multiples (Yilmaz, 1987).    

 

Demultiple Technique Based on Separability  

CMP Stacking 

The technique takes advantage of the moveout difference between primaries and 

multiples. Primaries are known to have less moveout than multiples. Normal Moveout 

(NMO) correction is applied to a common midpoint (CMP) gather using the velocity of 

the primaries. The primaries flatten out and the free-surface multiples are 

undercorrected. Hence, the multiples are attenuated during stacking since we use the 

velocity of the primary to generate the stack.  

The CMP stacking fails to attenuate free-surface multiples at near offset data, 

because the moveout difference between the primaries and free-surface multiples is 

small.  
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F-K Filter 

   Seismic events in space – time (x-t) domain can be separated into different dips 

in the frequency–wavenumber (f-k) domain. The ability to separate events into different 

dips in the f-k domain makes it possible to separate and attenuate unwanted signal. To 

attenuate multiples in the f-k domain, NMO correction is applied to a CMP gather using 

a velocity that is in-between the primary velocity and the free-surface multiple velocity. 

The resulting CMP gather will have the primaries overcorrected and the free-surface 

multiples undercorrected. This NMO corrected CMP data is transformed into the f-k 

domain, where free-surface multiples and primaries are separated into different 

quadrants. The free-surface multiples lies in the positive quadrant while the primaries 

lies in the negative quadrant. By zeroing the quadrant where the free-surface multiples 

lies, data with only primaries is obtained. An inverse Fourier transform is performed to 

transform the data back to x-t domain and NMO correction is removed.  Figure 1.6 

shows an example of f-k filtering for multiple attenuation. 

There is a limitation to the application of the f-k demultiple. The f-k demultiple 

works effectively in attenuating multiples where there exist large dips or moveout 

between free-surface multiples and primaries but this is not the case in near offset, where 

there is little moveout between the free-surface multiples and the primaries. Another 

problem of the f-k demultiple technique is spatial aliasing. The aliasing of multiples or 

primaries in the f-k domain will cause a spill over from one quadrant to another, 

therefore removing multiples in a single quadrant may leave strong residues of multiples 

in the data. 
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Figure 1.6: An example of f-k filtering for free-surface multiple attenuation (Ikelle and Amundsen, 2003). 
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Radon Transform 

The radon transform can be defined as the transformation of data from ( tx, ) 

domain to the tau-p ( ρτ , ) domain. The transformation is carried out via a line integral. 

Note that the line can be straight, parabolic or hyperbolic. 

� += ),(),( pxxdxupu ττ     (1.1) 

and  

    τ+= pxt   Linear    (1.2) 

or 

    τ+= 2pxt   Parabolic   (1.3) 

or 

    22 τ+= pxt   Hyperbolic   (1.4) 

where τ  is the intercept time, t  is the time at offset x  and p  is the slowness for 

hyperbolic and the slowness divided by the distance for parabolic curves.  

The limitation of the transform is that it introduces artifacts into the data at near 

offset. 

 

 Demultiple Technique Based on Prediction and Subtraction 

Inverse Scattering Multiple Attenuation (ISMA) 

 The inverse scattering multiple attenuation (ISMA) is a multiple attenuation 

algorithm based on the inverse theory. The series is made up of an infinite sum of terms. 

Ikelle and Amundsen (1997) represented the series by mathematical notations as: 
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  ...,3
3

2
2

10 ++++= DADAADDDP      (1.1) 

where PD  denotes data without free-surface, 0D  is the data with free-surface multiples, 

the term nDDDD ,...,, 321  denotes the field of predicted free-surface multiples and A  

denotes the source signature. One advantage of the method is that it does not require 

knowledge of the subsurface and also the amplitudes of primaries are preserved during 

attenuation process including cases where primaries and free-surface multiples interfere.  

   One of the limitation of the demultiple method is that it is computational 

expensive. This is due to the non-linearity in the series, in which the terms ,, 32 DD  etc., 

are computed several time. 

 

SUMMARY 

 In summary, a demultiple technique that preserve the primaries, effective at all 

offset and in complex data and most importantly cost effective is crucial in data 

processing.  In this thesis, we implemented a demultiple technique that is based on the 

‘predict then subtract’ approach and the technique satisfies the criteria as mentioned 

above, that are essential of an effective demultiple technique.  The demultiple technique 

is called the bottom-multiple generator (BMG) reflector approximations.   
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CHAPTER II 

A BRIEF BACKGROUND ON CONSTRUCTING FREE-SURFACE 

MULTIPLES 

 

PREDICTION OF FREE-SURFACE MULTIPLES 

 Let us review the theory of constructing (predicting) free-surface multiples. 

According to Ikelle and Amundsen (2003) free-surface multiples can be predicted based 

on the theory that seismic events can be reconstructed at the scattering point. The 

scattering point for the reconstruction can be located either at the free surface or in the 

subsurface, Figure 2.1 shows the possible ways that seismic events can be decomposed.  

Note from Figure 2.1 that only free-surface multiples and ghosts can be 

constructed at the free surface and also from recorded data. This is possible because the 

free-surface multiples and ghosts split into other seismic events that are already present 

in the recorded data. The same cannot be said of primaries and internal multiples 

because both events can be constructed only with the scattering point in the subsurface 

and then split into events, which have to be extrapolated from the recorded data.   
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Figure 2.1: An illustration of possible ways in which seismic events can be constructed for towed-streamer 

data. 
 

We draw the following conclusions based on the theory that has been established, 

that free-surface multiples can be constructed with the scattering point at the free 

surface. 

1) We cannot construct primaries with a scattering point at the free surface. 

2) We can avoid the construction of ghosts of any seismic events by muting away 

the direct wave from the data.  

3) The first-order free-surface multiples can be constructed from a combination of 

two primaries with one scattering point. 

4) The second-order free-surface multiples can be constructed from a combination 

of a primary and the first-order free-surface multiples with one scattering point 

and can also be constructed from the combinations of three primaries with two 
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scattering points at the free surface. Note from Figure 2.2 that there are two ways 

of constructing second-order free-surface multiples with one scattering point and 

one possible way with two scattering points.  

5) The third-order free-surface multiples can be constructed from the combination 

of two first-order free-surface multiples or as a combination of primary and 

second-order free-surface multiples. Note from Figure 2.2 that there are three 

possible ways of constructing third-order free-surface multiples with one 

scattering points, three ways of constructing third-order free-surface multiples 

with two scattering points and one possible way with three scattering points. 

It is essential to recognize that the data have to be extrapolated from the source to 

the free surface or from the receiver to the free surface before use for the construction of 

free-surface multiples. This is necessary because acquisition geometry implemented in 

towed-streamer experiment has the source and the receivers located very close to the free 

surface (see Figure 2.2).  
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Figure 2.2: An illustration of possible ways in which free-surface multiples can be constructed for towed-

streamer data. 
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CHAPTER III 

CONCEPT OF BOTTOM-MULTIPLE GENERATOR (BMG) REFLECTOR 

APPROXIMATION 

 

SUBTRACTION OF PREDICTED FREE-SURFACE MULTIPLES 

 The predicted free-surface multiples are attenuated from the actual data. Before 

predicted free-surface multiples can be used for this purpose, it has to be scaled by a 

scaling factor. The ideal scaling factor is the inverse source signature (a). By scaling the 

predicted free-surface multiples with the inverse source signature, free-surface multiples 

can be effectively attenuated because the amplitude and the phase of both the predicted 

free-surface multiples with free-surface multiples in the actual data is properly adjusted 

to be equivalent. Unfortunately, the source signature is usually unknown. 

 Ikelle and Amundsen (2003) explore different methods of obtaining the inverse 

source signature.  One of the methods is to measure the source signature directly. The 

measurement requires special data acquisition geometries such as the vertical source, 

dual streamers and so on. Note that the measured source signature is not generally used 

in practice for the subtraction of predicted free-surface multiples. The reason is that the 

measured source signature is different from the source signature required to attenuate 

predicted free-surface multiples. The measured source signature is actually aimed at re-

deriving the exact air gun source that was used during seismic acquisition.  

 Another method is to estimate the inverse source signature that will allow us to 

attenuate predicted free-surface multiples from the data. The criteria considered for the 
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estimation of the inverse source signature, is based on the observation that the data 

without free-surface multiples have less energy than the data with free-surface multiples.  

 The nonlinear solution to the inverse problem in multiple attenuation is given by 

equation (3.1)  

  ( ) ( ) ( ) ...aaa 32 ++++= 3210p ����� ���      (3.1) 

 In this thesis we implemented the linear solution to the inverse problem for 

multiple attenuation. The linear solution is obtained by reducing equation (3.1) to its first 

two terms in the series, equation (3.2).  

( ) .a 10p ��� �+=        (3.2) 

 This is possible because the nonlinearity in the inverse problem is only as a result 

of the higher polynomial that exists between the inverse source signature ( )�a  and the 

data without free-surface multiples.  

 Ikelle et al. (1997) proposed an approach of estimating the inverse source 

signature by truncating the series in equation (3.1) to its first two terms in the series, 

equation (3.2). Ikelle et al. (1997) ended-up with an iterative scheme to compensate for 

the truncation. 

Based on the mentioned criteria, Ikelle and Amundsen (2003) derived a solution 

to estimate the inverse source signature by reducing equation (3.1) to the first two terms 

in the series without truncation, equation (3.2). The reduction to equation (3.2) is 

achieved by defining a portion of the data where there is exist maximum correlation 

between the free-surface multiples in the data field and the predicted free-surface 

multiples. Once the desired portion of the data is defined, all other fields of predicted 
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free-surface multiples )�,...�,(� n32  are null. 

The approach described above is similar to the truncated series in Ikelle et al. 

(1997) and therefore we can solve the equation (3.2) and arrive at a stable, noniterative 

and analytic solution. Let   

 ),,( �xx rspΦ  = ),,(0 �xx rsΦ  + ),( sx�a ),,(1 �xx rsΦ    (3.3) 

where ),,( �xx rspΦ  denotes data without free-surface multiples, ),,(0 �xx rsΦ  denotes 

recorded data with primaries and free-surface multiples, ),,(1 �xx rsΦ  denotes the field 

of predicted free-surface multiples. Using the least square norm, we minimize ),( sx�a  

to  

  )(aS  = || pΦ ||2 + || a ||2       (3.4) 

where  

  || pΦ ||2 = � rdx �� d�dxs ,( sp xΦ ),�xr ),,( �xxW rsD ),,( �xx rsp
∗Φ  (3.5) 

and  

  || a ||2 =  )(),()( 1
�a��W�a�d� a ′′′ ∗−

� �     (3.6) 

The asterisk (*) denotes a complex conjugate. ),,( �xxW rsD  denotes the 

weighting function which described the errors in the data and )( ��,Wa ′  described the 

priori information on the source. Note that the term || a ||2 is introduced for stability of the 

solution and the constant 2σ  is introduced to the definition of || a ||2, in subsequent 

inversion formula.  
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The analytical solution of equation (3.4) is given as 

  ,
),,(),(

),,((
)(

2
�

� �
′′′+

′′′
−=

�xxQ��W�d

�xxN��,Wdx�d
�,xa

rsa

rsar

s σ
   

 (3.7) 

where  

  ),,(),,(),,(),,( 10 �xx�xxW�xx�xxN rsrsDrsrs
∗ΦΦ=′  (3.8) 

 and   

  ).,,(),,(),,(),,( 11 �xx�xxW�xx�xxQ rsrsDrsrs
∗ΦΦ=′   (3.9) 

  Note that ),,( �xxN rs ′  is the weighted crosscorrelation and ),,( �xxQ rs ′  is the 

weighted autocorrelation. If ),,( �xxW rsD  equals unity, then ),,( �xxN rs ′  will be the 

crosscorrelation between the actual free-surface multiples and the predicted free-surface 

multiples (See Figure 3.1) and ),,( �xxQ rs ′ will be the autocorrelation of the predicted 

free-surface multiples (See Figure 3.2). 

 



  

 

24 

 

Figure 3.1: An illustration of the crosscorrelation of the actual data containing primaries and free-surface 
multiples with the predicted free-surface multiples. Note that we are interested in the crosscorrelation of 
free-surface multiples in the actual data with the predicted free-surface multiples. 
 

 

Figure 3.2: An illustration of the autocorrelation of the predicted free-surface multiples. 
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REVIEW OF BOTTOM-MULTIPLE GENERATOR (BMG) REFLECTOR     

APPROXIMATION  

 Ikelle and Amundsen (2002) proposed a linear solution to the non-linear inverse 

problem in free-surface multiple attenuation. The Linear solution was obtained by 

defining a portion of the data that contains only primaries. In the paper, the linear 

solution was applied to an ocean bottom cable (OBC) data and in another paper was 

extended to towed-streamer data (Ikelle et al. 2004).   

 How do we define the data with only primaries? One solution is to define a 

portion of the data containing only primaries by muting the data just above the first free-

surface multiple to arrive. (See Figure 3.3 for the BMG reflector). 

 The concept of the technique is based on the multidimensional convolution of the 

portion of the data that contains only primaries with the actual data to predict all orders 

of free-surface multiples, which will be attenuated from the actual data.  

 

 

 

 

 

 

 

 

 

Figure 3.3: The dotted line represents the BMG reflector. 
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The BMG demultiple technique is can be described as a two-step process. Let us 

review the two-steps of the demultiple technique as described by Ikelle et al. (2004). 

Let the actual data (towed-streamer data) without the direct-wave arrival be 

denoted by 0� ={ }00,VP , where 0�  denotes the actual data containing primaries and 

multiples, 0P  denotes the pressure data and 0V   is the vertical particle velocity of the 

data.  Let us also denote the two components of the towed-streamer data containing only 

primaries as a
0� ={ }aa ,VP 00 . Therefore, the first step of the demultiple technique is given 

by 

pa� = 0�  + 1a�a ,      (3.10) 

where the inverse source signature is denoted by a, and 1a�  is the multidimensional 

convolution of aV0      with  0� . Figure 3.4 shows an illustration of events generated by the 

multidimensional convolution.  

Note from Figure 3.4 that only free-surface multiples that have their first bounce 

in the subsurface above the BMG reflector are predicted in 1a� .  
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Figure 3.4: An illustration of predicted free-surface multiples obtained from the multidimensional 

convolution of aV0    with .0�  Note that only free-surface multiples that have their first bounce in the 

subsurface located above the BMG reflector is predicted and hence attenuated from the actual data, .0�  

 

In practice, one way to define the BMG reflector is to take a small portion of the 

data and perform autoconvolution to produce a data that consist of the first free-surface 

multiples needed to define the BMG reflector. Figure 3.5 shows an illustration of the 

events generated from the autoconvolution. 
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Figure 3.5: An illustration on how the BMG reflector can be define from the autoconvolution of the data. 

A second step is required to attenuate free-surface multiples that are still present 

in pa� . 

 Let us denote b
paV  as a portion of paV  ( paV  is the vertical particle velocity 
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corresponding to pa� ) located below the BMG reflector. The second step of the 

demultiple technique is given below as 

pb� = pa� + 1b�a ,      (3.11) 

 where 1b�  is the multidimensional convolution of b
paV  by a

0� . Figure 3.6 shows an 

illustration of events generated by the multidimensional convolution. 

 Noticed that free-surface multiples with first and last bounces in the subsurface 

below the BMG reflector are not predicted from the multidimensional convolution (see 

Figure 3.7 for an illustration of the types of free-surface multiples not predicted in the 

two steps described above). These types of free-surface multiples are usually weak in 

deep-water and are hardly visible. There are considered to be as negligible as internal 

multiples (Ikelle et al. 2004). 

 

Figure 3.6: An illustration of free-surface multiples predicted from the multidimensional convolution of 
b
paV  with a

0�  . 
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Figure 3.7: An illustration of free-surface multiples not predicted in the two steps of the BMG demultiple 

technique. Note that these types of free-surface multiples are usually weak in deep-water and are hardly 

visible. 

 
 

HOW TO OBTAIN PARTICLE VELOCITY FROM PRESSURE DATA 

In marine acquisition, especially towed-streamer, the parameter recorded is the 

pressure data. The BMG demultiple technique requires the vertical velocity of the data to 

perform the multidimensional convolution which predict free-surface multiples.  

 One way of obtaining the vertical component of the particle velocity is to 

numerically compute it from the pressure data. Ikelle and Amundsen (2003) describe the 

computation as follows:   
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'
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with   

  ,22
2

2

yxz kk
c
�

k −−=       (3.13) 

where ),( , yx kkk =  denotes the wavenumbers for the horizontal coordinates ),( yx=χ  

and ),,,,(' rsyxz x�zkkV  and ),,,,(0 rsyx x�zkkP  are the Fourier transforms of 

),,,(' rsz x�zV χ  and ),,,(0 rs x�zP χ  with respect to ),( yx=χ  respectively. 

   

POTENTIAL ERRORS 

The potential errors that can be related to the BMG demultiple technique can be 

classified into the modeling error and the prediction error.  

The modeling errors occur in the course of computing the predicted free-surface 

multiples. These errors can be measured by analyzing the time delays between the 

predicted free-surface multiples and the free-surface multiples from the actual data. The 

time delays is computed from the normalized crosscorrelation of the predicted free-

surface multiples with the free-surface multiples for a defined small portion of the actual 

data, made at J  time samples and I  traces, around ),,( tx  Ikelle and Amundsen (2003). 

The normalized crosscorrelation can be described as the ratio of the crosscorrelation 

between the actual data and the predicted free-surface multiples to the autocorrelation of 

the predicted free-surface multiples. 

When the free-surface multiples from the actual data and the predicted free-

surface multiples are in phase everywhere, we usually assume accurate modeling of the 

predicted free-surface multiples. Note that the modeling error map ignores the amplitude 
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errors that can occur in the predicted free-surface multiples but if the modeling error 

map is use alongside with the subtraction error map (which would be discussed later in 

this subsection), potential amplitude error can be identified. 

The second errors that can be observed with the BMG demultiple technique is the 

subtraction errors. We can measure these errors from the evaluation of the correlation 

energies between the predicted free-surface multiples and the actual data before and after 

demultiple. With this comparison it is easy to identify where residues of free-surface 

multiples are present in the data. 

As earlier mentioned, when we use both the modeling error map along with the 

subtraction error map, we can observe amplitude errors in the predicted free-surface 

multiples. Also by using both maps together, we can have an idea of what type of errors 

is being experienced. For example, if the time delay in a particular area of the data is not 

consistent with the common trend of the data, and the correlation energies between the 

predicted free-surface multiples and the actual data, after demultiple remain the same as 

before demultiple, then the error can be attributed to modeling of the predicted free-

surface multiples.  

If the time delay is consistent in very part of data but the correlation energies 

between the predicted free-surface multiples and the actual data after demultiple remain 

the same as before demultiple, then the error maybe due to either amplitude error of the 

predicted free-surface multiples or the subtraction technique that was implemented.  

Usually the energy residues observed in the correlation of energies can be due to 

the interference of free-surface multiples and primaries. If the window over which the 
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crosscorrelation and the autocorrelation is perform is increased, the energy that maybe 

due to the interference of free-surface multiples and primaries can be discriminated.  

 

CONCLUSIONS 

Novelty and Importance of the BMG Demultiple Technique 

1) No knowledge of the subsurface is required.  

2) The BMG demultiple technique is effective at all offset and in complex data, 

therefore it can be use to attenuate free-surface multiples in any environment.  

3) There are savings in the cost of computation of the series, data storage, and 

computation time as compared to the nonlinear solution of the inverse problem. 
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CHAPTER IV 

ANALYSIS OF EFFECT OF BOTTOM-MULTIPLE GENERATOR (BMG) 

APPROXIMATION IN COMPLEX GEOLOGY 

 

GEOLOGICAL MODELS DESCRIPTION 

The complex 2D geological models considered for the demonstration of the 

effectiveness and sensitivity of the BMG demultiple technique both contained isolated 

salt bodies, which lie close to the seafloor. Note that the seafloor is irregular. The 

difference between the complex 2D geological models is that one model has shallow-

water depth (deepest depth is 250 m) while the other model has deep-water depth 

(deepest depth is 500 m). Figures 4.1 and 4.2 shows the complex 2D geological models 

respectively. 

We designed the shallow-water depth geological model so that we can 

demonstrate that the BMG demultiple technique will be effective in attenuating free-

surface multiples even when the mute at the BMG location cut-up several seismic events 

for example the primaries. With the shallow-water depth geology, we can generate 

primaries that are needed to predict free-surface multiples to have their trajectories 

crossing the BMG location. This may be the same scenario in complex geology.  
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Figure 4.1: Complex 2D shallow-water depth geology (adapted from Lafond et al. 2004) considered for 
our investigation of the BMG demultiple technique (Case I). Layers 5, 6, 7, and 8 are the subsalt layers. 
 

Table 4.1: Modeling parameters of the subsurface layers in Figure 4.1 

 

 

 

2.2018004400Salt
2.67145028008
2.45160030007
2.30135026076
2.20120023005
2.50140024504
2.30120022573
2.0096919502
1.00015001
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Figure 4.2: Complex 2D deep-water geology (adapted from Lafond et al. 2004) considered for our 
investigation of the BMG demultiple technique (Case II). Layers 4, 5, 6 and 7 are the subsalt layers. 
 

   Table 4.2: Modeling parameters of the subsurface layers in Figure 4.2 

2.2018004400Salt
2.67145028007
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2.30135026075
2.20115020004
2.0079519003
1.5066918002
1.00015001
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 The deep-water geology was designed to demonstrate the effectiveness of the 

BMG demultiple in deep-water and to show that the first step of the BMG demultiple 

technique can adequately attenuate most of the free-surface multiples. According to 

Ikelle et al. (2004), when the BMG location is deep enough, only one step of the 

demultiple technique may be required. Hence, the data above the BMG location should 

not be shallow, and if shallow, the BMG location can be lowered. 

APPLICATION OF BMG DEMULTIPLE TECHNIQUE 

Case I: Shallow-Water Geology 

We generated 321 shots using the 2D elastic finite difference modeling 

technique. Each shot had a shot interval of 12.5 m, shot over a distance of 4 km, and the 

depth of the source in water is 5 m. Table 4.1 shows a detail of the modeling parameters 

used for data acquisition.  

We applied the two steps of the BMG demultiple technique to the synthetic data 

generated. We considered the shot located at 500 m (see Figure 4.1 for the shot location) 

for our analysis. We chose this shot because it is a good representation of salt reflections 

and reflections at all offsets. (Figure 4.3 is the shot gather of the shot located at 500 m, 

which is an example of the actual data 0� ).  

The first step of the BMG technique has explained in the previous Chapter, is to 

define the portion of the data containing only primaries by muting the actual data just 

above the first free-surface multiples. Figure 4.4 is an example of data containing only 

primaries, aV0 . Note that the primaries of the top salt as well as the primaries of the first 
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and second layers are cut up at the BMG location. 

The multidimensional convolution of aV0  with the actual data a
0�  predicts .1a�  

1a�  contains free-surface multiples whose first bounce in the subsurface are located 

above the BMG reflector.  Figure 4.5 is an example of 1a� .  Note that the primary of the 

top of the salt cut up at the BMG location has been partially predicted. 1a�  is attenuated 

from the data when equation (3.10) is applied to obtain a demultiple result, ,pa�  Figure 

4.6. Note that free-surface multiples interfering with the primaries at about 1.77s have 

been attenuated, and the primaries have been preserved. Also note that only the free-

surface multiples predicted in 1a�  are attenuated from the actual data .0�  Therefore, 

the second step of the BMG demultiple technique described in the previous chapter by 

equation (3.11) is applied to attenuate the free-surface multiples still present in .pa�  

We defined the portion of the particle velocity below the BMG reflector b
paV  

(Figure 4.7), where b
paV  is the particle velocity components of .pa�  The 

multidimensional convolution of b
paV  with the portion of the actual data located above 

the BMG reflector predicts free-surface multiples whose first bounce in the subsurface is 

located below the BMG reflector, .1b�  Figure 4.8 is an example of .1b�  Note that the 

other portion of the primary of the top of the salt is predicted.  

 

 

 



  

 

39 

After we applied equation (3.11), we obtained a final demultiple result pb�  

(Figure 4.10).  

 We compared Figure 4.9, where Figure 4.9 is the shot gather of shot located at 

500 m before demultiple (same as Figure 4.3) to Figure 4.10. Note that in Figure 4.10 

free-surface multiples have been effectively attenuated. The free-surface multiples 

residues in the data are free-surface multiples not predicted by the two steps of the BMG 

demultiple technique. Figure 3.7 is an example of these types of free-surface multiples.  

The type of free-surface multiples described in Figure 3.7 are hardly visible in a 

deep-water environment, but because the water depth of the geological model used for 

our demonstration of the BMG demultiple technique is shallow in this case, the free-

surface multiples residues are visible. Note that the BMG should not be shallow, and if it 

is, the BMG location should be lowered to the second order free-surface multiples to 

arrive. 
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Figure 4.3: Shot gather of shot located at 500 m considered for our analysis.  Figure 4.4: An example of data containing only primaries located   
         above the BMG reflector. 
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Figure 4.6: The first demultiple result obtained after the 
application of the first step of the demultiple technique. 
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Figure 4.5: An example of the field of predicted free-surface multiples 

obtained from the multidimensional convolution of aV0  with 0� . 



  

 

 
42

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: An example of the data located below the BMG reflector.   Figure 4.8: An example of the field of predicted free-surface   
          multiples obtained from the multidimensional convolution of   

          b
paV  with a

0� . 
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Figure 4.9: An example of the actual data from shot located at 500 m.  Figure 4.10: An example of the final demultiple result after   
          the application of the second step of the BMG demultiple  
           technique. 
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We have also compared zero offset data before and after the demultiple to further 

aid our analysis. Figure 4.11 shows the zero offset data before the demultiple. Note the 

interference of free-surface multiples with primary of the subsalt. Figure 4.12 shows the 

zero offset data after applying the first step of the demultiple technique. Note the 

presence of free-surface multiples, which are not attenuated in the first step of the 

demultiple technique. Some of these multiples have arrival time, which is early in the 

section.  Figure 4.13 shows the final demultiple result after the application of the second 

step of the demultiple technique. Noticed that free-surface multiples have been 

effectively attenuated, and the mute at the BMG location does not affect the primary 

reflections of top of salt, the first, and second layers, which cut through these events. 

Also notice that the weak subsalt reflections can be defined compare to before the 

demultiple. 
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Figure 4.11: Zero offset data of the actual data before demultiple. 
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Figure 4.12: Zero offset data of the first demultiple result. 
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Figure 4.13: Zero offset data of the final demultiple result. 
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Case II: Deep-Water Geology 

The acquisition geometry and parameters for the deep-water depth environment 

are kept the same as for the shallow-water depth. See table 4.2 for a summary of the 

modeling parameters. 

We applied the two steps of the BMG demultiple technique to the synthetic data. 

For our analysis, we consider the shots located at 500 m and 3000 m (see Figure 4.2 for 

shots locations). Shot located at 500 m represent the deepest water depth in our complex 

2D geology. With this shot, we can demonstrate, that for the deep-water environment, 

where the BMG reflector is located deeper in the subsurface, the first step of the BMG 

demultiple technique is sufficient to attenuate free-surface multiples in the actual data. 

We have considered shot located at 3000 m to show that the weak primaries of the 

subsalt are preserved during the demultiple processes. 

  We start our analysis with the shot located at 500 m. Figure 4.14 is an example of 

0� , and an example of the portion of the data located above the BMG reflector aV0  is 

Figure 4.15. Note that aV0  is not small as compared to aV0  in Figure 4.4 of our case I. We 

can therefore say our BMG reflector is not shallow.  
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 An example of the field of the predicted free-surface multiples, 1a� , is shown in 

Figure 4.16. By applying the first step of the demultiple technique, we obtained the first 

demultiple result pa�  (Figure 4.17).  

 Note that free-surface multiples are still present in pa� . Therefore we still 

require the second step of the BMG demultiple technique to attenuate free-surface 

multiples. 

 The data below the BMG reflector  b
paV  is represented by Figure 4.18, and  

Figure 4.19 represents the field of predicted free-surface multiples 1b� . Figure 4.20c is 

the final demultiple result pb� . Note that most of the free-surface multiples have been 

attenuated.  
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Figure 4.14: Shot gather of shot located at 500 m considered for 

the deep-water geology. 

Figure 4.15: An example of data containing only primaries 
located above the BMG reflector. 
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Figure 4.16: An example of the field of predicted free-surface 

multiples obtained from the multidimensional convolution of a
0V  with 
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Figure 4.17: An example of the first demultiple result. 
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BMG reflector.   

Figure 4.19:  Shot gather showing the field of predicted free-
surface multiples obtained from the multidimensional 

convolution of b
paV  with a

0� . 
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Figure 4.20 (a) An example of shot gather from the actual data (shot located at 500 m) before demultiple. (b) The first demultiple result (c) The 
second the demultiple result. 
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 We carried out another demonstration using the shot located at 3000 m. We 

follow the two steps of the BMG demultiple technique as applied in the previous 

demonstration, where Figure 4.21 shows the actual data 0� , Figure 4.22 shows the 

portion the data containing only primaries located above the BMG reflector, Figure 4.23 

shows an example of the field of predicted free-surface multiples and Figure 4.24 shows 

the first demultiple result .pa�  Note that the subsalt layers has been preserved during the 

demultiple. Note also that the first step of the demultiple technique have effectively 

attenuated most of the free-surface multiples as compared to Figure 4.6. Although there 

are still presence of free-surface multiples residues in the data.  Figure 4.25 is an 

example of the portion of the data below the BMG reflector, Figure 4.26 is an example 

of the field of predicted free-surface multiple, and Figure 4.27c shows the final 

demultiple result .pb�  Notice that the residues have been well attenuated.  

When we compared the demultiple results of the first step and the second step of 

the demultiple technique. Notice that the subsalt layers are preserved during the multiple 

attenuation processes and the weak subsalt layer, which could not be, define effectively 

in Figure 4.27a can be noticed. 
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Figure 4.21: Shot gather of shot located at 3000 m considered for our 
analysis. 
 

 

Figure 4.22: An example of the portion of the data containing 
only primaries located above the BMG reflector. 
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Figure 4.23: The field of predicted free-surface multiples 

obtained from the multidimensional convolution of a
0V  with 

0� .   

Figure 4.24: An example of the first demultiple result. 
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Figure 4.25: This is an example of the portion of pa�  located below the 
BMG reflector. 
 

Figure 4.26: Shot gather showing an example of the field of predicted 
free-surface multiples obtained from the multidimensional convolution 

of b
paV  with a

0� . 
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Figure 4.27: (a) An example of shot gather from the actual data (shot located at 3000 m) before demultiple. (b) The first demultiple result. 

(c) The second demultiple result. 
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Let us compare the zero offset data before and after the demultiple. Figure 4.28 

show the zero offset data before the demultiple, while Figures 4.29 and 4.30 are the zero 

offset data of the first and second demultiple result. Note that by using the first step of 

the BMG demultiple technique, most of the free-surface multiples has been attenuated as 

compared to Figure 4.6, although there still residue of free-surface multiples that have 

not been attenuated by the application of the first demultiple technique.  

Drawing from the results of the investigations, It can be noted that the first step 

of the BMG demultiple technique is not sufficient for free-surface multiple attenuation 

in deep-water environment.  We still require the use of the second step to attenuate the 

free-surface multiples left in the seismic data. 

 Notice that the weak primary of the subsalt layers that was difficult to 

distinguished in Figure 4.28, are visible after the application of the first and second 

demultiple application. (Figures 4.29 and 4.30) 
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Figure 4.28: Zero offset of the synthetic towed-streamer data (deep-water geology) before demultiple. 
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Figure 4.29: Zero offset of the synthetic towed-streamer data obtained after the first demultiple step. 
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Figure 4.30: Zero offset of the synthetic towed-streamer data obtained after the second demultiple step 
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

 

We have been able to show numerically that the BMG demultiple technique is 

not sensitive to how the mute at the BMG location is applied. In the shallow-water 

geology, the mute at the BMG cuts up some primaries but in the final demultiple result, 

free-surface multiples are attenuated while the primaries cut up by the mute are 

preserved. We also note that at both the near and far offsets, free-surface multiple 

attenuation was effective.  Based on results obtained from our investigation, we make 

the conclusion that the BMG demultiple technique is effective in complex geology and 

does not fail either at near or far offsets. 

We also demonstrated that the first step of the BMG demultiple may not be 

sufficient to attenuate free-surface multiples in a deep offshore environment. The second 

step of the BMG demultiple technique is required for us to obtain a data without free-

surface multiples.  

We have also shown that the weak subsalt primaries are preserved during the 

BMG demultiple technique application.  

Our general conclusion is that the BMG demultiple technique is much more 

effective compared to other demultiple techniques. Another important conclusion is that 

there is savings in computation cost because the computation of the predicted free-

surface multiples involves only two step. 
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 Hence we recommend that the demultiple technique be incorporated as a 

preprocessing step in data processing. 
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APPENDIX A 

LINEAR DEMULTIPLE SOLUTION BASED ON THE CONCEPT OF BOTTOM 

MULTIPLE GENERATOR (BMG) APPROXIMATION: SOME NEW RESULTS 

Abiola O. Watts and Luc T. Ikelle 

CASP Project, Department of Geology and Geophysics 

Texas A&M University, College Station, Texas 77843-3115 USA 

 

ABSTRACT 
The recent advances in demultiple have shown that a multidimensional 

convolution of a portion of data containing only primaries with the whole data 

(containing both primaries and multiples) can allow us to predict and attenuate all orders 

of free-surface multiples that are relevant for practical purposes. One way of 

constructing the portion of the data containing only primaries is by muting the actual 

data just above the first free-surface multiple to arrive. The location of the mute is 

generally known as the bottom multiple generator (BMG) reflector. The outstanding 

question about this method is how effective the technique can be when the BMG cuts 

through several seismic events, as the case in long offset data or in very complex 

shallow geology. In this paper, we present new results, which show the fact that the 

BMG may cut through several seismic events, this does not affect the accuracy or the 

cost of demultiple. 
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INTRODUCTION 

In the paper published by Ikelle et al (2004), a demultiple technique was 

proposed. The concept of the technique is to define a portion of the data containing only 

primaries by muting the data just above the first free-surface multiple to arrive. The 

location of the mute is also known as the bottom multiple generator (BMG) reflector. 

The multidimensional convolution of the portion of the data containing primaries with 

the actual data allows us to predict and attenuate all orders of free-surface multiples and 

therefore solve the problem of demultiple in towed-streamer data. The outstanding 

question not demonstrated by the examples presented in the paper, is what happen to 

demultiple results when the muting at the BMG reflector cuts through several seismic 

events. 

In this paper, we demonstrated that this demultiple technique is effective, when 

the BMG cuts through several seismic events, by applying the technique to a synthetic 

dataset generated from a complex shallow geology (see Figure 1) using the elastic finite-

difference modeling technique. Before we go into the details of our demonstration, let us 

first review the demultiple technique as described by Ikelle et al (2004). 

The demultiple technique can be described as a two-step process. Let us denote 

the two components of towed-streamer data without the direct-wave arrivals by 

{ }00,VP=0� , where 0P  is the pressure data and 0V  is the vertical particle velocity, and 

let us denote the portion of towed-streamer data above the BMG reflector as 

{ }aa VP 00 ,=a
0� . Then the first step of the demultiple technique is given by 
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1a0pa ��� a+=        (1) 

 

The inverse source signature is denoted by a , and 1a�  is the multidimensional 

convolution of aV0  by 0� . See the illustration of events generated by the 

multidimensional convolution in Figure 2. Note that only free-surface multiples that 

have their first bounce in the subsurface above the BMG reflector are predicted and 

therefore attenuated. A second step is required to attenuate free-surface multiples that are 

still present in pa� . 

Let us denote b
paV  as a portion of paV  ( paV  is a component of  pa�  corresponding 

to the particle velocity) located below the BMG reflector. The second step is given 

below as 

 

 1bpapb ��� a+= ,       (2) 

  

where 1b�  is the multidimensional convolution of b
paV  by a

0� . Figure 3 shows the 

illustration of events generated by the multidimensional convolution. Noticed that the 

second step does not predict free-surface multiples whose first and last bounces in the 

subsurface are below the BMG reflector (see the scattering diagram illustrating these 

types of free-surface multiples in Figure 4). These types of free-surface multiples are 

usually weak in deep water and therefore as negligible as internal multiples. 

Now that we have reviewed the Ikelle et al (2004) demultiple technique, let us go 
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back and show that the technique will work even when the muting at the BMG reflector 

cuts through several seismic events of our synthetic data. 

 

APPLICATION OF THE BMG DEMULTIPLE TECHNIQUE 

Let us examine the synthetic towed-streamer data used for our application, which we 

generated using the elastic finite-difference modeling technique. Figure 1 shows the 2D 

geological model considered for our application. We have designed our geological 

model to have a shallow water depth and irregular salt bodies that are located close to 

the sea-floor. We designed our model this way in order, to generate primaries that are 

needed to predict multiples and to have their trajectories cross the BMG location. Our 

objective in this paper is to show the effectiveness of the BMG-based demultiple 

technique even in this kind of situation. So, we have generated 321 shots from 500 m to 

4500 m (source depth is at 5 m) and spaced at 12.5 m each. The number of receivers 

used is 321, which are also placed from 500 m to 4500 m (receiver depth is at 10 m) and 

spaced at 12.5 m apart. 

 We have based our analysis on a shot located at 500 m (Figure 1 shows the 

location of the shot on the geological model while Figure 5a shows a shot gather of the 

shot). We have considered this shot because it is a good representation of all offsets and 

events that pass through the salt bodies. 

Let us demonstrate the demultiple steps described in our introduction. We first 

defined the portion of the data containing only primaries aV0  by muting the data at the 

BMG location. An example of aV0  is shown in Figure 5b. We muted the data at the 
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BMG location by taking a small portion of the actual data 0�  and performed the 

autoconvolution of this small portion to produce a portion of 1�  containing the first 

multiples that we needed to define the BMG location. Note that from the example shown 

in Figure 5b, aV0  is small when compared to the actual data (Figure 5a). Note also that 

the mute at the BMG location cuts up the primary of the top of the salt body. 

Let us now examine multiples predicted by the multidimensional convolution of 

aV0  with the actual data, 0� . The result of the multidimensional convolution is denoted 

here as 1a�  (an example is shown in Figure 5c). The multiples contained in 1a� . 1a�  

are predicted free-surface multiples whose first bounce in the subsurface is located 

above the BMG reflector. Note that the multiple of the primary of the top salt that was 

cut-up at the BMG location in Figure 5b is not predicted fully. The next step is to apply 

equation (1) to attenuate multiples predicted in 1a� . The demultiple result pa�  after 

step one is shown in Figure 5d. Note that free-surface multiples, which are not predicted 

by, 1a�  are still present in pa� . We have applied the second step described in equation 

(2) of the demultiple technique to attenuate the remaining free-surface multiples. 

We first compute the portion of the pa�  below the BMG, b
paV . An example of 

b
paV  is Figure 6a. The multidimensional convolution of b

paV  with the portion of the actual 

data above the BMG reflector, a
0� , predicts 1b�  (Figure 6b). The multiples contained in 

1b�  are free-surface multiples which have their first bounce below the BMG reflector. 

Note in Figure 6b that the other portion of the multiple associated with the cut-up 
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primary of the top of salt is predicted. Using equation (2), the final demultiple result 

pb�   (Figure 6c) is obtained. Note in Figure 6c that the free-surface multiples interfering 

with primaries at about 0.7 s to 1.22 s have been completely attenuated. 

It should be noted that the BMG should not be shallow, and if shallow, the BMG 

has to be lowered according to Ikelle et al (2004). For this demonstration we have made 

our BMG location shallow so that we can obtain primaries that severely overlap the 

BMG location. Free-surface multiples which are not modeled by 1b�  (see Figure 4 for 

these types of free-surface multiples) are visible because of the shallow BMG. 

 

CONCLUSION 

We have demonstrated numerically that the BMG demultiple technique is 

effective and not sensitive to the way the mute at BMG location is applied. Even when 

the mute at the BMG cuts through several seismic events, it does not affect the 

demultiple result. Therefore we concluded that the BMG is applicable in both complex 

geology and long-offset data. 
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FIGURE CAPTIONS 

Figure 1: 2D geological model adapted from Lafond et al 2004. This is the 

model considered for the application of the BMG demultiple technique. 

Figure 2: An illustration of the scattering diagram of free-surface multiples 

predicted by the multidimensional convolution of aV0  by 0� . These predicted free-

surface multiples are attenuated using equation (1). 

Figure 3: An illustration of the scattering diagram of free-surface multiples 

predicted by the multidimensional convolution of b
paV  by a

0� . These predicted free-

surface multiples are attenuated using equation (2). Note that free-surface multiples that 
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have their first and last bounces below the BMG reflector are not predicted. 

Figure 4: An illustration of the scattering diagram of free-surface multiples that 

have their first and last bounces below the BMG reflector and are not predicted in the 

two demultiple steps. 

Figure 5: (a) Shot gather of the shot located at 500 m generated off the 

geological in Figure 1 (This is an example of the actual data 0� . Notice that free-

surface multiples interfere with primaries at about 0.7 s to 1.22 s. (b) An example of aV0  

(the portion of the particle velocity of the data containing only primaries located above 

the BMG reflector). Notice that the mute at the BMG cut up primary of the top of salt. 

(c) An example of predicted multiples 1a� . Notice that the multiple of the primary of 

the top of salt cut up at the BMG is not predicted fully. 

(d) The result of the demultiple after applying equation (1). Note that Figure 5d contains 

some free-surface multiples, which are not predicted by 1a� . We applied the second 

step of the demultiple technique described in equation (2) to attenuate these free-surface 

multiples. 

Figure 6: (a) An example of b
paV  (the portion of the particle velocity of pa�  

located below the BMG reflector). (b) An example of predicted free-surface multiples 

1b� . Notice that the other portion of the multiple of the primary of the top of salt cut up 

at the BMG is predicted. (c) The final demultiple result obtained after applying equation 

(2). Notice that most of the free-surface multiples that interfere with the primaries at 

about 0.7 s to 1.22 s have been attenuated. The free-surface multiples still present in the 
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final demultiple result are those not predicted in both steps of the demultiple technique. 

(Figure 4 shows an illustration of these types of free-surface multiples.) Note that 

because we have made our water depth shallow for this demonstration of the BMG 

demultiple technique, the leftover multiples are visible. Ideally in deep water, which is 

usually the case in marine acquisition, these multiples will appear weak and therefore 

negligible. 
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Figure 1: 2D geological model adapted from Lafond et al. (2004). This is the model 
considered for the BMG demultiple application.
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Figure 2: An illustration of the scattering diagram of free-surface multiples predicted 
by the multidimensional convolution of V0

a by Φ0. These predicted free-surface 
multiples are attenuated using Equation (1).  
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Figure 3: An illustration of the scattering diagram of free-surface multiples predicted 
by the multidimensional convolution of Vpa

b by Φ0
a. These predicted free-surface 

multiples are attenuated using Equation (2). Note that free-surface multiples that have 
their first and last bounces below the BMG reflector are not predicted.
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Figure 4: An illustration of the scattering diagram of free-surface multiples that have 
their first and last bounces below the BMG reflector and are not predicted in the two 
demultiple steps.
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Figure 4: (a) Shot gather of the shot located at 500 m (an example of ΦΦΦΦ0). Notice that free-

surface multiples interfere with primaries at about 0.7 s to 1.22 s. (b) An example of the 

portion of the particle velocity of the data containing only primaries located above the BMG 

reflector. Notice that the mute at the BMG cut up primary of the top of salt.
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Figure 4: (c) An example of predicted multiples, ΦΦΦΦ1a. Notice that the multiple of the primary 

of the top of salt cut up at the BMG is not predicted fully. (d) The result of the demultiple 

after applying Equation (1). Note that Figure 4d contains some free-surface multiples, which 

are not predicted by ΦΦΦΦ1a. We applied the second step of the demultiple technique described in 

Equation (2) to attenuate these free-surface multiples.
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Figure 4: (e) An example of the portion of the particle velocity of ΦΦΦΦpa located below the BMG 

reflector. (f) The final demultiple result obtained after applying Equation (2). Notice that most of 

the free-surface multiples that interfere with the primaries at about 0.7 s to 1.22 s have been 
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APPENDIX B 

A REVIEW OF FINITE DIFFERENCE MODELING 

 

 In this research, we used the finite difference modeling (FDM) technique to 

generate the synthetic data used for demultiple investigation. We review the explicit 

approach to finite difference as described in Appendix C of Ikelle and Amundsen 

(2003).  

 

Basic Equations for Elastodynamic Wave Motion in Elastic Media 

 The equations of momentum conservation are 

  ( ) ( ) ( ){ } ( )tftt xzzzxxxxt ,,, xxxx =∂+∂−∂ ττυρ   (1) 

  ( ) ( ) ( ){ } ( )tftt zzzzxzxzt ,,, xxxx =∂+∂−∂ ττυρ   (2) 

where the component of the particle velocity is denoted as ( )zx vv ,=v , xzzzxx τττ ,,=�  

denotes the stress components and ( )zx ff ,=f  denotes the components of the body 

force. 

 The stress-strain relations for an isotropic elastic medium are as follows: 

  ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )tItvtvt xxzzxxxxt ,,,, xxxxxxx +∂+∂+=∂ λµλτ  (3) 

  ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )tItvtvt zzxxzzzzt ,,,, xxxxxxx +∂+∂+=∂ λµλτ  (4) 

  ( ) ( ) ( ) ( ) ( )[ ] ( )tItvtvt xzzxxzxzt ,,,, xxxxxx +∂+∂=∂ λµτ   (5) 

where ( )xzzzxx III ,,=I  denotes the components of the stress force. The wave motion 

satisfies a set of first-order coupled differential equations, equations (1)-(5). This set of 
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first-order coupled equations differential equations can be formulated into second-order 

differential equations for stress and particle velocity. For particle velocity the second-

order differential equations are as follows: 

 
( ) ( ) ( ) ( ) ( )( ) ( ) ( )[ ]

( )( )[ ] ( )tF

tttt

xxzzxz

xxzzxxxxt

,

,2,,,2

xx
xxxxxxx

=∂+∂∂+
∂+∂+∂∂−∂

υυµ
υµυυλυρ

      (6)

 
( ) ( ) ( ) ( ) ( )( ) ( ) ( )[ ]

( )( )[ ] ( ),,

,2,,,2

tF

tttt

zxzzxx

zzzzxxzzt

xx
xxxxxxx

=∂+∂∂+
∂+∂+∂∂−∂

υυµ
υµυυλυρ

         (7) 

where, 

 ( ) ( ) ( ) ( )[ ],,,,, tItItftF xzzxxxtxtx xxxx ∂+∂∂−∂=     (8) 

 ( ) ( ) ( ) ( )[ ].,,,, tItItftF zzzxzxtxtz xxxx ∂+∂∂−∂=     (9) 

 

Note that similar set of second-order differential equations can be derived for the stress 

field. In practice, we need only to solve for one of the two sets.  

 For the staggered grid implementation we can use equations (1)-(5) to model 

seismic wave propagation.  

 In order to solve either equations (1)-(5) or (6)-(9), it is essential to set the 

boundary and intial condition for the problem of modeling wave propagation through the 

subsurface. The initial conditions for the particle velocity and the stress fields and their 

time derivatives are null before the firing of seismic source.  

  ,����=∂= vv t  ,0=≤t         

  ,����=∂= �� t  .0=≤t        (10) 

The boundary conditions for the problem of modeling seismic wave propagation are 
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determined by the free surface: air-solid in the case of land seismic and air-water in the 

case of marine seismic. Let us assume the free surface to be z = 0. Then the boundary 

condition is 

  ( ) ( ) 0,0,,,0, ==== tzxtzx xzzz ττ      (11) 

or equivalently 

  ( ) ( )[ ] ( ) ( ) ( )tzxvtzxv zzzz ,0,,,0,, =∂+=∂+ xxx λµλ   (12) 

   ( )[ ] .0),0,(),0,( ==∂+=∂= tzxvtzxv zxxzxµ  

The rest of the medium is unbounded. 

 

Discretization in both Time and Space 

 We discretize both the time and space domain as follows  

  ,tnt ∆=  n  = 0,1,2,…,N, 

  ,xix ∆=  i  = 0,1,2,…,I, 

  ,xkz ∆=  k  = 0,1,2,…,K.      (13) 

This discritezation is called the reference grid. For the case of staggered grid technique, 

which was used in the FDM codes to generate synthetic data for our various 

investigations, not all quantities in the differential equations (1)-(5) are grid at the point 

of references grid. Some quantities are defined as �
�

�
�
�

� ±=
2
1

ix x∆  instead of ,xix ∆= . 

Figure 1 shows an example of staggered gridding of the quantities entering in the 

equations 1-5. Note that the Normal stresses, mass density, and Lame parameters are 

defined at the points on the reference grid, whereas the shear stresses and the three 
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components of the particle velocity are defined as the points half a grid off the reference 

grid. 

 

 

Figure 1: An illustration of the staggered grid technique (Ikelle and Amundsen, 2003) 

 

Staggered Grid Implementation 

 The discrete form of equations (1)-(5) is given as 

for particle velocity  

  [ ] [ ] ( )[ ]n
kixxzzxxxx

n
kix

n
kix FDDtbvv ,21

21
,21

21
,21 +

−
+

+
+ ++∆+= ττ    (14) 

  [ ] [ ] ( )[ ]n
kizzzzxzxz

n
kix

n
kiz FDDtbvv ,21

21
,21

21
,21 +

−
+

+
+ ++∆+= ττ    (15) 

and for stresses, 

  [ ] [ ] ( )[ ] 21
,,

1
,

++ ++∆+= n
kizzxx

n
kixx

n
kixx vDvDt µλττ     (16) 

  [ ] [ ] ( )[ ] 21
,,

1
,

++ ++∆+= n
kixxzz

n
kizz

n
kizz vDvDt µλττ     (17) 
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  [ ] [ ] ( )[ ] 21
21,2121,21

1
21,21

+
++++

+
++ +∆+= n

kizxxzxz
n

kixz
n

kixz vDvDt µττ   (18) 

with  

  [ ],
2
1

,1,1 kikx bbb ++=        (19) 

  [ ],
2
1

,1,1 kikz bbb ++=        (20) 

  
1

1,11,,1,

1111
4

−

++++ �
�
	




�
�
�



++=

kikikiki
xz µµµµ

µ     (21) 

where xb  and zb  are the effective medium parameters for the reciprocal of density, xzµ  

is effective medium parameter for rigidity.  The operator xD , zD denote the first-order 

derivative of x  and z  respectively. Note that the operators are generally evaluated by 

either a second-order difference or a fourth order difference. For this thesis we use the 

fourth-order difference. 

  ( ) ( )�	



��


 −+−
∆

≈ −+−+ kikikikikjix gggg
x

gD ,21,21,21,21,, 24
1

8
91

  (22) 

 

Boundary Conditions 

 For this thesis, the free-surface condition given in equation (10) is that the 

normal stress, and the shear stress are null at z =0. The horizontal spatial derivative is no 

problem in staggered grid implementation in equations (14)-(18). However the vertical 

spatial derivative, we have to add two grid points above z = 0. 

  [ ] [ ] [ ] 1
1,

1
1,

1
0, ,0 +

=
+

−=
+

= −== n
kixz

n
kixz

n
kixz τττ      (23) 
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  [ ] [ ] 1
21,21

1
21,21

+
=+

+
−=+ −= n

kizz
n

kizz ττ       (24) 

  [ ] [ ] 1
23,21

1
23,21

+
=+

+
−=+ −= n

kizz
n

kizz ττ       (25) 

The rest of the medium is considered to be absorbing boundary. This condition is 

obtained by multiplying the stress and particle velocity by the factor, 

  ( ) ( ) ,max
max

3.0
exp

�
�
�

�
�
�

�	



��


 −−= ii
i

iG  for max1 ii ≤≤   (26) 

maxi  is the strip width in number of grid points. 

 

Limitations 

 The stability problems that can be experienced in the explicit method can be due 

to recursive computation and timestep by timestep. Note that the instability can occur if 

the ratio between the temporal and spatial sampling intervals is not constrained as  

  
max

606.0
V

x
t

∆<∆  

where maxV  is the maximum velocity in the 2D geological model. 

 Another type of instability can be due to the grid-dispersion. The condition to 

avoid the grids dispersion is related to the number of grid points per wavelength. 
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