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ABSTRACT 

 

Development of Nano-scale and Biomimetic Surfaces  

for Biomedical Applications.  (August 2005) 

James Edward Henry, B.S.; M.S., University of Arkansas 

Co-Chairs of Advisory Committee: Dr. Theresa Good 
     Dr. Daniel Shantz 

 

The work described in this dissertation details the development of a biomimetic 

materials for use in sensors and therapeutics, based on new advances in material science.  

The sensors developed herein target neurodegenerative diseases.  Two of the diseases, 

the transmissible spongiform encephalopathies (TSEs) and Alzheimer’s disease (AD), 

are diseases associated with the abnormal folding of a protein, thus detecting the disease 

is dependent upon developing structure specific sensor technologies.  Both sensors 

developed in this work take advantage of the unique optical properties associated with 

nanoscale metal particles, however they use different types of spectroscopies for optical 

detection of the presence of the disease associated abnormal protein, and different types 

of recognition elements that bring the disease associated proteins close to the nanoscale 

metal particles.  In the case of TSEs, the recognition element was a commercially 

available antibody.  In the case of AD, the recognition element was a molecular scale 

self-assembled surface.  A therapeutic for AD was developed based on the molecular 

scale materials developed for the AD biosensor.  Mathematical models were developed 
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that facilitated the rational design of the biosensors described in this work that could also 

be used in future biosensor development. 
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CHAPTER I 

 

INTRODUCTION 

 

In the past decade, advances in material science have led to the development of 

new materials that can be used in biotechnology and medicine as part of sensors and 

therapeutics.  Two areas in particular have had breakthroughs in technology, the 

development of nanoscale materials and the development of self-assembled molecular 

surfaces. 

Nanoparticles are any particle-like structure that is on the nanometer scale.  Some 

of these nanoparticles are formed from a metal or metal complex.  The small size of 

these particles causes them to exhibit unique properties.  Currently, the unique 

electrochemical properties of nanoparticles are exploited for use in catalysis and gas 

sensing [1, 2, 3].  Nanoparticles are also used in magnetic resonance imaging (MRI) and 

electron microscopy imaging [4, 5, 6].  Furthermore, there has been some work 

expanding into the area of using nanoparticles as carriers for use in protein introduction 

in vitro, to protect the protein from degradation [7].  However, the most interesting 

property of nanoparticles in how they apply to this work is how the electromagnetic field 

of these particles, when in the presence of a light source, can greatly alter the optical 

properties of objects close to the nanoparticle (a few nanometers away). 

 

 
This thesis follows the style of the Journal of Analytical Biochemistry. 
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To fully take advantage of the unique optical properties of metal nanoparticles in 

sensor development, we had to create a way to selectively bind the target analyte to the 

nanoparticles to achieve the appropriate distance.  Monoclonal antibodies are the most 

commonly used material which binds with high affinity and specificity to a protein or 

biological material, however, they are of relatively large molecular dimensions, on the 

order of 8 nm, which limits their utility in nanoparticle based sensor applications.  It is 

this requirement for small molecular size of a recognition or binding element that led us 

to the development of self-assembled molecular surfaces with small molecular size but 

high affinity for the target analyte that are described in this work. 

Self-assembled molecular surfaces are any materials that naturally align 

themselves into a well-ordered, structured surface.  This behavior is described by such 

phenomena as the formation of self-assembled monolayers by alkanethiols and 

polymers, the formation of micelles by phospholipids, or the assembly of peptides into 

tertiary structures.  Self-assembling peptides and polymers have been used as adhesion 

substrates in tissue engineering [8, 9, 10].  Additionally, thiol-based monolayers are used 

to form coatings to prevent corrosion and oxidation of metals and other surfaces [11, 

12].  Finally, self-assembled materials have been used as substrates for micropatterning 

and sensing platforms, generally used in surface plasmon resonance [13-23]. 

While the advances in the material sciences alone are important, to design and 

build them into useful devices, such as biosensors or therapeutics, requires an 

interdisciplinary understanding of several scientific fields.  The work described in this 

dissertation details the development of a biomimetic materials for use in sensors and 
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therapeutics, based on these new advances in material science.  The sensors developed 

herein target neurodegenerative diseases.  Two of the diseases, the transmissible 

spongiform encephalopathies (TSEs) and Alzheimer’s disease (AD), are diseases 

associated with the abnormal folding of a protein, thus detecting the disease is dependent 

upon developing structure specific sensor technologies.  Both sensors developed in this 

work take advantage of the unique optical properties associated with nanoscale metal 

particles, however they use different types of spectroscopies for optical detection of the 

presence of the disease associated abnormal protein, and different types of recognition 

elements that bring the disease associated proteins close to the nanoscale metal particles.  

In the case of TSEs, the recognition element was a commercially available antibody.  In 

the case of AD, the recognition element was a molecular scale self-assembled surface.  

A therapeutic for AD was developed based on the molecular scale materials developed 

for the AD biosensor.  Mathematical models were developed that facilitated the rational 

design of the biosensors described in this work that could also be used in future 

biosensor development. 
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CHAPTER II 

 

LITERATURE REVIEW 

 

Introduction 

There have been several recent advances in material science that have impacted 

biotechnology and bioengineering.  Among these advancements, two standout as 

influential and are relevant for the work discussed here:  nanoparticles and self-

assembled molecular surfaces.  These advances in material science have led to advances 

in biotechnology and medicine such as more rapid sequencing of the genome, new 

technologies for tissue engineering, and development of biomimetic surfaces. 

 

Nanoparticles 

Nanoparticle development 

Nanoparticle based sensor systems have been in development since about the 

early 1980’s [24, 25].  The development started with the reports that certain metals and 

semiconductor colloidal suspensions showed unusual optical properties [26].  However, 

this phenomenon seemed to be most pronounced with particles on the nanometer scale 

[24].  As an extension of this phenomenon, semiconductor nanocrystals showed the 

ability to produce fluorescence that was up 20 times more intense and 100 times more 

stable than conventional fluorophores [25].  It was also found that nanoscale metal 
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particles of certain noble metals could dramatically alter the natural spectra of nearby 

molecules [26]. 

 The principles that lead to the interesting optical effects associated with 

nanoparticles arise from the physical characteristics of the nanoparticles.  The changes in 

optical properties relate back to the plasmons and resonant frequencies of the particles. 

Surface enhanced fluorescence occurs when the excitation of the fluorescent compound 

is coincident to the surface plasmon frequency of the particle. The nanoparticle 

“focuses” the excitation source that is incident to the particle surface.  When the 

fluorophore is in close proximity, the nanoparticle can transfer the absorbed excitation 

energy to the fluorophore, in turn increasing the excitation energy delivered to the 

fluorophore and increasing the fluorescence.  This creates the effect of increasing the 

quantum efficiency (ratio of energy absorbed to energy emitted) of the fluorophore, 

leading to an increased signal [27-29].  Most spectroscopic techniques using 

fluorescence modification in the presence of nanoparticles involve the use of molecular 

beacons for the detection of DNA and RNA [30-34].  However, this shift in optical 

properties can be tied to other techniques. 

Surface enhanced Raman spectroscopy (SERS) relies on gold or silver 

nanoparticles for their ability to increase Raman spectra of target analytes in a solution 

or on a surface.  This technique relies on the same physical properties discussed earlier, 

with the exception that instead of increasing fluorescence, the particles increase the 

Raman scatter of the target.  However, SERS generally relies on nonspecific aggregation 

of these nanoparticles to the target of interest.  We propose that by attaching a 
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recognition molecule to these SERS substrates, we can produce a specific SERS sensor 

[35 – 40].   

 

Surface plasmon resonance (SPR) 

Surface plasmons are charge density waves propagating along the interface of a 

metal and a dielectric media [41].  For metals to exhibit strong surface plasmon 

resonance, the free electrons associated with the metal must be mobile (have low 

electrical resistance).  This property makes silver and gold the best options for SPR.  

While gold features a good chemical stability, silver provides sharp SPR resonance 

peaks.  Kretchmann’s method is the most predominant method used in SPR.  This 

method uses the phenomenon of total reflection [42].  The method relies on the partial 

penetration of light as it passes through the interface of two media of different optical 

densities.  The partial penetration of light (one wavelength in depth) creates an 

evanescent wave that excites molecules near the material media interface.  In SPR, the 

evanescent wave couples with the free oscillating electrons (plasmons) of a thin metal 

film placed at the interface.  Adsorption and desorption from the metal film creates shifts 

in the resonance angle of the plasmon.  It is this angle shift that is detected [42, 43]. 

 

Surface modified fluorescence 

 Surface modified fluorescence relies on the interaction of a fluorophore or other 

fluorescent compound with some surface or particle with electrons available for 

interaction.  This behavior is related to the surface plasmon of the material and the 
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resonant frequency of the modifier [44].  Förster resonance energy transfer (FRET) is a 

form of surface-modified fluorescence that relies on the photonless transfer of energy 

from one fluorophore to another (when the donor emission overlaps the receiver 

excitation) [44].  For both systems, there is a very strong dependence on distance.   

A variety of assays that exploit changes in fluorescence in the vicinity of a 

nanosurface have been developed recently.  Most of these have been used in the form of 

molecular beacons.  Recent work indicates the use of this technique for the detection of 

prostate-specific antigens [26] and blood-glucose levels [45].  This broad application of 

the technology allows it to be an excellent cross-material sensing platform. 

 

Surface enhanced Raman spectroscopy (SERS) 

Surface enhanced Raman spectroscopy (SERS) is a Raman spectroscopic 

technique that provides greatly enhanced Raman signal from analyte molecules that have 

been adsorbed onto certain specially prepared metal surfaces. Increases in the intensity 

can be as high as 108 and 1014 for some systems [46, 47].  Raman is ineffective for 

analyte studies at low concentration due to weak vibrational modes being undetectable 

over background signal.  SERS selectivity of surface signal results from the presence of 

surface enhancement mechanisms only at the surface. Thus, the surface signal 

overwhelms the bulk signal. The majority of this enhancement is attributed to 

electromagnetic effects (EME) at the metaled surface [48].  The structural and molecular 

identification power of Raman combined with the EME makes SERS useful for the 

detection of trace molecules [46].  SERS is observed primarily for analytes adsorbed 
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onto coinage (Au, Ag, Cu) or alkali (Li, Na, K) metal surfaces, with the excitation 

wavelength near or in the visible region [49].  However, many metals would be capable 

of exhibiting SERS.    Metals such as Pd or Pt exhibit enhancements of about 102-103 for 

excitation in the near ultraviolet [47].  The importance of SERS is that the surface 

selectivity and sensitivity extends Raman utility to a wide variety of interfacial systems 

previously inaccessible to Raman due to low surface sensitivity.  In addition to the 

positives previously discussed, SERS can be conducted under ambient conditions and 

has a broad wavenumber range [50].  Unlike other vibrational spectroscopies, SERS can 

be performed in the presence of water, as Raman is most sensitive to non-polar 

molecules.  SERS shows higher enhancement on roughened metal surfaces [51].  The 

features are generally less than 100nm (which is quite small compared to the wavelength 

of the excitation source) [47, 52].  The small size of the particles allows the excitation of 

the metal particle’s surface plasmon to be localized. The resultant electromagnetic 

energy density on the particle is the source of the EME, the primary contributor to 

SERS.  It is SERS and surface-modified fluorescence that we use in the development of 

the sensors described in this work. 

 

Self-assembled molecular surfaces 

Self-assembled molecular surfaces can be formed from a number of materials.  

These include the use of biological materials such as phospholipids and peptides.  More 

expansively, the use of alkanethiols and polymers on different surfaces has been 

investigated extensively.  Uses for these materials are numerous.   
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As discussed previously, self-assembling peptides and polymers have been used 

as adhesion substrates in tissue engineering [8 - 10].  Self-assembled materials have been 

used as substrates for corrosion prevention, micropatterning and sensing platforms.  The 

sensing platforms are generally used in surface plasmon resonance and focus on the 

assembly of the monolayer itself and not what is happening external to the monolayer 

[11 - 23].  Relying on works performed by Laibinis and others, we intend to look at how 

to take advantage of the monolayer for assembly of and recognition surface substrate [53 

- 55].  Some work has been done in this field, generally in the area of tissue engineering. 

Self-assembled materials have been used to guide cell growth and adhesion in 

tissue engineering [56 - 59].  These self-assembled materials (particularly peptides) have 

been analyzed for cytocompatability [8].  Expanding on this, work applying these self-

assembled materials for direct tissue replacement is underway involving both hard and 

soft tissue replacement [60]. 

Some of the most interesting and applicable work is in area of microarrays for 

biosensing.  Little work has been done in the area, with most of it involving the use of 

immobilized antibodies for use microarrays [61].  However, this technique does not take 

advantage of properties of the self-assembling materials.  The assembled material is 

simply a tethering molecule.  We propose and prove that by using self-assembled 

monolayers we can block nonspecific binding, create surface flexibility, minimize 

distance, and mimic biological surfaces [62 - 64].  Many bio micro electric mechanical 

systems (bioMEMS) use the self-assembled materials structurally; however, this 

neglects the fact that self-assembled materials (particularly self-assembled monolayers 
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(SAMs)) can serve not only structural, but functional purposes as well.  SAMs can allow 

for close assembly to a substrate for sensing purposes (i.e. SERS) where simply tethering 

a biological receptor or antibody would prove fruitless (due to distance constraints and 

the large size of receptors and antibodies).  It is this area of self-assembly that we exploit 

in this work.   

 

Rationale for sensor modalities 

Sensors in food and pharmaceutical industry 

Food-borne illnesses are an increasing threat in today’s society.  The food 

pathogen testing/biosensor market is expected to grow to approximately $200 million in 

2005, with common pathogens such as E. coli and Salmonella and conventional 

microbiological assays and DNA/PCR based methods still important [65].  

Compounding the situation with food-borne illnesses is the immergence of new threats 

(i.e. Bovine Spongiform Encephalopathy) requiring the development of practical and 

robust detection methods [66, 67].   

 

Bovine spongiform encephalopathy (BSE) 

No disease has captured public awareness or scientific concern quite like bovine 

spongiform encephalopathy or as it is more commonly known, mad cow disease.  Public 

anxiety grew as more and more information came forward about this illness.  Officials in 

the United Kingdom made public on March 20, 1996, a possible link between BSE and 

what was believed to be a new, lethal human illness called new variant Creutzfeldt-
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Jakob disease (vCJD).  In the statement, the officials stated that 10 people in the UK had 

been diagnosed with vCJD in the previous 14 months [66].  Similarly, around the same 

time, a case of vCJD was reported in France [67].  By October, 1997, there were 10 

additional cases in the UK [66].  Upon further investigation, it was proposed that the 

onset of vCJD was caused by the ingestion of BSE contaminated meat.  Based on reports 

from the Center for Disease Control, as of the end of 2003, there have been a total of 158 

cases of vCJD worldwide (147 in the UK) [68]. 

With no current known treatment for vCJD, the only way to control the spread of 

this disease is to eliminate the consumption or use of BSE contaminated materials in 

food products or pharmaceuticals.  While measures are in place to prevent the spread of 

BSE to countries outside of the UK, and to eliminate infected cattle, no system is fool-

proof as evidenced by the recent report of BSE infected cattle in Alberta, Canada.  In 

order to prevent the spread of vCJD in humans, sensitive and robust sensor technologies 

are needed to detect the transmissible agent in BSE. 

Bovine Spongiform Encephalopathy (BSE) and new variant Creutzfeldt-Jacobs 

Disease (vCJD) are both transmissible spongiform encephalopathies (TSE).  They are 

fatal, neurodegenerative diseases that can affect both animals and humans.  The diseases 

are characterized by protein aggregate deposits in the brains of the infected organism.  

The most distinguishing characteristic of both of these conditions is that they are 

transmitted via infectious proteins, or prion, rather than bacteria or viruses [69].  These 

infectious proteins are resistant to heat, ultraviolet radiation, ionizing radiation, and most 

normal disinfectants (i.e. formaldehyde and gluteraldehyde) [70]. 
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Prions (PrP) are defined as proteinaceous infectious particles that lack nucleic 

acid. The normal cellular form of the prion is called PrPC and is readily digested by 

proteases.  The pathogenic form of the prion is called PrPSC and is partially resistant to 

proteases [71].  PrPC is found in healthy neuronal tissue and is encoded by a single copy 

host gene [70].  It appears to be involved in dendritic extension, antibody-antigen 

trapping [72], and possibly in calcium control [73].  PrPC has a molecular weight of 

35kDa and is a membrane bound protein whose secondary structure consists of 

approximately 42% α−helical and 3% β−sheet.  PrPSC, however, has a molecular weight 

of only 27-30kDa and has a secondary structure that is about 30% α−helical and 43% 

β−sheet [74].  It is this increased β−sheet structure of the PrPSC that leads to aggregation 

and protease resistance.  When PrPSC comes into contact with PrPC, the infectious 

protein causes the normal prion to refold itself into the infectious form.  This is how the 

protein propagates. 

New variant Creutzfeldt-Jacobs Disease (vCJD) occurs in people ages 19-39 

years of age.  This disease exhibits a number of psychiatric and/or sensory symptoms.  

Theses symptoms include, but are not limited to:  fatigue, disordered sleep, decreased 

appetite, memory loss, loss of vision, and loss of various mental and physical abilities 

[75].  The symptoms continue to worsen until eventual death (a length of approximately 

14 months from onset).  vCJD is often misdiagnosed as Alzheimer’s disease (however 

because of the early onset age, this is less common now) [76].  The only definitive way 

to diagnose vCJD is by histological examination of the brain of the infected person [70].  

Upon examination, the brain exhibits deposition numerous PrP amyloid plaques in 
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multiple cortical and subcortical regions [77].  This has been shown to lead to diffuse 

neuronal degeneration and glial cell proliferation, giving rise to the typical spongiform 

(or sponge-like) appearance of infected brain upon autopsy [76]. 

 

Current detection methods – hamster model 

 Bioassays are the traditional assays for prion protein detection since the 

discovery of transmissible spongiform encephalopathies.   This style of assay involves 

injecting material into the brain of some host animal and watching for symptoms of 

prion infection.  After some set period of time that is defined by the incubation period of 

the host animal (the shortest being 60 days is the case of the golden Syrian hamster), the 

host animal is killed and its brain is examined for signs of prion infection (i.e. protein 

plaque formation).  The first useful form of these bioassays was the transmission of 

scrapie from mouse to golden Syrian hamsters, hence the name the “Hamster Model” 

[78]. 

 

Current detection methods – immunoassay approaches 

While there are several different variations of immunoassays that have been 

developed, they all generally rely on the same principles.  These assays use either 

monoclonal or polyclonal antibodies to detect the presence of prion proteins.  In the 

general ELISA form of immunoassays, the sample is immobilized in a well on a 

microplate.  The well is washed carefully and then treated with an antibody to the target 

prion (primary antibody).  The well is then washed again and treated with an antibody 
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against the primary antibody (secondary antibody).  The secondary antibody is normally 

labeled with an enzyme to some substrate that will give a colorimetric response 

depending upon the concentration of the secondary antibody.  The enzyme normally 

used in horseradish peroxidase [79]. 

The second form of immunoassays used for prion detection rely on a standard 

Western blot technique do detect the infectious prion.  This process is performed by first 

treating the samples with proteinase K, and then performing a western blot on the 

digested sample.  The monoclonal antibody used in this technique will only bind to the 

undigested fragments that showed some resistance to protease K.  These prion pieces are 

from the infectious form of the prion [80]. 

While both these techniques have shown acceptable detection limits (down to 

approximately 5 pg / ml or 185 fM), they have certain shortcomings [80].  Both 

techniques take moderately long periods of time to obtain results (2 to 4 days).  Also, 

these techniques take rather substantial levels of specialized training.  Finally, these 

techniques, due to the response being visual, are semiquantitative.  This leads to the need 

for a simple, robust, rapid, and sensitive method for the detection of prion proteins in 

foodstuffs [69]. 

In addition to foodstuff concerns, we must also become more aware of the 

expanding use of biological products in the pharmaceutical industry.  Recombinant 

protein products are becoming much more prominent in today’s pharmaceutical 

manufacturing procedures (such as cell culture based pharmaceuticals and tissue 

engineering materials).  With this expansion comes the need for even greater safety 
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measures in the event of cross-species contamination from opportunistic viral agents.  

This leaves a substantially large opportunity for biosensor development. 

 

Sensors in the medical industry 

There is also a growing need for detection methods to be used in biomedical 

applications (i.e. diagnostics).  With the advent of molecular medicine, advances in 

disease treatment are being made faster than advances in diagnosis [81].  For some 

diseases such as Alzheimer’s disease (AD), when definitive diagnosis can only be made 

post mortem, the need for new diagnostic technology is apparent.  Further compounding 

this need for an AD diagnostic tool are the costs facing the U.S. and other countries for 

AD patient care. 

 

Alzheimer’s disease 

 Alzheimer’s disease is a neurodegenerative disease that is characterized the by 

the aggregation and deposition of β-amyloid (Aβ) in the brain.  It is the leading cause of 

neurodegradation in the United States.  As of 2003, there were 4.5 million cases in the 

United States.  This number is expected to grow to greater than 14 million by 2050 [81]. 

 The large number of AD patients in the United States leads to medical costs of an 

estimated $100 billion per year, with $61 million incurred by U.S. businesses.  Most of 

this cost can be attributed to long-term care of patients that can no longer take care of 

themselves [81]. 
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 Progression of the disease starts with the aggregation of Aβ in the entorhinal 

cortex of the brain, the memory processing center.  This aggregation is marked by the 

formation of senile or neuronal plaques between neurons and neurofibrillary tangles 

inside neurons.  The disease progresses to the hippocampus (responsible for complex 

memory), and finally the neocortex (top, responsible for sorting stimuli and orchestrating 

behavior), with both senile plaques and neurofibrillary tangles accompanying the 

neurodegeneration.  In addition to the plaques and tangles, there is noted mass loss and 

rutting of the brain.  This progression eventually leads to death (on average 9 years after 

the onset of symptoms [82].  AD can only be diagnosed definitely by post-mortem 

analysis of the brain [81].   

Aβ is the primary protein component of senile plaques.  Aβ is produced from the 

proteolytic processing of amyloid precursor protein (APP).  This processing is 

performed by two proteolytic enzymes, β-secretase and γ-secretase.  Upon cleavage, a 

peptide sequence ranging form 39 to 43 amino acids long (~4100 Da) is created.  In 

healthy adults, this protein is cleared easily.  This clearance is made possible by cleavage 

of the protein by α-secretase.  However, in AD brains, the protein aggregates (forms β-

sheet structures).  These structures progress on to protofibrils (fibril precursors) and 

eventually fibrils (long, thin protein microtubules).  All known genetic mutations that 

lead to familiar AD are associated with the processing and aggregation of Aβ [81].   
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Aβ detection techniques 

 Diagnosis of Alzheimer’s disease (AD) is done by clinical analysis of symptoms 

(dementia, loss of memory, etc.).  Unfortunately, this form of diagnosis is not absolute, 

since any neurological disease that causes the same symptoms could be misdiagnosed as 

AD.  This means that the only way definitively diagnose AD is by post-mortem analysis 

of the victim’s brain.  During the autopsy, certain hallmarks are analyzed to verify the 

pre-mortem diagnosis (amyloid fibrils, senile plaques, neurofibrillary tangles, loss of 

brain mass, severe rutting and degradation). 

 There is currently a major push in academic research to develop other methods 

for Aβ detection.  One area of interest is using amyloid-reactive dyes that to bind to the 

fibrils and plaques [83].  This technique would be used to image the brain.  While 

excellent for imaging, this technique creates two major problems.  First, the issue of 

crossing the blood-brain barrier has to be overcome.  Second, these dyes are not specific 

to Aβ fibrils.  This means that any amyloid based neurological disease would be labeled 

by the dye.  It’s important to be able to distinguish one disease from another to institute 

the proper treatment.  This is especially important as new advances in AD treatment such 

as vaccines and Aβ aggregation inhibitors are on the horizon [84, 85]. 

 Other than dyes, most techniques revolve around standard laboratory analysis 

techniques.  One method is via immunoprecipitation-HPLC-Mass spectroscopy [86].  

This method is not used for in-patient detection and relies on standard ELISA 

technology.  However, the immunoprecipitation step creates a dilemma.  It’s known that 

Aβ changes structures based on the ionic strength, acidity, temperature, etc. of the 
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environment in which it is placed.  This means that the sample that is being analyzed at 

the end of the procedure is not the same sample that was pulled from the patient.  

Furthermore, this technique requires a substantial amount of time and training (up to a 

week for sample preparation and analysis).  Since this is just an extension of ELISA, the 

same argument can be made for any immunoassay that is used. 

 Other methods that are suggested use standard MRI to detect both mass loss in 

the brain and the formation of amyloid plaques [87, 88].  However, MRI systems can 

only detect unusually large plaque formations (therefore only able to detect very 

advanced cases).  Additionally, while plaques are a hallmark of the disease, the 

mechanism for neuronal degradation from Aβ is not completely understood.  Current 

beliefs indicate that the toxic species is not the plaques, but some precursor (which will 

have already been present for a substantial length of time prior to plaque formation) [89, 

90].  Using PET scans has also been suggested, but this requires the use of radioactive 

substrates for imaging and can only tell a loss of metabolic activity in the brain (so it can 

only detect once the brain is wasting) [91].  By the time either of these techniques is 

useful, treating the patient is purely academic, with little hope of major improvement.   

 With the difficulties of detecting Aβ directly, many people are looking for 

markers that are related to Aβ formation.  The markers include amyloid precursor 

protein, presenilin-1 [92], mitochondrial damage [93], tau protein, ptau protein [94], and 

insulin degrading enzyme (IDE) [95].  These markers can all be found in cerebrospinal 

fluid, with the exception of mitochondrial damage.  The fact that these markers do not 

require brain tissue samples for detection indicates a legitimate potential for the 
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detection of these markers to be used in a diagnostic procedure for AD.  However, the 

relationship between these markers and the development of AD has not characterized to 

the point necessary to rely on these markers alone.  Conversely, the link between Aβ 

fibrils and AD has been substantially studied and is widely accepted [96 - 100].  It is for 

this reason we feel that a sensor or assay based on detection of structure specific forms 

of Aβ is superior to what else is being developed.  A SERS based assay that was specific 

for Aβ would provide both the concentration and structure information thought needed 

for diagnosis of AD and monitoring of disease progression. 

 

AD therapeutic techniques 

Most clinically used treatments for AD that have been developed to date have 

nothing to do with actually treating the cause of the disease, or even preventing or 

slowing further neurodegeneration.  They focus on treating the symptoms to improve the 

quality of life.  One example is the use of acetyl cholinesterase inhibitors to increase the 

amount of acetylcholine in patients with AD (acetylcholine is responsible for 

transmitting the signals involved in memory and cognition).  While this helps with 

memory, the neuronal degradation continues.  This is why it is important to treat the 

underlying cause of the disease. 

Most researchers believe that Aβ is the (or one of the) causative agents in AD.  It 

has been shown to be neurotoxic both in vivo and in vitro when aggregated [96].  

Overexpression of APP with mutations that lead to Aβ production results in the 

development of AD like symptoms in transgenic mice [89].  Vaccines that sequester 
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aggregated Aβ appear to reduce AD like symptoms in transgenic models of the disease 

[84].    

Agents which either sequester Aβ or interfere with Aβ interaction/binding to 

cells have been sought after as a means to reduce the pathological effects of Aβ  [97, 101 

- 104].  We believe that the same biomimetic materials developed that provide molecular 

scale high affinity interaction with Aβ for sensing might also be developed into a 

therapeutic which interferes with Aβ-cell interactions to prevent Aβ induced 

neurodegeneration. 

 

Sensor design 

 Sensors are an important combination of two fields.  The first is the development 

of some recognition unit toward an analyte of interest, be it a protein, peptide, cell, 

compound or single element (such as in oxygen sensors).  The second step is developing 

some sort of signaling technique.  These range from optical based (absorbance, 

fluorescence, etc.) to electrical transduction as is found in enzymatic sensors.  The 

challenge lies in how to link these two in way that can be used as a sensor.  It is this 

challenge that requires the incorporation of multiple disciplines and ideas. 

 

Recognition methods for sensors 

With any sensor, it is required to have high specificity and affinity.  ELISA-like 

assays use antibodies (which have very high specificity and affinity) as recognition 

molecules.  Applying the use of antibodies, we have been able to develop a solution-
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based sensor for the detection of Bovine Spongiform Encephalopathy (BSE) prions.  

This sensor shows lower recognition limits on the order of 1nM (approximately equal to 

the equilibrium binding coefficient for the antibody) with high specificity. 

In parallel, the recent development of mini-mAbs (bacterially produced light 

chain antibodies of monoclonal antibodies) greatly expands the possibilities of these 

sensors [105].  With these mini-mAbs showing much smaller molecular weights than 

antibody fragments (25-30kDa compared to 50kDa), there use in highly dependant 

distance-based sensors (FRET, SERS, surface-modified fluorescence based) is attractive.  

For distance-based sensors, the measured variable varies by one over distance to the 

sixth.  Therefore, every bit of distance that can be eliminated helps. 

Another option for recognition molecules includes the use of cell surface 

receptors to develop sensors for serum-based measurements.  Elevated levels of serum 

analytes have been linked to several diseases (soluble IL2 receptor for hepatitis C or 

glucose levels in diabeties) [106, 107].  When the use of these surface receptors is not 

possible, it is important to be able to develop something that can be used in its place, a 

biomimetic structure.  We were able to do just that when constructing sialic acid 

modified dendrimers to mimic cell surface gangliosides for both sensing Aβ and 

preventing Aβ toxicity.  Using an expansion of this principle, it would be possible to 

immobilize the cell membranes from a desired cell to a sensor surface to keep intact an 

entire receptor complex and not just a single receptor.   
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Recognition molecules 

 While the options for recognition molecules are substantial, there has been little 

done to expand into new recognition detection areas.  Most work being done in sensor 

recognition is in the area of either immuno-based recognition, enzymatic recognition, or 

cell receptor-based recognition. 

 Immuno-assays range in use from standard ELISA techniques to immobilized 

antibodies for use in SPR.  While antibodies show excellent affinity values (109 M-1), 

they have limitations in that their size (~150 kDA) can cause interference in size-

dependant assays.  Furthermore, if the target analyte is a protein, then IR, Raman, and 

rayleigh scatter can have overlapping (interfering) signatures [108 - 112]. 

 Enzymatic recognition has many similar characteristics to immunological 

recognition, but with smaller protein size.  Enzymes also have the bonus that they can 

perform auto-amplification (as in colorimetric assays and electrical based recognition).  

However, when destruction of the desired analyte is not acceptable, this leads to 

enzymatic sensing being a hindrance.  Additionally, enzymes have substantially lower 

binding coefficients than antibodies (106 M-1) [113 - 118]. 

 Cell receptors have the similar characteristics to antibodies.  While surface 

receptors produce extremely high affinity (107 - 1010 M-1), harvesting these receptors can 

be extremely difficult [119 - 121].  In addition, because cell surface receptors are 

typically found in the context of the cell membrane, the solubility and/or stability of cell 

receptors in solution is sometimes problematic. 
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Electrical-based detection methods 

 Biosensors based on electrical transducers are the most commonly used for 

clinical analyses and the most frequently cited in the literature.  Amperometry is the 

electrochemical technique usually applied in commercially available biosensors.  

Amperometry is an electrochemical technique taking advantage of the fact that certain 

chemical species are oxidized or reduced (redox reactions) at metal electrodes when 

exposed to a constant potential.  Related to amperometry is coulometry.  Coulometry is 

an electrochemical technique where the amount of charge passing between two 

electrodes is measured.  The amount of charge passing between the electrodes is 

proportional to oxidation or reduction of an electroactive substance at one of the 

electrodes [45, 122 - 124].  The technique has been applied to glucose detection in cell 

cultures [125]. 

Potentiometry is the measurement of the potential difference between two 

electrodes when the current is zero. The two electrodes are known as the indicator and 

reference electrodes.  The indicator electrode develops a variable potential depending on 

the activity or concentration of a specific analyte in solution.  The difference in potential 

between the reference and indicator electrode is related to concentration of the analyte. 

Ion-selective electrode (ISE) a potentiometric technique routinely used in clinical 

chemistry for the detection of electrolytes.  A change in solution conductivity has also 

been used in enzyme-based biosensors.  When an alternating potential is applied 

between two inert electrodes, the conductance of the solution is measured.  Some 
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enzyme reactions, producing a change in the ionic strength of the sample, may be 

monitored by conductometric devices [126 - 128]. 

Piezoelectric detection is a technique that relies on a change in the oscillatory 

properties of a polymer or crystal substrate in the presence of a target analyte.  This 

system relies on the change in frequency of oscillation of the polymer/crystal due to 

increased mass upon absorption of some target analyte.  This increased mass leads to a 

decrease in the oscillation rate of the polymer which can be measured.  This technique 

has great promise due to its low detection limits (picograms), but is limited by 

immobilization and processing issues. [129 - 132]  In particular, the mass of the 

absorbed analyte must be significant with respect to the mass of the recognition unit, 

such that the change in mass is detectable above system noise. 

   

Optical-based detection methods 

To expand this idea into enzyme detection systems, enzyme based sensors 

(amperometric) have been explored extensively.  However, little work has been done in 

the area of SERS, FRET, and surface-modified fluorescence based enzyme sensors.  

Much of the chemistries involved in immobilizing enzymes for amperometric detection 

could be used in the construction of surface based detection systems like the one listed 

above.  This would allow for redundant sensor systems for verification. 

Finally, if the target is an organism (or virus), modifying these systems for DNA 

detection is simple.  Many of the techniques required for this modification are based on 

the work that has been developed in the area of molecular beacons (fluorescence based 
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DNA detection system).   Many of these systems could be altered to be used for positive 

or negative detection (increase or decrease in signal, respectively).  The choice of which 

method to use would be dictated by the system being developed. 

As for the bio-optical sensors side of the system, this is where the incorporation 

of ideas from several disciplines is important.  Knowing our limitations, we rely heavily 

on the expertise of Dr. Gerard Coté.  His extensive work in bio-optics has allowed us to 

incorporate some unusual and creative ideas into the design of the recognition substrates 

[133, 134]. 

 

Modeling in sensor design 

 Sensor design is challenging in many aspects.  When designing a sensing system, 

it is important to understand the characteristics of the system thoroughly.  Things to 

consider are the response of the sensor in the presence of analyte, the binding affinity of 

the sensing molecule to the target of interest, the specificity of the sensor, and the 

influence of background on detection capabilities.  To experimentally determine these 

characteristics can be extremely time consuming and expensive.  This is where the use of 

modeling is crucial. 

 Most modeling today is done post-experimentation.  Modeling is used as an 

empirical way to describe the results achieved through experimentation.  While it is 

useful to be able to understand the trends of the data after collection, this completely 

neglects another aspect of modeling, intelligent experimental design.  Often modeling 

can allow you to eliminate conditions or sensor designs that will not function in an 
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acceptable manor in the conditions available.  It is this trend in current sensor design that 

we took advantage of in this project [135 - 140]. 
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CHAPTER III 

 

MODELING FOR INTELLIGENT SENSOR DESIGN 

 

Introduction 

In any developmental research, trial-and-error approaches prove often to be both 

time consuming and financial restrictive.  However, without large amounts of a priori 

information, a certain amount of guesswork is required.  Making these attempts 

“educated guesses” is what’s important.  By performing modeling of the sensor system 

before hand, one can quickly rule out sensor schemes that are far from optimal and focus 

on the more viable candidates. 

 Currently, we’re looking at detection techniques for amyloid proteins.  These 

proteins are the causative agents and/or toxic species of interest in Mad Cow disease 

(prion), Creutzfeldt-Jakob disease (prion), Alzheimer’s (Aβ), Huntington’s disease 

(huntingtin), and several others.  The diseases are characterized by the 

neurodegeneration due to the aggregation and formation of amyloid fibrils by the species 

of interest (as indicated in parenthesis).  The requirements of the sensor are that it be 

sensitive to levels found in vivo, selective for amyloid proteins, and provide structure 

information for the analyte of interest. 

 While the molecules we wish to detect and the sensor application define the 

physical constraints of the biosensors we will develop, the models that we describe to 

evaluate their feasibility are broadly applicable.  In each model developed, we assume 
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that the analyte of interest binds to a recognition molecule with a given binding affinity, 

and that the binding of the analyte to the recognition molecule results in a detectable 

change in signal.  Our particular biosensor applications are based on surface modified 

spectroscopic techniques, thus the signal is assumed to be either an emission or 

absorption intensity.  The signal is either generated by binding the analyte directly or via 

the displacement of a competing molecule.  Equilibrium and dynamic cases of these 

types of sensors are explored. 

 

Materials and methods 

Materials 

 All models were derived based on standard chemical and biochemical kinetic 

principles and equations.  The models were solved under desired conditions using 

MATLAB v. 7.0.1 (The MathWorks, Inc. Natick, MA).  The resulting data were 

compiled and plotted using Microsoft (Seattle, WA) Excel 2002. 

 

Competitive (indirect) equilibrium model 

 With a competitive sensing system, there are three major components.  These 

components are the recognition unit (R), the first target (signal unit (S)), and the second 

target (analyte (A)).  For a standard equilibrium competition system, the recognition unit 

and signal unit are combined and allowed to come to equilibrium.  Upon equilibration, 

the sample of interest is added.  If the target is present, the system will come to new 

equilibrium conditions with the analyte (in turn displacing a fraction of the signal unit).  
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This displacement will lead to a new equilibrium condition between the recognition unit 

and the signal unit.  The result will be a change in the signal intensity from the original 

equilibrium situation.  It is the change that is measured to determine the analyte 

concentration.  Figure 3.1 demonstrates this system (schematic of competitive sensor). 

 

 

Fig 3.1 Schematic of competitive equilibrium sensor.  The recognition unit (R) binds to the signal unit (S).  This 
leads to some baseline signal.  Upon introduction of the target analyte (A), A displaces some of the S bound to 
R, creating a new signal 
 
 
 

 Based on this model, there are several variable of interest to consider.  Aside 

from concentrations of signal unit, recognition unit, and analyte (which can be easily 

controlled), there are three major variables of interest.  The first is the equilibrium 

binding conditions between the signal unit and recognition unit.  This is governed by the 

equilibrium binding coefficient for these two units (Ks-r).  The second variable is the 

equilibrium binding between the analyte and recognition unit (and in turn the 

equilibrium binding coefficient for these two (Ka-r).  The final variable is how the signal 

intensity of the signal unit changes upon binding with the recognition unit (Fb). 

 Taking into account just the kinetics of the system, we arrive at a system of 

equations as follows: 
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 Where: SR = Concentration of recognition unit / signal unit complex 

  AR = Concentration of analyte / signal unit complex 

  S = Concentration of signal unit 

  A = Concentration of analyte 

  R = Concentration of signal unit 

  ks-r,f = Reaction constant for S / R association 

  ks-r,r = Reaction constant for S / R dissociation 

  ka-r,f = Reaction constant for A / R association 

  ka-r,r = Reaction constant for A / R dissociation 

  Ks-r = Equilibrium coefficient for formation of the SR complex 

  Ka-r = Equilibrium coefficient for formation of the AR complex 

The independent forward and reverse rates dictate how quickly equilibrium is achieved. 

However, these rates do not affect the actual concentrations of the system at equilibrium. 

 While kinetics dictate the system, the signal determines usability.  Looking at 

signal intensity as a function of different of concentration of different species (R and SR 

are the only species of interest when determining signal; the other species do not 

contribute to signal), we arrive at the following equation: 
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RISRII freeboundtotal ** +=    (3.5) 

 Where: Itotal = Total signal intensity of the system 

  Ibound = Signal intensity of bound signal unit 

  Ifree = Signal intensity of free signal unit 

Normalizing the system by the intensity of the free signal unit (Ifree) we arrive at the final 

form of the equation: 

  RSRFIR
I
I

SR
I
I

I
I

bnormtotal
free

free

free

bound

free

total +=⇒+= *** ,  (3.6) 

 Where: Itotal,norm = Normalized total signal intensity of the system 

  Fb = Fractional change in signal upon binding 

The system of equations (3.1 – 3.4 and 3.6) were solved simultaneously using MATLAB 

v. 7.0.1 (The MathWorks, Inc. Natick, MA).  Normalized signal intensity as a function 

of analyte concentrations were evaluated at equilibrium (the time derivative of all 

concentrations were equal to zero).  The sensitivity of normalized intensity to model 

parameters (Ka-r, Ks-r, and initial concentrations of R, and S) was investigated 

 

Competitive (indirect) dynamic model 

 This competitive sensing field is similar to the one described in the previous 

section except for the caveat the equilibrium with the final sample cannot be achieved 

due to the degradation of  the target to some final product.  An example of such a system 

is an enzyme based detection of some target analyte.  Figure 3.2 depicts such a system.  
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Fig 3.2 Schematic of competitive dynamic sensor (enzymatic).  The recognition unit (R) binds to the signal unit 
(S).  This leads to some baseline signal.  Upon introduction of the target analyte (A), A displaces some of the S 
bound to R, creating a new signal.  An additional complication occurs due to the regeneration of R by the 
conversion of A to product (P). 

 

 
The equations governing the system are as follows:  
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 Where: P = Concentration of product formed from analyte degradation 

  kc = Reaction constant for degradation of analyte to product 
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Again, normalizing the system by the intensity of the free signal unit (Ifree) we arrive at 

the final form of the equation: 
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free
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By monitoring the rate of change in fluorescence intensity, we can determine the 

concentration of target analyte in the sample.  Equations (3.7 – 3.11 and 3.14) were 

solved simultaneously using MATLAB 7.0 and the rate of change in fluorescence as a 

function of analyte concentration was determined at different model parameter values. 

 

Direct equilibrium model 

 Direct sensors rely on a change in some measurable variable upon the interaction 

of the analyte of interest with the recognition molecule in the system.  In the system we 

describe, the sensor relies on a change in the optical properties of the system upon 

binding of analyte.  More specifically, the model is based on the surface-enhanced 

Raman spectroscopy (SERS).  In SERS, the target analyte exhibits an increase in 

spectroscopic signal upon interacting with some enhancing substrate (i.e. gold).  The 

enhancement factor can be as high as 1012.  A schematic of the biosensor system is seen 

in Figure 3.3. 
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Fig 3.3 Schematic of direct equilibrium sensor.  The recognition unit (R) is immobilized to a signaling substrate.  
Upon introduction of the target analyte (A), A binds to R, creating a signal. 

 

 
 The equations governing this system are very similar to those above.  However, 

the system is simpler since it doesn’t rely on a secondary molecule for the detection.  

The governing equations are as follows: 

ARkRAk
dt
ARd

rrafra ***)(
,, −− −=   (3.15) 

  ARFFAISignal distenhfree *** +=   (3.16) 

 Where: Signal = Spectroscopic signal 

  Fenh = Enhancement factor upon binding 

  Fdist = Distance factor for analyte to enhancer distance 

The enhancement factor upon binding is a function of electromagnetic properties of the 

enhancing surface, wavelength of light used to excite the surface, other physical 

properties of the system.  The distance factor for analyte to enhancer distance is a 

function of the thickness of the enhancing surface and the dimensions of the recognition 

molecule given by the function shown in Equation 3.17. 
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 Where: ro = Radius of curvature of enhancement substrate 

d = Distance from analyte to enhancing surface, typically of the 

dimensions of the recognition molecule. 

 

Results and discussion 

 The models developed were analyzed based on the variables of interest for the 

different systems.  For both the competitive equilibrium sensor and the competitive 

dynamic sensor, the values of Ro, So, Ks-r, and Ka-r were varied to determine the effect of 

those variable on the sensor behavior.  Comparatively, for the direct equilibrium sensor, 

Ro, Ka-r, enhancement factor, and the ratio of distance to diameter were varied. 

 

Competitive equilibrium model – effects of varying Ks-r 

 The equilibrium binding constant (Ks-r) represents the ratio of R-S complex to 

unbound R and S.  Increasing the value of Ks-r increases the amount of R-S complex, 

with the converse also being true.  Figure 3.4 shows the effect of varying Ks-r on the 

response of the sensor. 
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Fig 3.4   Equilibrium competitive sensing system response to changes in Ks-r.  Values of Ks-r ranging from 106 to 
1011 M-1 (decreasing as you move down the graph).  Ka-r = 108 M-1 , R0 = S0 = 10-8 M 

 

 
 As can be seen from the figure, as Ks-r increases, the linear response region of the 

sensor expands in both the active range of substrate concentrations and in the magnitude 

of the fluorescence intensity change that occurs.  However, increasing Ks-r shifts the 

lower limit of the linear region to higher values of substrate.  Therefore, maximizing Ks-r 

does not necessarily lead to optimized biosensor performance.  The value of Ks-r to use is 

dependant upon the substrate region of interest and the sensitivity of the equipment 

being used. 
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Competitive equilibrium model – effects of varying Ka-r 

 Much as Ks-r represents the ratio of R-S complex  to free R and S, Ka-r represents 

the ratio of R-A complex to R and A.  Again, increasing Ka-r increases the amount of R-

A complex.  Figure 3.5 shows the effect of varying Ka-r on the response of the sensor.  
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Fig 3.5  Equilibrium competitive sensing system response to changes in Ka-r.  Values of Ka-r ranging from 106 to 
1011 M-1 (increasing as you move down the graph).  Ks-r = 108 M-1 , R0 = S0 = 10-8 M 

 

 
 From Figure 3.5, we see that increasing Ka-r decreases the lower limit of the 

linear response region of the sensor.  However, increasing Ka-r narrows the linear region.  

Again, maximizing the value of Ka-r will not necessarily produce the optimum sensor 

performance.  As with Ks-r, the desired value of equilibrium binding constant for the 
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analyte to the recognition element is function of the desired sensor range for the 

application.   

 

Competitive equilibrium model – effects of varying S0 

 The initial amount of signaling unit (S0), also has direct consequences on 

equilibrium concentrations of free and bound analyte and signal molecule, thus will 

affect the performance and sensitivity of the biosensor.  Figure 3.6 shows this 

relationship. 
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Fig 3.6  Equilibrium competitive sensing system response to changes in S0.  Values of S0 ranging from 10-6 to 
10-10  M (increasing as you move down the graph).  Ka-r = Ks-r = 108 M-1 , R0 = 10-8 M 

 

 

S0 
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 As is apparent from the figure, increasing S0 reduces the amount of signal 

possible from the sensor, as the excess free signaling unit both shifts the concentration at 

which the analyte of interest can displace the decoy to higher concentrations and leads to 

greater background signal such that the enhancement of signal caused by binding of the 

signaling molecule to thee recognition molecule is obscured.  However, increasing 

concentrations of S0 also expands the range of concentrations of analyte detectable in the 

linear region of the sensor.   

 

Competitive equilibrium model – effects of varying R0 

 The effect of R0 on equilibrium is similar to the effect of S0.  Greater 

concentrations of R0 leads to lower concentrations of free S in system at equilibrium and 

a greater shift of the fluorescence intensity from basal value.  However, more R0 in the 

system results in R being available to bind A without displacing S, which decreases the 

effectiveness of the sensor.  Figure 3.7 demonstrates this effect. 
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Fig 3.7  Equilibrium competitive sensing system response to changes in R0.  Values of R0 ranging from 10-6 to 
10-10  M (decreasing as you move down the graph).  Ka-r = Ks-r = 108 M-1 , R0 = 10-8 M 

 

 
Summary of competitive equilibrium model results 

 In general, the lower limit of detection for the sensor is governed by Ka-r, with 

the limit of detection of analyte approaching the inverse of the value of Ka-r.  However, 

to achieve those detection limits, values of Ks-r, R0, and S0 must be matched to Ka-r.  If 

Ks-r is within an order of magnitude of Ka-r, then the detection limits of the sensor remain 

approximately the inverse of Ka-r, with larger Ks-r’s resulting in greater signal to noise 

and somewhat larger range of concentrations of analyte leading to linear sensor response.  

For lowest limits of detection, both R0 and S0 should be within an order of magnitude of 

the inverse of Ka-r, with deviations from these values leading either to a loss in 

Decreasing R0 
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sensitivity or loss in signal to noise.  Experimental verification of these findings are seen 

in Chapter IV. 

 

Competitive dynamic model 

 Unlike the competitive equilibrium sensor, in the competitive dynamic sensor, 

while the same signal generation mechanism is used (surface modified fluorescence in 

this example), the analyte of interest is degraded by the recognition element.  Therefore, 

fluorescence intensity changes with time in the sensor, and this rate of change in 

fluorescence intensity can be used to infer analyte concentrations. 

 

 Competitive dynamic model– effects of varying Ks-r 

 As seen in Figure 3.8, an increase in Ks-r leads to a decrease in the rate of change 

in signal intensity, dI/dt, (due to the increased binding affinity of the signal unit for the 

recognition molecule).  The decrease in dI/dt would result in a decrease in signal to noise, 

experimentally. Conversely, as Ks-r increases, the lower limit of detection decreases.  As 

with the equilibrium sensor, and optimum value of Ks-r exists which maximizes signal to 

noise while minimizing the concentration at which analyte is detectable. 
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Fig 3.8  Dynamic competitive sensing system response to changes in Ks-r.  Values of Ks-r ranging from 104 to 
109 M-1 (increasing as you move down the graph).  Ka-r = 107 M-1 , R0 = S0 = 10-8 M 

 

 
Competitive dynamic model – effects of varying Ka-r 

 Within the range of parameters explored, it appears that the major effect of 

varying Ka-r is to increase signal to noise (dI/dt) as the value of Ka-r increases, with 

possibly a modest effect on the upper limits of detection of the system (Figure 3.9).  Ka-r 

appears to have much less effect on system sensitivity and limits of detection in the 

dynamic sensor than in the equilibrium sensor. 
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Fig 3.9  Dynamic competitive sensing system response to changes in Ka-r.  Values of Ka-r ranging from 104 to 
109 M-1 (decreasing as you move down the graph).  Ks-r = 107 M-1 , R0 = S0 = 10-8 M 

 

 
Competitive dynamic model – effects of varying S0 

 Varying the amount of decoy available varies the intrinsic fluorescence of the 

system.  Greater concentration of decoy indicates greater fluorescence.  This allows for 

easier detection of signal, but makes the rate of fluorescence change a much smaller 

fraction of the total signal.  Figure 3.10 shows this effect. 
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Fig 3.10  Dynamic competitive sensing system response to changes in S0.  Values of S0 ranging from 10-r to 
10-12 M (increasing as you move down the graph).  Ka-r = Ks-r = 107 M-1 , R0 = 10-8 M 

 

 
 Figure 3.10 demonstrates how decreasing the decoy concentration leads to 

greater values for dI/dt.  Additionally, decreasing the decoy concentration gives better 

lower detection limits.  As previously mentioned, the caveat is that as decoy 

concentration decreases, so does total signal, placing the burden of limitations on the 

equipment being used. 

 

Competitive dynamic model – effect of varying R0 

 As discussed in the equilibrium model, increasing R0 increases the amount of 

bound decoy and free recognition unit.  This has the possible positive effect of 
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increasing the total fluorescence of the system, but with the possible negative attribute 

that the free recognition unit will decrease the sensitivity of the sensor.  Figure 3.11 

emphasizes these possible effects. 
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Fig 3.11  Dynamic competitive sensing system response to changes in R0.  Values of R0 ranging from 10-4 to 
10-12 M (decreasing as you move down the graph).  Ka-r = Ks-r = 107 M-1 , S0 = 10-8 M 

 

 
 From the figure we can see that decreasing the initial concentration of 

recognition unit improves the lower detection limits of the system.  However, decreasing 

R0 also decreases the total signal available for analysis.  This creates the same problem 

that the lower limits of R0 are governed by the equipment available. 
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Summary of competitive dynamic model 

 For a given value of Ks-r, you are limited to using concentrations of R0 greater 

than or equal to the inverse of Ks-r.  This is caused by the drastic shift of equilibrium 

toward dissociation, due to R values less than the limits just set.  Additionally, the same 

limitation hold true for the concentration of S (for the same reasons).  Since equilibrium 

limitations still apply, the limits of detection are limited by the value for Ka-r.  The 

inverse of this value also dictates R0 in addition to A0 concentrations that may be used or 

detected, respectively.  Since there are major economic limitations that are placed on the 

system by the cost of gold substrate, we are required to work at exceptionally low 

volumes (<20µL) to achieve the necessary concentration.  This is created by the fact that 

most enzymes operate with moderately low values of Ks-r (106 – 107 M-1).  These 

limitations are demonstrated in Chapter IV. 

 

Direct equilibrium model - effect of varying R0 

 Unlike the two previous models described, with a direct sensor, signal is 

generated by binding of the analyte of interest directly to the recognition molecule on the 

surface.  Since the concentration of recognition molecule on the surface, R0, is directly 

related to the amount of total possible bound analyte, model results suggest, as expected, 

that total signal intensity, signal to noise, and range of detectable concentrations would 

be greatest when the highest concentrations of recognition unit possible were bound to 

the surface (Figure 3.12). 
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Fig 3.12  Equilibrium direct sensing system response to changes in R0.  Values of R0 ranging from 10-2 to 
10-10 M (decreasing as you move down the graph, solid lines).  Signal from the free decoy represented by 
the dashed line.  Ka-r = 106 M-1, Enfac = 106, Dist/Dia = 3.33. 

 

 
 As described early, the system is more effective (more signal) with increasing 

values of R0.  However, there is one more interesting artifact.  As R0 increases, the upper 

detection limits of the system increase.  This further supports the idea that the maximum 

concentration of recognition unit should be used in the sensor. 

 

Direct equilibrium model – effect of varying enhancement factor 

 With the same predictability of varying R0, increasing the enhancement factor 

(Enfac, the increase in signal of the analyte upon binding to the surface relative to that 

free in solution) increases the effectiveness of the sensor.  This is obvious from the fact 
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that increasing Enfac directly increases the bound signal without influencing the kinetics 

of the system.  Figure 3.13 exemplifies this effect. 
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Fig 3.13  Equilibrium direct sensing system response to changes in enhancement factor (Enfac).  Values of 
Enfac ranging from 106 to 1012 M (decreasing as you move down the graph, solid lines).  Signal from the free 
decoy represented by the dashed line.  Ka-r = 106 M-1, R0 = 10-10 M, Dist/Dia = 0. 

 

 
Direct equilibrium model – effect of varying distance/diameter ratio 

 As the distance/diameter ratio (Dist/Dia) decreases, which physically implies that 

the recognition unit becomes smaller and the analyte comes closer to the enhancing 

surface, it is expected that the bound signal in the system will increase.   For the 

purposes of this paper, a third order decay in signal as distance increased was assumed, 

based on theoretical estimates of the decay of the electromagnetic field [46, 47] and 
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experimental measurements with different surfaces (Chapter VI).  Figure 3.14 

demonstrates the distance effects. 
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Fig 3.14  Equilibrium direct sensing system response to changes in ratio of distance from surface to 
diameter of curvature (Dist/Dia).  Values of Dist/Dia ranging from 0 to 3.33 (increasing as you move 
down the graph, solid lines).  Signal from the free decoy represented by the dashed line.  Ka-r = 106 M-1, 
Enfac = 106, R0 = 10-10 M. 

 

Direct equilibrium model – effect of varying Ka-r 

 Varying Ka-r directly affects the equilibrium conditions in the system in the same 

way as discussed in the competitive equilibrium model.  Therefore, it would stand to 

reason that by increasing the value of Ka-r, the amount of bound substrate would increase.  

This will lead to increased signal and easier detection, as illustrated in Figure 3.15.   
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Fig 3.15  Equilibrium direct sensing system response to changes in Ka-r.  Values of Ka-r ranging from 106 to 
1011 M-1 (decreasing as you move down the graph, solid lines).  Signal from the free decoy represented by the 
dashed line.  R0 = 10-10 M, Enfac = 106, Dist/Dia = 0. 

 

 

 While the increase in signal is apparent from the figure, there is another 

interesting artifact.  As Ka-r increases, the upper detection limit decreases because the 

surface saturates.   

 

Summary of direct equilibrium sensor  

 In general, the direct sensing platform is much simpler than the competitive 

platforms, but somewhat more difficult experimentally to realize.  Success depends on 

high surface coverage of the recognition unit, a physically small recognition unit (such 

that the distance from the analyte to the surface is low), and a high binding affinity of the 
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recognition unit for the analyte.  Antibodies bind with high specificity and reasonably 

high binding affinity (109 to 1012 M-1), but are molecularly rather large (4-5 nm in 

diameter).  The large size both decreases the distance of the analyte for the surface and 

decreases possible surface coverage of the recognition unit. 

 We show, with some novel molecular surfaces, that surface coverage at picomole 

levels are possible (near 10-8M for R0), with binding affinities in the range of 108 M-1, 

and at distances near 10 nm from the surface (Dist/Dia=0.067).  Our collaborators have 

generated surfaces with enhancement factors near 106 or greater.  Thus, with instrument 

sensitivity optimized (high power input, high sensitivity detector), analyte at 

concentrations below 10 nM should be detectable.  Higher concentrations of analyte, up 

to near 10 µM, should be distinguishable from signal arising from analyte free in 

solution, but signal will not increase with increasing concentration as the sensor surface 

would be saturated.  The feasibility of engineering the direct sensor, as described, is 

detailed in Chapter VI. 

 

Conclusions 

Competitive equilibrium model 

 While the trends discussed give an idea of how the system depends on each of 

these variables, the true determination of what Ka-r, Ks-r, R0, and S0 to use greatly depend 

on the range of concentrations of substrate for which detection is desired. However, it 

does appear that matching R0 and S0 concentrations seems to give the best response with 

the least loss of signal.  Furthermore, it appears that the limiting components of the 
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system will probably be the equipment being used for detection and the binding affinity 

of the recognition molecule for both analyte and signal molecule. 

 

Competitive dynamic model 

 The results of this model are significantly easier to discuss.  As is the case for all 

the variables R0, and S0, lower is better.  However, since decreasing R0 and S0 seems to 

fight the trends of each (it is not the lower value but the change in the ratio), it would be 

most beneficial to, again, match the concentrations to one another.  Conversely, 

maximizing Ka-r and Ks-r seems to be the most beneficial.  Limitations on the possible 

performance of the sensor are the binding affinities obtainable for the recognition 

molecule, the limits of equipment detection (which are limited both by power input into 

the sample and detector efficiency), and the cost constraints associated with putting 

enhancing particles (gold for example) on the recognition element. 

 

Direct equilibrium model 

 For this system, one should maximize R0 and Enfac while minimizing Dist/Dia.  

This will give the highest bound signal available.  As for Ka-r, it is important that the 

value of Ka-r matches the concentration range of interest (since increasing Ka-r decreases 

the upper detection limits, but decreasing Ka-r decreases total signal). 
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Summary 

 Keeping all of these factors in mind when designing a sensor system (regardless 

of style) can help create a much more efficient design and understanding of the system.  

Furthermore, by using models for “intelligent design”, one can fine tune the system to 

better match the capabilities and limitations of the equipment available, the biology or 

chemistry of the recognition units available, and the optical of the surface modifying 

metal particles used in biosensor development.  Furthermore, incorporating models 

along with experimentation, you can decrease the number of experiments by “testing” 

some parameters with simulation, reject certain designs because the models show they 

are not feasible, and speed up optimization process associated with biosensor 

development. 
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CHAPTER IV 

 

DEVELOPMENT OF A NANOPARTICLE-BASED SURFACE-MODIFIED 

FLUORESCENCE ASSAY FOR THE DETECTION OF PRION PROTEINS* 

 

Overview 

A nanoparticle-based immunoassay for the detection of recombinant bovine 

prion protein (PrP) was developed as a step in the development of screening tools for the 

prevention of the spread of transmissible spongiform encephalopathies. The assay is 

based on the competitive binding between PrP and a peptide–fluorophore to a 

nanoparticle-labeled antibody which is specific for a conserved prion sequence. The 

fluorophore, when bound to the antibody, is subject to surfaced-modified fluorescence, 

enabling detection of changes in the concentration of bound fluorophore in the presence 

of prion protein. Important factors considered during the development of the assay were 

ease of use, robustness, and detection level. The effects of pH and nanoparticle 

conjugation chemistry on surface-modified fluorescence observed in the assay were 

explored. Effects of concentrations of antibody and fluorophore on reproducibility and 

detection limits were examined. At present, the detection limits of the system are 

approximately equal to the antibody–peptide fluorophore equilibrium dissociation  

 

*Reprinted from the Journal of Analytical Biochemistry, 334, James Henry et al., 
“Development of nanoparticle-based surface-modified fluorescence assay for the 
detection of prion proteins,” 1-8, Copyright 2004, with permission from Elsevier.  
doi:10.1016/j.ab.2004.07.008   
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constant, which is near one nanomolar concentration. Improved assay performance could 

be obtained by optimization of the nanoparticle surface resonance effects. The simplicity 

of the assay and ease of use may make the type of assay described in this report 

attractive for screening purposes in the food industry. 

 

Introduction 

Prion proteins (PrPs) are thought to be the causative agent in transmissible 

spongiform encephalopathies (TSEs), a group of fatal neurodegenerative diseases that 

include chronic wasting disease and bovine spongiform encephalopathy (BSE) in 

nonhuman animals and Creudzfeld Jakob disease in humans [80]. The diseases are 

highly contagious in certain species, with transmission from nonhuman animals to 

humans thought to be possible, at least for BSE [80]. 

 Until methods of treatment or prevention of the diseases have been established, 

the best hope of preventing the spread of TSEs is through surveillance of animals and 

animal products including foods and pharmaceutical materials. Current screening 

methods involve the use of immunological assays such as ELISAs and Western blots 

with high sensitivity (down to the picomolar range or below), but these require 

considerable time and skill [80]. The other major screening method for the detection of 

infectious prions is the ‘‘Hamster Model’’ [78], which examines the ability of a sample 

to transmit infection to a golden hamster. This method is the only assay capable of 

definitively determining whether a sample is capable of transmitting disease; however, 

the incubation period for the hamster screening method is approximately 60 days, 
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prohibitively long for the screening of foodstuffs and the detection limits are uncertain. 

Simple, robust, rapid, and sensitive methods for the detection of prion proteins are 

needed for use in the food and pharmaceutical industries. 

In this paper, the development of a simple nanoparticle-based surface-modified 

fluorescence assay for the detection of prions is described. The assay developed is based 

on phenomena associated with the high number of surface electrons associated with 

metal nanosurfaces [141]. A variety of assays that exploit changes in optical properties 

in the vicinity of a nanosurface have been developed recently [142], including surface-

plasmon-resonance-based assays [143] and surface-enhanced resonance Raman assays 

[144]. These assays have been used in the detection of proteins including the estrogen 

receptor alpha [145], human serum albumin [146], and wheat germ agglutinin and 

epidermal growth factor [147]. Use of surface-modified fluorescence has been reported 

recently for the detection of prostate-specific antigens [148]. 

A variety of analytical techniques have been developed which exploit changes in 

fluorescence properties of a molecule in different environments, whether those changes 

be quenching [149], Förster resonance energy transfer [150], or surface-modified 

fluorescence in which the energy absorbed by the nanoparticle or nanosurface either 

quenches or enhances the fluorescence of fluorophore, depending upon the distance 

between the excited surface and the fluorophore [151]. In this work, an assay utilizing 

surface-modified fluorescence for prion detection is described. The assay is based on the 

competitive binding of a fluorophore to a nanoparticle-labeled prion-specific antibody. 

As currently implemented, the assay is simple to perform, requires minimal skill, and 
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can be used to detect recombinant prion proteins down to 2 nM. With optimization, 

including steps for the discrimination between infectious and noninfectious prion, this 

assay could be used as a rapid and simple screening tool to prevent the introduction of 

TSEs into the food and pharmaceutical supply. 

 

Materials and methods 

Materials 

The fluorescent peptide fluorescein-GABA-QYQRES-COOH, referred to as 

decoy, was custom synthesized and purified by Multiple Peptide Systems (San Diego, 

CA). Peptide purity was 85% as indicated by mass spectrometry and reverse-phase 

HPLC provided by the manufacturer. The recombinant prion protein (Calbiochem, San 

Diego, CA) was a histidine-tagged protein expressed in Escherichia coli containing 

amino acids 25–244 of the bovine PrP sequence. The anti-PrP monoclonal antibody 

(derived from cell line F99/97.6.1 from VMRD, Pullman, WA) was used in sensor 

development. The antibody was specific for the sequence QYQRES, a conserved 

sequence in human, bovine, and elk PrPs. 

The 1.4-nm gold nanoparticles for labeling of the antibody at specific residues 

were purchased from Nanoprobes (Yaphank, NY). The particles had only one 

attachment site per gold cluster with the attachment site being dependant upon the type 

of gold nanoparticles used. All other chemicals, unless specifically indicated, were 

supplied by Sigma–Aldrich (St. Louis, MO). 
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Antibody purification 

The anti-PrP monoclonal antibody (MAb) was purified on an rProtein A column 

(Amersham Biosciences, Piscataway, NJ) before use. A 2.5-mL-bed-volume column was 

used to purify approximately 7 mg of antibody. The column was .rst washed with 10 

mM borate buffer, pH 8.9, with 3 M NaCl, before use. The impure MAb, diluted 1:1 in 

pH 8.9, 3 M NaCl buffer, was loaded onto the column. The column was then washed 

with 10 bed volumes of 50 mM borate buffer, pH 8.9, 3 M NaCl, followed by 10 bed 

volumes of 10 mM borate buffer, pH 8.9, 3M NaCl. Purified MAb was eluted with the 

100 mM glycine buffer, pH 3.0. MAb was detected in fractions via absorbance at 280 

nm using the Beckman DU620 spectrophotometer (Beckman Coulter, Fullerton, CA). 

Antibody was neutralized with 1/10 volume 1 M Tris buffer, pH 8, containing 0.02% 

sodium azide. Bovine serum albumin was added to the antibody to a concentration of 2 

mg/mL to improve stability during storage. 

 

Preparation of fAb fragment 

The antibody fragments (FAb) were prepared using the ImmunoPure FAb 

Preparation Kit (Pierce Biotechnology, Rockford, IL). The procedure used was provided 

by Pierce Biotechnology [152]. 

 

Nanogold attachment 

Three different gold nanoparticle attachment chemistries were used, 

monomaleimido, mono-NHS, and monoamino, to specifically attach the gold 
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nanoparticles to the anti-PrP MAb at sulfhydryl, amine, and carbohydrate residues, 

respectively. The sulfhydryl attachment chemistry was also performed using FAb 

fragments. The procedure for the attachment of the monomaleimido nanogold to both 

whole MAb and antibody fragments at reduced sulfhydryl groups was performed 

according to the IgG and FAb attachment procedures provided by Nanoprobes with the 

following modification:  80 mM dithiothreitol was used in place of 100 mM MEA as a 

disulfide bond reducing agent [153]. The procedures for the attachment of mono-NHS 

nanogold to primary amines on the anti-PrP MAb and monoamino nanogold to oxidized 

carbohydrate chains on the Fc region of the anti-PrP MAb were performed according to 

the IgG attachment procedure provided by Nanoprobes without modification [154,155]. 

Separation of labeled antibodies from unbound nanogold particles was performed 

by ultrafiltration using Millipore (Billerica, MA) Microcon 30,000 MWCO filters. Gold 

to protein mole ratios of the nanoparticle-labeled antibody or antibody fragments were 

determined by measurement of sample absorption at 280 and 420 nm. Gold to Ab (or 

FAb) mole ratios were in the range of 1.6:1 to 4.2:1, or approximately 2–4 gold particles 

per antibody molecule. Less than 1% of total gold in each sample was unbound. 

 

Sample mixing 

The samples were mixed from stock solutions of decoy, gold-labeled MAb, 

recombinant PrP, and buffer. Stock solutions of decoy and antibody were prepared in 

phosphate buffer. Stock solutions of PrP were prepared in deionized water to avoid PrP 

aggregation. The buffer used for fluorescence measurements was 0.1 M phosphate 
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buffer, pH 7, unless otherwise specifically indicated. The samples were placed in sealed 

foil pouches and mixed for times ranging from 4 to 24 h depending on the concentrations 

of the samples. Independent fluorescent measurements were taken at various times to 

ensure that mixing times were sufficient for samples to reach equilibrium. No attempt 

was made to remove unbound decoy from samples prior to fluorescence measurements. 

Measurements were recorded from equilibrium mixtures of bound and free decoy, 

antibody–gold conjugate, and prion. 

 

Sample testing 

The fluorescence of samples was measured using a fluorometer from Photon 

Technologies International (Lawrenceville, NJ) outfitted with a 25 mW argon laser from 

Spectra-Physics Lasers and Photonics (Mountain View, CA). A 500 nM long-pass filter 

was placed in the emission light path to reduce the effects of scattered excitation light. 

Samples were excited at 488 nm and the emission was scanned from 500 to 600 nm. 

Fluorescence intensity at 514 nm was recorded. Normalized fluorescence intensity, 

reported here, refers to the fluorescence intensity of the sample at 514 nm divided by the 

fluorescence intensity of the fluorescein-labeled peptide (decoy) alone at the same 

concentration and same pH condition as that of the sample. 

 

Statistical and modeling analysis 

Data are presented as the mean plus or minus the standard deviation (or standard 

error) of n independent measurements where n is 3 or greater. To determine the 
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statistical difference of two samples or a sample from a control, a Student t test was 

performed. When multiple measurements were compared, a Tukey test was used to 

determine the statistical difference in data. Unless otherwise indicated, P < 0.05 was 

used. 

To estimate the range of conditions that should be tested to optimize assay 

performance, a simple equilibrium model of antibody–decoy and antibody–prion binding 

was constructed in which it was assumed that the equilibrium binding constants to both 

decoy and prion were the same. The decoy–antibody equilibrium binding constant, 2.5 x 

109 M-1, was estimated independently [156]. The resulting set of nonlinear equations was 

then solved using Polymath or Maple to determine free and bound decoy concentrations. 

Fluorescence intensity was assumed to be a linear combination of the fluorescence 

emission of the free decoy and that of the bound decoy and was assumed to be directly 

proportional to the concentrations of fluorescing species. While linearity of fluorescence 

intensity with free decoy concentration was confirmed experimentally, other 

assumptions in model development were not tested directly. 

 

Results and discussion 

A novel assay for the detection of PrP in buffers that was rapid and simple to use 

was developed. A simple schematic of the assay can be seen in Figure 4.1. 
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Fig. 4.1. Schematic of the prion detection system. Two reactions occur in the assay 
mixture. A fluorescent peptide decoy (D) can bind to an antibody–gold conjugate (A) 
forming an antibody–decoy complex (AD) or a prion protein (P) can bind to the 
antibody–gold conjugate forming an antibody–prion complex (AP). The fluorescence 
intensity of the decoy changes when bound to the antibody–gold complex relative to that 
of the free decoy. If, when the complex forms, the fluorophore is close to the gold 
nanoparticle (approximately 10 nm or less), the fluorescence is quenched relative to that 
observed in the free decoy. If the fluorophore is at an intermediate distance from the gold 
nanoparticle when bound (approximately between 10 and 40 nm), fluorescence is 
enhanced relative to that of the free decoy. The change in fluorescence of the assay 
mixture upon addition of prion is used to indicate the prion concentration in the sample. 

 

 

While there are prion assays with high sensitivity in current use, the level of expertise 

required for these methods and the length of time required to perform such assays can be 

a major hindrance in food manufacturing and processing environments [80, 79]. The 

assay described here was based on the competitive binding of PrP and a fluorescent 

peptide or decoy to a monoclonal antibody specific for a conserved sequence in several 

PrP species including sheep, goat, cattle, mink [157], and deer [158]. The sequence is 

near the C terminus of the prion protein, which is believed to be accessible to antibodies 

on both infectious and noninfectious prions and is unlikely to be cleaved by protease 

pretreatment of the infectious protein [80]. The fluorescence of the decoy was modified 

when bound to the antibody because of the presence of a gold nanoparticle on the 

antibody. 
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Since the assay developed here is based on competitive binding, the detection 

limits of the system will be related to the relative amounts of fluorescent decoy bound to 

the antibody and free in solution and to the differences in fluorescence intensity of the 

bound and free species. The distance between the gold nanoparticles and the fluorophore 

will greatly affect the fluorescence of the bound fluorophore as at short molecular 

distances nonradiative energy transfer to the metal leads to fluorescence quenching, 

while at longer distances (generally between 10 and 45 nm) enhancement is seen as a 

result of surface resonance effects [151]. Local pH will also affect the fluorescence of 

bound and free species. In addition, concentrations of all species participating in assay 

reactions along with equilibrium constants for those reactions will determine the relative 

concentrations of bound and free species. The effects of these parameters were explored 

to elucidate the working range and detection limits of the assay developed. 

 

Structural comparison 

The first step in the assay development was to quantify the effective change in 

peptide decoy fluorescence upon binding with gold–MAb (or gold–FAb) conjugate as a 

function of location or type of gold nanoparticles attachment. Binding of gold-labeled 

antibody to fluorescent decoy did not alter the shape of the emission spectra or 

wavelength of emission maximum but simply led to changes in intensity of fluorescence. 

Results from these experiments are shown in Figure 4.2. 
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Fig. 4.2. Effect of nanoparticle attachment chemistry on surface modified fluorescence. 
The filled bars and empty bars are 200 nM antibody, 200 nM decoy, and 10 nM antibody, 
10 nM decoy, respectively. Normalized intensity is the fluorescence of the antibody 
decoy pair divided by the fluorescence intensity of the free decoy at the same 
concentration. Error bars represent the standard deviation of three or more independent 
measurements. 
 

 

As seen in the figure, fluorescence intensity of the decoy bound to the antibody relative 

to that free in solution was a strong function of the method of gold attachment. The 

sulfhydryl–FAb, amine–MAb, and carbohydrate–MAb chemistries led to a decrease in 

fluorescence, or quenching, while the sulfhydryl–MAb chemistry led to an increase in 

fluorescence, or enhancement, of the decoy when bound to antibody relative to that of 

free decoy without antibody present. Significant variability in enhancement and 

quenching observed was noted when different batches of antibody were used in 

experiments. However, for the same batch of antibody, but different conjugation 

reactions, reproducible enhancement and quenching were observed. We assumed that the 

variability in enhancement and quenching seen with different batches of antibody were 

associated with differences between batches in stability/purity of the antibody and not 
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with differences in concentration at which the reactions were carried out. One possible 

explanation for the variation in the fluorescence modification behaviors observed with 

the different chemistries is that the different attachment chemistries led to different 

molecular distances between the nanoparticle and the bound decoy (fluorophore). For 

the sulfhydryl–FAb attachment chemistry, the average molecular distance between 

nanoparticle and fluorophore may be relatively small, leading to quenching of 

fluorescence, while for the same attachment chemistry to the whole antibody, the 

average molecular distance between nanoparticle and fluorophore was greater, leading to 

a fluorescence enhancement. For the amine attachment chemistry, considerable 

heterogeneity in molecular distances would be expected because of the relatively large 

number of possible surface amines for attachment, giving rise to small changes in 

fluorescence because of averaging of both enhancement and quenching effects. Similar 

arguments could be made about molecular distances with the carbohydrate attachment 

chemistry (small molecular distances, leading to quenching). No direct measurements of 

distances between gold attachment sites and fluorophore binding sites were attempted. 

 

pH effects 

Given that fluorescein, the fluorophore attached to the decoy used in the assay, is 

known to be pH sensitive [159], we examined the role of pH on the relative 

enhancement or quenching behavior observed when the decoy was bound to the gold-

labeled MAbs prepared with the three different attachment chemistries (Figure 4.3). 
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Fig. 4.3. Effect of solution pH on fluorescence intensity of decoy and decoy/antibody 
pairs. The concentration of decoy was 10 nM. The concentration of antibody–gold 
conjugates was 8 nM. The following symbols were used to represent different attachment 
chemistries: ■, sulfhydryl; □, carbohydrate; ♦, free decoy; ◊, amine. Error bars represent 
the standard deviation of three or more independent measurements. 
 

The FAb–sulfhydryl attachment was eliminated as it provided no noticeable advantage 

over other available chemistries. No obvious shifts in fluorescence dependence upon pH 

with respect to control were observed with nanogold-labeled antibodies relative to that 

of the free decoy (Fig. 4.3), suggesting that the binding showed no pH dependence. For 

subsequent experiments, pH 7 was used. Since the sulfhydryl and carbohydrate 

chemistries showed the most promise, they were the only chemistries used in further 

testing. 

 

Decoy:Ab ratio 

As seen in Figure 4.4, we explored the effect of the relative ratio of decoy to 

gold-labeled antibody on normalized fluorescence intensity. We expected, based on 

stoichiometric arguments, that optimal enhancement or quenching would be observed 
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when decoy to antibody ratios were between 1:1 and 2:1. A maximum was observed for 

the sulfhydryl attachment chemistry at a decoy to antibody ratio of 1.25:1 (Fig. 4.4). 

 

 

Fig. 4.4. Effect of decoy to antibody mole ratio on normalized fluorescence intensity for 
different conjugation chemistries. The following symbols represent different attachment 
chemistries: ■,sulfhydryl; □, carbohydrate. Points labeled with like symbols are 
statistically equivalent (Tukey, P < 0.05). 

 

There were no significant changes in normalized fluorescence intensity in the range of 

ratios between 1:1 and 2:1 when the carbohydrate attachment chemistry was used. The 

1.25:1 decoy to antibody ratio was used in all subsequent experiments. 

Whether this represents the true mole ratio of decoy to antibody under conditions 

that yield maximum changes in fluorescence signal or whether the observed optimal 

ratio was due to some uncertainty in our measurements of antibody or decoy 

concentrations is not clear. However, it should be noted that these results were observed 

consistently with multiple batches of antibody–nanoparticle conjugations. 
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Detection limits 

Using the optimum decoy to antibody ratios, we then determined the minimum 

concentrations of decoy and antibody that could be used and still reveal a significant 

difference between the fluorescence intensity of decoy bound to the gold-labeled 

antibody and that of free decoy. Results from those experiments are seen in Figure 4.5. 

 

 

Fig. 4.5. Effect of decoy/antibody pair concentration on normalized fluorescence 
intensity for different attachment chemistries. The following symbols were used to 
represent different attachment chemistries: ■, sulfhydryl; □, carbohydrate. The 
normalized fluorescence intensities for sulfhydryl-labeled Ab and carbohydrate-labeled 
Ab were statistically different from the normalized control value (1.0) for concentrations 
at and above 2 and 3 nM, respectively (Student’s t test, P < 0.01). 
 

 

At concentrations below 2 nM decoy for the sulfhydryl chemistry and below 3 nM decoy 

for the carbohydrate chemistry, no differences between free and bound decoy were 

detectable (P < 0.01). The concentrations at which no statistical difference between free 

and bound decoy could be detected approaches the equilibrium dissociation constant for 

the Ab:Decoy system (approximately 4 x 10-10 M) [156]. 
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Prion displacement 

The principle of the assay under development was that of competitive binding of 

the decoy and prion to the antibody. Thus, in the absence of the prion, the decoy would 

bind to the antibody and its fluorescence would be modified by the gold nanoparticle. 

However, in the presence of the prion, the decoy would be displaced, and fluorescence 

would return to unmodified levels. A number of experiments were performed to test the 

ability of the prion to displace the decoy and whether the assay could be used to detect 

recombinant prion in the system (Figure 4.6). 

 

 

Fig. 4.6. Normalized fluorescence intensity as a function of recombinant prion 
concentration in solution. Sulfhydryl attachment chemistry is indicated with filled 
symbols. Carbohydrate attachment chemistry is indicated with open symbols. All 
measurements were performed at pH 7.0. Diamonds, 200 nM decoy, 160 nM antibody. 
All values (other than 0 nM PrP) are statistically different from the 0 nM PrP value 
(Student’s t test, P < 0.05). Squares, 5 nM decoy, 4 nM antibody. All values of 
fluorescent intensity except 20 nM PrP (carbohydrate attachment chemistry only) 
samples are statistically different from the fluorescence intensity of free decoy 
(normalized intensity of 1). All values of fluorescence intensity are statistically different 
from the 0 nM PrP values, indicating that all concentrations tested could be distinguished 
from zero prion concentration (Student’s t test, P < 0.05). Triangles, 2 and 3 nM for 
sulfhydryl and carbohydrate attachment chemistries, respectively, 1.25:1 decoy:antibody 
ratio. Fluorescence intensities of prion-containing samples are statistically different from 
that of free decoy for concentrations less than 5 nM PrP. Fluorescence intensities of 
prion-containing samples 3 nM and above can be distinguished from the fluorescence 
intensity of zero prion samples (Student’s t test, P < 0.05). 
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The first attempt was performed at high decoy and antibody concentrations (200 nM 

decoy concentration, pH 7, 1.25 decoy to antibody ratio, diamond symbol). As prion was 

added to solution, the fluorescence intensity of the decoy increased from that of the 

quenched level of decoy bound to gold-labeled antibody toward the fluorescence 

intensity of free decoy (in the absence of antibody). The normalized fluorescence of the 

200 nM prion sample was significantly different from that of the decoy–antibody 

controls (P < 0.05). However, at very high prion concentrations, 2 µM, the fluorescence 

decreased relative to that at lower prion concentrations, possibly due to prion 

aggregation in high-ionic-strength solution [160]. The histagged prion protein did not 

appear to aggregate at lower concentrations unless stored in high-ionic-strength buffers. 

Further prion displacement assays were performed at lower decoy and antibody 

concentrations to improve the limits of sensitivity of the assay. When decoy 

concentrations of 5 and 2 or 3 nM were used (keeping the decoy to antibody ratio fixed 

at 1.25 to 1), the assay could be used to distinguish 2 nM prion from zero prion in the 

sample as opposed to the 200 nM lower limit observed when 200 nM decoy was used 

(based on a Student t test with P < 0.05). The observed trend of the limits of detection of 

prion, corresponding roughly to the decoy concentration used in the assay, was expected 

based on simple equilibrium models of the reactions taking place in the assay. The 

working range of the assay was 2–10 nM (for carbohydrate chemistry) or 20 nM (for 

sulfhydryl chemistry) when 5 nM decoy was used (squares), while it was 2–5 nM when 

the lower decoy concentrations were used (triangles). 
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The equilibrium model was used to estimate normalized fluorescence intensity 

for an enhancement-based assay, analogous to the system employing sulfhydryl 

chemistry described here, as a function of concentration of prion at different 

concentrations of antibody and decoy (Figure 4.7). 

 

 

Fig. 4.7. Equilibrium model estimates of normalized fluorescence intensity as a function 
of prion concentration for an enhancement based assay. In model calculations, the 
equilibrium binding constants for both antibody to decoy and antibody to prion were 
assumed to be 2.5 x 109 M-1. The maximum possible enhancement was assumed to be 1.6 
times the fluorescence intensity of the unbound decoy. Equimolar decoy and antibody 
concentrations were assumed at 200 nM (diamonds), 10 nM (squares), 1 nM (triangles), 
and 100 pM (circles). 
 

The equilibrium models showed that the limits of detection of the system corresponded 

to the equilibrium dissociation constant for the antibody to the decoy, that the limits of 

detection for each antibody and decoy concentration corresponded approximately to the 

decoy concentration used, and that at very low antibody and decoy concentrations 

(below the dissociation constant), normalized fluorescence intensity decreased, 
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suggesting that the signal to noise ratio would also decrease. These observations are 

consistent with experimental data shown in Fig. 4.6. To reduce further the detection 

limits of the assay, the equilibrium binding coefficient would have to be increased, either 

by finding a different antibody or by altering the ionic strength and temperature at which 

the assay was performed [161, 162] or both. 

Detection was also limited by background fluorescence of free decoy or decoy 

bound to antibody, for enhancement and quenching chemistries, respectively, which 

increased the noise in the system. Improved surface-modified fluorescence effects might 

be obtained through use of silver deposition on the gold nanoparticle, which would both 

increase surface roughness and alter the absorbance of the particles such that they would 

better match the excitation source [151]. For better enhancement specifically, outside of 

better control of molecular distances and resonance effects, it would be necessary to 

change to a lower-quantum-efficiency fluorophore [151]. 

 

Conclusions 

It has been demonstrated that it is feasible to detect nanomolar concentrations of 

recombinant prion protein in a simple and reproducible assay that uses surface-modified 

fluorescence. The strengths of the method are its simplicity, ease of use, and relative 

speed which are appropriate for screening technologies for the food industry. However, 

we were not able to achieve the femtomolar detection limits of current detection methods 

(ELISAs) [79, 80]. To further increase the sensitivity of a surface-modified 

fluorescence-based system beyond the limits of the affinity of the antibody, it would be 
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necessary to create an assay that was no longer competition based. In addition, with the 

current system, the natural fluorescence of biological molecules (along with the 

scattering effects of a serum-based sample) would create significant ‘‘noise’’ in the 

output leading to a decreased sensitivity of the assay. This problem could be addressed 

by shifting to a longer-wavelength fluorophore to reduce the effects of scatter and the 

intrinsic fluorescence of biological samples. Finally, the current method as described 

would require modifications to the sample to allow for the discrimination between 

infectious and noninfectious prions. This could be accomplished by pretreating the 

samples with proteinase K or other selective proteases prior to sample analysis [163]. 

This step would, of course, increase the difficulty and time required for the assay to be 

performed. 

In summary, surface-modified fluorescence assays such as the one described here 

can be used for the detection of biologically important proteins. The method is simple 

and fast and has a sensitivity approximately equal to the antibody–antigen equilibrium 

dissociation constant. In applications where very high-affinity antibodies are available, 

where the sensitivity needs are on the order of nanomolar concentrations, or where ease 

of operation are important, assays such as the one that we have described may be 

appropriate. 
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CHAPTER V 

 

PRELIMINARY WORK TOWARDS THE DEVELOPMENT OF AN 

ORGANOPHOSPHATE ENZYMATIC SENSOR 

 

Introduction 

  The wide spread use of neurotoxic organophosphates (OP) in the environment for 

insect and pathogen control and recent threats of OP based chemical warfare agent 

involvement in ground based warfare and terrorist attacks necessitate the development of 

simple and specific methods for OP detection. Organophosphorus (OP) neurotoxins 

comprise a unique class of contaminants and chemical warfare agents (CW) that 

generally show low environmental persistence, but they have a high acute toxicity and a 

wide range of biological activities. Some members of this class are extremely toxic to 

mammals (e.g. the human oral lethal dose for paraoxon = 16 mg/kg, and VX is lethal at 

1 mg if ingested or 100 mg-min/m3 if inhaled); they are powerful inhibitors of enzymes, 

such as Acetyl- and Buturyl-Cholinesterases or Neurotoxic Esterase, which are involved 

in nerve function. Moreover, low doses, but long-term exposure of these neurotoxins 

may lead to the development of cancer, genetic diseases, and other dangerous effects. 

OP neurotoxins are capable of producing organophosphate-induced delayed 

neurotoxicity (OPIDN) in man and susceptible species. Recovery from these complex 

and poorly understood diseases is usually poor and there is no specific treatment, as 

observed for many Gulf War participants.  
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A variety of methods including gas, liquid, and thin-layer chromatography with 

mass spectrometry or other sophisticated spectroscopic detection methods have been 

used for organophosphate identification and detection.  These approaches are very 

sensitive but require expensive equipment and are not specific for organophosphates.  

Another approach has been the use of biosensors that use specific enzymes such as 

acetylcholinesterase or butyryl cholinesterase as the recognition element [164 - 166]. 

Organophosphate neurotoxins inhibit the activity of the enzymes, thus inhibition of their 

activity can be used as an indirect measure the "total anticholinesterase activity" of a 

sample (with sensitivity up to 10-10 M) but are prone to interference by a environmental 

contaminants such as heavy metals or phenols.  

 Another approach has been to use organophosphate hydrolase as the principle 

component of biosensors for the direct detection of organophosphates [167 - 169].  The 

enzymatic hydrolysis of OP neurotoxins by organophosphate hydrolase (OPH) generates 

two protons in each hydrolytic turnover through a reaction in which P-O bonds are 

cleaved.  Several strategies, potentiometric and fluorescence, have been used to detect 

the generation of protons, with sensitivity down to 1 µM [170, 171].  While sensitive, 

these sensors are very sensitive to the buffering capacity of the sample.   

 In this work, we examine the feasibility of developing a biosensor using 

organophosphate hydrolase as a recognition element, and surface modified fluorescence 

spectroscopy as a detection method for a variety of organophosphate neurotoxins.  This 

work builds on our previous success in the development of a surface modified 

fluorescence method for the detection of prions [172], preliminary work of our 
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collaborators on the development of a nanoparticle based sensor for organophosphate 

detection [173], and our modeling efforts detailed in Chapter III.   

 The system uses a fluorescent competitive inhibitor of OPH as the detection 

analyte.  By isolating the enzyme in close proximity to a fluorescence modifier (e.g. 

gold), we can alter the fluorescence intensity of the inhibitor upon it binding to OPH.  

Because the reaction is enzymatic, rate of change of fluorescence can then be used as an 

indicator of the presence of organophosphate neurotoxin.  This differs significantly than 

sensor methods that we have previously developed.  In addition, the gold-laden OPH 

will be produced either through direct gold-labeling of the enzyme, or by creating a 

gold-rich hydrogel in which the enzyme is contained.  The end goal of the work is to 

develop a detection methodology that is portable and affordable, such that communities 

can monitor their water/soil for OP pesticide contamination and/or OP chemical warfare 

agents.  

 

Materials and methods 

Materials 

 The OPH was supplied by Dr. Jim Wild from the Department of Biochemistry 

and Biophysics at Texas A&M University.  Paraoxon was purchased from Chem Service 

(West Chester, PA).  Nanogold was purchased from Nanoprobes, Inc (Yaphank, NY).  

N-dodecyl-N,N-dimethylamine N-oxide (DDAO), DDAO phosphate, and Texas Red 

were purchased from Molecular Probes (Eugene, OR).  Acryloyl polyethylene glycol N-

hydroxysuccinimide (Acryloyl-PEG-NHS) was purchased from Nektar Therapeutics 
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(Huntsville, AL).  Irgacure 2959 photoinitiator was acquired from Ciba Specialty 

Chemicals (Tarrytown, NY).   The Spectroline EN-180 Longwave UV Lamp was 

purchased from Spectronics Corporation (Westbury, NY).  Fluorescence and absorbance 

was measured using an Applied Photophysics (Leatherhead, Surrey, UK) PiStar system 

equipped with stopped-flow capability. Centrifugal filter units were purchased from 

Millipore Corporation (Billerica, MA).  All other chemicals and supplies were purchased 

from Sigma-Aldrich (St. Louis, MO). 

 

Gold labeling of OPH – all gold types 

Three different gold nanoparticle attachment chemistries were used, 

monomaleimido, mono-NHS, and monoamino, to specifically attach the gold 

nanoparticles to the organophosphate hydrolase (OPH) enzyme at sulfhydryl, amine, and 

carbohydrate residues, respectively.  The procedure for the attachment of the 

monomaleimido nanogold was performed according to the large protein attachment 

procedure provided by Nanoprobes with the following modification:  200 mM 

dithiothreitol was used in place of 100 mM MEA as a disulfide bond reducing agent 

[153].  The procedures for the attachment of sulfo-NHS nanogold to primary amines and 

monoamino nanogold to oxidized carbohydrate moieties were performed according to 

the protein and glycoprotein attachment procedure, respectively, provided by 

Nanoprobes without modification [154, 155]. 
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Determination of kinetic constants for OPH enzyme in the absence and presence of 

inhibitors DDAO phosphate and coumarin-1.  

Enzyme activity in the absence of inhibitors was determined mixing equal 

volumes of 20nM OPH in PBS (pH=7.0) and solutions of varying concentrations of 

paraoxon.  The absorbance of the mixture was measured at 340nm to monitor the 

production of p-nitrophenol (the degradation product of paraoxon by OPH) as a function 

of time.  The data were then analyzed to find initial rates of paraoxon hydrolysis as a 

function of substrate concentration. Km and kcat were then estimated by fitting initial rate 

data to a standard Michaelis –Menton kinetic expression. 

DDAO phosphate was mixed in varying concentrations ranging from 10 to 

100µM with 20nM OPH in PBS (pH=7.0).  Paraoxon stock was made by dissolving 

paraoxon in DMF to a concentration of 100 mM.  The stock was diluted in PBS to 

varying concentrations ranging from  10 to 1000µM.  DMF was added to a concentration 

of 4% (v/v).  The OPH/DDAO phosphate solution and the paraoxon solution were mixed 

in equal volumes using the stopped-flow attachment for the PiStar system.  The 

absorbance was measured at 340nm to monitor the production of p-nitrophenol  as a 

function of time.  The data were then analyzed to find initial rates of paraoxon 

hydrolysis as a function of substrate and inhibitor concentration. Km, kcat, and KI were 

then estimated by fitting initial rate data to a standard Michaelis –Menton kinetic 

expression that included competitive inhibition.  Analogous experiments were performed 

to determine an inhibition constant (KI) for OPH with coumarin 1. 
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Fabrication of hydrogel for enzyme/dye immobilization 

 Polymer precursors were made by producing a PEG-DA solution containing 

0.5% Irgacure 2959 and 10% acryloyl-PEG-NHS.  Texas Red, coumarin 1, and gold-

labeled OPH were added in varying concentrations to the polymer mixture.  From the 

resulting mixture, a 10 µL dot was applied to a thin strip of polystyrene.  The dot was 

placed under the UV curing lamp at a distance of ½ inch for 10 minutes (~260 mW/cm2). 

 

Measurement of gold-modified fluorescence of OPH-coumarin 1 system 

 The hydrogel dot was placed at a ~45o to the light path in the fluorometer.  The 

emission intensity of the coumarin 1 was monitored at 468nm while exciting at 390nm.  

Texas red was used for normalization (since the exact sample volume in the path could 

not be maintained from one slide to the next).  This was done by measuring the emission 

intensity of Texas red at 610nm while exciting at 510nm.  The value for the emission of 

coumarin 1 was then divided by the emission intensity of Texas red to compensate for 

difference in the material light paths. 

 

Results and discussion 

OPH temperature study 

 The first concern we had when working with OPH was creating the best 

environment for the sensor and the enzyme.  We knew that temperature would effect the 

system and attempted to find the ideal working temperature (with reasonable laboratory 

operating conditions being somewhere between 5oC and 25oC.  From this work, we can 
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to the conclusion that within that range, 25oC was the best conditions for operation.  This 

was due to the increased reaction rates allowing for quicker detection.  

 

OPH-DDAO phosphate inhibition study 

 In order to develop a surface modified fluorescence assay for organophosphates, 

a suitable fluorescence inhibitor must be identified.  By recommendation of Dr. Alex 

Simonian at Auburn University, we tested DDAO phosphate as an inhibiting dye for the 

sensor system.  This was performed as described previously.  Figure 5.1 shows the 

results of this study. 
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Fig 5.1.  DDAO phosphate inhibition results.  This figure shows how the enzymatic reaction curve 
varies with DDAO phosphate concentration.  The rates reported are initial rates measured within the 
first minute of reaction.  The resulting data was analyzed to find the linear region closer to time zero.  
The DDAO phosphate concentration for each curve is as follows:  ♦ - 0 µM, ■ – 4.90 µM, ▲ – 8.17 
µM, ● – 16.34 µM, ◊ - 32.68 µM, and □ – 49.02 µM. 
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 From this figure, it is apparent that the inhibition effect from DDAO phosphate is 

not competitive (as expected or desired).  With a competitive inhibitor we would expect a 

constant value for Vmax, with Km increasing with increasing inhibitor concentration.  This 

is not what is happening here.  This is further exemplified by Figure 5.2. 
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Fig 5.2. Lineweaver-Burke analysis of DDAO phosphate inhibition.  Plotting 1/V vs. 
1/[PX],  allows for the calculation of Vmax (and in turn, kcat) from the inverse of the y-
intercept and the calculation of Km by multiplying the slope by Vmax.  The DDAO phosphate 
concentration for each curve is as follows:  ♦ - 0 µM, ■ – 4.90 µM, ▲ – 8.17 µM, ● – 16.34 
µM, ◊ - 32.68 µM, and □ – 49.02 µM. 
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 Neglecting the highest DDAO phosphate concentration (there were problems with 

DDAO phosphate solubility), we can analyze the curves to obtain the values for Km and 

Vmax for each curve.  From this, we obtain the following (Table 5.1): 

 

Table 5.1.  Summary of Lineweaver-Burke analysis 
 

[PX] (µM) 
 

Vmax (M/s) 
 

Km (M) 
 

0 3.72 x 10-6 2.00 x 10-5 
4.90 3.52 x 10-6 2.10 x 10-5 

8.17 3.02 x 10-6 2.05 x 10-5 

16.34 2.75 x 10-6 2.03 x 10-5 

32.68 2.32 x 10-6 1.97 x 10-5 

 
  

 

From Table 5.1, it is apparent that Vmax is a function of DDAO phosphate concentration.  

This, however, is not true for Km, which remained constant over all values of DDAO 

phosphate.  This indicates that, unlike previously believed, DDAO phosphate is a 

noncompetitive inhibitor and, therefore, not useful for this system.  The led us to pursue 

other possible inhibitors. 

 Dr. Jim Wild recommended the use of coumarin derivatives as possible 

inhibitors.  On the recommendation by Dr. Alex Simonian that coumarin 1 was a 

competitive inhibitor; we investigated coumarin 1 for its fluorescent properties.  We 

found that coumarin 1 has an excitation maximum at 390 nm and an emission maximum 

at 468 nm. 

 We gold labeled the enzyme and tested the enzyme activity.  We found that the 

enzyme had lost >90% of the activity upon labeling for all gold attachments.  With such 
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low activity it was difficult to quantify exact values.  An important thing to note is that it 

is possible that activity loss does not necessarily indicate loss of binding.  So it is 

possible that enzyme will still be useful as a sensor with no catalytic properties.  If not 

then we will need to address other ways of introducing gold into the system.  This could 

be done by immobilizing both the enzyme and gold colloid into a hydrogel network that 

would encapsulate the enzyme/gold mixture, but still allow for diffusion of target and 

decoy into the hydrogel.  Another problem with the system is that we require moderately 

high concentrations of gold-labeled enzyme in the system (>100 µM, assuming that the 

binding affinity has not be decreased).  During the production of the gold-labeled 

enzyme, the enzyme solution is only around 1µM.  However, this can be overcome by 

concentrating the enzyme via centrifuge filtration, and then immobilizing a small volume 

in the light path of the fluorometer (to compensate for the very low required volume).  To 

do this, we had to incorporate a second, noninterfering fluorophore into the mixture to 

allow for normalization.  For this, Texas Red was chosen (ex: 510 nm, em: 615 nm). 

 Initial attempts at performing the hydrogel immobilization have been 

unsuccessful.  While coumarin 1 has responded well to the polymeric environment, 

Texas Red appears to be quenched by the polymer.  Furthermore, creating a thin, 

immobilized polymer film has created the problem that the path length in the fluorometer 

has now been decreased from 1 cm to <1 mm.  To overcome this problem, we are 

investigating a more three-dimensional immobilization into a smaller volume centered 

about the light path.  In doing so, we hope to increase the light path to approach 1 cm 

while still maintain a small sample volume. 
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Conclusions  

 While we are still optimistic that the system will work, we have come to realize 

that there are certain issues we did not and could not have predicted.  While we will 

continue to exhaust all options using the Nanoprobes gold system (since it creates are 

very closely, specifically bound gold), we realize that in may be necessary to investigate 

other immobilization techniques that would lock the gold into the hydrogel network 

without directly interacting with the enzyme. 

 Even if the system is altered to use a different gold product, the incorporation of a 

second, noninterfering fluorophore is a crucial technique.  This will lend itself to making 

the final product (a portable, self-contained biosensing apparatus) more robust.  The 

second fluorophore present for normalization allows for simpler optical alignment in the 

final system. 
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CHAPTER VI 

 

FEASIBILITY OF DEVELOPING A SERS BASED SENSOR PLATFORM FOR 

SPECIFIC DETECTION OF β-AMYLOID 

 

Introduction 

The goal of this work is to examine the feasibility of the development of a new 

detection platform and methodology for early detection and characterization of β-

amyloid peptide (Aβ), the primary protein component of senile plaques in Alzheimer's 

disease (AD).  Definitive diagnosis of AD is still by postmortem examination of central 

nervous tissue for evidence of amyloid plaques and neurofibrillary tangles.  Probable 

diagnosis is made based on tests of cognitive function, MRI, and functional PET.  

Currently, a number of investigators are developing fluorescent or PET imaging agents 

specific for Aβ that could be used for in vivo, pre mortem diagnosis of AD [91, 174 - 

176].  In addition, a number of investigators are developing 2-D electrophoresis/mass 

spectrometry methods to look for early markers of AD in cerebral spinal fluid [98, 177 - 

204].  However, at present, there are still no approved definitive tests for AD premortem. 

A unique product has been developed by Nanospectra Biosciences that 

incorporates nanoshells on a surface providing a robust platform for analyte detection at 

trace levels using surface enhanced Raman spectroscopy.  A variety of evidence 

indicates that Αβ peptide, in specific aggregation states, can be found in cerebral spinal 

fluid, and may be able to be used as a marker for AD progression [183, 187, 192, 199 – 
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201, 204].  For a SERS sensing strategy to be successful, an affinity surface for Aβ must 

be designed that is molecularly small, has high affinity for Aβ, has low affinity for 

irrelevant proteins, and whose spectral features do not significantly overlap with 

structure specific features of the Aβ Raman vibrational spectra.  The development and 

testing of such an affinity surface is described. 

 

Surface enhance Raman spectroscopy (SERS) 

Surface Enhanced Raman Spectroscopy (SERS) is a Raman Spectroscopic 

technique that provides greatly enhanced Raman signal from analyte molecules that have 

been adsorbed onto certain specially prepared metal surfaces. Increases in the intensity 

can be as high as 108 and 1014 for some systems [46, 47].  Furthermore, the fact that 

SERS is surface-dictated spectroscopic technique justifies the use of SERS as a sensor 

platform. 

 

Aβ structure associated with Alzheimer’s disease 

 Aβ is a 39 to 43 amino acid long peptide that aggregates both in vivo and in vitro 

to form a variety of structures reported to be toxic and/or disease associated.  These 

structures include a non-fibrillar species of approximately 17 to 42 kDa referred to as 

amyloid derived diffusible ligands (ADDLs) [90], protofibrils species [205] and fibril 

species.  All the disease associated oligomers of Aβ have a high beta sheet content, in 

contrast to non-disease associated species.  The currently most aggressively pursued Aβ 

oligomer target for both diagnostics and therapeutics is the ADDL [206].    
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In vivo, Aβ is known to accumulate in the cerebral cortex during disease, with 

deposition into mature amyloid plaques first in the entorhinal cortex and the 

hippocampus then later in the frontal cortex [91].  During disease, it is apparent that Aβ 

accumulates in other parts of the body that are easier to sample for in vitro diagnostic 

measurements [207].  Aβ circulates in both the blood and the cerebral spinal fluid. As 

disease progresses, there are significant changes in oligomeric Aβ in the cerebral spinal 

fluid [208 - 210]. 

 

Relationship between sialic acid and β-amyloid 

While many investigators are developing structure specific antibodies for 

detection of disease associated Aβ [211-213], there may be biomimetic materials that 

can be developed with antibody like affinity but smaller molecular size, that may be 

more appropriate for the demands of a SERS based sensing system.  A variety of 

evidence indicates that β-amyloid may bind to cells via an interaction with surface 

glycolipids or glycoproteins, and that the affinity of this interaction increases when the 

gangliosides or sialic acid molecules on the cell surface are clustered.  [214-221].  Based 

on these data, we hypothesized that biomimetic surfaces could be synthesized which 

would reproduce the clustered sialic acid structure of the cell surface, and therefore 

recreate the Αβ binding seen to occur on neuronal cell membranes.  

Using all the principles previously described, we have successfully proven the 

capability of SERS as a sensor platform.  Furthermore, we have developed and 

characterized numerous surfaces for both binding affinity to Aβ and binding capacity 
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(both of which are important characteristics for a SERS-based sensor).  Combining this 

information, we have all the background necessary to justify moving forward into SERS-

based sensor development. 

 

Materials and methods 

Materials 

 The Aβ (1-40) was synthesized and purified by BioSource International 

(Camarillo, CA). The sequence is DAEFRHDSGYEVHHQKLVFFADVGSNKG-

AIIGLMVGGVV.  Molecular mass and purity were confirmed by mass spectroscopy 

and reverse phase HPLC (MW = 4356, >95 % purity).  Bovine serum albumin (BSA) 

was purchased from Fisher Scientific (Fairlawn, NJ).  The nanosphere gold substrates (to 

be referred to as “slides” henceforth) were supplied by Nanospectra Biosciences, Inc. 

(Houston, TX).  The IODO-beads, G-5 desalting columns, 1-Ethyl-3-[3-

dimethylaminopropyl]carbodiimide Hydrochloride (EDC), and sulfosuccinimydyl-3-(4-

hydroxyphenyl) propionate (sulfo-SHPP) were purchased from Pierce Biotechnology, 

Inc. (Rockford, IL).  The 125I and G-25 Sephadex were purchased from Amersham 

Biosciences/GE HealthCare (Piscataway, NJ.).  Disialyllacto-N-tetraose (DSLNT) was 

purchased from V-labs, Inc. (Covington, LA).  The glycidyl methacrylate and tetrabutyl 

ammonium bormide were purchased from Acros Organics (Geel, Belgium).  5-

(aminomethyl)fluorescein (5-AMF) was purchased from Molecular Probes (Eugene, 

OR).  Scintillation counting was done using a Wallac MicroBeta Jet microplate 

scintillation counter from PerkinElmer Life and Analytical Sciences  (Shelton, CT).  
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Sulfo-N-Hydroxy-Succinimido-Nanogold (sulfo-NHS-nanogold) and silver enhancing 

reagent were purchased from Nanoprobes (Yaphank, NY).  All other materials and 

chemicals were purchased from Sigma-Aldrich Corporation (St. Louis, MO). 

 The nanosphere slides from Nanospectra are designed to allow them to be tuned to 

the frequency of the laser being using in the Renishaw microRaman system.  The 

spheres have silica core around which gold is deposited layer by layer until the desired 

frequency is achieved. Figure 6.1 shows how the frequency of the spheres varies with 

shell thickness. 

 

 
Fig 6.1.  Relationship between absorbance and shell thickness for Nanospectra 
nanospheres.  The curves show the absorption characteristics of four different shell 
thicknesses.  As can be seen here, as the thickness increases, the absorption 
maximum blue shifts.  Obtained from www.nanospectra.com/physics/physics.asp. 
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Gold labeling and silver enhancing of generation 4.0 PAMAM dendrimer 

The procedures for the attachment of sulfo-NHS-nanogold to primary amines on 

the dendrimer were performed according to the peptide labeling procedure provided by 

Nanoprobes without modification [154].  The silver enhancement was performed 

according to the silver enhancement of nanogold for EM procedure from Nanoprobes 

without modification [154]. 

 

Collection of SERS spectra 

30 µl of each of the samples (sample 1 = Au-Ag-Dendrimer, sample 2 = Au-Ag-

Dendrimer-Aβ) were pipetted onto the surface of a microscope glass coverslip (22×22 

mm, Fischer Scientific Co.) and the water was allowed to evaporate for 30-45 min, until 

a thin solid crust of the sample remained on the surface of the coverslip. The coverslip 

was then placed onto the stage of the Leica DMLM microscope that was coupled to a 

Renishaw System 1000 Raman spectrometer. The laser used for the SERS studies was 

the 514.5 nm line of an Ar+ laser (Spectra Physics Model 263C) with approximately 5 

mW of laser power delivered to the sample. The incident laser beam was incident on the 

sample via the 50X air objective (NA =0.75) of the microscope. The SERS spectra were 

collected with the diffraction grating centered at 900 cm-1 and integration time of 90 

secs. 
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Formation of self-assembled monolayer (SAM) 

 All monolayers were formed using the same procedure.  The monolayer material 

was dissolved in ethanol to form a 2mM solution.  The slide was submerged in the 

ethanolic solution and allowed to react for 24 hours at room temperature.  The slide was 

then removed from the solution and rinsed thoroughly with ethanol and dried under 

nitrogen.  The monolayer materials used all had the following general form:  HS-R-

COOH, where R = (CH2)2, (CH2)10, or (CH2)15.  The exception to this rule is 4-

aminothiol phenol (4-ATP).  4-ATP has the following structure: HS-R-NH2, where R = 

benzene.  Figure 6.2 depicts how the self-assembly occurs.  FTIR was used to confirm 

the assembly of the monolayer.  Figure 6.3 shows a representative spectrum of a 

monolayer with relevant peaks pointed out. 

 

 

Fig 6.2. Schematic of self assembly process.  The monolayer compound floats freely in solution until 
coming in contact with the metaled surface (Ag, Au, or Ni usually).  Upon contact, the thiol reacts with 
the surface, covalently binding the molecule to the surface.  This layer is fluid in nature and will move 
around and continue to assemble until a tightly packed structure is created.  This creates the lowest energy 
state for the system and completes the self assembly process. 
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Fig 6.3.  FTIR spectrum of 11-MUDA SAM.  The most interesting peaks occurred at 1700 (carboxylic acid) 
and a doublet at 2849 & 2917 (CH2). 
 

 

Determination of monolayer stability 

One slide of each monolayer was placed in two different conditions:  in nitrogen, 

in the dark and exposed to light and air.  A third 16-MHDA slide was stored in nitrogen, 

but exposed to light to test for the effect of photobleaching the fluorophore.  After 24 

hour exposure, the surfaces were thoroughly rinsed with deionized water and dried under 

nitrogen before imaging using a fluorescence microscope.  The images were analyzed 

using Matlab. 

 

 

1700: -COOH

2849 & 2917: 
- CH2 - 
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Attachment of dendrimer or 5-AMF to carboxy-terminated monolayer 

 The dendrimers were attached using EDC chemistry described by Pierce 

Biotechnology [222] with minor modifications.  These modifications were the 

concentrations used (since the surface concentration of monolayer could not be known).  

The EDC was added to a concentration of 10 mg/mL (give molar concentration) with 

dendrimer or 5-AMF added to the same molar concentration and reacted overnight.  

Upon completion, the slide was rinsed thoroughly with deionized water and dried under 

nitrogen for storage.  Figure 6.4 shows the mechanism for EDC chemistry.  Figure 6.5 

represents a dendrimer surface.  Figure 6.6 represents the FTIR spectra from attaching 

dendrimer. 

 

 
 
Fig. 6.4.  Schematic of EDC chemistry.  The carboxylic acid-terminated compound reacts with EDC to form an 
amine-reactive intermediate.  This intermediate then reacts with the amine-terminated compound to create and amide 
bound leaving only the spent EDC. 
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Fig. 6.5.  Schematic of dendrimer surface.  The figure depicts a generation 4.0 
amine-terminated dendrimer attached to a carboxylic acid terminated surface (11-
MUDA) via EDC chemistry.  This leads to the formation of amide bounds. 
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Fig. 6.6.  FTIR spectra of 11-MUDA and 11-MUDA/Den 4.0 on surface.  The FTIR spectra of 11-MUDA (d, 
solid line) and 11-MUDA/Den 4.0 (thin, dashed line) show how the EDC chemistry works.  The strong 
spectrum from the dendrimer obscures any amide peaks that may have formed (due to secondary amides being 
present in the dendrimer).  However, the loss of the 11-MUDA peak at ~1700 indicates that there is a loss of the 
carboxylic acids at the surface.  This can be attributed to the formation of amides to link the dendrimer. 
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Production of DSLNT “artificial ganglioside” 

 A solution containing 100uL of deionized water containing 1mg DSLNT, 2.2uL 

triethylamine, 2.2uL glycidyl methacrylate, and 2.2mg tetrabutyl ammonium bromide 

was reacted overnight at room temperature.  The solution was then incubated at 60oC for 

one hour.  After cooling to room temperature, the solution was diluted to 1 mL of total 

volume with deionized water.  To the solution was added 15 mg of G-25 Sephadex to 

remove unreacted glycidyl methacrylate.  This purification is based on simple quenching 

procedures.  This works by introducing an excess of hydroxides to bind the excess 

methacrylate.  The mixture was incubated at room temperature for one hour.  The 

Sephadex was removed via centrifuge filtration over a 30 kDa membrane.  The filtrate 

was then lyophilized to produce a sticky solid.  The procedure was adapted from Leech 

et al [223].  The product of this reaction, a disialic acid terminated oligosaccharide with 

a methacrylate pendant group, could then be reacted with SAMs to make a disialic acid 

terminated monolayer, which is referred to as an artificial ganlioside in the following 

sections.  With all the available hydroxyl groups available on DSLNT (due to the entire 

structure being composed of sugars), it is not possible to predict where the glycidyl 

methacrylate will attach.  This makes representing the structure extremely difficult.  

However, Figure 6.7 represents the FTIR spectra of a)glycidyl methacrylate, b)DSLNT, 

and c)glycidyl methacrylate – DSLNT complex.  The location of peaks in the spectra 

indicates the success of the attachment chemistry. 
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Fig. 6.7.  FTIR spectra of a) glycidyl methacrylate, b) DSLNT, and c) glycidyl methacrylate – DSLNT 
complex.  The ester peak, epoxide peak, and aliphatic ether peak in the gylcidyl methacrylate are the peaks of 
interest.  In the  methacrylate – DSLNT complex, we see the presence of numerous peaks characteristic of 
DSLNT.  However, one thing we do notice is a strong ester peak without the presence of peaks from epoxides 
or aliphatic ethers. 

1152: Aliphatic Ether 

1300: Epoxide 

1722: Ester 
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Fig 6.7. continued 

 

From these spectra, you can see that the complex has both species present (as is clear 

from the characteristics of the DSLNT being present and the strong ester peak).  

However, the presence of the ester peak without the presence of the epoxide or aliphatic 

ester peaks indicates that the epoxide ring has reacted with the DSLNT, creating more 

ester bonds in the process. There is no noticeable decrease in the alcohol stretch from 

2500 – 3500.  This is due to the large number of alcohols available. 
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Production of GM1 ganglioside or artificial ganglioside surface 

 The ganglioside, GM1, or disialic acid terminated oligosaccharaide-methacrylate 

prepared as described previously was dissolved in hexane to a concentration of 0.1 

mg/ml and slowly pipetted over DI water in a Petri dish.  The hexane was allowed to 

evaporate, leaving the ganglioside or oligosaccharide on the surface of the water with the 

hydrophobic portion facing upward.  A slide with a SAM developed as previously 

described was dipped SAM-side down to just contact the water air interface, allowing 

the hydrophobic tail of the ganglioside/oligosaccharide to interact with the alkane 

portion of the monolayer.  The slide was then lifted away from the water and dried under 

nitrogen.  Figure 6.8 gives the representation of a ganglioside layer.  Representing the 

artificial ganglioside layer is again not possible (due to the large number of 

confirmations possible).  However, the general form of the artificial ganglioside 

monolayer should closely mimic that of the ganglioside layer.  FTIR spectra of the 

ganglioside and artificial ganglioside layers are shown in Figures 6.9 a and b. 
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Fig. 6.8. Schematic of a ganglioside surface.  The hydrophobic fatty acid tails of the 
ganglioside interact with the equally hydrophobic alkanes of the monolayer, tangling with 
them.  Upon drying, the surface is left with the hydrophilic sugar molecules protruding from 
the monolayer while the hydrophobic tails stay embedded in the SAM. 
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Fig 6.9.  FTIR spectra of a) GM1 and b) artificial ganglioside layers.  The peaks of interest are labeled to indicated 
successful formation of the monolayers.   The most interesting peak is at 1016 for the artificial ganglioside and 
1040 for the GM1 ganglioside.  These represent alicyclic alcohol peaks.  The dark line represents the 11-MUDA 
monolayer and the dsshed lines represent the monolayer and ganglioside conjugate. 

1040: Alicyclic alcohols 

1040: Alicyclic alcohols 
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Production of sialic acid labeled monolayer 

 The sialic acid was attached to amine terminated SAM using EDC chemistry 

described by Pierce Biotechnology [222] with minor modifications as described in the 

previous section.  The EDC was added to a concentration of 10 mg/mL (give molar 

concentration) with sialic acid added to the same molar concentration.  The monolayer 

used in this procedure was the amine-terminated 4-ATP.  FTIR analysis of this sample 

was not performed due to limited material availability.  However, successful labeling of 

the layer seems likely from previous success and binding studies presented later. 

 

Stability of fluorecein labeled monolayer  

 The fluorescein monolayer was developed my creating 3-MPA, 11-MUDA, and 

16-MHDA monolayers as previously described.  The fluorescein was attached using 

standard EDC chemistry.  The fluorescein slides were then a image used standard 

fluorescent microscopy techniques while employing a fluorescein filter.  The field of 

vision used during analysis was kept constant at approximately a 3mm diameter circle.  

The images were then analyzed using Matlab. 

 

Radiolabeling  of β-amyloid 

 Aβ(1-40) was radioiodinated via a modified Bolton Hunter method.  This method 

of iodination was chosen to preferentially label at the N terminus of the peptide.  

Labeling at other primary amines was inhibited by maintaining the pH below the pKa of 

those residues.  100 nmol of sulfo-SHPP was iodinated with 200 µCi of 125I using the 
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IodoBead catalyst.  The reaction was carried out for 15 minutes in pH 8 borate buffer in 

a volume of 140 µL.  The catalyst was removed and 10 nmol (100 µL) of freshly 

prepared β-amyloid(1-40) (in water) was added to the iodinated sulfo-SHPP.  The 

reaction was allowed to proceed for 3 hours at 4 C.  The resulting condensation product 

was separated from free 125I using a G-5 desalting column which also fractionated the 

peptide.  The peptide was eluted from the column with phosphate buffer and stored at 

4oC until use.  Iodinated Aβ(1-40) was typically used within one month of preparation. 

The free activity associated with radiolabeled Aβ(1-40) was determined by precipitation 

of the peptide with 5 wt% phosphotungstic acid in the presence of 5 mg/ml bovine serum 

albumin.  Precipitable activity was 70 to 80%.   

 Peptide concentration was determined from the activity of the 125I-labelled  

Aβ(1-40) by assuming that 50% of the peptide was recovered in from the desalting 

column using one column volume of the eluting buffer and that the peptide concentration 

was proportional to the precipitable activity of that fraction. No attempt was made to 

remove unlabelled peptide from labeled peptide.  Relative aggregation state of the 

peptide was assessed using native polyacrylamide gel electrophoresis, counting activity 

of sliced sections of gel to determine relative abundance of different molecular weight 

species.  The iodinated peptide was approximately 70% monomer or dimer, with the 

balance being large (above 100 kDa) aggregate. 

 

Determination of binding affinity (KAβ) and surface saturation (Nsat) 

Freshly prepared nanogold-monolayer surfaces were incubated with sufficient 
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125I-labeled Aβ(1-40) to completely wet the surface (typically 120 µL) at a constant 

temperature with rocking for two hours.  Bovine serum albumin was added at a final 

concentration of 1 mg/ml to block nonspecific binding.  Free Aβ(1-40) was removed 

from the surface, then the surface was washed twice with phosphate buffered saline.  

The bound surface was removed from the glass slide using a cotton swab.  The activities 

of free peptide and bound surface (plus cotton swab) were counted separately, and 

binding constants were determined from equilibrium binding isotherms via fitting to a 

langmuir isotherm (Equation 6.1) using a non-linear least squares regression using 

Polymath 5.0.  

freeA

satfreeA
bound AK

NAK
N

][1
][

β
β

β

β

+
=    (6.1) 

where:  Nbound = nanomoles of Aβ on surface 

 KAβ = equilibrium binding coefficient (M-1) 

[Aβ]free = concentration of Aβ in solution at equilibrium 

Nsat = nanomoles of Aβon surface at saturation 

 

Results and discussion 

Determination of SERS detection feasibility 

 The first step of this study was to determine two things. The first is whether 

Aβwould give an acceptable signal through SERS.  The second was to determine if the 

signal from the recognition unit (dendrimer, ganglioside, etc.) would interfere with the 

signal from the Aβ. 
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 These two things were determined by first gold labeling the dendrimer and then 

silver enhancing the dendrimer after reacting with Aβ fibrils (dendrimer and Aβ at 

100µM concentrations in PBS at pH = 7.4).  The SERS analysis was performed by 

Mustafa Chowdhury in Dr. Gerry Coté’s lab at Texas A&M University.  The results of 

this study can be seen in Figure 6.10. 

 

Fig 6.10.  SERS feasibility study.  A representative SERS spectrum for the dendrimer alone (gray 
line) and the dendrimer bound to Aβ (black line) are shown.  Several peaks are present in the Aβ 
spectrum that are not present with just the dendrimer.  The area of most interest occurs in the 
1350-1400 range.  This area is indicative of amide bonds (a very strong signature in amyloid 
proteins that provide structure information). 

 

 

 In the spectral region from 1350-1400 cm-1 in Figure 6.10, the dendrimer 

spectrum has a peak at 1386 cm-1 indicating the presence of amides in the internal 

structure of the dendrimer.  However, the peak shifts to around 1352 cm-1 when Αβ is 

preesent, indicating the presence of amides in a β-sheet structure.  Both the presence of  
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Αβ and information on its structure are needed for an effective diagnostic for 

Alzheimer’s disease.  The amide region of the Raman spectra can be used for structure 

determination of Αβ [224, 225].  The shifting of this peak and its clear presence with 

dendrimer present indicates a SERS based sensor that incorporates a dendrimer as 

recognition element for Αβ is both reasonable and feasible. 

 

Effect of distance from surface on SERS signal 

 It was important to recognize the impact that distance has on SERS.  We 

analyzed this behavior by attaching aniline (a very strong Raman active substrate) to the 

ends of three different monolayers (3-MPA, 11-MUDA, and 16-MHDA) using EDC 

chemistry.  We then analyzed the aniline Raman signal from the surfaces to determine 

how the aniline SERS signal intensity changed with distance from the surface.  Figure 

6.11 shows the behavior. 
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Fig 6.11.  Distance dependence of SERS intensity.  The system tested had aniline attached to different length 
alkanethiol SAMS.  A linear fit to the data gave the trend line indicated on the graph. 

 

 
Using the equation 6.2 to describe the SERS intensity: 

n

r
xr

aI 






 −
=       (6.2) 

where: a is some scaling factor 

 r is the radius of the particle 

 x is the length of the spacer arm (distance from surface) 

 n is the power for the distance decay 

The numerator of equation 6.2 expands to Pascal’s Triangle (Figure 6.12), which is as 

follows: 
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n=1            1    1 

n=2                                     1   2   1 

n=3                                   1   3  3   1 

n=4                                 1  4   6   4   1 

n=5                               1  5  10 10  5   1 

Fig 6.12.  Pascal’s Triangle.  This triangle represents the 
expansion of  equation of the form (x-y)n.  This figure 
represents the first 5 expansions. 
 

 

These numbers represent the coefficients of subsequent r and x terms (where the 

exponent of r decreases as you go from left to right).  Since r >> x, we can reduce any of 

these expansions to first two terms of the form in equation 6.3. 

 

rn + C2 r(n-1)x       (6.3) 

 

where:  C2 is the second term in the row 

By substituting into the general SERS dependence equation, we arrive at equation 6.4. 

 
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Which reduces to (equation 6.5): 
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This means that intensity should be linear with x if the system fits this form.  Figure 6.11 

shows the linear relationship of the data.  From the equations described previously, we 

can see that the y-intercept is “a”, and the slope is aC2/r.  From the trend line values for 

slope and intercept, we conclude that a = 667 and C2 = 3.08 (assuming the particle radius 

is 75nm, as is true in our system).  Referencing back to Pascal’s Triangle to arrive at a 

3rd order distance dependence for the substrate we are using. 

 

Monolayer stability 

 Literature indicates that monolayers are unstable in the presence of oxygen [226].  

This is due to the reaction of oxygen with sulfur at the metal surface.  This causes the 

formation of sulfates (which no longer bind to the gold surface).  To test the stability of 

the monolayers on proprietary gold nanoshell surfaces made by Nanospectra, we formed 

standard monolayers of 3-mercaptopropionic acid (3-MPA), 11-mercaptoundecanoic 

acid (11-MUDA), and 16-mercaptohexadecanoic acid (16-MHDA) and then attached 5-

AMF as described above.  The result of this analysis can be seen in Figure 6.13. 
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Fig 6.13. 24 hour monolayer degradation study.  The surfaces were exposed to both light and air unless 
otherwise noted.  The arbitrary pixel intensity is normalized based on the highest surface signal 
(MHDA, N2, Dark).  The error bars represent a one standard deviation for the data.  All samples have 
n>10,000.  All means are statistically different from one another based on studentized t-tests (p < 
0.00025). 

 

 

 As seen in Figure 6.13, the signal intensity for all three monolayer types (3, 11 

and 16 carbon chains) that fluorescence signal intensity from the attached fluorescein 

were equivalent at the first measurement within experimental error when stored in 

nitrogen in the dark. All three monolayers also showed similar loses of  surface signal 

after 24 hours when stored in air in the light, with the fluorescence signal loss ranging 

from 39% for 11-MUDA to 58% for 3-MPA.  Exposure to just light (MHDA, N2) led to 

no appreciable degradation of the surface, while exposure to just air (MHDA, Dark) led 

to similar levels of signal loss and surface degradation as exposure to both nitrogen and 
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light.  These results suggest that the monolayer with fluorescein attached degrades 

significantly in the presence of air. 

Degradation of the fluorescein-SAM was followed as a function of time in both 

the presence and absence of air, as shown in Figure 6.14.   

 

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120
Time (hrs)

N
or

m
al

iz
ed

 In
te

ns
ity

 

Fig. 6.14.  Long term monolayer degradation study.   The study was performed by storing in the appropriate 
environment in between readings.  The slides were rinsed and dried before each reading.  Open symbols 
represent slides stored in air and light, and filled symbols represent slides stored in N2 and dark (unless 
otherwise noted).   The symbols and lines are as follows: filled diamond and solid line, 16-MHDA in light; 
open diamond and solid line, 16-MHDA in dark; circle and dashed line, 16-MHDA; triangle and dotted line, 
11-MUDA; square and broken dashed line, 3-MPA. Error bars represent one standard deviation. 

 

 

 As can be seen from Figure 6.14, all samples stored in similar environments 

showed similar amounts of degradation with time (within experimental error).  This was 
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determined by analyzing a linear curve fit to the data points.  The degradation appears to 

be zero order indicating the rate is only related to oxygen concentration.  Samples that 

were stored in nitrogen showed similar degradation rates but lower total degradation than 

those stored in air.  This is can be attributed to the fact that 1) the surfaces exposed to air 

continuously had less surface to lose after 24 hours than those stored in nitrogen and 2) 

the washing and reading procedures allowed the samples stored in nitrogen to be exposed 

to air for considerable lengths of time.  

 While these results clearly indicate that fluorescein labeled monolayers degrade or 

detach from the gold surface as a function of time, and that degradation, at least initially, 

is faster in air than in the presence of nitrogen, they do not indicate at what position in the 

monolayer degradation occurs.  Degradation could be at the amide bond where 

fluorescein was attached to the SAM, or more likely, at the gold surface, where the sulfur 

attaches to the gold.  Others have shown that oxidation occurs at this position [226]. 

 

Determination of binding affinity (KAβ) and surface saturation (Nsat) 

 After analyzing the monolayer stability, we tested the binding affinity and surface 

capacity at saturation of different surfaces for β-amyloid.  The surfaces tested were as 

follows:  unblocked gold surface, unblocked 11-MUDA monolayer, blocked 11-MUDA 

monolayer, blocked dendrimer-labeled 11-MUDA monolayer (generations 2.0, 3.0, and 

4.0), blocked artificial ganglioside layer, blocked GM1 ganglioside layer, blocked 4-ATP 

monolayer, and blocked sialic acid-labeled 4-ATP monolayer.  The Langmuir binding 

isotherm fits to these surfaces can be seen in Figures 6.14-6.17. 
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Fig. 6.15. Binding isotherm for unblocked gold, unblocked 11-MUDA, and blocked 11-
MUDA.   The symbols represent the experimental data, while the lines represent the calculated 
langmuir isotherms. The symbols and lines are as follows: ♦ and solid line – unblocked gold; ■ 
and small dashed line – unblocked monolayer; ▲ and large dashed line – blocked monolayer. 
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Fig. 6.16. Binding isotherm for blocked 11-MUDA monolayers with dendrimer 
generations 2.0, 3.0, and 4.0.  The symbols represent the experimental data, while the 
lines represent the calculated langmuir isotherms. The symbols and lines are as follows: ♦ 
and solid line – generation 2.0; ■ and small dashed line – generation 3.0; ▲ and large 
dashed line – generation 4.0. 
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Fig. 6.17. Binding isotherm for blocked 4-ATP monolayers with and without sialic acid 
attached, GM1 ganglioside layers, and artificial ganglioside layers.  The symbols 
represent the experimental data, while the lines represent the calculated langmuir 
isotherms. The symbols and lines are as follows: ♦ and solid line – 4-ATP; ■ and large 
dashed line – 4-ATP with sialic acid; ▲ and small dashed line – GM1; ● and slternating 
dashed line – artificial ganglioside. 

 
 
 From these isotherms, it was possible to obtain values for KAβ and Nsat for each 

surface.  The results can be found in Table 6.1. 
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Table 6.1.  Summary of binding information for different surfaces 

Substrate            KAβ  (M-1) Nsat  (pmoles)

Gold Surface 1.05 ± 0.02 x 106 69.3 ± 0.8 
11-MUDA 3.2 ± 0.3 x 107 4.3 ± 0.2 
Blocked 11-MUDA 5.0 ± 0.1 x 105 20.0 ± 0.8
Blocked Gen 2.0 7.2 ± 0.7 x 106 1.85 ± 0.08 
Blocked Gen 3.0 7.1 ± 0.5 x 106 3.0 ± 0.1
Blocked Gen 4.0 6.9 ± 0.4 x 106 2.89 ± 0.08
Blocked artificial ganglioside 3.471 ± 0.001 x 107 0.5222 ± 0.0001
Blocked GM1 ganglioside 2.4 ± 0.8 x 107 0.6 ± 0.1
Blocked 4-ATP 3.1 ± 0.3 x 106 2.0 ± 0.4
Blocked sialic acid 6 ± 3 x 108 0.261 ± 0.005
Blocked Gen 2.0/SA 1.01 ± 0.03 x 107 N/A
Blocked Gen 3.0/SA 1.1 ± 0.8  x 107 N/A
Blocked Gen 4.0/SA 2.5 ± 0.7  x 107 N/A

 
95% Confidence intervals for each constant has the same units as the constant to which they apply. 

 

 

As seen in Figure 6.15 and Table 6.1, the unmodified gold surface was capable of 

binding the greatest amount of Aβ, approximately 70 pmols, but without specificity.  

Experiments were done with the unmodified gold surface to determine the upper limit of 

binding capacity for the system.  A comparison of the two  11-MUDA surfaces (blocked 

and unblocked) shows that the self assembled monolayer has a relatively high binding 

capacity for Aβ, however, the addition of BSA leads to a 100 fold decrease in binding 

affinity, suggesting that the binding observed was nonspecific.  In preparation of all other 

binding isotherms, BSA was used to block nonspecific binding. 

  All three generations of dendrimer show specific binding to Aβ at around a value 

of KAβ of 7 x 106 M (Figure 6.16, Table 6.1).  Comparing this to a highly specific 

molecule, like an antibody (K = 1 x 109 M), indicates that the dendrimer is 

approximately two orders of magnitude less specific.  This indicates that there is room 
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for improvement.  From patent data, we estimate that the binding affinity of the 

PAMAM dendrimers for infectious prions to be on the order of 108 M-1 [227].  Both Aβ 

and infectious prions form extended β-sheet (amyloid) structures, thus is it possible that 

binding affinity of the dendrimers may be higher for more aggregated Aβ species. 

Also of note is the binding capacity for the dendrimers.  Generation 3 and 4 

dendrimers have the same binding capacity for Aβ, while generation 2 binds 

significantly less Aβ at saturation.  Given that we infer that the binding of Aβ to the 

unmodified dendrimers is via electrostatic interactions and the larger generation 

dendrimers have greater charges, this difference in binding capacity was expected.   

Similar trends have been shown for oligonucleotides binding to dendrimers via 

electrostatic interactions [228].  Total binding capacity at saturation may be important in 

determining limits of detection of Aβ via a SERS based sensor. 

A variety of evidence suggests that Aβ binds specifically to gangliosides on the 

cell surface; therefore we made a number of ganglioside-like surfaces that could be used 

in our sensor platform.  As seen in Figure 6.17 and Table 6.1, all of the sialic acid 

containing surfaces had greater binding affinity than the surfaces that did not contain 

sialic acid.  Furthermore, as the amount of sialic acid per structure increased, so did the 

binding affinity (SA > AG > GM1).  This is expected with the sialic acid surface 

approaching the “perfect” clustered surface.  It’s possible that by increasing the chain 

length of the monolayer, we may be able to increase the binding affinity of the surface. 

Work by Kakio and others [229-231] demonstrated that Aβ has an affinity on the order of 
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106 M-1 for GM1 gangliosides which contain sialic acid residues (an order of magnitude 

less than what we were able to achieve).  Affinity was highest for gangliosides with 

several sialic acid residues and when the gangliosides were clustered together in 

cholesterol rich microdomains, with affinity values in excess of 107 for tetrasialated 

gangliosides [231].  These numbers are comparable to what we found when designing the 

therapeutic dendrimer.  As for the artificial ganglioside, it shows a five fold increase in 

binding affinity over the dendrimer alone and a 3 fold increase in the binding affinity of 

sialic acid-labeled dendrimer.  This indicates that labeling the dendrimer is a step in the 

right direction, and that increasing the labeling ratio (currently only around 20%) could 

increase the dendrimer to levels comparable to those of gangliosides.  This work is 

currently being investigated. 

 

Conclusions 

 Initial investigations indicate that using SERS will work as a sensing system for 

the detection of β-amyloid.  SERS shows both high sensitivity and structural analysis 

allowing for the determination of the structure of the bound protein.  However, the 

system is going to be dependant upon the size, selectivity, and binding capacity of the 

recognition molecule being used. 

 It appears that by labeling the dendrimer with sialic acid, we are able to produce a 

molecule that is both highly selective for Aβ (KAβ > 1 x 107 M) and closely mimics the 

cell surface structures (gangliosides).  With some further work and turning, the system 

could prove to be more effective than just using gangliosides or sialic acid monolayers as 
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recognition molecules (since the dendrimer will effectively increase the surface area for 

binding.   
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CHAPTER VII 

 

ATTENUATION OF β-AMYLOID INDUCED TOXICITY BY SIALIC ACID-

CONJUGATED DENDRITIC POLYMERS 

 

Overview 

Beta-amyloid (Aβ) is the primary protein component of senile plaques in 

Alzheimer’s disease and is believed to be associated with neurotoxicity in the disease. 

We have shown that Aβ binds with relatively high affinity to clustered sialic acid 

residues on cell surfaces and propose that artificial sialic acid clusters conjugated to 

dendritic polymers can compete with clustered sialic acid residues on cell surface 

gangliosides for Aβ binding. In the current work, we assess the ability of these sialic 

acid conjugated dendrimers to prevent Aβ toxicity. Flow Cytometry was used to analyze 

viability of SH-SY5Y neuroblastoma cells and the effects of soluble and clustered Sialic 

acid mimics on Aβ cell toxicity. Soluble Sialic acid attenuation of Aβ induced toxicity 

are highly Aβ concentration dependent and less effective at higher concentrations. The 

clustered Sialic acid mimics are more effective at protecting cells from Aβ toxicity at the 

higher concentrations of Aβ and looks promising as a possible therapy. This work may 

lead to and increased understanding of the mechanism of Aβ-sialic acid or ganglioside 

interaction, which is the first step towards developing therapeutic agents for prevention 

of Alzheimer’s disease. 
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Introduction 

 Alzheimer’s disease (AD) is the leading cause of neurodegeneration in the 

United States, affecting approximately 4.5 million Americans in 2003 [232], with an 

annual cost of care for these individuals estimated at over $100 billion [233]. This study 

cites figures based on 1991 data, which were updated in the journal’s press release to 

1994 figures, cited in 2001 – 2002 Alzheimer’s Disease Progress Report [234]. One of 

the pathological hallmarks of AD is the formation of amyloid plaques in the cerebral 

cortex, the primary protein component of which is the 39-43 amino acid peptide β-

amyloid (Aβ) [235].  Aβ, in a number of aggregated states including fibrils, protofibrils, 

and spherical oligomers, has been shown to be toxic to neurons and neuron like cells in 

culture [99, 236, 237].  It is believed that Aβ may play a major role in neurodegeneration 

associated with AD.  To that end, agents which either sequester Aβ or interfere with Aβ 

interaction/binding to cells have been sought after as a means to reduce the pathological 

effects of Aβ [97, 101−104]. 

A variety of evidence indicates that Aβ may bind to cells via an interaction with 

surface glycolipids or glycoproteins [100, 217, 229, 231, 238-241], and that the affinity 

of this interaction increases when the gangliosides or sialic acid molecules on the cell 

surface are clustered [229, 231].  Based on these data, we hypothesized that membrane 

mimics could be synthesized which would reproduce the clustered sialic acid structure of 

the cell surface, and therefore compete with the cell surface for Aβ binding.  To that end, 

we prepared sialic acid conjugated dendritic polymers and tested their ability to attenuate 

Aβ toxicity in a cell culture model.  The sialic acid conjugated dendritic polymers were, 
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in all cases, more effective than polymer alone at reducing Aβ toxicity.  Attenuation of 

Aβ toxicity was achieved at lower concentrations for sialic acid conjugated dendrimers 

with greater sialic acid functionality when compared to dendrimers with lower sialic acid 

functionality.  These results could have implications for the design of new agents that 

bind pathogenic Aβ peptides for the treatment of neurodegenerative disease.  

 

Materials and methods 

Materials 

 Aβ(1-40) was purchased from Biosource International (Camarillo, CA). Human 

neuroblastoma SH-SY5Y cells and rat pheochromaocytoma PC12 cells were purchased 

from ATCC (Manassas, VA). Cell dissociation buffer and cell culture reagents were 

purchased from Gibco-Invitrogen (Grand Island, NY). Propidium iodide (PI) was 

purchased from Molecular Probes (Eugene, OR). Human recombinant nerve growth 

factor – β (NGF-β), sialic acid ( N-Acetylneuraminic acid) and polyamidoamine 

(PAMAM) dendrimer polymers generation 2.0, 3.0 and 4.0 were purchased from Sigma-

Aldrich (St. Louis, MO). 1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide 

Hydrochloride (EDC) was purchased from Pierce Biotechnology (Rockford, IL).  

Ultrafiltration membranes were purchased from Millipore (Billerica, MA).  All other 

chemicals were purchased from Sigma-Aldrich. 
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Peptide preparation 

 Aβ(1-40) stock solutions were prepared by dissolving the lyophilized peptide in 

one of two solvents, either 0.1% (vol/vol) trifluoroacetic acid in water or anhydrous 

dimethyl sulfoxide (DMSO) to make 10 mg/ml stock solutions. After incubating for 30 

minutes to 1h at 25oC, the peptide stock solutions were diluted to a concentration of 0.5 

mg/ml in sterile phosphate-buffered saline (PBS; 0.01 M NaH2PO4, 0.15 M NaCl, pH 

7.4) with antibiotics. These solutions were rotated at 25oC for 24 h. These solutions were 

further diluted to the final concentrations of between 5 and 20 µM in sterile medium and 

rotated for an additional 24 h prior to being added to cells.  Alternatively, stock solutions 

of Aβ were diluted directly to their final concentrations in sterile cell culture medium 

and rotated at 25oC for 24 h prior to addition to cells.  Both methods of peptide 

preparation yielded Aβ fibril and other aggregated species containing samples that were 

consistently toxic to cells in culture culture [242, 243].  

 

Cell culture 

 For experiments involving free sialic acid, rat pheochromaocytoma PC 12 cells 

were used. These cells were cultured in RPMI medium supplemented with 10% (vol/vol) 

horse serum, 5% (vol/vol) fetal bovine serum, 3 mM L-glutamine, 100 U/ml penicillin, 

100 µg/ml streptomycin and 2.5 µg/ml amphotericin B (fungizone) in a humidified 5% 

CO2/air, 370C incubator. 

 For all other experiments, human neuroblastoma SH-SY5Y cells were used.  

Cells were cultured in a humidified 5% CO2/air incubator at 37oC in MEM, 
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supplemented with 10% (vol/vol) fetal bovine serum, 2.2mg/ml NaHCO3, and 

antibiotics/antifungals at the same concentrations as used with PC12 cells. SH-SY5Y 

cells were NGF differentiated prior to use in toxicity experiments by addition of 20 

ng/mL NGF to cells for 5-7 days. 

 

Synthesis and purification of sialic acid-conjugated dendritic polymers  

 Sialic acid was conjugated to amine terminated PAMAM dendrimers using EDC 

chemistry [222].  Sialic acid and EDC were both dissolved in 2mL of DI water to final 

concentrations of 30 mg/mL (200 mM). This system was allowed to react for 1 h at room 

temperature.  After one hour, dendrimer was added to a final concentration of 2mM.  

The reaction was then allowed to continue overnight to reach completion.  The reaction 

solution was then ultrafiltered using 1000 NMWL filters using the Millipore Model 8003 

Ultrafiltration Stirred Cell to remove unreacted sialic acid and EDC.  The reaction 

mixture was ultrafiltered using six 2 mL washes of DI water, such that the final 

concentration of free sialic acid in the mixture was less than 6% of the total sialic acid 

(free and covalently bound to dendrimer). Reduction of sialic acid levels in the washes 

was verified using UV absorbtion at 250 nm. After purification, the sialic acid 

conjugated dendrimer was resuspended in DI water for later use. Verification of the 

presence of sialic acid on dendrimers was done by FT-IR spectroscopy using a 

ThermoNicolet Avatar 3710 FTIR with Pike Miracle ATR Accessory (Thermo Electron 

Corporation, Waltham, MA).  As seen in Figure 7.1, peaks at 1034 cm-1, 1380 cm-1 and 
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between 2700 cm-1 and 3100 cm-1 confirm the presence of alcohols and acids consistent 

was a sugar and loss of primary amines from the reaction of the dendrimer with the acid. 
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Fig. 7.1. FTIR of conjugated and unconjugated PAMAM dendrimer generation 3.0.  The FTIR spectrum of 
unconjugated dendrimer (solid line) shows a characteristic doublet between 2700 and 3100 cm-1 representing 
the primary amines of the dendrimer termini.  For the conjugated dendrimer (dashed line), along with the 
disappearance of the amine doublet, which indicates a “capping” of the primary amines by sialic acid, there are 
the appearance of peaks at 1380 and 1034 cm-1 from the C-O-C structure and alicyclic alcohols from sialic acid, 
respectively.   

 

Toxicity assays 

MTT assay 

 PC 12 viability was measured using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide) reduction assay. Viable, redox-active cells reduce MTT to 

a colored formazan product, the formation of which is generally linearly related to the 

1034 

1380 
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concentration of viable cells within the population. For these experiments cells were 

plated at a density of 105 cells/ well in a 96 well plate. After 24 h, the medium in each 

well was replaced with the Aβ peptide solutions and sialic acid and then incubated for 

another 24 h at 37oC.  MTT was then added to the medium to yield a final concentration 

of 0.5mg/ml in each well. The cells were allowed to interact with the MTT for 4 h, after 

which 100 µL of 5:2:3 N,N-dimethylformamide/SDS/water solution (pH 4.7) was added 

to dissolve the formed formazan crystals. After 18 h in a humidified CO2 incubator, 

absorbances were read at 585 nm  (Emax Microplate reader,Molecular Devices, 

Sunnyvale, CA).  Percent viability was determined by comparing absorbances for Aβ 

peptide or peptide-sialic acid treated samples to untreated controls.  The fractional 

increase in viability was estimated as viability of cells treated with both peptide and 

sialic acid relative to viability of cells just treated with Aβ peptide. 

 

PI assay 

 SH-SY5Y viability was measured by staining cells with PI, a nucleic acid dye 

that only binds to cells with permeable membranes, and measuring fluorescence of the 

cell population using flow cytometry.  SH-SY5Y cells were plated at a density of 2 X 

104 cells/well in 96 well plates and NGF differentiated.  After 7 days differentiation, 

culture medium was replaced with medium containing NGF and the compound to be 

tested, either Aβ, dendrimer, sialic acid, sialic acid conjugated dendrimer, or a 

combination of the above.  24 hours after addition of Aβ or other agent, cells were 

prepared for viability measurement by first detaching cells from the well by incubating 
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with 150 µL dissociation buffer at 250C for 15 minutes. 10 µL of 33 µM PI was added to 

each well and left to incubate at 250C for 20 minutes in the dark after brief shaking. 

Immediately after, cell fluorescence was measured with the FACSArray Bioanalyzer 

(Becton-Dickonson, Bedford, MA). Cells were excited with a 532 nm laser and 

fluorescence was detected using a 564-606 nm filter. Gating was done so as to obtain 

percentages of the total cell population that were viable.  Normalized viability values 

were obtained by dividing the percentage of viable cells in the sample by that in the 

control samples with no Aβ or other agent. 

 

Estimation of LD50 values and toxicity inhibition parameters. 

 LD50 values, defined here as concentrations of dendrimer or dendrimer sialic acid 

conjugate that led to a 50% reduction in cell viability,  were obtained by linear 

interpolation of viability as a function of concentration data about the region of 50% 

viability. The uncertainty of the concentration of dendrimer was estimated by 

determining the 95% confidence interval of concentration from the viability curves, and 

using that to determine a coefficient of variation of the measurement. 

In order to estimate the toxicity inhibition effects of dendrimers and sialic acid 

conjugated dendrimers, but also to take into account potential toxicity of the dendrimer 

constructs we developed the following empirical model (equation 7.1) that correlates the 

normalized viability (V), defined as the ratio of percentage of viable population in a 

sample to that in the sample with no Aβ or dendrimer present to the concentration of 
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sialic acid-conjugated dendrimer in terms of equivalent sialic acid (bound sialic acid 

(SA)) concentration: 

i
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0      (7.1) 

 

where  Vo is the viability at zero dendrimer-sialic acid complex concentration, Vmax is 

the maximum normalized viability, and Ki and kt are empirical constants associated with 

sialic acid binding to Aβ (and inhibition of its toxicity), and with the intrinsic toxicity of 

the dendrimer conjugates, respectively.  

It should be noted that this model does not take into account the concentration of 

Aβ and is therefore valid only for 50 µM Aβ. The data were fitted to the model and 

constants Vmax Ki and kt were estimated using the Levenberg-Marquardt non-linear 

regression method (Polymath 5.1, CACHE Corporation, Austin, TX) 

 

Results and discussion  

Attenuation of Aβ-induced toxicity by free sialic acid 

 Work from a number of laboratories suggests that Aβ binds to sialic acid 

containing gangliosides with a moderately high affinity [241, 244-247].  In our lab, we 

have previously shown that depletion of membrane-associated sialic acid residues or 

inhibition of sialic acid-containing ganglioside synthesis protects PC 12 cells from Aβ-

induced toxicity [217]. Based on these results, we hypothesized that we should be able to 

inhibit Aβ binding to cells and Aβ toxicity by providing a soluble source of sialic acid in 
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the culture medium, which would compete with the cell membrane for Aβ binding. As a 

control, we examined the effects of sialic acid from 0 to 2 or 5 mM on differentiated SH-

SY5Y or PC12 cell viability.  At these concentration ranges, sialic acid had no effect on 

cell viability (data not shown).  We then examined the ability of free sialic acid to 

attenuate Aβ toxicity in PC12 cells.  As can be seen in Figure 7.2, at the lowest 

concentration of Aβ used, 5 µM, the cell viability increased as a function of sialic acid 

dosage, up to a saturation viability level. This protective effect was a strong function of 

the concentration of Aβ, with little protection offered by the sialic acid for 

concentrations of Aβ equal to or above 10 µM. There are several probable reasons why 

free sialic acid did not protect cells from toxicity at high Aβ levels.  Based on the 

viability data shown in Fig. 7.2, a binding affinity of Aβ for free sialic acid can be 

estimated to be on the order of 10-4 M, while Aβ affinity for gangliosides has been 

estimated to be of the order 10-6 M [231, 239] suggesting that even higher concentrations 

of free sialic acid would be needed to compete with Aβ-ganglioside binding.  Moreover, 

based on stoichiometric arguments, the data indicate that Aβ binds to more than one 

sialic acid molecule.  This interpretation is consistent with findings that Aβ affinity is 

greatest for gangliosides that are clustered in cholesterol rich microdomains [229]. 
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Fig. 7.2.  Attenuation of Aβ induced toxicity by free sialic acid.  5 µM Aβ (♦) shows an 
increase in viability of 30% from control (0 sialic acid) for sialic acid concentrations above 
0.5 mM (Tukey, p < 0.005).  10 µM ( ), 15 µM ( ), and 20 µM ( ) show no significant 
difference from control. 

 

 

 We next synthesized sialic acid containing dendridic polymers of varying size 

and sialic acid functionality to test if the clustered sialic acid residues presented by these 

polymers would better protect cells from Aβ toxicity than soluble sialic acid.  Others 

have used similar types of sialic acid modified dendridic polymers to prevent viral 

adhesion (infection) both in vitro and in vivo [248-250], suggesting that such a strategy 

might be fruitful in treating disease.  
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Dendrimer toxicity  

 Generation 2.0, 3.0 and 4.0 PAMAM dendrimers were used in our studies.  

Toxicity of dendrimers at concentrations ranging up to either 250 µM, 125 µM and 130 

µM for generation 2.0, 3.0, and 4.0 dendrimers, respectively, were assessed using 

differentiated SH-SY5Y cells.  The LD50 values estimated from the results of these 

experiments are shown in Table 7.1. The intrinsic dendrimer toxicity increased with 

generation number implying that the toxicity of the dendrimer was related to either 

molecular weight of the molecule, the number of terminal amine groups, or both. The 

detrimental influence of dendrimers has been discussed in previous works [248, 251]. 

We also evaluated the toxicity of the sialic acid-conjugated dendrimers (all generations) 

in experiments analogous to those performed with unmodified dendrimers. LD50 values 

for the sialic acid modified dendrimers are also shown in Table 7.1.   

 

Table 7.1.  LD50 values for conjugated and unconjugated dendrimers of different 
generations 
 

 
Generation 

Unconjugated 
Dendrimer (µM) 

 

Conjugated Dendrimer 
(µM) 

 
2.0 50 + 40 84 + 17 
3.0 10 + 7 42 + 14 
4.0 1.7 + 0.2 3.5 + 1.2 

 
All generations show a decline in intrinsic toxicity upon conjugation with 
sialic acid.  All values are found to be statistically different from all other 
values (studentized-t, p < 0.05). 

 

In all cases, sialic acid modification significantly decreased the toxicity or LD50 value of 

the dendrimer. This result is consistent with work by a number of other groups which 

showed that polycation toxicity was a strong function of both mass and charge [251, 
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252] and that increased surface modification of amine terminated dendrimers led to a 

decrease in their toxicity [248].  Together, these results support the idea that the 

dendrimer surface charges is one of the factors attributing to intrinsic toxicity.   

 

Attenuation of toxicity of Aβ by dendrimer-SA complexes 

 In Figure 7.3, we show the effect of unmodified dendrimers and dendrimer-sialic 

acid conjugates on Aβ toxicity in differentiated SH-SY5Y cells.  In all cases, cells were 

treated with 50 µM Aβ.  Increase in cell viability relative to cells just treated with Aβ is 

plotted.  Typical cell viability after 24 hour treatment with 50 µM Aβ as prepared in our 

laboratory is about 60 %. It can be seen that for generation 2.0, the protective effect of 

the dendrimer-sialic acid complex increases with concentration up to around 5.5 µM, 

and then saturates. For generation 3.0, the protective effect increases with dendrimer-

sialic acid complex concentration up to 11 µM and then starts to decrease. For 

generation 4.0, the protective effect increases up to a concentration of about 1.5µM and 

then decreases rapidly. This phenomenon of decreasing protection at the higher 

concentrations of dendrimer, especially for the higher generation dendrimer, may be 

explained by the relatively high intrinsic toxicity of the generation 3.0 and 4.0 

dendrimers. It should be noted that for the unconjugated dendrimers, there is significant 

protection exhibited against Aβ toxicity. However, upon sialic acid-conjugation, the 

protection levels increase by up to 200%.  
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Fig 7.3.  Attenuation of Aβ toxicity by conjugated and unconjugated 
dendritic compounds of different generations.  a) Conjugated (solid line, 
filled) generation 2.0 shows a substantial increase in protection compared 
to unconjugated dendrimer(dashed line, open).  While for generations 3.0 
(b) and 4.0 (c), there is an initial improvement in protection followed by a 
waning at higher concentrations.   

 

 This small protective interaction of the unconjugated dendrimer is not surprising.  

It has been suggested that cell surface binding of Aβ is dictated by electrostatic 
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interactions, and preventing these interactions decreases Aβ toxicity [97].  We suggest 

that both forms of the dendrimer (conjugated and unconjugated) protect cells from Aβ 

toxicity in different ways.  The presence of the primary amines and large positive surface 

charge on the unconjugated dendrimer leads to an electrostatic interaction of the 

dendrimer with the negatively charged cell membrane, preventing the Aβ from binding 

and, therefore, blocking toxicity.  Unfortunately, this dendrimer interaction with the cell 

surface can lead to cell death, as found here and in Fischer et. al. [251].  Conversely, we 

postulate that the conjugated dendrimer prevents the interaction of Aβ with the cell 

surface not by blocking the cell surface, but by sequestering the Aβ.   

 

Efficiences of the different generations of dendrimer-sialic acid complexes 

 Taking into account both the protectiveness and intrinsic toxicity of conjugated 

polymers, we developed an empirical model that correlates the normalized viability 

provided by modified and unmodified dendrimers for Aβ treated cells.  Two constants 

were obtained from fitting the model to the experimental data shown in Figure 7.3, Ki, 

which represents the inhibition by the sialic acid containing dendrimer of Aβ toxicity, 

and kt, which represents the intrinsic toxicity of the dendrimer conjugate. Table 7.2 

shows the constants Ki and kt of this model for the different generations of sialic acid-

conjugated dendrimer.  
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Table 7.2.  Model constants for different generations of sialic acid-conjugated 
dendrimers 

 
Generation 
 

Ki (µM) 
 

kt (µM) 
 

2.0 33.06 + 0.17 0.45 + 0.013 x 10-3 
3.0 14.64 + 0.04 2.89 + 0.008 x 10-6 
4.0 13.36 + 0.20 18.0 + 0.3 x 10-3 

 
The binding constant, Ki, decreases with increasing generation number, 
indicating greater binding affinity for Aβ.  The toxicity constant, kt, increases by 
an order of magnitude with each increase in generation number.  Model fits 
showed R2 values of 0.93, 0.86, and 0.96 for generations 2,3, and 4, respectively.  
All values reported represent a 95% confidence interval.  Statistical differences 
of Ki and kt of different generations are found to be significant (p < 0.0001). 

 

It is clear that the protective property constant Ki decreases with increase in generation 

number, indicating that generation 4.0 is more efficient than generation 3.0, which in 

turn is more efficient than generation 2.0 at protecting cells from Aβ toxicity.   Ki was 

estimated per mole equivalent sialic acid, not per mole dendrimer.  If estimated per mole 

dendrimer, Ki values would vary from approximately 2 µM, 0.5 µM and 0.2 µM for 

generations 2.0, 3.0 and 4.0 sialic acid modified dendrimers, respectively, further 

accentuating the significance of the differences in toxicity attenuation properties of the 

different generation dendrimer constructs.  However, on examination of the kt values, it 

is evident that generation 4.0 is an order of magnitude more toxic than generation 3.0, 

which is another order of magnitude more toxic than generation 2.0. This explains why 

the increase in viability by the generation 2.0 complex saturates, while the increase in 

viability by the generation 3.0 and 4.0 complexes decreases at higher concentrations up 

to the extent that no protection is observed.   

 One plausible reason as to why clusters of sialic acid are more efficient than free 

sialic acid molecules in protecting cells from Aβ induced toxicity is that the clustered 
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sialic acid compounds more closely mimic cell surface gangliosides.  It has been shown 

that Aβ binds with highest affinity to gangliosides that either contain multiple sialic acid 

residues or that are clustered in cholesterol rich membranes [229, 231].  Also, clustering 

sialic acid greatly improves the probability of interaction between clustered sialic acids 

“tethered” to the already bound sialic acid molecule and virial particles [248, 250, 253].  

Similar phenomena probably occur during Aβ sialic acid dendrimer interactions. Finally, 

unlike free sialic acid, clustered sialic acid molecules are more stable and are not 

vulnerable to enzymatic breakdown when exposed to biological fluids [248].   

To date, there have been many attempts at developing either a prevention or cure 

for AD, each involving different stages of pathogenesis. Strategies which alter APP 

processing  and thereby reduce formation of Aβ have had some success in animal 

models at reducing Aβ(1-40) levels, but have not been without some significant 

limitations [253, 254].  Agents which prevent Aβ aggregation and/or reverse fibril 

formation have had success in vitro and have potential as in vivo therapeutics [230, 255, 

256].  Immunotherapies involving clearance of aggregated Aβ showed early promise in 

both animal models and humans, but are currently associated with unacceptable side 

effects [101-103].  However, there is evidence that agents which sequester Aβ in the 

plasma may actually be effective at reducing Aβ levels in the cortex and may have the 

potential of reducing cognitive decline associated with disease [104, 257].  These studies 

suggest that sialic acid based molecules that have a high affinity for Aβ such as the ones 

we describe here may contribute to the array of therapeutic agents being developed for 

treatment of AD.  
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Conclusions 

 It is clear that interactions between Aβ and membrane-bound sialic acid play an 

important role in neurotoxicity, and it is possible that by introducing sialic acid for direct 

competition with the cell surface, the neurotoxic effects of Aβ can be mitigated.  

Moreover, by clustering sialic acid residues, we can more closely mimic cell surfaces to 

create improve competition efficiency.  The results from all three dendrimer generations 

tested support these claims.  The findings encourage further investigation into the 

development of biomimetic compounds for use in prevention of Aβ toxicity.  
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CHAPTER VIII 

 

DEVELOPMENT OF NOVEL SIALIC ACID LABELED DENDRIMERS AS A 

POSSIBLE THERAPEUTIC TOOL FOR THE PREVENTION OF β-AMYLOID 

TOXICITY ASSOCIATED WITH ALZHEIMER’S DISEASE 

 

Introduction 

As previously discussed, Alzheimer’s disease (AD) is the leading cause of 

neurodegeneration in the United States, affecting approximately 4.5 million Americans 

in 2003 [232], with an annual cost of care for these individuals estimated at over $100 

billion [233]. With the cause of the neurotoxicity being linked to to the presence of Aβ 

fibrils [99, 235 - 237], we propose that by targeting these fibrils, we can prevent toxicity 

via sequestering these fibrils.  This technique has been demonstrated by previous work 

[97, 101-104], but little has been done to make these sequestering agents more 

biomimetic.  It is this area we look to explore. 

A variety of evidence indicates that Aβ may bind to cells via an interaction with 

surface glycolipids or glycoproteins with increased binding occurring in the presence of 

gangliosides or other sialic acid containing molecules that cluster the sialic acids [100, 

217, 229, 231, 238-241].  Based on these data, we hypothesized that membrane mimics 

could be synthesized which would reproduce the clustered sialic acid structure of the cell 

surface, and therefore compete with the cell surface for Aβ binding.  It is this work that 

we will discuss. 
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Materials and methods 

Materials 

 All materials purchased from Sigma Aldrich Corporation (St. Louis, MO). 

 

Dendrimer labeling - acetylation of sialic acid (compound 1) 

 The acetyl protection was performed by first dissolving 250 mg of NANA in 10 

mL of pyridine.  To this solution was added 537 mg (497 uL) of acetic anhydride and 37 

mg of 4-(dimethylamino)pyridine (DMAP).  The solution was reacted at room 

temperature for 3 hours.  After 3 hours, a 1 mL solution of hydrazine acetate in dimethyl 

formamide (DMF) was added to the pyridine solution.  The mixture was reacted at 55oC 

for 15 min.  A 1 mL volume of trichloroacetonitrile and 45.3 uL of 1,8-

diazabicyclo[5.4.0]undec-7-ene (DBU) were then added, and the system was reacted at 

0oC for 1.5 hours.  The final solution was stored at -80oC until used.  This procedure was 

adapted from Ren et al. [258]. 

 

Dendrimer labeling – production of 2-(2-isothiocyanatoethoxy ethanol) (compound 2) 

 A solution containing 700 uL of  2-(2-aminoethoxy)ethanol and 2 mL of 

triethylamine in 10 mL of chloroform was added slowly over the course of an hour to a 

stirred solution containing 540 uL of thiophosgene in 40 mL of chloroform.  The solvent 

was removed in vacuo.  The resulting residue was dissolved in 10 mL of deionized 

water.  A two-step extraction was performed using two 10 mL volumes of 

dichloromethane.  The organic phases from the extraction were combined and washed 
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twice with deionized water (2 x 10 mL).  The organic layer was then dried over 

magnesium sulfate and filtered.  The solvent was removed in vacuo.  The resulting 

yellowish oil was stored at -80oC until used.  This procedure was adapted from Woller et 

al. [259, 260]. 

 

Dendrimer labeling – attachment of compound 2 to dendrimer (compound 3) 

 A 100 uL solution of generation 4.0 polyamidoamine (PAMAM) (0.57 µmol of 

dendrimer)  was evaporated under reduced pressure.  The resulting residue was dissolved 

in 5 mL of dimethyl sulfoxide (DMSO).  A ten-fold molar excess of compound 2 was 

added to the DMSO mixture (this excess is based on the number of terminal amines 

available on the dendrimer and not the amount of dendrimer).  The solution was reacted 

at room temperature for 8 hours.  The solvent was removed in vacuo.  This procedure 

was adapted from Woller et al. [259, 260]. 

 

Dendrimer labeling – attachment of sialic acid (compound 4) 

 The residue of compound 3 was dissolved in 20 mL of dichloromethane with 10 

mg of 4Å molecular sieves under nitrogen.  To the solution, 50 µmoles (1 mL) of 

compound 1 and 200uL boron trifluoride-diethyl etherate was added slowly.  The 

solution was reacted at room temperature for 7 hours.  Sodium bicarbonate (100 mg) was 

added to the solution, and the solution was filtered over celite.  The solvent was removed 

in vacuo.  The resulting compound was stored at -80oC until used.  This procedure was 

adapted from Woller et al. [259, 260]. 
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Dendrimer labeling – deprotection of sialic acid 

 Compound 4 was dissolved in 20 mL of a methanol/deionized water mixture 

(1:1).  Methanolic base (1 M, 180 uL) was added, and the solution was mixed overnight 

until all solid was dissolved.  The solution was neutralized with Amberlite IR-120 and 

filtered using a glass filter.  The solvent was removed in vacuo.  The resulting residue 

was dissolved in deionized water, and purified using 10 kDa centrifuge filter units.  The 

resulting solution was stored at 4oC until used.  This procedure was adapted from Woller 

et al. [259, 260]. 

 

Determination of sialic acid labeling 

 The extent of sialic acid labeling was determined using the procedure described 

by Warren [261] with minor modifications.  As opposed to stopping the reaction, we just 

cooled the samples under tap water, centrifuged, and read.  This step was performed 

after FTIR verification of sialic acid attachment to the dendrimer. 

 

Results and discussion 

FTIR analysis of dendrimer-sialic acid compound 

 Using standard FTIR techniques, an evaporated sample of the dendrimer-sialic 

acid compound was analyzed for characteristic peaks.  The results of this analysis can be 

found in Figure 8.1 
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Fig 8.1. FTIR analysis of sialic acid-labeled dendrimer.  The solid line represents generation 4.0 dendrimer.  The 
dashed line represent the sialic acid-labeled dendrimer.  The peaks of interest are as follows:  1562 & 3085 – loss of 
primary amines in the dendrimer; 1700 – presence of carboxylic acids from the sialic acid; 1112, 1175 & 1368 – 
formation of  thiourea structure; 1032 – alicyclic alcohols from sialic acid. 
 

 
From the FTIR analysis, it is apparent by the presence of certain characteristic 

structures (thiourea, carboxylic acids, and alicyclic alcohols) and the loss of other peaks 

(amine structure loss) that the chemistry was successful.  Determination of sialic acid 

labeling via the Warren assay indicates that we have complete labeling.  This is 

commensurate with what has been found by others [259, 260]. 

Initial studies with the new sialic acid-labeled dendrimer indicate that is has 

higher protective properties than those produced through EDC chemistry (Chapter VII).  
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Furthermore, the protection curves indicate that the binding is via a different mechanism.  

However, there is currently not enough data to make any definitive statements. 

 

Conclusions 

 If the preliminary data holds up, then this is an indication that both the labeling 

amount and sialic acid confirmation influence the binding properties of these dendrimers 

to Aβ.  Based on the work presented in Chapter VII, it would be useful to analyze other 

generations of dendrimers for similar characteristics and less intrinsic toxicity.  

Eventually, it would be necessary to address the ability of the compound to pass the 

blood-brain barrier, but this is a distant concern. 
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CHAPTER IX 

 

CONCLUSIONS 

 

 This project has tied together many different aspects important to sensor design.  

First, we utilized standard kinetic and spectroscopic principles to develop models that 

could be use for general sensor design.  We then successfully applied these principles 

and results of the modeling toward several different biomedically relevant sensing 

platforms and targets.  We have proven the flexibility and robustness of the systems we 

have developed and laid the ground work for substantial future work in the area. 

 We were successful in using a commercially available antibody for the 

development of a prion sensor.  Through experimental and theoretical analysis, we 

determined that the detection limits for the prion sensor, or any competitive sensor, are 

always dictated by the equilibrium bind coefficient.  Regardless of how the system 

model was modified, these limitations always applied.  We realized that to achieve lower 

detection limits, we would have to develop a direct sensing method. 

Using what we learned from the prion sensor, we worked at developing a direct 

sensor for Aβ using SERS as the detection method.  With the strong distance 

dependence of SERS, we had to develop a recognition molecule that was smaller than an 

antibody, but still maintained high specificity.  We accomplished this by creating sialic 

acid-labeled materials.  These materials included sialic acid-labeled monolayers, 

ganglioside and artificial ganglioside monolayers, and sialic acid-labeled dendrimers.  
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The latter structures were developed to more closely mimic biological structures.  We 

found that as the number of sialic acids increased, so did the binding affinity of Aβ.  We 

demonstrated the feasibility of using these materials in a sensing platform.  We also 

tested the use of some of these materials in vitro toxicity studies to examine is such 

materials could protect cells from Aβ toxicity.  While the sialic acid labeled dendrimers 

could prevent Aβ neurotoxicity at low concentrations, there use was limited by their 

toxicity at high concentrations. 

With success from the first attempts with sialic acid attachment, we investigated 

the issue of sialic acid conformation (to more closely mimic biological arrangement).  

Using an adaptation of techniques developed by synthetic chemists, we successfully 

altered the conformation of sialic acid attachment to more closely mimic that found in 

gangliosides and other biological molecules.  Furthermore, this altered attachment 

showed substantially greater protective properties than the simpler attachment used 

previously to attenuate Aβ neurotoxicity.   These materials may be useful as therapeutics 

for Alzheimer’s disease treatment.  

I feel this project demonstrates a firm understanding of material design, analysis 

and application techniques.  It incorporates a broad base of knowledge form several 

disciplines (biomedical engineering, biochemical engineering, material science, food 

engineering, and optical design).  It is this cross-disciplinary work that lends itself to 

successful expansion of the field of biosensors. 
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Future Work 

 As with any project, there is always more you wished you could have done, but 

time is always a limitation.  I feel that all the work I have done has laid the groundwork 

for many advances. 

 For the prion sensor, the background and design principles have been 

investigated..  A working platform has been developed, but there is substantial room for 

optimization.  The sensor, as it currently stands, is not selective for infectious prion only.  

By altering the recognition unit to an antibody that targets only infectious prion, this can 

be addressed.  Furthermore, by altering the fluorophore that is used, we could improve 

the signaling capability of the sensor by selecting a fluorophore appropriate for the 

system we are working with (high quantum efficiency for quenching, low quantum 

efficiency for enhancement).  Finally, we need to address the response of the system 

with actually sample.  This may require some adjustments for sample pretreatment, 

fluorophore detection, and antibody selection, just to name a few.  I intend to pursue this 

in my future works. 

 With the OPH sensor, we have been more successful in understanding the 

shortcomings of the systems than in determining its strengths.  However, this leaves the 

project wide open for possible advancements.  Based on the modeling the results, the 

system shows a lot of promise, but due to budgetary constraints, time constraints, and 

experimental complications, this promise has not come to fruition.  I hope to do further 

investigations in enzymatic sensors in the future. 
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 Finally, the work in detection and treatment of Alzheimer’s disease (via Aβ 

interaction) has shown tremendous potential.  All indications are that sialic acid 

interaction with Aβ is highly successful and well thought out.  With trends in our data 

indicating that increased clustering of sialic acid being more effective, we definitely 

appear to be heading in the right direction.  However, I propose that there are other 

molecules outside gangliosides that may be influencing the binding of Aβ (neuronal cell 

adhesion molecule (NCAM)). 

Additionally, this project has addressed the use of SERS as a sensing platform in 

a way the previously had not been attempted.  In combination with our foray into 

synthetic chemistry, I feel this project significantly demonstrates the importance of 

looking beyond your current boundaries and knowledge.  With the success of initial 

experiments in this project, I believe that this system could have major impacts on both 

diagnosis and treatment of Alzheimer’s disease. 
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