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ABSTRACT

Causal Equivalence of Frames. (August 2005)

Troy Lee Henderson, IV, B.S., The University of Alabama;

M.A., The University of Alabama

Chair of Advisory Committee: Dr. David Larson

Frames have recently become popular in the area of applied mathematics known

as digital signal processing. Frames offer a level of redundancy that bases do not

provide. In a sub-area of signal processing known as data recovery, redundancy has

become increasingly useful; therefore, so have frames. Just as orthonormal bases are

desirable for numerical computations, Parseval frames provide similar properties as

orthonormal bases while maintaining a desired level of redundancy. This dissertation

will begin with a basic background on frames and will proceed to encapsulate my

research as partial fulfillment of the requirements for the Ph.D. degree in Mathematics

at Texas A&M University. More specifically, in this dissertation we investigate an

apparently new concept we term causal equivalence of frames and techniques for

transforming frames into Parseval frames in a way that generalizes the Classical Gram-

Schmidt process for bases. Finally, we will compare and contrast these techniques.
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CHAPTER I

INTRODUCTION AND PRELIMINARIES

A. Introduction

Merriam-Webster Online Dictionary defines a signal to be a detectable physical quan-

tity or impulse by which messages or information can be transmitted. Signals are used

as a means of communication either between people or between people and machines.

Signal processing is an area of engineering and applied mathematics dealing with the

representation of signals as mathematical objects as well as the transformation, ma-

nipulation, and interpretation of these objects. Signals are often categorized in one

of two forms – analog and digital.

Since analog signals are the natural type of signals that people understand and

digital signals are the natural type of signals for machines (in particular, computers

and other forms of modern technology), it is often necessary to convert analog signals

to digital ones. This process is called sampling or encoding. Once this conversion

takes place, the area of digital signal processing (DSP) provides many techniques for

manipulating this digital data. For example, techniques for providing a digital low-

pass filter can be used to separate an intended signal from potential noise as well

as to provide digital compression. Also, techniques for providing a digital band-pass

filter can be used to isolate individual frequency components of the signal.

Once the digital signal has been processed (or analyzed), it is usually converted

back into analog format. This process is known as decoding. Many times the decoded

signal is different from the original analog signal. This is often unintentional; however,

there are many cases where this difference is desired. For example, the process of

The journal model is Advances in Computational Mathematics.
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storing sounds from an audio cassette tape onto a digital compact disc can take

advantage of several DSP techniques. Since many audio cassette tapes inherently

contain wanted sounds as well as an unwanted high frequency “hiss”, certain DSP

techniques can remove this unwanted “hiss”.

Currently, the standard process for transmitting analog information from a source

to a destination requires that the analog signal be encoded, processed, transmitted,

received, anti-processed, and decoded. That is, once the signal is encoded, techniques

are used to process the encoded signal before transmission. This is done to help

guarantee that the received signal is as close to the transmitted signal as possible.

Once the signal has been received, anti-processing is done to “undo” the original

processing. Finally, the signal is decoded. All of this work is done to ensure the

authenticity of the received signal.

One such technique for pre-transmission processing is to provide the encoded

signal with a particular level of redundancy. A naive approach to accomplish this is

to transmit the signal multiple times. As a consequence of this approach, a substantial

increase in bandwidth is required. A more modern approach makes use of tools called

frames. Frames [3] offer a way of providing an encoded signal with an arbitrary

level of redundancy. The most desirable types of frames are called Parseval frames.

Parseval frames have many of the same properties as classical signal processing tools

while providing redundancy to the encoded signal.

A discrete linear system (or simply system) is viewed mathematically as a linear

transformation (or operator) T that maps an input sequence X = {xi}i∈J into an

output sequence Y = {yi}i∈J denoted by

Y = TX

where J is a discrete ordered set. T is often thought of by engineers as a “black box”
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TX Y

Fig. 1. Discrete Linear System.

that completely describes the input/output process and is indicated pictorially in Fig.

1. A system is said to be causal if the output does not depend on future input. That

is, if the sequence X is the input to a causal system and the resulting output sequence

is Y , then for each i ∈ J, yi does not depend on xj when j ∈ J and j > i.

A goal of this dissertation is to provide a causal way of converting ordinary

frames into Parseval frames. Since the Classical Gram-Schmidt process accomplishes

this for a particular class of frames (namely, bases), we investigate processes needed

to generalize this method to all frames. Work by Casazza and Kutyniok [2] offers an

algorithm for transforming frames into Parseval frames. However, their method is not

causal. Furthermore, if the initial frame is in fact Parseval, their algorithm produces

a Parseval frame that is (in general) different from the original Parseval frame. In

this dissertation, we investigate two additional methods for transforming frames into

Parseval frames. Furthermore, with appropriate care, the use of the two methods

guarantees that the resulting Parseval frame is identical to the original frame if the

original frame is itself Parseval. Finally, we show that these additional methods are

equivalent.

B. Necessary Fourier Analysis Preliminaries

The most fundamental “tool of the trade” for analyzing signals is Fourier analysis.

Much work has been done in applied [5] and theoretical [4][9] Fourier analysis in

the area of signal processing known as wavelets. Wavelets are most often considered
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in the context of orthonormal bases; however, recent work [7] provides analysis of

wavelets as frames. Let H be a (separable) Hilbert space indexed by a (countable)

index set J and let K = `2(J). If we let f ∈ H represent our signal, then the goal

of Fourier analysis is to transform f into a ∈ `2(J), perform the analysis on a, and

then transform a back into f . If we let E = {ei}i∈J ⊂ H be an orthonormal basis for

H, then one method of encoding f into a ∈ `2(J) is by defining ai = 〈f, ei〉 for each

i ∈ J. Since E is an orthonormal basis for H, it follows that

f =
∑
i∈J

〈f, ei〉 ei =
∑
i∈J

ai ei (1.1)

for each f ∈ H. Furthermore, by Parseval’s identity, we have

‖f‖H = ‖a‖K . (1.2)

However, E need not be an orthonormal basis in order for Equations 1.1 and 1.2 to

hold. To illustrate this fact, consider the following example.

Example 1. Let

E =


√

2√
3

0

− 1√
6

1√
2

− 1√
6

− 1√
2

 .

It is clear that E is not an orthonormal basis for R2 since E is neither a linearly

independent nor an orthogonal set. However, for each x ∈ R2 we have

3∑
i=1

〈x, ei〉 ei =

(
x1 ·

(√
2√
3

)
+ x2 · 0

)√
2√
3

0


+

(
x1 ·

(
− 1√

6

)
+ x2 ·

(
1√
2

))− 1√
6

1√
2


+

(
x1 ·

(
− 1√

6

)
+ x2 ·

(
− 1√

2

))− 1√
6

− 1√
2
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Expanding and simplifying, we get

3∑
i=1

〈x, ei〉 ei =

(2
3

+ 1
6

+ 1
6

)
· x1 +

(
0− 1

2
√

3
+ 1

2
√

3

)
· x2(

0− 1
2
√

3
+ 1

2
√

3

)
· x1 +

(
0 + 1

2
+ 1

2

)
· x2

 =

x1

x2

 = x.

Therefore, it is clear that Equation 1.1 (and thus Equation 1.2) is satisfied for each

x ∈ R2.

Example 1 shows that a signal can be decomposed and reconstructed (as in

Equations 1.1 and 1.2) without using an orthonormal basis. In fact, Equations 1.1

and 1.2 are satisfied if and only if E is a Parseval frame for H. We will see that

Parseval frames are generalizations of orthonormal basis and that every orthonormal

basis is in fact a Parseval frame.

C. A Brief Overview of Frames

As indicated in the previous section, we see that (Parseval) frames have become use-

ful tools in signal processing. Recent work [8] provides techniques for decomposing

operators as a sum of tensor products of frames for a Hilbert space H. For a finite

dimensional Hilbert space H, a frame for H is simply a spanning set for H. Since

spanning sets are not (in general) linearly independent, frames often contain redun-

dant vectors. However, this redundancy can be used to aid in the authentication of

signals.

To illustrate this, suppose that E = {e1, e2} is an orthonormal set in a Hilbert

space H. Suppose further that x ∈ span{e1, e2} is a signal to be transmitted. Since

x = 〈x, e1〉e1 + 〈x, e2〉e2,

transmission and reception of the scalars 〈x, e1〉 and 〈x, e2〉 is sufficient to guarantee

reconstruction provided that the receiver knows e1 and e2. However, if either 〈x, e1〉 or
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〈x, e2〉 is lost or corrupted before it is received, then the reconstructed signal u will be

different (in general) from x. To that end, let u1 and u2 be the reconstructed signals

for which either 〈x, e1〉 or 〈x, e2〉, respectively, is lost completely. If F = {f1, f2, f3}

is a Parseval frame for span{e1, e2}, then we also have that

x = 〈x, f1〉f1 + 〈x, f2〉f2 + 〈x, f3〉f3.

Therefore, if we let v1, v2, and v3 be the reconstructed signals for which either 〈x, f1〉,

〈x, f2〉, or 〈x, f3〉, respectively, is lost completely, we would like to compare ‖x− ui‖

and ‖x − vj‖ for each i and j. Figure 2 illustrates this for a particular choice of

e1, e2, f1, f2, f3, and x. In Figure 2a, we have that e1 = e1(t) = c1 sin(2πt) and

e2 = e2(t) = c2 sin(4πt) where c1, c2 are chosen for normalization purposes. Also,

f1, f2, and f3 is some Parseval frame for span{e1, e2}. In Figure 2b, we have that

x = e1+e2. Figure 2c shows the received signals (after data loss) u1, u2, v1, v2, and v3.

Finally, Figure 2d shows the error in each case. Notice that the error induced by using

the Parseval frame F is approximately 2
3

of the error induced by using E in ‖ · ‖2.

Therefore, it is clear from this example how Parseval frames can provide superior

authenticity results to orthonormal bases. Furthermore, in the case illustrated by

Figure 2, if either 〈x, f1〉, 〈x, f2〉, or 〈x, f3〉 was known to be lost before reconstruction,

then post-reception processing could be performed to perfectly reconstruct x. This

feature is also lacking when using orthonormal bases. So, it is clear that if redundancy

is acceptable, then (Parseval) frames are particularly important in signal processing

in order to insure the authenticity of signals.

As previously stated, frames for finite dimensional Hilbert spaces H are simply

spanning sets for H. However, in the case where H is not finite dimensional, then

extra care must be taken to define a frame for H.
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Definition 1. Let H be a separable Hilbert space, and let J be a countable index

set. We say that a sequence X = {xi}i∈J ⊂ H is a frame for H if there exists real

numbers 0 < A ≤ B such that

A‖x‖2 ≤
∑
i∈J

|〈x, xi〉|2 ≤ B‖x‖2 (1.3)

for each x in H.

We call the largest A and the smallest B for which Equation 1.3 holds the lower

and upper frame bounds for X, respectively. If A = B, we say that X is a tight

frame, and if A = 1 = B we say that X is a Parseval frame. If we let K = `2(J)

and E = {ei}i∈J be the standard orthornormal basis for K, then the linear operator

θ : H → K defined by θx =
∑

i∈J〈x, xi〉ei for each x ∈ H is called the analysis

operator of X, and its adjoint θ∗ is called the synthesis operator of X formulated by

θ∗a =
∑

i∈J〈a, ei〉xi for each a ∈ K. Using the analysis operator of X, we see that

Equation 1.3 is equivalent to

√
A‖x‖ ≤ ‖θx‖ ≤

√
B‖x‖

for each x ∈ H. Furthermore, we have that

A = inf
x 6=0

‖θx‖2

‖x‖2
=

1

sup
x 6=0

‖x‖2

‖θx‖2

=
1

sup
x 6=0

∥∥∥(θ∗θ)− 1
2 x
∥∥∥2

‖x‖2

=
∥∥∥(θ∗θ)− 1

2

∥∥∥−2

=
∥∥(θ∗θ)−1

∥∥−1

(1.4)

and

B = sup
x 6=0

‖θx‖2

‖x‖2
= ‖θ‖2 =

∥∥∥(θ∗θ) 1
2

∥∥∥2

= ‖θ∗θ‖ . (1.5)

If A = B, we have that

κH(θ∗θ) = ‖θ∗θ‖ · ‖(θ∗θ)−1‖ =
B

A
= 1.
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Furthermore, since θ∗θ is positive (and self-adjoint), it follows that θ∗θ = λI for some

λ > 0. If A = 1 = B, we have that λ = 1 and thus θ∗θ = I. Conversely, if θ∗θ = λI

for some λ > 0, we have that A = ‖(θ∗θ)−1‖−1 = λ and B = ‖θ∗θ‖ = λ. That is,

A = B. If λ = 1, we have A = 1 = B. Therefore, θ is the analysis operator of a

tight frame if and only if θ∗θ = λI for some λ > 0, and in particular, θ is the analysis

operator of a Parseval frame if and only if θ∗θ = I.

Since a Riesz basis is precisely a frame for which the frame vectors are linearly

independent, we have the following lemma.

Lemma 1. Let H be a separable Hilbert space and let X = {xi}i∈J be a Riesz basis

for H where J is a countable index set. If V ⊂ H is a subspace of H and PV is the

orthogonal projection of H onto V , then Y = {yi}i∈J = {PV xi}i∈J is a frame for V

which is no looser than X. In particular, if X is orthonormal, then Y is Parseval.

Proof. Suppose that A and B are the lower and upper Riesz bounds for X, respec-

tively. Let v ∈ V be arbitrary. Then,

∑
i∈J

|〈v, PV xi〉|2 =
∑
i∈J

|〈PV v, xi〉|2 =
∑
i∈J

|〈v, xi〉|2.

Therefore, we have that

A‖v‖2 ≤
∑
i∈J

|〈v, PV xi〉|2 ≤ B‖v‖2.

That is, Y is a frame for V with lower frame bound at least A and upper frame bound

at most B. If X is orthonormal, the A = 1 = B and so Y is Parseval.

The previous Lemma states that the projection of a Riesz basis onto a subspace

is a frame for the subspace (which is no looser than the original Riesz basis). We

will also show that every frame is the projection of Riesz basis, and in particular,
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every Parseval frame is the projection of an orthornormal basis. Since the proof is

constructive, it provides a method for lifting (or dilating) a frame to a basis.

Proposition 1. Let H be a separable Hilbert space, and let X = {xi}i∈J be a frame

for H with lower and upper frame bounds A and B, respectively and J a countable

index set. Then there exists a complementary Hilbert space H̃ and a complementary

tight frame X̃ = {x̃i}i∈J for H̃ (i.e. X ⊕ X̃ is a Riesz basis for H ⊕ H̃) such that

X ⊕ X̃ has lower and upper frame bounds A and B, respectively. In particular, if X

is Parseval, then X ⊕ X̃ is orthonormal.

Proof. Let K = `2(J), H̃ = (ran θX)⊥ ⊂ K, E = {ei}i∈J be the standard orthonormal

basis for K, and P eH be the orthogonal projection of K onto H̃. By Lemma 1 we

have that X̃ ′ = {P eHei}i∈J is a Parseval frame for H̃. Therefore, X̃ = 4
√

AB X̃ ′ =

{ 4
√

AB P eHei}i∈J is a tight frame (with frame bound
√

AB) for H̃. So, let v ∈ H ⊕ H̃

be arbitrary. Then, there exists x ∈ H and x̃ ∈ H̃ such that v = x⊕ x̃. So, we have

∑
i∈J

|〈v, xi ⊕ x̃i〉|2 =
∑
i∈J

|〈x⊕ x̃, xi ⊕ x̃i〉|2 =
∑
i∈J

|〈x, xi〉|2 +
∑
i∈J

|〈x̃, x̃i〉|2

=
∑
i∈J

|〈x, xi〉|2 +
√

AB ‖x̃‖2

and therefore

A‖v‖2 = A
(
‖x‖2 + ‖x̃‖2

)
≤
∑
i∈J

|〈v, xi ⊕ x̃i〉|2 ≤ B
(
‖x‖2 + ‖x̃‖2

)
= B‖v‖2.

So, we see that X⊕X̃ is a frame for H⊕H̃ with lower and upper frame bounds A and

B, respectively. We will now show that it is in fact a (Riesz) basis. Let Λ be any finite

subset of J and let {αi}i∈Λ be a (finite) sequence of scalars. Suppose that
∑

i∈Λ αi(xi⊕

x̃i) = 0. Then, both
∑

i∈Λ αixi = 0 and
∑

i∈Λ αix̃i = 0. Since
∑

i∈Λ αix̃i = 0, and

since x̃i = 4
√

AB P eHei for each i ∈ J, it follows that P eH ∑i∈Λ αiei = 0. That is,
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∑
i∈Λ αiei ∈ ran θX . Furthermore, since xi = θ∗Xei for each i ∈ J, we have that

θ∗X
∑
i∈Λ

αiei =
∑
i∈Λ

αi θ
∗
Xei =

∑
i∈Λ

αixi = 0.

This implies that
∑

i∈Λ αiei ∈ (ran θX)⊥. Therefore,
∑

i∈Λ αiei = 0. Since {ei}i∈J is a

basis for K, it follows that αi = 0 for each i ∈ Λ which implies that X ⊕ X̃ is a Resiz

basis for H ⊕ H̃. Now if X is Parseval, then X̃ is Parseval and X ⊕ X̃ is Parseval.

Since X ⊕ X̃ is a linearly independent set, it follows that X ⊕ X̃ is an orthonormal

basis for H ⊕ H̃.

Let P : K → ran θX ⊂ K be defined by P = θX(θ∗XθX)−1θ∗X , and let a ∈ ran θX

be arbitrary. Then, P 2 = P and a = θXx for some x ∈ H. Furthermore,

Pa = PθXx = θX(θ∗XθX)−1θ∗XθXx = θXx = a,

and thus P is surjective. So, P is the orthogonal projection of K onto ran θX ⊂ K,

and therefore

P⊥ = IK − P = IK − θX(θ∗XθX)−1θ∗X (1.6)

is the orthogonal projection of K onto H̃ = (ran θX)⊥ ⊂ K. If X is Parseval, then

θ∗XθX = IH , and so θXθ∗X is the orthogonal projection of K onto ran θX ⊂ K.

If X, Y are frames for H, we say that X and Y are similar if there exists an

invertible S : H → H such that yi = Sxi for each i ∈ J. If we let θX and θY be the

analysis operators of X and Y , respectively, then X and Y being similar is equivalent

to θY = θXS. Also, if X is a frame that is similar to a Parseval frame Y by S (i.e. S

is invertible with θY = θXS), then S = (θ∗XθX)−
1
2 U where U is unitary.

If X is a Parseval frame for H, then θ∗θ = I and thus there is a straightforward

formulation for reconstructing x from θx (that is, simply applying θ∗). However, if

X is not (in general) Parseval, the reconstruction formulation is less straightforward.
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If we let yi = (θ∗θ)−1xi for each i ∈ J, then

∑
i∈J

〈x, xi〉yi =
∑
i∈J

〈x, xi〉(θ∗θ)−1xi = (θ∗θ)−1
∑
i∈J

〈x, xi〉xi = (θ∗θ)−1θ∗θx = x.

That is, Y = {yi}i∈J is the canonical dual frame for X and θ∗XθY = I = θ∗Y θX .

Example 2. Let

X =

{(
1

0

)
,

(
−1

1

)
,

(
−1

−1

)}
be an ordered set in R2. Then, X is a frame for R2 with lower and upper frame

bounds 2 and 3, respectively. Furthermore, the canonical dual frame of X is{(
1
3

0

)
,

(
−1

3
1
2

)
,

(
−1

3

−1
2

)}

with lower and upper frame bound 2 and 3, respectively. Finally, the canonical

Parseval frame similar to X is{(
1√
3

0

)
,

(
− 1√

3
1√
2

)
,

(
− 1√

3

− 1√
2

)}
.

From the standpoint of computational cost, determining both (θ∗θ)−1 and (θ∗θ)−
1
2

can be expensive. Therefore, it is clear that we would like another method for trans-

forming frames into Parseval frames. When we restrict to bases, the standard method

for transforming bases into orthonormal bases is the Gram-Schmidt process. There-

fore, part of this dissertation will address a technique for transforming frames into

Parseval frames via a Causal Generalized Gram-Schmidt (CGGS) process. One of the

most important properties of such a procedure is that if X is a frame for H and Y is

a Parseval frame obtained via the CGGS, then X and Y are causally equivalent. This

property is desirable since the Classical Gram-Schmidt process for bases possesses it.
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CHAPTER II

PRIMARY RESULTS

A. Causal Equivalence

Let V be a vector space over C or R and let X = {x1, . . . , xk} and Y = {y1, . . . , yk}

be finite (or infinite) ordered sequences in V . We say that Y is causally related to X

if there exists scalars {αi,j}k
i,j=1 such that

y1 = α1,1x1

y2 = α2,1x1 + α2,2x2

...

yk = αk,1x1 + αk,2x2 + · · ·+ αk,kxk.

In general, this is not an equivalence relation. To illustrate this, let X = {x1, x2}

be an arbitrary ordered sequence in V with x1 and x2 linearly independent, and let

Y = {y1, y2} with y1 = y2 = x1. Then Y is causally related to X. Suppose there

exist scalars {βi,j}2
i,j=1 such that

x1 = β1,1y1

x2 = β2,1y1 + β2,2y2.

Then we have that β1,1 = 1 and therefore x2 = (β2,1 + β2,2)x1 which contradicts the

fact that x1 and x2 are linearly independent. Thus, X is not causally related to Y .

However, if we require the “diagonal elements” to be nonzero (i.e. αi,i 6= 0 for each

i), then it becomes an equivalence relation. To see this fact, we notice that every
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sequence is causally related to itself by choosing αi,j = δi,j where

δi,j =


1, i = j

0, i 6= j

is the Kronecker delta. Furthermore, if

yi =
i∑

j=1

αi,jxj

for each i, then we can recursively write the xi’s in terms of the yi’s by

x1 = α−1
1,1y1

xi = α−1
i,i

(
yi −

i−1∑
j=1

αi,jxj

)
, for each i > 1.

Finally, if yi =
i∑

j=1

αi,jxj for each i and zm =
m∑

i=1

βm,iyi for each m, then zm =
m∑

j=1

γm,jxj

for each m where

γm,j =
m∑

i=j

αi,jβm,i

for each m and j. We see that γm,j = 0 if m < j and γm,m = αm,mβm,m 6= 0 for each

m.

Definition 2. We say that two ordered sequences X = {x1, . . . , xk} and Y =

{y1, . . . , yk} are causally equivalent if there exists scalars {αi,j}k
i,j=1 such that αi,i 6= 0

and

yi =
i∑

j=1

αi,jxj

for each i, and we write X ∼c Y .

If X and Y are sequences of vectors in a vector space V with X ∼C Y , then X



15

and Y have the same “partial spans.” That is,

span{x1, . . . , xi} = span{y1, . . . , yi}

for each 1 ≤ i ≤ k. This property appears in the Classical Gram-Schmidt process

and is demonstrated in the following example.

Example 3. If X = {x1, . . . , xn} is a basis for Cn (or Rn) and if Y = {y1, . . . , yn} is

the orthonormal basis derived from the Classical Gram-Schmidt process, then X ∼c

Y . Moreover, if Z = {z1, . . . , zn} is any other orthonormal basis for Cn (or Rn) with

X ∼c Z, then there exists uni-modular scalars {αi}n
i=1 such that zi = αiyi for each i.

Example 3 affirms that there is essentially one orthonormal basis that is causally

equivalent to a given basis and that this orthonormal basis is obtained by the Classical

Gram-Schmidt process.

B. Causal Generalized Gram-Schmidt (CGGS) Process

Suppose X = {xi}i∈J and Y = {yi}i∈J are (ordered) frames for H. Let K = `2(J)

and E = {ei}i∈J be the standard orthonormal basis for K. We will now show that

X and Y are causally equivalent if and only if there is an invertible lower triangular

(with respect to E) operator L : K → K such that θY = LθX . Let L : K → K with

L = (αi,j) with respect to E where {αi,j}i,j∈J ⊂ C. Then,

LθXx = L
∑
j∈J

〈x, xj〉ej =
∑
j∈J

〈x, xj〉Lej =
∑
j∈J

〈x, xj〉
∑
i∈J

αi,jei

=
∑
i∈J

〈
x,
∑
j∈J

αi,jxj

〉
ei
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and θY x =
∑

i∈J〈x, yi〉ei. Therefore, since E is an orthonormal basis for K, we have

that θY = LθX if and only if

yi =
∑
j∈J

αi,jxj (2.1)

for each i ∈ J. Notice that whether or not X and Y are causally equivalent, there

exists an invertible operator L : K → K such that θY = LθX . However, by Definition

2 and Equation 2.1, we have that X and Y are causally equivalent if and only if

θY = LθX with L : K → K invertible and lower triangular (with respect to E).

The above result provides a convenient method for characterizing causal equiv-

alence. We see in Example 3 that if X is a basis for H and if Y, Z are orthonormal

bases for H such that X ∼c Y and X ∼c Z, then θZ = DθY where D : K → K is

diagonal (with respect to E) and unitary. Therefore, given a basis X for H, there is

a unique (up to rescaling by uni-modular constants) orthonormal basis Y such that

Y ∼c X. Furthermore, this Y is obtained by performing the Classical Gram-Schmidt

algorithm to X. We will now show that every frame X for H is casually equivalent

to a Parseval frame Y for H.

Proposition 2. Let X be a frame for H. Then there exists a Parseval frame Y for

H with X ∼C Y .

Proof. Let H̃ = (ran θX)⊥ ⊂ K. By Proposition 1, there exists a frame X̃ for H̃

such that X ⊕ X̃ is a Riesz basis for H ⊕ H̃. Then by the Classical Gram-Schmidt

algorithm, there exists an orthonormal basis of the form Y ⊕ Ỹ for H ⊕ H̃ and an

invertible lower triangular (with respect to E) L such that θY⊕eY = LθX⊕ eX . Therefore

we have that θY = LθX and θeY = Lθ eX . Since Y and Ỹ are the projections of Y ⊕ Ỹ

onto H and H̃, respectively, and since Y ⊕ Ỹ is an orthonormal basis for H ⊕ H̃, we

have that Y and Ỹ are Parseval frames for H and H̃, respectively, that are causally

equivalent to X and X̃.



17

The following example illustrates the procedure described in Proposition 2

Example 4. Let

X =


1

0

 ,

− 1√
2

1
2

 ,

− 1√
2

−1
2

 .

Then, X is a frame for H = R2 with lower and upper frame bounds A = 1
2

and B = 2,

respectively. According to Proposition 1, we have that

X̃ =
{(

1√
2

)
,
(

1
2

)
,
(

1
2

)}
.

is a tight frame (with frame bound
√

AB = 1, i.e. Parseval) for H̃ = ran (θ∗XθX)⊥ ⊂

R3. Furthermore, we have that X ⊕ X̃ is a basis for H ⊕ H̃ (with lower and up-

per frames bounds 1
2

and 2, respectively). Performing the Classical Gram-Schmidt

algorithm on X ⊕ X̃, we obtain the orthonormal basis

Y ⊕ Ỹ =


√

2√
3

0

 ,

−2
√

2√
33

√
3√
11

 ,

− 1√
11

−2
√

2√
11

⊕
{(

1√
3

)
,
(

4√
33

)
,
( √

2√
11

)}

for H ⊕ H̃. By projecting Y ⊕ Ỹ onto H, we obtain a Parseval frame Y for H with

Y =


√

2√
3

0

 ,

−2
√

2√
33

√
3√
11

 ,

− 1√
11

−2
√

2√
11


and

y1 =
√

2√
3
x1

y2 =
√

2√
33

x1 + 2
√

3√
11

x2

y3 = 1
2
√

11
x1 − 5

2
√

22
x2 +

√
22
4

x3.

Figure 3 graphically depicts the process described in Example 4. Figure 3a shows

the original frame X and Figure 3b shows the same frame embedded in R3. Figure 3c

shows the frame lifted to a basis X⊕X̃ for R3. Figure 3d shows the orthonormal basis

Y ⊕ Ỹ for R3 obtained by applying the classical Gram-Schmidt process to X ⊕ X̃.

Finally, Figure 3e shows Y as the projection of Y ⊕ Ỹ back onto the xy-plane, and
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Figure 3f shows both the original frame and the transformed Parseval frame.

Remark 1. Many of the numerical examples formulated in this dissertation (includ-

ing Example 4) were developed in conjunction with computer simulations using the

workstation provided by a supplement to NSF grant DMS-0070796 (“Operator Alge-

bras and Wavelet Theory”) of Professor David Larson and Texas A&M University.

The above method provides a way of transforming frames into Parseval frames

in a causal fashion (similar to the Classical Gram-Schmidt algorithm). However, the

method allows for many “lifts” X̃ for which X ⊕ X̃ is a Riesz basis for H ⊕ H̃.

We will define an optimal lift X̃ to be one that minimizes κ(L) = ‖L‖‖L−1‖ (i.e.

the condition number of L). However, in order to determine a L for which κ(L) is

minimal, we must first find a lower bound for such a κ(L).

Lemma 2. Suppose that H,M , and N are Hilbert spaces. Suppose further that T :

H → M is bijective, S : M → N is bijective, and ST is unitary (i.e. bijective and

isometric). Then, ‖S‖M = ‖T−1‖M and ‖S−1‖N = ‖T‖N .

Proof. We first notice that

‖S‖M =
∥∥STT−1

∥∥
M
≤ ‖ST‖H ·

∥∥T−1
∥∥

M
=
∥∥T−1

∥∥
M

.

Similarly, we have

∥∥T−1
∥∥

M
=
∥∥T−1S−1S

∥∥
M
≤
∥∥(ST )−1

∥∥
N
· ‖S‖M = ‖S‖M .

Likewise, we have

‖T‖H =
∥∥S−1ST

∥∥
H
≤
∥∥S−1

∥∥
N
· ‖ST‖H =

∥∥S−1
∥∥

N

and ∥∥S−1
∥∥

N
=
∥∥TT−1S−1

∥∥
N
≤ ‖T‖H ·

∥∥(ST )−1
∥∥

N
= ‖T‖H .
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x

y

x1

x2

x3

(a) Original Frame for R2

x

y

z

xi

(b) Embedding of R2 into R3

x

y

z

xi

xi ⊕ x̃i

(c) Lift Frame to a Basis

x

y

z

xi

xi ⊕ x̃i

yi ⊕ ỹi

(d) Classical Gram-Schmidt

x

y

z

xi

xi ⊕ x̃i

yi ⊕ ỹi

yi

(e) Project Orthonormal Basis

x

y

x1

x2

x3

y1

y2

y3

(f) Original and Parseval Frames

Fig. 3. Causal Generalized Gram-Schmidt Process.
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The first two inequalities show that ‖S‖M = ‖T−1‖M and the last two inequalities

show that ‖S−1‖N = ‖T‖N .

We will now use Lemma 2 to prove a result about condition numbers.

Lemma 3. Suppose H and K are Hilbert spaces. Suppose further that T : H → K is

injective, S : K → K is bijective, and ST is an isometry. Then ‖S‖K ≥
∥∥∥(T ∗T )−

1
2

∥∥∥
H

and ‖S−1‖K ≥
∥∥∥(T ∗T )

1
2

∥∥∥
H
. In particular, κK(S) ≥ κH((T ∗T )1/2).

Proof. Let M = ran T ⊂ K and N = SM ⊂ K. Let T ′ : H → M be defined

by T ′x = Tx for all x ∈ H and S ′ : M → N be defined by S ′ = S
∣∣
M

. Then

T ′ : H → M is bijective and S ′ : M → N is bijective. Furthermore, for each x ∈ H

we have that S ′T ′x = S ′Tx = STx and so S ′T ′ is isometric. So, by Lemma 2, we

have that ‖S ′‖M = ‖(T ′)−1‖M . However, it is clear (by the definition of S ′) that

‖S‖K ≥ ‖S ′‖M = ‖(T ′)−1‖M = ‖((T ′)∗ T ′)−1‖1/2
H . Furthermore, for each x, y ∈ H, we

have that

〈(T ′)∗ T ′x, y〉H = 〈T ′x, T ′y〉H = 〈Tx, Ty〉H = 〈T ∗Tx, y〉H .

Therefore, (T ′)∗ T ′ = T ∗T . Since T is injective, (T ∗T )−1 exists, and thus (T ∗T )−1 =

((T ′)∗ T ′)−1. So, we have

‖S‖K ≥
∥∥((T ′)∗ T ′)−1

∥∥1/2

H
=
∥∥(T ∗T )−1

∥∥1/2

H
=
∥∥∥(T ∗T )−

1
2

∥∥∥
H

.

This establishes the first inequality. To show the second inequality, simply notice that

∥∥S−1
∥∥

K
=
∥∥S−1

∥∥
K
· ‖ST‖H ≥

∥∥S−1ST
∥∥

H
= ‖T‖H =

∥∥∥(T ∗T )
1
2

∥∥∥
H

.

Therefore, we have κK(S) ≥ κH((T ∗T )1/2) as desired.

Now, if X is a frame for H with lower and upper frame bound A and B, re-

spectively and Y is a Parseval frame causally equivalent to X, then there exists an
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invertible lower triangular (with respect to E) L such that θY = LθX . Since Y is Par-

seval, θY is an isometry; hence, by Lemma 3, we have that κK(L) ≥ κH((θ∗XθX)
1
2 ). By

Equations 1.4 and 1.5, we have that
∥∥∥(θ∗XθX)

1
2

∥∥∥
H

=
√

B and
∥∥∥(θ∗XθX)−

1
2

∥∥∥−1

H
=
√

A.

Therefore, we have κK(L) ≥
√

B
A
.

Theorem 1. Let X be a frame for H with lower and upper frame bounds A and B,

respectively. Then, there exists an invertible and lower triangular (with respect to E)

L : K → K such that θ∗XL∗LθX = IH and κK(L) =
√

B
A
.

Proof. Let

T = θX(θ∗XθX)−
3
2 θ∗X ⊕ 1

4
√

AB
P⊥

where P⊥ is defined by Equation 1.6. Then,

T−1 = θX(θ∗XθX)−
1
2 θ∗X ⊕ 4

√
AB P⊥.

Notice that ‖θX(θ∗XθX)−
3
2 θ∗X‖K = ‖(θ∗XθX)−

1
2‖H = 1√

A
and ‖θX(θ∗XθX)−

1
2 θ∗X‖K =

‖(θ∗XθX)
1
2‖H =

√
B. Furthermore, since (IK − θX(θ∗XθX)−1θ∗X) is the orthogonal pro-

jection of K onto (ran θX)⊥ ⊂ K, we have that ‖IK−θX(θ∗XθX)−1θ∗X‖ = 1. Therefore,

we have

‖T‖K = max

{∥∥∥θX(θ∗XθX)−
3
2 θ∗X

∥∥∥ ,

∥∥∥∥ 1
4
√

AB
P⊥
∥∥∥∥} = max

{
1√
A

,
1

4
√

AB

}
=

1√
A

and

‖T−1‖K = max
{∥∥∥θX(θ∗XθX)−

1
2 θ∗X

∥∥∥ ,
∥∥∥ 4
√

AB P⊥
∥∥∥} = max

{√
B,

4
√

AB
}

=
√

B.

Since T is positive and invertible, we have that

T ∗T = T 2 = θX(θ∗XθX)−2θ∗X ⊕ 1√
AB

P⊥

is positive and invertible and therefore there exists an invertible and lower triangular
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(with respect to E) L such that T ∗T = L∗L (via a Cholesky-like factorization of

T ∗T ). Furthermore, ‖L‖K = ‖T‖K = 1√
A

and ‖L−1‖K = ‖T−1‖K =
√

B. That is,

κK(L) =
√

B
A
. Finally, since θX(θ∗XθX)−

3
2 θ∗X = P

(
θX(θ∗XθX)−

3
2 θ∗X

)
P , we have

θ∗XL∗LθX = θ∗XT ∗TθX = θ∗X
(
θX(θ∗XθX)−2θ∗X

)
θX = IK .

That is, LθX is the analysis operator of a Parseval frame for H.

Corollary 1. There exists an invertible and lower triangular (with respect to E)

L such that LθX is the analysis operator for a Parseval frame for H and κK(L) is

minimized.

Proof. Since κK(L) ≥
√

B
A

whenever L is invertible and lower triangular (with respect

to E) and LθX is the analysis operator for a Parseval frame for H, and since Theorem

1 provides a method for constructing such an L with κK(L) =
√

B
A
, it follows that

such an L is optimal (in the sense that κK(L) is minimized).

Notice that there are many choices for T in Theorem 1. However, for each choice

we must have TP = UθX(θ∗XθX)−
3
2 θ∗X where U : K → K is unitary. The following

example illustrates the construction in Theorem 1 for a specific frame.

Example 5. Let

X =


1

0

 ,

− 1√
2

1
2

 ,

− 1√
2

−1
2

 .

Then, X is a frame for R2 with lower and upper frame bounds A = 1
2

and B = 2,

respectively. Following the process described in Theorem 1, we obtain T : R3 → R3

such that

T =


√

2+2
4

√
2−1
4

√
2−1
4

√
2−1
4

5
√

2+2
8

−3
√

2+2
8

√
2−1
4

−3
√

2+2
8

5
√

2+2
8
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with respect to the standard orthonormal basis for R3, and so

L =


√

2√
3

0 0
√

2√
33

2
√

3√
11

0

1
2
√

11
− 5

2
√

22

√
22
4

 .

Therefore, defining θY = LθX , we obtain

Y =


√

2√
3

0

 ,

−2
√

2√
33

√
3√
11

 ,

− 1√
11

−2
√

2√
11

 .

Furthermore, we have that Y is a Parseval frame for R2, Y ∼C X, and κ(L) = 2 is

minimized.

C. A Lifting Method for the CGGS Process

The proof of Proposition 2 uses a lift X̃ of a frame X for H to a Riesz basis for

H ⊕ H̃. However, determination of a best Parseval frame Y for which Y ∼C X

(as constructed in Theorem 1) appears to be independent of such a lift. That is,

the construction of Y is the result of defining θY = LθX where L is determined by

performing a Cholesky-like factorization of a positive and invertible operator on K.

We will now show a correlation between X̃ and L and investigate a minimization of

κHS(L) where κHS is the Hilbert-Schmidt (or Frobenius) condition number.

Lemma 4. If X is a frame for H and X̃ is a complimentary frame of X for H̃, then

θ
X⊕ eXθ∗

X⊕ eX = θ
X

θ∗
X

+ θ eXθ∗eX .

Proof. Let a ∈ K be arbitrary. Then,

θ
X⊕ eX θ∗

X⊕ eX a = θ
X⊕ eX

∑
i∈J

〈a, ei〉 (xi ⊕ x̃i) =
∑
i∈J

〈a, ei〉 θX⊕ eX xi ⊕ x̃i
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Using the definition of θX⊕ eX we have

θ
X⊕ eX θ∗

X⊕ eX a =
∑
i∈J

〈a, ei〉
∑
j∈J

〈xi ⊕ x̃i, xj ⊕ x̃j〉ej

=
∑
i∈J

〈a, ei〉
∑
j∈J

〈xi, xj〉ej +
∑
i∈J

〈a, ei〉
∑
j∈J

〈x̃i, x̃j〉ej

Using the definition of θX and θ eX we have

θ
X⊕ eX θ∗

X⊕ eX a =
∑
i∈J

〈a, ei〉 θXxi +
∑
i∈J

〈a, ei〉 θ eX x̃i

= θX

∑
i∈J

〈a, ei〉xi + θ eX
∑
i∈J

〈a, ei〉 x̃i

= θXθ∗Xa + θ eXθ∗eXa =
(
θXθ∗X + θ eXθ∗eX) a

Since a was chosen arbitrarily, we have

θ
X⊕ eX θ∗

X⊕ eX = θ
X

θ∗
X

+ θ eXθ∗eX .

Proposition 3. Let X be a frame for H and let X̃ be a frame for H̃ that is a strong

complement of X (i.e. X ⊕ X̃ is a Riesz basis for H ⊕ H̃ and θ∗eXθ
X

= 0). Then,

(
θ

X⊕ eX θ∗
X⊕ eX

) 1
2

= θX (θ∗XθX)−
1
2 θ∗X + θ eX (θ∗eXθ eX)− 1

2 θ∗eX .

Furthermore, θ
X⊕ eX θ∗

X⊕ eX is invertible and

(
θ

X⊕ eX θ∗
X⊕ eX

)− 1
2

= θX (θ∗XθX)−
3
2 θ∗X + θ eX (θ∗eXθ eX)− 3

2 θ∗eX .

Proof. By direct computation, we notice that

(
θX (θ∗XθX)−

1
2 θ∗X + θ eX (θ∗eXθ eX)− 1

2 θ∗eX
)2

= θXθ∗X + θ eXθ∗eX
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since θ∗eXθ
X

= 0
(
and θ∗

X
θ eX = 0

)
. Therefore, by Lemma 4, we have

(
θ

X⊕ eX θ∗
X⊕ eX

) 1
2

= θX (θ∗XθX)−
1
2 θ∗X + θ eX (θ∗eXθ eX)− 1

2 θ∗eX
as desired. Next, we also notice that

(
θX (θ∗XθX)−

3
2 θ∗X + θ eX (θ∗eXθ eX)− 3

2 θ∗eX
)2

= θX (θ∗XθX)−2 θ∗X + θ eX (θ∗eXθ eX)−2
θ∗eX .

Therefore,

(
θX (θ∗XθX)−

3
2 θ∗X + θ eX (θ∗eXθ eX)− 3

2 θ∗eX
)2 (

θ
X⊕ eX θ∗

X⊕ eX
)

=

(
θX (θ∗XθX)−2 θ∗X + θ eX

(
θ∗eXθ eX

)−2

θ∗eX
)(

θ
X

θ∗
X

+ θ eXθ∗eX
)

= θX (θ∗XθX)−1 θ∗X + θ eX
(
θ∗eXθ eX

)−1

θ∗eX
and

(
θ

X
θ∗

X
+ θ eXθ∗eX) (θX (θ∗XθX)−2 θ∗X + θ eX (θ∗eXθ eX)−2

θ∗eX
)

=
(
θ

X⊕ eX θ∗
X⊕ eX

)(
θX (θ∗XθX)−

3
2 θ∗X + θ eX

(
θ∗eXθ eX

)− 3
2
θ∗eX
)2

= θX (θ∗XθX)−1 θ∗X + θ eX
(
θ∗eXθ eX

)−1

θ∗eX
Furthermore, since X ⊕ X̃ is a Riesz basis for H ⊕ H̃ and since θ∗eXθ

X
= 0, we have

that H̃ = (ran θX)⊥ = ran θ eX and therefore

K = (ran θX)⊕
(
ran θ eX) .

Also, since θX (θ∗XθX)−1 θ∗X is the orthogonal projection of K onto ran θX ⊂ K and
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θ eX
(
θ∗eXθ eX

)−1

θ∗eX is the orthogonal projection of K onto H̃ ⊂ K, we have that

(
θX (θ∗XθX)−

3
2 θ∗X + θ eX (θ∗eXθ eX)− 3

2 θ∗eX
)2

θ
X⊕ eX θ∗

X⊕ eX
= IK

= θ
X⊕ eX θ∗

X⊕ eX
(

θX (θ∗XθX)−
3
2 θ∗X + θ eX

(
θ∗eXθ eX

)− 3
2
θ∗eX
)2

Therefore, we have

(
θ

X⊕ eX θ∗
X⊕ eX

)− 1
2

= θX (θ∗XθX)−
3
2 θ∗X + θ eX (θ∗eXθ eX)− 3

2 θ∗eX .

If X̃ is a frame for H̃ such that X ⊕ X̃ is a Riesz basis for H ⊕ H̃ and if

θ∗
X⊕ eXL∗Lθ

X⊕ eX = IK ,

then

L∗L =
(
θ

X⊕ eX θ∗
X⊕ eX

)−1

.

In particular,

(L∗L)
1
2 =

(
θ

X⊕ eX θ∗
X⊕ eX

)− 1
2
. (2.2)

Analogous to Equations 1.4 and 1.5, we define

C =
∥∥∥(θ∗XθX)−

1
2

∥∥∥−2

HS
(2.3)

and

D =
∥∥∥(θ∗XθX)

1
2

∥∥∥2

HS
(2.4)

to be the Hilbert-Schmidt lower and upper frame bounds for X, respectively. We will

now prove a theorem regarding the minimization of κHS(L) for a certain class of lifts

X̃.
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Theorem 2. Let X = {xi}i∈J be a frame for H where k = card J < ∞. For each

frame X̃ for H̃ that is a strong complement of X and each lower triangular (with

respect to E) and invertible operator L such that θ∗
X⊕ eXL∗Lθ

X⊕ eX = IH⊕ eH , then

κHS(L) ≥ κHS

(
(θ∗XθX)

1
2

)
+ (k − n). (2.5)

Furthermore, equality in Equation 2.5 holds if and only if X̃ is tight with frame bound
√

CD where C and D are the lower and upper Hilbert-Schmidt frame bounds for X,

respectively.

Proof. Since k < ∞, we have that n = dim H ≤ k < ∞. Let X̃ be an arbitrary frame

for H̃ that is a strong compliment of X, and let C̃ and D̃ be the lower and upper

Hilbert-Schmidt frame bounds for X̃. By Equation 2.2 we have that

κHS(L) = ‖L‖HS · ‖L−1‖HS =
∥∥∥(L∗L)

1
2

∥∥∥
HS
·
∥∥∥(L∗L)−

1
2

∥∥∥
HS

=

∥∥∥∥(θX⊕ eX θ∗
X⊕ eX

)− 1
2

∥∥∥∥
HS

·
∥∥∥∥(θX⊕ eX θ∗

X⊕ eX
) 1

2

∥∥∥∥
HS

and thus by Proposition 3 we have

κHS(L) =
∥∥∥θX (θ∗XθX)−

3
2 θ∗X + θ eX (θ∗eXθ eX)− 3

2 θ∗eX
∥∥∥

HS

·
∥∥∥θX (θ∗XθX)−

1
2 θ∗X + θ eX (θ∗eXθ eX)− 1

2 θ∗eX
∥∥∥

HS

Since X and X̃ are strongly disjoint, we have

κ2
HS(L) =

(∥∥∥θX (θ∗XθX)−
3
2 θ∗X

∥∥∥2

HS
+
∥∥∥θ eX (θ∗eXθ eX)− 3

2 θ∗eX
∥∥∥2

HS

)
·
(∥∥∥θX (θ∗XθX)−

1
2 θ∗X

∥∥∥2

HS
+
∥∥∥θ eX (θ∗eXθ eX)− 1

2 θ∗eX
∥∥∥2

HS

)
=

(∥∥∥(θ∗XθX)−
1
2

∥∥∥2

HS
+
∥∥∥(θ∗eXθ eX)− 1

2

∥∥∥2

HS

)
·
(∥∥∥(θ∗XθX)

1
2

∥∥∥2

HS
+
∥∥∥(θ∗eXθ eX) 1

2

∥∥∥2

HS

)
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Using the definition of the Hilbert-Schmidt frame bounds, we have

κ2
HS(L) =

(
1

C
+

1

C̃

)
·
(
D + D̃

)
.

Since X and X̃ are complementary, we also have that X ⊕ X̃ is a (Riesz) basis for

H ⊕ H̃. By definition, H̃ = (ran θX)⊥ ⊂ K. Since X and X̃ are strong complements,

we have that H̃ = (ran θX)⊥ = ran θ eX ⊂ K. Thus dim
(
ran θ eX) = dim

(
(ran θX)⊥

)
=

(k − n). So, it follows that

κHS

((
θ∗eXθ eX) 1

2

)
=

√
D̃

C̃
≥ (k − n).

with equality if and only if θ∗eXθ eX = c I eH for some c > 0 (i.e. X̃ is a tight frame for H̃

with frame bound c). Thus, we have

κ2
HS(L) =

D

C
+

D̃

C̃
+

D

C̃
+

D̃

C

≥ κ2
HS

(
(θ∗XθX)

1
2

)
+ (k − n)2 +

(
D(k − n)2

D̃
+

D̃

C

)

A straightforward calculus exercise shows that if f(x) =
α

x
+ βx with α, β > 0, then

f(x) ≥ 2
√

αβ for all x > 0. Furthermore, f(x) attains its minimum on (0,∞) if and

only if x =
√

α
β
. Thus κ(L) attains its minimum if and only if D̃ = (k − n)

√
CD.

Therefore, we have that

κ2
HS(L) ≥ κ2

HS

(
(θ∗XθX)

1
2

)2

+ (k − n)2 + 2 (k − n) κHS

(
(θ∗XθX)

1
2

)
=
(
κHS

(
(θ∗XθX)

1
2

)
+ (k − n)

)2

.

Thus,

κHS(L) ≥ κHS

(
(θ∗XθX)

1
2

)
+ (k − n)
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with equality if and only if X̃ is a tight frame for H̃ with Hilbert-Schmidt frame

bound (k − n)
√

CD or equivalently (natural) frame bound
√

CD. Furthermore, in

the special case that X in Theorem 2 is tight, then the lifting tight frame X̃ for H̃

must have the same frame bound as X.

Theorem 1 provides an operator factorization method for computing a best Par-

seval frame Y that is causally equivalent to a given frame X. That is, Theorem 1

provides a constructive method for computing a lower triangular (with respect to E)

L : K → K for which θY = LθX and κ(L) is minimized. As previously noted, there

are many choices for L in Theorem 1, but for each choice we must have that

(L∗L)
1
2 P = UθX (θ∗XθX)−

3
2 θ∗X

where P is the projection of K onto ran θX ⊂ K and U : K → K is unitary.

It is a straightforward exercise [6] to show that if A is a positive and invertible

operator on an n dimensional Hilbert space, then

√
n

‖A−1‖
≤ ‖A‖HS ≤

√
n‖A‖.

So, it immediately follows that

1√
n‖A−1‖

≤ 1

‖A−1‖HS

≤ ‖A‖√
n

,

and therefore

1

‖A−1‖2
≤ ‖A‖HS

‖A−1‖HS

≤ ‖A‖2. (2.6)

We will now show that the tight frames that minimize κHS in Theorem 2 can be used

to construct a best Parseval frame that is causally equivalent to a given frame as in

Theorem 1.

Proposition 4. Let H be a Hilbert space such that dim H = n < ∞. Let X be
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a frame for H with card X = k < ∞ and lower and upper frame bounds A and B,

respectively, and lower and upper Hilbert-Schmidt frame bounds C and D, respectively.

Let X̃ be a tight frame for H̃ with frame bound
√

CD that is a strong complement of

X. Then, there exists an invertible and lower triangular (with respect to E) operator

L : K → K such that

θ∗
X⊕ eXL∗Lθ

X⊕ eX = IK (2.7)

and κ(L) =
√

B
A

and κHS(L) =
√

D
C

+ (k− n) are minimal. Furthermore, LθX is the

analysis operator for a Parseval frame.

Proof. Since n < ∞, it follows that
∥∥∥(θ∗XθX)

1
2

∥∥∥
HS

< ∞ and
∥∥∥(θ∗XθX)−

1
2

∥∥∥
HS

< ∞.

Also, since k < ∞ it follows that k − n < ∞ and thus

∥∥∥∥(θ∗eXθ eX
) 1

2

∥∥∥∥
HS

< ∞ and∥∥∥∥(θ∗eXθ eX
)− 1

2

∥∥∥∥
HS

< ∞. By Equations 2.3 and 2.4 we have that

√
CD =

∥∥∥(θ∗XθX)
1
2

∥∥∥
HS∥∥∥(θ∗XθX)−

1
2

∥∥∥
HS

,

and therefore, by Equations 1.4, 1.5, and 2.6, it follows that

A =
1∥∥∥(θ∗XθX)−

1
2

∥∥∥2 ≤
√

CD ≤
∥∥∥(θ∗XθX)

1
2

∥∥∥2

= B. (2.8)

We solve Equation 2.7 for L∗L and then perform a Cholesky-like factorization on L∗L

to obtain L. Since X⊕X̃ is a (Riesz) basis for H⊕H̃, it follows that θX⊕ eX : H⊕H̃ →

K is invertible, and therefore by Equation 2.2 we have

‖L‖ =
∥∥∥(L∗L)

1
2

∥∥∥ =

∥∥∥∥(θX⊕ eXθ∗
X⊕ eX

)− 1
2

∥∥∥∥
=
∥∥∥θX (θ∗XθX)−

3
2 θ∗X + θ eX (θ∗eXθ eX)− 3

2 θ∗eX
∥∥∥ ,
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and similarly

‖L‖HS =
∥∥∥θX (θ∗XθX)−

3
2 θ∗X + θ eX (θ∗eXθ eX)− 3

2 θ∗eX
∥∥∥

HS
.

Since X and X̃ are strongly disjoint, and since X̃ is tight with frame bound
√

CD,

it follows by Equation 2.8 that

‖L‖ = max
{∥∥∥θX (θ∗XθX)−

3
2 θ∗X

∥∥∥ ,
∥∥∥θ eX (θ∗eXθ eX)− 3

2 θ∗eX
∥∥∥}

= max
{∥∥∥(θ∗XθX)−

1
2

∥∥∥ ,
∥∥∥(θ∗eXθ eX)− 1

2

∥∥∥} = max

{
1√
A

,
1

4
√

CD

}
=

1√
A

and

‖L‖HS =

(∥∥∥(θ∗XθX)−
1
2

∥∥∥2

+
∥∥∥(θ∗eXθ eX)− 1

2

∥∥∥2
) 1

2

=

(
1

C
+

k − n√
CD

) 1
2

.

Also, we have that

‖L−1‖ =
∥∥∥(L∗L)−

1
2

∥∥∥ =

∥∥∥∥(θX⊕ eXθ∗
X⊕ eX

) 1
2

∥∥∥∥
=
∥∥∥θX (θ∗XθX)−

1
2 θ∗X + θ eX (θ∗eXθ eX)− 1

2 θ∗eX
∥∥∥ ,

and also

‖L−1‖HS =
∥∥∥θX (θ∗XθX)−

1
2 θ∗X + θ eX (θ∗eXθ eX)− 1

2 θ∗eX
∥∥∥

HS
.

Similar to above, we have that

‖L−1‖ = max
{∥∥∥θX (θ∗XθX)−

1
2 θ∗X

∥∥∥ ,
∥∥∥θ eX (θ∗eXθ eX)− 1

2 θ∗eX
∥∥∥}

= max
{∥∥∥(θ∗XθX)

1
2

∥∥∥ ,
∥∥∥(θ∗eXθ eX) 1

2

∥∥∥} = max
{√

B,
4
√

CD
}

=
√

B
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and also

‖L−1‖HS =

(∥∥∥(θ∗XθX)
1
2

∥∥∥2

+
∥∥∥(θ∗eXθ eX) 1

2

∥∥∥2
) 1

2

=
(
D + (k − n)

√
CD

) 1
2
.

Therefore, κ(L) =
√

B
A

and κHS(L) =
√

D
C

+ (k − n) as desired. We then define the

Parseval frame Y for H by θY = LθX .

Theorem 2 provides a “lifting method” for determining a CGGS algorithm to

transform a frame X into a Parseval frame in a causal fashion. It demonstrates

how choosing a tight lifting frame X̃ for H̃ that is strongly disjoint to X followed

by the Classical Gram-Schmidt process and the orthogonal projection onto H yields

a Parseval frame Y that is causally equivalent to X by L with minimal κHS(L) =√
D
C

+(k−n). Theorem 1 provides an “operator factorization method” for determining

a similar CGGS algorithm. Proposition 4 shows that the lifting in Theorem 2 yield a

lower triangular (with respect to E) operator L as in Theorem 1 for which κ(L) =
√

B
A

and κHS(L) =
√

D
C

+ (k − n) are minimal. Appendix A provides the CGGS methods

discussed in Theorem 1 and Theorem 2 in pseudo-algorithm form, and Appendix B

provides several MATLAB routines used to numerically compute and verify these

results.
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CHAPTER III

PARTIAL RESULTS AND CONCLUSIONS

A. Compressions of Positive Operators

Theorem 2 provides a lower bound for the Hilbert Schmidt condition number of L

given that the lifting frame X̃ for H̃ is strongly disjoint from X. That is

κHS(L) ≥ κHS

(
(θ∗XθX)

1
2

)
+ (k − n)

with equality if and only if X̃ is tight for H̃ with frame bound∥∥∥(θ∗XθX)
1
2

∥∥∥
HS∥∥∥(θ∗XθX)−

1
2

∥∥∥
HS

.

In order to satisfy θ∗XL∗LθX = IH , we must have that PL∗LP = θX (θ∗XθX)−2 θ∗X and

P (L∗L)−1P = θXθ∗X where P is the orthogonal projection of K onto ran θX ⊂ K.

However, Theorem 2 requires that X̃ be strongly disjoint from X. We will now

show some analysis of relaxing the condition that X and X̃ be strongly disjoint. If

T is a positive and invertible operator on a Hilbert space K and P is a (non-trivial)

self-adjoint projection of K onto as subspace H of K, then R = PTP is positive but

not invertible. However, R can be viewed as a positive and invertible operator from

the Hilbert space H to H. Therefore, we will view R−1 as the operator R′ : H → H

such that R′R = P and RR′ = IH . Since the compression of a positive operator T to

a subspace is non-negative and since T ≥ PTP (i.e. T − PTP is non-negative), we

have that

‖T‖HS ≥ ‖PTP‖HS
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and

‖T−1‖HS ≥ ‖PT−1P‖HS.

However, there is no relationship (in general) between ‖PT−1P‖HS and ‖R′‖HS =∥∥∥(PTP )“−1”
∥∥∥

HS
. To illustrate this fact, consider the following two examples.

Example 6. Let T1, T2 : R3 → R3 be defined by

T1 =

 5 −3 −2

−3 5 2

−2 2 3

 T2 =

5 3 3

3 3 4

3 4 4


Then T1 and T2 are positive and invertible. Let H be the subspace of R3 defined by

H = span


−4

−9

2

 ,

121

−56

−10


 .

Then,
∥∥PT−1

1 P
∥∥

HS
=

√
2,309,673
2,832

≈ 0.537 and
∥∥∥(PT1P )“−1”

∥∥∥
HS

=
√

539,689
1,416

≈ 0.519. We

also have that
∥∥PT−1

2 P
∥∥

HS
=

√
7,073,449
1,947

≈ 1.366 and
∥∥∥(PT2P )“−1”

∥∥∥
HS

=
√

20,455,437,355
97,969

≈

1.460. In particular, we have that

∥∥PT−1
1 P

∥∥
HS

>
∥∥∥(PT1P )“−1”

∥∥∥
HS

and ∥∥PT−1
2 P

∥∥
HS

<
∥∥∥(PT2P )“−1”

∥∥∥
HS

.

B. Confluent Equivalence Relations

A relation is any subset of a Cartesian product. For example, if X and Y are sets,

then any subset of X × Y is a binary relation from X to Y . In particular, a subset

of X ×X is called a binary relation on X. For a binary relation R, one often writes

xRy to mean that (x, y) ∈ R. A binary relation R is an equivalence relation if R is
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reflexive, symmetric, and transitive. For an equivalence relation R, we write x ∼R y

to mean xRy.

If R and S are binary relations on X, we define the confluence of R with S

denoted R � S by

R � S = {(x, y) ∈ X ×X : ∃ z ∈ X with xRz and zSy} .

It is clear that R ⊂ R �S and S ⊂ R �S. Also, notice that, in general, R �S 6= S �R.

Furthermore, the following example shows that if R and S are equivalence relations

on X, then, in general, neither R � S nor S �R is an equivalence relation on X.

Example 7. Let X be a set of three elements, namely X = {a, b, c}. Let R,S ⊂

X ×X defined by

R = {(a, a), (a, c), (b, b), (c, a), (c, c)}

and

S = {(a, a), (b, b), (b, c), (c, b), (c, c)}.

It is clear that both R and S are equivalence relations on X. If we let A = {a, c} ⊂ X

and B = {b, c} ⊂ X, then we see that R = (A× A) ∪
(
A{ × A{

)
and S = (B ×B) ∪(

B{ ×B{
)
. Notice that

R � S = {(a, a), (a, b), (a, c), (b, b), (b, c), (c, a), (c, b), (c, c)}

and

S �R = {(a, a), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c)}.

It is clear that R�S is not symmetric since (a, b) ∈ R�S but (b, a) /∈ R�S. Similarly,

S �R is not symmetric since (b, a) ∈ S �R but (a, b) /∈ S �R. Also, neither R �S nor

S �R is transitive.



36

Example 7 shows that the confluence of equivalence relations is not necessarily

an equivalence relation. Thus, it may be surprising that the confluence of similarity

and causality of frames of length k for H does yield an equivalence relation. To see

this, let

H(n, k) = {X = {xi}k
i=1 ⊂ H : X is a frame for H, dim H = n}.

If we let S be the equivalence relation on H(n, k) representing similarity and C be

the equivalence relation on H(n, k) representing causality, we have that

S = {(X, Y ) ∈ H(n, k)×H(n, k) : θX = θY T, T ∈ B(H), T−1 ∈ B(H)}

and

C = {(X, Y ) ∈ H(n, k)×H(n, k) :

θX = LθY , L ∈ B(K), L−1 ∈ B(K), L lower triangular}

Therefore,

S � C = {(X, Y ) ∈ H(n, k)×H(n, k) :

∃ Z ∈ H(n, k) with (X, Z) ∈ S and (Z, Y ) ∈ C}

= {(X, Y ) ∈ H(n, k)×H(n, k) : θX = LθY T, T ∈ B(H), T−1 ∈ B(H),

L ∈ B(K), L−1 ∈ B(K), L lower triangular}

= {(X, Y ) ∈ H(n, k)×H(n, k) :

∃ Z ∈ H(n, k) with (X, Z) ∈ C and (Z, Y ) ∈ S}

= C � S.

It is a straightforward exercise to show that S �C is also both reflexive and transitive.
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C. Future Research Directions

While Chapter II establishes two methods for transforming frames into Parseval

frames in a causal fashion, both methods still have several unanswered and/or un-

studied questions. Of particular importance is the restriction that the lifting frame in

Theorem 2 be strongly disjoint from the original frame. Numerical computations in-

dicate that Theorem 2 still holds if the requirement that the lifting frame be strongly

disjoint from the original frame is relaxed. However, Section A of this chapter shows

that examining the compression of positive and invertible operators to subspaces is

not sufficient in gaining a complete understanding of this problem. Therefore, we now

formally outline a future research problem.

Question 1. Let n = dim H and let X be a frame for H with k = card X < ∞.

If we let H̃ = (ran θX)⊥ ⊂ K, then each frame X̃ for H̃ that is complimentary to

X induces a (Riesz) basis X ⊕ X̃ for H ⊕ H̃ and therefore induces an orthonormal

basis (by the Classical Gram-Schmidt process) of the form Y ⊕ Ỹ for H ⊕ H̃ and a

lower triangular (with respect to E) and invertible operator L : K → K such that

θY⊕eY = LθX⊕ eX . By Theorem 2, we have that

α = infeX κHS(L) ≤
√

D

C
+ (k − n).

Since rank L = k, we know that α ≥ k. What is α? In particular, is it true that

α =
√

D
C

+ (k − n)?

Since recent work [1] and current research is in the area of finite frames, it is

clear why the restriction of Theorem 2 to finite frames is of particular importance.

However, in order to generalize the Classical Gram-Schmidt process to all frames in

a causal fashion, the restriction to finite frames may be inadequate. Equation 2.8

shows that if X is a (finite) frame with lower and upper frame bounds A and B,
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respectively, then A ≤
√

CD ≤ B, where C and D are the lower and upper Hilbert-

Schmidt frame bounds for X, respectively. Notice that even though both C and D

depend on the dimension of H, the quantity
√

CD does not since it is bound below

and above by constants that do not depend on dim H. If H is not finite dimensional,

then θ∗XθX : H → H is not necessarily a Hilbert-Schmidt class operator in B(H).

Therefore, neither C nor D is necessarily finite.

Question 2. If card X = +∞, then it is clear that dim K is not finite. Therefore,

κHS(L) in Theorem 2 may or may not be finite. Furthermore, the best lifting frame

in Theorem 2 is a tight frame for H̃ (that is strongly disjoint of X) with frame

bound
√

CD which is bound between the frame bounds of X. What can be said about

extending the analysis of Theorem 2 beyond finite frames (i.e. to frames X with

card X = +∞).

A natural question regarding the CGGS process described in Theorem 1 and

Theorem 2 is whether the process is continuous. That is, if X and X ′ are frames

which are close (in some sense of “close”), then is it true also that the corresponding

Parseval frames Y and Y ′ obtained by the CGGS, respectively, are also close? One

measurement of distance between frames, which is used in [2], is

dist(X, X ′) =

(∑
i∈J

‖xi − x′i‖
2

) 1
2

.

Another measurement of distance between frames is

dist(X, X ′) = ‖θX − θX′‖

where ‖θX − θX′‖ is the Hilbert space operator norm or Hilbert-Schmidt norm. Other

measurements of distances between frames are sometimes used, but these listed are

the most prevalent. Due to numerical imprecision and other forms of round off error,
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it is often the case that construction and/or reconstruction of frames is not completely

accurate. That is, if X is the intended frame and X ′ is the numerically computed

frame, then it may be that dist(X, X ′) 6= 0. Therefore, we consider the following

problem regarding the continuity of the CGGS algorithms described in Theoremis 1

and 2.

Question 3. Let X be a frame for H, and let dist(·, ·) be a metric on the set of

frames for H with the same cardinality as X. Given ε > 0, does there exist a δ > 0

such that whenever dist(X, X ′) < δ, then dist(CGGS(X), CGGS(X ′))? That is, is

the CGGS algorithm in Theorems 1 and 2 continuous?

The process of lifting a frame to a basis followed by the Classical Gram-Schmidt

algorithm and compression to the original Hilbert space requires no optimality in

the lifting frame. Theorem 2 provides optimal results, and as a consequence, requires

the computation of (θ∗XθX)−1 among other quantities. While the previously described

procedure has the same level of computational complexity as the Classical Gram-

Schmidt process, it is clear that this complexity is increased if optimality is required.

That is, finding a Parseval frame that is causally equivalent to a given frame requires

the same number of operations as the Classical Gram-Schmidt process. However,

finding the best (as described in Theorems 1 and 2) Parseval frame that is causally

equivalent to a given frame requires moderately more computations.

Question 4. Let X be a frame for H. Given ε > 0, is there a lifting frame X̃

for H̃ that is strongly disjoint from X and which is considerably easier (in terms of

computational complexity) to compute than that presented in Theorem 2 such that

the Parseval frame obtained by performing the Classical Gram-Schmidt algorithm to

X ⊕ X̃ followed by the compression to H has κHS(L) <
√

D
C

+ (k − n) + ε? That is,

if we allow κHS(L) to be slightly more than optimal, can we compute X̃ (and thus the
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resulting Parseval frame) more efficiently?

Both Theorems 1 and 2 consider minimizing κ(L) (in either the Hilbert space

operator norm or the Hilbert-Schmidt norm) as the measurement of “best” Parseval

frame that is causally equivalent to a given frame. However, there are other natural

choices for measuring the best Parseval frame that is causally equivalent to a given

frame. For example, if X is a Parseval frame for H and D : K → K is an invertible

and diagonal (with respect to E) operator, then Y defined by θY = DθX is a frame

for H which is not necessarily Parseval. We say, though, that such a Y is a scalable

frame for H. Since X is Parseval, there exists a frame X̃ for H̃ such that X⊕ X̃ is an

orthonormal basis for H⊕ H̃. Therefore, if we let define Ỹ by θeY = Dθ eX , then Y ⊕ Ỹ

is a scalable basis for H ⊕ H̃. So, applying the Classical Gram-Schmidt algorithm to

Y ⊕ Ỹ yields the orthonormal basis Z ⊕ Z̃ with

θZ⊕ eZ = D−1θY⊕eY = D−1DθX⊕ eX = θX⊕ eX .

Notice that κ(D−1) = κ(D) (in either of the two norms discussed) is not necessarily

minimal. However, the choice of Ỹ is (in some sense) the most natural choice in

that it forces the lower triangular operator from the CGGS to be “as diagonal as

possible”. We say that an operator T : K → K is a band operator [6] with lower

bandwidth bL and upper bandwidth bU if 〈Tei, ej〉 = 0 whenever i > j+bL or i < j−bU .

Furthermore, if bL = bU , we simply call this common value the bandwidth of T .

Question 5. Among all frames X̃ for H̃ for which X ⊕ X̃ is a (Riesz) basis for

H⊕H̃, which ones yield an invertible and lower triangular (with respect to E) operator

L : K → K (via the Classical Gram-Schmidt algorithm) such that LθX is an isometry

from H to K and the (lower) bandwidth of L is minimized? That is, instead of

minimizing κ(L) with some operator norm, we instead minimize the bandwidth of L
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to define the “best” Parseval frame that is causally equivalent to a given frame.

It is clear that the results of Theorem 1 and Theorem 2 provide definite answers

toward determining a CGGS algorithm. However, we see that there are still open

questions on this topic. These open questions provide opportunities for future research

in the area of frame theory.
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[4] X. Dai and D. Larson, Wandering vectors for unitary systems and orthogonal

wavelets, Memoirs American Mathematics Society, (1998), no. 640.

[5] I. Daubechies, Ten Lectures on Wavelets (SIAM, Philadelphia, PA, 1992).

[6] J. Demmel, Applied Numerical Linear Algebra (SIAM, Philadelphia, PA, 1997).

[7] D. Han and D. Larson, Frames, bases and group representations, Memoirs Amer-

ican Mathematics Society, (2000), no. 697.

[8] K. Kornelson and D. Larson, Rank-one decomposition of operators and construc-

tion of frames, Contemporary Mathematics, to appear.

[9] D. Larson, Frames and wavelets from an operator theoretic point of view, Con-

temporary Mathematics, (1998), no. 228, 201-218.



43

APPENDIX A

CGGS PSEUDO-ALGORITHMS

CGGS (Operator Factorization Method)

1. If they are not already known, compute the lower and upper frame bounds A

and B for X, respectively

1′. Alternatively, compute the lower and upper Hilbert-Schmidt frame bounds C

and D for X, respectively

2. Compute the orthogonal projection of K onto H̃ = (ran θX)⊥ ⊂ K by

P eH = IK − θX (θ∗XθX)−1 θ∗X

3. Let T = θX (θ∗XθX)−2 θ∗X + 1√
AB

P eH
3′. Alternatively, let T = θX (θ∗XθX)−2 θ∗X + 1√

CD
P eH

4. Factor T = L∗L via a Cholesky-like factorization

5. Define Y by θY = LθX
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CGGS (Lifting Method)

1. If they are not already known, compute the lower and upper frame bounds A

and B for X, respectively

1′. Alternatively, compute the lower and upper Hilbert-Schmidt frame bounds C

and D for X, respectively

2. Compute the orthogonal projection of K onto H̃ = (ran θX)⊥ ⊂ K by

P eH = IK − θX (θ∗XθX)−1 θ∗X

3. Define X̃ =
1

4
√

AB
P eHE

3′. Alternatively, define X̃ =
1

4
√

CD
P eHE

4. Perform the Classical Gram-Schmidt algorithm on the (Riesz) basis X ⊕ X̃ for

H ⊕ H̃ to obtain the orthonormal basis Y ⊕ Ỹ for H ⊕ H̃

5. Project Y ⊕ Ỹ onto H to obtain Y
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APPENDIX B

MATLAB ROUTINES

Compare “Inverse” of Compression to Compression of Inverse

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% %
%% Program Name: compression.m %
%% %
%% This routine compares the "inverse" of a compression of a positive %
%% operator to the compression of the inverse of the positive operator. %
%% In particular, the Hilbert Schmidt (Frobenius) norms are compared. %
%% %
%% Programmer: Troy Henderson %
%% Contact: thenders@math.tamu.edu %
%% %
%% Date: May 8, 2005 %
%% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%
% Initialize MATLAB %
%%%%%%%%%%%%%%%%%%%%%
clear all
clc

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% X will be the analysis operator for a frame of %
% k vectors for an n dimensional space (with k>=n) %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
k=3;
n=2;
if (k<n)

disp(’Number of frame vectors must be at’);
disp(’least the dimension of the space!’);
error(’ ’);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Build the analysis operator X for a frame %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
r=0;
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while(r < n)
X=2*rand(k,n)-1;
X=round(10*X)/10;
r=rank(X);

end
X=[-2/5 4/5;-9/10 -4/5;1/5 0];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Find an orthonormal basis for the range of X %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Q=mgs(X);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Build a positive operator A %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
r=0;
while(r < k)

A=4*rand(k,k)-2;
A=A’*A;A=(A+A’)/2;
A=round(A);
r=rank(A);

end
%A=[5 -3 -2;-3 5 2;-2 2 3];
%A=[4 -3 2;-3 2 3;-2 3 9];
%A=[6 3 -3;3 2 -3;-3 -3 3];
A=[5 3 3;3 3 4;3 4 4];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Invert the compression of A to range of X %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
A1=inv(Q’*A*Q);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Compress the inverse of A to the range of X %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
A2=Q’*inv(A)*Q;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Compare the condition numbers of A1 and A2 %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
norm(A2,’fro’)-norm(A1,’fro’)

Convert Frames to Parseval Frames Causally

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%% %
%% Program Name: f2p.m %
%% %
%% This routine transforms a frame X into a "best" Parseval frame Y that %
%% is causally equivalent to X. %
%% %
%% Programmer: Troy Henderson %
%% Contact: thenders@math.tamu.edu %
%% %
%% Date: May 8, 2005 %
%% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [Y,G] = f2p(X);
[k,n] = size(X);
r=rank(X);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Make sure X represents a frame %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if (n>k | r<n)

error(’X must represent the analysis operator of a frame’);
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Compute the inverse of the frame operators and its eigenvalues %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
S=X’*X;
d=eig(S);
SI=inv(S);
SI=(SI+SI’)/2; % Done to force SI to be symmetric

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Compute the "normal" and Hilbert Schmidt frame bounds %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
A=min(d); % = 1/norm(sqrtm(SI),2)^2
B=max(d); % = norm(sqrtm(S),2)^2;
C=1/norm(chol(SI),’fro’)^2;
D=norm(chol(S),’fro’)^2;

%%%%%%%%%%%%%%%%%%%%%
% Lift X to a basis %
%%%%%%%%%%%%%%%%%%%%%
T=X*(SI^2)*X’ + 1/sqrt(A*B)*(eye(k,k)-X*SI*X’);
%T=X*(SI^2)*X’ + 1/sqrt(C*D)*(eye(k,k)-X*SI*X’);
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T=(T+T’)/2; % Done to force T to be symmetric

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Perform a Cholesky-like factorization of T %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
G=lohc(T);
Y=G*X;

Lift frame to a Riesz Basis

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% %
%% Program Name: liftframe.m %
%% %
%% If the input matrix X is the analysis operator for a frame, then this %
%% routine outputs the analysis operator F for a complementary tight %
%% frame such that the direct sum of the two frames form a (Riesz) basis %
%% frame bounds the same as the original frame. %
%% %
%% Programmer: Troy Henderson %
%% Contact: thenders@math.tamu.edu %
%% %
%% Date: May 8, 2005 %
%% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function F = liftframe(X);
[k,n]=size(X);
r=rank(X);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Make sure X represents a frame %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if (n>k | r<n)

error(’X must be the analysis operator of a frame’)’
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Compute the inverse of the frame operator and %
% an orthonormal basis for the range of X %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
S=inv(X’*X);S=(S+S’)/2;
Q=mgs(X,S);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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% Compute the tight frame bound %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%A=1/norm(S);
%B=norm(X’*X);
C=1/norm(chol(S),’fro’)^2;
D=norm(chol(X’*X),’fro’)^2;

%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Compute the tight frame %
%%%%%%%%%%%%%%%%%%%%%%%%%%%
F=sqrt(sqrt(C*D))*Q;

Perform Cholesky-like Factorization

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% %
%% Program Name: lohc.m %
%% %
%% Instead of performing the canonical Cholesky factorization on a %
%% positive definite matrix A with A=L*L’ for some lower triangular L, %
%% this routine performs a Cholesky-like factorization of A=L’*L for %
%% some lower triangular L. %
%% %
%% Programmer: Troy Henderson %
%% Contact: thenders@math.tamu.edu %
%% %
%% Date: May 8, 2005 %
%% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [L,p] = lohc(A);
[L p]=chol(rot90(A,2));
L=rot90(L,2);

Gram-Schmidt Algorithm

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% %
%% Program Name: mgs.m %
%% %
%% If the input matrix X is taller than it is wide, this routine outputs %
%% a matrix Y with columns obtained by performing the Gram-Schmidt %
%% algorithm on the columns of X. If X is wider than it is tall, then %
%% this routine outputs a matrix Y whose rows are obtained by performing %
%% the Gram-Schmidt algorithm on the rows of X. An error will occur if %
%% X does not have full rank. If X has full rank and X is square, the %
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%% Gram-Schmidt process is applied to the columns of X. %
%% %
%% In particular, the output Y is either an isometry, a partial %
%% isometry, or a unitary. %
%% %
%% If a second matrix S is input into MGS, S is assumed to be the %
%% inverse of X’*X. This is done to conserve computations if S has %
%% already been computed. %
%% %
%% Programmer: Troy Henderson %
%% Contact: thenders@math.tamu.edu %
%% %
%% Date: May 8, 2005 %
%% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function Y = mgs(X,S);
[k,n]=size(X);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Check to see if X has full rank %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
r=rank(X);
if ( r < min([k,n]) )

MSG=[’Input matrix has size ’,num2str(k),’x’,num2str(n)];
MSG=[MSG,’ but has rank ’,num2str(r),’.’];
disp(MSG);
disp([’Input matrix should have rank ’,num2str(min([k,n]))]);
error(’ ’);

else
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% If X is wide, transpose, MGS, and transpose back %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if ( k < n )

Y=mgs(X’)’;
else

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Compute S (if needed) and force it to be positive definite %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if ( nargin < 2 )

S=inv(X’*X);
S=(S+S’)/2;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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% Do the magic taking advantage of an already computed S %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Y=X*rot90(chol(rot90(S,2)),2)’;
end

end
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%                                                                        %
%%  Program Name: mgs.m                                                   %
%%                                                                        %
%%  If the input matrix X is taller than it is wide, this routine outputs %
%%  a matrix Y with columns obtained by performing the Gram-Schmidt       %
%%  algorithm on the columns of X.  If X is wider than it is tall, then   %
%%  this routine outputs a matrix Y whose rows are obtained by performing %
%%  the Gram-Schmidt algorithm on the rows of X.  An error will occur if  %
%%  X does not have full rank.  If X has full rank and X is square, the   %
%%  Gram-Schmidt process is applied to the columns of X.                  %
%%                                                                        %
%%  In particular, the output Y is either an isometry, a partial          %
%%  isometry, or a unitary.                                               %
%%                                                                        %
%%  If a second matrix S is input into MGS, S is assumed to be the        %
%%  inverse of X'*X.  This is done to conserve computations if S has      %
%%  already been computed.                                                %
%%                                                                        %
%%  Programmer: Troy Henderson                                            %
%%  Contact: thenders@math.tamu.edu                                       %
%%                                                                        %
%%  Date: May 8, 2005                                                     %
%%                                                                        %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function Y = mgs(X,S);
[k,n]=size(X);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Check to see if X has full rank %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
r=rank(X);
if ( r < min([k,n]) )
    MSG=['Input matrix has size ',num2str(k),'x',num2str(n)];
    MSG=[MSG,' but has rank ',num2str(r),'.'];
    disp(MSG);
    disp(['Input matrix should have rank ',num2str(min([k,n]))]);
	error(' ');
else
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    % If X is wide, transpose, MGS, and transpose back %
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
	if ( k < n )
		Y=mgs(X')';
	else
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        % Compute S (if needed) and force it to be positive definite %
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        if ( nargin < 2 )
            S=inv(X'*X);
            S=(S+S')/2;
        end
        
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        % Do the magic taking advantage of an already computed S %
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
		Y=X*rot90(chol(rot90(S,2)),2)';
	end
end


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%                                                                        %
%%  Program Name: compression.m                                           %
%%                                                                        %
%%  This routine compares the "inverse" of a compression of a positive    %
%%  operator to the compression of the inverse of the positive operator.  %
%%  In particular, the Hilbert Schmidt (Frobenius) norms are compared.    %
%%                                                                        %
%%  Programmer: Troy Henderson                                            %
%%  Contact: thenders@math.tamu.edu                                       %
%%                                                                        %
%%  Date: May 8, 2005                                                     %
%%                                                                        %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%
% Initialize MATLAB %
%%%%%%%%%%%%%%%%%%%%%
clear all
clc

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% X will be the analysis operator for a frame of   %
% k vectors for an n dimensional space (with k>=n) %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
k=3;
n=2;
if (k<n)
    disp('Number of frame vectors must be at');   
    disp('least the dimension of the space!');
    error(' ');
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Build the analysis operator X for a frame %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
r=0;
while(r < n)
    X=2*rand(k,n)-1;
    X=round(10*X)/10;
    r=rank(X);
end
X=[-2/5 4/5;-9/10 -4/5;1/5 0];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Find an orthonormal basis for the range of X %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Q=mgs(X);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Build a positive operator A %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
r=0;
while(r < k)
    A=4*rand(k,k)-2;
    A=A'*A;A=(A+A')/2;
    A=round(A);
    r=rank(A);
end
%A=[5 -3 -2;-3 5 2;-2 2 3];
%A=[4 -3 2;-3 2 3;-2 3 9];
%A=[6 3 -3;3 2 -3;-3 -3 3];
A=[5 3 3;3 3 4;3 4 4];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Invert the compression of A to range of X %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
A1=inv(Q'*A*Q);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Compress the inverse of A to the range of X %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
A2=Q'*inv(A)*Q;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Compare the condition numbers of A1 and A2 %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
norm(A2,'fro')-norm(A1,'fro')


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%                                                                        %
%%  Program Name: f2p.m                                                   %
%%                                                                        %
%%  This routine transforms a frame X into a "best" Parseval frame Y that %
%%  is causally equivalent to X.                                          %
%%                                                                        %
%%  Programmer: Troy Henderson                                            %
%%  Contact: thenders@math.tamu.edu                                       %
%%                                                                        %
%%  Date: May 8, 2005                                                     %
%%                                                                        %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [Y,G] = f2p(X);
[k,n] = size(X);
r=rank(X);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Make sure X represents a frame %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if (n>k | r<n)
	error('X must represent the analysis operator of a frame');
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Compute the inverse of the frame operators and its eigenvalues %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
S=X'*X;
d=eig(S);
SI=inv(S);
SI=(SI+SI')/2; % Done to force SI to be symmetric

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Compute the "normal" and Hilbert Schmidt frame bounds %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
A=min(d); % = 1/norm(sqrtm(SI),2)^2
B=max(d); % = norm(sqrtm(S),2)^2;
C=1/norm(chol(SI),'fro')^2;
D=norm(chol(S),'fro')^2;

%%%%%%%%%%%%%%%%%%%%%
% Lift X to a basis %
%%%%%%%%%%%%%%%%%%%%%
T=X*(SI^2)*X' + 1/sqrt(A*B)*(eye(k,k)-X*SI*X');
%T=X*(SI^2)*X' + 1/sqrt(C*D)*(eye(k,k)-X*SI*X');
T=(T+T')/2; % Done to force T to be symmetric

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Perform a Cholesky-like factorization of T %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
G=lohc(T);
Y=G*X;


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%                                                                        %
%%  Program Name: liftframe.m                                             %
%%                                                                        %
%%  If the input matrix X is the analysis operator for a frame, then this %
%%  routine outputs the analysis operator F for a complementary tight     %
%%  frame such that the direct sum of the two frames form a (Riesz) basis %
%%  frame bounds the same as the original frame.                          %
%%                                                                        %
%%  Programmer: Troy Henderson                                            %
%%  Contact: thenders@math.tamu.edu                                       %
%%                                                                        %
%%  Date: May 8, 2005                                                     %
%%                                                                        %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function F = liftframe(X);
[k,n]=size(X);
r=rank(X);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Make sure X represents a frame %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if (n>k | r<n)
	error('X must be the analysis operator of a frame')'
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Compute the inverse of the frame operator and %
% an orthonormal basis for the range of X       %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
S=inv(X'*X);S=(S+S')/2;
Q=mgs(X,S);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Compute the tight frame bound %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%A=1/norm(S);
%B=norm(X'*X);
C=1/norm(chol(S),'fro')^2;
D=norm(chol(X'*X),'fro')^2;

%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Compute the tight frame %
%%%%%%%%%%%%%%%%%%%%%%%%%%%
F=sqrt(sqrt(C*D))*Q;


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%                                                                        %
%%  Program Name: lohc.m                                                  %
%%                                                                        %
%%  Instead of performing the canonical Cholesky factorization on a       %
%%  positive definite matrix A with A=L*L' for some lower triangular L,   %
%%  this routine performs a Cholesky-like factorization of A=L'*L for     %
%%  some lower triangular L.                                              %
%%                                                                        %
%%  Programmer: Troy Henderson                                            %
%%  Contact: thenders@math.tamu.edu                                       %
%%                                                                        %
%%  Date: May 8, 2005                                                     %
%%                                                                        %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [L,p] = lohc(A);
[L p]=chol(rot90(A,2));
L=rot90(L,2);



