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ABSTRACT 

Assessment of Suspended Dust from Pipe Rattling Operations. (August 2005) 

Ju-Myon Park, B.E, Hoseo University, Korea; 

M.S., Texas A&M University  

Chair of Advisory Committee: Dr. James C. Rock 

Six types of aerosol samplers were evaluated experimentally in a test chamber 

with polydisperse fly ash.  The Andersen sampler overestimates the mass of small 

particles due to particle bounce between stages and therefore provides a conservative 

estimate of respirable particulate mass and thoracic particulate mass.  The TSP sampler 

provides an unbiased estimate of total particulate mass.  TSP/CCM provides no 

information below ESD 2 µm and therefore underestimates respirable particulate mass.  

The PM10 sampler provides a reasonable estimate of the thoracic particulate fraction.  

The RespiCon sampler provides an unbiased estimate of respirable, thoracic, and 

inhalable fractions.  DustTrak and SidePak monitors provide relative particle 

concentrations instead of absolute concentrations because it could not be calibrated for 

absolute particle concentrations with varying particle shape, composition, and density. 

Six sampler technologies were used to evaluate airborne dust concentrations 

released from oilfield pipe rattling operations.  The task sampled was the removal of 

scale deposited on the inner wall of the pipe before it was removed from service in a 

producing well.   



 

 

iv

The measured mass concentrations of the aerosol samplers show that a Gaussian 

plume model is applicable to the data of pipe rattling operations for finding an 

attainment area.  It is estimated that workers who remain within 1 m of the machine 

centerline and directly downwind have an 8-hour TWA exposure opportunity of (13.3 ± 

9.7) mg/m3 for the Mud Lake pipe scale and (11.4 ± 9.7) mg/m3 for the Lake Sand pipe 

scale at 95 % confidence.  At distances more than 4 m downwind from the machine 

centerline, dust concentrations are below the TWA-TLV of 10 mg/m3 for the worker in 

both scales.  At positions crosswind or upwind from the machine centerline there is no 

measurable exposure.  Available data suggest that the attainment area for the public 

starts at about 9 m downwind from the machine centerline in both scales, as 24 hour 

average concentrations at these distances are smaller than the 0.15 mg/m3, the NAAQS 

for unrestricted public access.  The PSD of the suspended plume is dominated by 

particles smaller than ESD 50 µm.    
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CHAPTER I  

INTRODUCTION 

1 

The most important purpose of this dissertation is to quantify the potential for 

human exposure of suspended dust from petroleum pipe rattling operations and to 

compare that potential with consensus guidelines and governmental regulations for the 

public and for the workers.  The petroleum pipe rattling process removes tightly bound 

scale from the inside surface of tubular petroleum pipes and removes loose corrosion 

products from external surfaces.  To estimate the potential hazard from particulate air 

pollutants, several types of size selective aerosol samplers were tested. 

In a chamber study, polydisperse fly ash particles were generated in the dust 

chamber with a controlled particle concentration to evaluate the sampling performance 

of several types of size selective aerosol samplers. 

In a field study, the aerosol particles produced by the petroleum pipe rattling 

operations were collected with several types of size selective aerosol samplers.  

Petroleum pipes from two oilfields were rattled and sampled to estimate the potential for 

human exposure to the contaminant airborne particulate matter (PM). 

 

 

                                                 
This dissertation follows the style and format of Journal of Occupational and Environmental Hygiene. 
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CHAPTER II 

PERFORMANCE EVALUATION OF  

SIZE SELECTIVE AEROSOL SAMPLERS 

 

A.  INTRODUCTION 

Quantitative air sampling is used to gain knowledge of human exposure to 

contaminant particulate matter (PM), a complex mixture of particles suspended in the air 

that vary in size and composition.  The health effects of PM are dependent on their 

chemical composition and where they are deposited in the respiratory tract.  A portion of 

particles with large aerodynamic equivalent diameters (AEDs) (> 10 µm) tend to deposit 

in the upper airways, and  a portion of those with small AEDs (≤ 4 µm) tend to deposit 

in airspace deep in the lungs, while the rest tend to deposit in the pharynx and upper 

bronchial tree.  

In 1993, “Particle Size-Selective Sampling Criteria for Airborne Particulate 

Matter” were adopted by the American Conference of Governmental Industrial 

Hygienists (ACGIH) and published as Appendix D of the ACGIH TLV booklet.( 1 )  

Three particulate mass fractions were defined as inhalable, thoracic, and respirable.  

Their 50 % cutoff sizes (AED50) are 100 µm, 10 µm, and 4 µm, respectively (See Figure 

2-1).  These size conventions were co-developed and adopted by the International 

Organization for Standardization (ISO)(2) and the Comité Européen de Normalisation 

(CEN).( 3 )  They are also the sampling size fractions recommended by American 

Industrial Hygiene Association (AIHA).(4)  
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FIGURE 2-1.  ACGIH sampling criteria.  Equation source: Appendix D of the 

ACGIH TLV booklet. 

Notes: I (AED) = Penetration efficiency of inhaled particles as a function of AED in µm; 
T (AED) = Penetration efficiency of thoracic particles as a function of AED in µm; 
R (AED) = Penetration efficiency of respirable particles as a function of AED in µm; 

ln( ) - ln( ) = 
ln( )

PE

PE

AED GMx
GSD

; 

AED = Aerodynamic equivalent diameter; 
GMPE = Median AED of the penetration efficiency curve; 
GSDPE = Slope of penetration efficiency curve; 
F(x) = Cumulative probability function of a standardized normal variable, x. 

 

Independently, the US Environmental Protection Agency (EPA) defined four 

terms for categorizing PM of different sizes as supercoarse, coarse, fine, and ultrafine 

with 50 % cutoff AED greater than 10 µm, between 2.5 µm and 10 µm, between 0.1 µm 

and 2.5 µm, and less than 0.1 µm.  Aerosol samplers are available to collect mass 

fractions called: Total Suspended Particulate Matter (TSP), PM10, PM2.5, Particles less 

than 0.1 µm, and Condensable Particulate Matter.  The EPA defines PM10 as particulate 

matter with an AED of 10 µm collected with 50 % efficiency by a PM10 sampling 
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collection device and PM2.5 as particulate matter with an AED of 2.5 µm collected with 

50 % efficiency by a PM2.5 sampling collection device (See Figure 2-2).( 5 )  The 

performance characteristics of PM10 and PM2.5 are described in Appendix D. 
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FIGURE 2-2.  EPA regulated PM pollutants. 

 

Careful comparison of the PM2.5 and PM10 cut curves with the respirable and 

thoracic curves of ACGIH reveals that the EPA specification has a steeper slope.  This 

means an ideal EPA sampler will collect a larger number of small particles with AED 

slightly below its cut point and a smaller number of particles with AED slightly above its 

cut point than an ACGIH sampler (See Figure 2-3).   

For example, if the airborne total mass concentration is 10 mg/m3 and the PSD of 

test aerosol is characterized by GMAED = 11.8 mm and GSDAED = 2.1, then the estimated 

mass concentration sampled are 4.0 mg/m3 for the ACGIH thoracic sampler and 4.2 



 5

mg/m3 for the EPA PM10 sampler.  These concentrations are calculated by integrating 

the PSD of the test aerosol with the collection efficiency curves.  The ACGIH sampler 

may measure slightly less mass than the PM10 sampler when the PSD of airborne PM is 

characterized by GMAED < 21.3 mm with the same GSDAED = 2.1.  While the ACGIH 

sampler may measure slightly more mass than the PM10 sampler when the PSD of 

airborne PM is characterized by GMAED ≥ 21.3 mm with the same GSDAED = 2.1.  A 

detailed calculation is described in Appendix D-3.   
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FIGURE 2-3.  ACGIH Thoracic vs. EPA PM10.  

 

National Ambient Air Quality Standards (NAAQS) for PM have been established 

to minimize the adverse effects of PM on the majority of US residents.  The NAAQS 

established a 24-hour average limit of 150 µg/m3 and an annual average limit of 50 

µg/m3 for PM10, and a 24-hour average limit of 65 µg/m3 and an annual average limit of 
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15 µg/m3 for PM2.5.
( 6 )  In contrast, Occupational Safety and Health Administration 

(OSHA) Permissible Exposure Limits (PEL) for Particulates Not Otherwise Regulated 

(PNOR) of respirable fraction and total dust are 5 mg/m3 and 15 mg/m3.(7)  These limits 

are based on an 8-hour average during a conventional workday.  The American 

Conference of Governmental Industrial Hygienists (ACGIH) Threshold Limit Value 

(TLV) for Particulates Not Otherwise Classified (PNOC) are 3 mg/m3 for respirable 

particulates and 10 mg/m3 for inhalable particulates based on a Time Weighted Average 

(TWA) of 8-hours per day and five days per week, and apply to particles that are inert, 

that are not metabolized.(8)   

To estimate the potential hazard from particulate air pollutants, it is necessary to 

choose among many different size selective sampling instruments.  Six types of aerosol 

samplers were tested.  Three types of aerodynamic size selective aerosol samplers were 

used, including two Andersen cascade impactors,( 9 ) two RespiCon serial virtual 

impactors,(10) and four PM10 samplers.(11) One type of volumetric particle size selective 

sampler was used, including four TSP samplers(12) with particles sized by volume using 

a coulter counter multisizer (TSP/CCMs).  Two types of laser-light scattering particle 

monitors were used, including two DustTrak(13) and two SidePak(14) real-time particle 

number counting  photometers. 

The goal of the chamber study discussed in this chapter is to evaluate their 

sampling performances experimentally with total mass concentrations and with mass 

fractions for the ACGIH/CEN/ISO respirable, thoracic, and inhalable convention.  It was 

expected that the observed differences would lie within the range of uncertainty allowed 
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by specifications for the samplers.  The sampling performances were tested using 

polydisperse fly ash in a chamber with the following hypotheses:  

1) There is no significant difference between total dust mass concentrations measured by 

the size selective aerosol samplers in this study.  

2) There would be good relationships between the mass fractions from Andersen 

samplers, RespiCon samplers, and TSP/CCMs for ACGIH/CEN/ISO respirable (AED ≤ 

4 µm) and thoracic (AED ≤ 10 µm) convention.  

3) The mass fractions of PM10 and PM2.5 would be determined by multiplying the 

volume fraction of PM10 and PM2.5 estimated from a TSP/CCM by the scale density and 

an appropriate shape factor. 

 

1. Introduction: Operating Principles of Six Aerosol Samplers  

All samplers used in this study depend, in part, on particle classification by 

means of scaling aerodynamic inertial forces of high velocity particles.  In an impactor, 

the particles are passed through a jet-forming nozzle and the output stream is directed 

against an impaction plane (real or virtual).  The flow turns through a 90° bend in the 

streamlines.  Particles with sufficient inertia are unable to follow the streamlines and 

impact the collection plane. Large particles reach the collection plane and small particles 

are carried away with the bypass air flow. Thus, there are two size ranges in the 

particles: particles larger than the AED of interest are likely to be removed from the 

aerosol stream by the sampler (Probability of removal > 0.5).  Those smaller than that 

size are likely to continue in the bypass air flow to the next stage (Probability of removal 
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≤ 0.5).   The discussion below shows how the manufactures have implemented this 

principle in various air sampling geometries. 

 

a) Andersen Sampler 

The Andersen sampler is a one actual cubic foot per minute (1 ACFM; 28.3 

L/min) non-viable ambient particle sizing sampler.  It is configured as a multi-stage and 

multi-orifice per stage cascade impactor with stages characterized by round holes of 

successively smaller diameter.  In the first half of the 20th century, impaction was a 

common method for collecting dust for the evaluation of occupational environments.  In 

the last 50 years, the cascade impactor has been used to measure PSDs by mass.(15)  All 

inertial impactors in this study including virtual impactors and the real-time monitors 

operate on the same principle.  

The eight stages of the Andersen cascade impactor are designed and arranged so 

that the largest particles are aerodynamically impacted onto the first stage, and 

progressively smaller particles are aerodynamically impacted on successive stages.  

Stages from 0 to 6 contain 400 round orifices and stage 7 contains 210 round orifices 

arranged in circular patterns (See Figure 2-4).  The orifices are progressively smaller 

from stage 0 to stage 6, and the jet velocities are progressive larger (see Table 2-1).   
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(a) 

 

 

(b) 

FIGURE 2-4.  Andersen sampler. (a) Cross sectional view of one orifice,(16)  

(b) Schematic diagram of stacked orifice plates and impactor plates. 

 

1

0

2

3

4

5

6

7

F

Impaction Plate 

1

> 9 

3.3 ~ 4.7

5.8 ~ 9.0

4.7 ~ 5.8

2.1 ~ 3.3

0.4 ~ 0.7

1.1 ~ 2.1

0.7 ~ 1.1

µm at 28.32 L/min

0 ~ 0.4 

Air Inlet

Air Outlet

4

Impaction 
nozzle or jet 

Streamlines

Impaction 
Plate 



 10

TABLE 2-1.  Dimension of the Andersen Impactor Orifices 

Stage Orifice diameter 
[Inch] 

Number of 
orifices 

Stage velocity A 
[cm/s1] 

Effective cutoff 
diameter (dec 

B) [µm] 
0 0.0625 400 60 9 

1 0.0465 400 108 5.8 

2 0.0360 400 180 4.7 

3 0.0280 400 297 3.3 

4 0.0210 400 528 2.1 

5 0.0135 400 1278 1.1 

6 0.0100 400 2329 0.7 

7 0.0100 210 4435 0.4 

Notes:  
A Stage velocity at 1 ACFM [28.32 L/min]; 

B dec = Effective cutoff diameter (Nominal cutoff diameter when the flow rate is at 1 ACFM  
[28.32 L/min]). 

 

Large particles, which are expected to be collected in one stage, can bounce off 

the collection plate and be carried by horizontal flow around the edge of that plate to 

deposit on subsequent plates.  The bounce phenomena, which affect the shape of the 

PSD estimated from mass per stage, were carefully studied during the latter half of the 

last century.  May(16) emphasized the importance of coating the impaction surface with 

an adhesive substance.  In experiments with aerosols of glass beads and polystyrene 

spheres, Lundgren(17) found quantitative collection when the impaction surfaces were 

coated with high-vacuum silicone grease or some other suitable adhesive material.  A 

similar conclusion was reached by Rao and Whitby.(18, 19)  Aiache et al.(20) studied the 

performance of different impactors and found that the multi-stage Andersen Cascade 

impactor (Mark II) exhibited a large variability.  Nevertheless, this method continues to 

be used to obtain detailed information about the aerodynamic PSD of the thoracic and 

respirable fractions, especially in pharmaceutical air sampling.(21,22,23,24,25,26)  
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In this study, every impaction plate was cleaned and coated with silicone grease 

so that most deposited particles would remain on the impaction plates and not bounce off, 

unless the sampler ran too long and became overloaded.  

The combination of a constant flow rate and successively smaller diameter 

orifices increase the jet velocities of sample air as it cascades through the sampler.  

Progressively smaller particles impact on succeeding stages.  Mass per stage is measured 

gravimetrically.  Figure 2-5 shows a PSD curve for each stage as portrayed in the 

operator’s manual.  A detailed cutoff size calculation as a function of flow is presented 

in Appendix E. 
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FIGURE 2-5.  Andersen sampler collection efficiency at 1 ACFM (28.32 L/min). 

Source: Andersen sampler’s operator manual (27). 
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b) RespiCon Sampler 

The RespiCon sampler is a three-stage virtual impactor that simultaneously 

collects the ACGIH/CEN/ISO size fractions (See Figure 2-1) of respirable, thoracic, and 

inhalable particulate matter. It was designed by Koch et al.(28)  Its inlet is symmetric with 

respect to horizontal wind, and serves to select particles according to the inhalable 

convention.  Its first virtual impactor stage separates out and collects particles with AED 

≤ 4 µm (in a second version, the cut point is 2.5 µm).  The second stage collects particles 

with AED ≤ 10 µm, while the third stage collects the remaining larger particles.  The 

benefits of the virtual impactor include its extended sampling time, its freedom from 

overloading, and its lack of particle bounce.  As designed, the RespiCon virtual impactor 

captures particles gently with low velocity air through its collection filters.  This 

contrasts with the very high impact velocities that fracture some particles on the 

impaction plate of traditional impactors.   

In a virtual impactor, as described by Marple and Chien(29) and TSI, Inc.(30), an 

aerosol passes through an accelerating nozzle toward a collection probe (See Figure 2-6).  

Tatum et al.( 31 ) conclude that the RespiCon is a useful sampling device for those 

situations in which it is important to simultaneously collect either personal or area 

samples for the respirable, thoracic, and inhalable fractions of airborne PM with 

acceptable precision. 

 



 13

 

FIGURE 2-6.  Inside schematic diagram of a RespiCon sampler.   

Source: Manufacturer (TSI, Inc.) Brochure(10). 

 

Two models of the RespiCon Particle Samplers were used: one has a first stage 4 

µm cutoff size which represents the ISO respirable size fractions, while the other has a 

first stage 2.5 µm cutoff size which represents the EPA PM2.5 measurements.  The 

second stage has a 10 µm cutoff and its mass is summed with the first stage for both the 

ISO thoracic and EPA PM10 fractions.  The sum of three stages provides a usable 

estimate for the ISO inhalable fraction, the EPA total suspended particulate 

measurement, and the OSHA total dust PEL.  Li et al.(32) found that the sampling 

performance of the RespiCon sampler matched the inhalable convention fairly well in 

the laboratory with horizontal wind speeds of 0.55 m/s and 1.1 m/s with particles 

ranging from AED 5 µm to 68 µm.  
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c) Total Suspended Particulate Sampler and a Coulter Counter Multisizer 

The flow rate of the low volume TSP sampler (16.7 L/min) was designed by 

Wanjura et al.(33) at Texas A&M University (See Figure 2-7).  They called it low volume 

because standard PM10 and PM2.5 samplers operate at much higher flow rates (> 40 

ACFM; 1132.7 L/min).  They reported that the low volume TSP sampler may be more 

robust and more accurate than the standard high volume TSP sampler on the basis that 

they found no significance difference between the two low volume samplers with a t-test, 

and there was a significant difference detected between two low volume TSPs and a high 

volume sampler (1416.7 L/min) with an ANOVA test.  In this study, the low volume 

TSP sampler is called the TSP sampler. 

 

 

FIGURE 2-7.  Schematic diagram of a TSP sampler. 
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d) PM10 Sampler 

The Graseby-Andersen Federal Reference Method (FRM) PM10 inlet was used 

for the EPA approved PM10 samplers to capture PM less than or equal to an AED 10 µm 

and to remove PM with AED larger than 10 µm (See Figure 2-8).  The PM10 samplers 

operated at the flow rate of 16.7 L/min.  McFarland et al.(34) reported that the PM10 

sampler has an AED50 of 10.2 µm and a slope of 1.41 with liquid aerosols.  The FRM 

performance standard calls for an AED50 of 10 µm ± 0.5 µm and a slope of 1.5 ± 0.1.(35)  

A detailed analysis of allowed variations in PM10 collection efficiency is 

presented in Appendix D.   It shows that although the point design should collect 50 % 

of particles with AED = 10 µm, a sampler that collects between 44 % and 56 % of 10 

µm particles is acceptable under the standard.  Appendix D shows that the range of 

allowable PM10 concentration estimates is significant.  In air with total mass 

concentration of 10 mg/m3, the actual concentration of all particles with AED ≤ 10 µm is 

4.12 mg/m3.  A PM10 sampler with nominal FRM parameters would measure 4.22 

mg/m3, while other PM10 samplers with extreme, but acceptable, parameter values would 

report concentrations between 3.95 mg/m3 and 4.47 mg/m3.    
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FIGURE 2-8.  Schematic diagram of a PM10 sampler showing its circularly 

symmetric inlet and its design as a plate impactor with side walls to minimize 

particle bounce and subsequent carry through of large particles. 

 

e) DustTrak and SidePak Monitors 

The DustTrak and SidePak Aerosol Monitors, from TSI Inc., are portable and 

battery-operated laser photometers using an optional impactor as a preseparator.  Two 

impactors for the cutoff sizes 10 µm (10 µm inlet) and 2.5 µm (2.5 µm inlet) were used 

in two DustTrak monitors and two impactors for the cutoff sizes 2.5 µm (2.5 µm inlet) 

and 1 µm (1 µm inlet) were used in two SidePak monitors (See Figure 2-9).  As 

mentioned in the beginning of introduction, the impaction plate collects particles bigger 

than a certain size of interest and passes those smaller than that size through the impactor 

stage for detection.  The impactor plates of the DustTrak and SidePak monitors were 

smeared with a thin layer of grease to minimize bounce.  Unfortunately, under 

conditions of this study, these plates overloaded quickly, so particle bounce is likely. 
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These monitors measure and record real time airborne PM concentrations 

reported in milligrams per cubic meter (mg/m3).  Data were logged into memory at one 

second intervals during each test.  Mass is determined indirectly from the intensity of 

light scattered by the particles within a fixed sensing volume.  The mass concentration 

scale was calibrated by the manufacturer against a gravimetric measurement using the 

respirable fraction of standard ISO 12103-1, A1 test dust (Arizona Test Dust).  The scale 

was not calibrated for fly ash used in this study because there is no provision for 

sampling exhaust air from these devices.   

 

     

                                    (a)                                                                 (b) 

FIGURE 2-9.  Impactors used as size selective pre-filters in real-time monitors.   

(a) DustTrak, (b) SidePak. 
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The pictures of all aerosol samplers used in this study are shown in Figure 2-10.  

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

FIGURE 2-10.  Aerosol samplers used in a chamber study.  (a) Andersen sampler, 

(b) RespiCon sampler, (c) DustTrak monitor, (d) SidePak monitor,  

(e) PM10 sampler, (f) TSP sampler. 

 

2. Particle Sizing Methods Introduction 

In this study, three broad cumulative mass fractions for respirable (AED ≤ 4 µm), 

thoracic (AED ≤ 10 µm), and inhalable (AED ≤ 100 µm) PM were obtained by 

RespiCon samplers (one Respicon captured PM2.5 rather than the respirable fraction), 

and were calculated from measurements by Andersen samplers, and by TSP/CCM 

samplers.  These data were compared to each other.  

Hinds indicated that lognormal distribution is the most common distribution used 

for characterizing the particle sizes associated with the aerosol.(36)  The significance of a 

lognormal distribution is that the particle size distribution (PSD) can be described in 



 19

terms of only two parameters, called the geometric mean (GM) and the geometric 

standard deviation (GSD).  In this study, GMAED and GSDAED represent the median AED 

of the sample data and the slope of PSD curve. 

 The Reliasoft Weibull++ program was used to conduct the Goodness of Fit 

(GOF) test to find the best distribution of airborne fly ash by a TSP/CCM.  When the 

raw data of a TSP/CCM were put into the Weibull++ program, the software ranked for 

the best distribution of Lognormal and Normal, Exponential 1-parameter, Exponential 2-

parameter, Weibull 2-parameter, and Weibull 3-parameter distributions.  The results 

show that the lognormal distribution ranked first at 9 PSDs of 11 PSDs by TSP/CCM, 

and it ranked two and three one time each when the Weibull 2-parameter distribution 

was ranked as one.  

In this study, the PSD of a TSP/CCM was characterized by a GMAED and a 

GSDAED using Equation 2.1 on the basis of GOF test.  

84.1 84.1

15.9 15.9

AED

AED

d dGMGSD
GM d d

= = =  for the PSD of fly ash                                (2.1) 

where d84.1 = AED corresponding to the 84.1 % of the PSD or 84.1 % of the stage 

sampling efficiency curve, 

d15.9 = AED corresponding to the 15.9 % of the PSD or 15.9 % of the stage sampling 

efficiency curve, 

GMAED = Median AED corresponding to the 50 % of the PSD or 50 % of the stage 

sampling efficiency curve. 
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The PSD of the Andersen sampler was characterized by a GMAED and a GSDAED  

using Equation 2.3.(37)  The mass fractions of the first and last impaction stages were 

neglected in this analysis to obtain best log-probit curve.  The log-probit graphs for each 

test are introduced in Appendix A-8.    

ln( ) ln( )
ˆ

ln( )
AED

AED

x GMxz
GSD

µ
σ

−−
= =                                                                 (2.2) 

ln(x) =̂  ln(GSDAED) × z + ln(GMAED)                                                       (2.3)   

where z = Standard normal random variable (Mass fraction), 

x = Normal random variable (Aerodynamic equivalent diameter), 

µ = Population mean, 

σ = Population standard deviation, 

GMAED = Sample geometric mean (Median AED of sample data), 

GSDAED = Sample geometric standard deviation (Slope of sampling efficiency curve). 

A linear regression model was conducted using the least squares estimators to 

predict the best PSD and prediction interval at 95 % confidence level for Andersen 

samplers and TSP/CCMs (See Equation 2.4).  The Mathematica code used for this 

analysis is offered in Appendix I-3.  
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0y = Future observation of mass fraction, 0ŷ = Estimator of 0y , x0 = new observation,  
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0ŷ 0β̂= 1 0
ˆ xβ+  = Point estimator of the future observation,  

0β̂ = Estimator of intercept 0β , 1̂β = Estimator of slope 1β , xi = ith observation of x, 

x = AED, y = Mass fraction, n = Number of case, x =Mean of AED, t = t distribution. 

A log-probit analysis was conducted to visualize the collection efficiency of 

Andersen sampler.  The PSD for each stage of Andersen sampler was not tested by a 

CCM analysis because there was not enough mass to run a CCM. 

The CCM was used to find the PSD of the fly ash from TSP samplers.  The result 

of analysis by a TSP/CCM is a histogram of particle volume fraction as a function of 

equivalent spherical diameter (ESD).  An ESD is the diameter of the sphere having the 

same volume as the irregular particle.  The ESD resulting from the PSD by a CCM was 

converted to an AED using Equation 2.1 using appropriate density (2.7 g/cm3) and shape 

factor (χ =1).  Then, PSDs by TSP/CCMs are expressed in terms of AED.  This means 

that no matter a particle’s shape or density, it has the same settling velocity as a unit 

density sphere (ρp = 1 g/cm3) with the equivalent AED.  In this chapter, all comparisons 

are based on an AED. 

The same dynamic shape factor (χ =1) for all the different particle size ranges is 

used because the particle shape was totally spherical when the images of fly ash were 

obtained from an environmental scanning electron microscopy (ESEM) (See Figure 2-

11).  Shape factors for non-spherical particles are described more fully in Appendix G.  

1
2

0

pAED ESD
ρ
ρ χ
⎡ ⎤

= ⎢ ⎥⋅⎣ ⎦
                                                                       (2.5) 

where AED = Aerodynamic Equivalent Diameter [µm], a calculated estimate, 
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ESD = Equivalent Spherical Diameter [µm], calculated from volume measured by CCM, 

ρp = Particle Density[g/cm3], ρ0 = Unit Density (1 g/cm3), χ = Dynamic shape factor (χ 

=1 for fly ash). 

 

 

FIGURE 2-11.  The general shape of fly ash.  (Calibration bar = 10 µm; a RespiCon 

sampler Stage 1). 

 

The CCM was operated with its 100 µm aperture installed to obtain a PSD from 

the TSP samplers.  The CCM counts the particle size range in terms of ESD ranging 

from 2 % to 60 % of aperture diameter.  In this study, that corresponds to particle sizes 

measured from ESD 2 µm to ESD 60 µm.  Factoring in density and shape factor with 

Equation 2.1, the equivalent range for the AED is from 3.3 µm to 99 µm. 

  Thus, the cumulative PSD for the truncated AED < 3.3 µm was estimated using 

a GMAED and a GSDAED obtained from each TSP/CCM.   
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  When a more detailed analysis of experimental PM samples is needed for the 

respirable convention, or for PM2.5, smaller apertures should be installed in the CCM.  

Because this option was not available during this study, the best fit lognormal density 

function was used to reconstruct data not sampled in the lower tail for particles with 

AED < 3.3 micrometer.   

 

3. Statistical Analyses Introduction 

In this study, a randomized block procedure (PROC GLM) was conducted using 

the SAS program to test the null hypothesis that the true population means of the total 

fly ash concentration measured by two Andersen samplers and four TSP samplers are the 

same.   

The GLM procedure uses the method of least squares to fit general linear models.  

Among the statistical methods available in PROC GLM are regression, analysis of 

variance, analysis of covariance, multivariate analysis of variance, and partial 

correlation.  The TUKEY (Tukey's studentized range test) option was selected to find the 

relationship between samplers.  Details are summarized in Appendix C. 

 

B.  METHODS 

The chamber experiment was conducted in the Center for Agricultural Air 

Quality Engineering and Science (CAAQES) Processing Lab at Texas A&M University.  

Polydisperse fly ash particles (bulk density = 2.7 g/cm3) were generated in the dust 

chamber with a controlled PM concentration.  A GMBS of 11.8 µm and a GSDBS of 2.1 
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were measured by a CCM from a bulk sample of the fly ash used in a chamber.  GMBS 

and GSDBS represent the median AED of bulk sample and the slope of bulk sample’s 

PSD curve, respectively.  The bulk density of 2.7 × (1 ± 3 %) g/cm3 was measured by an 

AccuPyc 1330 pycnometer (Micromeritics Instr. Corp., Norcross, GA).  

This chamber was initially designed and built for Pargmann’s research.( 38 )  

Figure 2-12 shows the arrangement of the samplers in the dust chamber.  In order to 

estimate the relationship between the samplers, all six samplers were co-located with the 

following conditions. 

1. The exposure section of the chamber is cubical with a length of 2.4 m on each side. 

2. The generated volume flow rate that recirculates through the chamber is 128 m3/min.  

3. The perforated walls, which have 18 % open area, act as airflow straighteners to 

provide nearly uniformly distributed air across the chamber cross-section.   The 

velocity through the holes is estimated to have been 2.1 m/s, and the velocity through 

the chamber and past the samplers is estimated to have higher than 0.4 m/s due to 

partial flow restriction caused by the samplers and the boxes on which some 

samplers were mounted. 

4. Andersen samplers, DustTrak monitors, and SidePak monitors were located at a 

height of 115 cm above the chamber floor.  

5. RespiCon samplers were located at a height of 150 cm above the chamber floor. 

6. TSP samplers and PM10 samplers were located at a height of 160 cm above the 

chamber floor. 
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7. The first and second tests were one hour tests.  The third test was intended to have 

two-hour duration, but because of trends toward filter overloading, the PM10 

samplers and TSP samplers were stopped after one hour.  Planned two-hour tests 

were completed with the Andersen samplers, RespiCon samplers, DustTrak 

monitors, and SidePak monitors.  

8. The chamber was cleaned after each test before starting a new experiment with new 

dust. 

9. Teflon filters with a 0.5 µm pore size were used for the RespiCon samplers, PM10 

samplers, and TSP samplers to assure consistency between samplers on both tests.   

10. A high-precision analytical balance with its precision ± 10 µg (AG245, Mettler 

Toledo, Greifensee Switzerland) was used to weigh the filters measured by all 

samplers.  Each filter and plate was weighed three times and the average value was 

recorded. 

11. The required airflows for Andersen, TSP, and PM10 samplers were controlled with a 

needle valve using a diaphragm pump with a flow-restricting orifice (Dayton, 4z792).  

The airflow rate was logged and recorded by a data logger (HOBO H8 

RH/Temm/2X External) at 12 second intervals. 

12. The orifice meter pressure drop was converted to volumetric flow using Equation 2.6. 

25.976 o
air

PQ K D ρ
∆= ⋅ ⋅ ⋅                                                                                         (2.6) 

Q = Airflow rate through the orifice meter [m3/s], K=flow coefficient of orifice,  

Do = orifice meter [m], ∆P = measured pressure drop cross the orifice [mmH2O], and 

ρair = air density estimated from temperature and pressure [kg/m3]. 
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13. Due to a miscalculation of pressure drop, the airflow rates for the Andersen sampler 

were adjusted to 0.8 ACFM (22.65 L/min) instead of 1 ACFM (28.32 L/min).   

14. The airflow rates for RespiCon Samplers were adjusted to 3.11 L/min. 

15. The airflow rates for TSP and PM10 samplers were adjusted to 16.67 L/min.   

16. The airflow rates for DustTrak and SidePak monitors were adjusted to 1.7 L/min 

prior to each experiment using a flow meter provided by the TSI Company.  The 

concentration scale was zeroed with a zero filter prior to each experiment. 

 

 

FIGURE 2-12.  Experimental setup in a chamber. 

 

C.  RESULTS 

1. Total Mass Concentration 

The total mass concentrations from Andersen and TSP samplers are arranged in 

Table 2-2.  A randomized block hypothesis test, described below, shows that there is 

significance difference between the total mass concentration estimated by the Andersen 
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and by the TSP samplers.  Inspection of Table 2-2 shows that in each test, The Andersen 

data were smaller than any of the TSP data. 

 

TABLE 2-2. Total Mass Concentration Measured with Andersen and TSP 

Samplers  

Andersen TSP sampler 
Sampler 

C1A C2 T1B T2 T3 T4 

Test 1 29.2 
(1.0) 

29.5 
(1.0) 

33.6 
(1.9) 

34.5 
(1.8) 

31.6 
(2.3) 

34.7 
(2.4) 

Test 2 21.4 
(0.7) 

21.5 
(0.8) 

24.0 
(1.1) 

24.5 
(0.9) 

25.6 
(1.0) 

25.2 
(0.8) 

Test 3 23.5 
(0.5) 

23.9 
(0.5) 

25.0 
(1.4) 

25.7 
(2.0) 

30.0 
(1.7) 

30.0 
(1.6) 

Notes:                                                                                                                  Unit: [mg/m3]  ( )C SD C 
TSP samplers ran for 1 hour run in all three tests.   
Andersen samplers ran for 1 hour in tests 1 & 2, and for 2 hour in test 3.   
A C1 & C2 = Andersen samplers; BT1-T4 = TSP samplers; C C  = Average concentration from 3 times 
filter measurements; (SD) = Standard deviation were obtained using an error propagation. 

22 2Mass= , QC W T
SDSD SD SDC

Q T C W Q T

⎛ ⎞
= + +⎜ ⎟⎜ ⎟× ⎝ ⎠

 

where C = Concentration; W = Weighing; Q = Volume flow rate; T = Time; SD = Standard deviation. 
 

 This subjective conclusion remains apparent after reducing the data to summary 

descriptive statistics for each type of sampler in each test.  The descriptive statistics are 

summarized in Table 2-3 and in Figure 2-13, below.  

Table 2-3 and Figure 2-13 show that Andersen underestimates total mass 

concentration when compared with the newer design of TSP sampler.  This is to be 

expected as the two samplers have very different inlets and the Andersen sampler has 

more wall losses.   
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TABLE 2-3.  Average Mass Concentration Measured with Andersen and TSP 

Samplers 

Andersen n = 2 TSP sampler n = 4 
Sampler 

Mean ± SU A Mean ± SU 

Test 1 29.4 ± 2.8 33.6 ± 8.4 

Test 2 21.5 ± 2.1 24.8 ± 3.8 

Test 3 23.7 ± 1.4 27.7 ± 7.2 

All data 24.8 ± 4.7 28.7 ± 11.1 

Notes:                                                                                                                                   Unit: [mg/m3] 
A SU = 1.96  

n
CSD⎛ ⎞×⎜ ⎟

⎝ ⎠
= Sampling Uncertainty of mean                                                     

where n = the number of cases; 1.96 = z-value for 95 % confidence level;  
SDC = standard deviation of measured concentrations;  

2 2 2
1

1

.....C n

T T n

SD SDSDSE
C C C C

⎛ ⎞⎛ ⎞ ⎛ ⎞
= + + ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 standard deviation for an error propagation of n samplers 

where TC  = Average concentration of n samplers; SE = standard error of sample mean;  

SDn = Standard deviation of nth sampler; nC = Concentration of nth sample. 
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FIGURE 2-13.  Average concentration measured with Andersen and TSP samplers. 

Note: Error bar = Sampling uncertainty of mean.  
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To confirm the subjective evaluation that the Andersen samplers are 

systematically biased to report lower concentrations than the TSP samplers, conduct a 

randomized block test of the hypothesis that these six samplers reported the same mean 

values for total mass concentration in all three tests.  This test was conducted using a 

PROC general linear model (GLM) in SAS program (SAS Institute Inc., Cary, NC) 

between two Andersen samplers and four TSP samplers to evaluate the performance of 

size selective aerosol samplers.  The TSP samplers were used for reference samplers in 

the block design because it, alone among these samplers, was designed to measure total 

particulate mass.   

The Randomized block design was used to test for statistical differences between 

total concentration estimates of the samplers at 95 % confidence level.  The null 

hypothesis is that the true population mean of the fly ash concentration sampler is the 

same for all samplers.  The hypothesis is based on the implicit assumption that all 

samplers were exposed to the same concentration during each chamber experiment. 

HO: µ C1 = µ C2 = µ T1 = µ T2 = µ T3 = µ T4  

HA: Not all the µj's are equal 

where C1 & C2 = Andersen samplers; T1-T4 = TSP samplers. 

The PROC GLM procedure (α = 0.05) rejected the null hypothesis (p = 0.0047).  

Tukey’s test shows that there is no significant difference between the same types of 

sampler.  These results show that there is an overlap in Tukey Grouping.  Two of four 

TSP samplers are overlapped.  The randomized block code in SAS and its results are 

described in Appendix C. 
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The hypothesis test confirms the observation from Table 2-3 and Figure 2-13 that 

in all three tests the Andersen sampler underestimated the total dust concentration when 

compared with the TSP sampler.  The normalizing factor (1.16 ± 0.01) for the Andersen 

sampler was obtained from the overall average concentration (See Equation 2.7).   

Normalizing Factor for Andersen sampler 
Overall Average Concentration of TSP sampler= 

Average Concentration of Each Andersen Sampler
                                           (2.7) 

This normalizing factor for the Andersen samplers suggests that there is a 16 % ± 

1 % loss of particle mass.  This result was consistent with the author’s observation after 

each experiment when the Andersen samplers were cleaned.  Many particles were found 

on the wall and in the holes of the orifice plates for each stage of the Andersen sampler.  

Additionally, the inlet design of the Andersen may undersample particles with AED > 10 

µm at its operating air velocity of 2.1 m/s. 

 

2. Particle Size Distribution 

The GMAED and GSDAED for the Particle Size Distribution estimated by the 

Andersen samplers were estimated using the principle of least squares fitting to the log 

normal cumulative density function (See Table 2-4).  The GMAED and GSDAED for the 

PSD estimated by the TSP/CCM samplers were also estimated the same way (See Table 

2-5).   
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TABLE 2-4.  Parameters for Estimated PSD from Andersen Sampler Data   

Test 1 Test 2 Test 3 Test 
C1A C2 C1 C2 C1 C2 

 GMEAED B [µm] 4.7 (0.3) 4.9 (0.3) 4.6 (0.3) 4.7 (0.3) 4.7 (0.2) 4.8 (0.2) 
 GSDEAED 

 C 1.9 (0.1) 2.0 (0.1) 2.1 (0.1) 1.9 (0.1) 2.1 (0.1) 1.9 (0.1) 
Notes:                                                                                       Unit: ( ) ( ) and EAED EAEDGM SU GSD SU D 
A C1 & C2 = Andersen samplers. 
BGMEAED = Estimated median AED of sample data (See Appendix A-8). 
CGSDEAED = Estimated slope of estimated PSD curve (See Appendix A-8). 

D 
( )

22 2

or 
EAEDGM QW T

EAED EAED

SD SDSD SD
GM GSD W Q T

⎛ ⎞⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

, 

where SD = Standard deviation; W = Weighing; Q = Volume flow rate; T = Time; 
SDGMEAED (or SDGSDEAED) = Standard deviation of GMEAED (or GSDEAED). 
SUGMEAED (or SUGSDEAED) = Sampling uncertainty of GMEAED or GSDEAED =1.96 × SE. 

 

TABLE 2-5.  Parameters for Estimated PSD from TSP/CCM Data  

Test 1 Test 2 Test 3 Test 
T1A T2 T3 T4 T1 T2 T3 T4 T1 T2 T4 

 GMEAED B 
[µm] 

6.4 
(1.3) 

7.1 
(1.4) 

6.6 
(1.6) 

6.6 
(1.6) 

6.1 
(1.1) 

6.6 
(1.1) 

6.3 
(1.1) 

7.1 
(1.2) 

4.9 
(1.0) 

6.6 
(1.7) 

8.3 
(1.7) 

 GSDEAED 
 C 1.8 

(0.4) 
1.9 

(0.4) 
1.8 

(0.4) 
2.0 

(0.5) 
1.7 

(0.3) 
1.8 

(0.3) 
1.8 

(0.3) 
2.0 

(0.3) 
1.7 

(0.4) 
1.9 

(0.5) 
2.0 

(0.4) 
Notes:                                                                                     Unit: ( ) ( ) and EAED EAEDGM SU GSD SU D 

AT1-T4 = TSP samplers; T3 in Test 3 = the filter was used to get images by an ESEM. 
BGMEAED = Estimated median AED of sample data (See Appendix A-5). 
CGSDEAED = Estimated slope of estimated PSD curve (See Appendix A-5). 

D 
( )

22 22 2

or 
EAED PGM QW T

EAED EAED P

SD SDSD SDSD SD
GM GSD W Q T

ρ χ

ρ χ
⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= + + + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
, 

where SD = Standard deviation; W = Weighing; Q = Volume flow rate; T = Time; ρP = Density of 
particles; χ = Shape factor; and SD = Standard deviation.  

The equations above were based on the conversion from ESD to AED using 
1

2

0

pAED ESD
ρ
ρ χ
⎡ ⎤

= ⎢ ⎥⋅⎣ ⎦
 

where AED = Aerodynamic equivalent diameter; ESD = Equivalent spherical diameter; 
ρ0 = Unit Density (1 g · cm-3); χ = Dynamic shape factor. 
SUGMEAED (or SUGSDEAED) = Sampling uncertainty of GMEAED or GSDEAED =1.96 × SE 

P PSDρ ρ  and SDχ χ  were estimated as 0.1 ≡ (2.7 ± 0.2) g/cm3 and as 0.01 (from ESEM images). 

 

To find the relationship between the Andersen sampler and TSP/CCM for a 

GMEAED and a GSDEAED, the overall averages of GMEAEDs and GSDEAEDs from all tests 
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were calculated as 4.7 µm ± 0.2 µm and 2.0 ± 0.2 for Andersen sampler and 6.6 µm ± 

1.6 µm and 1.9 ± 0.2 for TSP/CCMs at 95% confidence level.  The relationships derived 

between the two samplers are (See Equations 2.8 and 2.9): 

GMTSP/CCM = (1.39 ± 0.67) × GMAndersen                        (2.8)  

GSDTSP/CCM = (0.86 ± 0.28) × GSDAndersen                               (2.9) 

The best PSD of the bulk sample of fly ash distributed in a chamber was obtained 

with a log-probit analysis and a regression analysis for prediction interval on a new 

observation (See Figure 2-14).  The true PSDs of the sampled fly ash from Andersen 

samplers and TSP samplers in the chamber were also obtained (See Figures 2-15 and 2-

16).  The bulk sample of fly ash has a median AED (GMBS = 11.8 µm) and a slope of the 

bulk sample (GSDBS = 2.1).   
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FIGURE 2-14.  PSD of fly ash’s bulk sample (See Appendix I-2). 

Note: The dashed lines represent the 95 % confidence interval for the fitted curve. 
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FIGURE 2-15.  PSD of Andersen Sampler (See Appendix I-2) (a) Test 1, (b) Test 2, 

(c) Test 3.   

Note: The dashed lines represent the 95 % confidence interval for the fitted curve. 

 



 34

1 2 5 10 20 50 100
AED@mmD

0

0.2

0.4

0.6

0.8

1

ssa
M

noitcarF

Chamber TEST 3
Andersen - Lognormal Fit

Best Fit
Measured
UCL&LCL

 
(c) 

FIGURE 2-15.  Continued. 
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(a) 

FIGURE 2-16.  PSD of TSP/CCM (See Appendix I-2).  (a) Test 1, (b) Test 2, 

(c) Test 3.   

Note: The dashed lines represent the 95 % confidence interval for the fitted curve. 
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FIGURE 2-16.  Continued. 
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FIGURE 2-17.  PSDs by samplers vs. PSD of fly ash’s bulk sample.  (a) Test 1, (b) 

Test 2, (c) Test 3.   

Note: The dashed lines represent the 95 % confidence interval for the fitted curve. 
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FIGURE 2-17.  Continued. 

 

To compare the PSDs of aerosol samplers and bulk sample of fly ash, all the 

PSDs were shown on the same graph (See Figure 2-17).  The PSD of bulk fly ash 

injected into the chamber appears to have a higher number of particles of all sizes than 

are evident in the PSD measured by the Andersen sampler and that measured by the 

TSP/CCM.  There is a significant difference between the median AEDs of aerosol 

samplers and GMBS = 11.8 of the bulk fly ash.  The reasons for this difference include: 

particle losses on the walls, the holes in the air straighteners, and the fan blades and 

feeding nozzle that injects the fly ash.  



 38

Figure 2-17 and Equation 2.8 show that there is a difference between the PSD 

curves of Andersen samplers and those of TSP/CCMs.  This difference is consistent with 

the bounce phenomenon in the Andersen sampler.  Mass transport by particle bounce 

causes the PSD slope to flatten.  The Andersen tends to show more mass in small 

diameter fractions than was present, and to show less mass in large diameter fractions 

that was present. 

 

3. Mass Fractions for the Convention  

The average mass fractions for respirable and thoracic PM were estimated from 

Andersen samplers and, TSP/CCMs, and RespiCon samplers to estimate sampler 

sampling efficiency as shown in Table 2-6.    

When the average mass fractions of Andersen samplers were compared with 

those of TSP/CCMs and RespiCon samplers, there were differences.  This different mass 

fraction can be explained by the particle loss on the walls, or any losses in the sampling 

conditions. This table shows that the Andersen sampler has a bounce phenomenon. 
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TABLE 2-6.  Average Mass Fractions of Respirable PM and Thoracic PM from 

Andersen, TSP/CCM, and RespiCon Samplers 

Andersen  
Mean (SD A) 

TSP sampler 
Mean (SD) 

RespiCon 
Mean (SD) Sampler 

Test1 
n = 2 

Test2 
n = 2 

Test3 
n = 2 

Test1 
n = 4 

Test2 
n = 4 

Test3 
n = 4 

Test1 
n = 1 Test2 Test3  

n = 2 
Respirable 

(AED≤4µm; 
PM4) 

0.37 
(0.04) 

0.40 
(0.04) 

0.37 
(0.04) 

0.20 
(0.08) 

0.20 
(0.07) 

0.23 
(0.08) 

0.11 
(0.02) -- B 0.25C 

(0.03) 

Thoracic 
(AED≤10µm; 

PM10) 

0.83 
(0.09) 

0.84 
(0.10) 

0.83 
(0.09) 

0.73 
(0.12) 

0.75 
(0.19) 

0.74 
(0.21) 

0.81 
(0.08) -- 0.67 

(0.09) 

Notes: A SD = Standard deviation for PM10 and PM4. 

10

10

2 2 2

total P

total

PM PM

PM PM P

SD SD SD SD
C C

ρ χ

ρ χ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠

, 4

4

2 2 2

total P

total

PMPM

PM PM P

SDSD SD SD
C C

ρ χ

ρ χ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠

for TSP samplers. 

where C = Concentration; ρP = Density of particles; χ = Shape factor; and SD = Standard deviation.  

The equations above were based on the conversion from ESD to AED using 
1

2

0

pAED ESD
ρ
ρ χ
⎡ ⎤

= ⎢ ⎥⋅⎣ ⎦
 

where AED = Aerodynamic equivalent diameter; ESD = Equivalent spherical diameter; 
ρ0 = Unit Density (1 g/cm3); χ = Dynamic shape factor. 

P PSDρ ρ  was estimated as 0.1 =  (2.7 ± 0.2) g/cm3 for fly ash. 
The value for SDχ χ  was estimated as 0.01 from the images obtained from the ESEM. 

10

10

2 2 2 2 2
7 1

7 1

...PM QSF S S T

PM SF S S

SD SDSD SD SD SD
C W W W Q T

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

, 

4

4

2 2 2 2 2 2 2
7 6 5 4

7 6 5 4

PM QSF S S S S T

PM SF S S S S

SD SDSD SD SD SD SD SD
C W W W W W Q T

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

for Andersen samplers. 

where S0, S1, S2, S3, S4, S5, S6, S7, SF = The number of stage. In these calculations, the relative standard 
deviation for stages 6, 7, and F were above 1 because of a small quantity of mass on these stages. Thus, 
the relative standard deviation of stages 6, 7, and F were estimated as 0.02. 

10

10

2 2 2 2
1 2

1 2

PM QSR SR T

PM SR SR

SD SDSD SD SD
C W W Q T

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠

, 4

4

2 2 2
1

1

PM QSR T

PM SR

SD SDSD SD
C W Q T

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

for 

RespiCon samplers. 
where SR1 and SR2 = The number of stage with stage cutoff size 4 µm and 10 µm. 

22
1

1

.....C n

F F Fn

SD SDSD
M M M

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
 where 

FM =Average mass fraction of n sampler.  

2 2 2
1

1

.....C n

T T n

SD SDSDSE
C C C C

⎛ ⎞⎛ ⎞ ⎛ ⎞
= + + ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 standard deviation for an error propagation of n samplers 

where TC  = Average concentration of n samplers; SE = standard error of sample mean;  

SDn = Standard deviation of nth sampler; nC = Concentration of nth sample.  Bno measurement;  
Cn = 1; In RespiCon samplers, two cutoff size for respirable were used. The 2.5 µm inlet is excluded. 



 40

In Andersen samplers, the AED50s for respirable and thoracic PM were decided 

by the stage cutoff size 3.7 µm and 10.3 µm which are close to respirable (AED ≤ 4 µm) 

and thoracic (AED ≤ 10 µm) convention.  

 

D.  DISCUSSION 

1. Mass Fractions by Aerosol Samplers 

The average concentrations were measured and compared using three types of 

impactors through three tests (See Table 2-7).  The following were expected from the 

monitors used in this study;  

1) PM10 concentration of a DustTrak monitor would be same as that of a PM10 sampler 

and PM2.5 concentration of a DustTrak and SidePak would also be same as that of 

RespiCon sampler. 

2) PM10 concentration of a DustTrak monitor would be higher than the PM2.5 

concentration of a DustTrak monitor when a median AED of airborne particles is 

bigger than an AED 2.5 µm. The PM2.5 concentration of a SidePak monitor would be 

higher than the PM1.0 concentration of a SidePak monitor when a median AED of 

airborne particles is bigger than 1.0 µm. When a median AED of airborne particles is 

smaller than AEDs 1 µm and 2.5 µm, similar concentrations would be expected.   
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TABLE 2-7.  Comparison of the Concentration of Real-time Monitors to the 

Unbiased Concentrations of Size Selective Samplers  

Sampler DustTrak (Mean ± SU A) SidePak (Mean ± SU) 
PM10 

Sampler 
(Mean ± SU) 

RespiCon 
(Mean ± SU) 

Inlet cutoff 
size [µm ] 

10 
n = 3 

2.5 
n = 3 

2.5 
n = 3 

1 
n = 3 n = 12 

Respirable 
(AED≤2.5µm) 

n = 1 
Concentration 

[mg/m3] 10.91 ± 3.00  5.87 ± 2.84 11.26 ± 4.10 11.12 ± 7.44 24.13 ± 12.19 7.90 ± 0.8 

A 
22 2Mass= , QC W T

SDSD SD SDC
Q T C W Q T

⎛ ⎞⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟⎜ ⎟× ⎝ ⎠⎝ ⎠ ⎝ ⎠
for PM10 and RespiCon samplers 

where C = Concentration; W = Weighing; Q = Flow rate; T = Time; and SD = Standard deviation. 
2 2Mass= , QC T

SDSD SDC
Q T C Q T

⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟× ⎝ ⎠⎝ ⎠
for DustTrak and SidePak real-time monitors 

2 2 2
1

1

.....C n

T T n

SD SDSDSE
C C C C

⎛ ⎞⎛ ⎞ ⎛ ⎞
= + + ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 standard deviation for an error propagation of n samplers 

where TC  = Average concentration of n samplers; SU = Sampling uncertainty = 1.96 × SE;  

SDn = Standard deviation of nth sampler; nC = Concentration of nth sample. 

 

Wu et al.(39) and Lehocky et al.(40) used a calibration factor for their research 

showing the benefit of calibrating an DustTrak monitor to dust being measured because 

it is calibrated using Arizona Test Dust at the factory.  The field calibration relates light 

scattering intensity to aerosol mass concentration (factory sets a calibration factor of 

1.00).  Thus, the correction factor (2.21, range of 0.86 to 4.59) for fly ash was calculated 

from the PM10 concentration of a DustTrak monitor and that of a PM10 sampler using 

Equation 2.10.  To find the calibration factor, the average concentration of PM10 

samplers was used as a reference concentration because the PM10 sampler provides a 

reasonable estimate of the thoracic particulate fraction. 

Ref. conc.Calibration factor for flyash =   old calibration factor
DustTrak conc.

⎛ ⎞ ×⎜ ⎟
⎝ ⎠

              (2.10) 
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Also, the calibration factors for DustTrak and SidePak monitors using 2.5 µm 

inlets were calculated using a respirable (AED ≤ 2.5 µm) PM concentration of RespiCon 

sampler because a RespiCon sampler provides an unbiased estimate of respirable, 

thoracic, and inhalable fractions.  The calibration factors are 1.35, which has a range of 

0.91 to 2.61 for a DustTrak monitor, and 0.70, which has a range of 0.51 to 1.10 for a 

SidePak monitor.  

These calibration factors for the chamber study cannot apply to field study 

because the density and shape of particles in the field is not the same as fly ash. 

DustTrak and SidePak monitors are useful for obtaining relative particle concentrations 

against the scattered light. 

As seen in Table 2-8, the same 2.5 µm inlets between DustTrak and SidePak 

monitors reported different mass concentration.  The indicated concentration 

measurement range of a DustTrak is from 0.002 mg/m3 to 100 mg/m3 (150 mg/m3∗) 

while that of SidePak is from 0.001 mg/m3 to 20 mg/m3.  When data were analyzed, 

there were “invalid” signs instead of the one second interval value of concentration for 

6 % of the intervals when using a 2.5 µm inlet SidePak monitor and for 10 % of the 

intervals when using a 1 µm inlet SidePak monitor.  There were no “invalid” signs from 

DustTrak monitors. These signs are recorded in the SidePak data stream when the values 

are above the maximum range (20 mg/m3).  This is confirmed because most of these 

signs occur in intervals during which the DustTrak is reporting the higher concentrations 

(See Figure 2-18).  

                                                 
∗  The value of 150 mg/m3 is experimental factory range. 
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Note, from Figure 2-18, that the total mass estimated by DustTrak and SidePak 

monitors has the same overall shape but has different calibration factors.  This means 

these instruments are useful for measuring relative concentrations over time, but not for 

absolute concentration measurements.   
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FIGURE 2-18.  Measured concentration by real-time monitor.   

Note: D2.5 = 2.5 µm inlet DustTrak; S2.5 = 2.5 µm inlet SidePak.  

 

2. Microscopic Analysis 

The important parameters for characterizing the behavior of PM are particle size, 

shape, and density.  To verify the particle size ranges, the images below were obtained 

from the filters of RespiCon samplers and TSP samplers using an ESEM at the 

Microscopy Imaging Center, Texas A&M University.  

The images were taken from a RespiCon sampler with an AED 2.5 µm cutoff 

stage and one of TSP samplers.  As shown in Figure 2-19, the images of (a), (b), and (c) 

“Invalid” Sign 
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show that the collected particle size from the stages of the RespiCon sampler appears to 

agree with the cutoff sizes AEDs 2.5 µm and 10 µm.  The images (d) and (e) in Figure 2-

19 show that a TSP sampler has a various range of particle size.   

 

       
(a) Calibration bar = 5 µm (b) Calibration bar = 10 µm (c) Calibration bar = 10 µm 
 
 

               
(d) Calibration bar = 20 µm                                (e) Calibration bar = 10 µm 

 

FIGURE 2-19.  Particle images from a RespiCon sampler and a TSP sampler.  (a) 

Respicon Stage 1 with 2.5 µm cut-point, (b) Respicon Stage 2 with 10 µm cut-point, 

(c) Respicon Stage 3 with 100 µm cut-point, (d) TSP Sampler, (e) TSP sampler. 
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When the images were obtained from the filters, it was noted that the electron 

beam created electrostatic forces between particles sufficient to cause visible particles 

displacement between images.  These forces may also produce the appearance of clusters 

or conglomerates on a filter, even though the aerosol may have been sampled as isolated 

particles from the atmosphere.    

Through the images taken by an ESEM, the most of fly ash are shown to have a 

smooth surface and spherical shape.  The shape factor was estimated as one on the basis 

of ESEM images (See Appendix G).  The particle size distributions from the RespiCon 

samplers are shown to agree with the cutoff of each stage.    

 

E.  CONCLUSIONS 

The goal of the chamber studies in this chapter was to select air sampling 

technology that would allow one to estimate the respirable, thoracic, and inhalable 

fraction of airborne PM as defined by the ACGIH/CEN/ISO standard. 

Six sampler technologies were tested by challenging them with uniform density 

poly-disperse fly ash spheres having a lognormal distribution with estimated parameters 

of GMAED = 11.8 µm and GSAED = 2.1.   

None of the sampling techniques, standing alone, provided a complete estimate 

of particle size distribution and mass concentration in the chamber air.  These 

distributions were therefore estimated by inference from data collected by the various 

samplers. 
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The Andersen samplers overestimate mass of small particles due to particle 

bounce and carryover between stages.  It therefore provides a conservative estimate of 

respirable particulate mass and thoracic particulate mass. 

The TSP samplers provide an unbiased estimate of total particulate mass.  

TSP/CCM provides a reasonable estimate of PM mass for ESD between 2 µm and 60 

µm.  TSP/CCM provides no information below ESD 2 µm and therefore underestimates 

respirable and thoracic particulate mass.  The conversion from ESD to AED for 

comparison with exposure standards is imprecise due to the range of particle shapes and 

densities in the sampled air. 

The PM10 samplers provide a reasonable estimate of the thoracic particulate 

fraction. 

The RespiCon samplers provide an unbiased estimate of respirable, thoracic and 

inhalable fractions.  

The DustTrak and SidePak monitors, with a one stage impactor prefilter, are 

useful for studying relative particle concentrations, but not for absolute concentrations.  

These samplers can not be calibrated for absolute particle concentrations in a plume with 

varying particle shape, composition, and density.  The prefilters overload quickly and 

particle bounce results. 
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CHAPTER III  

RISK ASSESSMENT OF PETROLEUM PIPE SCALE FROM A PIPE 

RATTLING PROCESS 

 

A.  INTRODUCTION 

National Air Ambient Quality Standards (NAAQSs) were set by the 

Environmental Protection Agency (EPA).  In these standards, particulate matter (PM) is 

defined as a complex mixture of particles suspended in the air that vary in size and 

composition.  PM is regulated to protect public health on the basis of its aerodynamic 

behavior and 24-hour average concentration.  PM10 and PM2.5 are the mass fractions 

found in size selective samplers that measure PM with aerodynamic equivalent diameter 

(AED) less than 10 µm and less than 2.5 µm, respectively.  The standard values for PM10 

and PM2.5 are 24 hour average concentrations of 150 µg/m3 and 65 µg/m3, and annual 

arithmetic mean concentrations of 50 µg/m3 and 15 µg/m3.(41) 

Occupational Safety and Health Administration (OSHA) Permissible Exposure 

Limit (PEL) for Particulates Not Otherwise Regulated (PNOR) are 5 mg/m3 for the 

respirable fraction (AED ≤ 4 µm) and 15 mg/m3 for total dust.(7)  These limits are based 

on averaging the concentration over a conventional 8 hour workday, and are called 8-

hour time weighted average (TWA) limits.  

The American Conference of Governmental Industrial Hygienists (ACGIH) 8-hr 

TWA Threshold Limit Value (TLV) for barium sulfate and for Particulates Not 

Otherwise Classified (PNOC) is offered in two forms:  the TLV for respirable particulate 
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matter (AED ≤ 4 µm) is 3 mg/m3, and the TLV for inhalable particulate matter (AED ≤ 

100 µm) is 10 mg/m3.(8)  This applies to insoluble and poorly soluble materials.  The 

pipe scale is primarily a barium sulfate scale.  In recent tests, it has been shown that it 

does not measurably dissolve in body fluids, so it fits the definition of PNOC offered by 

the ACGIH.(42)     

Currently accepted limits for PM are summarized in Table 3-1. 

 

TABLE 3-1.  Accepted limits for PM*  

Description PM2.5 PM4 PM10 PM total 

EPA NAAQSs 
Annual arithmetic mean 

24-hour average  

 
15 µg/m3 

65 µg/m3 
-- 

 
50 µg/m3 

150 µg/m3 
-- 

ACGIH TLV-TWA -- 3 mg/m3 -- 10 mg/m3 

OSHA PEL -- 5 mg/m3 -- 15 mg/m3 

Note: * Year: 2004   
 

The health effects of PM are dependent on several factors including: where they 

deposit in the respiratory tract, aqueous solubility, Octanol-Water partition coefficient, 

surface reactivity, and radionuclide content.  The particles with large AED (> 10 µm) are 

almost all deposited in the nose and throat.  The particles with an AED between 4 µm 

and 10 µm are deposited primarily in the pharynx, whereas respirable particles (AED ≤ 4 

µm) are able to reach the airspace deep in the lungs.  

To evaluate the health hazard of PM in the workplace, three PM fractions for 

inhalable, thoracic, and respirable convention are used on the basis of 50 % cutoff size at 
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AEDs of 100 µm, 10 µm, and 4 µm.  These size conventions were co-developed and 

adopted by the ACGIH, the Comité Européen de Normalisation (CEN),(3) and the 

International Organization for Standardization (ISO).(2)  They are also the sampling size 

fractions recommended by American Industrial Hygiene Association (AIHA).(4)  

The petroleum pipe rattling process removes tightly bound scale from the inside 

surface of tubular petroleum pipes and removes loose corrosion products from external 

surfaces.  The aerosol particles produced by the petroleum pipe rattling operations were 

collected with several types of size selective aerosol samplers.  This study reports results 

of air samples taken while petroleum pipes from two oilfields were rattled.  The aerosol 

dispersion was produced from the two distinct petroleum pipe scales.  No similar 

detailed, comprehensive study has been found in published literature.  

The main objectives of this study are: 

1. Measure PM mass concentrations and estimate particle size distributions (PSDs) of 

two different petroleum pipe scales (Mud Lake and Lake Sand). 

2. Compare the measured mass concentrations with accepted standards and guidelines. 

3. Provide images using an ESEM to illustrate particle shapes and physical sizes for 

two different scales. 

 

B.  METHODS  

The petroleum pipe rattling process was conducted at a remote location on Texas 

A&M University’s Riverside Campus, a former WWII bomber base.  Two tubular 

rattling machines, approximately 3 m wide and 24 m long, were installed on a geotextile 
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covered pad site having dimensions of 26 m × 43 m (See Figure 3-1).  All pipes tested 

for pipe rattling operations have a same length of 30 ft (9.14 m). 

Tests were conducted under a variety of weather conditions.  Meteorological data 

were measured and saved on a 10-minute duty cycle using a Davis Vantage Pro (Davis 

Instruments, Hayward, CA ) wireless weather station that was installed on the roof of the 

administrative trailer 10 m above the ground, high enough to ensure unimpeded 

acquisition of local weather data.  Meteorological data, including wind speed and 

direction, temperature, barometric pressure, and rainfall on each day were also obtained 

on one hour cycles from the nearest National Oceanic and Atmospheric Administration 

(NOAA) reporting station, located at Easterwood Airport (NOAA designation, CLL), 

located approximately 8 miles ESE of the pad site. 

 

 

(a) 

FIGURE 3-1.  Pipe rattling process.  (a) Pipe rattling process, (b) Field floor plan. 
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(b) 

FIGURE 3-1.  Continued. 

 

Two Andersen samplers, two RespiCon samplers, and four Total Suspended 

Particulate samplers analyzed by a Coulter counter multisizer (TSP/CCM) were used to 

estimate the aerodynamic PSD.  In TSP/CCMs, an AED is calculated from the measured 

particle volume, expressed as an equivalent spherical diameter (ESD). 

An AED is the diameter of the unit density (1 g/cm3) sphere that has the same 

settling velocity as the observed particle.  The cumulative mass fractions of PM10 and 

PM4 were determined by multiplying the volume fraction of PM10 and PM4 estimated by 

a CCM.   

Four PM10 samplers were also used to measure the PM10 concentration.  

43 m

3 m 

24 m

Cyclones

Operating Panel

26 m

True North 

7° Magnetic 
North Pipe Cleaning  

Machine 
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DustTrak and SidePak monitors were used to measure the second to second 

variation in real time aerosol concentration.  In this study, these concentrations are 

considered to be relative measures of scattered light intensity, not as a true mass 

concentration because the real-time monitors were not calibrated for the scale.  

In order to estimate respirable, thoracic, and inhalable fractions from each 1 m, 2 

m, and 3 m distance, the size selective aerosol samplers and real-time monitors were co-

located with the following conditions (See Figure 3-2).   

During the each experiment, there were variable conditions such as differing 

sampling locations, heights, wind speeds, wind dispersions, emission rates, and 

turbulence. Under these conditions, the following sampling and measurement protocol 

was used to obtain comparable results:       

1. The workplace was a bermed field covered with a reinforced, black, impermeable 

geotextile liner that extended about 3 m beyond the outside border of the berm. 

2.  A 1 m by 1 m by 0.5 m deep sump was constructed at the low point of the bermed 

area to gather rain water and to collect any particles that settled on the liner. 

3. A sump pumping system and six-stage water filter was installed and connected to 

portable tanks to hold filtered waste water used to clean the geotextile after each 

experiment, and to hold any rain water accumulated on the pad site, until chemical 

analysis showed it safe for disposal to a municipal treatment plant. 

4. The first and second tests had durations of 191 and 93 minutes, respectively.  

5. The petroleum pipes were rattled with a restored Hub City Iron Works pipe-cleaning 

machine (PCM-13375; Hub City Inc., Aberdeen, SD 57402). 
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6. Andersen samplers were located at a height of 60 cm on the first day and 120 cm on 

the second day.  

7. DustTrak and SidePak monitors were located at a height of 120 cm and the data were 

saved at one second intervals.  

8. RespiCon samplers were located at a height of 150 cm. TSP samplers and PM10 

samplers were located at the height of 150 cm. 

9. Teflon filters with a 0.5 µm pore size were used in the PM10, TSP, and RespiCon 

samplers as a filter media.   

10. The particles that fell out of the air onto the pad were collected after each test day 

and the pad plus all equipment were cleaned. 

11. A high-precision analytical balance with a limit of detection of 0.01 mg (AG245, 

Mettler Toledo, Greifensee Switzerland) was used to weigh the filters of TSP and 

PM10 samplers.  A Mettler Toledo AE 100 with a limit of detection of 0.1 mg was 

used to weigh the particles on the impaction plate of Andersen samplers. 

12. The filters and plates were weighed three times before and after each experiment 

inside a temporary office set up at the experimental site. 

13. The required airflows for TSP and PM10 samplers were set at 16.7 L/min with a 

needle valve in series with a diaphragm pump and the flow was monitored 

continuously with an orifice flow meter (Dayton, 4z792). The airflow rate was 

logged and recorded by a data logger (HOBO H8 RH/Temm/2X External) at 12 

second intervals. 

14. The orifice meter pressure drop was converted using Equation 2.1. 
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25.976 o
a

PQ K D ρ
∆= ⋅ ⋅ ⋅                                     (3.1) 

where Q = Airflow rate through the orifice meter [m3/s]; K = flow coefficient;  

Do = orifice meter [m]; ∆P = pressure drop cross the orifice [mmH2O]; and 

ρa = air density [kg/m3].   

15. The airflow rates for Andersen samplers were adjusted to 1 ACFM (28.32 L/min) 

and this flow was checked before and after each test using the flow meter. 

16. The airflow rates for RespiCon Samplers were adjusted to 3.11 L/min before each 

test and checked after each test using a flow meter provided by the TSI Company. 

17. The airflow rates for DustTrak and SidePak monitors were adjusted to 1.7 L/min 

prior to each experiment using a flow meter provided by the TSI Company. The 

particle concentration scale was zeroed with air passing through a zero filter prior to 

each experiment. 

18. The operator and helper wore coveralls, goggles, disposable masks, disposable 

earplugs, gloves, safety hats, and safety boots. 

19. The positioning of the aerosol samplers was determined by wind direction from the 

weather monitor plus visual monitoring of the wind conditions with a smoke 

generator (F-100 Performance Fog Generator; Light Wave Research/High End 

Systems, Austin, TX 78758), whose plume is visible in videos recorded during the 

experiments. 

20. The dispersion of the smoke was a visual indication of the median wind direction 

and the degree of variability of the wind direction.    



 55

 
Notes: C1 & C2 = Andersen samplers; 
R1 = RespiCon sampler with a 4 µm and 10 µm cut-points; R2 = RespiCon sampler with a 2.5 µm and 10 
µm cut-points;   
T1-T4 = Total suspended particulate samplers; P1-P4 = PM10 samplers;  
D1 = DustTrak monitor used a 10 µm inlet; D2 = DustTrak monitor used a 2.5 µm inlet; 
S1 = SidePak monitor used a 2.5 µm inlet; S2 = SidePak monitor used a 1 µm inlet. 

(a) 

 

 
Notes: All samplers’ conditions are the same as in field test 1.  
D1 & D2 = DustTrak monitors (a 1 µm inlet module was used for each monitor) 
 

(b) 

FIGURE 3-2.  Aerosol sampler setup for field tests 1 and 2 with wind rose.   

(a) Field test 1 (Mud Lake pipe),  (b) Field test 2 (Lake Sand pipe). 
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C.  RESULTS 

1.  Mass Concentration 

As shown in Table 3-2, comparable total mass concentrations in the petroleum 

pipe rattling process were found between Andersen samplers and TSP samplers located 

at the same distance from the centerline of scale source through overall experiments.  

The mass concentration of each sampler has individual standard deviation because there 

were uncertainties from the mass weighed, the volume flow rate of pump, and the time 

collecting particles. 

The total mass concentrations from Andersen, RespiCon, and TSP samplers are 

displayed with their confidence interval at 95 % confidence level (See Figure 3-3).  

Interestingly, the highest concentrations were found from the TSP sampler and 

the PM10 sampler located at 2 m distance from the centerline of the pipe machine, not at 

1 m distance.  This result is not consistent with a simple inverse square law model of 

concentration vs. distance (See Figure 3-4).  It is consistent with a Gaussian plume 

model whose centerline passes beneath the sampler at 1 m distance from the pipe, as 

illustrated in Figures 3-5 and  Figure 3-19.   
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TABLE 3-2.  Measured Concentrations from Each Aerosol Sampler by Distance 

Field test 1 (Mud Lake 13 pipes) Total Test Time: 191 minutes 

Distance From 
Source 

TSP A 

[150] E 
C1 B 

[60] 
C2 B 
[60] 

R1 C 

[150] 
R2 D 
[150] 

1 m 12.7 
(0.5) F -- G -- -- -- 

2 m 12.9 
(0.5) 

12.5 
(1.3) 

12.4 
(1.5) 

16.7 
(1.4) 

13.7 
(1.2) 

3 m 1.6 
(0.1) -- -- -- -- 

Upwind 1m 0.35 
(0.02) -- -- -- -- 

Unit: [mg/m3] ( )C SD  

 
Field test 2 (Lake Sand 17 pipes) Total Test Time: 93 minutes    

Distance From Source TSP 
[150] 

C 
[120] 

R 
[150] 

1 m 8.1 
(1.5) 

8.2 
(0.8) 

18.6 D 
(3.1) 

2 m 11.5 
(2.1) -- -- 

3 m 5.8 
(1.0) 

4.6 
(0.9) 

10.6 C 
(1.5) 

Upwind 1m 0.57 
(0.1) -- -- 

Notes:                                                                                                                     Unit: [mg/m3] ( )C SD H 
Total Test Time represents all the time elapsed from the start to the finish during a sampling day. 
A TSP = Total Suspended Particulate samplers; B C1 and C2 = Andersen samplers; C R1 = RespiCon 
Sampler with 4 µm and 10 µm cut-points; DR2 = RespiCon sampler with 2.5 µm and 10 µm cut-points; 
E [ ] = The height of each sampler’s inlet in cm; F ( ) = Inlet size for the cutoff of interest in µm; G No 
measurement; H C  = Average concentration from 3 times filter measurements, SD = Standard deviation 
were obtained using an error propagation. 

22 2Mass= , QC W T
SDSD SD SDC

Q T C W Q T
⎛ ⎞⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟⎜ ⎟× ⎝ ⎠⎝ ⎠ ⎝ ⎠

 for TSP,  Andersen, and RespiCon samplers. 

where C = Concentration; W = Weighing; Q = Flow rate; T = Time; and SD = Standard deviation.  
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FIGURE 3-3.  Total mass concentration by distance.  (a) Mud Lake pipe, 

(b) Lake Sand pipe. 

Note: (a) Plotted data = TSP sampler [150 cm], Andersen sampler [60 cm], RespiCon sampler [150 cm], 
(b) Plotted data = TSP sampler [150 cm], Andersen sampler [120 cm], RespiCon sampler [150 cm]. [ ] = 
The height of sampler’s inlet in cm. 
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FIGURE 3-4.  Minimum mean square error fit showing unsuitability of the Inverse 

Square Law as a model for PMTotal data.  (a) Mud Lake pipe, (b) Lake Sand pipe. 

Note: (a) Plotted data = TSP sampler [150 cm], Andersen sampler [60 cm], RespiCon sampler [150 cm], 
(b) Plotted data = TSP sampler [150 cm], Andersen sampler [120 cm], RespiCon sampler [150 cm]. [ ] = 
The height of sampler’s inlet in cm. 
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 (b) 

 
FIGURE 3-5.  Minimum mean square error fit showing Gaussian Point Source 

Model fit to PMTotal data.  (a) Mud Lake (R2 = 0.21), (b) Lake Sand (R2 = 0.27). 

Note: (a) Plotted data = TSP sampler [150 cm], Andersen sampler [60 cm], RespiCon sampler [150 cm], 
(b) Plotted data = TSP sampler [150 cm], Andersen sampler [120 cm], RespiCon sampler [150 cm]. [ ] = 
The height of sampler’s inlet in cm.  Dashed lines = 95 % confidence interval (Multiple values occur at 
each distance.  There is only one predicted value at each distance.  To find confidence intervals on the 
fitted curve, it is sufficient to retain the concentrations of TSP samplers, representing predicted data at 1 
m, 2 m, and 3 m, respectively.   
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In Figure 3-5, the bold line shows the nonlinear fit to a Gaussian point source 

model.  It represents the plume centerline concentration of PM10.  The Mathematica 

NonlinearFit procedure was used to find the best fit of plume model.  The Gaussian line 

source model was not applied to the NonlinearFit procedure because there is no 

horizontal dispersion coefficient in that model.  The parameters were estimated by 

matching the concentrations measured with aerosol samplers (See Mathematica Codes in 

I-3).   

 

2. Particle Shape and Density Influence Estimated AED  

The images of front and back of a filter were examined to understand the shape 

of accumulated particles in Figure 3-6. 

 

                  
(a)                                                                           (b)  

FIGURE 3-6.  The front and back images of Teflon filter.  (a) Front (Calibration 

bar = 20 µm), (b) Back (Calibration bar = 20 µm). 
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(a) (b)  

 
 

 
(c)  

 

FIGURE 3-7.  The images of Mud Lake scale.  (a) TSP sampler (Calibration bar = 

20 µm), (b) PM10 sampler (Calibration bar = 20 µm), (c) RespiCon sampler stage 2 

(Calibration bar = 10 µm). 
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(a)                                                                           (b)  

 

 
(c)  

 
FIGURE 3-8.  The images of Lake Sand scale.  (a) TSP sampler (Calibration bar = 

20 µm), (b) PM10 sampler (Calibration bar = 20 µm), (c) RespiCon sampler stage 2 

(Calibration bar = 10 µm). 
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The scale images of Mud Lake and Lake Sand were provided in Figures 3-7 and 

3-8.  Through the ESEM images, the scale of Mud Lake is shown to have an irregular 

shape and many holes with dark and brown color and the scale of Lake Sand has a 

regular shape and a clear angled surface with bright and grey color.  The shape factor (χ 

= 1.57 ± 0.08) was estimated from particle shapes modeled as orthorhombic crystals in 

which the orthogonal dimensions are 1: 1: 2 (Between 1: 1: 1.5 and 1: 1: 2.5).  A more 

detailed shape factor calculation is presented in Appendix G.   

The American Society for Testing and Materials (ASTM) U.S. Standard Sieve 

Series were used as following: Opening size of 297 µm with a mesh number of 50 and 

opening size of 105 µm with a mesh number of 140 (E. H. SARGENT and CO., Chicago, 

IL).  The measured density of scale passing through Mesh 140 was (3.46 ± 0.3) g · cm-3 

for Mud Lake pipe scale and (3.04 ± 0.3) g/cm3 for Lake Sand pipe scale and for scale 

dust passing through mesh 50 was (3.41 ± 0.3) g/cm3 for Mud Lake pipe scale and (3.13 

± 0.3) g/cm3 for Lake Sand pipe scale.  In this study, the measured density of general 

sample was (3.35 ± 0.3) g/cm3 for Mud Lake scale and (2.43 ± 0.3) g/cm3 for Lake Sand 

scale.  The density of general sample was used to convert ESD to AED in this study. 

Five grams of finely ground scale was put into a tared graduated cylinder.  A 

balance (AE100, Mettler Toledo, Greifensee, Switzerland) with a maximum detection of 

25 g was used to weigh the sample.  Then, deionized water was added, keeping track of 

the amount added, until 10 mL total volume is reached.  At that point, the sample was 

agitated to make sure all the air bubbles were out.  Then, the deionized water was added 

to make up for the lost volume again.  In the end, it was found that the 5 g of Mud Lake 
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scale plus 8.51 mL of water occupied 10 mL.  For example, the Mud Lake scale had a 

volume of 1.49 ml (cm3) and its density was 5 g / 1.49 mL = 3.35 g/mL (g/cm3).   

When the images of petroleum pipe scale were taken using an ESEM, many 

clusters or conglomerates were found on the filters (See Figure 3-9).  

 

                 
(a)                                                                           (b)  

FIGURE 3-9.  Electrostatic and cluster (Lake Sand).  (a) RespiCon (Calibration 

bar = 10 µm), (b) TSP (Calibration bar = 20 µm). 

 

During the petroleum pipe rattling process, a deposition mapping experiment was 

conducted to obtain a deposition “footprint” using 1118 Petri dishes (100 mm diameter × 

18 mm deep).  These were placed on a 1 m grid over the area (26 × 43 array) as shown 

in Figure 3-10.   
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(a)                                                                      (b) 

FIGURE 3-10.  Deposition mapping.  (a) Mud Lake, (b) Lake Sand. 

 

The mapping shows that the mass percentages collected in the Petri dishes within 

3 m downwind distance from the centerline, N, are 73 % and 84 % and the those within 

1m upwind distance form the centerline are 11 % and 12 % from the both scales (See 

Table 3-3).(43)    

 

TABLE 3-3.  Measured Mass Fraction of Settled Dust within 3 m Distance from the 

Centerline of Source 

Wind dir. Upwind Centerline Downwind 
Distance from the 

centerline [m] 3 2 1 0 1 2 3 
Overall B 

Collected 
Mass fraction A 

(Mud Lake) 
0.00 0.02 0.11 0.50 0.13 0.06 0.04 0.86 

Collected 
Mass fraction 
(Lake Sand) 

0.00 0.01 0.12 0.67 0.12 0.03 0.01 0.96 

Notes:                                                                                               
AMass fraction = Total mass at each distance / Overall settled mass.  Total mass at each distance were 
calculated from 43 Petri dishes of each line. 
BOverall mass fraction was calculated from 1118 Petri dishes. 
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When the images of scales were taken from the Petri dishes located at 3 m 

distance from the centerline of scale source, most of particles are bigger than 50 µm.  

This means that in this study, the PSD for suspended aerosol able to be transported by 

the wind is dominated by particles smaller than ESD of 50 µm.   

Hinds(15) defined aerosol as a suspension of solid or liquid particles in a gas 

which have a range from 0.001 to 100 µm.  Turner(44) defined aerosol as particles 

smaller than about 20 µm.  

From the particles collected in the Petri dishes, several colors of particles were 

found.  To verify the shapes of these particles, four different color groups were 

photographed with an ESEM.  To get images of two interesting colors of particles which 

were deposited into the Petri dishes on both tests, the following procedures were 

followed for the four different color groups:  

1. One of particles from each group was selected for imaging using a pin.  

2. The images with magnification ×250 and ×350 (Calibration bar = 50 µm) from each 

group were obtained to compare each with other.  In a small particle size range 

(brighter particles), the additional images were obtained with magnitude ×850 

(Calibration bar = 20 µm). 
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(a)                                                                           (b)  

 
FIGURE 3-11.  The images of black and gray particle.  (a) Mud Lake (Calibration 

bar = 50 µm), (b) Lake Sand (Calibration bar = 50 µm).  

Notes: The images of particle a) and b) are similar to rust.  These particles were obtained at 1 m distance 
away from the centerline in each test. 

 

In the Mud Lake particles, the black particles were assumed to arise from rust in 

the petroleum pipes. In the Lake Sand particles, the gray particles have two different 

sides, the grey side of particles and the darker sides of the gray side. The darker side was 

assumed as rust attached with the particles (See Figure 3-11). Both images were 

obtained from the Petri dish 1 m away from the centerline in each test. 

 

3. Particle Size Distribution 

The Andersen samplers and TSP/CCMs provide PSDs for two different scales. 

The PSD of each sampler above was plotted one by one to show the measured mass 

fraction (See Figures 3-12 and 3-13).   
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The Goodness of Fit (GOF) test was conducted to find the best distribution of 

airborne scales from TSP/CCMs using the Reliasoft Weibull++ program.  The software 

ranked quality of fit for Lognormal and Normal, Exponential 1-parameter, Exponential 

2-parameter, Weibull 2-parameter, and Weibull 3-parameter distributions.   

The results show that the lognormal distribution was ranked as one for five of six 

TSP/CCMs’ samples, and it ranked second when the Weibull 2-parameter distribution is 

ranked as one in one of six TSP/CCMs’ samples.  For uniformity, the lognormal model 

was used for all.  The estimated PSD is then characterized with a GMAED and a GSDAED 

for Andersen samplers and another for TSP/CCMs. 

The best PSDs and confidence intervals for Mud Lake and Lake Sand scales 

distributed in the air were obtained from Andersen samplers and TSP/CCMs using a log-

probit analysis and a linear regression analysis (See Equations 2.4 and 2.5).   

To compare the PSD of an Andersen sampler with that of a TSP/CCM, the PSDs 

were plotted in the same graph (See Figure 3-14).   
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FIGURE 3-12.  PSD of Andersen Sampler (Field test).  (a) Mud Lake pipe, (b) Lake 

Sand pipe. 

Note: The dashed lines represent the 95 % confidence interval for the fitted curve. 
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(b) 

 
FIGURE 3-13.  PSD of TSP/CCM (Field test).  (a) Mud Lake pipe, (b) Lake Sand 

pipe. 

Note: The dashed lines represent the 95 % confidence interval for the fitted curve. 
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(b) 

 
FIGURE 3-14.  PSD comparison, showing that the fitted PSD for the Andersen and 

the TSP/CCM analyses are consistent with one another.  (a) Mud Lake with 

acceptable fit, (b) Lake Sand with better fit 

Note: The dashed lines represent the 95 % confidence interval for the fitted curve. 
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In Figure 3-14, there is reasonable overlap between the 95% confidence intervals 

associated with the PSD estimated from the Andersen Samples and that estimated from 

the TSP/CCM samples.  As expected from the chamber studies, the Andersen slope 

appears to be a bit flatter than that of the TSP/CCM.   As both PSDs are uncertain, the 

best interpretation of the data is that the portion of the PSD for small particle sizes 

estimated by the Andersen samples is consistent with the portion of the PSD for larger 

particle sizes estimated by the TSP/CCM data, within the estimated uncertainty of the 

data.   

The GMAED and GSDAED for the PSD of the Andersen samplers were estimated 

using the principle of least squares fitting to the log normal cumulative density function 

(See Table 3-4).  The GMAED and GSDAED for the PSD of the TSP/CCM samplers were 

also estimated the same way (See Table 3-5).   

 

TABLE 3-4.  Parameters for Estimated PSD from Andersen Sampler Data 

Field test 1 (Mud Lake) Field test 2 (Lake Sand) 
Test 

C1A C2 C1 C2 

 GMEAED B [µm] 7.1 (1.6) 6.7 (1.6) 6.2 (2.4) 6.2 (1.4) 
 GSDEAED 

 C 2.4 (0.5) 2.1 (0.5) 3.0 (1.2) 3.0 (0.7) 
Notes:                                                                                        Unit: ( ) ( ) and EAED EAEDGM SU GSD SU D 

The GMAED and GSDAED of an Andersen sampler were estimated from log-probit analysis (See 
Appendix B-5). 
A C1 & C2 = Andersen samplers; BGMEAED = Estimated median AED of sample data; 
CGSDEAED 

 = Estimated slope of PSD curve. 

D 
( )

22 2

or 
EAEDGM QW T

EAED EAED

SD SDSD SD
GM GSD W Q T

⎛ ⎞⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

, 

where SD = Standard deviation; W = Weighing; Q = Volume flow rate; T = Time; 
SDGMEAED (or SDGSDEAED) = Standard deviation of GMEAED (or GSDEAED). 
SUGMEAED (or SUGSDEAED) = Sampling uncertainty of GMEAED or GSDEAED = 1.96 × SE. 
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TABLE 3-5.  Parameters for Estimated PSD from TSP/CCM data 

Field test 1 (Mud Lake) Field test 2 (Lake Sand) 
Test 

T1A T2 T3 T1 T2 T3 

 GMEAED B [µm] 5.9 (1.4) 5.5 (1.4) 5.9 (1.4) 7.9 (4.4) 5.4 (2.9) 6.5 (3.3) 
 GSDEAED 

 C 1.7 (0.4) 1.6 (0.4) 1.8 (0.4) 2.3 (1.3) 1.7 (0.9) 2.1 (1.1) 
Notes:                                                                                          Unit: ( ) ( ) and EAED EAEDGM SU GSD SU D 

The GMAED and GSDAED of a TSP/CCM were estimated from log-probit analysis (See Appendix B-5).    
A T1-T3 = TSP samplers;   
The T4 sampler is excluded for lack of data; it had insufficient dust to run a CCM for a PSD. 
BGMEAED = Estimated median AED of sample data; 
CGSDEAED 

 = Estimated slope of PSD curve. 

D 
( )

22 22 2

or 
EAED PGM QW T

EAED EAED P

SD SDSD SDSD SD
GM GSD W Q T

ρ χ

ρ χ
⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= + + + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
, 

where SD = Standard deviation; W = Weighing; Q = Volume flow rate; T = Time; ρP = Density of 
particles; χ = Shape factor; and SD = Standard deviation.  
SUGMEAED (or SUGSDEAED) = Sampling uncertainty of GMEAED or GSDEAED = 1.96 × SE. 

P PSDρ ρ  and SDχ χ  were estimated as 0.1 and as 0.05 (from ESEM images). 

 

4. PM10 and PM4 mass concentration  

The PM10 concentrations by PM10 samplers were compared with the mass 

concentration for thoracic concentrations (AED ≤ 10 µm) estimated by RespiCon 

samplers.  In Andersen samplers, the concentrations of PM10 and PM4 were estimated 

from the stage cutoff AED ≤ 9 µm and AED ≤ 3.3 µm.  In TSP/CCMs, the 

concentrations of PM10 and PM4 were estimated from the converted AEDs.  RespiCon 

samplers provide unbiased mass fraction for PM10 and PM4.   

Tables 3-6 and 3-7 show mass concentration and mass fraction from each size 

selective aerosol sampler for respirable (called PM4) and thoracic (called PM10) fractions.  

The estimated PM10 concentrations in Table 3-6 were used to find best fit for Gaussian 

plume model.  The vertical and horizontal coefficients, σy and σz, and an emission rate 

for a Gaussian plume model are estimated to find an attainment area for the public.       
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TABLE 3-6.  Mass Concentrations for Respirable and Thoracic PM 

Field test 1 (Mud Lake 13 pipes) 

Sampler TA 1mE 

[150] F 
T 2m 
[150] 

T 3m 
[150] 

CB 2m 
[60] 

C 2m 
[60] 

RC 2m 
(4µm)G 

[150] 

R 2m 
(2.5µm)  

[150] 
PD 1m 
[150] 

P 2m 
[150] 

P 3m 
[150] 

PM4 
2.9 

( 0.3)  
3.4 

(0.4) 
0.4 

(0.1) 
0.4 H  
(0.01) 

0.9 
(0.1 ) 

2.7 
(0.1) 

1.4 
(0.1) --I -- -- 

PM10 
10.5 
(1.2) 

11.3 
(1.4) 

1.3 
(0.1) 

4.8 H 
(0.5) 

4.6 
(0.6) 

6.40 
(0.4) 

3.64 
(0.7) 

2.8 
(0.1) 

5.1 
(0.7) -- 

 Unit: [mg/m3] ( )C SD J 

Field Test 2 (Lake Sand 17 pipes)  

Description T 1m 
[150] 

T 2m 
[150] 

T 3m 
[150] 

C 1m 
[120] 

C 3m 
[120] 

R 1m 
(2.5µm) 

[150] 

R 3m 
(4µm) 
[150] 

P 1m 
[150] 

P 2m 
[150] 

P 3m 
[150] 

PM4 
1.6 

( 0.4) 
3.5 

(0.7) 
1.4 

(0.3) 
1.4 

(0.1) 
0.7 

(0.1) 
2.6 

(0.4) 
0.9 

(0.1) -- -- -- 

PM10 
4.9 

(1.1) 
10.0 
(2.1) 

4.2 
(0.8 ) 

4.9 
(0.5) 

2.7 
(0.5) 

6.6 
(0.5) 

3.6 
(0.4) 

2.2 
(0.4) 

2.7 
(0.5) 

1.6 
(0.3) 

Notes:                                                                                                                        Unit: [mg/m3] ( )C SD   
AT = Total suspended particulate samplers by a CCM; BC = Andersen samplers;  
CR = RespiCon samplers; DP = PM10 samplers; E 1m, 2m, and 3m = the distance from the source [m];  
F[ ] = The height of each sampler’s inlet in cm; G(µm) = cutoff size for first stage;  
H __ = The mass fractions for PM4 and PM10 based on the stage cutoff AED 3.3 µm and 9 µm of 
Andersen sampler; I-- = No measurement by a CCM for the PM10 sampler; 
J C  = Average concentration from 3 times filter measurements; SD = Standard deviation were obtained 
using an error propagation. 

 
10

10

2 2 2

total P

total

PM PM

PM PM P

SD SD SD SD
C C

ρ χ

ρ χ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠

, 4

4

2 2 2

total P

total

PMPM

PM PM P

SDSD SD SD
C C

ρ χ

ρ χ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠

for TSP samplers. 

where C = Concentration; ρP = Density of particles; χ = Shape factor; and SD = Standard deviation.  

The equations above were based on the conversion from ESD to AED using 
1

2

0

pAED ESD
ρ
ρ χ
⎡ ⎤

= ⎢ ⎥⋅⎣ ⎦
 

where AED = Aerodynamic Equivalent Diameter; ESD = Equivalent Spherical Diameter; 
ρ0 = Unit Density (1 g · cm-3); χ = Dynamic shape factor. 

P PSDρ ρ = 0.1 because the measured density were (3.4 ± 0.3) g · cm3 for Mud Lake scale and  
(2.4 ± 0.2) g · cm3 for Lake Sand scale. 
The value for SDχ χ  was estimated as 0.1 from the images obtained from the ESEM for both scales. 

10

10

2 2 2 2 2
7 1

7 1

...PM QSF S S T

PM SF S S

SD SDSD SD SD SD
C W W W Q T

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

, 

4

4

2 2 2 2 2 2 2
7 6 5 4

7 6 5 4

PM QSF S S S S T

PM SF S S S S

SD SDSD SD SD SD SD SD
C W W W W W Q T

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

for Andersen samplers. 

where S0, S1, S2, S3, S4, S5, S6, S7, SF = The number of stages.  
In these calculations, the relative standard deviation for stages 6, 7, and F were above 1 because of 
small quantity of mass on these stages. Thus, the relative standard deviation of stages 6, 7, and F were 
estimated as 0.02. 
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TABLE 3-7.  Mass Fractions for Respirable and Thoracic PM 

1) Field test 1 (Mud Lake 13 pipes) 

Sampler TA 1mD 
[150] E 

T 2m 
[150] 

T 3m 
[150] 

CB 2m 
[60] 

C 2m 
[60] 

RC 2m 
(4µm)F 

[150] 

R 2m 
(2.5µm)  

[150] 

PM4 
0.23 

(0.03) 
0.26 

(0.03) 
0.25 

(0.03) 
0.03 G 
(0.00) 

0.07  
(0.01) 

0.16 
(0.01) 

0.10 
(0.01) 

PM10 
0.83 

(0.10) 
0.88 

(0.10) 
0.81 

(0.09) 
0.38 G 
(0.04) 

0.37  
(0.04) 

0.38 
(0.03) 

0.27 
(0.02) 

Note:                                                                                                                      Unit: [mg/m3] ( )C SD   
AT = Total Suspended Particulate samplers by a CCM; BC = Andersen samplers;  
CR = RespiCon samplers; D1 m, 2 m, and 3 m = the distance from the source;  
E[ ] = The height of each sampler’s inlet in cm; F(µm) = cutoff size for first stage;  
G__ = The mass fractions for PM4 and PM10 based on the stage cutoff AED 3.3 µm and 9 µm of 
Andersen sampler. 

 
2) Field test 2 (Lake Sand 17 pipes)  

Description T 1m 
[150] 

T 2m 
[150] 

T 3m 
[150] 

C 1m 
[120] 

C 3m 
[120] 

R 1m 
(2.5µm)  

[150] 

R 3m 
(4µm)  
[150] 

PM4 
0.20 

(0.04) 
0.30 

(0.06) 
0.25 

(0.05) 
0.16 

(0.03) 
0.16 

(0.11) 
0.08 

(0.01) 
0.14 

(0.02) 

PM10 
0.61 

(0.13) 
0.87 

(0.19) 
0.72 

(0.14) 
0.6 

(0.06) 
0.6 

(0.11) 
0.34 

(0.06) 
0.35 

(0.05) 

Unit: [mg/m3] 
 

5. Risk Assessment 

To find the attainment area for the general public, one starts by deciding how to 

conduct risk assessment.  From TSP sampler data in Table 3-2 and PM10 sampler data in 

Table 3-6, the highest mass concentrations were observed from the aerosol samplers 

located at a 2 m distance from the centerline source.  Two video cameras were used to 

record the pipe rattling research on the ground and at the height of 10 m on each 

experiment day.  The recorded DVDs of pipe rattling operations show that most of 
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plume passed beneath the sampler at 1 m for most of each test and that the plume 

engulfed the samplers at 2 and 3 meters.   

Figure 3-15 shows that the PM10 concentrations from Andersen, RespiCon, and 

TSP/CCM, and PM10 samplers are not consistent with a simple inverse square law model 

of concentration vs. distance.  

The Gaussian plume model was used for predicting the distance from the 

centerline to the proximate edge of the attainment area for the NAAQS 24 hour average 

limit of  0.15 mg/m3 for the public.  The Mathematica NonlinearFit procedure was used 

to find the best fit of plume model.  Parameters of the plume model were estimated to 

obtain a best fit in the minimum mean square error sense.   

In NonlinerarFit procedure, the estimated parameters were: emission rate (ER 

[mg/s]), horizontal dispersion coefficient (σy = ay + by · x), vertical dispersion 

coefficient (σz = az + bz · x), and effective height (H [m] = h (pipe location height) + ∆h 

(average plume height from the pipe location).  The ay and az was assumed to have 0 

value.  A height of the receptor the ground is modeled as 1.5 m to simulate human 

breathing zone.  Average wind speed measured on the ground was applied to this model 

as (2.2 ± 1.1) m/s for Mud Lake pipe rattling process and (3.2 ± 0.5) m/s for Lake Sand 

pipe rattling process.  The values of best parameters of ER, by, bz, and H are introduced 

for the public exposure standard and for the worker exposure standard in Appendix I-1.  

The Mathematica code used for this non-linear data analysis reproduced in Appendix I-3.  

The Gaussian dispersion model is summarized in Appendix H.   
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FIGURE 3-15.  Minimum mean square error fit showing unsuitability of the 

Inverse Square Law as a model for PM10 data.  (a) Mud Lake pipe (R2 = 0.06), (b) 

Lake Sand pipe (R2 = 0.02). 

Note: Plotted data = Estimated PM10 concentrations of TSP, Andersen, and RespiCon samplers; Measured 
concentrations of PM10 samplers. 
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With the estimated parameters, the plume centerline concentrations for PM10 

PMTotal were shown in Figures 3-16 and 3-17.  The maximum concentrations were found 

between 1.3 m and 1.5 m for Mud Lake and Lake Sand pipe rattling operation.  
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FIGURE 3-16.  Plume centerline concentrations of PM10 showing maximum 

concentration between 1 m and 2 m distance from the source.  (a) Mud Lake pipe, 

(b) Lake Sand pipe. 
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FIGURE 3-17.  Plume centerline concentrations of PMTotal showing maximum 

concentration between 1 m and 2 m distance from the source.  (a) Mud Lake pipe, 

(b) Lake Sand pipe 
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To obtain the attainment area on the basis of NAAQS, the PM10 concentrations in 

Table 3-6 were fitted to the Gaussian plume model and that was plotted with the 0.15 

mg/m3, NAAQS 24-hour average limit.  Figure 3-18 shows that the attainment area starts 

about 20 m from the estimated centerline concentration of PM10 source for Mud Lake 

and Lake Sand pipe scales.   

The pipe rattling operations did not allow measurement of 8-hour and 24-hour 

TWA concentrations.  The total measurement time is 191 minutes for Mud Lake 

petroleum pipes and 93 minutes for Lake Sand petroleum pipes.  No standards or 

guidelines were found for short-term exposures as a result of a literature search among 

PELs, TLVs, and NAAQSs.  The 24-hour concentration for NAAQS is overstated by a 

factor of 3 when the pipe rattling operations is considered as 8-hour measurement.  

Available data suggest that the NAAQS attainment area for unlimited public access 

starts at distances of about 9 m for Mud Lake pipe scale and about 10 m for a Lake Sand 

pipe scale (See Figure 3-18).    

Figures 3-18 and 3-19 show that the estimated plume centerline concentrations 

from a Gaussian plume model are consistent with the concentrations measured by size 

selective aerosol sampler at the height of breathing zone.   
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FIGURE 3-18.  Nonlinear fit of Gaussian plume model to task average exposures 

compared with the NAAQS used for the public exposure standard.  (a) Mud Lake 

pipe, (b) Lake Sand pipe. 

Notes: Plotted data = Estimated PM10 Concentrations of TSP, Andersen, and RespiCon samplers; 
Measured concentrations of PM10 samplers. 
The line for a predicted 24-hour average task was estimated by the factor (8-hour / 24-hour) at the height 
of 1.5 m receptor for human breading zone. 
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FIGURE 3-19.  Nonlinear fit of the Gaussian plume model to task average 

exposures compared with the TLV used for the occupational exposure guideline.  

(a) Mud Lake pipe (R2 = 0.21), (b) Lake Sand pipe (R2 = 0.27). 

Note: Plotted data = Measured PMTotal concentrations of TSP, Andersen, RespiCon samplers.  
The line for a fitted 191-minute and 93-minute average tasks surrogates for 8-hour TWA.  
The line for a fitted 8-hour average task was estimated for PMTotal concentrations at the height of 1.5 m 
receptor for human breading zone.  
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To obtain the attainment area for the worker on the basis of ACGIH guideline, 

the total mass concentrations in Table 3-2 was plotted with the TLV-TWA 10 mg/m3.  

Figure 3-19 shows that the attainment area for the worker is estimated to start 4 m from 

the estimated centerline concentration of total PM source for both scales on the basis of 

upper confidence limit about the mean.  No respirator needs to be worn beyond this 

distance to keep the inhaled dust concentration below the TLV.   

 

D.  DISCUSSION 

The highest concentrations were found from the TSP sampler and the PM10 

sampler located at 2 m distance from the centerline of the cleaning machine, the dust 

source (See Table 3-2).  These results can be explained by the height of samplers that 

were located at a height of 1.5 m which is above the estimated effective heights from the 

Mud Lake and Lake Sand pipe rattling operations (H ≡ 1.3 m; see Appendix I) and is not 

in the particle dispersion region at 1 m receptor distance sometimes (See Figure 3-20).  

 

 

 

 

 

 

 

FIGURE 3-20.  Plume dispersion by distance. 
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E.  CONCLUSIONS 

Six sampler technologies were used to evaluate airborne dust concentrations 

released from oilfield pipe rattling operations.  The task sampled was the removal of 

scale deposited on the inner wall of the pipe before it was removed from service in a 

producing well.  The pipe cleaning machine removed rust and corrosion products as well 

as scale from used oilfield pipe and casing joints.  The resulting dust cloud contains a 

mixture of particles ranging in maximum dimension from a few cm to a few µm, and 

ranging in density from 2 g/cm3 to 4 g/cm3.  Only those particles with dimensions 

smaller than 50 µm were carried by the wind.  Larger particles fell on the geotextile 

fabric laid beneath the machine for these tests.  These precipitated particles and chunks 

of scale and corrosion were collected at the end of each test. 

Appropriate data from each sampler was combined with appropriate data from 

other samplers to estimate both the occupational exposure patterns and the 

environmental exposure patterns.  The test duration was limited by the quantity of pipe 

available for cleaning.  The Lake Sand pipe required 191 operating minutes for cleaning 

13 pipe joints.  The Mud Lake pipe required 93 operating minutes for cleaning 17 pipe 

joints.  Many of the samplers were operating near their lower limit of detection.  

Spatially, the data are sparse, and this chapter contains a transparent attempt at error 

propagation to report all measured concentrations with an estimate of their 95 % 

confidence limits.   

The attainment area was found using a plume model with parameters estimated 

by minimum mean square error fitting algorithms.  The measured mass concentration of 
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the aerosol samplers shows that the inverse square law is not applicable to the data of 

pipe rattling process for finding an attainment area.  The recorded DVD video also 

shows that the plume passed beneath the sampler at 1 m for most of each test.   

It is estimated that workers who remain within 1 m of the machine centerline 

have TWA exposure opportunity with < (13.3 ± 9.7) mg/m3 for the Mud Lake pipe scale 

and < (11.4 ± 9.7) mg/m3 for the Lake Sand pipe scale depending on the wind direction 

relative to the worker's position.  At distances more than 4 m downwind from the 

machine centerline, observed and predicted dust concentrations were below the TWA-

TLV 10 mg/m3 for the total dust samples in both scales based on upper confidence limit 

about the each mean concentration. 

It is estimated that nearly all dust particles with ESD > 50 µm fall on the ground 

within 3 meters of the machine.  Available data suggest that the NAAQS attainment area 

for unlimited public access starts at distances from the source of about 9 m for Mud Lad 

pipe scale and about 10 m for Lake Sand pipe scale.  Because this estimate is based on 

an extrapolation to distances beyond measured data, its precision remains to be verified 

in future studies. 
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CHAPTER IV  

CONCLUSIONS 

 

The images of fly ash and two oilfield scales were obtained using an 

environmental scanning electron microscope to illustrate particle shapes.  This 

information is important in that the visual particle size distribution was introduced 

through the several types of size selective aerosol sampler.  

From the two types of scale sampled from the petroleum pipe rattling operations, 

the attainment area was found using a Gaussian point source model with parameters 

estimated by minimum mean square error fitting algorithms.  The measured 

concentration and the recorded DVD video both show that the plume passed beneath the 

sampler located at the distance of 1 m from PM source for most of each test, and that the 

concentration at breathing zone height (1.5 m) was maximum at or near 2 meters 

downwind from the source.   The Gaussian point source model fits this overall pattern 

better than a simple inverse square law model and better than the Gaussian line source 

model. 

In this study, Gaussian point source model used to identify distances to “safe” 

zones for the public and the workers is consistent with the measured data by aerosol 

samplers.  However, the attainment area for the public was estimated by an extrapolation 

of a model to distances beyond measured data.  These estimates for Mud Lake and Lake 

Sand are point estimates.  Their uncertainty interval of this attainment area remains to be 

verified with a measurement at 9 m and 10 m from the source in the future study.   
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APPENDIX A 

CHAMBER STUDY RESULTS USING FLY ASH 

 

This appendix is to provide the mass concentrations and mass fractions measured 

from each aerosol sampler. The measured mass fractions are estimated for the 

ACGIH/CEN/ISO∗ respirable (AED ≤ 4 µm), thoracic (AED ≤ 10 µm), and inhalable 

(AED ≤ 100 µm) convention. 

The followings are terms in the tables below. 

C1 & C2 = Andersen samplers; 

R1 = RespiCon sampler used a 4 µm cut-point for first stage, R2 = RespiCon sampler 

used a 2.5 µm cut-point for first stage; 

T1 – T4 = TSP samplers;  

P1 – P4 = PM10 samplers; 

D1 = DustTrak monitor used a 10 µm inlet module, D2 = used a 2.5 µm inlet module; 

S1 = SidePak monitor used a 2.5 um inlet module, S2 = used a 1 µm inlet module; 

SU = Standard error =1.96 × SE                                                                                (A.1)                            

where SU = Sampling uncertainty of sample mean; 1.96 = z-value for 95 % confidence 

interval.  SE = ( )SD n  where SE = Standard error; SD = standard deviation of sample; 

n = the number of cases;  

                                                 
∗ American Conference of Governmental Industrial Hygienists (ACGIH)  
Comité Européen de Normalisation (CEN)  
International Organization for Standardization (ISO) 
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RSU [%] = Relative sampling uncertainty 
2 100

Measured concentration
SU⋅

= ×            (A.2)     

AED = Aerodynamic Equivalent Diameter; An AED is a diameter of the unit density (1 

g/cm3) sphere that has the same settling velocity as the particle of interest.  It 

standardizes the inertial and aerodynamic behavior for both shape and density.  

ESD = Equivalent Spherical Diameter; It is a diameter of the sphere having the same 

volume as the irregular particle of interest. 

 
 
A-1.  Andersen Chamber Study Results 
 
TABLE A-1.  Estimated Mass Concentrations from Andersen Sampler 

Measurements (Chamber)   

Stage F 7 6 5 4 3 2 1 0 
Size range A 
(AED µm) < 0.5 0.5 ~ 

0.7 
0.7 ~ 
1.2 

1.2 ~ 
2.3 

2.3 ~ 
3.7 

3.7 ~ 
5.2 

5.2 ~ 
6.7 

6.7 ~ 
10.3 >10.3 

Total 
Con. 

Test 1 (C1) 0.00 0.15 1.50 5.28 4.44 5.63 4.82 2.40 4.97 29.18 

Test 1 (C2) 0.01 0.27 1.00 4.67 4.36 5.86 5.31 2.92 5.13 29.52 

Test 2 (C1) 0.08 0.24 1.13 3.94 3.27 3.90 3.59 1.86 3.43 21.43 

Test 2 (C2) 0.03 0.11 0.86 4.07 3.25 3.94 3.67 1.96 3.58 21.48 

Test 3 (C1) 0.01 0.24 1.21 3.90 3.58 4.35 3.89 2.21 4.06 23.45 

Test 3 (C2) 0.00 0.14 0.96 3.95 3.48 4.59 4.16 2.39 4.22 23.90 

Mean 0.02 0.19 1.11 4.30 3.73 4.71 4.24 2.29 4.23 24.83 

SD 0.03 0.07 0.23 0.56 0.53 0.84 0.69 0.38 0.70 3.65 

Min 0.00 0.11 0.86 3.90 3.25 3.90 3.59 1.86 3.43 21.43 

Max 0.08 0.27 1.50 5.28 4.44 5.86 5.31 2.92 5.13 29.52 

SU 0.02 0.05 0.18 0.45 0.43 0.67 0.55 0.30 0.56 3.57 

RSU 214% 54% 33% 21% 23% 29% 26% 27% 27% 28.8% 

Notes: A Particle size range at 0.8 ACFM (22.65 L/min).                                                       unit: [mg/m3] 
A mass of each stage was measured with a Mettler Toledo AG245 balance having a limit of detection 
of 0.01 mg.   
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TABLE A-2.  Estimated Mass Concentrations for a Respirable, Thoracic, and 

Inhalable Convention from Andersen Sampler Data in TABLE A-1 above 

(Chamber) 

Test 1 Test 2 Test 3 
Description 

C1 
Mean (SD) B 

C2  
Mean (SD) 

C1  
Mean (SD) 

C2  
Mean (SD) 

C1  
Mean (SD) 

C2  
Mean (SD) 

Respirable A 
(AED ≤ 3.7 µm) 

11.37 
(0.13) 

10.3 
(0.1) 

8.66 
(0.22) 

8.33 
(0.07) 

8.94 
(0.12) 

8.54 
(0.05) 

Thoracic A 
( AED ≤ 10.1 µm) 

24.2 
(0.78) 

24.39 
(0.68) 

18.01 
(0.88) 

17.9 
(0.65) 

19.39 
(0.62) 

19.69 
(0.50) 

Inhalable 
( AED ≤ 100 µm) 

29.18 
(0.95) 

29.52 
(0.84) 

21.43 
(1.05) 

21.48 
(0.86) 

23.45 
(0.76) 

23.9 
(0.62) 

Note:                                                                                                                                                                                                                        Unit: [mg/m3] 
A The 50 % cutoff sizes for respirable and thoracic PM are 3.7 µm and 10.1µm at 0.8 ACFM  
(22.65 L/min). 
B Mean = Average concentration from 3 times filter measurements, SD = Standard deviation were obtained using an 
error propagation. 

4
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 for Andersen samplers. 

where S0, S1, S2, S3, S4, S5, S6, S7, SF = The number of stage. In these calculations, the relative standard 
deviation for stages 6, 7, and F were above 1 because of a small quantity of mass on these stages. Thus, the 
relative standard deviation of stages 6, 7, and F were estimated as 0.02. 

 

The particle mass concentration C (mg/m3) in each size fraction was estimated 

using the following equations.  The estimates have approximately the proper cut points, 

but may have different slope factors than called for in the mass fraction convention. 

CRespirable = (mF + m7 + m6 + m5 + m4) × 103 / V                     (A.4)                            

CThoracic = (mF + m7 + m6 + m5 + m4 + m3 + m2 + m1) × 103 / V                (A.5)                            

CInhalable = (mF + m7 + m6 + m5 + m4 + m3 + m2 + m1 + m0) × 103 / V    (A.6)                            

where m0, m1, m2, m3, m4, m5, m6, m7, mF = particle mass deposited on each filter stage 
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V = sampled volume at each stage = Q × ts 

Q = major flow at each stage (L/min)  

ts = sample time (min)  

 
A-2.  RespiCon Chamber Study Results 
 
TABLE A-3.  Mass Concentrations for a Respirable, Thoracic, and Inhalable 

Convention Estimated from RespiCon Measurements (Chamber) 

Test 1 Test 2 Test 3 
Description 

R1 A 
Mean (SD) C 

R2 B 
Mean (SD) 

R1  
Mean (SD) 

R2 
Mean (SD) 

R1  
Mean (SD)  

R2 
Mean (SD) 

Respirable 
(AED ≤ 2.5 µm) -- D -- -- -- -- 7.90 

(0.37) 
Respirable 

(AED ≤ 4 µm) 
2.38 

(0.34) -- -- -- 4.10 
(0.16) -- 

Thoracic 
(AED ≤ 10 µm) 

16.91 
 (2.50) -- -- -- 11.30 

(0.64) 
20.95 
(1.38) 

Inhalable 
(AED ≤ 100 µm) 

20.75 
(3.24) -- -- -- 16.29 

(1.14) 
31.94 
(2.60) 

Note: RespiCon samplers were located at the height of 150 cm.                                             Unit: [mg/m3] 
A R1 = RespiCon sampler with 4 µm and 10 µm cut-points stages; B R2 = RespiCon sampler with 2.5 µm and 10 µm 
cut-points stages; 
C Mean = Average concentration from 3 times filter measurements, SD = Standard deviation were obtained using an 
error propagation. 

4

4

2 2 2
1

1

PM QSt T

PM St

SD SDSD SD
C W Q T

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

 and  

10

10

2 2 2 2
1 2

1 2

PM QSt St T

PM St St

SD SDSD SD SD
C W W Q T

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠

 for RespiCon samplers. 

where St1 = The number of stage with cut-point 2.5 µm or 4 µm, St2 = The number of stage with cut-point 
10 µm. 
D No measurement. 

 

The particle mass concentration C (mg/m3) in each size fraction was determined 

using the following equations. (Equation Source: RespiCon sampler’s User Guide) 

CRespirable = m1 × 103 / V1           (A.7)                            

CThoracic = (m1 + m2) × 103 / V2         (A.8)                            
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CInhalable = (m1 + m2 + m3) × 103 / V3         (A.9)                            

where m1, m2, m3 = particle mass deposited on each filter stage 

V1 = sampled volume at stage one = Q1 × ts 

V2 = sampled volume at stages one and two = (Q1 +Q2) × ts 

V3 = sampled volume at stages one, two and three = (Q1 + Q2 + Q3) × ts 

Q1, Q2, Q3 = volume flow at each stage (L/min) (Q1 = 2.667, Q2 = 0.333, Q3 = 0.111) 

ts = sample time (min)  

 

A-3.  DustTrak Chamber Study Results (summary statistics) 

TABLE A-4.  Relative Mass Concentrations from DustTrak Measurements 

(Chamber) 

Test 1 Test 2 Test 3 
Description D1 

(10 µm) A 
D2 

(2.5 µm) 
D1 

(10 µm) 
D2 

(2.5 µm) 
D1 

(10 µm) 
D2 

(2.5 µm) 
Mean 11.94 7.18 9.42 4.67 11.38 5.78 

Max 23.99 13.06 14.49 7.17 21.75 12.60 

Min 0.27 0.08 0.03 0.02 0.01 0.01 

SD 4.29 2.65 3.57 1.83 4.38 2.50 

No. of Points B 4054 4054 3894 3894 7547 7547 

SU 0.13 0.08 0.11 0.06 0.10 0.06 

RSU (%) 2% 2% 2% 2% 2% 2% 

Notes: A (  ) = AED size of impactor prefilter                                                                         Unit: [mg/m3]C 

BNo. of Points = the number of logged data. 
CThese units are printed on scale of instrument and are not calibrated to the fly ash density in this study.  
These data should be considered reliable only as a relative measure of scattered light, not as a true mass. 
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A-4.  SidePak Chamber Study Results (Summary Statistics) 
 
TABLE A-5. Relative Mass Concentrations from SidePak Measurements 

(Chamber) 

Test 1 Test 2 Test 3 
Description S1 

(2.5 µm) A 
S2 

(1 µm) 
S1 

(2.5 µm) 
S2 

(1 µm) 
S1 

(2.5 µm) 
S2 

(1 µm) 

Mean 12.97 14.30 9.36 7.73 11.44 11.32 

Max 20.00 20.00 18.91 14.69 19.99 20.00 

Min 0.09 0.08 0.02 0.02 0.25 0.02 

SD 4.34 4.96 3.55 3.15 4.30 4.57 

No. of Points B 3774 3583 3890 3889 7128 6815 

SU 0.14 0.16 0.11 0.10 0.10 0.11 

RSU (%) 2% 2% 2% 3% 2% 2% 

Notes: A (  ) = AED inlet size of impactor prefilter.                                                             Unit: [mg/m3]C 
BNo. of Points = the number of logged data. 
CThese units are printed on scale of instrument and are not calibrated to the fly ash density in this 
study.  These data should be considered reliable only as a relative measure of scattered light, not as a 
true mass. 
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A-5.  TSP Chamber Study Results  

TABLE A-6.  Estimated TSP/CCM Volume Percentile (Chamber) 
 

Volume % A 
ESD AED 

Test 1 Test 2 Test 3 

Unit: [µm] T1B T2 T3 T4 T1 T2 T3 T4 T1 T2 T4 

2.0 3.3 C 10.95 9.43 9.81 10.71 10.59 9.46 11.18 9.73 16.97 10.84 6.57 

2.03 3.33 11.55 9.88 10.35 11.23 11.23 10.04 11.80 10.26 17.98 11.45 6.97 

2.05 3.37 12.19 10.38 10.93 11.80 11.93 10.65 12.46 10.82 19.09 12.09 7.40 
: 
:             

2.44 4.01D 21.33 17.50 19.22 19.99 21.60 19.25 21.76 18.71 33.74 20.82 13.28 
: 
:             

2.98 4.90 33.40 27.36 30.63 31.38 34.16 30.47 33.74 29.01 49.92 31.80 33.40 
: 
:             

3.73 6.14 47.93 40.58 45.69 45.49 49.68 44.66 48.22 41.84 64.76 45.13 3.73 

3.78 6.22 48.78 41.40 46.60 46.28 50.61 45.52 49.07 42.59 65.52 45.92 3.78 

3.83 6.30 49.61E 42.24 47.52 47.08 51.54 46.40 49.94 43.37 66.27 46.73 3.83 

3.89 6.39 50.45 43.07 48.45 47.87 52.48 47.27 50.80 44.14 67.02 47.54 3.89 

3.94 6.47 51.31 43.89 49.39 48.64 53.40 48.15 51.68 44.92 67.75 48.35 3.94 

3.99 6.56 52.13 44.74 50.33 49.43 54.33 49.03 52.52 45.70 68.49 49.15 3.99 

4.04 6.65 52.95 45.56 51.26 50.21 55.26 49.92 53.37 46.47 69.22 49.95 4.04 

4.10 6.73 53.76 46.39 52.17 50.99 56.18 50.80 54.20 47.23 69.93 50.76 4.10 

4.15 6.82 54.58 47.24 53.07 51.74 57.11 51.68 55.05 47.99 70.63 51.56 4.15 

4.21 6.92 55.39 48.07 54.02 52.50 58.02 52.55 55.89 48.77 71.32 52.38 4.21 

4.27 7.01 56.23 48.91 54.94 53.24 58.93 53.43 56.73 49.55 72.02 53.20 4.27 

4.32 7.10 57.03 49.75 55.89 53.98 59.82 54.31 57.56 50.32 72.70 53.97 4.32 

4.38 7.20 57.83 50.60 56.80 54.71 60.74 55.19 58.39 51.08 73.38 54.79 4.38 

4.44 7.29 58.64 51.43 57.72 55.40 61.66 56.06 59.21 51.84 74.06 55.57 4.44 
: 
:             

5.00 8.22 65.50 58.86 65.65 61.62 69.41 63.87 66.35 58.54 79.77 62.53 49.54 

5.07 8.33 66.23 59.64 66.50 62.28 70.23 64.71 67.09 59.25 80.37 63.25 50.34 
5.14 8.44 66.94 60.45 67.30 62.92 71.03 65.53 67.85 59.94 80.97 63.98 51.17 

: 
:             

6.11 10.03D 64.55 60.60 66.86 60.01 69.66 65.83 65.23 58.84 70.91 61.87 54.95 
6.19 10.17 65.14 61.24 67.50 60.54 70.27 66.50 65.84 59.47 71.38 62.51 55.68 

: 
:             

Notes: T3 in Test 3 = The filter was used to get images by ESEM. 
A Volume % = Obtained by a CCM. BT1-T12 = TSP Sampler data, 4 sets in each of 3 chamber tests. 
C The PSD less than an AED 3.3 µm was estimated from a median AED of sampling efficiency and a slope of sampling 
efficiency measured by each TSP/CCM because an AED 3.3 µm is the smallest particle size that a CCM can count with a 100  
µm orifice aperture.  
D AED 4 µm, 10 µm = Respirable, Thoracic cutoff size. 
E_ = 50% Cumulative Volume. 
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TABLE A-7.  Estimated Mass Concentrations for a Respirable, Thoracic, and 

Inhalable Convention from TSP/CCMs (Chamber)  

Test 1 Test 2 Test 3 
Description 

T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4 

Respirable A 
(AED ≤ 4 µm) 7.17 6.04 6.08 6.93 5.19 4.72 5.57 4.72 8.43 5.35 -- B 3.98 

Thoracic 
(AED  

≤ 10 µm) 
25.37 24.16 24.26 24.51 19.27 18.47 19.54 17.30 21.95 18.70 -- 18.43 

Inhalable 
(AED  

≤ 100µm) 
33.60 34.51 31.65 34.66 24.02 24.53 25.58 25.23 24.98 25.72 30.00 29.96 

Notes:                                                                                                                                    Unit: [mg/m3] 
These concentrations of TSP samplers were estimated from the volume % by a coulter counter 
multisizer (CCM).   
AIn the respirable concentration, the PSD less than an AED 3.3 µm was estimated from a median AED 
of sampling efficiency and a slope of sampling efficiency measured by each TSP/CCM because an 
AED 3.3 µm is the smallest particle size that a CCM can count with a 100  µm orifice aperture. 
A No measurement 
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A-6.  Bulk sample of dust for Chamber Study, volume percentile by CCM 

TABLE A-8.  Estimated Bulk Sample Volume Percentile (Chamber) 

ESD AED Volume % A 
Unit: [µm] BulkB 

2.03 3.33 3.37 
2.05 3.37 3.61 
2.08 3.42 3.85 
2.11 3.47 4.10 
2.14 3.51 4.35 
2.17 3.56 4.60 
2.19 3.61 4.86 
2.22 3.65 5.13 
2.25 3.70 5.40 
2.28 3.75 5.68 
2.31 3.80 5.96 
2.35 3.85 6.24 
2.38 3.91 6.53 
2.41 3.96 6.83 
2.44 4.01 C 7.12 

: 
:   

6.02 9.90 40.69 
6.11 10.03 C 41.40 
6.19 10.17 42.09 
6.27 10.30 42.83 
6.35 10.44 43.56 
6.44 10.58 44.28 
6.52 10.72 45.01 

: 
:   

7.07 11.61 49.40 
7.16 11.77 D 50.16 
7.26 11.92 50.91 
7.35 12.08 51.67 
7.45 12.24 52.39 

: 
:   

Notes: A Volume % = Obtained by a CCM.  
B Bulk = Bulk sample of fly ash. 
C AED 4 µm, 10 µm = Respirable, Thoracic cutoff size.  
D_ = 50% Cumulative volume. 
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A-7.  Mass fraction comparison for a respirable, thoracic, and inhalable convention 

from Chamber Study  

TABLE A-9.  Mass Fractions Estimated from Andersen Samplers (Chamber) 

 
 
TABLE A-10.  Mass Fractions Calculated from RespiCon Samplers 
 

Description R1 in Test 1 
(4 µm) 

R1 in Test 3 
(4 µm) 

R2 in Test 3 
(2.5 µm) 

Respirable 
(AED ≤  2.5 µm) -- -- 0.25 

Respirable 
(AED ≤  4 µm) 0.12 0.25 -- 

Thoracic 
(AED ≤ 10 µm) 0.82 0.69 0.66 

Inhalable 
(AED ≤100 µm) 1.00 1.00 1.00 

 
 
TABLE A-11.  Mass Fractions Estimated from TSP/CCMs (Chamber) 
 

 Test 1 Test 2 Test 3 

Description T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T4 

Respirable 
(AED ≤ 4 µm) 0.21 0.17 0.19 0.20 0.22 0.19 0.22 0.19 0.34 0.21 0.13 

Thoracic 
(AED ≤ 10 µm) 0.75 0.70 0.77 0.71 0.80 0.75 0.76 0.69 0.88 0.73 0.62 

Inhalable 
(AED ≤ 100 µm) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Test 1 Test 2 Test 3 
Description 

C1 C2 C1 C2 C1 C2 

Respirable 
( AED ≤  3.7 µm) 0.39 0.35 0.40 0.39 0.38 0.36 

Thoracic 
( AED ≤  10.03 µm) 0.83 0.83 0.84 0.83 0.83 0.82 

Inhalable 
( AED ≤  100 µm) 1.00 1.00 1.00 1.00 1.00 1.00 
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A-8.  Estimated GMAED and GSDAED of Andersen sampler by Log Probit Analysis of 

Chamber Study Data 

A log probit analysis is an application of the lognormal distribution to obtain 

particle size distribution by the use of log-probability graphs.  A log probability plot can 

be constructed by plotting the logarithm of diameter versus the probit of the cumulative 

percentages.  It gives geometric mean and geometric standard deviation as shown in 

equation 1-3.  When the data of Andersen sampler were analyzed, the mass fractions of 

Andersen sampler’s first and last stages deviate from the expected the straight line.  

Thus, the mass fractions of the first and last impaction stages were neglected for 

purposes of finding the best fit straight line to obtain best log probit curve.  This is 

justified because the Andersen inlet is known to violate the inhalable size selection 

criteria and because the last stage collected insufficient mass for reliable weighing.   

ln( ) ln(  )
ˆ

ln(  )
AED

AED

x GMxz
GSD

µ
σ

−−
= =                                                   (A.1) 

ln(x) =̂  ln(GSDAED) × z + ln(GMAED)            (A.2) 

z = Standard normal random variable (Mass fraction), 

x = Normal random variable (Aerodynamic equivalent diameter), 

µ = Population mean, 

σ = Population standard deviation, 

GMAED = Sample geometric mean (Median AED of sample data), 

GSAED = Sample geometric standard deviation (Slope of PSD curve). 
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TABLE A-12.  Mass Fraction Estimated from Each Stage of Andersen Sampler 

(Chamber) 

Test 1 Test 2 Test 3 
Stage Cutoff AED 

[µm] C1 C2 C1 C2 C1 C2 
0 10.1 0.820 0.826 0.840 0.833 0.827 0.824 
1 6.5 0.739 0.727 0.753 0.742 0.732 0.723 
2 5.3 0.576 0.547 0.586 0.571 0.566 0.549 
3 3.7 0.385 0.349 0.404 0.388 0.381 0.357 
4 2.4 0.235 0.201 0.252 0.236 0.228 0.211 
5 1.2 0.056 0.043 0.068 0.047 0.062 0.046 
6 0.7 0.005 0.010 0.015 0.007 0.011 0.006 
7 0.5 0.000 0.000 0.004 0.001 0.001 0.000 

 
 
TABLE A-13.  Standard Normal Random Variables from the Mass Fraction 

Estimated in TABLE A-12 above (Chamber) 

Test 1 Test 2 Test 3 
Stage Cutoff AED 

[µm] C1 C2 C1 C2 C1 C2 

0 10.1 0.915 0.939 0.995 0.967 0.941 0.929 

1 6.5 0.639 0.604 0.686 0.650 0.620 0.593 

2 5.3 0.191 0.119 0.217 0.180 0.167 0.124 

3 3.7 -0.292 -0.388 -0.242 -0.285 -0.303 -0.366 

4 2.4 -0.724 -0.837 -0.670 -0.718 -0.744 -0.801 

5 1.2 -1.590 -1.714 -1.494 -1.678 -1.537 -1.683 

6 0.7 -2.577 -2.344 -2.174 -2.480 -2.306 -2.512 

7 0.5 -5.199 -3.342 -2.692 -3.008 -3.278 -5.199 

Notes: The values of standard normal random variables are calculated using a NORMINV function as 
NORMINV(Mass Fraction,0,1) in Microsoft Excel.  
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FIGURE A-1.  Estimated GMAED and GSDAED of the Andersen sampler  

(Chamber).  (a) C1 in test 1, (b) C2 in test 1, (c) C1 in test 2, (d) C2 in test 2, (e) C1 

in test 3,(f) C2 in test 3. 

Note: The mass fractions of the first and last impaction stages were neglected from TABLE A-13 to obtain 
best log probit curve. 
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FIGURE A-1.  Continued. 
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APPENDIX B 

PIPE RATTLING STUDY RESULTS 

 

The petroleum pipe rattling operations discussed in this dissertation were 

conducted using two different pipe scales (Field test 1 for Mud Lake and Field test 2 for 

Lake Sand).  The mass concentrations for an ACGIH/CEN/ISO convention were 

arranged for the comparison with the accepted standard and guideline from each size 

selective aerosol sampler.   

The measured concentrations by DustTrak and SidePak monitors are considered 

relative measures useful for observing time variation as they were not calibrated for 

different petroleum pipe scales.  

 

B-1. Andersen Field Study Results 

TABLE B-1.  Measured Mass Concentration of Each Stage of Andersen Samplers 

(Field)  

Stage A  F 7 6 5 4 3 2 1 0 

Size Range B 
(µm) < 0.4 0.4 ~ 

0.7 
0.7 ~ 
1.1 

1.1 ~ 
2.1 

2.1 ~ 
3.3 

3.3 ~ 
4.7 

4.7 ~ 
5.8 

5.8 ~ 
9.0 > 9.0 

Total 
Con. 

Field test 1 
(C1) 0.01 0.02 0.04 0.32 0.00 1.48 1.61 1.32 7.72 12.51 

Field test 1  
(C2) 0.00 0.01 0.07 0.35 0.46 1.12 1.34 1.29 7.80 12.44 

Field test 2 
(C1) 0.05 0.06 0.08 0.21 0.29 0.54 0.62 0.69 1.70 4.23 

Field test 2 
(C2) 0.00 0.16 0.21 0.38 0.49 0.92 1.06 1.29 3.04 7.56 

Notes:                                                                                                                                                      Unit: [mg /m3] 
AA mass of each stage was measured with a Mettler Toledo AE 100 balance having a limit of detection of 0.1 mg.  
B Particle size range at 1 ACFM (28.32 L/min)    
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TABLE B-2.  Estimated Mass Concentrations for a Respirable, Thoracic, and 

Inhalable Convention from Andersen Sampler Data in TABLE B-1 above (Field) 

 
 

Field test 1 B Field test 2 C 
Description 

C1 
Mean (SD) D 

C2 
Mean (SD) 

C1 
Mean (SD) 

C2  
Mean (SD) 

Respirable or PM4 
(AED ≤ 3.3 µm) A 

0.39 
(0.01) 

0.89 
(0.06) 

0.70 
(0.13) 

1.23 
(0.12) 

Thoracic  or PM10 
( AED ≤ 9 µm) A 

4.80 
(0.51) 

4.64 
(0.55) 

2.53 
(0.52) 

4.52 
(0.48) 

Inhalable or PMtotal 
( AED ≤ 100 µm) 

12.51 
(1.34) 

12.44 
(1.48) 

4.23 
(0.88) 

7.56 
(0.80) 

Notes:                                                                                                                                          Unit: [mg/m3]
AThe 50 % cutoff sizes for Respirable and thoracic PM are 3.3 µm and 9 µm at 1 ACFM (28.32 L/min). 
BIn Field test 1, C1, C2 were located at 2m from the centerline of source.  
CIn Field test 2, C1 was located at 3m and C2 was at 1m from the centerline of source. 
D Mean = Average concentration from 3 times filter measurements, SD = Standard deviation were obtained using an 
error propagation. 

4

4

2 2 2 2 2 2 2
7 6 5 4

7 6 5 4

PM QSF S S S S T

PM SF S S S S

SD SDSD SD SD SD SD SD
C W W W W W Q T

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

, 

10

10

2 2 2 2 2
7 1

7 1

...PM QSF S S T

PM SF S S

SD SDSD SD SD SD
C W W W Q T

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

,  and 

2 2 2 2 2 2
7 1 0

7 1 0

...total

total

PM QSF S S S T

PM SF S S S

SD SDSD SD SD SD SD
C W W W W Q T

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 for Andersen samplers. 

where S0, S1, S2, S3, S4, S5, S6, S7, SF = The number of stage. In these calculations, the relative standard 
deviation for stages 6, 7, and F were above 1 because of a small quantity of mass on these stages. Thus, 
the relative standard deviation of stages 6, 7, and F were estimated as 0.02. 
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B-2. RespiCon Field Study Results 
 
TABLE B-3.  Mass Concentrations for a Respirable, Thoracic, and Inhalable 

Convention Estimated from RespiCon Measurements (Field) 

 

Field test 1 A Field test 2 B 

Description 

R1 C 
Mean (SD) E 

R2 D 
Mean (SD) 

R1  
Mean (SD) 

R2  
Mean (SD) 

Respirable 
(AED ≤ 2.5 µm) -- 1.37 

(0.08) -- 2.62 
(0.35) 

Respirable 
(AED ≤ 4 µm) 

2.69 
(0.10) -- 0.85 

(0.09) -- 

Thoracic 
(AED ≤ 10 µm) 

6.40 
(0.45) 

3.64 
(0.28) 

3.60 
(0.44) 

6.61 
(1.02) 

Inhalable 
(AED ≤ 100 µm) 

16.69 
(1.37) 

13.70 
(1.17) 

10.56 
(1.49) 

18.61 
3.09) 

Notes:                                                                                                                                   Unit: [mg · m-3] 
AIn Field test 1, R1, R2 were located at 2m from the centerline of source.  
BIn Field test 2, R1 was located at 3m and R2 was at 1m from the centerline of source. 
C R1 = RespiCon sampler with 4 µm and 10 µm cut-points stages; D R2 = RespiCon sampler with 2.5 µm and 10 
µm cut-points stages; 
E Mean = Average concentration from 3 times filter measurements, SD = Standard deviation were obtained using 
an error propagation. 

4

4

2 2 2
1

1

PM QSR T

PM SR

SD SDSD SD
C W Q T

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

 and  

10

10

2 2 2 2
1 2

1 2

PM QSR SR T

PM SR SR

SD SDSD SD SD
C W W Q T

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠

 for RespiCon samplers. 

where SR1 = The number of stage with a cut-point 2.5 µm or 4 µm, SR2 = The number of stage 
with a cut-point 10 µm. 
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B-3.  DustTrak Field Study Results (Summary Statistics) 

TABLE B-4.  Relative Mass Concentrations from DustTrak Measurements (Field) 
 

Field test 1 A Field test 2 B 
Description 

D1 (10 µm) C D2 (2.5 µm) D1 (1 µm) D2 (1 µm) 

Mean 3.61 0.83 0.16 0.23 
Max 238.74 57.98 32.84 36.89 
Min 0.01 0.02 0.02 0.03 
SD 12.17 2.72 0.94 1.19 

No. of Points D 11393 11223 6044 6044 
SU 0.22 0.05 0.02 0.03 

RSU (%) 12% 12% 30% 26% 
Notes:                                                                                                                                     Unit: [mg/m3]E 
AIn a field test 1, D1 and D2 were located at 2m from the centerline of source;  
BIn a field test 2, D1 and D2 were located at 3m from the centerline of source; 
C(  ) = AED inlet size of impactor prefilter; DNo. of Points = the number of logged data; 
EThese units are printed on scale of instrument and are not calibrated to the petroleum pipe scale.  
These data are considered as a relative measure of scattered light intensity, not as a true mass. 

 
B-4.  SidePak Field Study Results (Summary Statistics) 
 
TABLE B-5.  Relative Mass Concentrations from SidePak Measurements (Field)  
 

Field test 1 A Field test 2 B 
Description S1 

(2.5 µm) A 
S2 

(1 µm) 
S1 

(2.5 µm) 
S2 

(1 µm) 
Mean 2.12 1.24 1.52 0.62 

Max 19.98 19.97 19.72 19.98 

Min 0.94 0.10 1.02 0.12 

SD 2.73 2.72 1.68 1.64 

No. of Points D 12807 12811 5960 5952 

SU 0.05 0.05 0.04 0.04 

RSU (%) 4 % 8 % 6 % 13 % 

Notes:                                                                                                                                   Unit: [mg/m3]E 
AIn a field test 1, S1 and S2 were located at 2m from the centerline of source.  
BIn a field test 2, S1 and S2 were located at 3m from the centerline of source. 
C (  ) = AED inlet size of impactor prefilter.; DNo. of Points = the number of logged data. 
EThese units are printed on scale of instrument and are not calibrated to the petroleum pipe scale.  
These data are considered as a relative measure of scattered light intensity, not as a true mass. 
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B-5.  TSP Field Study Results  

TABLE B-6.  Estimated TSP/CCM Volume Percentile (Field)  
 

Description Volume % A 
ESD AED Field test 1 (Mud Lake) AED Field test 2 (Lake Sand) 

Unit: [µm] T1B T2 T3 Unit:[µm] T1 T2 T3 
2.0 2.9∗ 7.14 7.87 9.04 2.50∗ 6.50 6.41 8.06 

2.03 2.96 7.66 8.48 9.63 2.52 6.80 7.00 8.39 
: 
:         

2.75 4.02 C 23.09 26.20 25.30 3.42 14.65 21.29 18.15 
: 
:         

3.23 4.71 33.35 37.66 35.13 4.01 20.01 30.41 24.89 
: 
:         

3.78 5.53 44.69 49.84 45.56 4.71 26.29 40.76 32.69 
: 
:         

4.04 5.91 49.53 D 54.98 50.11 5.03 29.16 45.33 36.15 
: 
:         

4.32 6.31 54.31 60.00 54.51 5.38 32.08 49.95 39.71 
: 
:         

5.21 7.60 67.14 72.89 66.28 6.48 40.65 62.73 49.86 
: 
:         

6.35 9.28 79.00 84.26 77.12 7.90 49.99 75.20 60.52 
: 
:         

6.88 10.05 C 83.12 87.93 80.91 8.56 53.71 79.69 64.56 
: 
:         

8.07 11.79 90.04 94.05 87.40 10.04 60.95 87.36 71.99 
: 
:         

Notes: 
A Volume % = Obtained by an CCM; B T1-T12 = TSP Samplers. 
CAED 4 µm, 10 µm = Respirable, Thoracic cutoff size. 
D_ = 50 % Cumulative Volume. 
∗Each PSD less than an AED 2.9 µm (Mud Lake) and 3.3 µm (Lake Sand) was estimated from a median AED of 
sampling efficiency and a slope of sampling efficiency measured by each TSP/CCM because AEDs 2.9 µm and 
3.3 µm are the smallest particle size that a CCM can count with a 100 µm orifice aperture in this study. 
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 TABLE B-7.  Estimated Mass Fractions for a Respirable, Thoracic, and Inhalable 

Convention from TSP/CCMs (Field)  

Field test 1 (Mud Lake) Field test 1 (Lake Sand)  
Description T1 T2 T3 T1 T2 T3 
Respirable A 

(≤ 4 µm) 0.23 0.26 0.25 0.20 0.30 0.25 

Thoracic 
(≤10 µm) 0.83 0.88 0.81 0.61 0.87 0.72 

Inhalable 
(≤100µm) 1 1 1 1 1 1 

Note: A Each PSD less than an AED 2.9 µm (Mud Lake) and 3.3 µm (Lake Sand) was estimated from a median 
AED of sampling efficiency and a slope of sampling efficiency measured by each TSP/CCM because AEDs 2.9 
µm and 3.3 µm are the smallest particle size that a CCM can count with a 100 µm orifice aperture in this study. 

 
 
B-6.  Estimated GMAED and GSDAED of Andersen sampler by Log Probit Analysis 

When the data of Andersen sampler were analyzed, the mass fractions of 

Andersen sampler’s first and last stages are not in the straight line. Thus, the mass 

fractions of the first and last impaction stages were neglected in this analysis to obtain 

best log probit curve. 

 

TABLE B-8.  Mass Fraction Measured from Each Stage of Andersen Sampler 

(Field) 

Field test 1 Field test 2 
Stage Cutoff AED [µm] 

C1 C2 C1 C2 

0 9.00 0.383 0.373 0.598 0.598 
1 5.80 0.278 0.269 0.435 0.427 
2 4.70 0.150 0.162 0.289 0.287 
3 3.30 0.032 0.071 0.163 0.165 
4 2.10 0.032 0.035 0.094 0.100 
5 1.10 0.006 0.006 0.044 0.049 
6 0.65 0.003 0.001 0.025 0.022 
7 0.43 0.000 0.000 0.011 0.000 
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TABLE B-9. Standard Normal Random Variables from the Mass Fraction 

Measured in TABLE B-8 above (Field) 

Field test 1 Field test 2 
Stage Cutoff AED 

[µm] C1 C2 C1 C2 
0 9.00 -0.297 -0.324 0.248 0.248 
1 5.80 -0.588 -0.616 -0.163 -0.185 
2 4.70 -1.038 -0.988 -0.555 -0.563 
3 3.30 -1.859 -1.466 -0.984 -0.975 
4 2.10 -1.859 -1.816 -1.318 -1.280 
5 1.10 -2.518 -2.489 -1.705 -1.652 
6 0.65 -2.807 -3.090 -1.963 -2.022 
7 0.43 -5.199 -4.265 -2.290 -4.265 

Notes: The values of standard normal random variables are calculated using a NORMINV function as 
NORMINV(Mass Fraction,0,1) in Microsoft Excel. 
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(a)                                                                     (b) 
 
FIGURE B-1.  Estimated GMAED and GSDAED of the Andersen sampler (Field).  (a) 

C1 in field test 1, (b) C2 in field test 1, (c) C1 in field test 2, (d) C2 in field test 2.  

Notes: The mass fractions of the first and last impaction stages were neglected from TABLE B-9 to obtain 
best log probit curve. 
C1 and C2 in a field test 1 were located at 2 m distance away from the centerline source. 
C1 and C2 in a field test 2 were located at 3 m and 1 m distance from the centerline source respectively. 
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FIGURE B-1.  Continued. 
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APPENDIX C 

RANDOMIZED BLOCK DESIGN 

 

This section documents the SAS procedures for a randomized block analysis in 

the chamber study.  Arial font is used for the code and Times New Roman font is used 

for results. 

 
C-1. SAS Procedures 
 
DATA Chamber; 
 INPUT sampler $ block $ con @@;  
CARDS; 
C1 Test1 29.2 C2 Test1 29.5 T1 Test1 33.6 T2 Test1 34.5 T3 Test1 31.6 T4 Test1 34.7 
C1 Test2 21.4 C2 Test2 21.5 T1 Test2 24.0 T2 Test2 24.5 T3 Test2 25.6 T4 Test2 25.2 
C1 Test3 23.5 C2 Test3 23.9 T1 Test3 25.0 T2 Test3 25.7 T3 Test3 30.0 T4 Test3 30.0 
; 
 
PROC SORT DATA=Chamber; 
 BY sampler block; 
 
PROC PRINT DATA=Chamber; 
 VAR sampler block con; 
 TITLE 'Mass Concentration by Aerosol Samplers'; 
 
PROC GLM DATA=Chamber; 
 CLASS sampler block; 
 MODEL con=sampler block;   
 MEANS sampler/TUKEY; 
 OUTPUT OUT=output R=resid P=predict; 
 TITLE2 'Randomized Block Design'; 
 

C-2. Results  
 
                   Mass Concentration by Aerosol Samplers                 
                           Randomized Block Design 
                                               
                              The GLM Procedure 
 
                          Class Level Information 
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                 Class         Levels    Values 
 
                 sampler            6    C1 C2 T1 T2 T3 T4 
 
                 block              3    Test1 Test2 Test3 
 
                        Number of observations    18 
 
 
 
                   Mass Concentration by Aerosol Samplers               
                           Randomized Block Design 
                                                
                              The GLM Procedure 
 
Dependent Variable: con 
 
                                      Sum of 
  Source                    DF       Squares   Mean Square   F Value   Pr > F 
 
  Model                      7   295.8988889    42.2712698    21.12    <.0001 
 
  Error                     10    20.0188889     2.0018889 
 
  Corrected Total           17   315.9177778 
 
 
             R-Square     Coeff Var      Root MSE      con Mean 
 
             0.936633      5.161707      1.414881      27.41111 
 
 
  Source                    DF     Type I SS   Mean Square   F Value   Pr > F 
 
  sampler                    5    69.8644444    13.9728889     6.98       0.0047 
  block                      2   226.0344444   113.0172222    56.46      <.0001 
 
 
  Source                    DF   Type III SS   Mean Square  F Value  Pr > F 
 
  sampler                    5    69.8644444    13.9728889     6.98  0.0047 
  block                      2   226.0344444   113.0172222    56.46  <.0001 
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                   Mass Concentration by Aerosol Samplers                  
                           Randomized Block Design 
                                              
                              The GLM Procedure 
 
                Tukey's Studentized Range (HSD) Test for con 
 
   NOTE: This test controls the Type I experimentwise error rate, but it 
            generally has a higher Type II error rate than REGWQ. 
 
 
                Alpha                                   0.05 
                Error Degrees of Freedom                  10 
                Error Mean Square                   2.001889 
                Critical Value of Studentized Range  4.91202 
                Minimum Significant Difference        4.0125 
 
 
         Means with the same letter are not significantly different.  Means with different 
letters are different, but there is visible overlap between concentrations estimated by 
Andersen (C1 & C2) and TSP (T3 & T4) samplers. 
 
 
           Tukey Grouping          Mean      N    sampler 
 
                        A        29.967      3    T4 
                        A 
                        A        29.067      3    T3 
                        A 
                   B  A        28.233      3    T2 
                   B  A 
                   B  A        27.533      3    T1 
                   B 
                   B             24.967      3    C2 
                   B 
                   B             24.700      3    C1 
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                   Mass Concentration by Aerosol Samplers                
                                               
                       Obs    sampler    block     con 
 
                         1      C1       Test1    29.2 
                         2      C1       Test2    21.4 
                         3      C1       Test3    23.5 
                         4      C2       Test1    29.5 
                         5      C2       Test2    21.5 
                         6      C2       Test3    23.9 
                         7      T1       Test1    33.6 
                         8      T1       Test2    24.0 
                         9      T1       Test3    25.0 
                        10      T2       Test1    34.5 
                        11      T2       Test2    24.5 
                        12      T2       Test3    25.7 
                        13      T3       Test1    31.6 
                        14      T3       Test2    25.6 
                        15      T3       Test3    30.0 
                        16      T4       Test1    34.7 
                        17      T4       Test2    25.2 
                        18      T4       Test3    30.0 
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APPENDIX D  

PERFORMANCE CHARACTERISTICS OF A PM10 SAMPLER 

 

D-1.  Overviews of Collection Efficiency    

Hinds( 1 ) indicated that the lognormal distribution is the most common 

distribution used for characterizing the particle sizes associated with the aerosol.  The 

significance of a lognormal distribution is that the particle size distribution (PSD) can be 

described in terms of two parameters: a geometric mean (GM) and a geometric standard 

deviation (GSD).  Equation D.1 shows the probability density function (PDF) for the 

lognormal distribution which represents the particle size distribution. 

( , , )AED AEDf AED GM GSD =           

2

2

(ln( ) ln( ))1 1exp
2 (ln( ))ln( ) 2

AED

AEDAED

AED GM
GSDAED GSD π

⎡ ⎤−
⋅ − ⋅⎢ ⎥⋅ ⋅ ⎣ ⎦

                                   (D.1) 

where f(AED,GMAED,GSDAED) = The lognormal probability density function for sample 

data; 

AED = Aerodynamic equivalent diameter; 

GMAED = Median AED of sample data;  

GSDAED = slope of PSD curve. 

 Equation D.1 applies to particle size distribution where GSDAED is grater than 1.0.  

The fraction of the total particles dAED having particle diameters between AED and 

AED + dAED is 

df = f(AED, GMAED, GSDAED)dAED                                                                            (D.2) 
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where dAED = a differential interval of particle size.  The area under the density 

distribution curve is  

0

( , , )AED AEDf AED GM GSD dAED
∞

∫  = 1.0                                                                      (D.3) 

The area under the PDF may be estimated for particle sizes ranging from zero to 

infinity as shown in Equation D.3 or between given AEDs a and b in Equation D.4.  The 

area under the PDF curve between two AEDs a and b equals the fraction of particles 

whose AEDs fall within this interval, which can be expressed as 

( , , , ) ( , , )
b

ab AED AED AED AED
a

f a b GM GSD f AED GM GSD dAED= ∫                                    (D.4) 

The lognormal distribution is useful for describing the behavior of size selective 

air samplers.  Equations D.5 and D.6 illustrate the use of the cumulative distribution 

function of the lognormal distribution to represent air sampler size selective collection 

efficiency and penetration efficiency, respectively.   

Cumulative sampler collection efficiency and penetration efficiency are defined 

as below. 

Collection efficiency = F(a,GMAED,GSDAED) = 

( )
( ) ( )( )

( )( )

2

2
0

ln ln1 1exp
2ln 2 ln

a
AED

AED AED

AED GM
dAED

AED GSD GSDπ

⎡ ⎤⎡ ⎤−⎢ ⎥⎢ ⎥⋅ − ⋅
⎢ ⎥⎢ ⎥⋅ ⋅ ⎣ ⎦⎣ ⎦
∫                 (D.5) 

where F(a,GMAED,GSDAED) = the fraction of the particles having AEDs less than a.   

Penetration efficiency = 
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( )
( ) ( )( )

( )( )

2

2
0

ln ln1 11- exp
2ln 2 ln

AED

AED AED

AED GM
dAED

AED GSD GSDπ

∞ ⎡ ⎤⎡ ⎤−⎢ ⎥⎢ ⎥⋅ − ⋅
⎢ ⎥⎢ ⎥⋅ ⋅ ⎣ ⎦⎣ ⎦
∫             (D.6) 

 

D-2.  PM10 Sampler Vs PM2.5 Sampler   

The US Environmental Protection Agency (EPA) defines the 50 % cut size for a 

PM10 sampler as a median AED (GMAED) of 10 µm ± 0.5 µm and the 50 % cut size for a 

PM2.5 sampler as a median AED of 2.5 µm ± 0.2 µm in 40CFR53.  No slope values for 

the sampler are listed in EPA’s 40CFR53 or any other current EPA standard.   

The Federal Reference Method (FRM) performance standard for PM10 sampler is 

a cut size of a median AED of 10 µm ± 0.5 µm and a slope of 1.5 ± 0.1 using an 

equations 1 and 2 (See Figure D-1).(2)  EPA intended for the PM2.5 sampler to have a 

“sharp cut” or represent a true concentration of PM2.5 in EPA’s 40CFR53.  This means 

that the slope would be equal to 1.0.  It is difficult to design a sampler with a sharp cut 

from an engineering standpoint.  Buch(3) suggested that the performance characteristics 

for PM2.5 sampler is a median AED of 2.5 µm ± 0.2 µm and a slope = 1.3 ± 0.03 (See 

Figure D-2).  Figures D-1 and D-2 illustrate the efficiency ranges for PM10 and PM2.5 

samplers.  When comparing collection efficiencies, the acceptable ranges are 44 % to 

56 % for PM10 sampler and 36 % to 63 % for PM2.5 sampler for benchmark spherical 

particles of 10 µm and 2.5 µm, respectively (See Tables D-1 and D-2).  
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FIGURE D-1.  Penetration efficiency usable region for a PM10 sampler with 

parameters falling in the acceptable range as defined by FRM. 
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FIGURE D-2.  Penetration efficiency usable region for PM2.5 sampler with 

parameters falling into the acceptable range.  
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TABLE D-1.  Penetration Efficiency of PM10 Sampler 
 

GMAED 
A Slope GMAED Slope GMAED Slope GMAED Slope 

9.5  1.4  9.5 1.6 10.5 1.4 10.5 1.6 AED 
[µm] 

Collection 
EfficiencyB 

Penetration 
EfficiencyC 

Collection 
Efficiency 

Penetration 
Efficiency 

Collection 
Efficiency 

Penetration 
Efficiency 

Collection 
Efficiency 

Penetration 
Efficiency 

0 1.25E-254 1 1.2E-131 1 4.73E-259 1 6.44E-134 1 

1 1.109E-11 1 8.341E-07 0.9999992 1.391E-12 1 2.824E-07 0.9999997 

2 1.821E-06 0.9999982 0.0004579 0.9995421 4.148E-07 0.9999996 0.0002093 0.9997907 

3 0.0003065 0.9996935 0.0070936 0.9929064 9.835E-05 0.9999017 0.0038445 0.9961555 

4 0.0050734 0.9949266 0.0328543 0.9671457 0.0020639 0.9979361 0.0200194 0.9799806 

5 0.0282216 0.9717784 0.0860266 0.9139734 0.0137254 0.9862746 0.0572165 0.9427835 

6 0.0860109 0.9139891 0.1641062 0.8358938 0.0481376 0.9518624 0.116893 0.883107 

7 0.1820452 0.8179548 0.2579291 0.7420709 0.1140924 0.8859076 0.1941553 0.8058447 

8 0.3047661 0.6952339 0.3573183 0.6426817 0.2094904 0.7905096 0.281437 0.718563 

9 0.4361694 0.5638306 0.4542084 0.5457916 0.3234267 0.6765733 0.3714643 0.6285357 

10 0.5605818 0.4394182D 0.5434518 0.4565482 0.4423535 0.5576465 0.4586608 0.5413392 

11 0.6684755 0.3315245 0.6224493 0.3775507 0.5549818 0.4450182 0.5394221 0.4605779 

12 0.756255 0.243745 0.6904228 0.3095772 0.6542636 0.3457364 0.6118359 0.3881641 

13 0.824382 0.175618 0.7477261 0.2522739 0.7372027 0.2627973 0.6752329 0.3247671 

14 0.8754307 0.1245693 0.7953218 0.2046782 0.803723 0.196277 0.7297592 0.2702408 

15 0.9126875 0.0873125 0.8344297 0.1655703 0.8554374 0.1445626 0.7760369 0.2239631 

16 0.9393454 0.0606546 0.8663138 0.1336862 0.8946881 0.1053119 0.8149249 0.1850751 

17 0.9581383 0.0418617 0.8921645 0.1078355 0.9239323 0.0760677 0.8473608 0.1526392 

18 0.971241 0.028759 0.913043 0.086957 0.9454117 0.0545883 0.8742662 0.1257338 

19 0.9803028 0.0196972 0.9298628 0.0701372 0.9610154 0.0389846 0.8964947 0.1035053 

20 0.9865335 0.0134665 0.9433922 0.0566078 0.9722562 0.0277438 0.9148066 0.0851934 

21 0.9908006 0.0091994 0.9542667 0.0457333 0.9803028 0.0196972 0.9298628 0.0701372 

22 0.9937154 0.0062846 0.9630062 0.0369938 0.9860362 0.0139638 0.9422271 0.0577729 

23 0.9957038 0.0042962 0.9700322 0.0299678 0.9901078 0.0098922 0.9523744 0.0476256 

24 0.9970596 0.0029404 0.9756849 0.0243151 0.9929929 0.0070071 0.9607008 0.0392992 
: 
:         

Notes: AGMAED = Median AED of PM10 or PM2.5 sample. 
BCollection efficiency = LOGNORMDIST(AED, ln(AED50), ln(slope)) in Microsoft Excel.  
CPenetration efficiency = 1-Cumulative collection efficiency. 
DBold values indicate the collection efficiency ranges for AED50 for PM10 sampler at AED 10 µm. 
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TABLE D-2.  Penetration Efficiency of PM2.5 Sampler 
 

GMAED
A Slope GMAED Slope GMAED Slope GMAED Slope 

2.3 1.27 2.3 1.33 2.7 1.27 2.7 1.33 AED 
[µm] 

Collection 
Efficiency 

Penetration 
Efficiency 

Collection 
Efficiency 

Penetration 
Efficiency 

Collection 
Efficiency 

Penetration 
Efficiency 

Collection 
Efficiency 

Penetration 
Efficiency 

0.1 1.293E-39 1 2.023E-28 1 1.481E-43 1 3.399E-31 1 

0.2 8.21E-25 1 5.439E-18 1 6.493E-28 1 3.537E-20 1 

0.3 7.847E-18 1 4.583E-13 1 1.914E-20 1 6.556E-15 1 

0.4 1.256E-13 1 4.293E-10 1 6.793E-16 1 1.071E-11 1 

0.5 8.585E-11 1 4.368E-08 1 8.595E-13 1 1.675E-09 1 

0.6 9.442E-09 1 1.227E-06 0.9999988 1.559E-10 1 6.669E-08 0.9999999 

0.7 3.229E-07 0.9999997 1.514E-05 0.9999849 8.124E-09 1 1.103E-06 0.9999989 

0.8 4.974E-06 0.999995 0.0001065 0.9998935 1.798E-07 0.9999998 9.978E-06 0.99999 

0.9 4.327E-05 0.9999567 0.0005007 0.9994993 2.149E-06 0.9999979 5.849E-05 0.9999415 

1 0.0002463 0.9997537 0.0017465 0.9982535 1.622E-05 0.9999838 0.000248 0.999752 

1.1 0.0010144 0.9989856 0.0048486 0.9951514 8.605E-05 0.999914 0.00082 0.99918 

1.2 0.0032451 0.9967549 0.0112644 0.9887356 0.0003459 0.9996541 0.0022305 0.9977695 
: 
:         

2 0.2793624 0.7206376 0.3120369 0.6879631 0.1046343 0.8953657 0.1463223 0.8536777 

2.1 0.351747 0.648253 0.3748637 0.6251363 0.1465259 0.8534741 0.1890908 0.8109092 

2.2 0.4262312 0.5737688 0.4380665 0.5619335 0.1957722 0.8042278 0.2363398 0.7636602 

2.3 0.5 0.5 0.5 0.5 0.2511605 0.7488395 0.2869719 0.7130281 

2.4 0.5706625 0.4293375 0.5593172 0.4406828 0.3110836 0.6889164 0.339798 0.660202 

2.5 0.6363999 0.3636001B 0.6150033 0.3849967 0.3737302 0.6262698 0.3936304 0.6063696 
: 
:         

Notes:  AGMAED = Median AED of PM10 or PM2.5 sample. 
BBold Values indicate the collection efficiency ranges for AED50 for PM2.5 sampler at AED 2.5 µm. 

 
 
 
D-3.  Mathematica (4) Code for PDF of random variables 

This section documents the Mathematica Codes developed and used for PSD 

analysis.  Times New Roman font is used for the code and Italic Arial font is used for 

non-executing comments. 
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(************** Content-type: application/mathematica ************** 
                     CreatedBy='Mathematica 5.0' 
 
                    Mathematica-Compatible Notebook 
 
This notebook can be used with any Mathematica-compatible 
application, such as Mathematica, MathReader or Publicon. The data 
for the notebook starts with the line containing stars above. 
 
To get the notebook into a Mathematica-compatible application, do 
one of the following: 
 
* Save the data starting with the line of stars above into a file 
  with a name ending in .nb, then open the file inside the 
  application; 
 
* Copy the data starting with the line of stars above to the 
  clipboard, then use the Paste menu command inside the application. 
 
Data for notebooks contains only printable 7-bit ASCII and can be 
sent directly in email or through ftp in text mode.  Newlines can be 
CR, LF or CRLF (Unix, Macintosh or MS-DOS style). 
 
NOTE: If you modify the data for this notebook not in a Mathematica- 
compatible application, you must delete the line below containing 
the word CacheID, otherwise Mathematica-compatible applications may 
try to use invalid cache data. 
 
For more information on notebooks and Mathematica-compatible  
applications, contact Wolfram Research: 
  web: http://www.wolfram.com 
  email: info@wolfram.com 
  phone: +1-217-398-0700 (U.S.) 
 
Notebook reader applications are available free of charge from  
Wolfram Research. 
*******************************************************************) 
 
(*CacheID: 232*) 
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(*NotebookOutlinePosition[     14263,        407]*) 
(*  CellTagsIndexPosition[     14219,        403]*) 
(*WindowFrame->Normal*) 
 
 
 
Notebook[{ 
 
Cell[CellGroupData[{ 
Cell["\<\ 
The FRM PM10  performance standard calls for an AED50 of 10 \[Micro]m \ 
\[PlusMinus] 0.5 \[Micro]m and a slope of 1.5 \[PlusMinus] 0.1.   \ 
\>", "Subsection"], 
 
Cell[TextData[{ 
  "Ref:  ", 
  StyleBox[". \[OpenCurlyDoubleQuote]National Ambient Air Quality Standards \ 
for Particulate Matter\[CloseCurlyDoubleQuote] ", 
    FontFamily->"Times New Roman"], 
  StyleBox["Code of Federal Regulations", 
    FontFamily->"Times New Roman", 
    FontSlant->"Italic"], 
  StyleBox[" Title 40, Part 53.  2000.", 
    FontFamily->"Times New Roman"] 
}], "Subsubsection"] 
}, Open  ]], 
 
Cell[CellGroupData[{ 
 
Cell["\<\ 
Input data, lognormal PSD and Lognormal Collection Efficiency Curve.\ 
\>", "Subsection"], 
 
Cell[BoxData[ 
    \(<< Statistics`ContinuousDistributions`\)], "Input"], 
 
Cell[BoxData[{ 
    \(Clear[gm, gs, GM, GS, lnd, AED, aed]\), "\[IndentingNewLine]",  
    \(lnd[gm_, gs_] :=  
      LogNormalDistribution[Log[gm], Log[gs]]\), "\[IndentingNewLine]",  
    \(PSD[AED_]\  = \ PDF[lnd[GM, GS], AED]\), "\[IndentingNewLine]",  
    \(PM10CE[AED_] = 1 - CDF[lnd[CP, Slope], AED]\)}], "Input"], 
 
Cell[CellGroupData[{ 
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Cell["\<\ 
In an environment with a total mass concentration of tot mg/m^3 and a PSD as \ 
indicated above, the PM10 sampler will collect approximately the following \ 
mass:\ 
\>", "Subsubsection"], 
 
Cell[BoxData[ 
    \(samplemass\  = \[Integral]\_0\%\(5\ GS\ GM\)PM10CE[AED]\ PSD[ 
            AED] \[DifferentialD]AED\)], "Text"] 
}, Open  ]], 
 
Cell[CellGroupData[{ 
 
Cell["\<\ 
This integral does not have a closed form solution, but it can be integrated \ 
numerically.  If the airborne total mass concentration is 10 mg/m^3, and the \ 
PSD is characterized by GM = 11.8 \[Mu]m and GS = 2.1, then the equation can \ 
be integrated for the central and both extreme values of the FRM \ 
specification to find the range of measurements expected from samplers that \ 
comply with the allowed variation in the FRM.  The various combinations of \ 
median and slope are represented below with n for negative limit and p for \ 
positive limit:  thus, spmn indicates a sample taken with sampler whose slope \ 
is at the positive limit, 1.6, and whose cut point is at the negative limit, \ 
9.5.\ 
\>", "Subsubsection"], 
 
Cell[BoxData[ 
    \(psd[AED_] =  
      PSD[AED] /. {GM \[Rule] \ 11.8, \ GS \[Rule] 2.1}\)], "Input"], 
 
Cell[BoxData[ 
    \(truePM10conc = NIntegrate[10\ psd[AED], {AED, 0, 10}]\)], "Input"] 
}, Open  ]], 
 
Cell[CellGroupData[{ 
 
Cell[TextData[{ 
  "Both the slope and the cut point are allowed a reasonable tolerance.  \ 
Thus, among acceptable PM-10 samplers, there is an allowed uncertainty in \ 
measuring PM-10 for an atmosphere with PSD having ", 
  Cell[BoxData[ 
      \(TraditionalForm\`GM\_AED\  = \ \(11.8\ um\ and\ GS\_AED\  = \  
          2.1\)\)]], 
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  ", as shown below." 
}], "Subsubsection"], 
 
Cell[BoxData[ 
    \(okPM10conc = {spmpPM10conc\  = \  
            NIntegrate[\ \((\  
                  PM10CE[AED] /. {CP \[Rule] 10.5,  
                      Slope \[Rule] 1.6})\)\ \((10\ psd[AED])\), {AED, 0,  
                5\ 11.8\ 2.1}], \[IndentingNewLine]snmpPM10conc\  = \  
            NIntegrate[\ \((\  
                  PM10CE[AED] /. {CP \[Rule] 10.5,  
                      Slope \[Rule] 1.4})\)\ \((10  psd[AED])\), {AED, 0,  
                5\ 11.8\ 2.1}], \[IndentingNewLine]nominalPM10conc =  
            NIntegrate[\ \((\  
                  PM10CE[AED] /. {CP \[Rule] 10, Slope \[Rule] 1.5})\)\ \((10  
                     psd[AED])\), {AED, 0,  
                5\ 11.8\ 2.1}], \[IndentingNewLine]spmnPM10conc =  
            NIntegrate[\ \((\  
                  PM10CE[AED] /. {CP \[Rule] 9.5,  
                      Slope \[Rule] 1.6})\)\ \((10  psd[AED])\), {AED, 0,  
                5\ 11.8\ 2.1}], \[IndentingNewLine]snmnPM10conc =  
            NIntegrate[\ \((\  
                  PM10CE[AED] /. {CP \[Rule] 9.5,  
                      Slope \[Rule] 1.4})\)\ \((10  psd[AED])\), {AED, 0,  
                5\ 11.8\ 2.1}]} // Reverse\)], "Input"] 
}, Open  ]], 
 
Cell[CellGroupData[{ 
 
Cell["\<\ 
Let the 90% confidence interval be the largest allowed difference between \ 
samplers.\ 
\>", "Subsubsection"], 
 
Cell[BoxData[{ 
    \(\({snmnPM10conc - {spmpPM10conc, snmpPM10conc},  
          spmnPM10conc - {spmpPM10conc, snmpPM10conc}} // Abs\) //  
      Flatten\), "\[IndentingNewLine]",  
    \(ci = Max[%]\)}], "Input"] 
}, Open  ]], 
 
Cell[CellGroupData[{ 
 
Cell["\<\ 
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Find the sample standard deviation from the confidence interval.    Find the \ 
relative standard deviation from the ss.\ 
\>", "Subsubsection"], 
 
Cell[BoxData[ 
    \({ss = ci\/\(2\ 1.645\), rsd = ss/10\ }\)], "Input"] 
}, Open  ]], 
 
Cell[CellGroupData[{ 
 
Cell["Plot the key functions that were integrated above.", "Subsubsection"], 
 
Cell[BoxData[{ 
    \(Clear[sm, AED]\), "\[IndentingNewLine]",  
    \(\(sm[AED_]\  = \ \((\  
          PM10CE[AED] /. {CP \[Rule] 10,  
              Slope \[Rule] 1.5})\);\)\), "\[IndentingNewLine]",  
    \(\(Plot[{10\ psd[AED], sm[AED], 10\ psd[AED]*sm[AED]}, {AED, 0,  
          30}]\ ;\)\)}], "Input"], 
 
Cell[BoxData[{ 
    \(Clear[AED, spmp]\), "\[IndentingNewLine]",  
    \(\(spmp[AED_] = \((\  
          PM10CE[AED] /. {CP \[Rule] 10.5,  
              Slope \[Rule] 1.6})\);\)\), "\[IndentingNewLine]",  
    \(\(Plot[{10\ psd[AED], spmp[AED], spmp[AED]*10\ psd[AED]}, {AED, 0,  
          30}]\ ;\)\)}], "Input"], 
 
Cell[BoxData[{ 
    \(Clear[snmn]\), "\[IndentingNewLine]",  
    \(\(snmn[AED_] = \((\  
          PM10CE[AED] /. {CP \[Rule] 9.5,  
              Slope \[Rule] 1.4})\);\)\), "\[IndentingNewLine]",  
    \(\(Plot[{10\ psd[AED], snmn[AED], 10\ psd[AED]*snmn[AED]} //  
          Evaluate, {AED, 0, 30}]\ ;\)\)}], "Input"] 
}, Open  ]], 
 
Cell[CellGroupData[{ 
 
Cell["\<\ 
Compare the distribution of particles allowed to be sampled by compliant \ 
PM-10 samplers.\ 
\>", "Subsubsection"], 
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Cell[BoxData[ 
    \(\(Plot[ 
        10\ psd[AED] {sm[AED], snmn[AED], spmp[AED]} // Evaluate, {AED, 0,  
          30}]\ ;\)\)], "Input"] 
}, Open  ]], 
 
Cell[TextData[{ 
  "In summary,  given an atmospheric dust concentration of 10 mg/m^3 on the \ 
basis of total mass, with a PSD characterized as LogNormal with ", 
  Cell[BoxData[ 
      \(TraditionalForm\`GM\_AED\)]], 
  "= 11.8 \[Mu]m and ", 
  Cell[BoxData[ 
      \(TraditionalForm\`GS\_AED\)]], 
  "= 2.1, the true value of PM10 is 4.12 mg/m^3.  A PM10 sampler which \ 
operated with FRM parameters will report 4.22 mg.m^3 and PM10 samplers which \ 
operates in the FRM allowed parameter space will report values between 3.95 \ 
and 4.47 mg/m^3.   \n     Assuming this range is the 90% conficence region \ 
for production samplers operating under field conditions, the estimated PM10 \ 
concentration would be 0.422 times the TSP concentration with a standard \ 
deviation of 0.016.  In a chamber test, I would expect this sort of variation \ 
between PM10 samplers, even if they all experienced exactly the same \ 
concentration.  If a larger variation were observed, then either one or more \ 
PM10 samplers are operating outside the range specified above, or they are " 
}], "Subsubsection"] 
}, Open  ]], 
 
Cell[CellGroupData[{ 
 
Cell["Next, repeat these estimates for an ACIGH thoracic sampler.", \ 
"Subsection"], 
 
Cell[CellGroupData[{ 
 
Cell["\<\ 
The sampling efficiency curves for the inhalable, thoracic and respirable \ 
conventions are expressed in terms of the Standard Normal Distribution \ 
Function, F[x].\ 
\>", "Subsubsection"], 
 
Cell[BoxData[ 
    \(F[x_] = CDF[NormalDistribution[0, 1], x]\)], "Input"], 
 
Cell[BoxData[{ 



 

 

130

    \(SI[d_] :=  
      0.5 \((1 + \[ExponentialE]\^\(\(-0.06\)\ d\))\)\), \ 
"\[IndentingNewLine]",  
    \(ST[d_] :=  
      SI[d] \((1 - F[x])\) /.  
        x \[Rule] \ Log[d/11.64]/Log[1.5]\), "\[IndentingNewLine]",  
    \(SR[d_] :=  
      SI[d] \((1 - F[x])\) /. x \[Rule] \ Log[d/4.25]/Log[1.5]\)}], "Input"] 
}, Open  ]], 
 
Cell[CellGroupData[{ 
 
Cell["\<\ 
Verify that the 50% cut point for thoracic is 10 um and for respirable is 4 \ 
um.  \ 
\>", "Subsubsection"], 
 
Cell[BoxData[ 
    \(FindRoot[ST[d] \[Equal] 0.5, {d, 10}]\)], "Input"], 
 
Cell[BoxData[ 
    \(FindRoot[SR[d] \[Equal] 0.5, {d, 4}]\)], "Input"] 
}, Open  ]], 
 
Cell[CellGroupData[{ 
 
Cell["\<\ 
Show the samling efficiency curves for the respirable,thoracic and inhalable \ 
fractions.\ 
\>", "Subsubsection"], 
 
Cell[BoxData[ 
    \(\(Plot[{SI[d], ST[d], SR[d]}, {d, 0, 30}, Frame \[Rule] True,  
        FrameLabel \[Rule] {"\<AED in um\>", "\<Sampling Efficiency\>", "\< \ 
ISO Resp 4 um, Thor 10 um, Inhal 100 um\>", "\<\>"},  
        ImageSize \[Rule] 72*7, \  
        TextStyle \[Rule] {FontFamily -> "\<Arial\>",  
            FontSize \[Rule] 14}];\)\)], "Input"] 
}, Open  ]], 
 
Cell[CellGroupData[{ 
 
Cell["\<\ 
Show the distribution of particles sampled with four samplers, Respirable, \ 
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Thoracic, Inhalable, Total Suspended PM.  \ 
\>", "Subsubsection"], 
 
Cell[BoxData[ 
    \(\(Plot[{1.0, SI[d], ST[d], SR[d]} psd[d] // Evaluate, {d, 0, 30},  
        Frame \[Rule] True,  
        FrameLabel \[Rule] {"\<AED in um\>", "\<Mass Density \>", "\< ISO \ 
Resp 4 um, Thor 10 um, Inhal 100 um, Total\>", "\<\>"},  
        ImageSize \[Rule] 72*7, \  
        TextStyle \[Rule] {FontFamily -> "\<Arial\>",  
            FontSize \[Rule] 14}];\)\)], "Input"] 
}, Open  ]], 
 
Cell[CellGroupData[{ 
 
Cell["\<\ 
What mass concentration will be reported by each of these four samplers?  \ 
Integrate numerically from d = 0 to d = 5*GM*GS = 123.9 um. 
Note:  5*GM is five standard deviations from the median in the \ 
\>", "Subsubsection"], 
 
Cell[BoxData[{ 
    \(\(totalmass\  = \  
        10\ NIntegrate[ 
            psd[d], {d, 0, 11.8*2.1*5}];\)\), "\[IndentingNewLine]",  
    \(\(inhalablemass =  
        10\ NIntegrate[ 
            psd[d]\ SI[d], {d, 0, 11.8*2.1*5}];\)\), "\[IndentingNewLine]",  
    \(\(thoracicmass\  = \  
        10\ \ NIntegrate[ 
            psd[d]\ ST[d], {d, 0, 11.8*2.1*5}];\)\), "\[IndentingNewLine]",  
    \(\(respirablemass =  
        10\ \ NIntegrate[ 
            psd[d]\ SR[d], {d, 0, 11.8*2.1*5}];\)\), "\[IndentingNewLine]",  
    \(TableForm[{{"\<totalmass\>", "\<inhalablemass\>", "\<thoracicmass\>", "\ 
\<respirablemass\>"}, {totalmass, inhalablemass, thoracicmass,  
          respirablemass}}]\)}], "Input"] 
}, Open  ]], 
 
Cell[CellGroupData[{ 
 
Cell[TextData[{ 
  "In the test atmosphere used for these estimates { psd[d] with ", 
  Cell[BoxData[ 
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      \(TraditionalForm\`GM\_AED\  = \ \(11.8\ um\ and\ GS\_AED\  = \  
          2.1\)\)]], 
  "}, the nominal PM10 and thoracic fractions are different from one another \ 
and from the true mass \[LessEqual] 10 um AED.  Due to their finite slopes, \ 
both PM10 and thoracic samplers collect some particles larger than 10 um and \ 
miss some that are smaller than 10 um AED.  The net result is that both \ 
overestimate the true mass for particles with AEC \[LessEqual] 10 um.  " 
}], "Subsubsection"], 
 
Cell[BoxData[ 
    \({{"\<thoracic conc\>", "\<truePM10conc\>", "\<nominalPM10conc\>", \ 
"\<MinPM10Conc\>", \ "\<MaxPM10conc\>"}, {thoracicmass, truePM10conc,  
            nominalPM10conc, snmnPM10conc,  
            spmpPM10conc} \*"\"\< mg \!\(m\^\(-3\)\)\>\""} //  
      TableForm\)], "Input"], 
 
Cell[BoxData[{ 
    \(GM = 21.3; GS = 2.1;\), "\[IndentingNewLine]",  
    \(\({truePM10conc = NIntegrate[10\ psd[AED], {AED, 0, 10}],  
        nominalPM10conc =  
          NIntegrate[\ \((\  
                PM10CE[AED] /. {CP \[Rule] 10, Slope \[Rule] 1.5})\)\ \((10  
                   psd[AED])\), {AED, 0,  
              5\ GM\ GS}], \[IndentingNewLine]ACGIHthoracicconc\  = \  
          NIntegrate[\ \((\ ST[d])\)\ \((10\ psd[d])\), {d, 0,  
              5\ GM\ GS}]};\)\), "\[IndentingNewLine]",  
    \({{"\<truePM10conc\>", "\<nominalPM10conc\>", "\<ACGIH thoracic \ 
conc\>"}, {truePM10conc, nominalPM10conc,  
            ACGIHthoracicconc} \*"\"\< mg \!\(m\^\(-3\)\)\>\""} //  
      TableForm\)}], "Input"] 
}, Open  ]] 
}, Open  ]] 
}, 
FrontEndVersion->"5.0 for Microsoft Windows", 
ScreenRectangle->{{0, 1024}, {0, 693}}, 
WindowSize->{496, 535}, 
WindowMargins->{{0, Automatic}, {Automatic, 0}} 
] 
 
(******************************************************************* 
Cached data follows.  If you edit this Notebook file directly, not 
using Mathematica, you must remove the line containing CacheID at 
the top of  the file.  The cache data will then be recreated when 
you save this file from within Mathematica. 
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*******************************************************************) 
 
(*CellTagsOutline 
CellTagsIndex->{} 
*) 
 
(*CellTagsIndex 
CellTagsIndex->{} 
*) 
 
(*NotebookFileOutline 
Notebook[{ 
 
Cell[CellGroupData[{ 
Cell[1776, 53, 168, 3, 56, "Subsection"], 
Cell[1947, 58, 391, 10, 29, "Subsubsection"] 
}, Open  ]], 
 
Cell[CellGroupData[{ 
Cell[2375, 73, 98, 2, 38, "Subsection"], 
Cell[2476, 77, 71, 1, 30, "Input"], 
Cell[2550, 80, 316, 5, 90, "Input"], 
 
Cell[CellGroupData[{ 
Cell[2891, 89, 194, 4, 46, "Subsubsection"], 
Cell[3088, 95, 130, 2, 44, "Text"] 
}, Open  ]], 
 
Cell[CellGroupData[{ 
Cell[3255, 102, 732, 11, 114, "Subsubsection"], 
Cell[3990, 115, 101, 2, 30, "Input"], 
Cell[4094, 119, 86, 1, 30, "Input"] 
}, Open  ]], 
 
Cell[CellGroupData[{ 
Cell[4217, 125, 370, 8, 63, "Subsubsection"], 
Cell[4590, 135, 1168, 21, 230, "Input"] 
}, Open  ]], 
 
Cell[CellGroupData[{ 
Cell[5795, 161, 118, 3, 29, "Subsubsection"], 
Cell[5916, 166, 210, 4, 70, "Input"] 
}, Open  ]], 
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Cell[CellGroupData[{ 
Cell[6163, 175, 152, 3, 29, "Subsubsection"], 
Cell[6318, 180, 71, 1, 43, "Input"] 
}, Open  ]], 
 
Cell[CellGroupData[{ 
Cell[6426, 186, 75, 0, 29, "Subsubsection"], 
Cell[6504, 188, 303, 6, 70, "Input"], 
Cell[6810, 196, 309, 6, 70, "Input"], 
Cell[7122, 204, 315, 6, 70, "Input"] 
}, Open  ]], 
 
Cell[CellGroupData[{ 
Cell[7474, 215, 123, 3, 29, "Subsubsection"], 
Cell[7600, 220, 136, 3, 30, "Input"] 
}, Open  ]], 
Cell[7751, 226, 1081, 18, 148, "Subsubsection"] 
}, Open  ]], 
 
Cell[CellGroupData[{ 
Cell[8869, 249, 83, 1, 38, "Subsection"], 
 
Cell[CellGroupData[{ 
Cell[8977, 254, 197, 4, 46, "Subsubsection"], 
Cell[9177, 260, 73, 1, 30, "Input"], 
Cell[9253, 263, 325, 8, 71, "Input"] 
}, Open  ]], 
 
Cell[CellGroupData[{ 
Cell[9615, 276, 116, 3, 29, "Subsubsection"], 
Cell[9734, 281, 70, 1, 30, "Input"], 
Cell[9807, 284, 69, 1, 30, "Input"] 
}, Open  ]], 
 
Cell[CellGroupData[{ 
Cell[9913, 290, 122, 3, 29, "Subsubsection"], 
Cell[10038, 295, 354, 6, 90, "Input"] 
}, Open  ]], 
 
Cell[CellGroupData[{ 
Cell[10429, 306, 152, 3, 46, "Subsubsection"], 
Cell[10584, 311, 388, 7, 90, "Input"] 
}, Open  ]], 
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Cell[CellGroupData[{ 
Cell[11009, 323, 232, 4, 63, "Subsubsection"], 
Cell[11244, 329, 704, 15, 270, "Input"] 
}, Open  ]], 
 
Cell[CellGroupData[{ 
Cell[11985, 349, 595, 10, 131, "Subsubsection"], 
Cell[12583, 361, 294, 5, 112, "Input"], 
Cell[12880, 368, 712, 13, 232, "Input"] 
}, Open  ]] 
}, Open  ]] 
} 
] 
*) 
 
 
 
(******************************************************************* 
End of Mathematica Notebook file. 
*******************************************************************) 

 

 
APPENDIX D REFERENCES  
                                                 
1. Hinds, W.C.: Aerosol Technology Properties, Behavior, and Measurement of 
Airborne Particles. New York: John Wiley & Sons, Inc, 1999. 
 
2 National Ambient Air Quality Standards for Particulate Matter Code of Federal 
Regulations Title 40, Part 53. 2000. 
 
3. Buch,U.M.; Performance analysis of the cascade impactor, the federal reference 
method PM2.5 sampler and the improved sampler. Thesis, Texas A&M University, 
College Station, TX. 
 
4. Wolfram Research, Inc.: Mathematica 5.0  Champaign, IL.  
 



 

 

136

 

APPENDIX E  

CUTOFF SIZE CALCULATION (ANDERSEN SAMPLER)  

 

ABBREVIATIONS 

AED50  An aerodynamic equivalent diameter which has 50 % collection 
efficiency for size selective aerosol sampler. 
 

AED  The diameter of the unit density (ρP = 1 g/cm3) sphere that has the 
same settling velocity as the particle.  
 

B Mobility of particle [cm/s/dyn]  
 

CAED Cunningham correction factor of aerodynamic equivalent diameter 
AED, a dimensionless number 
 

CAED50 Cunningham correction factor corresponding to AED50 
 

CP Cunningham correction factor of particle dP 
 

CP50 Cunningham correction factor corresponding to dP50 
 

dEC Effective cutoff diameter [µm] (Nominal cutoff diameter when the 
flow rate is at 1 ACFM [28.32 L/min]) 
 

dc Diameter of the round jet [cm] 
 

dP Particle diameter [cm] 
 

DP Particle diameter [µm] 
 

dP50 Impactor stage cutoff size in particle diameter [cm] 
 

m Mass of particle [g] 
 

M.W. Molecular weight of particle [g] 
 

P Absolute pressure [Pa] 
 

S Stopping distance [cm] 
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ψ Dimensionless inertial parameter 

 
ψ50 Dimensionless parameter corresponding to the 50th percentile of the 

stage collection efficiency (0.1444 by Ranz and Wong) 
 

Vo Aerosol (Stage) velocity [cm/s] 
 

µ Dynamic viscosity (poise) [g/cm/s] 
 

ρ0 Unit density (1 g/cm3) 
 

ρP Particle density [g/cm3] 
 

λ Mean free path [µm] 
 

τ Relaxation time [s] 
 

E-1.  Overview of Cutoff Size Calculation 

In this study, the Andersen sampler collected particles with two flow rates: 0.8 

ACFM (22.65 L/min) for a chamber study and 1.0 ACFM (28.32 L/min) for a field study.  

In the chamber study, non-viable ambient Andersen samplers were adjusted to 0.8 

ACFM (22.65 L/min) instead of 1 ACFM (28.32 L/min) because of a miscalculation of 

pressure drop.  Thus, the goal of this appendix is to illustrate the cutoff size on each 

stage of an Andersen sampler according to the flow rate.    

 

E-2.  Cutoff Size Calculation 

The cutoff size can be characterized by a dimensionless parameter (ψ) in 

Equation E.1.  Fundamental work in inertial impaction theory was conducted in the early 

1950’s by Ranz and Wong (1), Marple and Liu. (2)    
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The Andersen operator manual provides the cutoff size based on Equation E.1.  

Original measurements were based on glycerol, with density = 1.26 g/cm3, as an aerosol 

media.  Those spherical droplets were used to determine the inertial parameter for a 

round jet impactor.  Ranz and Wong measured 50ψ  = 0.1444 used in the calculations 

below.  

The impactor stage performance is governed by the dimensionless parameter, Ψ.  

Ψ is defined as the ratio of the stopping distance of a particle to a characteristic length of 

the round jet.  From this equation, the cutoff size of the particles collected on each stage 

increases as the volume flow rate decreases and as the particle density decreases. 

( )2

18
p p o Po

c c c

C V dVS
d d d

ρτψ
µ

= = =                                  (E.1) 

where ψ = Dimensionless inertial parameter; S = Stopping distance [cm];   

ρP = Particle density [g/cm3]; Vo = Aerosol (Stage) velocity [cm/s]; dP = Particle 

diameter [cm]; µ = Dynamic viscosity (poise) [g/cm/s], 1.8 × 10-4 g/cm/s at 20 °C and 1 

atm; dc = Diameter of the round jet [cm]; 

τ = relaxation time[s] = m × B = ( ) ( )3 2

6 3 18
pP P P P

P
P

Cd C d
d

π ρ
ρ

πµ µ
⎛ ⎞

⋅ ⋅ =⎜ ⎟
⎝ ⎠

;                     (E.2) 

where m = Mass of particle [g]; B = Mobility of particle [cm/s/dyn]; 

CP = Cunningham correction factor for the smallest particles dP; 

40.16 101P
P

C
d

−⎛ ⎞×
= +⎜ ⎟
⎝ ⎠

                                                                                          (E.3) 
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Ranz and Wong used a Cunningham correction factor (Equation E.3) which is 

the empirical correction factor at normal temperature and pressure and it only depends 

on spherical particle size.  Actually, the pressure and temperature influences the mean 

free path, which affects Cunningham correction.  Equation E.4 was reported by Allen 

and Raabe (3) using parameters, mean free path and particle diameter. 

Equations E.3 and E.4 show almost same values between CP (Ranz & Wong) and 

CP (Allen & Raabe) for particles bigger than or equal to 0.1 µm.  This is illustrated in 

Table E-1.  The values of CP (Ranz & Wong) for 0.1 µm and 1 µm particles at STP 

(20 °C and 1 atm) are 2.6 and 1.16.  This means that the particles settle 260 % and 16 % 

faster than predicted by Stokes’ Law without this size dependent correction factor.  

1.121 1.257 0.4exp
2

P
P

P

DC
D
λ

λ
⎛ ⎞⎛ ⎞= + + −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
                                              (E.4) 

2
8 . .M WP

RT

µλ

π

=
⎛ ⎞
⎜ ⎟
⎝ ⎠

                                                                                (E.5) 

where λ = Mean free path (0.066 µm at STP, 20 °C and 1 atm) [µm];  

DP = Particle diameter  [µm]; M.W. = Molecular weight of particle [g];  

P = Absolute pressure in Pa.  

The Cunningham correction factor is necessary for small particles because the 

particles are so small that they slip between the molecules. (4)  As shown in Table E-1, 

the correction factor is small compared with typical measurement uncertainty for 

particles larger than 2 µm. 

 



 

 

140

 

TABLE E-1.  Cunningham Correction Factor Comparison in Air at 298 K and 1 

atm 

dP or DP [µm] CP (Ranz & Wong) CP (Allen and Raabe) 
0.001 161.00 218.85 
0.002 81.00 109.50 
0.005 33.00 43.90 
0.1 2.60 2.76 
0.2 1.80 1.84 
0.5 1.32 1.33 
1 1.16 1.17 
2 1.08 1.08 
5 1.03 1.03 
10 1.02 1.02 
20 1.01 1.01 
50 1.00 1.00 
100 1.00 1.00 

 

Ranz and Wong determined the inertial impaction parameter (ψ = 0.1444) using 

glycerol as an aerosol media with a particle density of 1.2 g/cm3.  They defined the (ψ = 

0.1444) by averaging the difference between the maximum Stokes number and the 

minimum Stokes number indicated by the experimental curves.  

In this appendix, Ψ50, dP50, and C50 are used as appropriate parameters to 

calculate the cutoff size for each stage from Equation E.1.  

( )2
50 50

50 18
P p o P

c

C V d
d

ρ
ψ

µ
=                              (E.6)                             

where ψ50 = Dimensionless parameter corresponding to the 50th percentile of the stage 

collection efficiency (ψ50 = 0.1444 by Ranz and Wong); 

dP50 = Impactor stage cutoff size in particle diameter [cm];  

µ = Dynamic viscosity (poise) [g/cm/s], 1.8 × 10-4 g/cm/s at 20 °C and 1 atm; 
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CP50 = Cunningham correction factor corresponding to dP50 

 Substituting E.6 into equation E.2, the dP50 is shown to be a function of five 

observable parameters: ρp, Vo, µ, dc, and 50ψ . 

 
( )24 4

50
50

0.16 10 0.16 10 72

2
p o p o p o c
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p o
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d

V

ρ ρ ρ µ ψ

ρ

− −− × + × +
=                               (E.7) 

An AED50 with non standard density becomes 

1
2

50 50P pAED d ρ⎡ ⎤= ⎣ ⎦                                        (E.8) 

where ρP = Particle density [g/cm3]. 

 

 

Table E-2 shows higher AED50 at lower volume flow rate.  The ratio represents 

the cut-point adjustment factor for each stage of an Andersen sampler at 0.8 ACFM 

(22.65 L/min) with same STP (20 °C, 1 atm).  The ratio was calculated using an equation 

in the notes of Table E-2 and almost same ratios are shown at different densities 1 g/cm3 

and 2.7 g/cm3.   

when dEC, effective cutoff diameter [µm] (Nominal cutoff diameter when the 

flow rate is at 1 ACFM [28.32 L/min]), in Table E-3 is compared with AED50 at 1 

ACFM in Table E-2, the Andersen Sampler does not operate completely like the Ranz 

Wong model.  Most of the orifices in the Andersen sampler are in a field of horizontal 

outflow.  Therefore, the Ranz Wong equation does not predict the observed cut points.  

The cut-point adjustment factors with the density of fly ash (2.7 g/cm3) were multiplied 
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to dEC for obtaining the AED50s of the Andersen sampler at 0.8 ACFM as shown Table 

E-3.  The cutoff diameters with a unit density at 0.8 ACFM (22.65 L/min) are AEDs 

10.1 µm, 6.5 µm, 5.3 µm, 3.7 µm, 2.4 µm, 1.2 µm, 0.7 µm, and 0.5 µm from 0 stage to 7 

stage of the Andersen sampler.   

In a field study, the Andersen cascade impactor separates particles by AED.  In a 

dust cloud, the PM has differing densities and the physical diameters are different among 

particles as shown in Figures 3-7 and 3-8 in Chapter III.      

 
TABLE E-2. Stage Cutoff Size as a Function of Density and Flow Rate    

AED50 [µm] A 
Stage At 1 ACFM, 

1 g/cm3 
At 1 ACFM, 

2.7 g/cm3 
At 0.8 ACFM,  

1 g/cm3 
At 0.8 ACFM, 

2.7 g/cm3 

Ratio B  
at 1 g/cm3  

Ratio  
at 2.7 g/cm3 

0 11.08 11.03 12.40 12.35 1.12 1.12 
1 7.08 7.03 7.93 7.88 1.12 1.12 
2 4.80 4.75 5.38 5.33 1.12 1.12 
3 3.27 3.22 3.66 3.61 1.12 1.12 
4 2.10 2.05 2.35 2.30 1.12 1.13 
5 1.04 1.00 1.18 1.13 1.13 1.13 
6 0.64 0.59 0.72 0.68 1.13 1.14 
7 0.44 0.40 0.50 0.46 1.14 1.15 

Notes:  

A AED50 was calculated using Equations E.7 and E.8.  1
2

50 50P pAED d ρ⎡ ⎤= ⎣ ⎦
;  

( )24 4
50

50

0.16 10 0.16 10 72

2
p o p o p o c

P
p o

V V V d
d

V

ρ ρ ρ µ ψ

ρ

− −− × + × +
=  

where dP50 = Particle cutoff diameter [cm];  ρP = Particle density [g/cm3]; 

Vo = Q/A = Aerosol (Stage) velocity [cm/s] = 
2

Number of orifice
4

CdQ π⎛ ⎞
×⎜ ⎟

⎝ ⎠
;  

µ = Dynamic viscosity (poise) [g/cm/s], 1.8 × 10-4 g/cm/s at 20 °C and 1 atm; 50ψ =0.1444; 
dc = Diameter of the round jet [cm]; ρP = Particle density [g/cm3]..  
BRatio = Cut-point Adjustment Factor = 50

50

at 0.8 ACFM
at 1 ACFM

AED
AED

. 

 
 



 

 

143

 

TABLE E-3.  Dimension of the Andersen Sampler Orifices  

Stage Orifice diameter 
[Inch] 

Number of 
orifices 

At 1 ACFM, 
dEC

 A [µm] 
At 0.8 ACFM, 
AED50 B [µm] 

0 0.0625 400 9 10.1 

1 0.0465 400 5.8 6.5 

2 0.0360 400 4.7 5.3 

3 0.0280 400 3.3 3.7 

4 0.0210 400 2.1 2.4 

5 0.0135 400 1.1 1.2 

6 0.0100 400 0.7 0.7 

7 0.0100 210 0.4 0.5 
Note:  
AEffective cutoff diameter [µm] (Nominal cutoff diameter when the flow rate is at 1 ACFM [28.32 
L/min]) 
BAED50 at 0.8 ACFM (22.65 L/min) = An aerodynamic equivalent diameter which has 50 % collection 
efficiency. 
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APPENDIX F  

PARTICLE SIZE DISTRIBUTION MODELS 

 

F-1.  Overview of Particle Size Distribution 

The probability density function (PDF) is an important way of characterizing 

distributed quantities such as a particle size.  Here, the PDF for particle size is called the 

particle size distribution (PSD).  It can be extended by analogy to any other distributed 

quantity such as shape, density, mass, or velocity.   

The goals of this appendix are: 

1) To understand PSD characteristics when represented as a function of a particle’s 

aerodynamic equivalent diameter (AED), projected area (PA), surface area (SA), volume, 

equivalent spherical diameter (ESD), and mass.  

2) To predict mass fractions for the ACGIH/CEN/ISO∗ respirable, thoracic, and 

inhalable convention from the PSD for ESD.  

 The two parameters GMAED and GSDAED were estimated from the particle volume 

histogram of the bulk flyash used as the challenge material for comparing the behavior 

of various size selective aerosol samplers.  The histogram was produced using the 

Coulter Counter Multisizer (CCM) which measures the change in electrical conductivity 

of a carrier solution due to volume displacement as a particle passes through an orifice 

with 100 µm diameter. 

                                                 
∗ American Conference of Governmental Industrial Hygienists (ACGIH); 
Comité Européen de Normalisation (CEN); 
International Organization for Standardization (ISO). 
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Through the PSD characteristics and Mathematica procedures below, the particle 

fractions for the respirable, thoracic, and inhalable convention were found as 7.2 %, 

41.2 %, and 99.8 % from PDFs of a particle’s AED, PA, SA, volume, ESD, and mass, 

based on the parameters for the AED PDF:  median = GMAED = 11.8 µm and slope = 

GSDAED = 2.1. 

 

F-2.  PSD characteristics 

Let two random variables be related by Y = ln X or equivalently, by YX e= and 

assume that Y is Gaussian with a mean of Y and a standard deviation of σy.  It is clear 

that whenever the random variable X lies between x and x + dx, the random variable Y 

will lie between y and y + dy.  Since the probabilities of these events are fX(x) dx and 

fY(y) dy, one can write fX(x) dx = fY(y) dy from which the desired probability density 

function of X, denoted by fX(x), becomes 

( ) ( )X Y
dyf x f y
dx

=                 (F.1) 

To complete the transformation indicated in Equation F.1, it is sufficient to express both 

y and dy/dx in terms of x.  Because Y = ln X, it follows that:  

1dy
dx x

= , and dx x
dy

=  

Substitute these expressions into Equation F.1   For fX(x) to be a PDF, it must be true that 

0 < fX(x) ≤ 1 for all values of x.  To achieve this, use the absolute value of the term (1/x).   

1 1( ) ( ) (ln )X Y Yf x f y f x
x x

= =           (F.2) 



 

 

146
 
 

 

Recall that Y is a random variable characterized by a Gaussian distribution.  

( )2

2

1( ) exp
22Y

YY

y Y
f y

σπσ

⎡ ⎤−⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

          (F.3) 

In equation F.3, substitute y = ln(x),  σY = ln(GSDX) and Y = ln(GMX) to find the useful 

representation of  the PDF for the lognormally distributed random variable, X, shown in 

Equation F.4. 
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( ) ( )( )
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ln ln1( ) exp
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x GM
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x GSD GSDπ
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 if x > 0        (F.4) 

           = 0                                                                                 x ≤ 0                                                                  

2
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(ln( ) ln( ))1 1exp
2 (ln( ))ln( ) 2

AED

AEDAED

AED GM
GSDAED GSD π

⎡ ⎤−
⋅ − ⋅⎢ ⎥⋅ ⋅ ⎣ ⎦

           

For assessing inhalation risk, X is the AED and Y is Gaussian with a mean of ln(GMAED) 

and a standard deviation of ln(GSDAED).  After making these substitutions, Equation F.5 

is the PDF for an AED as below. 
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     (F.5) 

where GMAED = Geometric Mean of the AED; GSDAED = Geometric Standard Deviation 

of the AED. 

Using the same steps, one can derive the PDF for projected area (PA) of a spherical 

particle as in Equations F.6 leading to Equation F.7.  

2

4
AEDPA π

= , 4PAAED
π

=  
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2
dPA AED
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= , 2dAED
dPA AEDπ
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              = 4 2( ) AED
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PAπ π
                        (F.6) 

Applying Equation F.6 to Equation F.5 yields 
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         (F.7) 

where GMPA = Geometric Mean of the PA; GSDPA = Geometric Standard Deviation of 

the PA. 

The PDF for spherical particle by surface area is  

2SA AEDπ= , SAAED
π

=  

2dSA AED
dAED

π= , 1
2

dAED
dPA AEDπ

=  
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           (F.8) 

where GMSA = Geometric Mean of the SA; GSDSA = Geometric Standard Deviation of 

the SA. 

The PDF for a spherical particle by volume is  
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(F.9) 

where GMVOL = Geometric Mean of the VOL; GSDVOL = Geometric Standard Deviation 

of the VOL. 

The PDF for an ESD is 

P

P

AED ESD ρ
ρ χ

=
⋅

, P

P

dAED
dESD

ρ
ρ χ

=
⋅

  

Apply to Equation F.5: 
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(F.10) 

where GMESD = Geometric Mean of the ESD; GSDESD = Geometric Standard Deviation 

of the ESD; ρP = Particle density; ρ0 = Unit density (1 g/cm3); χ = Dynamic shape factor. 

 

F-3.  Mathematica (1) Code for PDF of Random Variables 

This section documents the Mathematica Codes developed and used for PSD 

analysis.  Times New Roman font is used for the code and Italic Arial font is used for 

non-executing comments. 

 
(************** Content-type: application/mathematica ************** 
                     CreatedBy='Mathematica 5.0' 
 
                    Mathematica-Compatible Notebook 
 
This notebook can be used with any Mathematica-compatible 
application, such as Mathematica, MathReader or Publicon. The data 
for the notebook starts with the line containing stars above. 
 
To get the notebook into a Mathematica-compatible application, do 
one of the following: 
 
* Save the data starting with the line of stars above into a file 
  with a name ending in .nb, then open the file inside the 
  application; 
 
* Copy the data starting with the line of stars above to the 
  clipboard, then use the Paste menu command inside the application. 
 
Data for notebooks contains only printable 7-bit ASCII and can be 
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sent directly in email or through ftp in text mode.  Newlines can be 
CR, LF or CRLF (Unix, Macintosh or MS-DOS style). 
 
NOTE: If you modify the data for this notebook not in a Mathematica- 
compatible application, you must delete the line below containing 
the word CacheID, otherwise Mathematica-compatible applications may 
try to use invalid cache data. 
 
For more information on notebooks and Mathematica-compatible  
applications, contact Wolfram Research: 
  web: http://www.wolfram.com 
  email: info@wolfram.com 
  phone: +1-217-398-0700 (U.S.) 
 
Notebook reader applications are available free of charge from  
Wolfram Research. 
*******************************************************************) 
 
(*CacheID: 232*) 
 
 
(*NotebookFileLineBreakTest 
NotebookFileLineBreakTest*) 
(*NotebookOptionsPosition[      8393,        223]*) 
(*NotebookOutlinePosition[      9147,        251]*) 
(*  CellTagsIndexPosition[      9076,        245]*) 
(*WindowFrame->Normal*) 
 
 
 
Notebook[{ 
Cell["<<Statistics`ContinuousDistributions`", "Input", 
  CellTags->"S6.0.1"], 
 
Cell[BoxData[ 
    \(pdfaed[aed_]\  = \  
      PDF[LogNormalDistribution[Log[gm], Log[gs]], aed]\)], "Input"], 
 
Cell[BoxData[ 
    \(solpa = \(Solve[pa == \[Pi] \((\ aed/2)\)\^2,  
          aed]\)[\([2]\)]\)], "Input"], 
 
Cell[BoxData[ 
    \({dpadaed = \[PartialD]\_aed\((\ \[Pi] \((\ aed/2)\)\^2)\),  
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      daeddpa = 1/dpadaed}\)], "Input"], 
 
Cell[BoxData[ 
    \(pdfpa[pa_]\  = \ \((pdfaed[aed] daeddpa)\) /. solpa\)], "Input"], 
 
Cell[BoxData[ 
    \(\(pagraph =  
        Plot[\((pdfpa[pa] /. {gm \[Rule] \ 4, gs \[Rule] \ 2.2})\), {pa, 0,  
            20.0}, Frame \[Rule] True,  
          FrameLabel \[Rule] \ {"\<Projected Area\>", "\<pdfpa\>"},  
          TextStyle \[Rule] \(FontFamily \[Rule] "\<Arial\>"\)];\)\)], "Input"], 
 
Cell[BoxData[ 
    \(\(aedgraph =  
        Plot[pdfaed[aed] /. {gm \[Rule] \ 4, gs \[Rule] \ 2.2}, {aed, 0,  
            20. }, Frame \[Rule] True,  
          FrameLabel \[Rule] \ {"\<AED\>", "\<pdfaed\>"},  
          TextStyle \[Rule] \(FontFamily \[Rule] "\<Arial\>"\)];\)\)], "Input"], 
 
Cell[BoxData[ 
    \(\[Integral]\_2\%3\((pdfaed[aed] /. {gm \[Rule] \ 4,  
              gs \[Rule] \ 2.2})\) \[DifferentialD]aed\)], "Input"], 
 
Cell[BoxData[ 
    \(\[Integral]\_\(\[Pi] \((2)\)\^2/4\)\%\(\[Pi]\ \((3)\)\^2/4\)\((pdfpa[ 
              pa] /. {gm \[Rule] \ 4,  
              gs \[Rule] \ 2.2})\) \[DifferentialD]pa\)], "Input"], 
 
Cell[BoxData[ 
    \({\[Pi] \((2. /2)\)\^2, \ \[Pi]\ \((3. /2)\)\^2}\)], "Input"], 
 
Cell[BoxData[ 
    \(solsa = \(Solve[sa == \[Pi] \((\ aed)\)\^2, aed]\)[\([2]\)]\)], "Input"], 
 
Cell[BoxData[ 
    \({dsadaed = \[PartialD]\_aed\((\ \[Pi] \((\ aed)\)\^2)\),  
      daeddsa = 1/dsadaed}\)], "Input"], 
 
Cell[BoxData[ 
    \(pdfsa[sa_]\  = \ \((pdfaed[aed] daeddsa)\) /. solsa\)], "Input"], 
 
Cell[BoxData[ 
    \(\(sagraph =  
        Plot[\((pdfsa[sa] /. {gm \[Rule] \ 4, gs \[Rule] \ 2.2})\), {sa, 0,  
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            20.0}, Frame \[Rule] True,  
          FrameLabel \[Rule] \ {"\<Surface Area\>", "\<pdfsa\>"},  
          TextStyle \[Rule] \(FontFamily \[Rule] "\<Arial\>"\)];\)\)], "Input"], 
 
Cell[BoxData[ 
    \(solvol = \(Solve[vol \[Equal] \((\[Pi] \((\ aed)\)\^3/6)\),  
          aed]\)[\([2]\)]\)], "Input"], 
 
Cell[BoxData[ 
    \({dvoldaed = \[PartialD]\_aed\((\ \[Pi] \((\ aed)\)\^3/6)\),  
      daeddvol = 1/dvoldaed}\)], "Input"], 
 
Cell[BoxData[ 
    \(pdfvol[vol_]\  = \ \((pdfaed[aed] daeddvol)\) /. solvol\)], "Input"], 
 
Cell[BoxData[ 
    \(\(volgraph =  
        Plot[\((pdfvol[vol] /. {gm \[Rule] \ 4, gs \[Rule] \ 2.2})\), {vol,  
            0, 20.0}, Frame \[Rule] True,  
          FrameLabel \[Rule] \ {"\<Volume\>", "\<pdfvol\>"},  
          TextStyle \[Rule] \(FontFamily \[Rule] "\<Arial\>"\)];\)\)], "Input"], 
 
Cell[BoxData[ 
    \(\(Show[ 
        GraphicsArray[{aedgraph, pagraph, sagraph, volgraph}]];\)\)], "Input"], 
 
Cell[BoxData[ 
    \(\[Integral]\_2\%3\((pdfaed[aed] /. {gm \[Rule] \ 4,  
              gs \[Rule] \ 2.2})\) \[DifferentialD]aed\)], "Input"], 
 
Cell[BoxData[ 
    \(\[Integral]\_\(\[Pi] \((2)\)\^2/4\)\%\(\[Pi]\ \((3)\)\^2/4\)\((pdfpa[ 
              pa] /. {gm \[Rule] \ 4,  
              gs \[Rule] \ 2.2})\) \[DifferentialD]pa\)], "Input"], 
 
Cell[BoxData[ 
    \(\[Integral]\_\(\[Pi] \((2)\)\^2\)\%\(\[Pi]\ \((3)\)\^2\)\((pdfsa[ 
              sa] /. {gm \[Rule] \ 4,  
              gs \[Rule] \ 2.2})\) \[DifferentialD]sa\)], "Input"], 
 
Cell[BoxData[ 
    \(\[Integral]\_\(\[Pi] \((2)\)\^3/6\)\%\(\[Pi]\ \((3)\)\^3/6\)\((pdfvol[ 
              vol] /. {gm \[Rule] \ 4,  
              gs \[Rule] \ 2.2})\) \[DifferentialD]vol\)], "Input"], 
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Cell[BoxData[ 
    \(solesd =  
      Solve[aed \[Equal] \((esd\ \@\(\[Rho]\_p\/\(\(\[Rho]\_0\) \ 
\[Chi]\)\))\), aed]\)], "Input"], 
 
Cell[BoxData[ 
    \({daeddesd = \[PartialD]\_esd\((esd \@\( \[Rho]\_p\/\(\(\[Rho]\_0\) \ 
\[Chi]\)\))\)}\)], "Input"], 
 
Cell[BoxData[ 
    \(pdfesd[esd_]\  = \ \((pdfaed[aed] daeddesd)\) /. solesd\)], "Input"], 
 
Cell[BoxData[ 
    \(\[Rho]\_p = 1; \[Rho]\_0 = 1; \[Chi] = 1;\)], "Input"], 
 
Cell[BoxData[ 
    \(\(esdgraph =  
        Plot[\((pdfesd[esd] /. {gm \[Rule] \ 11.8,  
                gs \[Rule] \ 2.1})\), {esd, 0, 25.0}, Frame \[Rule] True,  
          FrameLabel \[Rule] \ {"\<ESD\>", "\<pdfesd\>"},  
          TextStyle \[Rule] \(FontFamily \[Rule] "\<Arial\>"\)];\)\)], "Input"], 
 
Cell[BoxData[ 
    \({taed = {\[Integral]\_0\%4\((pdfaed[aed] /. {gm \[Rule] \ 11.8,  
                    gs \[Rule] \  
                      2.1})\) \[DifferentialD]aed, \ 
\[Integral]\_0\%10\((pdfaed[aed] /. {gm \[Rule] \ 11.8,  
                    gs \[Rule] \  
                      2.1})\) \[DifferentialD]aed, \ 
\[Integral]\_0\%100\((pdfaed[aed] /. {gm \[Rule] \ 11.8,  
                    gs \[Rule] \ 2.1})\) \[DifferentialD]aed}}\)], "Input", 
  FontFamily->"Courier New"], 
 
Cell[BoxData[ 
    \({tpa = {\[Integral]\_\(\[Pi]\ \((0)\)\^2/4\)\%\(\[Pi]\ \ 
\((4)\)\^2/4\)\((pdfpa[pa] /. {gm \[Rule] \ 11.8,  
                    gs \[Rule] \  
                      2.1})\) \[DifferentialD]pa, \[Integral]\_\(\[Pi]\ \((0)\ 
\)\^2/4\)\%\(\[Pi]\ \((10)\)\^2/4\)\((pdfpa[pa] /. {gm \[Rule] \ 11.8,  
                    gs \[Rule] \  
                      2.1})\) \[DifferentialD]pa, \[Integral]\_\(\[Pi]\ \((0)\ 
\)\^2/4\)\%\(\[Pi]\ \((100)\)\^2/4\)\((pdfpa[pa] /. {gm \[Rule] \ 11.8,  
                    gs \[Rule] \ 2.1})\) \[DifferentialD]pa}}\)], "Input", 
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  FontFamily->"Courier New"], 
 
Cell[BoxData[ 
    \({tsa = {\[Integral]\_\(\[Pi]\ \((0)\)\^2\)\%\(\[Pi]\ \ 
\((4)\)\^2\)\((pdfsa[sa] /. {gm \[Rule] \ 11.8,  
                    gs \[Rule] \  
                      2.1})\) \[DifferentialD]sa, \[Integral]\_\(\[Pi]\ \((0)\ 
\)\^2\)\%\(\[Pi]\ \((10)\)\^2\)\((pdfsa[sa] /. {gm \[Rule] \ 11.8,  
                    gs \[Rule] \  
                      2.1})\) \[DifferentialD]sa, \[Integral]\_\(\[Pi]\ \((0)\ 
\)\^2\)\%\(\[Pi]\ \((100)\)\^2\)\((pdfsa[sa] /. {gm \[Rule] \ 11.8,  
                    gs \[Rule] \ 2.1})\) \[DifferentialD]sa}}\)], "Input", 
  FontFamily->"Courier New"], 
 
Cell[BoxData[ 
    \({tvol = {\[Integral]\_\(\[Pi]\ \((0)\)\^3/6\)\%\(\[Pi]\ \ 
\((4)\)\^3/6\)\((pdfvol[vol] /. {gm \[Rule] \ 11.8,  
                    gs \[Rule] \  
                      2.1})\) \[DifferentialD]vol, \[Integral]\_\(\[Pi]\ \ 
\((0)\)\^3/6\)\%\(\[Pi]\ \((10)\)\^3/6\)\((pdfvol[vol] /. {gm \[Rule] \ 11.8,  
                    gs \[Rule] \  
                      2.1})\) \[DifferentialD]vol, \[Integral]\_\(\[Pi]\ \ 
\((0)\)\^3/6\)\%\(\[Pi]\ \((100)\)\^3/6\)\((pdfvol[ 
                    vol] /. {gm \[Rule] \ 11.8,  
                    gs \[Rule] \ 2.1})\) \[DifferentialD]vol}}\)], "Input", 
  FontFamily->"Courier New"] 
}, 
FrontEndVersion->"5.0 for Microsoft Windows", 
ScreenRectangle->{{0, 1024}, {0, 693}}, 
WindowSize->{1016, 666}, 
WindowMargins->{{0, Automatic}, {Automatic, 0}} 
] 
 
(******************************************************************* 
Cached data follows.  If you edit this Notebook file directly, not 
using Mathematica, you must remove the line containing CacheID at 
the top of  the file.  The cache data will then be recreated when 
you save this file from within Mathematica. 
*******************************************************************) 
 
(*CellTagsOutline 
CellTagsIndex->{ 
  "S6.0.1"->{ 
    Cell[1754, 51, 76, 1, 30, "Input", 
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      CellTags->"S6.0.1"]} 
  } 
*) 
 
(*CellTagsIndex 
CellTagsIndex->{ 
  {"S6.0.1", 8984, 238} 
  } 
*) 
 
(*NotebookFileOutline 
Notebook[{ 
Cell[1754, 51, 76, 1, 30, "Input", 
  CellTags->"S6.0.1"], 
Cell[1833, 54, 108, 2, 30, "Input"], 
Cell[1944, 58, 105, 2, 31, "Input"], 
Cell[2052, 62, 119, 2, 31, "Input"], 
Cell[2174, 66, 84, 1, 30, "Input"], 
Cell[2261, 69, 298, 5, 50, "Input"], 
Cell[2562, 76, 286, 5, 50, "Input"], 
Cell[2851, 83, 140, 2, 42, "Input"], 
Cell[2994, 87, 195, 3, 48, "Input"], 
Cell[3192, 92, 80, 1, 31, "Input"], 
Cell[3275, 95, 92, 1, 31, "Input"], 
Cell[3370, 98, 117, 2, 31, "Input"], 
Cell[3490, 102, 84, 1, 30, "Input"], 
Cell[3577, 105, 296, 5, 50, "Input"], 
Cell[3876, 112, 119, 2, 31, "Input"], 
Cell[3998, 116, 122, 2, 31, "Input"], 
Cell[4123, 120, 88, 1, 30, "Input"], 
Cell[4214, 123, 295, 5, 50, "Input"], 
Cell[4512, 130, 106, 2, 30, "Input"], 
Cell[4621, 134, 140, 2, 42, "Input"], 
Cell[4764, 138, 195, 3, 48, "Input"], 
Cell[4962, 143, 191, 3, 47, "Input"], 
Cell[5156, 148, 198, 3, 48, "Input"], 
Cell[5357, 153, 128, 3, 52, "Input"], 
Cell[5488, 158, 116, 2, 52, "Input"], 
Cell[5607, 162, 88, 1, 30, "Input"], 
Cell[5698, 165, 74, 1, 30, "Input"], 
Cell[5775, 168, 299, 5, 50, "Input"], 
Cell[6077, 175, 478, 9, 76, "Input"], 
Cell[6558, 186, 602, 10, 90, "Input"], 
Cell[7163, 198, 590, 10, 88, "Input"], 
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Cell[7756, 210, 633, 11, 90, "Input"] 
} 
] 
*) 
 
 
 
(******************************************************************* 
End of Mathematica Notebook file. 
*******************************************************************) 
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APPENDIX G  

SHAPE FACTOR REVIEW 

 

G-1. Overview of Shape Factor 

This appendix provides an overview of the dynamic shape factor (χ) for the 

petroleum pipe scale from pipe rattling operations.  The standard equations for 

aerodynamic drag and settling velocity are based on spherical particles and laminar flow.  

Examples of spherical particles include:  liquid droplets and solids condensed from 

vapors (metal fume in welding, fly ash from furnaces).  Most particles from drilling, 

grinding, and crushing operations are non-spherical, including the dust from pipe rattling.  

The shape of a particle affects its drag force and settling velocity (See Equations G.1 and 

G.2).  The dynamic shape factor, χ, is a largely empirical correction factor which is 

applied to Stokes law to explain the effect of shape on particle motion.  Stokes law has a 

wide application to the study of occupational aerosols because of low relative velocities 

between small particles and workplace air.  Stokes law is applicable to the Stokes region 

where the particle Reynolds number is less than 1.0. 

Re air PVdρ
µ

=              (G.1) 

where ρair = Density of air; V = Relative velocity between particle and gas; µ = air 

viscosity and dP = Spherical Particle diameter. 

Stokes law is 

FD = 3πµVdP for Re < 1 and spherical particles       (G.2) 
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where FD = Drag force. 

An equivalent spherical diameter (ESD) is the diameter of the sphere having the 

same volume as an irregular particle. Use of ESD as appropriate when Equation G.2 is 

used to represent irregular shaped particles because it is the diameter of the sphere 

having the same volume, and the same mass, as the irregular particle.  The drag force 

depends on particle shape as well as particle volume.  A shape factor is added to 

Equation G.2 to arrive at equation G.3, appropriate for non-spherical particles. 

FD = 3πµV·ESD·χ                  (G.3) 

3
DF

V ESD
χ

πµ
=

⋅
 

where ESD = Equivalent spherical diameter; χ = Dynamic shape factor.   

The dynamic shape factor is defined to be the ratio of the volume of a 

circumscribed sphere to the volume of an irregular crystal.(1)    

χ =  
1

3Volume of a circumscribed sphere
Volume of a crystal

⎛ ⎞
⎜ ⎟
⎝ ⎠

                     (G.4) 

For purposes of illustrating the typical size of the dynamic shape factor, consider 

an orthorhombic crystal in which the three orthogonal dimensions may be unequal.   

Visualize the orthorhombic crystal to be inscribed in a sphere that touches all of 

its vertices.  The crystal’s major diagonal is equal to the diameter of the sphere.  Assume 

that the lengths of the sides are a µm, b µm, and c µm.  The diameter of the 

circumscribed sphere is found by applying the theorem of Pythagoras:  d2 = a2 + b2 + c2.  

The volume of the crystal is a b c.  The volume of the circumscribed sphere is:  
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33 2 2 2 2( )
6 6
d a b cπ π + +

=            (G.5)

 The dynamic shape factor is the cube root of the ratio of these two volumes and 

can be expressed entirely in terms of the three lengths of the crystal sides:  

χ =  
1

3Volume of a circumscribed sphere
Volume of a crystal

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 
( )

1
3 3 12 2 2 2 3

  6
a b c

a b c
π

⎛ ⎞+ + ⎛ ⎞⎜ ⎟ ×⎜ ⎟⎜ ⎟ ⎝ ⎠⎜ ⎟
⎝ ⎠

    (G.6) 

 This equation can be used to show a reasonable range for values of the shape 

factor when dust particles are approximately orthorhombic in nature. 

 

TABLE G-1. Dynamic shape factor for a cube and orthorhombic crystals  

a b c Dynamic shape factor (χ) 

1 1 1 1.40 

1 1 2 1.57 

1 1 3 1.85 

1 1 4 2.15 

1 2 1 1.57 

1 2 2 1.52 

1 2 3 1.66 

1 2 4 1.85 

1 3 1 1.85 

1 3 2 1.66 

1 3 3 1.69 

1 3 4 1.80 

1 4 1 2.15 

1 4 2 1.85 

1 4 3 1.80 

1 4 4 1.84 
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 Because dust particles from pipe rattling are variable in density, size, shape, and 

aspect ratio, it is reasonable to believe that they have individual shape factors.  Using an 

Environmental Scanning Electron Microscope (ESEM), it is estimated that most of the 

dust particles released during pipe rattling have a triclinic pinacoidal shape with a length 

to width ratio of approximately 1 to 2.  From the argument above, it follows that the 

shape factors for nearly orthorhombic dust particles range from about 1.40 to about 2.15. 
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APPENDIX H 

GAUSSIAN DISPERSION MODEL 

 

H-1.  Overviews of Gaussian Dispersion Model 

In this study, the Gaussian dispersion model was used to find an attainment area 

for the workers and for the public because it adequately represented the most 

distinguishable features of suspended airborne contaminant concentration of pipe rattling 

process.  The Gaussian dispersion model has a double Gaussian distribution based on 

horizontal wind (in the downwind direction) with standard deviations of plume 

concentration distributions in the horizontal and vertical directions of σy and σz.  

Equation H.1 shows Gaussian distribution in the horizontal plane perpendicular to the x-

axis with a horizontal standard deviation (σy) of plume concentration distribution.  

Equation H.2 shows Gaussian distribution in the vertical plane to the x-axis with a 

vertical standard deviation (σz) of plume concentration distribution.  Equation H.3 shows 

the double Gaussian distribution by the combination of horizontal and vertical planes to 

the x-axis.  The dispersion coefficients, σy and σz are functions of downwind distance (x) 

at (x,0,H) as horizontal dispersion coefficient (σy = ay + by · x) and vertical dispersion 

coefficient (σz = ax + bz · x). 

( )
2

1 1exp
22

y

yy

y
f y

µ
σπσ

⎛ ⎞⎛ ⎞−⎜ ⎟= ⋅ − ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
                  (H.1) 

( )
2

1 1exp
22

z

zz

zf z µ
σπσ

⎛ ⎞⎛ ⎞−⎜ ⎟= ⋅ − ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
                          (H.2) 
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( ) ( ) ( ) ( )
2 2 2

2 2

1 1exp exp exp
2 2 2 2y z y z z

z H z Hyf y f z
πσ σ σ σ σ

⎛ ⎞ ⎧ ⎫⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ − +⎪ ⎪⎜ ⎟ ⎜ ⎟⋅ = ⋅ − ⋅ − + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎩ ⎭⎝ ⎠
  

at (x,0,H)                                (H.3) 

Equation H.4 is given here in a form that predicts the steady state concentration 

at a point (x,y,z) located downwind from the source.  Some general relationships are in 

this equation.  That is, 1) the downwind concentration at any location is directly 

proportional to the emission rate (ER), and 2) the downwind, ground-level concentration 

is generally inversely proportional to wind speed. 

( ) ( )2 22

2 2 2( , , , ) exp exp exp
2 2 2 2y z y z z

z H z HER yC x y z H
uπσ σ σ σ σ

⎡ ⎤⎧ ⎫⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ − +⎪ ⎪⎢ ⎥⎜ ⎟= ⋅ − ⋅ − + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎩ ⎭⎣ ⎦
(H.4) 

where C = Average Steady state concentration at a point (x,y,z) [mg/m3] 

ER = Average emission rate [mg/s]; u = Average wind speed on the ground [m/s];  

σy, σz = Horizontal and Vertical dispersion coefficients [m];  

y = Horizontal distance from the plume centerline [m]; 

z = Height of the receptor above the ground [m]; 

H = Effective height [m] = h (pipe location height) + ∆h (average plume height from the 

pipe location). 



 

 

163

 

FIGURE H-1.  Coordinate system showing Gaussian distributions in the horizontal 

and vertical.  Source: Turner’s Workbook of Atmospheric Dispersion Estimates (1970). 

 

A quantitative method for estimating the dispersion coefficients was introduced 

by Pasquill and Gifford in 1961. These dispersion estimates were adopted by the U.S. 

Public Health Service (Turner 1970) and have been widely used. The values of adopted 

σy and σz are representative for a sampling time of about 10 minutes at downwind 

distances of 0.1 to several tens of kilometers. For estimation of longer time periods, Hino 

suggest power law for averaging times between 10-minute and 5-hour. 

 

H-2.  Methods  

In this study, vertical and horizontal coefficients, σy and σz, and an emission rate 

for a Gaussian plume model are estimated for the best fit from the measured 
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concentrations.  The σy and σz introduced by Pasquill(1) and Gifford(2) are not applicable 

at short distance (< 100 m).   

Two video cameras were used to record the pipe rattling research on the ground 

and at the height of 10 m each experiment day.  The pictures of a pipe rattling process 

were taken to provide the information about the plume dispersion at the each side (See 

Figure H-2). 

The effective height, H, was estimated as 1 m because the pipe end height was 

estimated as 0.5 m and the plume rise also estimated as 0.5 m using the DVD video (see 

H-2 (c), below).  A height of the receptor above the ground is modeled as 1.5 m to 

simulate human breathing zone.  Average wind speed measured on the ground was 

applied to this model as (2.2 ± 1.1) m/s for Mud Lake pipe rattling process and (3.2 ± 

0.5) m/s for Lake Sand pipe rattling process.  These estimates were used as starting 

values for a Nonlinear mean squared regression of measured data against the plume 

model as a representation of the concentration expected within about 20 m of the 

machine centerline. 
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(a)                                                                            (b) 

  
(c) 

FIGURE H-2.  The images of particle dispersion.  (a) Front, (b) Back, (c) Side. 
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APPENDIX I 

LINEAR AND NONLINEAR FIT 

 

I-1.  Overview of Linear and Nonlinear Fit Analysis 

This appendix documents the Mathematica(1) Codes developed and used for data 

analysis.  Times New Roman font is used for the code and Italic Arial font is used for 

non-executing comments.  Section I-2 contains the code used to fit the particle size 

distributions from the Andersen multi-stage cascade impactor and from the TSP/CCM 

by estimating the lognormal parameters, GM and GSD.  Section I-3 contains the 

NonlinearFit code used to estimate the confidence interval about a nonlinear fit of 

estimated average concentration data to a Gaussian plume model.   

In section I-3, the Mathematica NonlinearFit procedure was used to find the best 

fit of plume model.  Parameters for a Gaussian plume model are followings;    

( ) ( )2 22

2 2 2( , , , ) exp exp exp
2 2 2 2y z y z z

z H z HER yC x y z H
uπσ σ σ σ σ

⎡ ⎤⎧ ⎫⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ − +⎪ ⎪⎢ ⎥⎜ ⎟= ⋅ − ⋅ − + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎩ ⎭⎣ ⎦
 (I.1) 

where C = Average Steady state concentration at a point (x,y,z) [mg/m3] 

ER = Average emission rate [mg/s]; u = Average wind speed on the ground [m/s];  

σy, σz = Horizontal and Vertical dispersion coefficients [m];  

y = Horizontal distance from the plume centerline [m]; 

z = Height of the receptor above the ground [m]; 

H = Effective height [m] = h (pipe location height) + ∆h (average plume height from the 

pipe location). 
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The parameters were estimated by matching the concentrations measured with 

aerosol samplers (See Mathematica Codes in I-3).  In section I-3, the estimated 

parameters were Emission rate (ER), horizontal dispersion coefficient (σy = ay + by x), 

vertical dispersion coefficient (σz = az + bz x), and effective height (H).  A height of the 

receptor above the ground is modeled as 1.5 m to simulate human breathing zone.  

Average wind speed measured on the ground was applied to this model as (2.2 ± 1.1) 

m/s for Mud Lake pipe rattling process and (3.2 ± 0.5) m/s for Lake Sand pipe rattling 

process. 

The values of best parameters of by, bz, and H were estimated as (0.13 ± 0.05) m, 

(0.09 ± 0.04) m, and (1.34 ± 0.03) m with an estimated PM10 ER of 5.2 mg/s for Mud 

Lake pipe rattling operations and (0.09 ± 0.04) m, (0.10 ± 0.02) m, and (1.30 ± 0.01) m 

with an estimated PM10 ER of as 6.6 mg/s for Lake Sand pipe rattling operation, 

respectively.  These values were used to find the attainment area for the public standard 

exposure by comparison with National Ambient Air Quality Standards (NAAQS).  For 

the worker exposure standard, the values of best parameters of by, bz, and H were 

estimated as (0.10 ± 0.03) m, (0.08 ± 0.02) m, and (1.35 ± 0.01) m with an estimated PM 

PMTotal ER of 8.5 mg/s for Mud Lake pipe rattling operations and (0.07 ± 0.05) m, (0.09 

± 0.03) m, and (1.33 ± 0.01) m with an estimated PMTotal ER of as 8.9 mg/s for Lake 

Sand pipe rattling operation, respectively.   
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I-2.  Particle Size Distribution with Prediction Confidence Intervals (TSP/CCM 

data in Test 1) 
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4.52,18.17,31.69,22.60, 
4.58,18.72,32.58,23.27, 
4.65,19.24,33.47,23.95, 
4.71,19.78,34.35,24.63, 
4.77,20.36,35.24,25.32, 
4.83,20.93,36.14,26.01, 
4.90,21.49,37.07,26.70, 
4.97,22.08,37.99,27.39, 
5.03,22.66,38.91,28.08, 
5.10,23.24,39.84,28.77, 
5.17,23.80,40.77,29.47, 
5.24,24.39,41.69,30.21, 
5.31,24.98,42.60,30.93, 
5.38,25.58,43.53,31.65, 
5.45,26.18,44.44,32.38, 
5.52,26.79,45.34,33.11, 
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5.60,27.39,46.28,33.84, 
5.67,28.00,47.22,34.55, 
5.75,28.61,48.14,35.27, 
5.82,29.21,49.05,35.99, 
5.90,29.82,49.98,36.71, 
5.98,30.43,50.89,37.43, 
6.06,31.06,51.79,38.16, 
6.14,31.67,52.72,38.90, 
6.22,32.29,53.63,39.62, 
6.31,32.90,54.53,40.34, 
6.39,33.53,55.43,41.08, 
6.48,34.15,56.32,41.79, 
6.56,34.78,57.21,42.52, 
6.65,35.41,58.13,43.24, 
6.74,36.04,59.01,43.98, 
6.83,36.66,59.90,44.71, 
6.92,37.27,60.78,45.45, 
7.01,37.90,61.60,46.17, 
7.11,38.53,62.43,46.85, 
7.20,39.16,63.25,47.54, 
7.30,39.79,64.09,48.26, 
7.40,40.41,64.91,48.98, 
7.50,41.00,65.69,49.68, 
7.60,41.61,66.45,50.37, 
7.70,42.23,67.22,51.07, 
7.80,42.87,68.01,51.77, 
7.90,43.48,68.79,52.45, 
8.01,44.09,69.56,53.15, 
8.12,44.73,70.34,53.81, 
8.23,45.33,71.07,54.48, 
8.34,45.96,71.80,55.14, 
8.45,46.59,72.54,55.82, 
8.56,47.21,73.27,56.50, 
8.67,47.81,73.98,57.14, 
8.79,48.45,74.67,57.77, 
8.91,49.05,75.34,58.41, 
9.03,49.68,75.98,59.06, 
9.15,50.29,76.65,59.66, 
9.27,50.88,77.26,60.26, 
9.39,51.45,77.92,60.86, 
9.52,52.07,78.54,61.50, 
9.65,52.68,79.14,62.13, 
9.78,53.25,79.77,62.79, 
9.91,53.87,80.36,63.38, 
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10.04,54.45,80.95,63.93, 
10.17,55.00,81.55,64.50, 
10.31,55.57,82.08,65.08, 
10.45,56.17,82.65,65.65, 
10.59,56.74,83.19,66.21, 
10.73,57.30,83.68,66.74, 
10.87,57.85,84.15,67.26, 
11.02,58.40,84.63,67.81, 
11.17,58.95,85.13,68.34, 
11.32,59.50,85.57,68.85, 
11.47,60.04,86.01,69.37, 
11.62,60.58,86.49,69.85, 
11.78,61.10,86.88,70.34, 
11.93,61.66,87.31,70.89, 
12.09,62.18,87.75,71.36, 
12.25,62.72,88.16,71.85, 
12.42,63.26,88.55,72.27, 
12.58,63.83,88.94,72.74, 
12.75,64.39,89.30,73.18, 
12.92,64.92,89.66,73.55, 
13.10,65.46,90.05,73.99, 
13.27,65.95,90.41,74.45, 
13.45,66.45,90.78,74.89, 
13.63,66.93,91.11,75.33, 
13.81,67.46,91.42,75.76, 
14.00,67.96,91.70,76.14, 
14.18,68.45,92.01,76.53, 
14.37,68.95,92.32,76.95, 
14.56,69.43,92.61,77.37, 
14.76,69.96,92.88,77.79, 
14.96,70.47,93.16,78.22, 
15.16,70.90,93.42,78.61, 
15.36,71.35,93.69,79.01, 
15.56,71.80,93.91,79.43, 
15.77,72.26,94.18,79.77, 
15.98,72.72,94.37,80.11, 
16.20,73.19,94.58,80.45, 
16.41,73.66,94.77,80.74, 
16.63,74.05,94.96,81.07, 
16.86,74.46,95.11,81.37, 
17.08,74.90,95.28,81.72, 
17.31,75.36,95.42,82.06, 
17.54,75.76,95.60,82.42, 
17.78,76.17,95.74,82.75, 
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18.01,76.54,95.90,83.02, 
18.26,76.99,96.09,83.29, 
18.50,77.49,96.28,83.58, 
18.75,77.90,96.47,83.96, 
19.00,78.26,96.61,84.18, 
19.25,78.61,96.77,84.40, 
19.51,79.05,96.89,84.67, 
19.77,79.46,96.97,84.94, 
20.03,79.82,97.09,85.24, 
20.30,80.16,97.17,85.51, 
20.57,80.53,97.28,85.78, 
20.85,80.89,97.47,86.01, 
21.13,81.23,97.57,86.26, 
21.41,81.61,97.66,86.55, 
21.70,81.86,97.72,86.76, 
21.99,82.12,97.83,86.94, 
22.28,82.48,97.93,87.15, 
22.58,82.85,98.01,87.42, 
22.88,83.18,98.12,87.61, 
23.19,83.58,98.20,87.95, 
23.50,83.94,98.28,88.19, 
23.81,84.28,98.38,88.44, 
24.13,84.61,98.44,88.62, 
24.45,84.98,98.46,88.80, 
24.78,85.17,98.55,88.95, 
25.11,85.46,98.60,89.19, 
25.45,85.80,98.67,89.46, 
25.79,86.23,98.69,89.57, 
26.13,86.53,98.77,89.82, 
26.48,86.85,98.80,89.98, 
26.84,87.23,98.87,90.16, 
27.19,87.52,98.87,90.40, 
27.56,87.70,98.91,90.66, 
27.93,88.01,98.93,90.94, 
28.30,88.25,99.00,91.11, 
28.68,88.60,99.05,91.45, 
29.06,88.76,99.08,91.67, 
29.45,89.10,99.19,91.80, 
29.85,89.30,99.27,91.98, 
30.24,89.50,99.27,92.12, 
30.65,89.83,99.30,92.36, 
31.06,90.15,99.30,92.52, 
31.47,90.51,99.40,92.75, 
31.90,90.86,99.43,92.95, 
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32.32,91.08,99.47,93.15, 
32.75,91.32,99.50,93.31, 
33.19,91.64,99.50,93.42, 
33.64,91.89,99.54,93.70, 
34.09,92.11,99.54,93.94, 
34.54,92.24,99.59,94.06, 
35.00,92.53,99.68,94.16, 
35.47,92.80,99.72,94.29, 
35.95,93.11,99.77,94.47, 
36.43,93.21,99.88,94.72, 
36.91,93.51,99.88,94.83, 
37.41,93.76,99.93,94.99, 
37.91,94.05,99.93,95.11, 
38.42,94.43,99.93,95.20, 
38.93,94.43,99.93,95.29, 
39.45,94.64,99.93,95.47, 
39.98,94.85,99.93,95.56, 
40.51,95.25,100.00,95.66, 
41.05,95.30,100.00,95.92, 
41.60,95.39,100.00,96.25, 
42.16,95.59,100.00,96.36, 
42.72,95.65,100.00,96.59, 
43.29,95.76,100.00,96.96, 
43.87,95.93,100.00,97.08, 
44.46,96.22,100.00,97.22, 
45.06,96.53,100.00,97.42, 
45.66,96.65,100.00,97.49, 
46.27,96.85,100.00,97.64, 
46.89,97.06,100.00,97.64, 
47.51,97.06,100.00,97.72, 
48.15,97.36,100.00,97.80, 
48.79,97.59,100.00,97.89, 
49.45,97.59,100.00,97.89, 
50.11,97.59,100.00,97.99, 
50.78,97.59,100.00,98.18, 
51.46,97.69,100.00,98.18, 
52.15,97.69,100.00,98.39, 
52.84,98.08,100.00,98.51, 
53.55,98.18,100.00,98.51, 
54.27,98.40,100.00,98.62, 
54.99,98.40,100.00,98.75, 
55.73,98.40,100.00,98.88, 
56.47,98.64,100.00,98.88, 
57.23,98.64,100.00,98.88, 
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57.99,98.64,100.00,99.02, 
58.77,98.78,100.00,99.18, 
59.55,98.92,100.00,99.18, 
60.35,98.92,100.00,99.18, 
61.16,99.07,100.00,99.18, 
61.98,99.07,100.00,99.53, 
62.80,99.24,100.00,99.53, 
63.65,99.58,100.00,99.53, 
64.50,99.76,100.00,99.73, 
65.36,99.76,100.00,99.73, 
66.23,99.76,100.00,99.73, 
67.12,99.76,100.00,99.73, 
68.02,99.76,100.00,99.73, 
68.93,99.76,100.00,99.73, 
69.85,99.76,100.00,99.73, 
70.78,100.00,100.00,100.00, 
71.73,100.00,100.00,100.00, 
72.69,100.00,100.00,100.00, 
73.66,100.00,100.00,100.00, 
74.65,100.00,100.00,100.00}; 
\ 
\>", "Input"], 
 
Cell[BoxData[{ 
    \(nd = Length[data]\), "\[IndentingNewLine]",  
    \(nd/4\)}], "Input"], 
 
Cell[BoxData[{ 
    \(\(AED = Take[data, {1, nd, 4}];\)\), "\[IndentingNewLine]",  
    \(\(TSP1 = Take[data, {2, nd, 4}];\)\), "\[IndentingNewLine]",  
    \(\(TSP2 = Take[data, {3, nd, 4}];\)\), "\[IndentingNewLine]",  
    \(\(TSP3 = Take[data, {4, nd, 4}];\)\)}], "Input"], 
 
Cell[BoxData[{ 
    \(\(LStvf = \(({TSP1, TSP2, TSP3} // Flatten)\)/ 
          100. ;\)\), "\[IndentingNewLine]",  
    \(\(LStaed = {AED, AED, AED} // Flatten;\)\), "\[IndentingNewLine]",  
    \(\(temp = \(\({LStaed, LStvf} // Transpose\) // Sort\) //  
          Transpose;\)\), "\[IndentingNewLine]",  
    \(\(LStaed\  = \ temp[\([1]\)];\)\), "\[IndentingNewLine]",  
    \(\(LStvf = temp[\([2]\)];\)\)}], "Input"], 
 
Cell[BoxData[{ 
    \(\(nd = Length[LStaed];\)\), "\[IndentingNewLine]",  
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    \(\(LStaed =  
        Table[Which[LStaed[\([kk]\)] \[LessEqual] 0,  
            LStaed[\([kk]\)] = 0.00001, 0 < LStaed[\([kk]\)],  
            LStaed[\([kk]\)] = LStaed[\([kk]\)]], {kk, 1,  
            nd}];\)\), "\[IndentingNewLine]",  
    \(\(nd = Length[LStvf];\)\), "\[IndentingNewLine]",  
    \(\(LStvf =  
        Table[Which[LStvf[\([kk]\)] \[LessEqual] 0,  
            LStvf[\([kk]\)] = 0.00001, LStvf[\([kk]\)] \[GreaterEqual] 1,  
            LStvf[\([kk]\)] = 0.99999, 0 < LStvf[\([kk]\)] < 1,  
            LStvf[\([kk]\)] = LStvf[\([kk]\)]], {kk, 1, nd}];\)\)}], "Input"], 
 
Cell[BoxData[ 
    \(\(LStz\  = \ Quantile[NormalDistribution[0, 1], LStvf];\)\)], "Input"], 
 
Cell[BoxData[ 
    \(Min[LStvf]\)], "Input"], 
 
Cell[BoxData[ 
    \(\({Log[LStaed], LStz} // Transpose;\)\)], "Input"], 
 
Cell[CellGroupData[{ 
 
Cell["Variables in use:     LStaed, LStvf, LStz", "Subsubsection"], 
 
Cell[BoxData[ 
    \(\(LStreg =  
        Regress[{Log[LStaed], LStz} // Transpose, {1, z}, z,  
          RegressionReport \[Rule] {BestFit, SummaryReport,  
              SinglePredictionCITable,  
              ParameterConfidenceRegion}];\)\)], "Input"], 
 
Cell["\<\ 
{LStaedobs, LStzpred, LStse, LStci} = 
  Transpose[(SinglePredictionCITable /. LStreg)[[1]]];\ 
\>", "Input", 
  CellTags->"S6.3.1"], 
 
Cell[BoxData[{ 
    \(\(LStzlcl = Map[First, LStci];\)\), "\[IndentingNewLine]",  
    \(\(LStzucl\  = \ Map[Last, LStci];\)\), "\[IndentingNewLine]",  
    \(\(LStf[z_]\  = \ BestFit /. LStreg;\)\)}], "Input"], 
 
Cell["\<\ 
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Take[LStucl,4]; 
Take[LStlcl,4];\ 
\>", "Text"] 
}, Open  ]], 
 
Cell[CellGroupData[{ 
 
Cell["\<\ 
Active variables:   LStvf,  LStz,        LStaed,  LStzpred, LStucl, LStlcl    \ 
  LStf[z]\ 
\>", "Subsubsection"], 
 
Cell[BoxData[ 
    \(\(DisplayTogether[\[IndentingNewLine]LogLinearListPlot[{LStaed, LStz} //  
            Transpose], \[IndentingNewLine]LogLinearListPlot[{LStaed,  
              LStzpred} //  
            Transpose], \[IndentingNewLine]LogLinearListPlot[{LStaed,  
              LStzucl} //  
            Transpose], \[IndentingNewLine]LogLinearListPlot[{LStaed,  
              LStzlcl} // Transpose]\ , \[IndentingNewLine]Frame \[Rule]  
          True, \[IndentingNewLine]FrameLabel \[Rule] \ {"\<AED\>", "\<Z from \ 
Volume Fraction\>"}, \[IndentingNewLine]ImageSize \[Rule]  
          7.5*72, \[IndentingNewLine]TextStyle \[Rule] {FontFamily -> \ 
"\<Arial\>", FontSize \[Rule] 14}\[IndentingNewLine]\ \ \ ];\)\)], "Input"], 
 
Cell[BoxData[ 
    \({vf = 0.6, \ \ zvf = Quantile[NormalDistribution[0, 1], vf],  
      CDF[NormalDistribution[0, 1], zvf]}\)], "Input"], 
 
Cell[BoxData[{ 
    \(zq[p_] :=  
      Quantile[NormalDistribution[0, 1], p]\), "\[IndentingNewLine]",  
    \(pz[z_] := CDF[NormalDistribution[0, 1], z]\), "\[IndentingNewLine]",  
    \(\)}], "Input"], 
 
Cell[BoxData[ 
    \(\(tlakesand =  
        DisplayTogether[\[IndentingNewLine]LogLinearListPlot[{LStaed,  
                pz[LStz]} // Transpose,  
            PlotStyle \[Rule]  
              PointSize[ 
                0.006]], \[IndentingNewLine]LogLinearListPlot[{LStaed,  
                pz[LStzpred]} // Transpose,  
            PlotStyle \[Rule] {Hue[0.71], Thickness[0.007]}, \  
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            PlotJoined \[Rule]  
              True], \[IndentingNewLine]LogLinearListPlot[{LStaed,  
                pz[LStzucl]} // Transpose,  
            PlotStyle \[Rule] {Hue[0.71], Thickness[0.001],  
                Dashing[{ .03,  .01}]}, \  
            PlotJoined \[Rule]  
              True], \[IndentingNewLine]LogLinearListPlot[{LStaed,  
                pz[LStzlcl]} // Transpose,  
            PlotStyle \[Rule] {Hue[0.71], Thickness[0.001],  
                Dashing[{ .03,  .01}]}, \  
            PlotJoined \[Rule] True]\ , \[IndentingNewLine]Frame \[Rule]  
            True, \[IndentingNewLine]FrameLabel \[Rule] \ \(({"\<AED\>", \ 
"\<Volume Fraction\>"} // Reverse)\), \[IndentingNewLine]ImageSize \[Rule]  
            7.5*72, \[IndentingNewLine]TextStyle \[Rule] {FontFamily -> \ 
"\<Arial\>", FontSize \[Rule] 14}\[IndentingNewLine]\ \ \ ];\)\)], "Input"], 
 
Cell[BoxData[ 
    \(\(DisplayTogether[\[IndentingNewLine]ListPlot[\({LStaed, pz[LStz]} //  
              Reverse\) //  
            Transpose], \[IndentingNewLine]ListPlot[\({LStaed, pz[LStzpred]} //  
              Reverse\) //  
            Transpose], \[IndentingNewLine]ListPlot[\({LStaed, pz[LStzucl]} //  
              Reverse\) //  
            Transpose], \[IndentingNewLine]ListPlot[\({LStaed, pz[LStzlcl]} //  
              Reverse\) // Transpose]\ , \[IndentingNewLine]Frame \[Rule]  
          True, \[IndentingNewLine]FrameLabel \[Rule] \((\ {"\<AED\>", \ 
"\<Volume Fraction\>"} // Reverse)\), \[IndentingNewLine]ImageSize \[Rule]  
          7.5*72, \[IndentingNewLine]TextStyle \[Rule] {FontFamily -> \ 
"\<Arial\>", FontSize \[Rule] 14}\[IndentingNewLine]\ \ \ ];\)\)], "Input"], 
 
Cell[BoxData[ 
    \(\(DisplayTogether[\[IndentingNewLine]ListPlot[{LStaed, pz[LStz]}\  //  
            Transpose], \[IndentingNewLine]ListPlot[{LStaed, pz[LStzpred]}\  //  
            Transpose], \[IndentingNewLine]ListPlot[{LStaed, pz[LStzucl]}\  //  
            Transpose], \[IndentingNewLine]ListPlot[{LStaed, pz[LStzlcl]}\  //  
            Transpose]\ , \[IndentingNewLine]Frame \[Rule]  
          True, \[IndentingNewLine]FrameLabel \[Rule] \ {"\<AED\>", "\<Volume \ 
Fraction\>"}, \[IndentingNewLine]ImageSize \[Rule]  
          7.5*72, \[IndentingNewLine]TextStyle \[Rule] {FontFamily -> \ 
"\<Arial\>", FontSize \[Rule] 14}\[IndentingNewLine]\ \ \ ];\)\)], "Input"], 
 
Cell[BoxData[ 
    \({A, B} // Reverse\)], "Input"] 
}, Open  ]] 
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}, 
FrontEndVersion->"5.0 for Microsoft Windows", 
ScreenRectangle->{{0, 1024}, {0, 693}}, 
WindowSize->{504, 308}, 
WindowMargins->{{0, Automatic}, {24, Automatic}} 
] 
 
(******************************************************************* 
Cached data follows.  If you edit this Notebook file directly, not 
using Mathematica, you must remove the line containing CacheID at 
the top of  the file.  The cache data will then be recreated when 
you save this file from within Mathematica. 
*******************************************************************) 
 
(*CellTagsOutline 
CellTagsIndex->{ 
  "S6.3.1"->{ 
    Cell[10666, 380, 139, 4, 48, "Input", 
      CellTags->"S6.3.1"]} 
  } 
*) 
 
(*CellTagsIndex 
CellTagsIndex->{ 
  {"S6.3.1", 15679, 496} 
  } 
*) 
 
(*NotebookFileOutline 
Notebook[{ 
Cell[1754, 51, 383, 6, 130, "Input"], 
Cell[2140, 59, 93, 1, 50, "Input"], 
Cell[2236, 62, 103, 3, 52, "Text"], 
Cell[2342, 67, 6318, 258, 4638, "Input"], 
Cell[8663, 327, 90, 2, 50, "Input"], 
Cell[8756, 331, 272, 4, 90, "Input"], 
Cell[9031, 337, 413, 7, 110, "Input"], 
Cell[9447, 346, 658, 12, 230, "Input"], 
Cell[10108, 360, 90, 1, 30, "Input"], 
Cell[10201, 363, 43, 1, 30, "Input"], 
Cell[10247, 366, 70, 1, 30, "Input"], 
 
Cell[CellGroupData[{ 
Cell[10342, 371, 66, 0, 29, "Subsubsection"], 
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Cell[10411, 373, 252, 5, 90, "Input"], 
Cell[10666, 380, 139, 4, 48, "Input", 
  CellTags->"S6.3.1"], 
Cell[10808, 386, 207, 3, 70, "Input"], 
Cell[11018, 391, 55, 3, 52, "Text"] 
}, Open  ]], 
 
Cell[CellGroupData[{ 
Cell[11110, 399, 122, 3, 46, "Subsubsection"], 
Cell[11235, 404, 722, 11, 210, "Input"], 
Cell[11960, 417, 136, 2, 50, "Input"], 
Cell[12099, 421, 199, 4, 70, "Input"], 
Cell[12301, 427, 1254, 23, 390, "Input"], 
Cell[13558, 452, 787, 12, 270, "Input"], 
Cell[14348, 466, 671, 9, 210, "Input"], 
Cell[15022, 477, 50, 1, 30, "Input"] 
}, Open  ]] 
} 
] 
*) 
 
 
(******************************************************************* 
End of Mathematica Notebook file. 
*******************************************************************) 
 

I-3.  Nonlinear Fit Code with Prediction Confidence Intervals to Estimate an 

Attainment Area (Public Exposure of PM10) 

 

(************** Content-type: application/mathematica ************** 
                     CreatedBy='Mathematica 5.0' 
 
                    Mathematica-Compatible Notebook 
 
This notebook can be used with any Mathematica-compatible 
application, such as Mathematica, MathReader or Publicon. The data 
for the notebook starts with the line containing stars above. 
 
To get the notebook into a Mathematica-compatible application, do 
one of the following: 
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* Save the data starting with the line of stars above into a file 
  with a name ending in .nb, then open the file inside the 
  application; 
 
* Copy the data starting with the line of stars above to the 
  clipboard, then use the Paste menu command inside the application. 
 
Data for notebooks contains only printable 7-bit ASCII and can be 
sent directly in email or through ftp in text mode.  Newlines can be 
CR, LF or CRLF (Unix, Macintosh or MS-DOS style). 
 
NOTE: If you modify the data for this notebook not in a Mathematica- 
compatible application, you must delete the line below containing 
the word CacheID, otherwise Mathematica-compatible applications may 
try to use invalid cache data. 
 
For more information on notebooks and Mathematica-compatible  
applications, contact Wolfram Research: 
  web: http://www.wolfram.com 
  email: info@wolfram.com 
  phone: +1-217-398-0700 (U.S.) 
 
Notebook reader applications are available free of charge from  
Wolfram Research. 
*******************************************************************) 
 
(*CacheID: 232*) 
 
 
(*NotebookFileLineBreakTest 
NotebookFileLineBreakTest*) 
(*NotebookOptionsPosition[     22658,        565]*) 
(*NotebookOutlinePosition[     23415,        593]*) 
(*  CellTagsIndexPosition[     23343,        587]*) 
(*WindowFrame->Normal*) 
 
 
 
Notebook[{ 
 
Cell[CellGroupData[{ 
Cell["NonlinearFit of LS and ML data", "Section", 
  FontSize->12], 
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Cell[CellGroupData[{ 
 
Cell["\<\ 
The file below contains code that fits the field data to the \ 
Gaussian Plume Equation.   The fit is estimated to be as good as the data \ 
will allow.  The data are sparse and environmental conditions are not \ 
strictly stationary over the duration of each test.   \ 
\>", "Subsection", 
  FontSize->12], 
 
Cell[CellGroupData[{ 
 
Cell["\<\ 
Test 1 (Mud Lake 13 Pipes)\t\t\t\t  \t\t\t\t\t\t 
Sampler\tT 1mA\tT 2m\tT 3m\tC 2m\tC 2m\tR 2m\tR 2m\tP 1m\tP 2m\tP 3m 
PM10\t        \t{10.542,11.329,\t1.293,\t4.800,\t4.640,\t6.400,\t3.640,\t\ 
2.831,\t5.053}\t 
SDtotal\t{1.239,\t1.351,\t0.150,\t0.513,\t0.550,\t0.455,\t0.283,\t0.130,\t\ 
0.677}\t 
disML\t\t{1,\t2,\t3,\t2,\t2,\t2,\t2,\t1,\t2,\t3} 
Test 2 (Lake Sand 17 Pipes)\t\t\t\t\t\t\t\t\t\t 
Description\tT 1m\tT 2m\tT 3m\tC 1m\tC 3m\tR 1m\tR 3m\tP 1m\tP 2m\tP 3m 
PM10\t\t{4.933,\t10.045,\t4.173,\t4.520,\t2.530,\t6.610,\t3.590,\t2.203,\t\ 
2.697,\t1.627} 
SDtotal\t{1.068,\t2.129,\t0.829,\t0.479,\t0.523,\t1.186,\t1.022,\t0.416,\t\ 
0.477,\t0.265} 
disLS\t\t{1,\t2,\t3,\t1,\t3,\t1,\t3,\t1,\t2,\t3} 
\ 
\>", "Subsubsection"], 
 
Cell["\<\ 
<<Statistics`LinearRegression` 
<< Statistics`NonlinearFit` 
<<Statistics`ContinuousDistributions` 
<<Statistics`DescriptiveStatistics` 
<<Statistics`MultiDescriptiveStatistics` 
<<Graphics`Graphics` 
<<Graphics`MultipleListPlot`\ 
\>", "Input", 
  CellTags->"S6.6.1"], 
 
Cell[BoxData[{ 
    \(\(MLpm10 = {10.542, 11.329, 1.293, 4.800, 4.640, 6.400, 3.640, 2.831,  
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          5.053};\)\), "\[IndentingNewLine]",  
    \(\(MLsd10 = {1.239, 1.351, 0.150, 0.513, 0.550, 0.455, 0.283, 0.130,  
          0.677};\)\), "\n",  
    \(\(MLdis10\  = {1, 2, 3, 2, 2, 2, 2, 1, 2};\)\), "\[IndentingNewLine]",  
    \(\(MLpldat = Transpose[{MLdis10, MLpm10}];\)\), "\[IndentingNewLine]",  
    \(ml[x_] = Fit[MLpldat, {\ x\^\(-2\)}, x]\)}], "Input"], 
 
Cell[BoxData[ 
    \(mlreg = Regress[MLpldat, {\ x\^\(-2\)}, x]\)], "Input"], 
 
Cell[BoxData[{ 
    \(\(MLfitplot =  
        LogLogPlot[{0.15, ml[x]}, {x, 0.5, 10},  
          DisplayFunction \[Rule] Identity,  
          AxesOrigin \[Rule] {2, 9.41722/4}, Axes \[Rule] True,  
          PlotRange \[Rule] {0.1, 20}];\)\), "\[IndentingNewLine]",  
    \(\(MLdataplot =  
        LogLogListPlot[MLpldat, PlotStyle \[Rule] {PointSize[0.02]},  
          PlotRange \[Rule] \ {{0.1, 10}, {0.1, 15}},  
          DisplayFunction \[Rule] Identity];\)\), "\[IndentingNewLine]",  
    \(\(Show[MLfitplot, MLdataplot, DisplayFunction \[Rule] $DisplayFunction,  
        Frame \[Rule] True, \  
        FrameLabel \[Rule] \ {"\<Distance from centerline [m]\>", \ 
\*"\"\<Measured Mass concentration [mg/\!\(m\^3\)]\>\"", \*"\"\<Inverse \ 
Square Law Fit for Mud Lake, \!\(R\^2\) = \>\""  
              NumberForm[RSquared /. mlreg, 3], \ NumberForm[ml[x], 4]},  
        ImageSize \[Rule] 72*7,  
        TextStyle \[Rule] {FontFamily -> "\<Arial\>",  
            FontSize \[Rule] \ 14}];\)\)}], "Input"] 
}, Open  ]], 
 
Cell[CellGroupData[{ 
 
Cell["\<\ 
Clearly, the inverse square law is a poor fit to the field data.  \ 
It was observed that the plume passed beneath the sampler at 1 m for most of \ 
each test.   Therefore, nonlinear fit capability was used to find the best \ 
fit plume model with four parameters:   emission rate, sigma y , sigma z and \ 
H.   
     sigma y and sigma z are functions of distance along the centerline, x.   \ 
Therefore, they must be parameterized before the NonLinearFit process starts. \ 
  It is sufficient over the range of interest, for them to be modelled by a \ 
linear function.\ 
\>", "Subsubsection"], 
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Cell[BoxData[{ 
    \({\[Sigma]y\  = \ ay + \ by\ x, \ \[Sigma]z\  = \ az\  + \ bz\ x, H,  
      ER}; Clear[Conc, con, x, y, z]\), "\[IndentingNewLine]",  
    \(Conc[x_, y_,  
        z_] := \(ER\/\(2\ \[Pi]\ \[Sigma]y\ \[Sigma]z\ u\ Sin[\[Theta]]\)\)  
        Exp[\(-y\^2\)\/\(2\ \[Sigma]y\^2\)] \((Exp[\(-\((z - H)\)\^2\)\/\(2\ \ 
\[Sigma]z\^2\)] +  
            Exp[\(-\((z + H)\)\^2\)\/\(2\ \[Sigma]z\^2\)])\)\), "\ 
\[IndentingNewLine]",  
    \(con[x_, y_, z_] =  
      Conc[x, y, z] /. {u \[Rule] 3, \[Theta] \[Rule] \[Pi]/2,  
          H \[Rule] 1}\)}], "Input"], 
 
Cell[BoxData[ 
    \(\(Plot[ 
        con[x, 0, 1.61] /. {\[Theta] \[Rule] \[Pi]/2, u \[Rule] \ 3,  
            ER \[Rule] 12, H \[Rule] 1. , ay \[Rule] 0.1, az \[Rule] 0.1,  
            by \[Rule] 0.25, bz \[Rule] 0.13}, {x, 0, 4},  
        PlotRange \[Rule] All];\)\)], "Input"], 
 
Cell[BoxData[{ 
    \(\(Clear[ay, az, by, bz, ER, x];\)\), "\[IndentingNewLine]",  
    \(ERestML = 13.3; \ ayoML = 0.0; azoML = 0.0;\), "\[IndentingNewLine]",  
    \(mlnonlinreg =  
      NonlinearRegress[MLpldat,  
        Conc[x, \ 0, 1.5] /. {u \[Rule] 3. , \[Theta] \[Rule] \[Pi]/2,  
            ay \[Rule] ayoML, az \[Rule] azoML, ER \[Rule] ERestML},  
        x, {by, bz, H},  
        RegressionReport \[Rule] {BestFitParameters, ParameterCITable,  
            EstimatedVariance, AsymptoticCorrelationMatrix,  
            FitCurvatureTable, \ SinglePredictionCITable, \  
            MeanPredictionCITable}]\)}], "Input"], 
 
Cell[BoxData[{ 
    \(mlnonlin[ 
        x_] = \(Conc[x, \ 0, 1.5] /. {u \[Rule] 3, \[Theta] \[Rule] \[Pi]/2,  
            ay \[Rule] ayoML, az \[Rule] azoML,  
            ER \[Rule] ERestML}\) /. \((BestFitParameters /.  
            mlnonlinreg)\)\), "\[IndentingNewLine]",  
    \(\(xmax = 20;\)\), "\[IndentingNewLine]",  
    \(\(DisplayTogether[\[IndentingNewLine]MLloglogdataplot =  
          LogLogListPlot[MLpldat, PlotStyle \[Rule] {PointSize[0.02]},  
            PlotRange \[Rule] \ {{0.1, 25}, {0.1, xmax}},  
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            DisplayFunction \[Rule]  
              Identity], \[IndentingNewLine]MLloglogfitplot =  
          LogLogPlot[{0.15, mlnonlin[x]}, {x, 0.1, xmax}, \  
            DisplayFunction \[Rule] Identity,  
            AxesOrigin \[Rule] {2, 9.41722/4},  
            Axes \[Rule] True], \[IndentingNewLine]Frame \[Rule] True, \  
        FrameLabel \[Rule] \ {"\<Distance from CenterLine in m\>", \ 
"\<Measured Mass Conc in mg/m^3\>", "\<Mud Lake Scale Test\>", "\<Nonlinear \ 
Regression Fit\>"}, ImageSize \[Rule] 72*7,  
        TextStyle \[Rule] {FontFamily -> "\<Arial\>",  
            FontSize \[Rule] \ 14}\[IndentingNewLine]];\)\)}], "Input"] 
}, Open  ]], 
 
Cell[CellGroupData[{ 
 
Cell["\<\ 
Next, use the Regression Report to estimate the CI for the single \ 
prediction and the mean prediction quality of the fitted function.\ 
\>", \ 
"Subsubsection"], 
 
Cell[BoxData[ 
    \(MLmCItable = \((MeanPredictionCITable /. mlnonlinreg)\)\)], "Input"] 
}, Open  ]], 
 
Cell[CellGroupData[{ 
 
Cell["\<\ 
Multiple values occur at each distance.  There is only one \ 
predicted value at each distance.  To find confidence intervals on the fitted \ 
curve, it is sufficient to retain the first three lines in the table above, \ 
representing predicted data at {1,2,3} m, respectively.  Use the Take command \ 
to pick the first three lines.  \ 
\>", "Subsubsection"], 
 
Cell[BoxData[ 
    \(MLmCItab = Take[MLmCItable[\([1]\)], 3]\)], "Input"] 
}, Open  ]], 
 
Cell[CellGroupData[{ 
 
Cell["\<\ 
The CI is defined by the last entry in each member of the table \ 
above. \ 
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\>", "Subsubsection"], 
 
Cell[BoxData[ 
    \(MLmCIdata = \(Take[MLmCItab // Transpose, \(-1\)]\)[\([1]\)]\)], "Input"], 
 
Cell[BoxData[{ 
    \(\(disval = {1, 2, 3};\)\), "\[IndentingNewLine]",  
    \(\(MLmlcl = Map[First, MLmCIdata];\)\), "\[IndentingNewLine]",  
    \(\(MLmucl = Map[Last, MLmCIdata];\)\), "\[IndentingNewLine]",  
    \({MLmlclfit =  
        Fit[{disval, MLmlcl} // Transpose, {x\^2, x, 1},  
          x], \[IndentingNewLine]MLmuclfit =  
        Fit[{disval, MLmucl} // Transpose, {x\^2, x, 1}, x]}\)}], "Input"], 
 
Cell[BoxData[ 
    \(\(LogLogPlot[{MLmlclfit, MLmuclfit}, {x, 1.0, 3. }];\)\)], "Input"] 
}, Open  ]], 
 
Cell[CellGroupData[{ 
 
Cell["Do the same thing for the single prediction CI.  ", "Subsubsection"], 
 
Cell[BoxData[ 
    \(MLspCItable = \((SinglePredictionCITable /. mlnonlinreg)\)\)], "Input"], 
 
Cell[BoxData[ 
    \(MLspCItab = Take[MLspCItable[\([1]\)], 3]\)], "Input"], 
 
Cell[BoxData[ 
    \(MLspCIdata = \(Take[ 
          MLspCItab // Transpose, \(-1\)]\)[\([1]\)]\)], "Input"], 
 
Cell[BoxData[{ 
    \(\(disval = {1, 2, 3};\)\), "\[IndentingNewLine]",  
    \(MLsplcl = Map[First, MLspCIdata]\), "\[IndentingNewLine]",  
    \(MLspucl = Map[Last, MLspCIdata]\), "\[IndentingNewLine]",  
    \({MLsplclfit =  
        Fit[{disval, MLsplcl} // Transpose, {x\^2, x, 1},  
          x], \[IndentingNewLine]MLspuclfit =  
        Fit[{disval, MLspucl} // Transpose, {x\^2, x, 1}, x]}\)}], "Input"], 
 
Cell[BoxData[ 
    \(\(MLCIplot =  
        Plot[{mlnonlin[x], MLsplclfit, MLspuclfit, MLmlclfit, MLmuclfit}, {x,  
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            1, 3. }, PlotRange \[Rule] All, Frame \[Rule] True,  
          PlotStyle \[Rule] \[IndentingNewLine]{Thickness[0.012],  
              Dashing[{0.05, 0.05}], Dashing[{0.05, 0.05}],  
              Dashing[{0.02, 0.02}], Dashing[{0.02, 0.02}]}];\)\)], "Input"] 
}, Open  ]], 
 
Cell[CellGroupData[{ 
 
Cell["\<\ 
The LCL for ML single prediction is negative.  It can not be \ 
plotted on LogLog Axes.\ 
\>", "Subsubsection"], 
 
Cell[BoxData[ 
    \(\(MLloglogCIplot =  
        LogLogPlot[{mlnonlin[x], MLmlclfit, MLmuclfit}, {x, 1, 3. },  
          PlotRange \[Rule] All, Frame \[Rule] True,  
          PlotStyle \[Rule] \[IndentingNewLine]{Thickness[0.012],  
              Dashing[{0.05, 0.05}], Dashing[{0.02, 0.02}],  
              Dashing[{0.02, 0.02}]}];\)\)], "Input"], 
 
Cell[BoxData[ 
    \(\(DisplayTogether[{MLloglogfitplot, MLloglogCIplot, MLloglogdataplot},  
        Frame \[Rule] True, \  
        FrameLabel \[Rule] \ {"\<Distance from CenterLine in m\>", \ 
"\<Measured Mass Conc in mg.m^3\>", "\<Mud Lake Scale Test\>", "\<Nonlinear \ 
Regression Fit\>"}, ImageSize \[Rule] 72*7,  
        TextStyle \[Rule] {FontFamily -> "\<Arial\>", FontSize \[Rule] \ 14},  
        PlotRange \[Rule] {{Log[10, 0.5], Log[10, 20]}, {Log[10, 0.1],  
              Log[10, 20]}},  
        Axes \[Rule] False\[IndentingNewLine]];\)\)], "Input"] 
}, Open  ]] 
}, Open  ]], 
 
Cell[CellGroupData[{ 
 
Cell["Next, perform nonlinear fit for the lake sand data.", "Subsection", 
  FontSize->12], 
 
Cell[BoxData[{ 
    \(\(LSpm10 = {4.933, 10.045, 4.173, 4.520, 2.530, 6.610, 3.590, 2.203,  
          2.697, 1.627};\)\), "\n",  
    \(\(LSsd10 = {1.068, 2.129, 0.829, 0.479, 0.523, 1.186, 1.022, 0.416,  
          0.477, 0.265};\)\), "\n",  
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    \(\(LSdis10 = {1, 2, 3, 1, 3, 1, 3, 1, 2,  
          3};\)\), "\[IndentingNewLine]",  
    \(LSpldat = Transpose[{LSdis10, LSpm10}]\), "\[IndentingNewLine]",  
    \(ls[x_] = Fit[LSpldat, {\ x\^\(-2\)}, x]\)}], "Input"], 
 
Cell[BoxData[ 
    \(lsreg = Regress[LSpldat, {\ x\^\(-2\)}, x]\)], "Input"], 
 
Cell[BoxData[{ 
    \(\(LSfitplot =  
        LogLogPlot[{0.15, ls[x]}, {x, 0.5, 10},  
          DisplayFunction \[Rule] Identity,  
          AxesOrigin \[Rule] {2, 5.45612/4}, Axes \[Rule] True,  
          PlotRange \[Rule] {0.1, 15}];\)\), "\[IndentingNewLine]",  
    \(\(LSdataplot =  
        LogLogListPlot[LSpldat, PlotStyle \[Rule] {PointSize[0.02]},  
          PlotRange \[Rule] \ {{0.1, 10}, {0.1, 15}},  
          DisplayFunction \[Rule] Identity];\)\), "\[IndentingNewLine]",  
    \(\(Show[LSfitplot, LSdataplot, DisplayFunction \[Rule] $DisplayFunction,  
        Frame \[Rule] True, \  
        FrameLabel \[Rule] \ {"\<Distance from centerline [m]\>", \ 
\*"\"\<Measured Mass concentration [mg/\!\(m\^3\)]\>\"", \*"\"\<Inverse \ 
Square Law Fit for Lake Sand, \!\(R\^2\) = \>\""  
              NumberForm[RSquared /. lsreg, 3], \ NumberForm[ls[x], 4]},  
        ImageSize \[Rule] 72*7,  
        TextStyle \[Rule] {FontFamily -> "\<Arial\>",  
            FontSize \[Rule] \ 14}];\)\)}], "Input"], 
 
Cell[BoxData[{ 
    \(\(Clear[ay, az, by, bz, ER, x];\)\), "\[IndentingNewLine]",  
    \(ERestLS = 12.2; ayoLS = 0.00; azoLS = 0.00;\), "\[IndentingNewLine]",  
    \(lsnonlinreg =  
      NonlinearRegress[LSpldat,  
        Conc[x, \ 0, 1.5] /. {u \[Rule] 2.9, \[Theta] \[Rule] \[Pi]/2,  
            ay \[Rule] ayoLS, az \[Rule] azoLS, ER \[Rule] ERestLS},  
        x, {by, bz, H},  
        RegressionReport \[Rule] {BestFitParameters, ParameterCITable,  
            EstimatedVariance, AsymptoticCorrelationMatrix,  
            FitCurvatureTable, \ SinglePredictionCITable, \  
            MeanPredictionCITable}]\)}], "Input"], 
 
Cell[BoxData[{ 
    \(lsnonlin[ 
        x_] = \(Conc[x, \ 0, 1.5] /. {u \[Rule] 3, \[Theta] \[Rule] \[Pi]/2,  
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            ay \[Rule] ayoLS, az \[Rule] azoLS,  
            ER \[Rule] ERestLS}\) /. \((BestFitParameters /.  
            lsnonlinreg)\)\), "\[IndentingNewLine]",  
    \(\(xmax = 20;\)\), "\[IndentingNewLine]",  
    \(\(DisplayTogether[\[IndentingNewLine]LSloglogdataplot =  
          LogLogListPlot[LSpldat, PlotStyle \[Rule] {PointSize[0.02]},  
            PlotRange \[Rule] \ {{0.1, 20}, {0.1, xmax}},  
            DisplayFunction \[Rule]  
              Identity], \[IndentingNewLine]LSloglogfitplot =  
          LogLogPlot[{0.15, lsnonlin[x]}, {x, 0.1, xmax}, \  
            DisplayFunction \[Rule] Identity,  
            AxesOrigin \[Rule] {2, 5.45612/4},  
            Axes \[Rule] True], \[IndentingNewLine]Frame \[Rule]  
          True, \[IndentingNewLine]FrameLabel \[Rule] \ {"\<Distance from \ 
CenterLine in m\>", "\<Measured Mass Conc in mg.m^3\>", "\<Lake Sand Scale \ 
Test\>", "\<Nonlinear Regression Fit\>"}, ImageSize \[Rule] 72*7,  
        TextStyle \[Rule] {FontFamily -> "\<Arial\>",  
            FontSize \[Rule] \ 14}\[IndentingNewLine]];\)\)}], "Input"], 
 
Cell[CellGroupData[{ 
 
Cell["\<\ 
Next, use the Regression Report to estimate the CI for the single \ 
prediction and the mean prediction quality of the fitted function.\ 
\>", \ 
"Subsubsection"], 
 
Cell[BoxData[ 
    \(LSmCItable = \((MeanPredictionCITable /. lsnonlinreg)\)\)], "Input"] 
}, Open  ]], 
 
Cell[CellGroupData[{ 
 
Cell["\<\ 
Multiple values occur at each distance.  There is only one \ 
predicted value at each distance.  To find confidence intervals on the fitted \ 
curve, it is sufficient to retain the first three lines in the table above, \ 
representing predicted data at {1,2,3} m, respectively.  Use the Take command \ 
to pick the first three lines.  \ 
\>", "Subsubsection"], 
 
Cell[BoxData[ 
    \(LSmCItab = Take[LSmCItable[\([1]\)], 3]\)], "Input"] 
}, Open  ]], 
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Cell[CellGroupData[{ 
 
Cell["\<\ 
The CI is defined by the last entry in each member of the table \ 
above. \ 
\>", "Subsubsection"], 
 
Cell[BoxData[ 
    \(LSmCIdata = \(Take[LSmCItab // Transpose, \(-1\)]\)[\([1]\)]\)], "Input"], 
 
Cell[BoxData[{ 
    \(\(disval = {1, 2, 3};\)\), "\[IndentingNewLine]",  
    \(\(LSmlcl = Map[First, LSmCIdata];\)\), "\[IndentingNewLine]",  
    \(\(LSmucl = Map[Last, LSmCIdata];\)\), "\[IndentingNewLine]",  
    \({LSmlclfit =  
        Fit[{disval, LSmlcl} // Transpose, {x\^2, x, 1},  
          x], \[IndentingNewLine]LSmuclfit =  
        Fit[{disval, LSmucl} // Transpose, {x\^2, x, 1}, x]}\)}], "Input"], 
 
Cell[BoxData[ 
    \(LogLogPlot[{LSmlclfit, LSmuclfit}, {x, 0.7, 3.2}]\)], "Input"] 
}, Open  ]], 
 
Cell[CellGroupData[{ 
 
Cell["Do the same thing for the single prediction CI.  ", "Subsubsection"], 
 
Cell[BoxData[ 
    \(LSspCItable = \((SinglePredictionCITable /. lsnonlinreg)\)\)], "Input"], 
 
Cell[BoxData[ 
    \(LSspCItab = Take[LSspCItable[\([1]\)], 3]\)], "Input"], 
 
Cell[BoxData[ 
    \(LSspCIdata = \(Take[ 
          LSspCItab // Transpose, \(-1\)]\)[\([1]\)]\)], "Input"], 
 
Cell[BoxData[{ 
    \(\(disval = {1, 2, 3};\)\), "\[IndentingNewLine]",  
    \(LSsplcl = Map[First, LSspCIdata]\), "\[IndentingNewLine]",  
    \(LSspucl = Map[Last, LSspCIdata]\), "\[IndentingNewLine]",  
    \({LSsplclfit =  
        Fit[{disval, LSsplcl} // Transpose, {x\^2, x, 1},  
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          x], \[IndentingNewLine]LSspuclfit =  
        Fit[{disval, LSspucl} // Transpose, {x\^2, x, 1}, x]}\)}], "Input"], 
 
Cell[BoxData[ 
    \(\(LSCIplot =  
        Plot[{lsnonlin[x], LSmlclfit, LSmuclfit}, {x, 1, 3. },  
          PlotRange \[Rule] All, Frame \[Rule] True,  
          PlotStyle \[Rule] \[IndentingNewLine]{Thickness[0.012],  
              Dashing[{0.05, 0.05}], Dashing[{0.05, 0.05}],  
              Dashing[{0.02, 0.02}], Dashing[{0.02, 0.02}]}];\)\)], "Input"] 
}, Open  ]], 
 
Cell[CellGroupData[{ 
 
Cell["\<\ 
The LCL for LS single prediction is negative.  It can not be \ 
plotted on LogLog Axes.\ 
\>", "Subsubsection"], 
 
Cell[BoxData[ 
    \(\(LSloglogCIplot =  
        LogLogPlot[{lsnonlin[x], LSmlclfit, LSmuclfit}, {x, 1, 3. },  
          PlotRange \[Rule] All, Frame \[Rule] True,  
          PlotStyle \[Rule] \[IndentingNewLine]{Thickness[0.012],  
              Dashing[{0.05, 0.05}], Dashing[{0.02, 0.02}],  
              Dashing[{0.02, 0.02}]}];\)\)], "Input"], 
 
Cell[BoxData[ 
    \(\(DisplayTogether[{LSloglogfitplot, LSloglogCIplot, LSloglogdataplot},  
        Frame \[Rule] True, \  
        FrameLabel \[Rule] \ {"\<Distance from CenterLine in m\>", \ 
"\<Measured Mass Conc in mg.m^3\>", "\<Lake Sand Scale Test\>", "\<Nonlinear \ 
Regression Fit\>"}, ImageSize \[Rule] 72*7,  
        TextStyle \[Rule] {FontFamily -> "\<Arial\>", FontSize \[Rule] \ 14},  
        PlotRange \[Rule] {{Log[10, 0.5], Log[10, 20]}, {Log[10, 0.1],  
              Log[10, 20]}},  
        Axes \[Rule] False\[IndentingNewLine]];\)\)], "Input"], 
 
Cell[BoxData[ 
    \(5\)], "Input"], 
 
Cell[BoxData[{ 
    \(\(LSloglogCIplot // Show;\)\), "\[IndentingNewLine]",  
    \(\(LSloglogdataplot // Show;\)\), "\[IndentingNewLine]",  
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    \(\(LSloglogfitplot // Show;\)\)}], "Input"] 
}, Open  ]] 
}, Open  ]], 
 
Cell[CellGroupData[{ 
 
Cell["\<\ 
One last item.  Compare Each of these with an inverse square law \ 
rule to see what the concentration would be at 1 m from the centerline if the \ 
inverse square law applied.\ 
\>", "Subsection", 
  FontSize->12], 
 
Cell[BoxData[{ 
    \(\(xmax = 20;\)\), "\[IndentingNewLine]",  
    \(\(DisplayTogether[\[IndentingNewLine]LogLogListPlot[MLpldat,  
          PlotStyle \[Rule] {PointSize[0.015]},  
          PlotRange \[Rule] \ {{0.4, 20}, {0.1, xmax}},  
          DisplayFunction \[Rule]  
            Identity], \[IndentingNewLine]LogLogPlot[{0.15, mlnonlin[x]}, {x,  
            0.1, xmax}, DisplayFunction \[Rule] Identity,  
          AxesOrigin \[Rule] {2, 9.41722/4}, Axes \[Rule] True],  
        MLloglogCIplot, MLloglogfitplot,  
        PlotLabel \[Rule] \ "\<Mud Lake Pipe Scale\>", \ 
\[IndentingNewLine]Frame \[Rule]  
          True, \ \[IndentingNewLine]Epilog \[Rule] {{Thickness[0.012],  
              Line[{{0.7, 0.8}, {0.8, 0.8}}]},  
            Text["\<Fitted\>", {0.92, 0.8}], \[IndentingNewLine]{Thickness[ 
                0.008], Line[{{0.75, 0.6}, {0.755, 0.6}}]},  
            Text["\<Measured\>", {0.98, 0.6}], \[IndentingNewLine]{Thickness[ 
                0.001], {Dashing[{0.01, 0.01}],  
                Line[{{0.7, 0.4}, {0.8, 0.4}}]}},  
            Text["\<MeanPreCI\>", {1.0,  
                0.4}]\[IndentingNewLine]}, \[IndentingNewLine]Frame \[Rule]  
          True, \ FrameLabel \[Rule] \ {"\<Distance from CenterLine [m]\>", \ 
\*"\"\<Mass Concentration  [mg/\!\(m\^\(-3\)\)]\>\"", \*"\"\<Public Exposure \ 
Standard (PM10) = 0.15 mg/\!\(m\^\(-3\)\)\>\"", "\<Plume Center Conc at 1 m \ 
(PM10) = \>"\ NumberForm[mlnonlin[1], 2]}, ImageSize \[Rule] 72*7,  
        TextStyle \[Rule] {FontFamily -> "\<Arial\>",  
            FontSize \[Rule] \ 14}\[IndentingNewLine]];\)\)}], "Input"], 
 
Cell[BoxData[{ 
    \(\(xmax = 20;\)\), "\[IndentingNewLine]",  
    \(\(DisplayTogether[\[IndentingNewLine]LogLogListPlot[LSpldat,  



 

 

193

          PlotStyle \[Rule] {PointSize[0.015]},  
          PlotRange \[Rule] \ {{0.4, 20}, {0.1, xmax}},  
          DisplayFunction \[Rule]  
            Identity], \[IndentingNewLine]LogLogPlot[{0.15, lsnonlin[x]}, {x,  
            0.1, xmax}, DisplayFunction \[Rule] Identity,  
          AxesOrigin \[Rule] {2, 5.45612/4}, Axes \[Rule] True],  
        LSloglogCIplot, LSloglogfitplot,  
        PlotLabel \[Rule] \ "\<Lake Sand Pipe Scale\>", \ 
\[IndentingNewLine]Epilog \[Rule] {{Thickness[0.012],  
              Line[{{0.7, 0.8}, {0.8, 0.8}}]},  
            Text["\<Fitted\>", {0.92, 0.8}], \[IndentingNewLine]{Thickness[ 
                0.008], Line[{{0.75, 0.6}, {0.755, 0.6}}]},  
            Text["\<Measured\>", {0.98, 0.6}], \[IndentingNewLine]{Thickness[ 
                0.001], {Dashing[{0.01, 0.01}],  
                Line[{{0.7, 0.4}, {0.8, 0.4}}]}},  
            Text["\<MeanPreCI\>", {1.0,  
                0.4}]\[IndentingNewLine]}, \[IndentingNewLine]Frame \[Rule]  
          True, \ FrameLabel \[Rule] \ {"\<Distance from CenterLine [m]\>", \ 
\*"\"\<Mass Concentration  [mg/\!\(m\^\(-3\)\)]\>\"", \*"\"\<Public Exposure \ 
Standard (PM10) = 0.15 mg/\!\(m\^\(-3\)\)\>\"", "\<Plume Center Conc at 1 m \ 
(PM10) = \>"\ NumberForm[lsnonlin[1], 2]}, ImageSize \[Rule] 72*7,  
        TextStyle \[Rule] {FontFamily -> "\<Arial\>",  
            FontSize \[Rule] \ 14}\[IndentingNewLine]];\)\)}], "Input"] 
}, Open  ]] 
}, Open  ]] 
}, 
FrontEndVersion->"5.0 for Microsoft Windows", 
ScreenRectangle->{{0, 1024}, {0, 693}}, 
WindowSize->{1016, 666}, 
WindowMargins->{{0, Automatic}, {Automatic, 0}} 
] 
 
(******************************************************************* 
Cached data follows.  If you edit this Notebook file directly, not 
using Mathematica, you must remove the line containing CacheID at 
the top of  the file.  The cache data will then be recreated when 
you save this file from within Mathematica. 
*******************************************************************) 
 
(*CellTagsOutline 
CellTagsIndex->{ 
  "S6.6.1"->{ 
    Cell[2933, 86, 270, 9, 138, "Input", 
      CellTags->"S6.6.1"]} 
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  } 
*) 
 
(*CellTagsIndex 
CellTagsIndex->{ 
  {"S6.6.1", 23249, 580} 
  } 
*) 
 
(*NotebookFileOutline 
Notebook[{ 
 
Cell[CellGroupData[{ 
Cell[1776, 53, 65, 1, 64, "Section"], 
 
Cell[CellGroupData[{ 
Cell[1866, 58, 311, 6, 54, "Subsection"], 
 
Cell[CellGroupData[{ 
Cell[2202, 68, 728, 16, 199, "Subsubsection"], 
Cell[2933, 86, 270, 9, 138, "Input", 
  CellTags->"S6.6.1"], 
Cell[3206, 97, 458, 7, 111, "Input"], 
Cell[3667, 106, 75, 1, 31, "Input"], 
Cell[3745, 109, 1000, 18, 174, "Input"] 
}, Open  ]], 
 
Cell[CellGroupData[{ 
Cell[4782, 132, 595, 10, 80, "Subsubsection"], 
Cell[5380, 144, 564, 11, 90, "Input"], 
Cell[5947, 157, 278, 5, 30, "Input"], 
Cell[6228, 164, 623, 11, 130, "Input"], 
Cell[6854, 177, 1164, 20, 210, "Input"] 
}, Open  ]], 
 
Cell[CellGroupData[{ 
Cell[8055, 202, 169, 4, 29, "Subsubsection"], 
Cell[8227, 208, 88, 1, 30, "Input"] 
}, Open  ]], 
 
Cell[CellGroupData[{ 
Cell[8352, 214, 364, 6, 46, "Subsubsection"], 
Cell[8719, 222, 72, 1, 30, "Input"] 
}, Open  ]], 
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Cell[CellGroupData[{ 
Cell[8828, 228, 106, 3, 29, "Subsubsection"], 
Cell[8937, 233, 93, 1, 30, "Input"], 
Cell[9033, 236, 407, 7, 112, "Input"], 
Cell[9443, 245, 87, 1, 30, "Input"] 
}, Open  ]], 
 
Cell[CellGroupData[{ 
Cell[9567, 251, 74, 0, 29, "Subsubsection"], 
Cell[9644, 253, 91, 1, 30, "Input"], 
Cell[9738, 256, 74, 1, 30, "Input"], 
Cell[9815, 259, 106, 2, 30, "Input"], 
Cell[9924, 263, 405, 7, 112, "Input"], 
Cell[10332, 272, 382, 6, 70, "Input"] 
}, Open  ]], 
 
Cell[CellGroupData[{ 
Cell[10751, 283, 119, 3, 29, "Subsubsection"], 
Cell[10873, 288, 345, 6, 70, "Input"], 
Cell[11221, 296, 558, 9, 110, "Input"] 
}, Open  ]] 
}, Open  ]], 
 
Cell[CellGroupData[{ 
Cell[11828, 311, 89, 1, 37, "Subsection"], 
Cell[11920, 314, 461, 8, 111, "Input"], 
Cell[12384, 324, 75, 1, 31, "Input"], 
Cell[12462, 327, 1001, 18, 174, "Input"], 
Cell[13466, 347, 623, 11, 130, "Input"], 
Cell[14092, 360, 1184, 20, 230, "Input"], 
 
Cell[CellGroupData[{ 
Cell[15301, 384, 169, 4, 29, "Subsubsection"], 
Cell[15473, 390, 88, 1, 30, "Input"] 
}, Open  ]], 
 
Cell[CellGroupData[{ 
Cell[15598, 396, 364, 6, 46, "Subsubsection"], 
Cell[15965, 404, 72, 1, 30, "Input"] 
}, Open  ]], 
 
Cell[CellGroupData[{ 
Cell[16074, 410, 106, 3, 29, "Subsubsection"], 
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Cell[16183, 415, 93, 1, 30, "Input"], 
Cell[16279, 418, 407, 7, 112, "Input"], 
Cell[16689, 427, 82, 1, 30, "Input"] 
}, Open  ]], 
 
Cell[CellGroupData[{ 
Cell[16808, 433, 74, 0, 29, "Subsubsection"], 
Cell[16885, 435, 91, 1, 30, "Input"], 
Cell[16979, 438, 74, 1, 30, "Input"], 
Cell[17056, 441, 106, 2, 30, "Input"], 
Cell[17165, 445, 405, 7, 112, "Input"], 
Cell[17573, 454, 356, 6, 50, "Input"] 
}, Open  ]], 
 
Cell[CellGroupData[{ 
Cell[17966, 465, 119, 3, 29, "Subsubsection"], 
Cell[18088, 470, 345, 6, 70, "Input"], 
Cell[18436, 478, 559, 9, 110, "Input"], 
Cell[18998, 489, 34, 1, 30, "Input"], 
Cell[19035, 492, 187, 3, 70, "Input"] 
}, Open  ]] 
}, Open  ]], 
 
Cell[CellGroupData[{ 
Cell[19271, 501, 220, 5, 54, "Subsection"], 
Cell[19494, 508, 1592, 26, 314, "Input"], 
Cell[21089, 536, 1541, 25, 294, "Input"] 
}, Open  ]] 
}, Open  ]] 
} 
] 
*) 
 
 
 
(******************************************************************* 
End of Mathematica Notebook file. 
*******************************************************************) 
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