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ABSTRACT 
 
 

An Improved Wetted-Wall Bioaerosol 

Sampling Cyclone. (August 2005) 

Manpreet Singh Phull, B.Tech., IIT Madras, India 

Chair of Advisory Committee: Dr. Andrew R. McFarland 
 
 

A modified wetted-wall cyclone using different methods of water injection techniques 

upstream of the inlet was designed as an improvement to a wetted-wall cyclone developed 

by White, which uses liquid injection through a port on the wall of the cyclone inlet. The 

new cyclone has a high aerosol sampling flow rate (1250 L/min) and maintains constant 

cut-point with the modified White-type cyclone along with greater collection efficiency, 

lower time response, and reduced pressure drop.  

 

The final air-blast atomizer cyclone (AAC2.1a) design considered has an aerosol-to-

hydrosol collection efficiency cut-point of 1.3 µm with collection efficiencies at 1 and 2 

µm of 39.9% and 86%, respectively.  The efficiency reported for the modified White-type 

cyclone for particle sizes of 1 and 2 µm was 40.5% and 76.3%, respectively, under no 

water bypass conditions. The aerosol-to-aerosol transmission efficiency for the AAC2.1a 

configuration was found to be approximately 53.7% for 1 µm diameter particles as 

compared with 67.2% for the modified White-type cyclone. 

 

Dry and wet time response tests were performed in which the modified White-type cyclone 

had an initial response of 2.5 minutes for a wet start and 1 minute for a dry start for a 

condition where there was no liquid carryover through the cyclone outlet.  The rise time for 

AAC2.1a cyclone under dry and wet start conditions was 0.5 minutes and 1.3 minutes, 

respectively. The decay response of the modified White-type cyclone was 1.1 minutes for a 
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wet start and 1.2 minutes for a dry start. The corresponding numbers for AAC2.1a cyclone 

were 1.4 minutes for a dry start and 1 minute for a wet start condition. 

 

Off design tests were run at approximately ±10% air flow rates to see the effect on cyclone 

performance. It was seen that at a 10% higher flow rate (1350 L/min) the efficiency was 

54.3%. At a 10% lower flow rate (1125 L/min) the efficiency was 33.7% as compared with 

an efficiency of 39.9% at 1250 L/min for 1.0 µm PSL particles. It was found that at a water 

input of 0.8 mL/min the efficiency reduced to 79.3% as compared to 86% at an input flow 

rate of 1.6 mL/min for 2 µm size PSL. 
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NOMENCLATURE 

A  coefficient 

B  coefficient 

C  concentration 

Caerosol  concentration of aerosol sample 

Ccorrected concentration of sample corrected for normalized volume of water 

                        collected 

Chydrosol concentration of hydrosol sample 

Creference concentration of reference sample 

Cwallloss  concentration of wall loss sample 

F  fraction of full-scale response 

Fwater  normalized correction factor for volume of water collected 

ηAA  aerosol-to-aerosol collection efficiency 

ηAH  aerosol-to-hydrosol collection efficiency 

AHη   average aerosol-to-hydrosol collection efficiency 

minitial  initial mass of ethyl acetate sample 

mfinal  final mass of ethyl acetate sample 

Pstd  atmospheric pressure 

Q  air flowrate 

Qstandard air flowrate as measured at standard atmospheric conditions 

R  fluorometric reading 

ρethylacetate density of ethyl acetate 

t  time 

V  volume of ethyl acetate 

Vinitial  initial volume of ethyl acetate 

iwaterV   volume of water collected for individual sample 

waterV   average volume of water collected over all samples 

WL  wall-loss
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INTRODUCTION 

 

The capability for real-time detection of airborne pathogens and toxins is necessary for 

the protection of military personnel and critical public environments (e.g., subways, 

sporting events, government buildings).  Devices for near real-time detection and 

identification of airborne pathogens have been developed in which an aerosol sample 

and collection system is interfaced with a rapid biological particle detector/analyzer.  

Most detection technologies require that the sample be delivered in the form of a liquid 

suspension (hydrosol) at relatively low flow rates on the order of a few mL/min.  

Furthermore, as the detectors typically require many hundreds or thousands of particles 

in order to make a positive identification, a large volume flow rate of air is required in 

order to provide timely detection of an aerosolized bioaerosol agent. 

 

One device used for rapid collection of aerosol particles and subsequent delivery of the 

particles in a concentrated hydrosol state is the wetted-wall sampling cyclone.  White et 

al. (1975) developed such a sampling cyclone for collection of bioaerosols.  Further 

refinements were made by Moncla (2004).  The modified White and Moncla cyclones 

operate at an air-sampling rate of approximately 900 L/min where the particles in the 

sampled air are transferred into a continuous liquid sample at the rate of 1 mL/min for 

confirmatory analysis and identification. It is necessary that the cyclone efficiently 

collect particles in the range of 1 to 10 µm aerodynamic diameter, a range identified by 

the military as the most likely to encompass threat agents. 

 

Preliminary performance characterizations have been completed on the above two 

wetted-wall cyclone designs. However, there exists problems like water bypass and 

_______________ 
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recirculation ring which have negative effects on the cyclone performance. In this study, 

we present an improved wetted-wall cyclone, which has been modified from the existing 

designs, both physically and by its means of operation. The present study reports the 

evaluation of the efficiency and time constant of the modified cyclone for mono-disperse 

aerosol particles generated using Polystyrene Latex solutions for different particle sizes. 

The modified cyclone is compared with the modified White-type cyclone for its 

performance. Furthermore, efficiency tests were run under off design airflow and water 

inflow conditions to see the effects on the cyclone performance. 
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DESIGN AND THEORY  

 

Two wetted-wall aerosol collection cyclones have been studied and preliminary 

performance characterizations have been completed. The first one known as the 

modified White-type cyclone (Figure 1) uses a water injection port and operates at 

approximately 900 L/min. This cyclone was part of a stand-alone unit. The second 

design which is a prototype design of the new wetted-wall cyclone, the AAC cyclone 

(Figure 2), uses an air-blast atomizer for injection of the water. Preliminary aerosol 

experiments have shown that AAC has a collection efficiency of around 80% for 2 µm 

AD PSL particles and a cut-point particle size of 1.5µm AD at a flow rate of 900 L/min. 

 

 

 

 
 

Figure 1.  Sectional view of White-type cyclone.  
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Figure 2.  Sectional view of AAC cyclone (Moncla 2004). 

 

Liquid Recirculation Ring and Water Bypass 

Two significant liquid sample problems have been observed in each of the cyclone 

designs described above: 

Liquid bypass (Figure 3 and Figure 4) in which the hydrosol sample was carried out of 

the cyclone in the air exhaust line and  

The presence of a liquid recirculation ring at the skimmer location (Figure 5). 

 

EDM Inlet 

Air 

Water 

Compressed Air 

Air 
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Figure 3.  Experimental set-up of White-type cyclone. 

 

 
 

Figure 4.  Water bypass on the White-type cyclone. 
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Figure 5.  Liquid recirculation ring on the White-type cyclone. 

 

 

The loss of sample, due to water bypass, reduced the collection efficiency since some of 

the hydrosol containing particles bypassed the cyclone. The water bypass also caused 

corrosion of the blower which resulted in reduced blower life and increased chances of 

accident. The water bypass was evident from the presence of a white powdery substance 

present on the blower provided by the Army (Figure 6). The second problem of the 

recirculation ring affected the cyclone time response as well as potentially lowered the 

collection efficiency.  

 

 

 

 

 

 

Recirculation ring 



 

 

7 

                      
 

Figure 6.  Corroded blower due to water bypass. 

 

 

Time response was important from the point of view of detecting the presence of any 

airborne pathogens and toxins present in the environment. A lower time constant allows 

for early detection of the particles in the atmosphere. The presence of the liquid 

recirculation ring had a negative effect on the time constant since it prevented the water 

from being collected on the outlet hydrosol port. Also, visualization studies have shown 

that the ring was responsible for water bypass as the slightest bump can “short circuit” 

the water past the outlet skimmer. 

 

All of the previous cyclone body designs had a divergent section just before the skimmer 

location (Figure 7). The half angle of this divergent section was around 15°. Due to this 

large angle of divergence flow separation occurred leading to the formation of a high 

velocity swirling liquid recirculation ring just upstream of the skimmer. The flow 

separation further prevented the water from going through the gap between the skimmer 

Corroded Area 
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and the cyclone body and resulted in an increased response time and a high probability 

of water bypass. This problem was solved by machining a cyclone body with no 

divergent section. This new cyclone body was a constant diameter cylinder which was 

152.4 mm (6.00 inches) long and 38.1 mm (1.5 inches) internal diameter with a 73.5 mm 

× 6.35 mm (2.5 inches × 0.25 inches) rectangular slot (Figure 8 and Figure 9). The new 

design prevented the flow separation and formation of the resulting recirculation ring. 

 

 
Figure 7.  Divergent section on modified White-type cyclone body. 

 

 

 

 

 

 

 

 

 

Divergent Section 
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Figure 8.  New cyclone body design with no divergent section. 

 

 

 
Figure 9.  Modified acrylic cyclone assembly with rapid-prototyped inlet. 

 

No Divergent section 
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To eliminate the problem of water bypass, a series of skimmers were machined with 

varying gaps between the cyclone body and skimmer. It was found that for a gap of two 

and a half (2.5) thousands of an inch between the cyclone body and the skimmer (a 

difference of 0.127 mm (0.005 inches) between the diameters) there is negligible bypass. 

Tests were run using different orientations of the cyclone, different air flow rates, and 

different water input rates to see the effect on water bypass. The skimmer for the new 

cyclone had a nose which helped in reducing the water bypass. Also, a divergent section 

at the rear-end of the skimmer helped in pressure recovery.  

 

Modified Cyclone Body 

After solving these two problems the next step of the study was to design a new cyclone 

which has a high aerosol sample flow rate (1250 L/min) and which maintains constant 

cut-point with the White-type cyclone. The new cyclone body and the skimmer should 

prevent water bypass, minimize pressure drop, and should have better collection 

efficiency than the existing White-type cyclone. To attain a system which has the above 

properties the inlet of the cyclone body was made longer keeping the width of the slot 

the same. This inlet was made longer keeping in mind that the average velocity across 

the inlet has to be the same as the White-type cyclone so that the cut-point remains the 

same. The average velocity across the White-type cyclone was around 50 m/s for a flow 

rate of 900 L/min and inlet dimensions of 46.355 mm × 6.35 mm (1.825 inchex × 0.25 

inches). Knowing the desired flow rate (1250 L/min), dimensions of the new inlet slot 

63.5 mm × 6.35 mm (2.5 inches × 0.25 inches) were calculated.   

 

To reduce the pressure drop across the cyclone, the body diameter was increased from 

28.575 mm (1.125 inches) to 38.1 mm (1.5 inches) and necessary changes were made to 

the vortex finder thickness and length so that the cut-point was not affected. The Stokes 

number is defined as: 
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C

tk L
U

S 0τ=         [1] 

where 

tkS  is the stokes number 

τ  is the relaxation time 

0U  is the velocity 

CL  is the characteristic length (in this case the half-width of inlet slot and distance 

between the vortex finder and inlet). 

 

According to the above formula, for the same relaxation time and average velocity the 

half width should be same to have same stokes number. Hence, when designing the new 

cyclone, inlet slot width and distance between the vortex finder and inlet slot were 

maintained in the same ratio as the White type cyclone to have the same cut-point. 

 

Water Injection Techniques 

Preliminary visualization studies indicate that the single hole used for water injection in 

the white type cyclone does not allow the injected water to cover the entire inlet area. To 

overcome this problem, different methods to inject water were employed to have a better 

and uniform wetting of the entire inlet slot.  The different kinds of water injection 

techniques used are as follows: 

AAC 2.0 Cyclone  

This design employed an inlet with an integrated air-blast atomizer and was fabricated 

using a rapid-prototype machine (Figure 10).  The inlet consisted of an integrated 

atomizer with two needles placed at an angle of -15 degrees (liquid needle of gage 30) 

and -65 degrees (air-blast needle of gage 20) from the horizontal (i.e. downward). 

Compressed air was supplied through the air needle at a pressure of 34.5 kPa (5psig). A 

rough estimate based on Ingebo and Foster’s equation for cross current breakup in an 
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air-blast atomizer under the above mentioned conditions results in a 40µm mean drop 

size (Lefebvre, 1989). It was seen that this rapid prototyped inlet was porous and 

subjected to air leaks when under vacuum. In addition, it was found out that the air-blast 

atomizer did not appear to provide optimum wetting at the impaction zone on the 

cyclone wall.  The latest test version of the 1250 L/min cyclone, AAC 2.1a (Figure 11), 

has the same nominal dimensions as the earlier version, but the inlet was replaced with a 

new design fabricated with a cast urethane, eliminating the problem of porosity and 

allowing for different water injection approaches to be compared.  

 

 

 

                     
Figure 10.  Integrated air-blast atomizer and inlet for AAC2.0 cyclone. 

 

 

 

AAC 2.1a Cyclone  

The air-blast atomizer for this inlet was of the form of a cylindrical insert housing the 

liquid (30 gage) and air-blast (20 gage) needles as shown in Figure 11.  The needles 

were held in fixed position relative to one another where the liquid injection needle was 

maintained at an angle of zero degrees with respect to the horizontal and the air-blast 

needle was fixed at -45 degrees with respect to the horizontal (i.e. half downward).  The 

Cyclone Inlet 
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air-blast atomizer position was varied over different elevations with respect to the 

cyclone inlet plane, and from visualization studies, an optimum distance of 3.25” above 

the cyclone inlet was selected. Compressed air was supplied at a pressure of 82.8 kPa 

(12psi).  It was found out that at this pressure the water spray uniformly covers the inlet 

slot and hence more effectively washes the particles from the cyclone body as compared 

to when compressed air was supplied at a pressure of 34.5 kPa (5 psig) for AAC2.0 

cyclone. 

 

 

 

 
Figure 11.  Inlet with homemade air-blast atomizer for AAC2.1a cyclone. 

 

 

 

AAC 2.1b Cyclone  

A needle spray bar with four holes along the length of the needle was made (Precision 

MicroFab, Severna Park, MD) and placed transverse to the flow just above of the throat 

section of the cyclone inlet (Figure 12 and Figure 13) at the centre of inlet slot. The 

Air-blast Atomizer 
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height of the needle from the slot surface was 38.1 mm (1.5 inch). The holes were 

uniformly spaced and were 0.1016 mm (0.004 inch) in diameter each. The major 

advantage of using such a needle for injecting water was that it eliminated the need of an 

extra air supply pump. However, it was seen that the water coming out of the holes was 

not able to completely cover the impaction region of the inlet. Moreover, there was 

always a risk of needle holes getting plugged by a small speck of dust because of the 

small diameter holes. The salt remaining after the TWEEN 20 solution evaporated also 

caused plugging of the needle spray bar. 

 

 

 

 
Figure 12.  Inlet with needle spray-bar for AAC2.1b cyclone. 
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Figure 13.  Four-hole needle used for AAC2.1b cyclone. 

 

 

 

AAC 2.1c Cyclone  

A spray bar manifold was made (Small Parts Inc., Miami Lakes, FL) which had the same 

working principle as the four-hole spray bar except that the water was injected in a 

direction perpendicular to the air flow (Figure 14 and Figure 15). The manifold had four 

thick walled capillaries each of diameter 0.127 mm (0.005 inch) and a liquid reservoir at 

the back of these capillaries (Figure 15). Four equally spaced holes were drilled along 

the length of the slot on one of the inlets at a height of 6.35 mm (0.25 inch) from the 

inlet flange. The manifold tubes were made to slide into these holes such that the tubes 

just protruded out of the inside inlet wall. The manifolds behaved similar to the spray bar 

needles and the problem of plugging of holes due to dust or evaporation of TWEEN 20 

was also observed. Since these can be placed outside the inlet, a heater coil can be 

placed on its surface and water can be prevented from freezing when operated under 

cold conditions. 
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Figure 14.  Inlet with spray-bar manifold for AAC2.1c cyclone. 

 

 

 

 
Figure 15.  Spray-bar manifold used for AAC2.1c cyclone. 

AAC2.1d Cyclone  

This method of water injection was same as the method employed by the modified white 

type cyclone to inject water. A single hole of diameter 1.143 mm (0.045 inch) was 
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drilled on one of the inlets (Fig 16). The location of the port for water injection was 

approximately 3.175 mm (0.125 mm) above the cyclone entrance and at a longitudinal 

distance of approximately 13.462 mm (0.53 inch) from the front end of the cyclone inlet 

slot, corresponding to the same proportional location of the single hole water injection 

point on the white cyclone. Since the inlet length dimension of the new cyclone is much 

greater than the white type cyclone, it was seen that single hole injection method for the 

new design was very ineffective in washing the particles deposited on the cyclone body.  

AAC 2.2 Cyclone    

The test cyclone AAC 2.1 was intended for use as a rapid-modification and test device, 

but would not be suitable as a deliverable unit or for heat transfer experiments due to 

size and materials.  Accordingly, a new design of the basic 1250 L/min cyclone was 

generated.  This unit, AAC 2.2, was fabricated of cast aluminum and has a cyclone body 

and inlet as integrated components.  A concern in the use of cast aluminum for the 

cyclone body was that surface finish and material may reduce the wetting characteristics 

and thus hydrosol collection efficiency.  To prevent wall losses, AAC 2.2 has a stainless 

steel tube insert glued into the aluminum cyclone body to provide a polished inner 

surface.  The use of stainless tubing for the cyclone internal diameter required a 

reduction in cyclone body diameter from 38.1 mm (1.5 inch) to 34.798 mm (1.37 inch) 

to allow common tube sizes to be used. A schematic of AAC 2.2 is seen in figure 17 and 

Figure 18. 
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Figure 16.  Single hole inlet for AAC2.1d cyclone. 

 

 

 

 
 

Figure 17.  Solid model of AAC2.2 cyclone. 

 

Hole for water injection 
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Figure 18.  Sectioned view of AAC2.2 cyclone. 
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EXPERIMENTAL PROCEDURE 

 

Test Apparatus  

Particles were introduced into the air stream in the form of an atomized particle/water 

suspension using a Collision nebulizer (Models CN60 (24 jet), BGI, Inc. Waltham, MA). 

The liquid atomized in the nebulizer contained a dilute suspension of monodisperse 

polystyrene latex particles (PSL) which were introduced into the wind tunnel along with 

HEPA filtered drying air (Figure 19). The test aerosol was then passed through an air 

blender (Blender Products, Inc. Denver, CO), which uniformly distributes the aerosol 

over the duct leading to the cyclone inlet.  Upon exit from the air blender, the aerosol 

flow was then passed through a flow-straightener to remove vorticity introduced by the 

air blender.  

 

The air flow rate was measured with a Laminar Flow Element (CME, Davenport, IA) 

connected between the blower and cyclone exhaust. Pressure was measured upstream of 

the LFE (P3), and across the LFE (P4) to obtain the flow rate from a calibration chart 

provided by the supplier. The upstream pressure(P1) was measured with a Magnehelic 

pressure gage (Dwyer, Michigan City, IN) whereas the differential pressure across the 

LFE (P4) was measured with an inclined manometer (Dwyer, Michigan City, IN).Two 

blowers (Ametek model 116636 and 150092, Paoli, PA) connected in series provided the 

air flow. The liquid flow into the cyclone was controlled by a peristaltic pump 

(STEPDOS Model No. 100527, KNF flodos) while the hydrosol sample was recovered 

from the cyclone by a metered dose diaphragm pump (Model No. 3386, Variable Flow 

Mini-Pump, Fisher Scientific). Two pressure taps, one upstream of the system (P1) and 

one downstream of the cyclone (P2) were used to measure the pressure drop across the 

cyclone. These pressures were measured using Magnehelic pressure gages (Dwyer, 

Michigan City, IN). The air-blast atomizer was attached to the cyclone inlet and the air 

needle of the atomizer was operated at 82.8 kPa (12 psig) for the final design. The water 
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needle of the atomizer had a water inflow of 1.6 ml/min for most of the test runs.  The 

water injected into the cyclone was treated with a trace quantity of the surfactant 

TWEEN 20 (0.6% by volume).  Previous studies have shown that the recovery of 

particles can be significantly improved by use of surfactant (Moncla, 2004; Phan, 2002). 

 

 

 
 

Figure 19.  Schematic of test apparatus for aerosol performance evaluation of cyclones 

(Moncla, 2004). 

 

Aerosol-to-aerosol and aerosol-to-hydrosol efficiencies of the different cyclone 

configurations were measured for comparison.  The White type cyclone was considered 

as the reference and all the new cyclone designs were compared with the white cyclone. 

The White type cyclone was operated at a flow rate of approximately 900 L/min whereas 
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all the new cyclone designs were made to operate at 1250 L/min. The input hydrosol 

flow rate was set to 1.6 mL/min to get a nominal water outflow of 1 mL/min.  

 

A 24-jet Collison nebulizer (Models CN60 (24 jets), BGI, Inc. Waltham, MA) was used 

to generate monodisperse polystyrene particles (PSL) (Duke Scientific, Palo Alto, CA) 

of various sizes: 0.4 �m, 1 �m, 2 �m, 3 �m. Particles larger than 3 �m could not be 

atomized using the Collison nebulizer and hence for larger size particles, namely 5 �m 

and 10 �m single hole atomization was used to generate particles. The amount of PSL 

suspended in distilled water is limited by the concentration of PSL doublets in the 

aerosol, which is caused by two or more PSL occupying the same water droplet. This 

doublet no longer behaves as a particle of the same size. For the Collison nebulizer used 

in this study (Model CN60, BGI, INC., Waltham, MA) the limiting concentration is 

about 109particles/mL (May, 1973).  The 24-jet Collison nebulizer holds enough PSL 

suspension to run for 45 minutes without adjusting the height of the jets.  For shorter 

tests, it was desired to mix an individual suspension in the nebulizer jar, and use it for 

multiple runs and only change the suspension after one total hour of testing.  Because 

there was a change in the concentration of individual suspensions for different hourly 

runs, a new method was developed in which for every test the nebulizer was rinsed and a 

fresh suspension was added.  To insure that the concentration of each of these 

suspensions remained constant, a large batch of PSL suspension was made, from which 

each new test suspension was drawn.  The large batch is referred to as the “master 

solution” (Moncla, 2004).  The air pressure to the nebulizer was set at 138 kPa (20 psig).  

HEPA-filtered drying air was mixed with the spray from the nebulizer.  

 

To measure the aerosol-to-aerosol and aerosol-to-hydrosol efficiencies, tests were 

conducted with the cyclone being operated three times in the flow and the reference 

filter used two times. The blower speed was adjusted for every run to ensure that the 

desired flow rate (900 L/min for white cyclone and 1250 L/min for new cyclone 

configuration) was obtained.  In case of reference filter, sampling of PSL was done for a 
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total of 40 minutes.  At the end of 40 minutes, PSL supply was turned off and system 

was allowed to run for one more minute to ensure that all the particles in experimental 

setup goes to the reference filter. 

 

For a cyclone run, after the desired flow rate was established, compressed air supply, 

water inflow pump (1.6 mL/min) and hydrosol recovery pump were turned on and 

operated till steady-state was reached. The hydrosol recovery pump used was a 

diaphragm pump operating at 20.8 mL/min of water flow. The PSL was turned on after 

attaining steady-state and operated for a period of 40 minutes. At the end of 40 minutes, 

the nebulizer was shut off but the output hydrosol was collected for one more minute to 

clear the tubing of the PSL particles. A 203 mm × 254 mm (8 inch × 10 inch) glass fiber 

filter (Type A/E, Pall, East Hills, NY) was placed at the outlet of the cyclone to collect 

particles that were transmitted through the cyclone. The ratio of the average 

concentration of particles, collected at this filter, to the average concentration of particles 

collected on the reference filter gave the aerosol-to-aerosol transmission efficiency. 

 

Test Set-up for Larger Sized Particles (5 µm and 10 µm) 

A new setup was built for running larger size particles (5 µm and 10 µm). The 24-jet 

collision nebulizer was not able to atomize particles larger than 3µm diameter and hence 

a single-jet atomizer was used to atomize the larger sized particles. The atomizer was 

placed vertically on one end of the experimental setup. A PSL solution was made (30 

drops of PSL in 100 mL of distilled water) and pumped into the atomizer at a flow rate 

of 2 mL/min using a peristaltic pump (STEPDOS Model No. 100527, KNF flodos). 

Compressed dry air at 138 kPa (20 psig) was pumped through the air needle of the 

atomizer which atomized the liquid coming out of the water needle. 

 

The new setup had a tee splitting the main flow into two parts. This kind of setup made it 

possible to run both the cyclone and reference filter, simultaneously. The air flow was 
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measured by using two different LFE’s (CME, Davenport, IA) on either side of the 

setup. Ametek blowers (Ametek models 116636 and 150092, Paoli, PA) were used to 

provide the airflow through the cyclone on the right side and the reference on the left 

side. To check the repeatability of the test setup 3 tests were run with reference filters on 

the left and right side. It was seen that there was 10-12% difference on the fluorometer 

readings between the left and right side. For the same side, the difference was less than 

5% for the three runs on both sides.  

 

Test duration was 10 minutes and efficiency tests were run for AAC2.1a and the White-

type cyclone using 5µm and 10µm particles. The liquid sample was collected in a jar 

which was evaporated using a heat gun and soaked in ethyl acetate (5mL) for analysis. 

The reference filters were soaked in 60 mL of ethyl acetate and analyzed for 

fluorescence. 

 

PSL Analysis Procedure 

Preparing the Master Solution 

Solid PSL particles were added to distilled water to prepare the master solution which 

was used to generate the test aerosols. The PSL particle manufacturer (Duke Scientific, 

Palo Alto, CA) produces particles with an encapsulated fluorescent dye available in three 

different colors (red, green, and blue). The dye, when released from the PSL sphere by 

immersion in ethyl acetate was detectable by a fluorometer (Model FM109515, 

Quantech, Barnstead International, Dubuque, IA). A Collison nebulizer (Models CN60 

(24 jet), BGI, Inc. Waltham, MA) was used to generate the particles according to the 

procedure described above.  The concentration of PSL in the master solution was less 

than 109 particles/mL as suggested by May (1973) to ensure that no coagulation of 

particles occurred in the atomization process.  
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Aerosol and Hydrosol Filtering 

The particles, once generated by the Collison nebulizer, were mixed in the test aerosol 

delivery duct where they where then introduced to the cyclone inlet or a 203 mm × 254 

mm (8 inch × 10 inch) glass-fiber filter. The particles deposited on the cyclone body 

were recovered in the hydrosol sample, which was in turn filtered using a 25 mm 

diameter polycarbonate membrane filter (Isopore, Millipore, 0.6�m DTTP) for recovery 

of the particles.  

Fluorescence 

Once collected on filters, the PSL particles were dissolved in ethyl acetate to release the 

fluorescent dye.  Results have showed that by dissolving the PSL in ethyl acetate, greater 

repeatability between like samples can be achieved. To maximize signal intensity, each 

filter was submerged in 80 ml of ethyl acetate for 203 mm × 254 mm (8 inch × 10 inch) 

glass-fiber filter and 20 ml ethyl acetate for 25 mm diameter polycarbonate membrane 

filter to soak the entire filter. Glass jars with lids were used to soak the 25 mm filter 

whereas the 8 inch × 10 inch filters were cut into 6 parts and then soaked in a plastic 

container with a threaded lid to prevent any evaporation of ethyl acetate. The filter and 

ethyl acetate solution was then left for 4-5 hours to ensure proper mixing. Following 

each of the cyclone tests, the inside of the cyclone was thoroughly cleaned. Cotton-

tipped applicators (Puritan Medical Products, Guilford, ME) soaked in ethyl acetate were 

used to collect PSL deposited on the interior surface. The fluorescent sample was then 

removed from the container and the dye concentration measured with the fluorometer.  

 

Fluorometric analysis was done using a fluorometer (Model FM109535, Quantech, 

Barnstead International Fluorometer (Dubuque, IA). The concentration of each of the 

samples was found by using 

 

Qt
RV

C =           [2] 
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Where  

C is the concentration, 

R is the average fluorometer reading adjusted for the background fluorescence, 

V is the volume of ethyl acetate,  

Q is the air flow rate, and 

t is the length of time during which the sample was collected. 

Liquid Particle/Oleic Acid Analysis Procedure 

Liquid particles were generated using oleic acid containing fluorescein. The particles 

were generated using a Vibrating Orifice Aerosol Generator (Model 345001, TSI, Inc., 

MN). The VOAG was generally useful for generating larger sized monodisperse liquid 

particles in the range from 5 µm to 20 µm. The analysis process for oleic acid particles 

was similar to the PSL analysis, except that the filters containing the collected particles 

were dissolved in a 50:50 mixture of isopropyl alcohol and distilled water to release the 

fluorescent tracer.  Filters containing oleic acid particles were allowed to soak for a 

minimum of four hours in a sealed container prior to analysis. Alcohol and water were 

used for analysis of oleic acid particles because oleic acid is soluble in isopropyl alcohol.  

 

It is known that fluorescein analysis is sensitive to pH levels (Kesavan et al. 2001) and in 

the present study a trace quantity (2 drops) of sodium hydroxide was added to each 

sample to ensure that the pH was greater than 9. The fluorescein concentration was given 

by: 

Qt
RV

C =           [3] 

where  

C is the concentration, 

R is the average fluorometer reading adjusted for the background fluorescence, 

V is the volume of ethyl acetate,  

Q is the air flow rate, and 

t is the length of time during which the sample was collected. 
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The concentration of each of the 203 mm × 254 mm glass fiber reference filters is 

averaged together to give Creference.  The concentration of the hydrosol filters, Chydrosol, the 

outlet filters, Caerosol, and the recovery swab tips, Cwallloss, are then compared with the 

reference concentration to give the aerosol-to-hydrosol collection efficiency (ηAH), 

aerosol-to-aerosol collection efficiency (ηAA), and percent wall loss (WL), respectively. 

 

reference

hydrosol
AH C

C
=η          [4] 

 

reference

aerosol
AA C

C
−= 1η          [5] 

 

reference

wallloss

C
C

WL =           [6] 

 

Plots were made for the aerosol-to-hydrosol and aerosol-to-aerosol collection 

efficiencies as a function of the particle size. 

 

Time Response of the Cyclone 

“Dry start time response” and “wet start time response” tests were run with the White-

type cyclone and the AAC 2.1a cyclone to know how long it takes for the cyclone to 

collect and aspirate the hydrosol. It was called “dry start” because everything in the 

system was switched on at the same time before even steady-state condition was 

reached. This is the way the White-type cyclone was operated by the Army; hence this 

method was adopted for the tests performed for this study. For the “wet start” the whole 

system was brought into steady-state before the hydrosol sample was collected. The 

same test apparatus used for the aerosol-to-hydrosol transfer tests, described previously, 
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was used for this experiment.  The outlet filter was removed for these experiments.  The 

testing procedures follow (Moncla 2004): 

 

The air flow rate and liquid flow rate were set to their respective values of 900 L/min 

and 1.6 mL/min for the White-type cyclone and 1250 L/min and 1.6 mL/min for the new 

cyclone (AAC2.1a). Polystyrene latex spheres (PSL) (Duke Scientific, Palo Alto, CA) of 

2�m size were used in this evaluation. After the whole system was turned on, ten one-

minute samples were collected in sealable, glass sample jars followed by five 2-minute 

samples, four 3-minute samples, and two 4-minute samples.  The nebulizer was then 

turned off and three 1-minute samples were collected.  Each of the sample jars were 

weighed before and after collecting the hydrosol sample to measure the amount of water 

collected over each time interval.  

 

In case of a wet test, five one-minute samples were collected in sealable glass sample 

jars.  (Clean empty sample jars were weighed prior to testing.)  The nebulizer was then 

turned on.  Ten 1-minute samples were collected followed by five 2-minute samples, 

four 3-minute samples, and two 4-minute samples.  The nebulizer was then turned off 

and five 1-minute samples were collected.  Each of the sample jars were then weighed to 

measure the amount of water collected over each time interval. 

 

The hydrosol in the samples was allowed to evaporate using a heat gun so that only the 

PSL remained.  Once evaporated, 4 mL of ethyl acetate was added to each jar.  The jars 

were sealed and allowed to soak overnight so that the PSL dissolved in the ethyl acetate. 

Reference 203 mm × 254 mm glass fiber filters (Type A/E, Pall, East Hills, NY) were 

taken between each of the cyclone tests.  They were run for 40 minutes with aerosolized 

PSL, and another three minutes with the nebulizer turned off.  The reference filters were 

placed in 80 mL of ethyl acetate, sealed in containers with a lid to prevent evaporation 

and soaked overnight. 
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The concentration of the samples was corrected to reflect the amount of water that was 

collected each minute, as this value was not steady.  The amount of water was found 

from weighing the jars as the samples were collected.  These values were then 

normalized with the average liquid flow rate. 

 

water

water
water V

V
F i=           [7] 

 

Fwater is the normalized volume of water collected for each sample, Vwater is the volume 

of water collected for each sample period, and waterV  is the average volume of water 

collected per minute. 

 

The corrected concentration (Ccorrected) for each sample was then the result of dividing by 

the normalized water correction factor. 

 

water
corrected F

C
C =          [8] 

 

Once the concentration of each of the samples and reference filters was determined, the 

samples were compared individually to the average value of the concentration of the 

reference filters to find the aerosol-to-hydrosol collection efficiency of the cyclone at 

each time, ηAH. 

 

reference

corrected
AH C

C
=η          [9] 
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A plot of the aerosol-to-hydrosol collection efficiency as a function of time was then 

constructed in order to determine the time constant of the initial response and final decay 

of the cyclones. 

 

For the initial response of the system, the fraction of the full-scale (F) for each sample 

was first found according to: 

 

AH

AHF
η
η

=           [10] 

 

where AHη  is the average aerosol-to-hydrosol collection efficiency over all of the 

samples near the full-scale collection capability of the cyclone. 

 

For each test of a cyclone, the first five samples following the start of the PSL flow were 

used to evaluate the initial response.  These values were then averaged together and a 

curve was fit using Microsoft Excel.  The equation for this curve is: 

 

BAt
F

+
−=

1
1

1          [11] 

 

where the constants A and B are found by optimizing the curve fit.  The time at which 

63% of the full-scale collection efficiency is realized (t) can then be calculated using 

Equation [10] and the values of A and B.  The time response of each of the cyclones was 

corrected for the range of collection efficiency by multiplying by the instantaneous 

aerosol-to-hydrosol collection efficiency at each time interval. 

 

The time constant for the decay of the cyclone once the aerosol challenge was removed 

was found using: 
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BAt
F

+
=

1
1

          [12] 

 

and the same techniques for the initial response were followed.
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RESULTS AND DISCUSSION 

 

Aerosol-to-Hydrosol and Aerosol-to-Aerosol Performance 

The steady-state aerosol-to-hydrosol collection efficiencies for various cyclone designs 

were determined for PSL particles from 0.4 µm to 10 µm.  The steady-state efficiency 

was determined by first bringing the cyclone air and liquid flow rates to constant value 

(1250 L/min and 1.6 mL/min for the new cyclone design and 900 L/min and 1.6 mL/min 

for the White cyclone, respectively) prior to introduction of the test aerosol.  The air and 

liquid flow rates were then maintained at the operational values throughout the duration 

of the test.  The aerosol-to-hydrosol efficiency was defined as the fraction of particles of 

a given size introduced at the cyclone inlet that were recovered in the collected hydrosol 

sample. Additionally, the ‘aerosol-to-aerosol’ efficiency was determined from the 

fraction of total particles recovered from a filter placed at the cyclone exhaust.  Different 

methods of water injection into the new cyclone body were tested to compare the 

performance of the various designs and to come up with the best suitable design which 

had no recirculation ring, negligible bypass, lower pressure drop and relatively higher 

aerosol-to-hydrosol and aerosol-to-aerosol collection efficiencies. The results obtained 

using the above cyclone designs are shown below. 

Modified White-Type Cyclone 

 The steady-state efficiency of the modified White cyclone at an air flow rate of 900 

L/min and a liquid flow rate of 1.6 mL/min was determined according to the procedure 

described above for testing of various AAC cyclones.  Water bypass at the skimmer was 

observed in most of the runs (on an average of four out of every five runs).  The steady-

state efficiency was determined from only those tests in which bypass did not occur or 

very little bypass occurred, and thus represented the maximum possible efficiency of the 
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White cyclone for the given operational conditions.  The results are seen in Figure 20 

and Figure 21.   
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Figure 20.  Steady-state aerosol-hydrosol efficiency for modified White cyclone at an air 

flow rate of 900 L/min and a liquid input rate of 1.6 mL/min.  
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Figure 21.  Steady-state aerosol-aerosol efficiency for JBPDS cyclone at an air flow rate 

of 900 L/min and a liquid input rate of 1.6 mL/min.  

 

 

 

AAC 2.1b and AAC2.1c Cyclone 

Figures 22 through 25 show the aerosol-to-hydrosol and aerosol-to aerosol collection 

efficiencies of the two configurations. Both configurations have the same working 

principle. The only difference being the direction in which the water spray from the 

spray bar comes out. The efficiencies of the spray bars (78% and 78.5% aerosol-

hydrosol efficiency for 2 µm PSL) were comparable to the air-blast atomizer cyclone. 

However, the problem of holes becoming plugged on the needle and manifold, due to the 

salt remaining after evaporation of the TWEEN 20 solution, makes it difficult to use. 
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Figure 22.  Steady-state aerosol-hydrosol efficiency for AAC2.1b cyclone at an air flow 

rate of 1250 L/min and a liquid input rate of 1.6 mL/min.  
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Figure 23.  Steady-state aerosol-aerosol efficiency for AAC2.1b cyclone at an air flow 

rate of 1250 L/min and a liquid input rate of 1.6 mL/min.  
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Figure 24.  Steady-state aerosol-hydrosol efficiency for AAC2.1c cyclone at an air flow 

rate of 1250 L/min and a liquid input rate of 1.6 mL/min.  
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Figure 25.  Steady-state aerosol-aerosol efficiency for AAC2.1c cyclone at an air flow 

rate of 1250 L/min and a liquid input rate of 1.6 mL/min.  

 

 

AAC 2.1d Cyclone 

Figures 26 and 27 show the results obtained using single-hole injection method which 

was similar to the method used by the modified White-type cyclone for water injection. 

It was seen that the efficiency numbers were less compared to other techniques used for 

injecting water. Visualization studies show that a single rivulet of water can be seen 

swirling around the body which was ineffective in washing the entire impaction zone. 

Also, it was observed that the position of this rivulet was not constant which was 

responsible for a large range of error bars.  This was evident from the cyclone body 

losses recovered at the conclusion of each test for single injection which indicated that 
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approximately an additional 12% of the particles are recovered from the cyclone body 

when using single-hole water injection as compared to less than 2% when spray 

atomization was used to inject the water.  
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Figure 26.  Steady-state aerosol-hydrosol efficiency for AAC2.1d cyclone at an air flow 

rate of 1250 L/min and a liquid input rate of 1.6 mL/min.  
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Figure 27.  Steady-state aerosol-aerosol efficiency for AAC2.1d cyclone at an air flow 

rate of 1250 L/min and a liquid input rate of 1.6 mL/min.  

 

 

AAC 2.0 Cyclone 

This is the new cyclone and inlet with an integrated air-blast atomizer and fabricated 

using a rapid-prototype machine. Figures 28 and 29 show the efficiency results obtained. 

Visualization studies show that the fixed angle of air-blast atomizer did not appear to 

provide optimum wetting at the impaction zone on the cyclone wall.  This is evident by 

the lower efficiency data obtained (76% aerosol-hydrosol efficiency for 2 µm PSL) 

compared to the efficiency obtained for the latest design, AAC2.1a (87% aerosol-

hydrosol efficiency for 2 µm PSL).  The aerosol-to-hydrosol efficiency curve shows that 
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the cut-point is around 1.4 �m whereas the aerosol-aerosol curve shows that the cut-

point is approximately 1 �m.  
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Figure 28.  Steady-state aerosol-hydrosol efficiency for AAC2.0 cyclone at an air flow 

rate of 1250 L/min and a liquid input rate of 1.6 mL/min.  
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Figure 29.  Steady-state aerosol-aerosol efficiency for AAC2.0 cyclone at an air flow 

rate of 1250 L/min and a liquid input rate of 1.6 mL/min.  

 

 

AAC 2.1a Cyclone 

Efficiency tests were run using PSL particles to see the effect of the location of the air-

blast atomizer on the efficiency (Figure 30 and Figure 31). The particle sizes used were 

0.4 �m, 1 �m, 2 �m, 3 �m, 5.0 �m, and 10.0 �m. It was seen that when the air-blast 

atomizer was closer to the inlet, the efficiency was less compared to when it was at a 

certain height. This was clear from the visualization studies which show that when 

placed closer to the inlet the water spray was not able to cover the entire impaction zone; 

hence its capability to wash away the particles was reduced. When a 2um PSL was run 

with the air-blast atomizer at 3.5 inches high, the A-H efficiency was 86% whereas when 
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the atomizer was kept at 1.25 inches high the efficiency was 68%. The same PSL 

solution was used for these tests. 
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Figure 30.  Steady-state aerosol-hydrosol efficiency for AAC2.1a cyclone at an air flow 

rate of 1250 L/min and a liquid input rate of 1.6 mL/min.  
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Figure 31.  Steady-state aerosol-aerosol efficiency for AAC2.1a cyclone at an air flow 

rate of 1250 L/min and a liquid input rate of 1.6 mL/min.  

 

Qualitatively and quantitatively, the air-blast atomization technique appeared to produce 

the most uniform coverage of water film at the impaction zone of the cyclone as 

compared to all other designs.  It was also evident from the good efficiency data and 

lower range of error bars. Tests using larger size PSL particles (5.0 �m and 10.0 �m) 

were further conducted on the AAC2.1a and modified White-type cyclone to compare 

the performance of the two designs. While an efficiency of around 87% was obtained for 

the AAC2.1A cyclone for 2 �m PSL, it was seen that for single-hole injection the 

efficiency numbers were low.  
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Time Response of the Cyclone 

Time response tests were run for the modified White-type cyclone and the AAC 2.1a 

cyclone. Two types of time constant tests were run: “dry time constant test” and “wet 

time constant test”.  In a dry start the cyclone and the test aerosol were started 

simultaneously with no pre-wetting of the cyclone interior surface.  This is the way the 

White-type cyclone is operated by the Army; hence this method of operation was 

studied.  Figures 32 and 33 show the results obtained for both cyclones.  The time 

constant to recognize a signal was found to be 1 minute and 0.5 minutes for White 

cyclone and AAC2.1a, respectively, and the time constant for the cyclone to clear itself, 

once a challenge is no longer present, is 1.4 minutes for the White cyclone and 1.5 

minutes for the AAC2.1a cyclone. 

 

In a wet start the cyclone was brought to steady-state condition for the air and liquid 

flow followed by the sudden introduction of the test aerosol at the cyclone inlet. Figures 

34 and 35 show the results obtained for the wet time constant tests. The time response to 

recognize the presence of a challenge is 2.5 minutes for the White cyclone and 1.3 

minutes for the AAC2.1a cyclone.  The response time for the decay of the signal is 1.1 

minutes and 1 minute for the White cyclone and AAC2.1a cyclone, respectively. 

 

For the modified White cyclone, liquid carryover was observed in most of the runs. The 

curves below have at least two runs where there was negligible bypass. This was done to 

determine the time constant when the cyclone operates at its maximum possible 

efficiency.  
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Figure 32. Dry time response of the AAC2.1a cyclone. 
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Figure 33. Dry time response of the modified White-type cyclone. 
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Figure 34. Wet time response of the AAC2.1a cyclone. 
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Figure 35. Wet time response of the modified White cyclone. 
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ERROR ANALYSIS 

 

The errors associated with the above results can be classified mainly into two types: 

systematic errors and precision errors. The systematic errors refer to the uncertainties 

associated with the way the experiment was conducted or from the experimental set up. 

All reasonable steps were taken to minimize systematic errors. The second major type of 

error can be quantified as a precision error. These errors are the result of the resolution to 

measure certain parameters that are important in determination of the experimental 

results. 

 

Systematic Errors 

One potential systematic error is the filtering of hydrosol sample. The hydrosol samples 

were filtered using a vacuum pump and a 25 mm diameter polycarbonate membrane 

filter (Isopore, Millipore, 0.6 �m DTTP) for recovery of the particles. Ideally, the 

hydrosol should be evaporated to prevent any loss of particles but due to the large 

volume of each sample it was practically difficult to evaporate the samples using a heat 

gun. To minimize the possibility of this potential error, the glass holder and the funnel 

into which the sample was drained down were rinsed with distilled water and the 

particles deposited on the edge of the filter holder were swiped away with cotton swabs 

soaked in ethyl acetate. 

 

Another type of systematic error would occur if the dishes used to soak the glass fiber 

filters in a solvent were not sufficiently clean.  The presence of residual fluorescence 

from previous tests could also have detrimental effects on the experimental results. As a 

result, a dish cleansing procedure was established for the PSL particles used.  
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In the case of solid PSL spheres, the solvent used to dissolve the spheres was ethyl 

acetate. In order to ensure that the containers are clean following the experiments, the 

container was rinsed twice with ethyl acetate followed by two rinses with isopropyl 

alcohol and then twice with distilled water to make sure that all the residual particles are 

washed away. The container was then allowed to air dry.  

 

To make sure that the experiments are not influenced by preexisting fluorescence in 

containers, a few trial containers that had been cleaned using the procedure described 

above were filled with a sample solution and its fluorescence was measured. It was seen 

that the background from preexisting fluorescence was not any higher than the 

background of distilled water or ethyl acetate and hence this method of cleaning the 

containers was considered in all the experiments. 

 

The same experimental set up and procedure was used for both the cyclones and the 

reference samples taken. Hence, it can be assumed that any other errors present in both 

the reference and cyclone cancel out and minimize their significance. 

 

Precision Error 

The precision errors result due to uncertainty associated with the resolution to measure 

certain parameters that are important in the determination of experimental results. 

Common examples being our ability to measure the volumetric flow rate, the volume of 

solvent the glass fiber filters are soaked in, and the precision of the fluorometer. These 

errors will propagate and cause an overall level of uncertainty for specific data points. 

The uncertainty will be evaluated based on the Kline & McClintock method.  

 

The Kline McClintock uncertainty analysis method is defined as: 
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where 

Rδ = Uncertainty associated with the calculation R. 

iX = Variable 

iXδ = Uncertainty associated with the variable iX  

 

 

The most important error is the uncertainty associated with the efficiency calculation. 

The uncertainty of the collection efficiency is determined below: 

 

refrefrefref
collection FTVQ

FTVQ

...

... expexpexpexp=η                                           [14] 

where  

Qexp and Qref are uncertainties associated with flow rate (5%) 

Vexp and Vref are uncertainties in the Repipet   Dispenser, Barnstead (0/1%) 

Qexp and Qref are uncertainties associated with the stop watch (0.1%) 

Qexp and Qref are uncertainties associated with the fluorometer value (5% to 12%) 

 

Using the Kline McClintock uncertainty analysis method, we get: 
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                               [16] 

 

The uncertainty of the fluorescence value varies with each experimental data point. The 

fluorescence value obtained from the Turner Quantech Digital filter fluorometer (Model 

FM109515, Quantech, Barnstead International, Dubuque, IA) was found to vary 

between 5% to 12%. The predicted uncertainty based on the Kline-McClintock analysis 

based on the range of fluorometer uncertainties shows the uncertainty for the efficiency 

calculation to lie between 10% and 18.38%. 
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SUMMARY AND CONCLUSIONS 

 

Aerosol-to-Hydrosol and Aerosol-to-Aerosol Performance 

A new cyclone design was considered which was better than the modified White-type 

cyclone which had problems like liquid carryover and water recirculation ring that 

inhibit its ability to consistently deliver liquid samples and increased the time response 

of the cyclone. For the White cyclone, the aerosol-aerosol transmission cut-point was 

found to be 0.8 µm and the aerosol-hydrosol collection efficiency cut-point was 1.3 µm 

without the effects of liquid carryover considered. However, carryover was seen in most 

of the runs.  

 

The new design had no liquid carryover and recirculation ring problems and the 

AAC2.1d, which used the same method of water injection as the modified White-type 

cyclone, had an aerosol-aerosol transmission efficiency cut-point of 1.1 µm and an 

aerosol-hydrosol collection efficiency cut-point of 1.5 µm.  

 

Different methods of liquid injection were studied and it was found that the air-blast 

atomizer technique worked the best with an aerosol-hydrosol efficiency of 86% and an 

aerosol-aerosol efficiency of 97.8% for 2µm PSL particles. Other water injection 

techniques like needle spray bar and manifold efficiency gave aerosol-hydrosol 

efficiencies of 78% and 78.5% and aerosol-aerosol transmission efficiencies of 97.9% 

and 96.8%, respectively. However, the high probability of the holes becoming plugged, 

due to a small speck of dust or evaporation of the TWEEN 20 solution, restricts their 

usage. Furthermore, visualization studies showed that the air-blast technique was able to 

completely cover the impaction zone whereas the spray-bar and single-hole methods of 

water injection did not cover the entire zone. This was evident from the high percentage 
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of wall losses observed (12%) in the case of the spray-bar technique as compared to the 

air-blast method where the wall losses were around 2%.  

Time Response of the Cyclone 

The time response of the White-type cyclone was shown to be 2.5 minutes for the wet 

start and 1 minute for the dry start. These values correspond to no liquid carryover 

conditions. The decay response for no liquid carryover is 1.1 minutes for wet start and 

1.2 minutes for dry start.  The elimination of the water recirculation ring and water 

bypass resulted in a reduced value of time response for the new design (AAC2.1a) 

leading to early detection of aerosols. The AAC2.1a has an initial response of 0.5 

minutes for dry start and 1.28 minutes for wet start and a decay response of 1.4 minutes 

for dry start and 1minute for wet start. There was no liquid carryover seen for any of the 

runs for AAC2.1a cyclone.  

 

Final Remarks 

In conclusion, a modification was presented of the current White-type cyclone design 

which has a higher sampling rate and maintains the same cut-point as the White cyclone. 

Different water injection techniques were studied and the one which uses an air-blast 

(AAC2.1a) to inject water was shown to be the most efficient in its working. Two major 

problems of water bypass and recirculation ring were eliminated which resulted in both a 

better aerosol-to-hydrosol collection efficiency across a range of particle sizes as well as 

reduced value of time response which makes early detection of airborne pathogens 

possible.  Furthermore, the new design reduces the pressure drop across the cyclone 

thereby reducing the power requirements of the system. 
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RECOMMENDATIONS FOR FUTURE WORK 

 

An alternative method for recovering particles in the form of a hydrosol was presented.  

Although the new design has no problem of water bypass it is still unclear as to what 

exactly causes the water bypass in the modified White-type cyclone. It was seen that the 

presence of fibers or debris tends to increase the occurrence of bypass. Also, the water 

build-up due to the recirculation ring increases the occurrence of water bypass by acting 

as a bridge between the cyclone body and the skimmer; hence a small disturbance can 

“short circuit” the water past the skimmer.  There is also a need to study the behavior of 

a cyclone with changing temperatures, rough motions, and inclinations, which are the 

actual conditions at which the cyclone operates. 

 

The water injection techniques used have the possibility of water droplets freezing under 

cold conditions.  Since the water is injected in the form of a fine spray for the AAC2.1a 

cyclone, the probability of freezing is even higher.  Hence, there is a need to do some 

heat transfer studies on the modified cyclone which could help prevent water from 

freezing under these conditions. A new blower should be selected or designed to reduce 

the power consumption of the system.   
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APPENDIX 

 

Table 1.  Aerosol-to-hydrosol collection and aerosol-aerosol transmission efficiencies of 

White-type cyclone. 

Particle 

Size(µm) AD(µm) 

A-H 

Efficiency(%) 

A-A 

Penetration(%) 

A-A 

Efficiency(%) 

0.4 0.409878031 2.4 93 7 

1 1.024695077 40.5 32.8 67.2 

2 2.049390153 76.3 1.4 98.6 

3 3.07408523 80.6 3 97 

5 5.123475383 44.43 2.15 97.85 

10 10.24695077 48 3.05 96.95 

 

 

 

Table 2.  Aerosol-to-hydrosol collection and aerosol-aerosol transmission efficiencies of 

AAC2.1a cyclone. 

Particle 

Size(µm) AD(µm) 

A-H 

Efficiency(%) 

A-A 

Penetration(%) 

A-A 

Efficiency(%) 

0.4 0.409878031 2.4 95.3 4.7 

1 1.024695077 39.9 46.3 53.7 

2 2.049390153 86 2.2 97.8 

3 3.07408523 93.1 0.3 99.7 

5 5.123475383 87.86 0.38 99.62 

10 10.24695077 90.9 0.06 99.94 
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Table 3.  Aerosol-to-hydrosol collection and aerosol-aerosol transmission efficiencies of 

AAC2.1b cyclone. 

Particle 

Size(µm) AD(µm) 

A-H 

Efficiency(%) 

A-A 

Penetration(%) 

A-A 

Efficiency(%) 

0.4 0.409878031 0.6 96 4 

1 1.024695077 33.7 48.7 51.3 

2 2.049390153 78 2.1 97.9 

3 3.07408523 91.7 1.8 98.2 

 

 

Table 4.  Aerosol-to-hydrosol collection and aerosol-aerosol transmission efficiencies of 

AAC2.1c cyclone. 

Particle 

Size(µm) AD(µm) 

A-H 

Efficiency(%) 

A-A 

Penetration(%) 

A-A 

Efficiency(%) 

0.4 0.409878031 0.7 94 6 

1 1.024695077 32.6 51.2 48.8 

2 2.049390153 78.5 3.2 96.8 

3 3.07408523 88.9 1.6 98.4 

 

 

Table 5.  Aerosol-to-hydrosol collection and aerosol-aerosol transmission efficiencies of 

AAC2.1d cyclone. 

Particle 

Size(µm) AD(µm) 

A-H 

Efficiency(%) 

A-A 

Penetration(%) 

A-A 

Efficiency(%) 

0.4 0.409878031 1.6 97 3 

1 1.024695077 33 52.6 47.4 

2 2.049390153 73.2 2.9 97.1 

3 3.07408523 79.7 2.2 97.8 
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Table 6.  Aerosol-to-hydrosol collection and aerosol-aerosol transmission efficiencies of 

AAC2.0 cyclone. 

Particle 

Size(µm) AD(µm) 

A-H 

Efficiency(%) 

A-A 

Penetration(%) 

A-A 

Efficiency(%) 

0.4 0.409878031 2.4 95.3 4.7 

1 1.024695077 34.5 47.8 52.2 

2 2.049390153 76 2.2 97.8 

3 3.07408523 82.3 0.3 99.7 

 

 

Table 7.  Time response of cyclones. 

Time Response Decay Response
(sec) (sec)

White-type (ca.2003)-Dry Start 59 72
White-type (ca.2003)-Wet Start 149 66
AAC2.1a -Dry start 28 84
AAC2.1a - Wet start 76.8 61  
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