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ABSTRACT 

 

GIS-based Multiple-scale Study of Rio Grande Wild Turkey Habitat in the Edwards 

Plateau of Texas. (August 2005) 

Humberto Lauro Perotto Baldiviezo, B.S., Universidad Mayor de San Simon, 

Cochabamba, Bolivia; 

M.S., Texas A&M University 

Chair of Advisory Committee: Dr. X. Ben Wu 

 

Rio Grande wild turkey (RGWT) abundance in portions of the Edwards Plateau has 

declined steadily since the late 1970s as compared to other areas of the Edwards Plateau 

where populations have exhibited no trend. The reasons for this decline remain unclear. 

Possible factors include changes in habitat, and increased human population. The overall 

objective of this study was to identify landscape changes and habitat characteristics that 

affect RGWT populations using spatial analysis and modeling at multiple spatial scales. 

Specific objectives for this study included the quantification of flood-induced landscape 

changes between 1972 and 1995 along the Medina River bottomlands and their impact 

on RGWT habitat, the quantification of landscape characteristics of stable and declining 

study sites in the Edwards Plateau, and the development and evaluation of a GIS-based 

habitat-suitability model for female RGWTs during the breeding season that will allow 

the assessment of the spatial distribution of adequate habitat in the Edwards Plateau.  



 iv

The analysis of the landscape characteristics along the North Prong Medina River 

due to flooding in 1978 had a negative impact on RGWT habitat. Changes in the spatial 

distribution of woody cover in the bottomlands and the removal of woody cover along 

riparian zones most likely limited habitat use and dispersal of RGWT along the North 

Prong Medina River. The analysis of landscape characteristics in sites with stable and 

declining of RGWTs populations showed that disturbance and a high proportion of 

woody cover were important factors influencing RGWT populations in areas where 

turkey numbers had declined. Landscape attributes were used as habitat variables to 

develop a habitat-suitability model for female RGWTs during the breeding season. The 

model performed well in characterizing high-suitability habitat for adult female RGWT 

during the breeding season in the study areas. The use of two scales relevant to RGWT 

provided important information about the high-suitability areas for female RGWT in 

stable and declining sites in the Edwards Plateau. 

 

 

 

 

 

  

 

 

 



 v

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To Vivian and Vivian, my life and my hope… 
To Pier Carlo, for being a great dad and friend… 
 

Para Vivian y Vivian, mi vida y mi esperanza… 
Para Pier Carlo, un gran papá y un gran amigo.... 

 

 



 vi

ACKNOWLEDGEMENTS 

 

I would like to express my most sincere appreciation to Dr. X. Ben Wu, my major 

professor. He is a role model as a researcher, as a professor, and as a person. He sets an 

example for life. His advice, friendship, support, and mentoring have been very 

instrumental to my personal and professional growth. I greatly appreciate Dr. Wu and his 

family for opening their doors to my family in countless occasions and making our lives 

here a great experience. I also would like to thank the members of my advisory 

committee: Dr. Fred E. Smeins, Dr. Markus J. Peterson and Dr. Nova J. Silvy, for their 

great knowledge and support to guide me through this greatly enriching experience. I 

would like to express my most sincere gratitude to Dr. Thomas Thurow and his family, 

for all these years of advice and guidance, who along with Dr. Wu, have been 

instrumental for my personal and professional development in my graduate programs. 

 Thanks also are due to the members of the Landscape Ecology Laboratory for 

their friendship and for providing a working environment to carry on my research: Dr. 

Paikho Rho, Dr. Rusty Feagin, Matt Simmons, Matt Berg, Feng Liu, and Cheng Yue. I 

would also like to thank people in the Department of Rangeland Ecology and 

Management: JoAnna Thornton, Judy and Bob Blaisdell, Stacy Ferrell, Cheryl Yeager, 

Will Shaw, Manhee Lee, Dr. Bradford Wilcox, Dr. Thomas Boutton, Dr. Urs Kreuter, 

Dr. Stephan Hatch, Dr. David Briske, Dr. Robert Knight, Dr. Douglas Loh, and all 

faculty and staff in the Department of Rangeland Ecology and Management for their 

amity.  



 vii

 I also thank the Sponsored Students Program, especially Dr. Violetta B. Cook, 

Nancy Barnes and Angela Sanchez, and all the sponsored students working with them 

for providing all the support and friendship during these seven years. Thanks to the 

Fulbright Program, the Tom Slick Fellowship, and the Springfield Award Programs for 

their support during my graduate program at Texas A&M University. 

 Thanks to all my friends through these 7 years. Special thanks to Kim Galindo 

and her family, Andres Salazar and his family, Deborah Cowman and Don Clark, 

Matthew, Carol and Sam Simmons, Guisselle Cedillo, Jose Gavinha, and those countless 

friends of Saturday volleyball. I would not be done if it weren’t for the coffee crew: 

Laban MacOpiyo, Laura Weber, Chen Yue, Negusse Kidane, and Emily Hollister.  I 

would like to give my special appreciation to Jody Schaap for his great friendship, 

charisma and all his help understanding wild turkey biology, and to Laura Weber, Chen 

Yue, Guisselle Cedillo, and Emily Hollister for their help in the final steps of my 

dissertation. 

 I want to show my deep gratitude, appreciation, and love to Vivian and Vivian, 

my wife and my daughter, whose permanent love, care, support, patience, and 

encouragement have helped me during all these years. I would also like to thank my 

family in law, Tito and Rosario, David and Ernesto for all their support and care for us. 

Finally, I would like to thank and acknowledge the greatest contributors in my life: my 

parents, Pier Carlo and Laura, and the rest of my family, Loretto, Natalia, Carla, Ornella, 

Giovanni and Laurita, for being the eternal source of inspiration. 

 



 viii

TABLE OF CONTENTS 

 
             Page 
 
ABSTRACT………………………………………………………………………    iii 
 
DEDICATION……………………………………………………………………     v 
 
ACKNOWLEDGEMENTS……………………………………………………....    vi 
 
TABLE OF CONTENTS…………………………………………………………    viii 
 
LIST OF FIGURES…………………………………………………………….…       x 
 
LIST OF TABLES………………………………………………………………..     xii 
 
CHAPTER 
 
 I INTRODUCTION……………………………………………………      1 
    
 II FLOODING-INDUCED LANDSCAPE CHANGES ALONG                        

THE NORTH PRONG MEDINA AND IMPACTS ON RIO  
  GRANDE WILD TURKEY HABITAT..……………………………      4 
 
   Introduction..…….……………………………………………..      4
   Study area………………………………………………………      8 
   Methods……………………….………………………………..      8 
    Bottomland analysis……………………………………...    10 
    Riparian zones analysis……………………….………….    11 
   Results…………………………….………………………….....    12 
    Bottomland…………..…………………………………...    12
    Riparian zones…………………………………………....    14 
   Discussion………………………………………………………    18 
 
 III COMPARISON OF LANDSCAPE CHARACTERISTICS AT               

SITES WITH STABLE AND DECLINING RIO GRANDE WILD 
TURKEY POPULATIONS IN THE EDWARDS PLATEAU OF 
TEXAS..……………………………………………………………...    26 

 
   Introduction..…….……………………………………………..    26
   Methods …………………………………………………..……    28 
    Study areas ……………….……………………………...        28  
    Data collection and analysis……………………….…….    30 



 ix

CHAPTER        Page 
 
   Results…………...……………………….…………………….    33 
   Discussion………………………………………………………    40 
 
 IV A GIS-BASED HABITAT SUITABILITY MODEL FOR RIO       

GRANDE WILD TURKEYS IN THE EDWARDS PLATEAU                  
OF TEXAS..………………..………………………………………...    46 

 
   Introduction..…….……………………………………………..    46 
   Methods……………………….………………………………..    49 
    Study areas………. ……………………………………...    49 
    Data collection……….……………………….………….    49 
    Habitat model development ……………………………..      51 
    Habitat-suitability model for nesting (cover)……..         52
    Habitat-suitability model for brood-rearing (cover)       55 
    Habitat-suitability model for brood-rearing (food)..       58 
   Habitat-suitability model execution…………………..…...       59 
   Habitat-suitability model evaluation…………………..…..       62 
   Results…………………………….………………………….....    63 
   Discussion……………………………………………………....    72 
 
 V SUMMARY AND CONCLUSIONS………………………………...      75 
 
   Impacts of flooding induced changes on Rio Grande wild   
   turkey habitat..…….…………………………………………….      75 

Landscape characteristics of stable and declining sites…………      76 
Habitat-suitability model for female Rio Grande wild turkeys…    78 

 
REFERENCES…………………………………………………………………...      80 
   
VITA……………………………………………………………………………...      94 

 
 
 
 
 



 x

LIST OF FIGURES 
 
 
FIGURE      Page 
 
    1.1 Number of Rio Grande wild turkeys observed per 100 km

2 
by                    

Texas Parks and Wildlife Department biologists during summer             
production surveys for Bandera, Kerr, and Real Counties, Texas,                   
and the remainder of the Edwards Plateau, 1975–2002………………….    2  

 
    2.1 Study area location. .……………………………………………….…….    9 
 
    2.2 Frequency distributions of woody cover metrics for the bottomlands                     

in 1972, 1984, and 1995 based on moving-window analysis ……………  13 
 
    2.3 Riparian zones’ woody-cover metrics by distance from stream                        

and stream order, in 1972, 1984, and 1995………………………………  16 
 
    2.4 Frequency distributions of patch shape index and patch density by                       

patch size in the bottomland areas of the North Prong Medina River                     
for 1972, 1984, and 1995.………………………………………………..  20 

 
    2.5 Proportion of bottomlands with different woody categories, and          

associated habitat suitability for Rio Grande wild turkey in 1972,               
1984, and 1995.…………………………………………………………..    22 

 
    3.1 Location of Rio Grande wild turkey study sites characterized                          

by stable and declining turkey abundance.………………………………  31 
 
    3.2 Frequency distributions of ecological sites in stable and                        

declining sites……………………………………………………………  33 
 
    3.3 Proportion of high relief terrain by study sites characterized by stable           

and declining Rio Grande wild turkey abundance………………………    34 
 
    3.4 Stream density by study sites characterized by stable and declining  
  Rio Grande wild turkey abundance..…………………………………  35 
 
    3.5 Woody cover and patch metrics for sampled areas in study sites,                     

50-m-stream buffers, and 50-m-stream buffer with no high relief                
terrain for study sites characterized by stable and declining Rio               
Grande wild turkey abundance………………………………………….  36 

 



 xi

 
FIGURE      Page 
 
    3.6 Proportion of space usable by RGWTs for study sites                      

characterized by stable and declining RGWT abundance ……………….    38 
 
    3.7 Proportion of woody cover by stream order for study sites              

characterized by stable and declining (RGWT) abundance..…………….  38 
 
    3.8 Proportion of disturbed areas for study sites characterized by                      

stable and declining Rio Grande wild turkey abundance.………………..  39 
 
    4.1 Study area location for the development and testing of a habitat-            

suitability model for RGWT in the Edwards Plateau of Texas ………….    50 
 
    4.2 Proportion of areas of different suitability categories in each                        

study site for each life-requisite component...……………………………  64 
 
    4.3 Habitat suitability model for site S1 for all life-requisite components                

and overall habitat suitability for RGWT..………………………………  65 
 
    4.4 Habitat suitability model for site S2 for all life-requisite components                

and overall habitat suitability for RGWT..………………………………  66 
 
    4.5 Habitat suitability model for site D3 for all life-requisite components                

and overall habitat suitability for RGWT..………………………………  67 
 
    4.6 Habitat suitability model for site D4 for all life-requisite components                

and overall habitat suitability for RGWT..………………………………  68 
 
    4.7 Proportion of high- and very high-suitability areas in female RGWT        

seasonal ranges in each study site compared by year for each life           
requisite component and overall habitat-suitability model..…………….  70 

 
    4.8 Proportion of high- and very high-suitability areas in female RGWT        

seasonal ranges by study site for life-requisite components and                 
overall habitat-suitability model at 550-ha and 3,500-ha scales….……..  71 

 
 



 xii

LIST OF TABLES 
 
 
TABLE      Page 
 
   4.1 Ratings of habitat suitability for nesting cover component ……………   53 
 
   4.2 Ratings of habitat suitability for the brood-rearing cover component…   57 
 
   4.3 Ratings of habitat suitability for the brood-rearing food component….   60 

 



 1

CHAPTER I 

INTRODUCTION 

 

The Rio Grande wild turkey (RGWT, Meleagris gallopavo intermedia) is a gregarious, 

nomadic bird (Glazener 1967, Beasom and Wilson 1992). Its native range includes 

Kansas, Oklahoma, Texas, northeastern New Mexico, and northern Mexico. The 

Edwards Plateau of Texas consists of several forest and range types traditionally 

considered excellent habitat for RGWTs (Beasom and Wilson 1992). However, data 

from the Texas Parks and Wildlife Department shows that RGWT abundance in portions 

of Bandera, Kerr, and Real counties has declined steadily since the late 1970s (Fig.1.1), 

as compared to other areas of the Edwards Plateau where populations have exhibited no 

trend (Schaap 2005). The reasons for this decline remain unclear. Possible factors 

include changes in habitat (Hubbard et al. 1999), increased human population (Beasom 

and Wilson 1992), decreased availability of foraging resources (Thogmartin 2001), 

predation, disease, and natural disturbance (Peterson et al. 2002). These factors could 

affect population dynamics, and thus are of fundamental concern to natural resource 

managers (Trani and Giles 1999). 

Several studies were conducted on RGWTs in Texas from the 1950s through the 

late 1970s. These efforts focused on nutrition, reproduction, and productivity (Thomas et 

al. 1966; Crockett 1973; Litton 1977; Beasom and Pattee 1978; Baker 1979). Over the  

__________ 

This dissertation follows the style and format of Landscape Ecology. 



 2

r  = -0.825 
P  = <0.0001 

0 

10 

20 

30 

19
78 

19
80 

19
82 

19
84

19
86

19
88

19
90

19
92

19
94

19
96

19
98 

20
00 

20
02

Year 

T
ur

ke
ys

 O
bs

er
ve

d 
pe

r 
10

0 
km

 2 Remainder of Edwards Plateau* 

Kerr, Real, and Bandera counties 

 

Figure. 1.1. Number of Rio Grande wild turkeys observed per 100 km
2 

–

e 

exas. 

st 25 years, few studies have been conducted on RGWTs in Texas or elsewhere 

(Peterson 1998), and no studies have addressed issues regarding the declining turkey 

abundance in the Edwards Plateau (M. Peterson, Texas A&M University,  personal 

communication). There is a need to generate reliable knowledge regarding landscape 

habitat characteristics and habitat use of RGWT in the Edwards Plateau. This is essential 

by Texas Parks 
and Wildlife Department biologists during summer production surveys for Bandera, 
Kerr, and Real Counties, Texas, and the remainder of the Edwards Plateau (EP), 1975
2002 (Schaap 2005). * Excludes counties in the EP with a mean value of less than 1 
turkey observed per 100 km²

 
including Taylor, Val Verde, Coke, Pecos, Kinney, 

Medina, Comal, Travis, Coleman, Burnet, Runnels, and Brewster counties. (Figur
reprinted with permission of Schaap J.N. 2005. Ranges, movements, and spatial 
distribution of radio-tagged Rio Grande wild turkeys in the Edwards Plateau of T
M.S. Thesis, Texas A&M University) 
 
 
la
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to the management and preservation of RGWT, especially in areas of the Edwards 

Plateau where its population numbers have been declining. 

 The overall objective of this study was to identify landscape changes and habitat 

characteristics that affect RGWT populations using spatial analysis and modeling at 

multiple-spatial scales. Specific objectives for this study included: 

1. Quantification of flood-induced landscape changes between 1972 and 1995 along the 

Medina River bottomlands and their impact on RGWT habitat (Chapter II). 

2. Quantification of landscape characteristics of stable and declining study sites and 

their implications in RGWT habitat in the Edwards Plateau (Chapter III). 

3. Development and evaluation of a GIS-based habitat-suitability model for RGWTs 

that will allow the assessment of the spatial distribution of adequate habitat in the 

Edwards Plateau (Chapter IV). 
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CHAPTER II 

FLOODING-INDUCED LANDSCAPE CHANGES ALONG THE NORTH 

PRONG MEDINA RIVER AND IMPACTS ON RIO GRANDE WILD TURKEY 

HABITAT 

 

Introduction 

 

Spatial and temporal habitat changes are critical to the distribution and abundance of 

wildlife (Fahrig 1997, 2001).  Changes in the type, size, and spatial arrangement of 

patches influence populations of avian species (Ambuel and Temple 1983; Estades 2001; 

Holmes and Sherry 2001; Saveraid et al. 2001; Stephens et al. 2003). Connectivity 

between habitat patches, and the presence and quality of dispersal routes, also influences 

avian numbers (Van Dorp and Opdam 1987). Changes in habitat structure also have 

been recognized as critical factors affecting the population dynamics of wild turkeys 

(Meleagris gallopavo) (Lindzey and Wanless 1973; Weinstein et al. 1995). 

Several studies have addressed the relationship between landscape-spatial 

structure, especially woody cover, and the abundance of eastern wild turkeys (M. g. 

silvestris). Research in Arkansas has shown that woody patch size is positively related to 

nesting success (Thogmartin 1999). Habitat factors such as topographic position, amount 

of edge, and patch type (hardwood and mixed-pine hardwood-forest patches) also affect 

wild turkey nesting success (Thogmartin and Schaeffer 2000; Thogmartin 2001). Studies 

in Mississippi have shown that habitat-use patterns are consistent for males and females 
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across spatial scales (Miller et al. 1999). Patch type (pine and hardwood-sawtimber 

patches) is key to wild turkey habitat use, and the presence of tall, mature-tree stands are 

critical for roosting habitat (Chamberlain et al. 2000). Lack of suitable roosting areas 

could limit turkey distribution. Furthermore, suitable roosts often are associated with 

drainage systems, which also are used by wild turkeys for nesting and dispersal (Palmer 

and Hurst 1995; Miller et al. 2000). 

Winter roosting habitat is particularly important to Rio Grande wild turkeys 

(RGWTs, M.g. intermedia) because it provides the “home base” for flocks during the 

winter (Haucke 1975). Roost-site preservation is essential for maintaining RGWT 

populations (Litton and Harwell 1995). Roosting sites are composed primarily of patches 

of large tall trees with low-growing brush both under the roost trees and along the 

approach to the roost. Such woody patches often are located near creeks, rivers, and 

intermittent or dry drainages. Several studies in Texas have recognized the importance of 

drainage systems and their relationship to suitable-roosting habitat for RGWTs (e.g. 

Thomas et al. 1966; Gore 1973; Litton 1977). Removal and/or disturbance of roosting 

sites could lead to a reduction in wild turkey numbers (Cook 1973b). Similar results 

regarding RGWT numbers and their relationship to streams and drainage networks were 

found in Kansas (Capel 1973; Hennen and Lutz 2001), Iowa (Wigal 1973), and Oregon 

(Keegan and Crawford 2000). Thus, management practices used for brush control or 

removal should take into account roosting sites as well as the maintenance of adequate 

stands of woody species to provide food and cover for wild turkeys along drainage 

systems (Walker 1949, 1950; Litton 1977). 
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The RGWT is a gregarious, nomadic bird (Glazener 1967; Beasom and Wilson 

1992). Its native range includes Kansas, Oklahoma, Texas, Northeastern New Mexico, 

and northern Mexico. It is thought that before European settlement there were 

approximately 3 million turkeys within their native range (Beasom and Wilson 1992). 

By the end of the nineteenth century, RGWT populations declined to approximately 

100,000 birds due to habitat changes and unregulated hunting. In 1880, the first efforts to 

restore populations of wild turkeys across its native range were established through the 

enactment of legislation aimed at the restoration of RGWT to their native range (Beasom 

and Wilson 1992). Restocking appears to have been one of the best strategies used in 

restoring wild turkey abundance. Most RGWT have been restocked from populations 

originating from remnant flocks in the Edwards Plateau and South Texas (Peterson et al. 

2002). 

 The Edwards Plateau consists of several woodland and savannah types 

traditionally considered excellent habitat for RGWTs (Beasom and Wilson 1992). 

However, data from the Texas Parks and Wildlife Department demonstrates that RGWT 

abundance in portions of Bandera, Kerr, and Real counties, with previously high 

numbers, has declined steadily since the late 1970s as compared to other areas of the 

Edwards Plateau where populations have exhibited no trend (Schaap 2005). The reasons 

for this decline remain unclear. Possible factors include changes in habitat (Hubbard et 

al. 1999), increased human population (Beasom and Wilson 1992), decreased 

availability of foraging resources (Thogmartin 2001), predation, disease, and natural 
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disturbance (Peterson et al. 2002). These factors could affect population dynamics, and 

thus are of fundamental concern to natural resource managers (Trani and Giles 1999). 

During the summer of 1978, remnants of tropical storm Amelia precipitated 

severe flooding along the Sabinal, Guadalupe, and Medina rivers, causing heavy loss of 

life and property. In less than 24 hours, more than 500 mm of rainfall fed the headwaters 

of the rivers and caused flashfloods. Massive, up to 1.80 m in diameter at breast height, 

bald cypress (Taxodium distichum) along riparian zones were pulled from the ground or 

snapped off (Bomar 1995). The flooded area corresponds with areas where wild turkey 

abundance has declined since the late 1970s. Thus, it is possible that landscape changes 

caused by this flood have contributed to the decline in RGWT abundance by altering the 

spatial configuration of woody cover suitable for roosting, breeding, and dispersal along 

the streams and bottomlands associated with the North Prong Medina River.  

The objective of this study was to quantify landscape changes that resulted from 

the flooding of 1978 along the North Prong Medina River and its tributaries to determine 

their potential impact on RGWT habitat. The hypotheses were that (1) the amount of 

woody cover decreased significantly near the streams due to the flood of 1978, and that 

(2) suitable habitat was fragmented and connectivity reduced, which resulted in 

decreased overall habitat suitability of the area for RGWTs. 
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Study area 

 

The study area consisted of the middle reaches of the North Prong Medina River near the 

boundary of Bandera and Kerr counties, Texas (Fig. 2.1). The upper reaches of the 

watershed are dominated by the Eckrant rock outcrop association which includes 

limestone derived shallow stony (undulating) or rocky (steep) clay soils (NRCS 2000).  

The bottomlands (<585 masl and <12% slope) are composed of 11 soil series, including 

deep loams, clay loams, or loams. Woody vegetation primarily consists of pecan (Carya 

illinoensis), Texas oak (Quercus buckleyi), shin oak (Q. havardii), post oak (Q. stellata), 

live oak (Q. virginiana), ashe juniper (Juniperus ashei), and bald cypress. Grasses 

include switchgrass (Panicum virgatum), bluestem (Andropogon spp.), gramas 

(Bouteloua spp.), Indiangrass (Sorghastrum nutans), curly mesquite (Hilaria belangeri), 

and buffalograss (Buchloe dactyloides) (Van Auken 1988; Randel 2003). The riparian 

zone forests (<200 m from streams) tend to be richer in woody species composition, and 

support trees having larger mean basal areas than other portions of the Edwards Plateau 

(Van Auken 1988; Armstrong et al. 1991).   

 

Methods 

 

Aerial photography from 1972 and 1984 and digital ortho-quadrangles from 1995 (1-m 

resolution) was classified into 3 categories (woody, non-woody, water) using an 

unsupervised classification in ERDAS 8.6. Overall classification accuracies were 
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Figure 2.1. Study area location. The dark grey areas correspond to the bottomland of the 
North Prong Medina River in Bandera and Real Counties. 
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 92% (1972), 93% (1984), and 93% (1995) (Congalton 1991). The analyses were 

performed at 2 spatial scales: The bottomlands of the North Prong Medina River and its 

tributaries, where the impact of flooding potentially extended; and in more detail, the 

riparian zones where roosting habitat typically was concentrated and the affects of 

flooding greatest. 

  

Bottomland analysis 

 

Bottomlands were defined based on a digital elevation model for the North Prong 

Medina River, as areas below 585 m altitude and with <12% slope. A 60-m buffer was 

added to include all bottomland water bodies, and a 200-m buffer was bottomland edge 

habitat. The bottomland section of the watershed had an area of 2,381 ha (21% of the 

watershed). A total of 70 km of stream was identified and classified into 24 first-order 

streams (35.1 km), 9 second-order streams (19 km), 2 third-order streams (13.1 km), and 

1 fourth-order stream (2.8 km). 

Using the bottomland-classified images (1975, 1984, and 1995), a moving-

window analysis (diameter 400 m, step 50 m) was performed for each time period (Rho 

2003). For each moving window, landscape metrics were calculated using Fragstats 

(McGarigal and Marks 1995). A set of variables was selected for quantifying changes in 

woody cover: percent woody cover, mean patch size (MPS), patch density (PD), edge 

density (ED), mean shape index (MSI), area-weighted mean shape index (AWMSI), 

mean nearest neighbor distance (MNN), and mean proximity index (MPI) (Gustafson et 

 



 11

al. 1994; McIntyre 1995).  Frequency distributions for each variable were calculated and 

compared them among years using the Kolmogorov-Smirnov Z goodness of fit test with 

a 0.05 level of significance. A total of 10,558 moving windows was used to build the 

frequency distributions. 

 

 Riparian zones analysis 

 

Using ArcView 3.2a (ESRI), streams were manually digitized based on aerial 

photography, and classified into stream orders. Within each stream order, samples with a 

length of 400 m were selected randomly. A total of 47 samples was analyzed: 18 first-

order, 15 second-order, 11 third-order, and 3 fourth-order streams. For each sample 50-

m buffers up to a length of 200 m were created, and the classified images were clipped 

based on the buffers. For each clipped image, landscape metrics that describe the spatial 

pattern of woody cover: percent woody cover, MPS, patch size standard deviation 

(PSSD), largest patch index (LPI), PD, ED, MNN, and MPI (Gustafson et al. 1994; 

McGarigal and Marks 1995; Lausch and Herzog 2002) were determined using 

FRAGSTATS. Based on these metrics, the differences in woody cover among 1972, 

1984, and 1995 for each stream order were compared using an analysis of variance, and 

their means were compared using Tukey’s W procedure with a significance level of 

0.05. 
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Results  

 

Bottomland  

 

The proportion of woody cover in the bottomland associated with the North Prong 

Medina River did not differ by year (Fig. 2.2). However, spatial distribution (MPS and 

PD) of woody cover was substantially different among years. Woody cover along the 

bottomland was distributed in small, high-density patches in 1972; while in 1984, woody 

patches were fewer but larger in size. In 1972, 48% of the bottomland had woody 

patches with a MPS of 0.01 ha, but in 1984, 37% of the bottomland had higher MPS 

values ranging between 0.03 and 0.05 ha. Woody-patch density decreased in range and 

number between 1972 (24 patches/ha, range 136.5) and 1984 (6 patches/ha, range 35.5). 

In 1995, frequency distributions of MPS and PD were intermediate to those of 1972 and 

1984. These data are consistent with the hypothesis the flood of 1978 eliminated many 

small patches in the bottomland areas, leading to important increases of woody cover 

MPS and reduction of PD. 

Woody-cover complexity in the bottomland off the North Prong Medina River 

changed significantly among 1972, 1984, and 1995. The proportion of ED in woody 

cover patches decreased between 1972 (mode ED = 1,800 m/ha, range ED = 3,857) and 

1984 (mode ED = 700 m/ha, range ED = 2,044). Complexity metrics (MSI and AWMSI) 

showed opposite trends than expected between 1972 and 1984 (Fig. 2.2). Frequency 

distribution for MSI showed an increase in woody-cover complexity between both time 
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Figure 2.2.  Frequency distributions of woody-cover metrics for the bottomlands in 
1972, 1984, and 1995 based on moving-window analysis. Based on Kolmogorov-
Smirnov Z tests, there were significant differences between the frequency distributions 
of any 2 years for all metrics, except percent of woody cover. 
 
 
 
periods. However, a major decrease in the amount of small woody patches may explain 

the trend observed for MSI. Values for AWMSI decreased from 1972 (mode = 9, range 
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= 26.87) to 1984 (mode = 4, range = 17.07), instead of increasing. Smoothing of edges 

in larger patches, due to the flooding of 1978, may have contributed to the trends 

observed for AWMSI between 1972 and 1984. In 1995, complexity metrics (ED, MSI, 

and AWMSI) frequency-distribution curves were intermediate between those from 1972 

and 1995. The removal of large numbers of small patches and the smoothing of edges in 

larger ones may have increased the distance between neighboring patches between 1972 

and 1984. 

The distance and proximity between neighboring patches increased between 

1972 and 1995 (Fig. 2.2). Mode and range for MNN frequency distribution increased 

between 1972 (2 m and 180.8, respectively) and 1984 (4 m and 233.0, respectively). 

Although the MPI mode was 500 for all time periods, the proportion of bottomland with 

this value was lower in 1972 (19.3% of the bottomland area) than in 1984 (23.6% of the 

bottomland). In 1995, values for MNN and MPI frequency distribution were 

intermediate between those from 1972 and 1984. The flooding of 1978 likely removed 

small patches and smoothed edges of larger patches, increasing the distance between 

standing-woody patches and decreasing the proportion of areas with large MPI values. 

 

Riparian zones 

 

The proportion of woody cover changed differentially along stream orders between 

1972, 1984, and 1995. No significant changes were observed in the proportion of woody 

cover in first- and second-order streams (lower-order streams), and areas beyond 50 m of 
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third-order streams (Fig. 2.3). Areas within 50 m of third-order streams had significant 

decreases in the amount of woody cover between 1972 (49.4% woody cover), 1984 

(25.4% woody cover), and 1995 (29.1% woody cover). Similar trends were observed for 

fourth-order streams (Fig. 2.3). Changes in the proportion of woody cover observed in 

riparian zones suggest that the flooding had greater impact in third- and fourth-order 

streams (higher-order streams). 

Spatial distribution of woody cover in riparian zones, along the North Prong 

Medina River, was considerably different by year. In 1972, riparian zones had small 

woody patches in high densities for all streams, and woody-patch size decreased as 

stream order increased (Fig. 2.3). In 1984, woody-patch size and woody-patch size 

variability increased, while the number of patches decreased, as compared to 1972. 

However, LPI did not change for these 2 time periods along lower stream orders (first- 

and second-order streams), while it decreased significantly along higher-order streams 

(third- and fourth-order streams). In 1995, metrics that describe spatial distribution of 

woody cover (MPS, PSSD, PD, and LPI) had intermediate values to those from 1972 

and 1984 (Fig. 2.3). Increased MPS, decreased PD and similar LPI values between 1972 

and 1984, along first- and second-order streams, are most likely due to a coalescence of 

contiguous patches. Increased MPS, and decreased PD and LPI values, in third- and 

fourth-order streams, during the same time period, indicate a decrease in the number of 

small woody patches and the size of larger patches. Changes in the spatial distribution of  
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Figure 2.3. Riparian zones, woody-cover metrics by distance from stream and stream 
order, in 1972, 1984, and 1995. Percent woody (percent of woody cover), MPS (mean 
patch size), LPI (largest patch index), PD (patch density), ED (edge density), MNN 
(mean nearest neighbor), and MPI (mean proximity index). 
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woody cover along riparian zones of the North Prong Medina River indicate the woody-

cover patches coalesced into contiguous patches in first- and second-order streams, 

while third- and fourth-order streams may have been impacted by the flooding of 1978, 

causing a reduction in the number and size of woody patches. Metrics describing spatial 

distribution of woody cover (MPS, PSSD, PD, and LPI) in 1995 were intermediate 

between those from 1972 and 1984. 

 Woody-patch edge and proximity between neighboring patches changed along 

riparian zones of the North Prong Medina River between 1972 and 1984. Values of ED 

before the flooding (mean = 1750 m/ha in 1972) were greater than after the flooding 

(mean = 727 m/ha in 1984) for all stream orders (Fig. 2.3). The decrease in ED was 

greater in higher-order streams than lower-order streams. Distance between neighboring 

patches increased for all stream orders between 1972 and 1984. For these time periods, 

MNN values increased by 2.2 m in first-, second-, and third-order streams, while in 

fourth-order streams, MNN values increased by 4.4 m (Fig. 2.3). There were no 

substantial changes in MPI values between 1972 and 1984. There were no significant 

changes in MPI values between 1972 and 1984 for first-, second-, and areas beyond 50 

m of third-order streams. For the same time period, MPI values decreased by 82.5% in 

areas within 50 m of third-order streams and by 96.1% all across fourth-order streams 

(Fig. 2.3). Higher-order streams were impacted the most by the flooding of 1978 and 

reduced woody-cover areas, decreasing the number, size and edge of woody patches, and 

increasing the distance between them. These changes likely had negative impacts on 
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RGWT roosting, breeding and dispersal habitat. In 1995, values for ED, MNN, and MPI 

were different from those of 1984 and seem to be returning to 1972 values. 

 

Discussion 

 

It is proposed the flooding of 1978 had a negative impact on RGWT habitat associated 

with the bottomland and riparian zones along the North Prong Medina River. Although 

the amount of woody cover did not change significantly for most of the area, its spatial 

structure changed after the flood. The changes in the proportion of woody patches 

between 1972 and 1984 suggest the flooding eliminated many small woody patches 

(area < 10002 m). The presence of small woody patches decreased by 72.8% between 

1972 and 1984. The flood event also decreased the amount of edge and thus in the 

complexity of woody patches. While shape index values (SI) were similar for small 

patches, SI values for large patches decreased between 1972 and 1984 (Fig. 2.4). The 

number of small patches and the complexity of large patches were reduced by the 

flooding of 1978. This reduction in patch density and complexity may have had an 

impact on RGWT roosting and dispersal habitat.  

Although woody cover increased slightly and ED decreased from 1972 to 1984, 

MSI increased along the bottomland of the North Prong Medina River (Fig. 2.2), a result 

which might appear counterintuitive. Values of MPS also increased in this period (Fig. 

2.2); an inspection of the patch size-specific SI and PD distribution revealed a 

substantial reduction in small patch density, which had consistently low SI (Fig. 2.4). 
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This decrease in small woody patches with smaller SI values resulted in the increase in 

MSI value for the bottomland areas of the North Prong Medina River (Fig. 2.2). In 

contrast to MSI, AWMSI values decreased in the bottomland between 1972 and 1984 

(Fig. 2.2) despite the large reduction in small patches with low SI. These were due to the 

decrease in SI values for large patches between 1972 and 1984 (Fig. 2.4). Since larger 

patches were weighted several magnitudes greater than smaller patches in determining 

AWMSI, decreased values of SI for large patches resulted in lowered AWMSI values for 

the bottomland areas.  In 1995, there appeared to be a recovery process as the frequency 

distribution of patch area, SI, MSI and AWMSI, were intermediate between 1972 and 

1984 values.  Thus, the use of MSI and AWMSI alone might offer limited understanding 

for the changes in complexity of woody cover.  Combined use of these metrics with 

frequency distributions of SI and PD, by patch size, helped explain changes in the 

density and complexity of woody patches in bottomland areas of the North Prong 

Medina River between 1972 and 1995 and their possible impacts for RGWT. The 

reduction in the number of small patches and the decrease in the amount, or smoothing, 

of edge in larger patches increased the distance between neighboring patches between 

1972 and 1984. 

The flooding of 1978 reduced the connectivity of woody patches in the 

bottomland of the North Prong Medina River. The distance between neighboring-woody 

patches was greater in 1984 than it was in 1972 (Fig. 2.2). It is likely that this was 

caused by the removal of small patches and the “smoothing” of the edges of large woody 

patches within the bottomland. By 1984, a large portion of the bottomlands had lower 
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MPI values relative to 1972 (Fig. 2.2). According to Gustafson and Parker (1994) and 

Gustafson et al. (1994), the proximity index is a useful indicator of habitat accessibility  
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Figure 2.4. Frequency distributions of patch shape index and patch density by patch size 
in the bottomland areas of the North Prong Medina River for 1972, 1984, and 1995. 
 
 
 
across a fragmented landscape. Gustafson et al. (1994) suggested that if the variation of 

total area is low, losses in proximity values occur as a result of increasing isolation of 
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patches. This argument is consistent with the results observed in the bottomland area of 

the North Prong Medina River. The amount of woody cover in the bottomland did not 

change significantly after the flooding of 1978, but the shape, size, and spatial 

configuration of woody patches did, which resulted in increased distance between 

woody patches and reduced connectivity among woody areas. The removal of large trees 

and the decrease in the number of small patches, the proportion of edge habitat, and 

connectivity of woody cover have the potential to negatively impact RGWT habitat for 

roosting, breeding, feeding, and dispersal (Gore 1973; Thomas et al. 1973; Litton 1977; 

Quinton et al. 1980; Hennen and Lutz 2001). Therefore the reductions observed in the 

number of small patches and connectivity across the bottomland as a result of the flood 

may have negatively impacted RGWT habitat. Cobb et al. (1993) and Cobb and Doerr 

(1997) found that flood events in North Carolina had a negative impact on demography 

and reproduction of wild turkeys. 

  Based on woody-cover classification for RGWT habitat (Walker 1949, 1950; 

Quinton et al. 1980), about 55% of the bottomland areas had poor or suboptimal habitat 

for RGWT (Fig. 2.5) both before and after the flooding of 1978. It is likely that quality 

habitat was concentrated along riparian zones of the North Prong Medina River. The 

flooding had a significant impact on the landscape of riparian zones, especially along 

higher-order streams. The amount of woody cover and the proportion of large patches in 

the riparian zones were greatly reduced between 1972 and 1984 (Fig. 2.3), converting 

these areas to poor or sub-optimal habitat for RGWT. The number of patches and 

amount of edge in the riparian zones also decreased. The distance between woody 
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patches increased, and the MPI decreased. Consequently, connectivity of woody cover 

along riparian zones also decreased. 
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Figure 2.5. Proportion of bottomlands with different woody categories, and associated 
habitat suitability for Rio Grande wild turkey in 1972, 1984, and 1995. 
 
 
 

Riparian zones in this portion of the Edwards Plateau tend to be richer in woody 

species composition and mast producing species than uplands (Van Auken 1988). 

Riparian zones are important to RGWT because they provide habitat for roosting, 

feeding, breeding, and dispersal (Palmer and Hurst 1995). Roosting habitats are located 

primarily along the drainages and are essential to wild turkeys (Haucke 1975; Litton 
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1977). These areas are important sources of food for RGWT (Gore 1973). Lehman et al. 

(2002) reported that Rio Grande and eastern wild turkeys have similar requirements for 

nesting cover. Studies have associated riparian habitats to wild turkey nesting (Palmer 

and Hurst 1995; Miller et al. 2000; Thogmartin 2001), and female RGWT have been 

reported to use woody habitats along riparian areas for brood rearing (Hennen and Lutz 

2001). Wild turkey dispersal depends on good connectivity along riparian zones (Litton 

1977; Gustafson et al. 1994).). The removal of roosting trees and/or disturbance of 

roosting areas have a negative impact on RGWT numbers (Thomas et al. 1966; Cook  

1973b; Gore 1973).  

As Bomar (1995) indicated, the flooding of 1978 removed large trees from 

riparian areas along the North Prong Medina River. This corroborates the results 

presented here that show large amounts of woody cover were lost along riparian zones of 

higher-order streams (up to 89% loss in fourth-order streams) resulting in substantial 

reduction of suitable habitat for RGWT in these areas. Therefore the fragmentation of 

woody cover, due to the flooding of 1978, may have limited roosting habitat, areas for 

feeding, breeding, and travel ways for RGWT along higher-order streams of the North 

Prong Medina River.  The lost of travel ways for RGWT along higher-order streams also 

likely limited the connectivity among suitable habitat areas along lower-order streams. 

These changes are likely to have contributed to the decline of RGWT in the study area. 

 There appears to have been a recovery process that has taken place in the 

bottomland and the riparian zones after the flooding of 1978. In 1995, 17 years since the 

flooding, most of the woody-cover metrics at both scales had intermediate values to 
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those of 1972 and 1984. Smaller and more woody patches were observed in 1995 than in 

1984. However, they were still fewer than those observed in 1972. The nearest neighbor 

distance between woody patches also decreased from 1984 to 1995, suggesting increased 

connectivity among woody patches, but had not yet recovered to the 1972 level. 

 A large proportion of the bottomland in the North Prong Medina River consisted 

of poor or sub-optimal habitat quality for RGWT. The amount of woody cover did not 

change significantly following the flooding of 1978 but the connectivity of adequate 

habitat for wild turkeys was reduced. Better habitat conditions for RGWT are 

concentrated along riparian zones. The flooding of 1978 reduced the amount of woody 

cover in riparian zones of higher-order streams. Such a disturbance in the higher-order 

streams resulted in the fragmentation of woody patches, reduction of connectivity 

between patches, and overall decreases in the amount of suitable habitat, limiting areas 

for roosting, feeding, breeding, and dispersal of RGWT. The flooding of 1978 likely 

contributed to the decline of RGWT in the study area. There appears to have been a 

recovery process of the bottomland landscape 17 years after the flooding. There has been 

a partial recovery of woody cover along the riparian zones and bottomland of the North 

Prong Medina River that may benefit RGWT habitat. However further studies are 

necessary to examine whether or not the recovery of woody cover in areas affected by 

the flooding of 1978 will provide suitable habitat for the use and dispersal of RGWT. 

 As the removal of large amounts of woody cover by the flooding of 1978 most 

likely limited habitat use and dispersal of RGWT, management practices should be 

directed to provide adequate habitat conditions for roosting, feeding, breeding, and 
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dispersal of RGWT. Areas along streams should be assessed for availability of roosting 

sites. Management of riparian areas with mast producing species should be encouraged 

to provide adequate supplies of food. Adequate stands of woody species should be left 

along drainage systems to provide breeding habitat, feeding routes and travel ways for 

RGWT.  

 



 26

CHAPTER III 

COMPARISON OF LANDSCAPE CHARACTERISTICS AT SITES WITH 

STABLE AND DECLINING RIO GRANDE WILD TURKEY POPULATIONS IN 

THE EDWARDS PLATEAU OF TEXAS 

 

Introduction 

 

Rio Grande wild turkeys (RGWTs, Meleagris gallopavo intermedia) are gregarious 

nomadic birds of southern North America (Glazener 1967; Beasom and Wilson 1992; 

Kennamer and Kennamer 1995). Their native range includes Kansas, Oklahoma, Texas, 

and northeastern New Mexico, in the United States, and Chihuahua, Cohahuila, Nuevo 

Leon, and Tamaulipas, in Mexico. In Texas, the Edwards Plateau consists of ecological 

sites traditionally considered excellent RGWT habitat (Taylor 1949; Peterson et al. 

2002). However, data from the Texas Parks and Wildlife Department show that RGWT 

abundance in portions of Bandera, Kerr, and Real counties has steadily declined 

compared to other areas of the Edwards Plateau, where proportions have increased or 

remained stable (Peterson et al. 2002). Possible factors that may have negatively 

impacted RGWT populations include unsuitable woody cover (Walker 1949, 1950; Gore 

1973; Quinton et al. 1980; Beasom and Wilson 1992), disturbance (Gore 1973; Lindzey 

and Wanless 1973), decreased availability of foraging resources (Thogmartin 2001), 

predation, and diseases (Peterson et al. 2002). 
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 Open areas, well interspersed with woody cover, are important to RGWT habitat 

(Schorger 1966; Beasom and Wilson 1992). Habitat for RGWTs should contain a 

maximum of 65–70% woody cover. Optimal habitat should consist of 50% open areas 

with well-interspersed woody cover for roosting, feeding and dispersal. Roosting habitat 

provides the “home base” during winter months (Haucke 1975). Roost sites are essential 

for maintaining RGWT populations (Litton and Harwell 1995) and are primarily 

composed of large trees near creeks, rivers, and intermittent or dry drainages. Removal 

or disturbance of roosting sites could lead to a reduction of wild turkey numbers (Cook 

1973b). Roosting sites are important for suitable RGWT roosting habitat (Thomas et al. 

1966; Gore 1973; Litton 1977).  

Diets of RGWTs consist mainly of insects and herbaceous vegetation (Quinton et 

al. 1980). Woody plants, especially mast producing species (Quercus stellata and Q. 

virginiana), also are an important component of RGWT diets (Beasom and Wilson 

1992). Randel (2003) found that insects, particularly orthoptera, were important to poult 

diets. Quinton et al. (1980) found that insects, grasses, and forbs frequently ingested by 

turkeys were abundant in open areas. However, lack of woody patches in these areas 

would limit RGWT use, thus reducing escape routes and dispersal habitat. Dispersal 

routes are important because RGWTs have marked seasonal shifts (Thomas et al. 1966; 

Keegan and Crawford 2000). Seasonal movements from winter ranges to reproductive 

ranges by female RGWTs represent the largest portions of their movement. Therefore, 

the open areas interspersed with woody cover are important for roosting, feeding, and 

dispersal habitat for RGWTs. 



 28

 Human and natural disturbances also affect RGWT populations (Gore 1973; 

Lindzey and Wanless 1973; Beasom and Wilson 1992). Land used for recreational 

purposes, camping areas, highways, industrial parks, and urban and rural development 

negatively affects RGWT populations (Lindzey and Wanless 1973). Overgrazing and 

improved pastures also affect RGWT food sources and limit feeding and dispersal 

habitat especially in bottomland areas (Gore 1973). 

 The objective of the study was to quantify and compare landscape characteristics 

of sites with stable and declining populations of RGWTs in the Edwards Plateau of 

Texas to better understand why RGWT numbers have decreased in the southeastern 

portion of this region. The hypotheses were that (1) the proportion and spatial 

distribution of woody cover was different between sites with stable and declining 

populations, and (2) disturbance was significantly higher in sites where populations had 

declined than in sites where populations had remained stable. 

 

Methods 

 

Study areas 

 

The study areas are located in the southeastern portion of the Edwards Plateau in Kerr, 

Real, Bandera, and Medina counties, Texas. The dominant soils correspond to the 

Tarrant-Eckrant-Purves and Eckrant-rock outcrop-Bracket soil associations. The 

Tarrant-Eckrant-Purves soil association corresponds to limestone derived shallow, 
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clayey, stony, and cobbly soils, and the Eckrant-rock outcrop-Bracket corresponds to 

cobbly clayey to loamy, shallow soils (Dittmar et al. 1977; Hensell et al. 1977; 

Dittemore and Coburn 1986). The topography varies from gently undulating uplands to 

strongly sloping areas in a benched landscape. Major vegetation types correspond to live 

oak-mesquite-juniper parks or woods. Woody vegetation primarily consists of live oak 

(Q. virginiana), Ashe juniper (Juniperus ashei), and shin oak (Q. havardii) forming 

mottes or woodlands (Randel 2003). Grasses include swtichgrass (Panicum verigatum), 

bluestem (Andropogon spp.), red grass (Bothriochloa spp.), little bluestem 

(Schizachyrium scoparius), grama grass (Bouteloua spp.), Indian grass (Sorghastrum 

nutans), wildrye (Elymus spp.), curly mesquite (Hilaria belangeri), and buffalo grass 

(Buchloe dactyloides). 

Regions supporting stable and declining RGWT populations were delineated 

based on winter roost counts and landowner interviews as part of a larger study that 

proposes to address the spatial extent and degree of the decline in RGWT abundance in 

the Southern Edwards Plateau of Texas (Peterson, unpublished data). Two sites were 

selected within each of the regions with stable (sites S1 and S2) and declining (sites D3 

and D4) RGWT abundance. The spatial extent of each study sites was based on the 

minimum convex polygons for all turkey locations observed on the site. The respective 

areas of the study sites were 45,993 ha for site S1 (30°01’N, 99°18’W), 15,931 ha for 

site S2 (29°49’N, 99°45’W), 11,989 ha for site D3 (29°52’N, 99°25’W), and 15,141 ha 

for site D4 (29°39’N, 99°06’W). Each study site was sampled by generating random 

sample points and buffering them to create 3,500-ha sample areas. This area was 
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calculated based on the largest seasonal range observed in the study area (Schaap 2005). 

To consider a sample area for analysis, >90% of the area was required to be within the 

limits of minimum convex polygon for all turkey locations. Four sample areas were 

obtained for site S1, two samples for sites S2 and D3, and three samples for site D4 (Fig. 

3.1). 

 

Data collection and analysis 

 

Data on ecological sites and their spatial distribution were obtained from the Soil Survey 

Geographic database (SSURGO). Soil series were combined into ecological sites 

(USDA 2004) and sampled for each study site using the created sampling areas. Digital 

elevation models (DEM) were obtained from Texas Natural Resources Information 

System (TNRIS). The DEMs were used to derive surface area indices (SAI) (Jenness 

2004). Surface area index values >1,000 were classified as high relief terrain (HRT). 

Percentage of rough terrain was calculated for each sample area. 

Landsat TM imagery from April 2000 was obtained from the Global Land Cover 

Facility (University of Maryland, United States). The image was classified, using an 

unsupervised classification (Leica Geosystems 2003), into three classes: woody, non-

woody, and water cover. Overall accuracy for the classification was 87% (Congalton 

1991). The classified grids were clipped based on the sample areas. Patch Analyst 

(GRID) (Elkie et al. 1999) was used to obtain metrics that describe spatial structure:  
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Figure 3.1. Location of Rio Grande wild turkey study sites characterized by stable (S1, 
S2) and declining (D3, D4) turkey abundance. 
 



 32

percent woody cover, mean patch size (MPS), patch density (PD), and largest patch 

index (LPI). The amount of usable space available to RGWT in each study area (Guthery 

1997) was determined. Usable space in these areas was defined as bottomland areas 

excluding HRT with >70% woody cover (Walker 1949, 1950) and its adjacent upland. 

Available digital orthophoto quadrangles (DOQ) from 1995 (1 m resolution) 

were obtained from TNRIS. These DOQs were used to manually digitize roads, 

disturbed areas, and streams for each sample area. Croplands, improved pastures, and 

urban development were classified as disturbed areas. Streams were classified according 

to stream order. For each sample area, a 50-m buffer was created from streams. The 

amount and spatial distribution of woody cover was calculated for these buffer zones 

using two methods: the first included all of the terrain within 50 m of streams; the 

second excluded areas with HRT. The proportion of woody cover for each stream order, 

including HRT areas within 50 m of streams, was also determined. A 50-m-buffer zone 

was created around roads and disturbed areas in each sample area. The length and 

proportion of streams that were within the 50-m buffers of roads and disturbed areas 

were determined.  

Ecological sites, stream density, percentage of HRT woody cover metrics, 

proportion of usable space, road density, road density in disturbed areas, proportion of 

streams impacted by roads and proportion of streams impacted by disturbed areas were 

compared between sites using the Kruskall-Wallis t-test with a significance level of 0.05. 
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Results 

 

Ecological site composition was substantially different among the 4 study sites, yet there 

were no clear-cut differences between the stable sites and the declining sites. Sites S2 

and D3 were similar in their ecological site composition (>50% steep rocky and 25–35% 

low stony hill), while low stony hill was the dominant ecological site in site S1 (71%). 

Site D4 was more diverse (9 ecological sites) and had greater evenness (Fig. 3.2).  
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Figure 3.2. Frequency distributions of ecological sites (USDA 2004) in stable (S1, S2) 
and declining (D3, D4) sites. Ecological sites: CL = clay loam, LSH = low stony hill,  
SR = steep rocky, SH = shallow, RD = redland, LB = loamy bottomland, DR = deep 
redland, DW = draw, VSH = very shallow, AB = adobe, and SAB = steep adobe. 
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Proportions of HRT did not differ consistently between stable and declining sites 

(Fig. 3.3). The highest proportions of HRT were observed in sites S2 and D3 (31 and 

20%, respectively), and there were significantly different from sites S1 and D4 (0.23 and 

6%, respectively). These HRT may have contributed to the similarity of ecological sites 

S2 and D3 (Fig. 3.3). Stream densities for all stream orders were higher in site D3 than 

in the other 3 study sites (Fig. 3.4), but the differences were not consistent between 

stable and declining sites. Higher stream densities were consistently found in lower 

stream orders and decreased as stream order increased. 
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Figure 3.3. Proportion of high relief terrain (areas with a surface area index > 1,000) by 
study sites characterized by stable (S1, S2) and declining (D3, D4) Rio Grande wild 
turkey abundance. 
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Figure 3.4. Stream density (m/ha) by study sites characterized by stable (S1, S2) and 
declining (D3, D4) Rio Grande wild turkey abundance. 
 
 
 
Proportion and spatial distribution of woody cover in site D3 was significantly different 

from all other study sites. At the sample area and 50-m stream-buffer scales, site D3 had 

higher amounts of woody cover (66 and 73%, respectively) than all other study sites 

(Fig. 3.5). Woody cover in the sampled areas of sites S1, S2, and D4 ranged from 30 to 
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55%. At this scale, woody cover was concentrated in a few large patches in site D3 

(MPS = 16.7 ha, PD = 0.04 patches/ha, LPI = 51%), whereas on sites S1, S2, and D4, 

woody cover was distributed in several small woody patches. For sites S1, S2, and D4, 

MPS ranged between 2 and 9 ha, PD between 0.06 and 0.18 ha, and LPI  
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Figure 3.5. Woody cover and patch metrics for sampled areas in study sites, 50-m-
stream buffers, and 50-m-stream buffer with no high relief terrain (HRT; areas with a 
surface area index > to 1,000) for study sites characterized by stable (S1, S2) and 
declining (D3, D4) Rio Grande wild turkey abundance. 
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between 17 and 27%. Spatial distribution of woody cover along riparian zones (50-m- 

stream buffers) was similar to sampled areas. When HRT was excluded from riparian 

zones, there was still a higher proportion of woody cover at site D3 (66%) than at all 

other sites (35–42%). However, spatial distribution of woody patches was not 

statistically different among study sites (Fig. 3.5). Spatial distribution of woody cover 

along riparian zones in HRT appeared to be concentrated in few large patches at D3, 

which likely negatively impacted RGWT roosting and dispersal habitat. The amount of 

woody cover at D3 was significantly higher than at each of the other three sites for all 

stream orders (Fig. 3.6). First order streams at S2 also had high proportions of woody 

cover (70.3%). Second, third and fourth order streams at S1, S2, and D4 had <70% 

woody cover. Proportion of usable space did not differ consistently between stable and 

declining sites. The highest proportion of usable habitat was found in S1 (99.7%) and the 

lowest proportion was found in S3 (16.1%) (Fig. 3.7). 

Disturbance due to roads, croplands, improved pastures, and urban development 

was significantly higher at site D4 than at the other 3 study sites. Even though there were 

no statistical differences between sites, road density in site D4 (21 m/ha) was about 

twice that of site S1 (11 m/ha) (Fig. 3.8). The proportion of disturbed areas was 

significantly higher at site D4 (12.4%) than all other sites combined (3.7%). Road 

density in disturbed areas also was significantly higher at site D4 (5.3m/ha) than at all 

other sites combined (3.3 m/ha) (Fig. 3.8). The proportion of riparian zones disturbed by 

roads also was highest at site D4 because roads were built along riparian zones, 

especially in higher order streams. Roads in sites S1, S2, and D3, were built in the  
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Figure 3.6. Proportion of space usable by RGWTs for study sites characterized by stable 
(S1, S2) and declining (D3, D4) RGWT abundance. These proportions correspond to 
bottomland areas, low relief terrain, and high relief terrain with suitable woody cover for 
RGWTs. 
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Figure 3.8. Proportion of disturbed areas for study sites characterized by stable (S1, S2) 
and declining (D3, D4) Rio Grande wild turkey abundance. 
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uplands, perpendicular to streams, and/or parallel to contour lines. Most of the disturbed 

areas (croplands, improved pastures, urban development) at site D4 also were located 

along riparian zones. This disturbance likely reduced the amount of woody cover 

suitable for RGWT roosting and nesting along riparian zones in site D4. 

 

Discussion 

 

The amount and spatial distribution of woody cover are important factors for RGWT 

feeding, roosting, and dispersal habitat. Areas with excessive amounts of woody cover 

would negatively impact on herbaceous cover and insects, which would limit sources of 

food for RGWTs as well as dispersal routes and roosting sites. Both sites S1 (32 and 

25% woody cover in sampled areas and along streams, respectively) and S2 (52 and 55% 

woody cover in sampled areas and along streams, respectively) had woody cover that 

occurred in small patches and at high woody patch density, whereas site D3 (66 and 73% 

woody cover in sampled areas and along streams, respectively) had larger and fewer 

patches. The spatial distribution of woody cover in sites S1 and S2 likely provided a 

higher amount of herbaceous vegetation and insects than site D3 as a food source for 

RGWTs, as well as dispersal habitat to move through and across drainage systems.  

The landscape-scale assessments corroborated field-scale studies that suggest 

RGWT habitat should have no more than 65–70% woody cover (Schorger 1966; Litton 

1977; Beasom and Wilson 1992) and that, ideally, 50% open areas with well-

interspersed woody cover patches would be beneficial.  Patterns of woody cover along 
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riparian zones in sites S1 and S2 are consistent with field-based studies in Texas that 

recognize the importance of drainage systems for RGWTs (Thomas et al. 1966; Gore 

1973; Litton 1977; Palmer and Hurst 1995). Small patches of woody cover along 

riparian zones furnish escape and dispersal routes as well as provide food and cover 

(Walker 1949, 1950; Litton 1977). Roosting areas are often located near creeks, rivers 

and intermittent or dry drainages, and they are important to RGWTs because they 

provide “home range” during the winter and are essential to maintain turkey populations 

(Haucke 1975; Litton and Harwell 1995). Litton (1977) concluded that herbaceous 

vegetation and insects are important sources of food for RGWTs especially during 

spring and summer. Between 2001 and 2003, Randel (2003) found that invertebrate 

biomass was 5 times greater in sites where populations were stable (sites S1 and S2) than 

in sites where populations had declined (sites D3 and D4).  

The spatial pattern of woody cover in HRT is important for RGWT habitat. 

Suitable amounts and spatial distribution of woody cover in HRT are critical for RGWT 

feeding, roosting, and dispersal through and across drainage systems. Ecological-site 

composition was similar in study sites S2 and D3, and the proportion of HRT was not 

statistically different between sites (Fig. 3.2). Compared to site S2, however, site D3 did 

not provide suitable habitat conditions for RGWTs especially in HRT due to high woody 

cover along riparian zones and, at the study area scale in general (Fig. 3.5). Excessive 

amounts of woody cover in HRT would have reduced the amount and diversity of 

herbaceous vegetation and insects, and restricted RGWTs to bottomland, low-relief 

terrain. A small proportion of open areas in site D3, limited to bottomland, low-relief 
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terrain, combined with high proportions of woody cover in HRT may have resulted in 

limited amounts of usable space for RGWTs, resulting in a more intensive use of 

available resources (seeds and insects as food source) by RGWTs (Guthery 1997; 

Schaap 2005). According to the U.S. Department of Agriculture (USDA 2004), HRT in 

steep rocky ecological sites tend to have a higher diversity of herbaceous vegetation than 

flatter areas, but high proportions of woody cover decrease the amount and diversity of 

herbaceous vegetation species. This may negatively impact food sources for RGWTs, 

especially poults, by decreasing the amount of available seeds and insects. This 

observation is consistent with the results of Randel (2003) who found that site D3 had 

significantly lower amounts of insects than sites S1 and D4. Analysis of bottomlands, 

woody vegetation, and its relationship with HRT, demonstrated that site D3 provided 

only 16% usable space for RGWTs, whereas site S2 provided 50% usable space (Fig. 

3.7). It is assumed that HRT in site S2 allowed RGWTs to move along riparian zones 

and use uplands to move from one drainage system to the other, thus providing them 

large amounts of usable space. Whereas, high woody cover combined with a limited 

bottomland and low-relief terrain in site D3 may have limited the amounts of usable 

space for RGWTs on this site.  

Disturbances, such as those associated with improved pastures, urban areas, and 

roads near streams, can negatively impact RGWT habitat. Although there were no 

statistically significant differences between the amount and spatial distribution of woody 

cover in site D4 and in sites S1 and S2, disturbances associated with improved pastures, 

urban development, and roads were much higher in site D4 (12.43% of areas affected) 
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than in the other sites (< 1%) and likely negatively impacted RGWT populations in site 

D4. Areas cleared for improved pastures undoubtedly reduced the amount of woody 

patches that could be used by RGWTs for roosting, nesting, and dispersal. This also may 

have resulted in decreased herbaceous vegetation diversity, negatively impacting the 

amount of food sources available to RGWTs. Roads associated with urban development 

and road density near streams were significantly higher in site D (19%) than in all other 

sites (11–12%). The roads in sites S1, S2, and D3 were built in upland areas and/or 

perpendicular to streams and contour lines, whereas in site D4 roads ran parallel to 

streams, thus increasing the proportion of RGWT habitat impacted. Gore (1973) and 

Lindzey and Wanless (1973) observed that human disturbance is an important factor 

influencing wild turkey populations. Gore (1973) observed that land transformed to 

improved pastures negatively impact RGWT populations. Quinton et al. (1980) 

maintained that open areas had ample amounts of grasses, forbs, succulents, and insects 

frequently ingested by turkeys, but the lack of woody patches and disturbance would 

limit the use of these areas.  

Although the study sites were characterized by different ecological-site 

compositions, all have the potential to sustain RGWT populations if the amount and 

pattern of woody cover present allows the development of herbaceous vegetation in open 

areas (USDA 2004). HRT could be a limiting factor for RGWT habitat if proportions of 

woody cover were not suitable for RGWTs. Schaap (2005) found that RGWTs were 

confined to smaller areas in site D3 than in site S2 due to limitations in the amounts of 

usable space. This had a negative impact in RGWT populations because multiple broods 
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had to use the same range, thus depleting available resources faster in site D3 than in S1 

and S2. If suitable grasses and open areas interspersed with woody vegetation were 

present in HRT, potentially more usable space might be available to RGWTs for feeding 

poults during brood rearing. These areas also could be used by RGWT dispersal from 

bottomland to upland habitat and across drainage systems.  

Stream density did not appear to limit RGWT habitat in these sites, but the 

proportion and spatial distribution of woody cover along streams is important to 

RGWTs. The analysis of woody cover along streams by stream order showed that site 

D3 had significantly higher proportion of woody cover than all other sites (Fig. 3.6). 

Compared to other sites, first-order streams in site S2 had greater amounts of woody 

cover than did second-, third-, and fourth-order streams on this site. Since stream 

networks are important for RGWT dispersal, this could limit RGWT dispersal habitat in 

site S2, and may explain its sensitivity compared to site S1. The amount of woody cover 

decreased as stream order increased in site D4. This is consistent with the high 

proportion of disturbed areas along higher-order streams in this site as compared to all 

others. 

The amount and spatial distribution of woody cover in both stable sites appeared 

to be suitable for providing sufficient food sources for RGWTs as well as roosting and 

dispersal habitat. However, site S2 was likely more sensitive to changes in woody cover 

than site S1 as the increased amount of woody cover in the HRT portion of site S2 could 

substantially reduce the usable space for RGWTs by reducing both the suitable habitat in 

HRT and the connectivity between suitable habitats in the riparian areas and those in the 
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gentle terrain of the uplands. Increased woody cover in site D3 likely reduced the 

availability of food sources and the amount of usable space for RGWTs, confining them 

to smaller areas and thus limiting feeding, roosting, and dispersal habitat. Human 

disturbance appears to have significantly impacted RGWT habitat in site D4. Even 

though the proportion and spatial distribution of woody cover in site D4 was similar to 

those sites S1 and S2, removal of cover for improved pastures, and other human 

activities, along streams have probably had negative impacts on RGWTs. 

Disturbance and a high proportion of woody cover are important factors 

impacting RGWT populations in regions where turkey numbers have declined. These 

observations are similar to previous studies in other study areas of the Edwards Plateau 

(Walker 1949, 1950; Gore 1973; Quinton et al. 1980; Beasom and Wilson 1992) as well 

as for these specific sites (Randel 2003; Schaap 2005). Further, the amount and spatial 

distribution of woody cover vegetation in HRT seem critical to RGWT roosting, feeding, 

and dispersal habitat. Therefore, proper management of woody cover along riparian 

zones and high relief areas is important if one wishes to maintain RGWT populations. In 

addition, it may also be important for managers to focus on increasing the amount of 

usable space for RGWTs, particularly in HRT, rather than only on improving areas 

currently occupied by RGWTs.  
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CHAPTER IV 

A GIS-BASED HABITAT-SUITABILITY MODEL FOR RIO GRANDE WILD 

TURKEYS IN THE EDWARDS PLATEAU OF TEXAS 

 

Introduction 

 

Habitat-suitability models (HSM) have been widely used to assess habitat quality for 

wildlife species (Schamberger et al. 1982; Brooks 1997; Kliskey et al. 1999). These 

models are tools designed to quantify habitat quality using habitat attributes deemed 

important to wildlife species (Schamberger and O’Neil 1986; García and Armbruster 

1997; Kliskey et al. 1999). Habitat-suitability models are designed for use in planning 

and management, and they are probably one of the most important tools for conservation 

planning and environmental impact assessment (Schamberger and O’Neil 1986; Brooks 

1997). With the integration with geographic information systems (GIS) and spatial 

databases, HSMs have become even more useful for the development of new databases 

and decision-making support (Debeljak et al. 2001). 

 The use of GIS and remote sensing has provided cost efficient and highly 

suitable analytical environments for the development of HSM (Aspinall and Veitch 

1993; Conner and Leopold 1998). Remote sensing and GIS have been successfully used 

in habitat analysis (Aspinall and Veitch 1993; García and Armbruster 1997; Radeloff et 

al. 1999; Gerrard et al. 2001; Osborne et al. 2001) and HSM development (Lancia et al. 

1986; Donovan et al. 1987; Pereira and Itami 1991; Özesmi and Mitsch 1997; Riitters et 
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al. 1997; Conner and Leopold 1998; Kliskey et al. 1999; Lai et al. 2000; Store and 

Kangas 2001; Gurnell et al. 2002) to produce new information by combining and 

analyzing spatial data from different sources, for larger areas, and at multiple scales 

(Riitters et al. 1997;Wu and Smeins 2000; Luck 2002a, 2002b; Store and Jokimäki 

2003). 

 In recent years, several studies have developed HSM at the landscape level 

(Palmeirim 1988; Riitters et al. 1997; With and King 2001; Lawler and Edwards 2002). 

These studies were based on the premise that spatial characteristics, such as the amount 

and spatial arrangement of habitat patches at the landscape level, are important in 

determining species-habitat suitability. Mazerolle and Villard (1999) reviewed 61 

studies where spatial patterns at the patch and landscape level were used for HSM 

development. Their results indicated that landscape characteristics could be significant 

predictors of species presence and abundance. They suggested that landscape 

characteristics would improve HSM and conservation strategies if scale was properly 

defined. Almost 50% of the studies reviewed by Mazerolle and Villard (1999) included 

birds as a focal taxon. 

 Williamson and Koeln (1980) developed one of the first published HSM for wild 

turkeys (Meleagris gallopavo). Since then, various HSMs have been developed for 

eastern wild turkeys (Meleagris gallopavo silvestris) (EWT) (Schroeder 1985; Donovan 

et al. 1987; Fleming and Porter 2001) and Merriam’s wild turkey (M.g. merriami) 

(Rumble and Anderson 1995). Williamson and Koeln (1980) used a computerized 

habitat evaluation system to produce a habitat-suitability map for wild turkeys. Donovan 
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et al. (1987) used GIS to evaluate EWT habitat suitability, and Fleming and Porter 

(2001) introduced a landscape approach for EWT in New York. In the case of the 

(RGWT, M.g. intermedia), several studies have addressed habitat characteristics in 

Texas (Walker 1949, 1950; Litton and Harwell 1995; Randel 2003; Schaap 2005) and 

across North America (Schorger 1966; Beasom and Wilson 1992; Hennen and Lutz 

2001). However, there is only one HSM developed for RGWT, and it is for the western 

Cross Timbers region of Texas (Miller 2002). 

 There is no HSM developed for Rio Grande wild turkey RGWT in the Edwards 

Plateau of Texas. Moreover, the HSMs previously cited for wild turkeys have not been 

validated or tested, and those that have been validated, have not been validated or tested 

with independent datasets (Pereira and Itami 1991; Brooks 1997). Therefore, there is a 

need to gain reliable knowledge regarding RGWT habitat factors, more specifically, 

those related to breeding habitat in the Edwards Plateau of Texas. The overall goal of 

this study was to develop and evaluate a remote sensing and GIS-based HSM for female 

RGWTs during the breeding season, which would allow the assessment of the spatial 

distribution of suitable habitat in these study areas. Specific objectives included: (1) the 

identification of landscape metrics that were related to important habitat factors for 

female RGWT during the breeding season; (2) the development of an HSM based on 

GIS and remote sensing data; and, (3) the evaluation of the model by testing it in three 

different locations using three independent datasets for RGWT in different years. 
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Methods 

 

Study areas 

 

Four study areas were delineated based on winter-roost counts and landowner interviews 

as part of a larger study that proposed to address the spatial extent and degree of the 

decline in RGWT abundance in the Southern Edwards Plateau of Texas (Peterson, 

personal communication). Two sites were identified as sites where RGWT populations 

remained stable (S1 and S2) and two sites were identified as sites where populations 

have declined (D3 and D4) in the last 30 years (Schaap 2005). The sizes for these study 

areas were 75,358 ha for S1 (30°01’N, 99°18’W), 29,018 ha for site S2 (29°49’N, 

99°45’W), 200,089 ha for site D3 (29°52’N, 99°25’W), and 27,668 ha for site D4 

(29°39’N, 99°06’W) (Fig. 4.1). 

 

Data collection 

 

Landsat TM imagery (30 m resolution) from April 2000 was acquired from the Global 

Land Cover Facility (University of Maryland, United States) and then classified using an 

unsupervised classification (Leica Geosystems 2003) into three cover classes: woody, 

non-woody and water cover. An accuracy assessment was done using available DOQ 

imagery for the study area. We randomly generated 200 points and visually assessed the  
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Figure 4.1. Study area location for the development and testing of a habitat-suitability 
model for RGWT in the Edwards Plateau of Texas. S1= site 1,S2= site 2, D3= site 3, and 
D4= site 4. 
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accuracy of the classified pixel on the DOQ.  The overall accuracy for the classification 

was 87% (Congalton 1991). Available digital orthophoto quadrangles (DOQs) from 

1995 (1 m resolution) were obtained from Texas Natural Resources Information Systems 

(TNRIS) clearinghouse. These DOQs were used to manually digitize human-induced 

disturbed areas (croplands, improved pastures and urban development). Digital elevation 

models (DEMs) were obtained from TNRIS. These DEMs were used to derive surface 

area indices (SAI) (Jenness 2004). Surface area indices with values > 1,000 were 

classified as high relief terrain (HRT). The combination of these layers resulted in a 

raster layer (30 m resolution) with six classes: woody cover, low relief terrain 

(WCLRT); woody cover, high relief terrain (WCHRT); non-woody cover, low relief 

terrain (NWCLRT); non-woody cover, high relief terrain (NWCHRT); disturbed area 

(DIST); and water. A second raster layer was derived with four classes: woody cover 

(WC), non-woody cover (NWC), DIST, and water. 

 

Habitat model development 

 

Nesting and brood survival are critical to maintain RGWT populations (Everett et al. 

1980; Randel 2003). A HSM is usually developed based on life requisites such as food, 

cover and reproduction components (Schamberger and O’Neil 1986; Rho 2003). A 

landscape-scale HSM for female RGWT was developed based on two important periods 

during the breeding season for RGWT: nesting and brood rearing (Schaap 2005). During 

the nesting period, cover was the limiting life requisite component, and during the brood 
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rearing period, cover and food were the limiting life requisites (Schaap and Silvy, 

personal communication). To rate each life requisite component, landscape metrics were 

used to describe relevant habitat variables (Fleming and Porter 2001; Rho 2003) to 

RGWT in the southeastern portion of the Edwards Plateau of Texas. 

 

Habitat-suitability model for nesting (cover)

 

Nesting habitat is critical to RGWT population viability (Randel 2003). The amount of 

nesting cover is associated with increased nesting success (Hohensee and Wallace 2001). 

Female turkeys select nest sites with more dense vegetation than surrounding areas, 

shorter vegetation height, greater litter depth and cover, and less forbs and grass cover 

(Schmutz et al. 1989; Randel 2003). Low-visibility indices associated with cover height 

<0.45m increase the occurrence of nesting areas (Cook 1972a; Baker 1979; Ransom et 

al. 1987). The amount of visual obstruction as well as the height and shade of vegetation 

over the center of the nest bowl are critical (Hohensee and Wallace 2001; Lehman et al. 

2002). In Colorado, RGWT nest sites have greater canopy cover, more shrubs, fewer 

grasses and greater understory cover (Schmutz et al.1989). In South Dakota, shrub 

patches are important nesting cover in prairie woodland habitat (Lehman et al. 2002). 

Human-induced disturbance such as overgrazing also can have an impact on RGWT 

nesting (Gore 1973). Human-induced disturbance (croplands, improved pastures, urban 

development) was significantly higher at site D4, where RGWT populations had 

declined, than at other study sites (Chapter III). 
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Female turkeys select nest sites with more dense vegetation than surrounding 

areas, shorter vegetation height, greater litter depth and cover, and less forbs and grass 

cover (Randel 2003). In the southeastern portion of the Edwards Plateau of Texas, these 

nesting conditions are typically met near the edge of woody cover patches and non-

woody areas (Schaap 2005). Small woody patches or large woody patches with high 

edge distance will provide adequate woody cover, dense vegetation and visual 

 

Table 4.1. Ratings of habitat suitability for nesting cover component. 

Woody 
cover (%) 

LPI 2 (%) ED (m/ha) Disturbance 
(%) 

Cover 
rating 

Cover rating 
if HRT 
>55% 

0-10 
 
 
 

<70 
 
 
 
 
 

70-100 

>50 
 
 

<50 
 
 

Any 

<15 
15-20 
<20 
any 
<15 

15-20 
>20 

Medium 
Low 

Very low 
Low 

Medium 
Low 

Very low 

Low 
Very low 
Very low 
Very low 

Low 
Low 

Very low 
10-35 

 
<70 

 
 
 
 
 
 
 
 
 
 
 

70-100 

>75 
 
 
 
 

50-75 
 
 
 

<50 
 
 

Any 

<5 
5-10 
10-15 
15-20 
>20 
<10 

10-15 
15-20 
>20 
<15 

15-20 
>20 
<20 
>20 

Very high 
High 

Medium 
Low 

Very low 
High 

Medium 
Low 

Very low 
Medium 

Low 
Very low 

Low 
Very low 

High 
Medium 

Low 
Very low 
Very low 
Medium 

Low 
Very low 
Very low 

Low 
Very low 
Very low 
Very low 
Very low 
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Table 4.1. Continued. 

Woody 
cover (%) 

LPI 2 (%) ED (m/ha) Disturbance 
(%) 

Cover 
rating 

Cover 
rating if 

HRT 
>55% 

35-55 

 

 
<20 

 
 
 
 
 
 
 
 
 

20-70 
 
 
 
 
 
 
 
 
 
 
 
 
 

70-100 

>75 
 
 
 

50-75 
 
 
 

<50 
 

>125 
 
 
 
 

75-125 
 
 
 

50-75 
 
 

<50 
 

Any 

<10 
10-15 
15-20 
>20 
<10 

10-15 
15-20 
>20 
<20 
>20 
<5 

5-10 
10-15 
15-20 
>20 
<10 

10-15 
15-20 
>20 
<15 

115-20 
>20 
<20 
>20 
Any 

High 
Medium 

Low 
Very low 

High 
Medium 

Low 
Very low 

Low 
Very low 
Very high 

High 
Medium 

Low 
Very low 

High 
Medium 

Low 
Very low 
Medium 

Low 
Very low 

Low 
Very low 
Very low 

Medium 
Low 

Very low 
Very low 
Medium 

Low 
Very low 
Very low 
Very low 
Very low 

High 
Medium 

Low 
Very low 
Very low 
Medium 

Low 
Very low 
Very low 

Low 
Very low 
Very low 
Very low 
Very low 
Very low 

55-70 Any Any <20 
>20 

Low 
Very low 

Very low 
Very low 

70-100 Any Any Any Very low Very low 

 

obstruction for nesting habitat. A high proportion of woody cover reduces the amount of 

edge while increasing the probability of larger and denser woody patches and reducing 

litter depth and cover, thus decreasing the amount of suitable areas for nesting. 
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 Habitat suitability for nesting cover was determined based on the proportion of 

woody cover (PWC), the largest patch index proportion related to woody cover (LPI2), 

the amount of edge density (ED), DIST, and the proportion of woody cover in HRT 

(Table 4.1). Areas where the proportion of woody cover ranged between 10% and 35% 

were rated as very highly suitable, and an area’s cover rating decreased if PWC < 10% 

or > 70% of the landscape. The value of LPI2 was calculated by dividing the largest 

patch index (LPI) by the PWC. This proportion (LPI2) was related to the total area of 

woody cover and not to the total area of the landscape. The value of LPI2 provided an 

alternative measure of aggregation without explicitly describing spatial distribution of 

woody patches. Higher values of LPI2 (> 70%) will decrease nesting cover habitat 

suitability. At least 75m/ha of ED were required to have very high suitability conditions 

and these decreased as ED decreased. Disturbance had a negative impact on RGWT 

habitat (Gore 1973). As the proportion of human-induced disturbed areas increased, 

habitat suitability decreased. High relief terrain is not a limiting factor to RGWT unless 

the PWC in the area is too high (> 55%). In that case cover ratings decrease by one 

category. 

 

Habitat-suitability model for brood rearing (cover)

 

Brood-rearing habitat must have woody cover; however, densely wooded areas may not 

be used by RGWT (Beasom and Wilson 1992). Woody areas are important during brood 
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rearing to provide overhead concealment from avian predators, escape cover once poults 

can fly, and shade to maintain thermoneutrality (Miller 1993). Female turkeys and their 

broods typically loaf in wooded habitats from mid-morning until late afternoon. Good 

visibility and overhead concealment are important in loafing sites for broods. Brood-

rearing hens use rangelands that have greater visual obstruction and are closer to woody 

cover types. Herbaceous vegetation is a key component of brood habitat that provides 

both insects and hiding cover essential to poults survival and growth (Miller 1993; 

Randel 2003). 

There is very little or no information about the amount and spatial distribution of 

woody cover at the landscape level that is relevant to RGWT hens and broods in the 

Edwards Plateau of Texas. Expert opinions (Schaap and Silvy, personal communication) 

and feedback were used to develop a landscape-level HSM for brood rearing cover 

component using metrics such as PWC, LPI2, DIST and proportion of HRT (Table 4.2). 

The habitat for brood rearing cover is considered excellent when the proportion of 

woody cover ranges between 10% and 35% woody cover. Values higher and lower than 

this range decrease habitat suitability. Highest suitability was found when LPI2 values 

were < 25% and habitat suitability decrease as LPI2 increased. As the proportion of 

human-disturbed areas increased, habitat suitability decreased. High-relief terrain is not 

a limiting factor unless the PWC in these areas is > 55%. In that case cover ratings 

decrease by one category. 
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Table 4.2. Ratings of habitat suitability for the brood-rearing cover component. 

Woody 
cover (%) 

LPI 2 (%) Disturbance Cover rating Cover rating if 
HRT >55% 

0-10 <25 
 
 
 

25-70 
 
 
 

>70 

<10 
10-15 
15-20 
>20 
<10 

10-15 
15-20 
>20 
<20 
>20 

High 
Medium 

Low 
Very low 

High 
Medium 

Low 
Very low 

Low 
Very low 

Medium 
Low 

Very low 
Very low 
Medium 

Low 
Very low 
Very low 
Very low 
Very low 

10-35 <25 
 
 
 
 

25-70 
 
 
 

>70 

<5 
5-10 
10-15 
15-20 
>20 
<10 

10-15 
15-20 
>20 
<20 
>20 

Very high 
High 

Medium 
Low 

Very low 
High 

Medium 
Low 

Very low 
Low 

Very low 

High 
Medium 

Low 
Very low 
Very low 
Medium 

Low 
Very low 
Very low 
Very low 
Very low 

35-55 <25 
 
 
 

25-70 
 
 
 

>70 

<10 
20-15 
15-20 
>20 
<10 

10-15 
15-20 
>20 
<20 
>20 

High 
Medium 

Low 
Very Low 

High 
Medium 

Low 
Very low 

Low 
Very low 

Medium 
Low 

Very low 
Very low 
Medium 

Low 
Very low 
Very low 
Very low 
Very low 

55-100 Any <20 
>20 

Low 
Very low 

Very low 
Very low 
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Habitat-suitability model for brood rearing (food)

 

Poults require large amounts of food, mainly insects, which are an important source of 

protein for young wild turkeys (Schmutz et al. 1990; Healy 1985; Hennen and Lutz 

1996; Randel 2003). Wild turkey poults feed on insects for the first two to four weeks of 

their life and then switch to a primarily vegetative diet (Schmutz et al. 1990). Turkey 

broods typically feed until mid-morning in open herbaceous vegetation, loaf in woody-

cover areas until late afternoon and feed again until they move to roost sites in the 

evening (Miller 1993). Areas with an abundance of insects, cover capable of hiding 

poults, and unobstructed hen vision were considered good brood-rearing habitat (Randel 

2003). Invertebrate abundance, poults feed rate, and vegetation density were 

significantly correlated (Healy 1985; Schmutz et al.1990). Therefore, a key component 

of brood-rearing habitat is herbaceous vegetation, which provides both insects and 

hiding cover essential to poults survival and growth (Hennen 1999). 

Good feeding habitat consists of open grassland areas with well-interspersed 

woody patches. High proportions of woody cover in the Edwards Plateau of Texas 

reduce the amount and diversity of non-woody-cover areas (Schaap, personal 

communication). Open areas with herbaceous vegetation and little or no woody cover 

are not used by RGWT broods, in spite of a high abundance of insects (Quinton et al. 

1980). Habitat suitability for brood-rearing cover was determined based on the amount 

and spatial distribution of woody cover using PWC, mean patch size (MPS) and patch 

density (PD) metrics. Disturbed areas and the PWC in HRT also were incorporated into 
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the model (Table 4.3). Optimal feeding areas had 10-35% woody cover with small 

patches (MPS < 1 ha), high PD (> 0.16 patches/ha), very low disturbance (DIST < 5%) 

and suitable HRT woody cover (< 55%). As MPS increases and PD decreases with 

higher PWC, the proportion of grassland decreases. As disturbance increases, habitat 

suitability also decreases. If PWC is > 55% in HRT, the food rating decreases by one 

category. 

 

Habitat-suitability model execution   

 

The HSM was applied to the four study areas (S1,S2,D3, and D4). For each study area, a 

moving window analysis (Riitters et al. 1997; Lai et al. 2000; Rho 2003) was run for 

both raster layers at two scales relevant to RGWT habitat: 3500-ha moving windows 

(largest seasonal range for female RGWT habitat during breeding season in the Edwards 

Plateau of Texas) and 550-ha moving windows (shortest seasonal range for female 

RGWT habitat during breeding season in the Edwards Plateau of Texas) (Schaap 2005). 

For each moving window, Patch Analyst (GRID) (Elkie et al. 1999) was used to 

calculate metrics that were used to develop the HSM for RGWT in the Edwards Plateau 

of Texas: PWC, LPI, LPI2, MPS, PD, ED, and DIST. These values were assigned to the 

core rectangle (300x300m2) of each moving window (Rho 2003). Habitat-suitability 

ratings were calculated for the different life requisites for each core rectangle. 
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Table 4.3. Ratings of habitat suitability for the brood-rearing food component. 

Woody 
cover (%) 

MPS PD Disturbance Food rating Cover rating if 
HRT >55% 

0-10 <4 
 
 
 
 
 
 
 
 
 

4-10 
 
 
 
 
 

10-15 
 
 

>15 

> 0.12 
 
 
 

0.08-0.12 
 
 

0.04-0.08 
 

<0.04 
>0.08 

 
 

0.04-0.08 
 

<0.04 
>0.04 

 
<0.04 
Any 

<10 
10-15 
15-20 
>20 
<15 

15-20 
>20 
<20 
>20 
Any 
<15 

15-20 
>20 
<20 
>20 
Any 
<20 
>20 
Any 
Any 

High 
Medium 

Low 
Very low 
Medium 

Low 
Very low 

Low 
Very low 
Very low 
Medium 

Low 
Very low 

Low 
Very low 
Very low 

Low 
Very low 
Very low 
Very low 

Medium 
Low 

Very low 
Very low 

Low 
Very low 
Very low 
Very low 
Very low 
Very low 

Low 
Very low 
Very low 
Very low 
Very low 
Very low 
Very low 
Very low 
Very low 
Very low 

10-35 <1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1-4 
 
 
 
 

>0.16 
 
 
 
 

0.12-.16 
 
 
 

0.08-0.12 
 
 

0.04-0.08 
 

<0.04 
> 0.12 

 
 
 

0.08-0.12

<5 
5-10 
10-15 
15-20 
>20 
<10 

10-15 
15-20 
>20 
<15 

15-20 
>20 
<20 
>20 
Any 
<10 

10-15 
15-20 
>20 
<15 

Very high 
High 

Medium 
Low 

Very low 
High 

Medium 
Low 

Very low 
Medium 

Low 
Very low 

Low 
Very low 
Very low 

High 
Medium 

Low 
Very low 
Medium 

High 
Medium 

Low 
Very low 
Very low 
Medium 

Low 
Very low 
Very low 

Low 
Very low 
Very low 
Very low 
Very low 
Very low 
Medium 

Low 
Very low 
Very low 

Low 
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Table 4.3. Continued. 

Woody 
cover (%) 

MPS PD Disturbance Food rating Cover rating if 
HRT >55% 

10-35 1-4 
 
 
 
 

4-10 
 
 
 
 
 

10-15 
 
 

>15 

0.08-0.12 
 

0.04-0.08 
 

<0.04 
>0.08 

 
 

0.04-0.08 
 

<0.04 
>0.04 

 
<0.04 
Any 

15-20 
>20 
<20 
>20 
Any 
<15 

15-20 
>20 
<20 
>20 
Any 
<20 
>20 
Any 
Any 

Low 
Very low 

Low 
Very low 
Very low 
Medium 

Low 
Very low 

Low 
Very low 
Very low 

Low 
Very low 
Very low 
Very low 

Very low 
Very low 
Very low 
Very low 
Very low 

Low 
Very low 
Very low 
Very low 
Very low 
Very low 
Very low 
Very low 
Very low 
Very low 

35-55 <10 
 
 
 
 
 
 

10-15 
 

 
>15 

>0.08 
 
 
 

0.04-0.08 
 

<0.04 
>0.04 

 
<0.04 
Any 

<10 
10-15 
15-20 
>20 
<20 
>20 
Any 
<20 
>20 
Any 
Any 

High 
Medium 

Low 
Very low 

Low 
Very low 
Very low 

Low 
Very low 
Very low 
Very low 

Medium 
Low 

Very low 
Very low 
Very low 
Very low 
Very low 
Very low 
Very low 
Very low 
Very low 

55-70 <15 
 
 

>15 

>0.04 
 

<0.04 
Any 

<20 
>20 
Any 
Any 

Low 
Very low 
Very low 
Very low 

Very low 
Very low 
Very low 
Very low 

70-100 Any Any Any Very low Very low 
 

 

These suitability ratings, extrapolated from the core rectangles to the moving window 

and assigned the highest rating, were assigned to the overlapping windows to create 

habitat-suitability maps. 

 



         62 

Habitat- suitability model evaluation  

 

The HSMs were calibrated and validated for each life requisite using seasonal ranges for 

adult female RGWTs in S1. Unlike most HSMs, which use abundance data for 

evaluation (Schamberger and O’Neil 1986; Brooks 1997), seasonal ranges with minimal 

overlap were selected and the proportion of high and very high (HVH) suitability areas 

in each seasonal range determined to evaluate the performance of each individual life 

requisite model and the overall habitat-suitability model. Seasonal ranges in S1 were 

available for 3 years. Seven seasonal ranges in the first year (Y1) were used to calibrate 

the suitability criteria associated with the landscape metrics in each individual model, 

eight seasonal ranges from the second year (Y2) were used to validate each individual 

model, and seven seasonal ranges in the third year (Y3) were use to validate the 

combination of the three individual models into one breeding season model and validate 

it. Means and standard errors for all seasonal ranges within year were calculated and 

compared between years. 

Independent seasonal-range datasets in different locations were then used to 

assess the validity, transportability and generality of the model (Brooks 1997; Rho 2003; 

Perotto et al. 2004) using the same approach. Seasonal ranges were available for 2 years 

(Y2 and Y3) in S2 and D4 and for 3 years (Y1, Y2 and Y3) in D3. The HVH proportions 

between years within sites and between sites for all years were compared using the 

Kruskal-Wallis test with a significance level of 0.05. 
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Results 

 

The highest proportion of HVH categories in S1 were observed at the 3500-ha scale in 

the brood-rearing cover (91.9%), brood-rearing food (92.6%) and overall model (91.4%) 

(Fig. 4.2). Proportions of HVH areas were lower at the 550-ha scale than at the 3500-ha 

scale (Fig. 4.3). In S2 (Fig. 4.4) the proportion of HVH areas ranged from 58.2% in the 

overall habitat model to 73.7% in brood-rearing food component at the 550-ha scale, and 

from 54.8% in the brood-rearing food component to 94.1% in the brood-rearing cover 

component at the 3500-ha scale. The lowest proportion of HVH areas in all the study 

sites was observed in D3 (Fig. 4.5) at the 550-ha scale. The highest (62.5%) proportions 

in D3 were observed for the brood-rearing food component and the lowest (56.9%) for 

the overall model (Fig. 4.3). At the 3500-ha scale, only high categories(25.6%)  were 

detected for the nesting cover component. No HVH areas were observed in the brood-

rearing food component or the overall model. In D4 (Fig. 4.6), HVH areas accounted for 

75% and 93.7% of the study areas at the 550-ha scale and 3500-ha scale respectively 

(Fig. 4.3). At the 3500-ha scale, very high suitable areas were not found  in D4 in the 

brood-rearing food component. 
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Figure 4.2. Proportion of areas (%) of different suitability categories in each study site 
(S1 and S2, stable sites; D3 and D4, declining sites) for each life-requisite component 
(NC, nesting cover; BC, brood-rearing cover; BF, brood-rearing food; and HSM, overall 
habitat-suitability model). 
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Figure 4.3. Habitat-suitability model for site S1 for all life-requisite components and 
overall habitat suitability for RGWT.
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Figure 4.4. Habitat-suitability model for site S2 for all life-requisite components and 
overall habitat suitability for RGWT. 
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Figure 4.5. Habitat-suitability model for site D3 for all life-requisite components and 
overall habitat suitability for RGWT. 
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Figure 4.6. Habitat-suitability model for site D4 for all life-requisite components and 
overall habitat suitability for RGWT. 
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  There were no significant differences in any of the individual models or the 

overall HSM in each site when compared between years. The proportion of HVH areas 

comprised > 95% of the adult female seasonal ranges in S1 for all years, at both scales, 

for all life-requisite components and the overall HSM (Fig. 4.7). In S2 (Fig. 4.7) at the 

550-ha scale, proportions of HVH were lower for nesting cover (x = 85.5%) and overall 

HSM (x = 83.2%) than brood-rearing cover (x = 96.4%) and brood-rearing feeding (x = 

93.4%). At the 3,500-ha scale, female adult seasonal ranges HVH areas were > 99% of 

the total area. In D3, seasonal ranges consistently had 72% to 74% of HVH areas in each 

individual model and the overall HSM at the 550-ha scale. However, at the 3,500-ha 

scale, seasonal ranges had < 15% of the total area with HVH categories for nesting cover 

and brood-rearing cover component models, and there were no HVH areas in the brood-

rearing food component model and overall HSM. At the 550-ha scale at site D4 that 

adult female seasonal ranges were composed of 84% to 93% HVH areas (Fig. 4.7) in 

each component model and the overall HSM. At the 3,500-ha scale, seasonal ranges had 

> 95% with HVH areas for all life requisite component models and the overall HSM. 

 The comparison of seasonal HVH areas for the individual models between sites 

showed significant differences between D3 and all the other sites at both scales (Fig. 

4.8). At the 550-ha scale, D3 was significantly lower (72% - 74% HVH areas) than all 

other sites (> 85% HVH areas). At the 3,500-ha scale, S1, S2 and D4 had seasonal 

ranges with > 98% HVH areas while D3 had only 14.1% HVH in seasonal ranges for the 

nesting cover and brood-rearing components and no HVH areas for the brood-rearing 

food component and overall HSM. 
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Figure 4.7. Proportion of high- and very high-suitability areas in female RGWT seasonal 
ranges in each study site compared by year for each life requisite component and overall 
habitat-suitability model. No significant differences were found between years in any 
study site. 
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Figure 4.8. Proportion of high- and very high-suitability areas in female RGWT seasonal 
ranges by study site for life-requisite components and overall habitat-suitability model at 
550-ha and 3,500-ha scales. 
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Discussion 

 

The habitat-suitability model for adult female RGWT during the breeding season is a 

remote-sensing and GIS-based model that presents several advantages over previous 

documented habitat models for wild turkeys (Williamson and Koeln 1980; Rumble and  

Anderson 1995; Schroeder 1985; Donovan et al. 1987; Fleming and Porter 2001; Miller 

2002). First, this model used landscape attributes as habitat variables to develop a 

habitat-suitability model. Second, the use of two scales relevant to RGWT provided 

important information about the HVH suitable areas for female RGWT in stable and 

declining sites in the Edwards Plateau. Third, the model can potentially characterize 

HVH habitat for adult female RGWT during the breeding season in the Edwards Plateau 

of Texas. 

 This habitat-suitability model was based on land cover attributes that were 

important to RGWT at the landscape level. Compared to traditional models for wild 

turkeys, which were developed at fine scales (Schroeder 1985; Rumble and Anderson 

1995), this model was developed for larger-scale assessment using GIS and remote 

sensing. The use of landscape attributes provided information about the spatial 

characteristics of RGWT habitat and their importance in determining habitat suitability 

for the species at the landscape scales (Fleming and Porter 2001; With and King 2001; 

Lawler and Edwards 2002).  

The use of two different scales was an important component of the model 

development. Based on habitat characteristics, species respond to habitat features at 
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different scales (Riitters et al. 1997; Rho 2003). Schaap (2005) observed that RGWT 

used smaller seasonal ranges in declining sites than in stable sites, in the same study 

areas used to develop the habitat-suitability model. This model was developed using two 

scales based on seasonal ranges in declining (550 ha) and stable (3,500 ha) sites. The 

model detected HVH areas for all study sites at the 550-ha scale. However, at the 3,500-

ha scale, the model did not detect very-high-suitability areas in D3 for any of the model 

component. It detected a low proportion of high-suitability areas (25%) in the nesting 

cover component and brood-rearing component and it identified no high-suitability areas 

for the brood-rearing food component or overall HSM. Site D3 has been defined as a site 

where RGWT populations have been declining for the last 30 years (Randel 2003; 

Schaap 2005). Mean annual ranges in D3 (1500 ha) were smaller than the mean-annual 

ranges in S1 (2800 ha) (Schaap 2005). The results from the HSM  based on seasonal 

ranges observed by Schaap (2005) for adult female RGWT,  coincided with areas 

identified in field studies as good habitat for RGWT (N. Silvy and M. Peterson, Texas 

A&M University, personal communication). Therefore, the use of landscape attributes 

metrics at different spatial scales relevant to female RGWT during the breeding season 

provides important information about the availability of HVH suitable habitat for the 

species in our study.  Furthermore, this suggests that multiple-scale approach should be 

considered in all habitat-suitability assessment because single-scale assessment can yield 

potentially erroneous conclusions.   

 One of the challenges in habitat-suitability indices (HSI) is the use of 

independent datasets for testing the validity of a model (Schamberger and O’Neil 1986; 
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Brooks 1997). Abundance and especially density data (Brooks 1997; Hirzel et al. 2001) 

are often used in evaluation of the model.  The habitat-suitability models of this study 

were evaluated in four independent sites based on sets of independent seasonal ranges. 

This habitat-suitability model consistently identified HVH suitability habitat for adult 

female RGWT during the breeding season in the Edwards Plateau of Texas. The HSMs 

showed the amount of high-quality-breeding habitat in seasonal ranges was high at the 

550-ha scale (> 85% HVH areas) and very high at the 3,500-ha scale (> 98% HVH 

areas) in all study sites except D3.  The amount of high quality breeding habitat in D3 

was lower (≤ 74% HVH areas) at the 550-ha scale and very low at the 3,500-ha scale (< 

15% HVH areas). This model and its performance demonstrated the usefulness of 

landscape attributes in habitat model development and habitat studies for wild turkeys 

and, potentially, other species. 

 Although the habitat-suitability model performed well as evaluated using the 

known seasonal ranges, further study to evaluate the model using spatially explicit 

RGWT abundance data in replicated landscapes is needed to comprehensively validate 

the habitat-suitability model.  Spatial patterns of habitat of different suitabilities within 

seasonal ranges and their influence on RGWT behavior also should be examined in 

future studies.  Theses studies would provide new insight into management strategies for 

landowners and managers to maintain and increase the amount of suitable habitat 

available to RGWT.  
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

 

Impacts of flooding induced changes on Rio Grande wild turkey habitat 

 

During the summer of 1978, remnants of tropical storm Amelia precipitated severe 

flooding along the Sabinal, Guadalupe, and Medina rivers of Texas, causing heavy loss 

of life and property. In less than 24 hours, rainfall in >500 mm, fed the headwaters of the 

rivers causing flashfloods. The flooded area corresponds with areas where wild turkey 

abundance has been declining since the late 1970s. Thus, it is possible that landscape 

changes caused by this flood may have contributed to the decline in Rio Grande wild 

turkey (RGWT) abundance by altering the spatial configuration of woody cover suitable 

for roosting, breeding, and dispersal along the streams and bottomlands associated with 

the North Prong Medina River. The objective of this study was to quantify landscape 

changes that resulted from the flooding of 1978 along the North Prong Medina River and 

its tributaries to determine their potential impact on RGWT habitat. The hypotheses were 

that (1) the amount of woody cover decreased significantly near the streams due to the 

flood of 1978, and that (2) suitable habitat was fragmented and connectivity reduced, 

which resulted in decreased overall habitat suitability of the area for RGWTs. 

The study area consisted of the middle reaches of the North Prong Medina River 

near the boundary of Bandera and Kerr counties, Texas. Aerial photography for 1972, 

1984, and 1995 were classified and used in the analyses at two spatial scales: the 
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bottomland of the North Prong Medina River and its tributaries, where the impact of 

flooding potentially extended; and in more detail, the riparian zones where roosting 

habitat typically was concentrated and the affects of flooding greatest.  

A large proportion of the bottomland in the North Prong Medina River consisted 

of poor or sub-optimal habitat quality for RGWT. The amount of woody cover did not 

change significantly following the flooding of 1978 but the connectivity of adequate 

habitat for wild turkeys was reduced. The flooding of 1978 reduced the amount of 

woody cover in riparian zones of higher order streams. Such disturbance in higher-order 

streams resulted in the fragmentation of woody patches, reduction of connectivity 

between patches, and overall decreases in the amount of suitable habitat, limiting areas 

for roosting, feeding, breeding, and dispersal of RGWT. Results suggest that the 

flooding of 1978 likely contributed to the decline of RGWT in the study area. There 

appears to have been a recovery process of the bottomland landscape in the 17 years 

since the flood occurred. There has been a partial recovery of woody cover along the 

riparian zones and bottomland areas of the North Prong Medina River which may benefit 

RGWT habitat. 

 

Landscape characteristics of stable and declining sites 

 

Open areas, well interspersed with woody cover, are important to RGWT habitat. 

Habitat for RGWTs should contain a maximum of 65–70% woody cover. Optimal 

habitat should consist of 50% open areas with well-interspersed woody cover for 
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roosting, feeding and dispersal. High proportions of woody cover reduce suitable habitat 

for RGWT. Human and natural disturbances also affect RGWT populations. Land used 

for recreational purposes, camping areas, highways, industrial parks, and urban and rural 

development negatively affects RGWT populations as well as overgrazing and improved 

pastures. The objective of this study was to quantify and compare landscape 

characteristics of sites with stable and declining populations of RGWTs in the Edwards 

Plateau of Texas to better understand why RGWT numbers have decreased in the 

southeastern portion of this region. Two hypotheses were tested that (1) the proportion 

and spatial distribution of woody cover was different between sites with stable and 

declining populations, and (2) disturbance was significantly higher in sites where 

populations had declined than in sites where populations had remained stable. 

 The study areas were located in the southeastern portion of the Edwards Plateau 

in Kerr, Real, Bandera, and Medina counties, Texas. Regions supporting stable and 

declining RGWT populations were delineated based on winter roost counts and 

landowner interviews. Two sites each were selected for the regions with stable (sites S1 

and S2) and declining (sites D3 and D4) RGWT abundance. Ecological sites, stream 

density, percentage of high relief terrain (HRT) woody cover metrics, proportion of 

usable space, road density, road density in disturbed areas, proportion of streams 

impacted by roads and proportion of streams impacted by disturbed areas were 

compared between sites. 

High proportions of woody cover are important factors impacting RGWT 

populations in regions where turkey numbers have declined. The amount and spatial 
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distribution of woody cover vegetation in HRT seem critical to RGWT roosting, feeding, 

and dispersal habitat. Therefore, proper management of woody cover along riparian 

zones and high relief areas is important if one wishes to maintain RGWT populations. 

Human disturbance appeared to have significantly impacted RGWT habitat. Even if the 

proportion and spatial distribution of woody cover is suitable, significant amounts of 

disturbance, such as removal of cover for improved pastures, and urban development, 

roads, and other human activity along streams, can have negative impacts on RGWT 

habitat.  

 

Habitat-suitability model for female Rio Grande wild turkeys 

 

Habitat suitability models (HSM) have been widely used to assess habitat quality for 

wildlife species. These models are tools designed to quantify habitat quality using 

habitat attributes deemed important to wildlife species. However, there is no HSM 

developed for RGWT in the Edwards Plateau of Texas. The objective of this study was 

to develop and evaluate a remote sensing and GIS-based HSM for female RGWTs 

during the breeding season, which would allow the assessment of the spatial distribution 

of suitable habitat in these study areas. An HSM was developed using GIS and remote 

sensing data and landscape metrics related to important habitat factors for female RGWT 

during the breeding season.  The model was calibrated based on data associated with 

seasonal ranges with minimal overlap from one study site and then tested in three 

different study sites with independent datasets for RGWT in three different years. 
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The habitat suitability model developed for female RGWT during the breeding 

season performed consistently well in characterizing suitable habitat for the species in 

the study areas. Assessment using landscape metrics and land cover attributes at 

different scales provided useful information on the suitability and pattern of RGWT 

habitat in the four study sites, which demonstrated the usefulness of landscape attributes 

in habitat modeling studies for wild turkeys and likely other species.  

Although the habitat suitability model performed well as evaluated using the 

known seasonal ranges, further study to evaluate the model using spatially explicit 

RGWT abundance data in replicated landscapes is needed to comprehensively validate 

the habitat suitability model.  Spatial patterns of habitat of different suitabilities within 

seasonal ranges and their influence on RGWT behavior should also be examined in 

future studies.  Theses studies would provide new insight into management strategies for 

landowners and managers to maintain and increase the amount of suitable habitat 

available to RGWT. 
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