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ABSTRACT 

 

The Correlational and Causal Investigation into the Land Use–Transportation 

Relationships: Evidence from the Dallas-Fort Worth Metropolitan Area. (August 2006) 

Sangkug Lee,   

B.S., Chungnam National University; 

M.S., Purdue University 

Co-Chairs of Advisory Committee: Dr. Ming Zhang 
                                       Dr. Chanam Lee 

  

 The role of land-use and related policies in reducing automobile dependence has 

been the subject of heated policy debate for over two decades. Previous research has 

shed light on the correlations between land-use and travel. Yet a crucial knowledge gap 

still exists in establishing causality between the two. Do changes in land-use 

characteristics cause behavioral changes in individuals’ decisions on what transportation 

means to use for travel? How does land-use as a contextual factor shape the decision 

process and outcome of trip frequency and travel mode choice? These questions remain 

largely unanswered.  

 Attempting to fill the gap, this study applied the directed acyclic graphs method 

to identify the causal relationship between land-use and travel in the 9-county Dallas-

Fort Worth (D-FW) metropolitan area. The logit captivity (LC) model, an extension to 

the conventional multinomial logit, was utilized to capture the contribution of land-use 

in affecting individuals’ decisions on travel mode choice. All the data for this study were 
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obtained from the North Central Texas Council of Governments (NCTCOG). 

 Evidence from the D-FW region confirms to a certain extent the causal effects of 

land-use on travel. For work trips, increases in regional accessibility, job density and 

share of commercial land-use reduce the use of automobiles. Higher regional 

accessibility, however, causes households to generate automobile trips and thus leads to 

the increase in vehicle miles of travel (VMT). For non-work trips, population density, 

job density and regional accessibility are direct causes of the choice of automobile, while 

only regional accessibility is causally connected to reducing automobile trips and VMT. 

The logit captivity model results indicate that land-use contributes to captive-driving 

choices for home-based work trips. Lack of land-use mix at trip origins increases the 

probabilities of trip-makers being captive to the automobile from 0.06% to 5.62% for 

driving-alone and from 0.38% to 3.55% for shared-ride.  
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CHAPTER I 

INTRODUCTION 

Automobile dependence has been growing in the United States. According to the 

2001 National Household Travel Survey (NHTS), the increase in the number of vehicles 

(179%) over the past three decades (1969 through 2001) far exceeded the growth in 

population (41%), household (72%), and workers (92%). Approximately 86 percent of 

average annual person trips per household relied on private vehicles in 2001. Daily 

vehicle miles traveled (VMT) per household increased by 40 percent between 1990 and 

2001, from 41 miles to 58 miles. The average daily time spent in driving also increased 

from 50 minutes in 1990 to 62 minutes in 2001. Among the well-documented negative 

consequences of automobile dependence are air and water pollution, energy 

consumption, fatalities and injuries from traffic accidents, costs of traffic congestion, 

land consumption and environmental degradation, and many public health problems 

related to pollution and sedentary lifestyles such as obesity, cancer, cardiovascular 

diseases, and respiratory diseases (BTS 2004a, 2004b; WHO 2000). 

The pattern of urban growth in the decades since World War II is partly 

responsible for the increase in automobile ownership and use. Urban growth in this time 

period can be characterized mainly by low-density development and employment 

decentralization (Mills 1992; Glaser and Kahn 2004). Along with the extensive interstate 
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highway construction and investments on other roadways, this dispersed and segregated 

land-use has made driving a necessity, not an option, for people’s daily living.  

There have been attempts to find effective land-use policies to reduce automobile 

dependence. Early research has focused on advancing knowledge about the interactions 

between travel behavior and land-use. There has been remarkable progress in the 

refinements of land-use (or urban form) measures (Kockelman 1997; Cervero and 

Kockelman 1998). Several recent studies have explored new methods of modeling 

(Crane 1996a; Crane and Crepeau 1998; Boarnet and Sarmiento 1998; Boarnet and 

Crane 2001; Cervero 2002; Kockelman 2002; Zhang 2004; Bento, et al. 2005). There 

have also been significant improvements in theorizing with respect to the interactions 

between transportation and land-use. Advances in model specifications and estimations 

have improved our understanding of land-use influence on travel decisions, along with 

other factors such as price and traveler’s socio-demographic characteristics. Many have 

thus prescribed densification, land-use mix, and infill development as land-use policies 

reducing automobile dependence.  

Nevertheless, questions remain with regard to the effectiveness of land-use 

policies to reduce automobile dependence and to manage transportation demand. The 

efficacy of such policies is assessed a priori by the consistency of empirical results, but 

those are often mixed, complicated, and ambiguous. The inherent complexity behind 

these empirical studies is that there are numerous confounding factors affecting travel 

decisions. Teasing out the independent effect of land-use policies on travel is extremely 
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difficult. Many shortcomings of existing studies in this area pertain to the limitations of 

data and methodologies.  

This study builds on the previous research conducted to date on the relationship 

between land-use and transportation, and investigates how land-use affects travel 

demand in the Dallas-Fort Worth metropolitan area.   

 

Research Objectives 

The objectives of this study are:  

1. To examine the causal relationships between transportation and land-use with 

application of the directed acyclic graphs (DAG) method for individual mode 

choice (automobile versus non-automobile mode), household trip frequency, 

and household total VMT;  

2. To identify the captivity factors attributable to land-use with application of the 

multinomial logit captivity (LC) models for different trip purposes and then to 

estimate the intensity (probability) of captive driving as it relates to the land-

use environment;      

3. To explore how the impact of land-use on travel may differ between work trips 

and non-work trips; and  

4. To draw implications of land-use policies for the purpose of reducing 

automobile dependence and its associated undesirable consequences.  
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Contributions of the Study 

 The major contributions of the study are twofold, both on methodological 

grounds. First, the study innovatively applies the directed acyclic graphs (DAG) method 

to address the causality issue that has intrigued researchers studying transportation–land-

use connections. To the author’s knowledge, this is the first attempt in this subject area 

to apply the DAG method to improve understanding of the role of land-use in 

influencing travel. Reliability of the DAG study results is cross-checked with 

conventional regression methods for estimating the models of travel mode choice, trip 

frequency, and household vehicle miles traveled (VMT).   

 Second, the study applies the multinomial logit captivity (LC) model to address 

captive driving behavior attributable to land-use. Existing studies have applied the LC 

method for a binary choice situation. This study has expanded existing research by 

estimating the multimodal LC models of travel model choice as it relates to land-use as 

well as other socioeconomic and demographic factors. 

 The empirical contribution of the study is also worth noting. The Dallas-Fort 

Worth (D-FW) region is one of the fastest growing regions in the nation. Driving 

demand is also growing rapidly in the region. There have been few studies, however, 

examining the relationship between land-use and travel by focusing on the D-FW region 

as a whole. Evidence of transportation–land-use connections identified in the region 

contributes to the literature in the field and helps better inform land-use and 

transportation policy making for the region and for other parts of Texas as well. 
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Organization of the Study 

 The remaining chapters are organized as follows: Chapter II reviews past studies 

on the issues of automobile dependence and the causal linkage between transportation 

and land-use. Chapter III sets out the conceptual frameworks and presents the research 

hypotheses drawn from travel demand models, causal graphical models and the logit 

captivity model. Chapter IV discusses research methodology including data sources, 

variables and measurements, and analytical approaches. In Chapter V, the empirical 

results are presented and the implications of findings are discussed. The final chapter 

highlights the key findings, and concludes with discussions of land-use and 

transportation policy implications of the research findings.   
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CHAPTER II 

REVIEW OF RELATED LITERATURE 

 

This chapter reviews the literature that deals with automobile dependence, and 

studies examining the relationships between transportation and land-use. The first 

section provides an overview of literature discussing the definitions, measurements, and 

possible causes and consequences of automobile dependence. The second section 

reviews literature analyzing the link between travel behavior and land-use, covering the 

full array of variables in travel demand models. Past research investigating the issues of 

causality in land-use–transportation linkage is also reviewed in this section.  

 

Automobile Dependence: Overview  

Automobile dependence has been characterized and measured by a series of 

gross indicators such as annual gasoline consumption per capita, number of cars per 

person, vehicle miles traveled, per capita automobile travel frequency, automobile-

oriented land-use patterns, fewer available transportation modes, and per capita multi-

modal facilities (Newman and Kenworthy 1989a, 1989b, 1999; Kenworthy and Laube 

1999; Handy 2002; Litman and Laube 2002). It has also been addressed within the 

context of its impact on the environment, society, the economy and public health. 

Environmental effects include land and habitat loss, resource depletion, climate change, 

and emissions (UNEP 1993; Freund and Martin 1993; Wackernagel and Rees 1996). 

Social effects include traffic fatalities and injuries, and equity (Altshuler 1979; Litman 
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1997; Mensah 1995; Litman 2002). Economic effects include aggregate costs associated 

with motor vehicles, internal (consumer) and external (social) costs, and economic 

development costs (Delucchi 1996; Litman 2002; Litman and Laube 2002). Public 

health effects include accidents, respiratory disease, and obesity (WHO 2000). These 

studies recognize automobile dependence as having social costs, such as roadway 

congestion, degradation of air quality, depletion of energy and natural resources, and 

urban sprawl.  

A variety of policies and strategies have been initiated to lessen the social 

problems incurred by a great deal of transportation demand (Meyer 1999; VTPI 2005). 

Most metropolitan areas now have such policies with specific strategies including: 

congestion reduction – road pricing, transit improvements, rideshare programs, HOV 

priority, parking management and pricing, flextime, etc.; energy conservation and 

emission reduction – clean vehicles focusing on emission and fuel efficiency standards, 

travel demand management including distance-based emission fees, fuel tax, non-

motorized transportation, ridesharing, speed reductions, etc.; and improvement of public 

health, equity, and safety – non-motorized transportation promotion, user-pays-drive, 

benefit programs for lower income or disadvantaged people, traffic speed reductions, 

etc.  

Studies showing the current status of automobile dependence using gross 

indicators have contributed, to some extent, to awareness of automobile dependence. 

Many of the aforementioned studies center on descriptions of observed problems (i.e., 

increased use of automobile and motorized-oriented developments) associated with 
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current transportation patterns. Now, automobile dependence is perceived to have much 

to do with land-use patterns in most urban areas, and empirical efforts to understand the 

nature of automobile dependence should carefully consider the roles of land-use 

patterns. Recently, the availability of disaggregate land-use data and technological 

progress in GIS have enabled researchers to examine transportation–land-use linkage in 

a more objective and precise manner, and to find the variables associated with urban 

spatial structure that influences travel behavior.  

 

Definitions and Measurements of Automobile Dependence 

A seminal work on automobile dependence by Newman and Kenworthy (1989a, 

1989b) and a subsequent work (Kenworthy, et al. 1999) addressed a series of convergent 

conditions for land-use and transportation in cities where people were confronted with 

reduced mode options other than automobiles. In Newman and Kenworthy’s research, 

the term, “automobile dependence” was formalized as a simple relationship (measured in 

correlation) between urban density and per capita gasoline consumption. According to 

their observations, most automobile dependent cities display low-density development, 

dispersed land-use, and a high priority for car use. However, these studies have serious 

drawbacks in the choice of data used, methodology, and application to transportation 

dimension. Some criticisms have been levied on the use of aggregate data on urban 

density, simple correlation analysis, and cluster analysis (Gordon and Richardson 1989; 

Gomez-Ibanez 1991; Steiner 1994; Mindali, et al. 2004). Their work, nonetheless, has 
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been recognized as a landmark spurring additional research and discussions on the 

relationship between transportation and land-use patterns. 

Litman (2002) and Litman and Laube (2002) defined automobile dependence as 

transportation and land-use patterns that result in a high level of automobile use and 

reduced travel options. Their concept of automobile dependence is similar to that of 

Newman and Kenworthy. For the purpose of comparative understanding, balanced 

transportation is presented as an opposite concept. Furthermore, Litman discusses 

specific costs (internal cost and external costs)1 associated with increased automobile 

dependence by comparing the per household transportation cost of auto-dependent and 

multi-modal communities. Litman’s definition is similar to Newman and Kenworthy’s 

concept in that automobile dependence as travel behavior is closely related to land-use. 

Noteworthy, however, is Litman’s effort made to measure automobile dependence in 

terms of economic costs.   

Goodwin (1997) proposed a concept different from Newman and Kenworthy’s 

perception that is based on classical gross indicators connecting transportation and land-

use. In his work, automobile dependence is understood as a dynamic social and 

individual behavioral process that forms and develops over time. In reality, the 

intensities and factors leading to automobile dependence vary among individuals and 

over time. This feature necessarily leads to the exploration of individual travel behavior. 

When his concept is applied to mode choice in urban travel, automobile dependence is 

1 Internal costs are consumer costs incurred by ownership and use and include vehicle expenses, parking 
costs, accidents, travel time and stress, and reduced exercise and enjoyment, whereas external costs are 
imposed on someone other than the user, and include infrastructure costs, traffic congestion,  air pollution, 
land-use impact, and aesthetic degradation.         
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likely to be seen as either individual choices resulting from the superiority of the over 

other modes, or the absence of other alternatives given the individual’s specific attitude, 

environments for transportation, and land-use patterns. Despite his intellectual foresight 

in defining automobile dependence, Goodwin did not provide empirical examination. 

In addition to this common concept of automobile dependence closely connected 

to land-use, there are a few other concepts that take distinctively different approaches, 

such as the positive effect of automobile systems (Dupuy 1999), and absolute and 

relative measures of automobile dependence (Stradling 2001). According to Dupuy, 

automobile dependence is due mainly to the superiority of positive effects (of 

accessibility concerning only automobile-related services) within automobile system 

exceeding the negative effects (congestion and pollution). Land use is not a factor to be 

taken into account within the automobile system. Thus, policy implementation reducing 

automobile dependence generates positive effects by the diversification of vehicles and 

ownership and the modification of road networks through reaching political consensus. 

In another approach based on transport psychology, Stradling (2001) looked at 

automobile dependence as the extent to which individuals are dependent on automobiles 

to meet individual transportation needs. Two measures were taken in his research: 

absolute versus relative. While absolute measures looked at the number of trips made by 

car at both travel time by car and distance traveled by car per unit of time, relative 

measures focused on car use in both mode mix and activity mix. The second measure 

stressed the individual’s specific attitude based on his or her psychological attachment to 

automobiles. 
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Possible Causes of Automobile Dependence  

The causes of automobile dependence are identified with several broad 

categories in the literature: advances in transportation technology, transportation 

capacity improvements (such as road construction), land-use (such as low-density land-

use, and zoning), reduced mode alternatives, socioeconomic factors, and individual 

preferences (such as attitudes) (Newman and Kenworthy 1989a; 1999; Gomez-Ibanez 

1991; Goodwin 1997; Raad 1998; Dupuy 1999; Litman 2002; Bagley and Mokhtarian 

2002; Handy, et al. 2005). In reality, there is no single cause that incurs automobile 

dependence. Rather, there are cyclic contributing causes, many of which would be the 

consequences at one stage and the causes at the next stage. As noted, the causes of 

automobile dependence tend to give and take the cyclic feedback that gradually 

reinforces transportation-relation problems. The possible causes influencing the level of 

automobile use are reviewed below. 

First, changes in transportation technology have been recognized as the primary 

trigger for widespread automobile ownership and use. The widespread availability of 

automobiles brought to more people the mobility necessary to travel long distances at 

relatively high speeds. In reality, the growth of vehicle ownership outpaces increases in 

road capacity. With automobiles available to the majority of the adult population, 

transportation capacity improvements through the construction of new roads sped up 

low-density suburban developments, particularly in the United States. Economic 

activities such as manufacturing and retail did not have to concentrate on specific 

locations or downtowns any more. Automobile roadways already became a predominant 
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accessibility option to residences and industries (Mumford 1953; Illich 1974). 

 Second, road construction and improvement (i.e., road widening without 

sidewalks or bikeways, disconnected roads, and roads for cars only, etc.) tend to spur 

low-density development where the provision of transit services or non-motorized 

modes is neither feasible nor efficient, therefore limiting travel options to driving. 

Particularly, curvilinear roads in suburban areas make difficult to access by modes other 

than automobile. In turn, such roads tend to encourage low-density development patterns 

with a resulting increase in the expense of transportation. Also due to the segregation 

between trip origins and destinations, areas with single land-use or single zoning 

generate longer travel distances compared to areas with mixed land-uses. Therefore, 

transit service in low-density areas requires increased subsidies, and such high subsidies 

eventually often result in the reduction or elimination of existing transit services. 

According to recent empirical analyses, road transportation improvements cause greater 

demand for automobile trips (Goodwin 1996; Hansen 1995). That is, these 

improvements induce additional amounts of traffic in the short and long terms, rather 

than actually relieving traffic congestion as originally intended.   

 Third, land-use patterns, such as segregated, low-density developments, require 

necessary public services such as schools and hospitals to be located far away from the 

residential and activity centers that are often along the perimeters of urbanized areas 

where larger parcels of land are available at a lower cost, further encouraging urban 

sprawl and automobile use. In terms of costs, once consumer costs are imposed 

offsetting the benefits of individual automobile use, the external costs not borne directly 
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by the driver are imposed on a whole society (Litman 2003). This issue is a core subject 

in this research and will be reviewed in greater detail in the next section.     

 Fourth, decreased viability of transit service or reduced transit service 

discourages people from using it due to the increased inconvenience and inefficiency. 

This consequently makes driving a much more attractive choice (Kain 1999). Transit-

hostile or automobile-oriented land-use patterns in suburban areas further preclude other 

alternatives such as walking or biking. Where automobile traffic dominates, it is easy to 

observe resulting phenomena such as more automobile trips, increased VMT, increased 

car ownership, less walking and biking, and less transit use (Newman and Kenworthy 

1989a).         

  Fifth, socio-economic forces may be important factors influencing automobile 

dependence. These factors mainly depend on economic, social, and psychological 

conditions (Goodwin 1997; Liu and Ingram 1999). For example, if a person in a 

household purchases her or his own car, she or he will more be likely to choose driving 

over other modes of transportation. Other members of the household will also likely be 

affected by that person’s decision and behavior. These factors usually include gender, 

age, education, income, and other personal (or household) characteristics.   

 Lastly, attitudinal factors such as personal preferences and life style are 

associated with people’s preference of certain transportation modes. Individuals who feel 

that driving allows them to get more done or gives more comfort and freedom are likely 

to stick to driving. Those who have strong attitudes favoring automobile use are likely to 

be royal to automobiles. Attitudes may be formed by personal characteristics as well as 
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built environmental characteristics. When the decision to drive an automobile is based 

on attitudinal rather than externally observed factors, it is the most powerful cause of 

automobile dependence. 

 

Consequences of Automobile Dependence 

 The effects of transportation observed with an increase in automobile use have 

been widely reported in the literature. These effects have fueled a growing public 

concern about current transportation conditions. The effects reviewed here include three 

dimensions: environmental, social, and economic. First, there are extensive 

environmental problems (such as air and water pollution, imbalanced ecological 

functions caused by the loss of non-urban land, landscape degradation, and energy 

depletion) associated with automobile dependence. Growing concern is placed on air 

quality problems in urban areas. Emissions and pollutants resulting from vehicle 

operation include sulfur dioxide (SO2), carbon monoxide (CO), nitrogen oxides (NOx), 

volatile organic compounds (VOC), and so on. Ozone (O3) resulting from NOx and VOC 

combined in sunlight causes major urban air pollution. These pollutants are direct causes 

of various respiratory diseases. On-road (or highway) vehicles in 2002 emitted 55 

percent of the nation’s CO, 35 percent of the nation’s NOx, and 27 percent of the nation’s 

VOC (BTS 2004a). Transportation accounted for 22 percent of carbon dioxide (CO2), 

one of the major greenhouse gases; on-road vehicles accounted for 79 percent, with 

passengers cars accounting for 45 percent of all transportation CO2 emission in 2002 

(USEPA 2004). According to the Victoria Transportation Policy Institute, the air 
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pollution cost of average car in 1996 was an estimated 5.2 cents per mile for urban off-

peak and 6.2 cents per mile for urban peak time (VTPI 2005). 

 Second, automobile dependence has social effects on health and equity. 

Transportation-related fatalities and injuries are mainly attributed to collisions involving 

motor vehicles. According to the OECD (1995), although many countries with high 

traffic volume have low vehicle-occupant fatalities and low pedestrian traffic fatalities, 

accident rates and fatality risks are strongly correlated with VMT (Litman 1997). Road 

deaths and injuries caused by traffic accidents impose significant costs on society. 

Vehicle crashes are among the primary causes of death among Americans especially 

those under 37 years of age (Richardson 1997). Motor vehicle crashes constitute one of 

the largest transportation costs and totaled an estimated $358 billion in 1988 in the U.S. 

Currently transportation equities or inequities are also a serious problem with the 

discussion centered around: wealth and ability to pay, income and social classes, and 

group with limited mobility or transportation disadvantages. The need for increased 

mobility made communities more automobile dependent, and, in turn, the financial 

burden related to transportation increases. This increased transportation cost may be 

affordable to higher income people, but it imposes disproportionately larger financial 

burdens on lower income people (TRB 2001). According to consumer Expenditure 

report (1999), lower income households spend much higher proportions of their income 

on transportation (up to 38%), compared to higher income households (as low as 12%). 

 Finally, automobile dependence has both positive and negative economic effects 

(Litman 2003; Delucchi 1996). While benefits are related to increased automobile 
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mobility that affects local or regional productivity and efficiency, costs come from 

various inefficiencies such as delay (or congestion cost), driver stress, vehicle cost, and 

vehicle crash cost, etc. Both positive effects (benefits) and negative effects (costs) can be 

explained by a counterbalancing relationship.  In literature, the economic effects are 

documented by evaluating the increased mobility, vehicle expenditure, parking costs, 

traffic congestion, accident damages, automobile-oriented land-use, and reduced travel 

choices. The Texas Transportation Institute (TTI) estimates, using an engineering 

approach, an annual economic congestion cost of $67.5 billion for 75 metropolitan areas 

in 2002 (TTI 2002). Litman (2002) estimates household transportation costs per mile in 

1999 in an automobile dependent community and compares it with that of a community 

with more balanced transportation. Household transportation in an automobile dependent 

community costs 40% more.   

 

Link between Transportation and Land-Use  

Historical Overview 

 There is a considerable amount of research investigating the linkage between 

transportation and land-use. The historical overview of the literature falls into two 

distinct streams. The first stream, at present inactive compared to the second stream, 

focuses on evaluating the effects of transportation investment on the patterns of urban 

developments. The highly debated second stream concerns the effects of land-use on 

travel behavior in both theoretical and practical aspects (Pickerell 1999; Badoe and 

Miller 2000; Crane 2000). The first stream is not in line with the current research and 
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hence is discussed only briefly here, with most of the review focused on the second 

stream.     

Research pertaining to the first stream answers mainly a key question about how 

transportation investments and related travel behavior affect land-use, especially 

development patterns. Many past studies presented the empirical evidence from testing 

the classical hypotheses2 based on the location theory for both residence (housing) and 

firm (business) locations (Mills 1972; Fujita 1989; Anas, et al. 1998). Recent studies 

centered on the investigation of the effects of transportation investments such as 

expansion of highway capacity and mass transit on employment decentralization. 

However, although the historical effects of transportation on land-use were presented 

clearly in some instances, recent evidence shows only a limited influence on housing and 

business location patterns (Hamilton 1982, 1989; Small and Song 1992; Mieszkowski 

and Mills 1993; Giuliano and Small 1993; Giuliano 2004).  

The second stream, sparked in the 1990s in response to a growing interest in 

land-use policies to reduce automobile dependence, deals primarily with a question of 

how we design urban spatial structure and effectively shape urban areas to reduce 

automobile dependence. Many studies addressing such a question have shed light on the 

relationship between transportation and land-use based on the geographical unit of 

analysis. Past studies are considerable in their cumulative amounts, and a few articles by 

Crane (2000), Badoe and Miller (2000), and Ewing and Cervero (2001) give excellent 

2  A classical key hypothesis from traditional location theory is that the transportation cost determines the 
land-use in which each piece of land-use is associated with a unique location over geographical space 
(Alonso 1964; Muth 1969; Mill 1972; Henderson 1977; Fugita 1989).      
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reviews with diverse points of view. Studies in this stream brought a new perspective to 

policy debates among planning professionals. From the late 1980s to the mid 1990s, a 

growing interest occurred in the use of land-use policies to manage transportation 

demand and led to policy debates on whether or not land-use would matter. Policy 

debates claimed two different approaches for policies reducing automobile dependence: 

“modifying land-use” through physical planning and urban design (Newman and 

Kenworthy 1989; Cervero 1991; Cervero and Landis 1995; Newman, et al. 1995), and 

“taking economic measures” such as pricing mechanism in the transportation markets, 

levying taxation or lifting subsidies (Gorden and Richardson 1989; Gorden, et al. 1989; 

Gomez-Ibanez 1991; Giuliano and Small 1993; Giuliano 1995). These policy debates led 

researchers to recognize the importance of policy research on land-use as a way to cope 

with automobile dependence. It was essential for the advocates of land-use policy to 

pursue the enrichment of research on the relationship between transportation and land-

use.  

As a result, it is noteworthy that methodological progress has been made in 

several significant ways. For example, the identification of various land-use measures at 

various geographical units of analysis, theoretical and analytical foundations for the link 

between transportation and land-use, statistical methods, and acquisition and use of 

disaggregate land-use data or travel diary and survey data are all excellent 

methodological contributions. Insightful inquiry into the land-use measures (i.e., density, 

land-use mix, and accessibility) related to travel outcome variables3 has expanded, to a 

3 In many studies, travel-outcome variables fall into vehicle miles traveled (VMT), trip frequency, mode 
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considerable extent, the capacity to efficiently and effectively gauge urban spatial 

structure. Further, the employment of these measures for land-use policy research has 

been suggested. Several earlier works documented the relationship between 

transportation and land-use using regression analysis by incorporating the various 

measures of land-use and by controlling non-land-use variables that affect travel 

behavior (Frank and Pivo 1994; Cervero and Gorham 1995; Cervero 1996; Handy 1996; 

Levinson and Kumar 1997; Handy, et al. 1998). Also a growing body of empirical 

studies dealing with transit and non-motorized transportation behaviors has identified a 

number of detailed and disaggregated land-use measures associated with transit use, 

walking, and biking. While the associational (mostly correlational) relationship found by 

these analyses was greatly informative for further research, efforts to describe travel 

decision process were limited. Further these studies had no ability to explain causality in 

their models. 

Kockelman (1997) and Cervero and Kockelman (1997) showed prominent 

insights in their efforts to define and document land-use variables in three principal 

dimensions (density, diversity, and design), and analyzed in detail these variables based 

on the integrated model for transportation–land-use link. Findings indicated that compact, 

mixed-use, and pedestrian-friendly designs can reduce automobile dependence. Their 

results, however, were still correlational rather than causal. The causal model with 

behavioral links between travel outcome and land-use can correctly estimate and forecast 

the effects of land-use policy changes. Both studies detailed land-use variables in the 

choice, trip length and duration, departure time, route choice, auto ownership, trip purpose, etc.  
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linkage, but have not applied them to a travel demand model yet. Crane (2000) classified 

these models (including earlier models) as ad hoc distinguished from demand models. 

In recent years, some attempts to build a conceptual framework consistent with 

consumer behavior theory have been made in an effort to find additional evidence for 

land-use planning. Domencich and McFadden (1975) earlier mentioned that land-use 

could be included in the travel demand model with traditional demand variables (i.e., 

modal attributes and socioeconomic characteristics). Some recent works have refined the 

travel models to include the full array of explanatory variables such as demand variables, 

personal or household characteristics, and land-use variables. These models could 

capture the short-term effects through demand variables as well as the long-term effects 

by land-use variables associated with the long-term behavior (Crane and Crepeau 1998; 

Boarnet and Greenwald 2000; Boarnet and Crane 2001; Cervero 2002; Zhang 2004). 

Travel model improvement brings, to a certain extent, more and more attention to the 

issues of causality between travel behavior and land-use, but the empirical investigation 

into causality is still limited due to lack of data availability and methodological 

difficulties.  

 

Land-Use in Travel Demand Models  

Models linking land-use and travel behavior have been generally called travel 

demand models despite the theoretical distinctions. The linkage models from the 

consumer theory of microeconomic foundation should be distinguished from the other 

linkage models. As addressed above, the travel demand model must include a 
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comprehensive set of explanatory variables (travel time and travel cost, socioeconomic 

characteristics, and land-use variables). In particular, price variables (travel time and 

travel cost) should not be omitted. It is evident that omitted variables lead to biased 

results from a statistical standpoint. The travel demand model must have a behavioral 

framework to describe the causal relationship between travel outcome and land-use.  

Such a model is useful in using policy changes to forecast actual travel demand. Studies 

reviewed below are selected based on meeting these qualifications as travel demand 

models.  

The models with transportation and land-use linkage have been developed in 

tandem with the incorporation of the full array of explanatory variables. Existing 

literature review articles provide a good composite understanding of the land-use 

variables and their effects on transportation (Badoe and Miller 2000; Crane 2000; Ewing 

and Cervero 2001). A literature review suggests that a fair amount of information is 

known, but the relationship between transportation and land-use remains too 

complicated to be fully comprehended from the existing evidence. Some analyses using 

regression techniques overlooked the behavioral frameworks, and the theoretical and/or 

statistical considerations of causal relationships (Handy 1993; Frank and Pivo 1994; 

Cervero and Gorham 1995; Cervero 1996; Levinson and Kumar 1996; Kockelman 1997; 

Cervero and Kockelman 1997; Kitamura, et al. 1997; Handy, et al. 1998).  

In recent works, several transportation planning scholars have been paying some 

attention to the causal relationship, establishing the travel demand models derived from 

the economic theory. Travel demand models incorporate mainly the land-use variables 
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and the traditional demand variables into the analytical framework. In urban economics 

literature, monocentric models4  (Muth 1969; Fujita 1989; Wheaton 1998) and some 

modifications to monocentric models (White 1988; Bento, et al. 2003) suggest that a 

household travel demand depends on the distribution of population and employment 

throughout a city, the size of city, its road and transit networks, the density of the road 

network, a marginal time cost, and a marginal price.  

As noticed earlier in Domencich and McFadden (1975), travel demand model 

must be inherently causal through the behavioral link between travel behavior and 

decision variables (i.e., land-use variables and economic variables). Several recent 

studies stress the model specification in this context (Crane 1996a; Crane and Crepeau 

1998; Boarnet and Sarmiento 1998; Boarnet and Greenwald 2000; Boarnet and Crane 

2001; Kockelman 2001; Cervero 2002; Zhang 2004; Bento, et al. 2005). Table 2.1 

summarizes the selected studies dealing with the transportation–land-use linkage in 

terms of the variable specification. A detailed review is conducted for the travel demand 

models including the land-use and economic variables. These variables are likely to 

clarify the role of decision variables in both short-term and long-term policy questions 

for urban transportation planning. The interest in land-use variables from the standpoint 

of transportation-policy analysis lies primarily in the question of whether planners can 

influence travel behavior by land-use policies, as the interest in economic variables 

appeals to economists with regard to the role of pricing policy.  

�
Monocentric model fundamentally depends on the rent gradient it faces and on the marginal cost of 

travel which varies with distance form CBD. Thus household travel model depends on the demand 
variables (marginal time cost and/ or marginal price) and on the urban form variables.



23 

Outcome variables to measure travel are distinct in literature: trip frequency 

(rates), trip length (vehicle miles traveled or person miles traveled), mode choice, trip 

duration (vehicle hour traveled), departure time, route choice, vehicle ownership, and so 

on. Particularly, trip frequency, trip length and mode choice are most frequently used to 

examine travel behaviors directly associated with automobile dependence. Contrary to 

travel outcomes, land-use variables are featured by the various dimensions of land-use 

and urban form. Urban spatial structure has been identified and measured empirically by 

spatial activity outcomes, urban design characteristics, and transportation infrastructure. 

Spatial activity outcomes are often characterized by indicators such as density, land-use 

mix and accessibility. The design characteristics are measured both subjectively as 

perceived quality and objectively using GIS, and include safety related to transportation, 

aesthetic quality of the roadside environment, etc. Transportation infrastructure often 

includes the patterns of roads, street connectivity, and provisions for sidewalks or bike 

paths, availability of transit services, etc. More importantly, the spatial structure would 

somewhat depend on the geographical scales (i.e., neighborhood, census block and tract, 

zip code, community, city, and region), and the geographical scale may reinforce or 

attenuate the status of spatial structure (Handy 1993). At the neighborhood or 

community levels, the local street patterns and the residential location are likely to 

influence the urban spatial structure. At the regional level which may encompass 

multiple abutting large cities and metropolitan areas, the urban spatial structure may be 

influenced by main roadways, transit systems, major transportation terminals, and 

employment centers.  



Table 2.1 Linkage Models of Transportation–Land-Use
Explanatory Variables 

Land-use dimensions 
 
 

Authors 

 
 

Travel Measures 
 

Modal 
Attribut-

es 
(T/C*) 

 
Travel 
supply/ 
Trip attr 
-ibutes 

 
Socio-   
demo- 

graphics 
(P/H/I)* 

 
Atti- 
tudes 

 

Den-
sity 

Diver
-sity 

Access- 
ibility 

Street 
features 

Walk/ 
Bike 
prov- 
isions 

Frank & Pivo (1994) mode: SOV, transit, & walking          √      
Cervero & Gorham 
(1995) 

mode: transit commuting                        
√ 

     √      √  

Cervero (1996) mode: Automobile commuting 
Transit commuting 
Walk/bike commuting 

vehicle ownership (# of cars) 
distance b/w home & job-place             

  √    √ 
 √       
 √    √ 
 √    √ 
 √    √ 

       √ 
       √ 
       √ 
       √ 
       √ 

      √ 
    √ 
    √ 
    √ 
    √  

   

Levinson & Kumar 
(1997) 

commute time 
commute distance 
commute speed 

   √  
 √ 
 √ 

     √     

Handy, et al. (1998) strolling trips 
walks to the store 

         
         

  √   √    
√  
 √   √    
√ 

       √ 
   √ 

     √ 
     √ 

Kockelman (1997) VMT for all trips per household 
VMT HBNW trips per household 
auto ownership  
mode: personal vehicle 
     walk/bike  

           
 
 
       √ 
       √ 

      √   √ 
      √   √ 
      √   √ 
 √        √ 
 √        √ 

  
 
    √ 
    √ 

    √ 
    √ 
    √ 
    √ 
    √ 

    √ 
    √ 
    √ 
    √  
    √ 

  

Cervero & 
Kockelman (1997) 

person VMT for all trips 
person VMT for non-work trips 
mode: Non-SOV for non-work 
mode: Non-PV for non-work 
          for personal business 
          for work trips     

   √ 
  √ 
       √ 
       √  
       √ 
 √    √ 

 √ 
 √ 
 √   √  
 √   √ 
 √   √ 
 √   √        

      √ 
    √ 
    √ 
 
 
           

    √ 
 

   √ 
   √ 
   √ 
   √ 
 
   √ 

 
 
     √ 
     √ 
     √      
     √ 

* T/C means trip time and trip cost, and P/H/I means personal, household characteristics, and income respectively.  
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Table 2.1 (Continued) 

Explanatory Variables 
Land-use variables 

 
 

Authors 

 
 

Travel Measures 
 

Modal 
Attribut-

es 
(T/C)* 

 
Travel 
supply/ 
Trip attr 
–ibutes 

 
Socio-   
demo- 

graphics 
(P/H/I)* 

 
Atti- 
tudes 

 

Den-
sity 

Diver
-sity 

Access- 
ibility 

Street 
features 

Walk/ 
Bike 
prov- 
isions 

Kitamura, et al. 
(1997) 

total # of person trips 
        of transit trips 
        of non-motorized trips  

   √   √   √ 
 √   √   √ 

       
√ 
√ 

     √      
 
    √ 

Krizek (2003) # of tour, # of trips per tour 
VMT 

        √   
      √   

        √ 
     √    

  

Greenwald (2003) trip ratios        √        √        √     √  √  
Handy, et al (2005) VMT 

Change in driving / walking  
   √ 

 √ 
   √ 
   √ 

     √ 
    √ 

     √ 
     √ 

     √ 
     √ 

   √ 
   √ 

Boarnet & 
Sarmiento (1998) 

non-work automobile trips           √     √   √   √       √     √       √  

Crane & Crepeau 
(1998) 

car trip frequency 
mode choice 

√ 
√ 

    √   √   √ 
 √   √   √ 

     √ 
    √   

    √ 
    √ 

 √ 
√ 

 

Boarnet & 
Greenwald (2000) 

non-work auto trips per person   √   √   √   √      √         

Kockelman (2001) # of trip per household    √     √             √         √    
Boarnet & Crane 
(2001) 

trip frequency (Orange Co/ LA) 
trip frequency (San Diego) 

√ 
√ 

  √   √   √ 
 √   √   √ 

     √ 
    √ 

     
    √ 

 √ 
√ 

 

Cervero (2002) mode: driving-alone (DR) 
           transit 
           DR/group-ride/transit 

  √     √ 
  √     √ 
  √     √ 

  √   √ 
 √   √ 
 √   √ 

     √ 
    √ 
    √ 

    √ 
    √ 
    √ 

√ 
√ 
√ 

     √ 
    √ 
    √ 

Zhang (2004) mode choice   √     √      √    √  √   √   √      √            √        √        
Bento, et al. (2005) mode choice 

VMT 
      √   
      √   

  √     √ 
  √     √ 

 √   √   √ 
 √   √   √ 

     √   
    √   

    √   
    √   

   

* T/C means trip time and trip cost, and P/H/I means personal, household characteristics, and income respectively. 
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Crane and Crepeau (1998) criticized earlier works which only included land-use 

variables such as urban density and four-way intersections. New specifications were 

made for improving the model and were applied to explain travel behavior as a function 

of behavioral variables 5  (prices and preferences) and land-use variables. In their 

empirical analysis, household travel diary and GIS data for San Diego were used for 

testing the effect of land-use (specifically, neighborhood street pattern and portion of 

land-use in census tract) on non-work car trip frequency at both the household and the 

personal levels, and on mode choice between car and walking. They concluded that 

higher street density reduces car trip frequency only on the household level, the higher 

commercial share of land-use increases the number of trips on the personal level, and 

there is no empirical evidence to show that street design patterns influence the likelihood 

of selecting driving. Although there is little support for the claims of new urbanism 

regarding the impact of land-use on travel behavior, this work improves the ad hoc 

models to travel demand model by including a theoretical causal structure.  

Another study (Boarnet and Sarmiento 1998) specified the behavioral nature of 

the link between transportation and land-use derived from Crane’s theoretical framework. 

In this research, the demand for non-work automobile trips was defined as a function of 

travel time cost, individual income, and socio-demographic variables. Here, travel time 

cost was assumed to be influenced by land-use variables (density, street grid, the mix of 

commercial and residential use). Empirical results, using travel diary data from southern 

5 Price (travel time and cost) variables are behavioral variables in travel demands because travelers can 
make decisions when confronted with alternative choices.  These ideas are found in refined manner in 
Boarnet and Greenwald (2000), and Boarnet and Crane (2001a, 2001b).  
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California residents, showed that land-use variables measured at the census block/tract 

and the zip code levels do not support the new urbanist principles. However, although 

theoretical specification seemed to be more appealing than previous linkage models, the 

statistical methods used for the model are more or less questioned.   

A similar study (Boarnet and Greenwald 2000) tests the hypotheses of empirical 

specification by including a comprehensive set of variables such as socio-demographic, 

trip cost, and land-use for the zip code and census tract from the 1994 Portland-Oregon 

travel diary. New to this research is the use of sophisticated estimation methods such as 

two-step procedures and instrumental variables. Findings from travel demand models 

report that the link between land-use and non-work trips seems weak but apparently 

exists, and that the consideration of appropriate geographical unit of analysis is critical.   

Boarnet and Crane (2001) investigated the causal links between land-use and 

travel behavior in terms of the model specification and estimation issues. They found 

that many foregoing studies poorly incorporated the behavioral theory of travel demand 

and poorly addressed estimation issues. Their fundamental assumption that the pattern of 

land-use captures all price variations was substantiated by the theoretical framework and 

well incorporated into the estimation procedure. However, their price variables using trip 

length and speed for trip time were not likely to be captured completely by land-use 

characteristics. Data from travel diaries from Los Angeles and San Diego were used for 

empirical analysis. Some lessons from their findings inform us of how land-use variables 

are linked to price variables and then to travel behaviors, how important the 

geographical scale is, and how the causal flows are sometimes erroneously assumed by 
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correlational associations in the literature.      

Cervero (2002) stressed the adequate specification of the relationship between 

built environment factors and travel behaviors by paying special attention to the theory 

and methodology. Using 1994 Household Travel Survey from Montgomery County, 

Maryland, he estimated mode choice models with socio-economic characteristics (travel 

time and cost, and demographics) and built environment factors (density, diversity and 

design) at travel origins and destinations using the TAZ as the unit of analysis. Findings 

reveal that density and mixed land-use significantly influence the choice for driving-

alone, group-ride, and transit, but the effect of urban design is trifling in ways not 

adequately appreciated in many policy discussions. Of special note is the model 

specification in his research that can be a prototype for conducting similar research in 

geographically diverse regions. In particular, he envisions a normative analytical 

framework based on consumer choice and travel demand theory allowing policy-makers 

to make informed decisions on land-use and transportation proposals.       

An empirical study analyzes the influence of land-use on mode choice for both 

work and non-work trips using individual travel survey data in metropolitan Boston and 

Hong Kong (Zhang 2004). Analytical model was specified as travel demand model with 

mode attributes (travel time and travel cost), personal characteristics, and land-use 

variables. The study reports four major findings centering on the policy and 

methodological issues of travel demand models: there is considerable benefit in model 

improvement from the linkage to travel demand model, land-use matters when 

traditional demand variables are controlled, the influence of land-use on driving decision 
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is potentially as strong as pricing depending on the combined land-use elasticities of 

driving probability, and the performance of land-use variables is weaker for non-work 

trips and some dimensions of land-use are no longer significant, while travel time and 

cost are still significant in explaining the mode choice for both types of trips.   

Bento, et al. (2005) reported the effect of urban form on travel behavior by 

households in 114 urban areas with data from the 1990 Nationwide Personal 

Transportation Survey. In their model, measures of urban form include city shape 

measured in circularity, road density, population density, population centrality, job-

housing balance, bus route miles, and railroad miles. The empirical models of commute 

mode choice, vehicle ownership and annual VMT depend on household characteristics, 

income, travel cost (city-specific gasoline price), and measures of urban form. In 

particular, they estimate a multinomial logit model of the number of vehicles owned and 

an equation for the annual VMT, conditional on owing vehicles. Empirical analysis finds 

that when the probability of driving to work is low, population centrality is high and road 

density is low. VMT is also influenced by population centrality, job-housing balance, 

city shape, and road density. The research concludes that in the U.S., heavily dependent 

on the automobile, urban form affects travel demand. 

 

Causality in the Linkage 

 The direction of causal flows is usually defined a priori by a theory or a 

conceptual framework, but it is difficult to define the nature of relationships between 

travel behavior and land-use due to the complexity of land-use dimensions interwoven 
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among themselves and to the potentially different roles of land-use variables when 

measured and analyzed at the different geographical units of analysis (Crane 1996a). 

Empirical relationships reported by previous research vary and remain to be correlational 

rather than causal. As pointed out by Boarnet and Crane (2001) and Cervero (2002), 

almost all past studies had theoretical and/or statistical misspecifications of models 

which were mainly attributed to the shortage of available data and the limitation of 

methodologies. Limited or little attention has been paid to the issue of causality in the 

link between travel and land-use in the previous literature. Recently, the issue of 

causality has started to attract much interest centering on causal mechanism linking land-

use to travel behavior in the travel-demand model which is specified by the set of 

observed variables (Carne 1996a; Boarnet and Crane 2001a, 2001b), and checking the 

stability of causal relationships between travel and land-use by accounting for the 

possibility of self-selection based on unobserved preferences such as attitudes (Bagley 

and Mokhtarian 2002; Handy, et al. 2005).  

Crane (1996a) developed a theoretically different framework from previous 

models linking land-use with travel behaviors, and offered the comparative-static effects 

of land-use change on the travel demand derived from the utility maximization theory. 

Trip demand (measured by the number of trips) for each mode (automobile, walking, 

and bus or other transit) is a function of price vector in which its change is caused by the 

change in land-use variables (grid, traffic calming, and mixed use). That is, the change in 

land-use shifts the number of trips by each mode through the change of price 

(generalized cost). In the previous models for trip generation, the demand for travel was 
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mainly defined as a function of socio-demographics and land-use. Now, the price is 

assumed as completely captured by land-use characteristics in transportation market, and 

thus the vectors of price, land-use, and socio-demographics are included in the trip-

generation model. However, land-use variables are unlikely to perfectly determine the 

price (trip length and speed), because trip time and trip cost can be directly observed in 

transportation markets rather than the implied prices by hedonic pricing (Crane and 

Crepeau 1998; Boarnet and Sarmiento 1998; Boarnet and Greenwald 2000; Boarnet and 

Crane 2001a, 2001b). 

When the unobserved (or subjective) preferences such as intensions and attitudes 

are taken into account in the linkage model, the assumed causality for the linkage based 

on the revealed (or objective) preferences may be masked or reversed due to subjective 

preferences. Such preferences may be correlated with personal or household 

characteristics or the built environments, and in turn reinforce or suppress the observed 

preferences. The issue is oftentimes addressed by self-selection; for example, those who 

like to walk or use transit may choose to live in a neighborhood that has sidewalks and 

transit services that support their preference. Currently there are a few studies dealing 

with the issue of self-selection using cross-sectional data or panel data, but only one 

study tests self-selection directly. These studies are inclined to parsimoniously specify 

the models in the absence of potentially important variables (i.e., insufficient land-use 

dimensions or omission of demand variables), and such specification problems may 

outweigh the benefits of addressing causality in the model.    

Another study deals with relationships among attitudes, residential location 
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choice and travel behavior by using nine structural equations from data on 515 residents 

from five neighborhoods in the San Francisco Bay area (Bagley and Mokhtarian 2002). 

For the use of endogenous variables, the system of equations includes residential 

locations (traditional vs. suburban), attitudes (pro-high density, pro-driving, and pro-

transit), travel demand (in log-transformed vehicle miles, transit miles, and walk/bike 

miles), and job location measured by commute distance. This study finds the multi-

directions of causality to independently influence nine endogenous variables. According 

to the results, attitudinal variables affect transit miles and walk/bike miles, but residential 

location (suburban) shows no evidence of influencing travel behavior. That is, the 

inclusion of attitudes into the model changes the observed relationship between 

residential location and travel behavior, suggesting that residents with specific attitudes 

are self-selective in the specific type of neighborhoods in which they live. In particular, 

this approach tests the relationships between empirical data and the assumed causal 

structure, and suggests the possibility of multi-directions of causality to explain travel 

behavior.   

A work by Krizek (2003) analyzed the relationship between urban form 

(neighborhood accessibility and regional accessibility) and travel behavior (vehicle miles 

traveled, person miles traveled, number of trips, number of trips per tour, and mode 

split6) using data from the Puget Sound Transportation Panel Survey. This study used a 

longitudinal design to test the impact of the change in urban form on travel behavior 

from a total sample of 6,144 focusing on 430 households that relocated between 1989 

6 In his paper, the results for mode split were not reported due to reason that the effects of the policy-
relevant variables were not significant. 
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and 1997. The empirical results suggest that changes in urban form reduce both vehicle 

miles traveled (VMT) and person miles traveled (PMT), and change in neighborhood 

accessibility tends to increase trip generation. In the meantime, mode split 

(walking/biking, transit, and auto) is not influenced by changes in urban form. Krizek 

pinpoints that households prefer to remain fixed in terms of mode and are unwilling to 

change to alternatives, and suggests in a roundabout way that there is little influence of 

unobserved forces (self-selection) on travel behavior without measuring the household 

unobserved preferences. This study supports the assumed causality such that urban form 

still influences travel behavior although there exists the possibility of self-selection.   

Handy, et al. (2005) used a sample of two groups of residents (relocated vs. non-

relocated) in four neighborhoods (traditional vs. suburban) of Northern California to 

investigate a causal relationship between the built environment and travel behavior. 

Their cross-sectional analysis shows that attitudes toward transportation (pro-bike/walk, 

driving-safe, and car dependent) and socio-demographics contribute causally to explain 

travel behavior (vehicle miles driven), but the built environment does not. In quasi-

longitudinal analysis, the change-in-driving is caused by land-use (change-in-

accessibility factor) and attitudes (car dependent and pro-bike/walk), and the change in 

walking depends on change-in-accessibility factors and pro-bike/walk. These results 

show that there exists evidence supporting the presence of self-selection. An increase in 

change-in-accessibility leads to a decrease in the change-in-driving, while car-dependent 

people tend to drive more, pro-bike/walk people drive less, and walk more. Testing self-

selection in the data shows that the decrease in driving caused by the built environment 
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(an increase in accessibility) is somewhat suppressed by car-dependent attitudes but the 

increase in accessibility has the greatest effect on driving less. This study supports a 

causal relationship that the built environment influences travel behavior after accounting 

for attitudes. However, this study does not answer the nature of causality, including the 

magnitude of associations and the causal direction between attitudes and built 

environment, and the multi-directions of causality between all the explanatory variables. 

In understanding the impact of land-use on travel behavior, it is important to 

identify and clarify the direction of causality based on the models with the full array of 

potential regressors. Currently there is a gap in the linkage models in terms of the causal 

notion for the explanatory variables. In the consumer demand-typed linkage models, 

prices have been viewed as important factors in influencing travel demands (such as 

mode split as well as, following Crane, trip generation and VMT) along with other 

shifters (socio-demographics and land-use), while in conventional linkage models, socio-

demographics and land-use were important factors affecting travel demands, and 

attitudes seemed to play a role in determining (reinforcing or suppressing) the stability of 

assumed direction of causality between travel behavior and land-use. Relative or 

absolute belief in the efficacy of land-use policies might lead to different causal notions 

and to suggestions for different policy mix or practices to reduce automobile dependence.  

Cross-sectional data has been pointed out as a primary constraint for research 

investigating the causal mechanism of the linkage models, but nonetheless, valuable 

efforts have been made to shed light on the issue of causality. These efforts are observed 

in research designed to search for the full array of explanatory variables developing 
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behavioral theories (especially, travel-demand model linking land-use to travel behavior), 

the use of the instrumental variables modeling a system of structural equations, and 

further longitudinal analysis utilizing panel data. Nonetheless, the nature of the causal 

relationship between travel behavior and land-use is still poorly understood, although it 

is true that the limitations of the available empirical data and their relation to the 

assumed causality have been in part addressed by a small number of recent studies 

employing a longitudinal method. In addition to the need for more rigorous and 

extensive longitudinal studies, the strength of associations and the causal directions 

between attitudes, prices, socio-demographics, and land-use variables must be clarified 

to provide more conclusive evidence explaining the relationship between travel behavior 

and land-use. Much still remains to be understood regarding the nature of causality. 
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CHAPTER III 

CONCEPTUAL FRAMEWORK AND HYPOTHESES 

 

This chapter sets out the conceptual framework exploring the linkage between 

transportation and land-use, and considers the causal relationships between the two and 

among the explanatory variables. The conceptual framework serves as a basis for the 

research hypotheses of this dissertation. 

 

Conceptual Framework 

 To examine the land-use-travel relationships, let us look at ways that travelers 

decide on whether to make trips, where and when to go, which mode to use, and which 

route to take. These travel decisions could be made based on the traveler’s needs, 

transportation systems, trip time and cost, attitudes and intensions, socioeconomic 

characteristics, or the features of places where trips start and terminate, oftentimes called 

land-use characteristics (or built environment or urban form).7  In this context, a specific 

behavioral travel model is needed to understand travel decisions made by each 

individual traveler or each household, to make it possible to test hypotheses derived 

from the assumptions of the model, and to be stable with the issue of causality. Such a 

travel model is useful for examining the effect of land-use on travel behavior and 

capturing the fundamental patterns of causality that the data contain. To deal with the 

7  “Land-use” is interchangeably used with either urban form or built environment in this research. Land-
use is conceptually policy-oriented term at any spatial scale. “Urban form” in literature is a broader  
concept with morphological meaning than land-use, especially oriented to the transportation systems and  
urban design features, whereas “built environment” includes everything built in spatially dispersed areas 
as a result of human intervention through various activities in the natural physical world.
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aforementioned issues, a framework for causality between land-use and transportation is 

conceptualized in a belief that land-use policies will be effective in reducing automobile 

dependence. Recently many metropolitan planning organizations in the U.S. initiated 

land-use strategies in an effort to curb low-density land development. They assume that 

low-density land development encourages people to choose automobiles because of its 

urban spatial structure favorable to automobiles. Furthermore, it is argued that such 

automobile-friendly conditions in low-density development patterns exert a positive 

influence on a trip-maker’s captive choice. If true, this implies that efforts to discourage 

this type of development can be meaningful in reducing automobile dependence. In this 

context, a captive choice of automobile associated with land-use is also conceptually 

framed.  

 

Issue of Causality 

 The issue of causality among the studies dealing with transportation–land-use 

linkage can be characterized by distinctions such as data, variable inclusion, causal 

notion, test for causality, causal structure among independent variables, etc. 

Shortcomings have been seen in many past studies but have not been highlighted 

seriously because of the relatively loose modeling traditions in planning. More seriously, 

travel demands theoretically derived from consumer choice theory have been under- or 

mis-specified in many empirical models (i.e., omitted variables). While the mode choice 

model has been rigorously specified in many travel demand models (Cervero 2002; 

Zhang 2004), other models such as trip frequency and VMT are often poorly handled. 
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The conceptual frameworks of the linkage models begin with an entire set of explanatory 

variables (prices, socio-demographics, and land-use). In particular, the inclusion of price 

variables (travel time and travel cost) is very important because the price variables are 

likely to interact with the conditions of land-use. A comparison between the existing 

models and the proposed models for the causal model is presented in Table 3.1.   

 Distinct features lie in the inclusion of variables, functional dependencies, and 

causal structure among independent variables. The conceptual framework does not 

include attitudinal variables which are not directly observable and not applicable to the 

travel forecasting model. When attitudinal variables are included in the linkage model, 

each individual is treated as a ‘black box’ because unobserved preferences, such as 

attitude, act as intermediaries between the environment and travel behavior. Consumer 

behavior literature identifies the sources of attitude formation as personal experience, 

friends and family, and media (Fishbein 1975; Schiffman and Kanuk 1996). In this 

context, an extension of the measurement model requires structural equation modeling 

(SEM) to be formalized to explain both attitude formation and travel behavior 

simultaneously. This can be shown as functional dependencies that the functional forms 

are written as structural equations. However, the most difficult task in modeling 

structural equations is to identify endogenous variables without a strong theoretical 

framework. This research is not extended to SEM.   

 Causal explanations in past studies mostly relied on an assumed causal link based 

on the theoretical foundation. In contrast to the assumed causality, theories often lack a 

clear explanation of the exact characteristics of the link. If theory does not explain the 



39 

causal structure regarding the impact of land-use on travel, the causal structure should 

otherwise be supported by the data itself. The linkage model assumes the direct causal 

link between land-use and travel behavior, but in fact, land-use might influence travel 

behavior as well as prices (time and cost) in the travel market – the author does not agree 

fully with the assumption of Boarnet and Crane (2001a) that “land-use completely 

captures prices.” Under this assumption, the effect of land-use on travel will be biased 

because land-use is a common cause of price and travel outcome. Where causal 

inferences are at stake, the influence of land-use on travel behavior remains elusive in 

the absence of a plausible explanation demonstrated by the data.  

 

Table 3.1 Comparison between Existing Models and Proposed Models 

 Existing Models Proposed Models 
Data observational /unobservational Observational 
Variable inclusion 
(vector notation) 

Partial /full array of variables:  
 - sociodemographics ( )S  
 - land-use ( )L  
 - travel time & cost (p) 
 - attitudes ( )A  

Full array of variables: 
 - sociodemographics ( )S  
 - land-use ( )L  
 - travel time & cost (p) 

Travel outcomes (x) 
 

trip generation (frequency) 
mode choice 
vehicle miles traveled , etc 

trip generation (frequency) 
mode choice 
vehicle miles traveled, etc 

Functional 
dependencies  

x = f(L, S, A)  
p = f(L),  A = f(?)  

functional dependencies can 
follow causal structure    

Causal notion  
(causality directions) 

assumed direct causes / self-
selection (unidirectional) 

not assumed but determined 
by data 

Causal structure 
among the variables 

assumed independent (actually 
not identified) 

identified as direct or indirect 
causes 

Test for causality based on equation based on data 
Travel forecasting not applicable for attitude  applicable  
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 The assumed causality that land-use influences travel behavior is plagued with 

self-selection bias and the interdependence of variables, with the exception of a few 

recent studies (Bagley and Mokhtarian 2002; Handy, et al. 2005). In the current study, a 

causal direction is considered to be established only if the causal relationships among the 

observed variables are established with statistical inference. A set of interactions among 

the explanatory variables is graphically represented to show the impact on travel 

behavior (Badoe and Miller 2000). The graphical representation is not obtained through 

the construction of a causal model, but is drawn from a review of empirical studies. 

 
 
 
 

 

 

 

 

 

 

 

 
Figure 3.1. Urban Form Impacts on Travel. Source: Badoe and Miller (2000). 

 
 

 Badoe and Miller (2000) simplify the interactions among the variables but do not 

show any additional work making inferences from statistical data to causal structure. 
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Rather, they suggest the model specification of urban form is the endogenous component 

of the system. Figure 3.1 notably uncovers the causal relations among the variables in 

the linkage model, which is also helpful for initiating land-use policies. Pertaining to 

improving the analytical approaches to disentangle relationships among variables, a new 

methodology directly dealing with the causality issue will be explored in the next chapter.  

 Structural equation modeling (SEM) is concerned with how model variables are 

related to one another. It handles measurement problems by checking the entire structure 

of data assumptions and requires a well-developed theory among variables. However, 

SEM neither offers a method to test causal models nor provides the causal explanations 

of estimated parameters. Thus, the causal interpretation of SEM is generally 

questionable (Pearl 2000). As such, a newly developed method called directed acyclic 

graphs (DAG) is desired for understanding the causal relationships among the variables 

in the linkage model. Detailed discussion of this method is presented in the following 

chapter.   

  

Captivity to Automobile 

 If the built environment (i.e., low-density, no transit service, no sidewalk, etc.) in 

a community is automobile-dependent, the residents will likely to be captive to 

automobiles, compared to those living in an environment with multiple transportation 

options available. In a sense, a captive choice to use automobiles can be conceptually 

distinguished from the free choice without captivity to automobiles. People may choose 

a specific mode because of some captive factors (constraints) associated with personal 
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factors, place of residence, and trip characteristics. Such factors may reduce the number 

of choices from which an individual trip maker can choose, and may lead even to a 

single choice with no other alternative. This study conceptualizes the possibility of mode 

choice that may be incurred by (or tied to) land-use features.  

 If a choice of automobiles in low-density development patterns can be evidenced 

from a trip-maker’s captive choice of automobiles, efforts aiming at discouraging such 

land development will need to focus on land-use strategies in reducing automobile 

dependence. A mode choice model is conceived as a behavioral framework to explore 

captivity from land-use-travel relationships, but it is not possible to apply directly a 

unique concept to the choice-modeling process.  

 There is no single commonly accepted method to measure captivity from the 

land-use perspective, and in general the features of captivity may be conceptually 

captured in different ways. One way is to segment individual trips into either a captive 

choice or a free choice based on identifiable constraints of the built environment (i.e., 

street connectivity, or grid-like patterns) (Beimborn, et al. 2003). Another way captures 

the choice set in probabilistic term by parameterizing (or estimating) captive variables in 

the scheme of a choice model. The second idea has been applied using various 

approaches in the literature, but mostly starts with the two-stage choice model of Manski 

(1977). A framework is conceptually understood to capture captivity solely attributable 

to land-use features as the probability of mode choice. Methodological procedure will be 

discussed in detail in the next chapter.  
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Hypotheses 

 This section presents the hypotheses for this dissertation which will test the 

influence of land-use on travel by employing empirical models. The maintained 

hypothesis is that urban form does affect travel patterns in cities that are heavily 

dependent on automobiles. These hypotheses are grouped into three sets based on the 

specified models; traditional travel demands, causal models for travel demands, and 

captivity choice. Specific variables used to measure various concepts mentioned in the 

hypotheses are presented in the Research Methodology chapter.  

 

Hypotheses for Travel Demand Models 

 Hypotheses are stated based on the three parametric statistical models commonly 

used in the literature: individual’s mode choice (walk/bike, bus, driving-alone, or shared-

ride), household total number of automobile trips, and household total VMT. 

 Hmode.P1: Job density of the TSZ at both trip ends (origin and destination) is 

associated with trip mode choice. Specifically, an increase in job density at the origin 

TSZ induces the choice of walk/bike or transit (bus), but the increase of job density at 

destination TSZ lowers the probability of driving-alone or shared-ride. Workers in high 

job density areas are usually faced with making tough decisions associated with higher 

costs for housing, transportation, and other urban services near their work place. 

Therefore, workers take a utility-maximizing behavior given the income and cost 

constraints. 

 Hmode.P2: Higher residential land-use share at origin is associated with increased 
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non-motorized modes and transit use for home-based other (HBO) trips, and with 

reduced automobile use for HBO trips at destination. If the residential development of 

land-use is favorable to non-work activities within a given proximity of neighborhood, 

higher residential land-use is associated with reduced automobile use.   

 Hmode.P3: Higher commercial shares of land-use at both trip ends is associated 

with increased non-motorized transportation, but with decreased probability of choosing 

automobiles at destinations. This variable measures land-use diversity to some extent, 

but does not explain the degree of the combinational share of land-use like a land-use 

balance (entropy index). In the literature, the entropy index is often believed to be a 

significant factor lowering the probability of choice for automobiles.  

 Hmode.P4: Regional accessibility to jobs is correlated with a reduced likelihood of 

choosing automobiles for home-based work or non-work trips. Since auto-based regional 

accessibility (calculated as gravity formula) is attractive for jobs and businesses, 

locations with good automobile accessibility may come with the high costs (such as 

congestion, toll, parking cost, etc.) incurred by the heavy use of private vehicles. Such 

costs may be burdensome to certain trip-makers, possibly encouraging them to shift 

mode choice. But despite the expense of automobile use resulting from the increased 

accessibility, others may still choose to drive with the expectation of higher earning 

opportunities.    

 Hfreqency.P1: The residential share of land at origin is positively correlated with the 

number of automobile trips. Areas that are solely or predominantly residential are 

naturally isolated or separated from other types of land-uses. As the residential share 
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increases, more automobile trips are likely to be made. In fact, many residential 

developments during the past decades are made up of low-density, detached single-

family housing.  

 Hfrequency.P2: Regional accessibility is associated with decreased home-based non-

work trips but increased home-based work trips. As mentioned above, HBO trips may 

incur a higher relative cost than HBW trips, depending on income expectation from 

opportunities (jobs) induced by an increase in regional accessibility. That is to say, HBW 

trips are associated with productive activities generating income, but HBO trips are 

associated with consumption activities at an additional cost involved with increased 

accessibility     

    HVMT.P1: Population density at household location is negatively associated with 

household VMT for home-based work or non-work trips. Household locations in high 

population density areas are usually vibrant with many urban activities (i.e., work, 

shopping, recreation and sports, public meetings, and cultural events, etc.). And the close 

proximity between homes and activities in this type of environment reduces trip lengths, 

often making non-motorized and transit use viable alternatives to driving. 

 HVMT.P2: Regional accessibility is associated with households’ driving negatively 

for HBO trips but positively for HBW trips. Regional accessibility is reliant upon the 

individual/household responsiveness to the relative costs involved in the trips. For an 

expected income, HBW trips linked to production activities have a lower relative cost 

than HBO trips made primarily for consumption. 
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Hypotheses for Causal Models 

 Hypotheses are derived from observed data for: dichotomous mode choice (non-

automobile versus automobile), household total automobile trips, and household total 

VMT. While the main hypothesis is that some land-use factors directly cause a reduction 

in automobile dependence, also it is hypothesized that land-use also indirectly causes a 

reduction in automobile dependence through travel time (or generalized cost) which 

directly causes people to drive less.     

 Hmode.C1: Job density at both trip ends directly causes a reduction in the choice of 

automobiles. While places with high-density jobs may be highly attractive, particularly, 

for HBW trips, more cost may be involved in using automobiles due to congestion, toll, 

parking, and so on. And these areas often have convenient transit services and non-

motorized transportation options available. 

 Hmode.C2: The commercial share of land-uses at both trip ends directly causes 

discouragement in the choice of automobiles. Commercial land-use, composed of office, 

retail, and hotel, will come with a dense and urban use of land, and in turn tend to 

enhance the expectation of earnings for people working there. People involved in jobs 

within the commercial land-use areas must pay more for their automobile trips around 

workplaces. This increased cost is likely to reduce the choice of automobiles for all 

purposes of trip.      

 Hmode.C3: Regional accessibility is a direct cause in decreasing the choice of 

automobiles. With more attractive opportunities (jobs) in a given driving travel time, a 

higher cost for such things as non-fuel cost (i.e., congestion, toll, parking cost, etc) will 
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be required in order to reach destinations by automobile. In this context, people may be 

willing to substitute automobile travel with non-automobile travel. 

  Hfreqency.C1: The residential share of land at origin directly causes more 

automobile trips to be induced. This is related to residential development patterns such 

as low density and segregated. 

 Hfrequency.C2: Regional accessibility causes an increase in HBW trips and a 

decrease in HBO trips. 

     HVMT.C1: Population density at origin directly causes a reduction in the household 

VMT for HBW and HBO trips. A variety of urban activities are available in places with a 

high density population, thus trips are likely to be shorter than those in places with a 

low-density population.  

 HVMT.C2: Regional accessibility directly causes less driving for HBO trips but 

more driving for HBW trips.  

 Table 3.2 summarizes these hypothesis statements with the expected signs and 

the expected direct causes of land-use variables.  

 

Hypotheses for Captivity Choice  

 The hypothesis is that the individual mode choice model that controls for low-

density residential land-use provides a more accurate prediction of automobile captivity. 

Individual trip-makers with singleton choice sets (here, driving-alone and shared-ride) 

are captive to automobiles. Hence, the testable null hypothesis is: dominance of low-

density residential land-use affects a captive choice of automobiles. 
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Table 3.2 The Hypothesized Signs and Direct Causes in Travel Demand Models and 
Causal Models.   

 Travel Demand Models Causal Models 
Land-Use Variables Hypothesize  Correlation Hypothesize Causality 

 
Travel 
Outcomes  HBW HBO HBW HBO 

Population density at O / D + (−) / + (−) + (−) / + (−) �  (− / −) �  (− / −) 
Job density at O / D + (−) / +( −) + (−) / +( −) �  (− / −) �  (− / −) 
Residential use share at O / D    ?     /    ?  + (−) / + (−) ? ? 
Commercial use share at O / D + (−) / + (−) + (−) / + (−) �  (− / −) �  (− / −) 
Regional accessibility at D                (−)                (−) �  (−) �  (−) 

 
Mode 
Choice 
 

Entropy index at D                (−)                (−)   
Population density at O  − − �  (−) �  (−) 
Job density at O  − − ? ? 
Residential use share at O  + + �  (+) �  (+) 
Commercial use share at O  ? − ? ? 
Regional accessibility at O + − �  (+) �  (−) 

 
Auto Trip 
Frequency 

Entropy index at O − − ? ? 
Population density at O  − − �  (−) �  (−) 
Job density at O  − − ? ? 
Residential use share at O  + + �  (+) �  (+) 
Commercial use share at O  ? − ? ? 
Regional accessibility at O + − �  (+) �  (−) 

 
VMT 

Entropy index at O − − ? ? 
a. Expected signs in travel demand models:   ( ) indicates the signs for drive-alone and shared-ride and   
     ? indicates compounding variables.   
b. Expected direct causes in causal models:  �  indicates the expected direct causes, and ( ) presents  
     the expected signs when assuming the direct causes. ? indicates compounding causes. 
 

 

�
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CHAPTER IV 

RESEARCH METHODOLOGY 

 

 This chapter discusses the methodology for empirical analysis associated with 

the research questions addressed in this study. First, the data sources used for this study 

are presented together with the study area. Second, the travel outcomes and the 

explanatory variables used in the empirical analysis are discussed, and the operational 

processes for measuring the variables are explained. Third, empirical methods for both 

parametric and non-parametric analyses are discussed in detail in order to analyze the 

causal structure of the linkage between travel and land-use. In this section, parametric 

analysis and non-parametric analysis are addressed. 

 

Data Sources 

All the data for this study were obtained from the North Central Texas Council of 

Governments (NCTCOG), a metropolitan-wide association of local governments for 

regional planning and sound regional development of the Dallas-Fort Worth area. Travel 

data were obtained from the 1996 Dallas-Fort Worth Household Activity Survey 

(hereafter called the 1996 D-FW Travel Survey). This survey was the revealed 

preference survey using two sampling methods8: random digital dialing and intercept. Of 

9,398 total recruited households, 3,996 households provided information on travel 

activities undertaken by all members of each household. Surveyed households were 

8 For details of survey design, see 1996 Dallas-Fort Worth Household Travel Survey. 
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stratified to assure reliability by the assigned day of the week at three levels: 

geographical location, household size, and vehicle ownership. Compared to data from 

the 1990 U.S. Census for Dallas-Fort Worth Consolidated Metropolitan Statistical Area 

(CMSA), the sample of stratified surveyed households falls mostly into the differences 

of 3% points or more (see Appendix A1). This survey recruited the large number of 

households, but a relatively small portion of trips made by transit was reported. 

Trip records (37,065) did not originally contain the origin and destination for 

each trip. It was necessary to extract this information from the preceding and succeeding 

non-trip records. Records in which the origins and/or destinations were not identified 

were deleted along with records that were erroneous, leaving a file with 3,048 

households and 22,316 trips. From these trip records, only trips made by adults (defined 

as over 17 years of age) were considered. Finally, a trip file with both 2,848 households 

and 15,138 trips were taken into account for the empirical analysis of this research.  

The 1995 NCTCOG’s land-use GIS and TransCAD data were used to capture 

local land-use characteristics at the level of traffic survey zone (TSZ). The data provide 

the spatial distribution of land-use in dimensions such as density, diversity, design, and 

accessibility. Various GIS techniques were employed to compute land-use measures 

(clipping land-use by categories from TSZs, intersecting the land-use and TSZs, spatial 

geo-coding, etc). 

Other sources of data include ravel time and automobile operating cost for travels 

between each pair of the 4,874 traffic survey zones in the Dallas-Fort Worth 

metropolitan planning area. These data vary by travel mode. This study identifies four 
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distinct mode splits (walk/bike, bus, driving-alone, shared-ride) based on the data 

analysis of the 1996 D-FW Travel Survey. Travel times for three travel modes (walk, 

driving-alone, and shared-ride), automobile operating costs for automobile (driving-

alone and shared-ride), and travel distances between origins and destinations were 

obtained by skimming the NCTCOG model system’s roadway network by time of day 

(AM period: 6:30~8:59 AM, PM period: 3:00~6:29 PM, and OP period: 9:00 AM to 2:59 

PM and 6:30 PM to 6:29 AM), suggested by the NCTCOG’s regional travel demand 

documentation.9 The volume-delay function of the Dallas-Fort Worth Regional Travel 

Model is similar in form to the BPR-type functions used in other regional models.10  

Table 4.1 summarizes data bases used in this study. 

 

Table 4.1 Summary of Data Bases 

Data Source Description Use 
1996 D-FW Household  
Activity Survey 

- Originally 37,065 trip records 
   from 3,996 households surveyed. 
-  Trip file (with 2,848 households 
   and 15,147 trips) is used for the 
   empirical analysis  

- Trip characteristics: trip mode, 
   trip duration, trip length, etc. 
- Personal and household 

characteristics: age, gender, income, 
 household type, numbers of 
 workers, etc. 

1995 Land-use GIS data  - 20 land-use categories (codes) 
- GIS data format 

- Local land-use characteristics: 
land-use mix, street features, 
 entropy (concentration index), etc.  

TransCAD data – TSZ - Population and employment by 
sector in 1995, 1999, and 2025 

- Local population and employment 
densities , job-housing  balance, etc 

TransCAD – Trip table - O-D trip tables by time of day 
  and by mode 

- for skimming travel time and cost 

TransCAD data –
Roadway network  

- Roadway network (1999) - Roadway link capacity ratio total 
   trips at TSZs, etc.  

 

9 Travel demand modeling documentation is available at www.nctcog.org.   
10 The general form of NCTCOG’s volume-delay function is defined as travel time = free flow time 

+ ( / ){ , }v cMin eβα γ⋅ , where �, � and � are delay function parameters. Each value for �, � and � are different 
from freeway and non-freeway links.  
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Study Area 

 This study focuses on the NCTCOG’s metropolitan planning area (MPA) where 

transportation planning efforts are currently concentrated. Figure 4.1 is the metropolitan 

area boundary (reddish area) which has 4,874 traffic survey zones (TSZ). Assuming all 

trips occur within this boundary, the coverage of trips includes internal trips between 

zones and within zones (Figure 4.2). The GIS data and TransCAD data also cover this 

boundary. 

 

 

Figure 4.1 NCTCOG’s Metropolitan Boundary 
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 The MPA includes five full counties (Collin, Dallas, Denton, Tarrant, and 

Rockwall) and four partial counties (Ellis, Johnson, Kaufman, and Parker). These 

counties surround Dallas and Fort Worth as primary cities. The MPA boundary appears 

large enough for the analysis since it covers most locations where activities occur 

through trips in the Dallas-Fort Worth metropolitan area. 

 

Variables and Measurements 

 This section discusses variables used to measure concepts that were identified in 

the hypotheses. Major components for the empirical analysis are travel outcomes and the 

set of potential factors, such as travel time (or generalized cost), socio-demographics, 

and land-use variables. 

 

Dependent Variables 

 Dependent variables used in this study are travel outcomes which are observed as 

the results of individual or household travel decision-making (Table 4.2). These travel 

outcomes are mode choice, automobile trip frequency, and vehicle miles traveled (VMT). 

Mode choice is analyzed at the level of individual travel behavior, whereas trip 

frequency and VMT are taken at household level. 

 

Table 4.2 Dependent Variables and Measurements Used for Travel Behavior Models  
Variable Type Measurements 
Travel mode Discrete If a trip maker drives alone, otherwise 0.  

 ( 0 = walk/bike, 0 = bus, 1 = drive alone, 0 = shared-ride) 
Trip frequency Continuous / Count Total number of auto trips for each household. Auto trips 

include driving-alone and shared-ride. 
VMT Continuous Vehicle miles traveled by household members 
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 Travel modes considered as alternative mode choices are walk/bike, bus11, drive-

alone, and shared-ride. These choices are reduced to a binary choice (automobile or non-

automobile) to construct the causal models using directed acyclic graphs. Currently, 

NCTCOG operates three auto-and-transit-based mode choice models (HBW nested logit, 

HBN nested logit, and NHB multinomial logit). 12  Although mode choice has four 

alternatives, automobile use (driving-along and shared-ride) is overwhelming, as shown 

in Table 4.3. It indicates that individual trips in the Dallas-Fort Worth area are highly 

automobile-dependent. In particular, driving-alone is highly used in home-based work 

(HBW) trips as compared to home-based other (HBO) trips and non-home-based (NHB) 

trips. To enhance understanding of the spatial distribution of all trips, a digitized map 

with the trip end-points of 15,138 is presented in Figure 4.2. Many trips are observed in 

a cluster centering on both cities of Dallas and Fort Worth.    

 

Table 4.3 The Distribution of Trips by Mode and by Trip Purpose     

  Trip Purpose 
  HBW HBO NHB 

Total 

 
Mode 

Walk/bike 
Bus 
Drive-alone 
Shared-ride 

        56   (1.2)* 
      276   (5.9) 
   3,917 (83.8) 
      423   (9.1) 

      284   (4.0) 
        66   (0.9) 
   3,484 (49.0) 
   3,278 (46.1) 

     281    (8.4) 
       48    (1.4) 
   1,941 (57.9) 
   1,084 (32.3) 

      621   (4.1) 
      390   (2.6) 
   9,342 (61.7) 
   4,785 (31.6) 

Total    4,672      7,112      3,354   15,138 
* Parenthesis indicates the percentage of trips. 

 
 

11 1996 D-FW household activity survey recorded a large number of households, but the number of trips 
made by transit was relatively small. At that time, Dallas Area Rapid Transit (DART) was not opened yet. 
After opening DART, a set of data was added by including the records of transit-on-board surveys from 
DART in 1998 and Fort Worth Transit Authority (FWTA) in 1996.  
12 NCTCOG’s mode choice is modeled from the dataset added by the surveys of DART in 1998 and 
FWTA in 1996. Currently, mode choice includes 1) auto-drive-alone, 2) auto-two occupants, 3) auto-three 
or more occupants, 4) transit-auto access, and 5) transit-walk access (NCTCOG 2005c). 
 



55 

 

Figure 4.2 Trip Points at Origins and Destinations 

 

 Trip frequency is a travel outcome often used for household trip generation 

studies. Automobile trip frequency is defined as the number of trips generated by 

automobiles (i.e., drive alone per personal vehicle or carpool) for each household after 

eliminating duplicate trips. In this study, automobile trip frequency is used as a 

dependent variable for the trip frequency models. Household vehicle miles traveled 

(VMT) is a composite travel outcome computed as the sum of trip lengths over each 

origin-destination pair after eliminating duplicate trips and accounting for occupancy in 

a vehicle. Trip length with the shortest path between origin and destination was used for 
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calculating household VMT. Sample sizes for automobile trip frequency and vehicle 

miles traveled (VMT) at household level are presented in Table 4.4. 

 

 Table 4.4 Automobile Trip Frequency and Total VMT at Household Level     

 Trip Purpose 
 HBW + HBO + NHB HBW HBO 
Number of households 
Number of all auto trips 
Total VMT for all households (in miles) 

          2,749          
        14,127    (5.1)* 
      148,579  (54.0)** 

    1,955 
    4,340     (2.2)  
   57,574  (29.5) 

   2,072 
   6,762    (3.3) 
 60,515  (29.2) 

* and ** are average number of auto trips per household and average VMT per household respectively. 
 
 

Independent Variables 

 Independent variables were cautiously explored from the varying databases (see 

Table 4.1) in order to account for the full array of factors thought to affect the travel 

outcomes discussed above. A full array of explanatory variables includes price variables 

(travel time or generalized cost), socioeconomic characteristics (personal or household 

characteristics), and land-use variables with the dimensions of density, diversity, design, 

and accessibility. 

 

Travel Time and Generalized Cost 

 Travel time by mode (walking, driving-alone, and shared-ride) was skimmed 

through the shortest network paths between each origin-destination pair.  In particular, 

travel times by driving-alone and shared-ride were obtained by skimming the shortest 

paths by the time-of-day (AM peak, PM peak, and off-peak). Walking travel time was 

obtained by converting trip length to minutes at the speed of 3 miles per hour (NCTCOG 
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2005c). Estimates of roadway travel times in the Dallas-Fort Worth Regional Travel 

Model (DFWRTM) include a combination of “free” speed travel time, delay time, and 

intrazonal travel time. First, two travel times are calculated through the traffic 

assignment volume-delay function from interzonal trips, whereas intrazonal travel times 

are obtained separately from interzonal trips (NCTCOG 2000, 2005a; Vadali and Lee 

2005). Travel time for taking transit (bus) was not able to be skimmed due to the non-

existence of transit routes and the complexity of multimodal use for trip points. Hence, 

travel time by transit was calculated by applying both transit operational performance 

(4.35 minutes per mile) and NCTCOG’s maximum walk access time (20 minutes). 13 

 Some drawbacks of using travel times through the shortest network paths should 

be noted. The NCTCOG roadway network data do not provide travel times for public 

transit having its own fixed routes. Therefore, the calculated travel times by transit may 

have limitation used for mode choice model. Network travel times skimmed for this 

study are likely shorter than the actual travel times made by trip makers because they do 

not take into account access time and stops made on the way to destination. Also, some 

people may make trips through certain routes relatively familiar to them rather than the 

shortest paths. The drawbacks pinpointed here may exist in a similar fashion for travel 

cost (automobile operating cost) as well as travel length (for the use of calculating VMT) 

skimmed using the roadway network data.   

13 According to national transit databases (FHWA FTA 2006), the average speed for transit (rail + non-rail) 
passengers was 20.3 miles per hour (mph) in 1997. Rail speed and non-rail speed were 26.1 mph and 13.8 
mph respectively. DART rail was under construction at survey time, and hence 13.8 mph for non-rail 
average speed (or 4. 35 minutes per mile) was applied for calculating transit time. NCTCOG mode choice 
model assumes a value of 1 mile as the maximum walk access time to transit at an assumed 3.0 mph 
walking speed. 
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 In the roadway traffic assignment module of the Dallas-Fort Worth Regional 

Travel Model (DFWRTM), each link’s generalized cost is composed of travel time and 

automobile operating cost. Herein, the automobile operating cost primarily includes the 

fuel cost only as influence14 on travel cost, assuming 7.3 cents per mile in 1999 constant 

dollar. Link tolls are adjusted to the constant 1999 dollar but have little influence on 

travel cost. Thus, the automobile operating cost with the fixed cents per mile shows a 

high correlation with travel time or trip length (see Appendix A3). In this respect, the 

operating cost is inappropriate for use as travel cost. The total cost (generalized cost)15 of 

traveling through a roadway link is calculated and is used as a proxy of travel time in 

this study. 

 

Socioeconomic Characteristics 

 Socioeconomic characteristics are important factors in trip generation and mode 

choice. This study initially identified several variables in this category; age, sex, 

household size, household income, number of workers in a household, number of 

vehicles owned by the household, and household dwelling-type. Among those variables, 

age, gender, and household dwelling-type (multifamily or single-family housing) are 

typically confounding variables and have mostly minor statistical significance in 

empirical analysis. Therefore, household size, household income, number of workers in 

a household, and number of vehicles owned by the household are incorporated into the 

14 Fuel cost is primarily composed of a short-term cost, while long-term cost includes insurance, car-
buying cost, repairs, etc. 
15 Generalized cost used in the user equilibrium module of DFWRM is defined as sum of auto operating 
cost + (VOT)*(travel time) where the VOT is $10.00 / hour ($0.167 / minute) for auto-based vehicle 
classes (driving-alone, shared-ride with HOV, and shared-ride without HOV) (NCTCOG 2002, 2005c). 
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empirical models (see Table 4.5).  

 

Land-Use Measures  

 Various land-use measures have been generated in 4,874 traffic survey zones 

(TSZ) in the D-FW area. These measurements typically rely on the use of geographical 

information system and the availability of spatial data at the regional or local level. 

Land-use measures are usually classified into dimensions of density, diversity, design, 

and accessibility in literature. Overall, this study adopts similar measures employed in 

the existing literature    

 The density of population or employment is the most popular measure of land-

use which concentrates on the intensity of development in a developed area. Population 

density (per acre) and employment density (per acre) are adopted at the trip points of 

origin and destination. Employment is summed over retail, service, and basic (industrial) 

sectors. The density is measured on a per acre basis within each TSZ, not within a 

quarter- or a half-mile radius at a typical local level. The use of a unit-mile radius (i.e., 

‘around each trip point’) provides a good measurement of a neighborhood but may be 

biased by assuming a uniform density for the distributions from different TSZs. Of 

course, per acre density within TSZ exhibits the possibility of attenuating or hiding a 

‘right’ density in the unit of neighborhood. Despite such a drawback, this study uses per 

acre density based on TSZ in order to keep the consistency of geographical unit of 

analysis as well as to reduce the modifiable areal unit problem (MAUP) or ecological 

fallacy associated with a geographical scale and aggregation. 
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 Per developed acre intensities of land-use categories are measures that indicate 

land-use composition as share (or percentage) to total developed area of land-use 

classified as residential, commercial, industrial, government/education, and 

infrastructure, etc. Of several components, the residential share of land (single-family, 

multi-family, and mobile home) in TSZ, and the commercial share of land (office, retail, 

and hotel and model) in TSZ were computed at both the trip origin and destination. High 

percentages of classified land-use result in less diversity of land-use. In addition, two 

indicator variables are derived from the residential or commercial share of land-uses in 

order to represent the residential land-use dominance. If land is dominantly used for 

residential land with no commercial use at TSZ origins or destinations, this indicates a 

dominant residential use of the total developed area. This variable is used for mode 

captivity in order to test for the captive effect of dominant residential land-use on 

choosing automobiles. The entropy index16 measures land-use balance to show how the 

land of a certain area is used in accordance with various land-uses. However, this 

measure fails to explain the compositional difference in land-use. For example, it is 

difficult to figure out the composition of land-use from the index of range (0.4~0.6). The 

entropy index was computed with four categories (residential, commercial, industrial, 

and public use). Another old popularized measure, job-housing balance, was excluded 

16 The formula of entropy index is as follows. 
1
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The index value varies from 0 to 1 (from single-use to equal land-use). This formula is not defined when 
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= ⋅�  where pi is the proportion of land-use category i, and K 

is the number of land-use categories (K=4). The value of CRk ranges from 1 to k.    
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because of no or bad performance in forecasting in this study.   

  Density is addressed as a proxy for accessibility in literature (Kockelman 1997; 

Cervero and Kockelman 1998), but the correlation between job (or population) density 

and gravity-type regional accessibility in the Dallas-Fort Worth area provides no 

empirical support. Regional accessibility (RI) refers to the number of opportunities of a 

place for other places. It is defined as the terms of automobile access to a TSZ from all 

other TSZs in this research, and is normalized to a range of 0 to 1 divided by a scale 

factor to be used as ‘relative’ index rather than ‘absolute’. Regional accessibility to jobs 

is computed as       

     
1

1
ij

J
j

i t
j

jobs
RI k

eβ

−

⋅
=

� �
= ⋅ � �

� �
�      (4.1) 

where i is the TSZ in question and j (1,2,…, J-1) is other TSZs with access to i. And tij is 

travel time between i and j, and � is a parameter of Bessel function in the NCTCOG 

gravity model. The parameter varies along trip purpose (HBW = 0.00156, HBO = 0.0042, 

and NHB = 0.001515). k is a scale factor, divided by a maximum regional accessibility. 

However, this measure is a composite function of both travel time and the number of 

jobs, and is likely to have a different impact on travel by type of trips.       

 This study does not include design factors such as street patterns and pedestrian 

amenities due to data constraints. Neither are provisions for public transit included. An 

effort was made to measure design or transportation provisions, intersection control 

index and roadway link capacity to per hour trips at TSZ were created as proxy variables 

but these variables were declined during pre-analysis due to poor performance in 
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forecasting. These variables are not considered in the main study.  

 Table 4.5 summarizes independent variables and their measurements used 

throughout this study. Descriptive statistics presented in Tables 4.6 and 4.7 provide a 

good grasp of explanatory variables to explain trip data at both individual level and 

household level.   

 

Table 4.5 Independent Variables and Measurements 

Variable Measurements 
Travel times by mode  Transit minutes is calculated by applying operation performance 

and maximum walk access time, and walking minutes and vehicle 
minutes  for driving-alone and shared-ride are skimmed. 

Generalized cost Auto operating cost + (VOT)*(travel time) for automobile in 
US$. 

Age  Age in year for trip maker 
Sex Gender of trip maker, male = 1, female = 0 
Dwelling type  Multifamily housing = 1, otherwise = 0 
Household size Number of household members 
Household income Household income as estimated from one of twelve income 

brackets or the sum of household members’ income 
Number of workers Number of workers in the household members 
Number of vehicles Number of vehicles owned by the household 
Population density at origins Population density per acre in TSZ at origins  
Population density at destinations Population density per acre in TSZ at destinations. 
Jobs density at origins Employment density per acre in TSZ at origins. (employment = 

jobs in service + jobs in retail + jobs in basic sector) 
Jobs density at destinations Employment density per acre in TSZ at destinations 
% residential use at origins Percentage residential use to total developed acre in TSZ at 

origins. Total developed area includes residential, commercial,  
industrial, government/education, and infrastructure use 

% residential use at destinations  Residential use share to total developed acre in TSZ at 
destinations  

% commercial use at origins Commercial use share to total developed acre in TSZ at origins  
% commercial use at destinations Commercial use share to total developed acre in TSZ at 

 destinations  
Entropy index of land-use mix Formula measure of land-use balance  
Regional accessibility Measure of opportunities of a place to other places in gravity model form 
Residential land-use dominance 
at origins 

If land at TSZ origin is dominantly used for residential land with 
no commercial use, then 1, otherwise 0. 

Residential land-use dominance 
at destinations 

If land at TSZ destination is dominantly used for residential land 
with no commercial use, then 1, otherwise 0. 
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Table 4.6 Descriptive Statistics for Individual Trips Data  

Variables HBW HBO NHB 
 Mean Std. D Mean Std. D Mean Std. D 

Age of trip maker 
Sex of trip maker (male =1, female=0) 
Household income (US$) 
Household size 
Number of workers in HH 
Number of vehicle in HH 
Multi-family housing (yes =1, no=0) 
Travel time by walking (A) (min) 
Travel time by driving (B)  (min) 
Travel time by transit  (C) (min) 
Travel time difference (A-B) (min) 
Population density (per acre) at O 
Population density (per acre) at D 
Job density (per acre) at O 
Job density (per acre) at D 
% residential Use at O 
% residential Use at D 
% commercial Use at O 
% commercial Use at D 
Regional accessibility to jobs  
Land-use balance (entropy) at D 
Residential use dominance at O 
Residential use dominance at D 

41.7 
0.55 

60097 
2.8 
1.9 
2.1 

0.18 
240.48 

20.2 
63.43 
220.3 

5.4 
5.2 

27.2 
31.2 
58.0 
54.4 
15.8 
17.4 

0.9698 
0.4168 
0.1579 
0.1597 

12.02 
0.5 

34.19 
1.37 
0.84 
1.05 
0.39 

209.88 
13.51 
58.29 

197.02 
5.69 
5.73 

159.45 
165.41 
35.64 
36.88 
23.64 
25.31 
0.01 
0.24 

0.3647 
0.3663 

43.9 
0.42 

60134 
3 

1.5 
2.1 

0.14 
182.47 

14.5 
77.96 
167.9 

6.2 
6.1 
4.8 
7.2 

69.6 
69.4 
11.9 
11.9 

0.8943 
0.4196 
0.1483 
0.1513 

15.47 
0.49 

35.32 
1.39 
0.98 
1.03 
0.34 

247.15 
15.29 
49.50 

232.19 
5.04 
4.88 

40.37 
58.44 
28.54 
28.9 

17.25 
17.92 
0.03 
0.24 

0.3554 
0.3583 

42.0 
0.43 

63654 
2.8 
1.7 
2 

0.18 
197.48 

15.3 
67.07 
182.2 

4.8 
4.8 

41.1 
37.1 
47.1 
47.4 
23.2 
23.4 

0.9839 
0.4215 
0.1032 
0.1011 

12.66 
0.5 

36.98 
1.32 
0.83 
0.98 
0.39 

253.99 
15.54 
59.70 
238.78 
4.94 
5.19 

185.2 
166.92 
36.25 
36.21 
27.97 
27.95 
0.01 
0.24 

0.3042 
0.3014 

Sample size  4,672 7,112 3,354 
 

 

Table 4.7 Descriptive Statistics of Household Level Data 

 HBW HBO 
Variables Mean Std. D Mean Std. D 

Household income (US$) 
Household size 
Number of workers in HH 
Number of vehicle in HH 
Travel time per mile (minutes) 
Travel time per trip (minutes) 
Generalized cost per mile (US$) 
Generalized cost per trip (US$) 
Population density (per acre) at O 
Job density (per acre) at O 
% residential Use at O 
% commercial Use at O 
Regional accessibility to jobs 
Land-use balance (entropy) at O 

60453 
2.7 
1.7 
2.1 

1.73 
20.61 
0.06 
4.31 
6.7 
4.5 

74.3 
8.9 

0.9643 
0.3836 

34.48 
1.33 
0.77 
0.97 
0.52 

11.87 
0.01 
2.60 
5.80 

46.36 
25.29 
13.45 
0.03 
0.22 

57732 
2.7 
1.5 
2.0 

4.03 
21.11 
0.17 
4.49 
6.7 
3.7 

75.4 
8.6 

0.9367 
0.3795 

35.08 
1.37 
0.91 
1.01 

10.76 
22.38 
0.49 
4.89 
5.28 

39.72 
24.23 
12.67 
0.04 
0.22 

Sample size 1,955 2,072 
�
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Research Design 

  All the empirical models are analyzed using both regression method and causal 

graphical analysis, and include a full array of factors such as price variables, 

socioeconomic characteristics, and land-use variables. From the standpoint of variable 

inclusion, the author assumes that overall travel behavior is completely influenced by an 

entire set of variables, particularly focusing on the impact of land-use on travel. Price 

variable (travel time or generalized cost) is assumed as a factor connected to 

socioeconomic characteristics and/or land-use variables. It is intended to show the role 

of price variable in the travel demand model. Land-use variables are captured at from-

where-to (origin to destination) measures for mode choice and from-where measures 

(origin or household location) for household trip frequency and VMT.    

 Conventional regression models are estimated for three travel outcomes: 

individual mode choice for four alternatives (walk/bike, bus, drive-alone, and shared-

ride), household trip frequency, and household total vehicle miles traveled (VMT). These 

outcomes are explored by trip purpose such as home-based work (HBW) trips, home-

based other (HBO) trips, and non-home-based (NHB) trips. All the models include travel 

time (or generalized cost) and socioeconomic characteristics in the base model. Land-use 

variables are added to the extended model to test for the improvement of model. The 

scheme of mode choice is extended to logit captivity to explore contribution to travel 

behavior attributable to land-use. Logit captivity is discussed later in this chapter.  

 Directed acyclic graphs (DAG) method is also implemented to examine the 

causal structure based on the same models as in conventional regression methods: 
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individual mode choice, and household trip frequency, and household total VMT.  DAG 

is applied for a binary choice (automobile versus non-automobile) rather than 

multinomial choice because, to date, choice model has not been defined in the directed 

graph. Similar to the conventional approach, travel outcomes are modeled with a full set 

of explanatory variables by trip purpose. This study develops the DAG to discover the 

causal information flows imbedded in observational data. This method has never been 

employed in studies concerned with transportation–land-use linkage, and thus is unique 

in this study. The increasing use of DAG in applied sciences supports an external validity.  

 The research strategy used in this study goes beyond the traditional analysis of 

cross-sectional and observational data used to infer associative results under the assumed 

causality. A newly developed method, directed acyclic graphs (DAG) is employed to 

shed light on the connection between causality and data. Such a connection does not 

necessarily require experimental randomization in application. Longitudinal data have 

been suggested to shed light on causal relationships by analyzing changes in households 

using a household relocation data. However, despite the benefits obtained from the use 

of longitudinal data, the sufficiency of sample size, the inclusion of variables, and the 

analytical methods for the purpose of relocation have been criticized (Krizek 2003; 

Handy, et al. 2005). DAG originally was developed to discover the causal relationships 

within the cross-sectional and observational data using a series of algorithms derived 

from research in Artificial Intelligence. This method permits research ideal for analyzing 

causality in individual as well as household travel using either cross-sectional or time-

series data. 
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Directed Acyclic Graphs 

 Over the last two decades, a group of philosophers and computer scientists have 

developed a graph-based analysis of causal structure and have shed light on the 

relationship between particular causal orders and relationships of conditional 

independence embedded in the statistical function. Pearl (2000) and Spirtes, et al. (2000) 

advocate the dominant position accounting for the graphical causal models based on 

non-experimental (or observational) data, and have as the basis of their work a 

nonparametric analysis, but not structural equation modeling.17  The central feature of 

the model is structured by a directed acyclic graph (DAG). The main idea of this 

approach is to deal with the independence relations of variables entailed by the 

application of a causal graph under the causal Markov assumption: a variable X is 

independent of every other variable (except X’s effects) conditional on all of its direct 

causes. 

 It is helpful to define some terms used in graph theory. A graph is formally 

composed of an ordered triple �V, M, E	 where V is a non-empty set of variables (or 

vertices or nodes), M is a non-empty set of marks (or symbols) at the endpoints of 

undirected edges, and E is a set of edges (or links) with the ordered pairs of variables 

and marks. Causal connections between variables are indicated by edges - any two 

variables connected by an edge are adjacent - that may or may not have the symbols of 

17 Structural equation modeling (SEM) is a modeling framework to deal with unobservable (or latent) 
variables and endogeneity among variables associated with measurement problems and pre-specifies direct, 
indirect, and associative relationships between variables that corresponds with theory and expectation 
(Washington et al. 2003). However, when we do not know the ‘true’ system, the SEM is paralyzed in 
handling the causal information embedded in data and the causal interpretation is elusive (Pearl 2000).   
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arrowheads indicating the direction of causation. If we have a causally sufficient18 set of 

variables {V1, V2, V3, V4}, the graphs contain undirected edges (V1  V2), directed edges 

(V2 → V3), and bi-directed edges (V3 ↔ V4). However, when not assuming causal 

sufficiency, a partially oriented inducing path graphs contain directed edges (→), 

partially directed edges (ο→), non-directed edges (οο), and bi-directed edges (↔). 

Here, directed acyclic graphs (DAG) contain no directed cycles (or no self-loops).  

 Directed acyclic graphs defined by the usual graphic theory are now united with 

a probability theory with a focus on conditional independence, and with philosophy 

involved in causation among variables. The DAG specifies a class of probability 

distributions in a way given by the Markov condition, and the resulting probability is 

decomposed as a recursive product 

 1
1

( ,..., ) ( | )
n

n i i
i

P v v P v pa
=

= ∏          (4.2)  

where P is the joint probability of variables v1,…,vn and pai represents the possible 

realizations of any subset of just immediate parent (or direct cause) variables Vi in order  

V1, V2,…, Vn. The above representation of conditional independence shown in equation 

4.2 is characterized by d-separation proposed by Pearl (1988, 1995, 2000), which is 

equivalent to a more general graphical relation. D-separation (directional separation) is a 

relation between three disjoint sets of variables V1, V2, V3 in a DAG, and its basic idea is 

to check whether a set of variables V2 blocks all connections of a certain type between V1 

18 When we draw a causal graph, we assume that the set of variables in the graph is causally sufficient 
unless there are measurement errors in the variables. If a set of variables V includes all the common (direct 
or indirect) causes of pairs of variables in V, then we say V is causally sufficient. For the example of X 
←Y → W → Z, the set {X, Y, W, Z} is causally sufficient, while the set {X, W, Z} is not. 
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and V3 in the graph G. Then, it is said that V1 and V3 are d-separated by V2 in G. A 

notation for independence introduced by Dawid (1979) is formally used as V1_||_V3|V2 

which means: V1 and V3 are independent conditional on V2. 

 Hausman (1984) and Papineau (1985) realized that it is possible to capture the 

asymmetry of causation by adding a third variable to the systems in which it was not 

captured for the systems of two variables. In the context of the notion of d-separation, 

when causal meaning is attributed to the arrows in the graph, three different types of 

DAGs showing the causal directions with triples of variables V1, V2 and V3 help figure 

out the intuition behind d-separation. First, if a variable V2 takes each piece of 

information stemming from adjacencies (V1 and V3) but is no longer open for other 

variable(s), then the variable V2 is a collider, and the causal graph will represent two 

causes having a common effect: 

                                             V1                    V2                  V3     

Information flows from this graph indicate that all forces caused by the variables V1 and 

V3 come together (or collide) on V2 without going through it. Here, the variables V1 and 

V3 are d-separated by themselves in the DAG and, thus, the unconditional association (or 

correlation) is zero. However, if we condition on V2 for the purpose of opening up a path 

to another variable, say, V4 (this variable should be a child of V2), then V1 and V3 are d-

connected as a conditional association (or correlation). An example of such a causal 

relation in the linkage of travel and land-use can be addressed as follows: ‘drive less’ 

(V2) cannot cause an increase in population density (V1) and mixed land-use (V3), but the 

increase in population density (V1) and the increase in mixed land-use (V3) cause one to 
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drive less (V2); then one opens a path to a health indicator for obesity (V4) resulting from 

‘drive less’.   

 Second, consider that all information flows originate from a common cause. It is 

easy to see that V1 and V3 are not independent because both variables depend on V2 (i.e., 

V1 and V3 are said to be d-connected as unconditional correlation). Here, it is intuitive 

that V1 is independent of V3 conditional on their common cause (V2). 

                                             V1                   V2                    V3  

 In other words, conditioning on the common cause V2 nullifies the association between 

V1 and V3 (conditional association will be zero) and eventually V1 and V3 are d-separated.  

For example, an increase in population density (V2) causes one to drive less (V1) as well 

as to walk / bike more (V3). 

 Finally, a further example of a causal chain illustrates how to apply the idea of d-

separation. In a causal chain, V1 and V3 are dependent (d-connected as unconditional 

association), but independent conditional on V2 (d-separated as conditional association). 

                                           V1                      V2                    V3                 

We offer a simple example for the above causal chain: transit-oriented development (V2) 

depending on high population density (V1) in an urban area causes one to drive less (V3) 

over areas where transit is easily accessible. As shown in the above three causal graphs, 

when a third variable is added to the system of two variables, causal structure can induce 

conditional dependence (for a case of collider) as well as eliminate unconditional 

dependence (for cases of both a common cause and a causal chain).     
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PC Algorithm 

 A procedure computing d-separation in any graph has been incorporated into an 

algorithm that computes all the directed acyclic graphs by Spirtes, et al. (2000). So far, 

several algorithms 19  have been developed, one of which is called PC algorithm 

computed by the TETRAD II or III (Scheines, et al. 1994; Spites, et al. 1996). The PC 

algorithm conducts the ordered commands sequentially: first, start with an undirected 

graph connected by every variable, second, remove edges (or lines) between each pair of 

variables through testing for conditional independence based on the partial correlation of 

order k (i.e., 0, 1, 2,…, k), and finally, orient the remaining edges based on separation set 

(or sepset)20 and the away-from-a collider test.21 A related algorithm using unshielded 

colliders instead of sepset is an inductive causation (IC) algorithm by Pearl (2000).  

 More specifically, the PC algorithm starts with the empirical distribution of a set 

of variables represented by the variance-covariance matrix or the unconditional 

correlation matrix and implements the test for probabilistic independence using partial 

(or conditional) correlations following order conditioning. The statistical significance of 

the conditional correlation is tested using Fisher’s z-statistic 

  |1( 3 )
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2 1
ij k

ijk

n k
z

ρ
ρ

� �+− −
= × � �� �−� �

  (4.3) 

19 Several algorithms are described in detail by Spirtes et al. (2000): PC algorithm (p. 84), Modified PC 
algorithm (p. 125), Causal inference algorithm (p. 139), and Fast casual inference algorithm (p. 144). 
20 Sepset is the conditioning subset that renders variables X and Y independent given an unshielded 
undirected graph, X  W  Y. The undirected graph can be directed simply by determining whether W is 
a member of sepset (X,Y). If Z is not a member of the sepset to be d-separated, W is a collider and 
directed as X → W← Y.  
21 After every potential unshielded collider has been fully directed, the away-from-a collider test is applied 
immediately: if X →W, W and Z are adjacent, X and Z are not adjacent, and there is no arrowhead at W, 
then direct W  Z as W → Z (Scheines et al. 1994).
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where |ij kρ is population partial correlation of variable i and j conditional on k, and n is 

the number of observations used to estimate the correlations. k is the number of 

conditioning variables. If all variables (i, j and k) used for calculating the partial 

correlations are normally distributed, then the partial correlations will also follow a 

standard normal distribution.  

 Figure 4.3 (i)-(v) shows how PC algorithm works. The true causal graph with an 

unshielded collider is depicted in Figure 4.3 (i). The true structure determines which 

correlations will be found in the data, and which can be eliminated or oriented in each 

step of the algorithm. Starting from the unconditional correlation matrix calculated by 

four variables (V1, V2, V3, and V4), the algorithm begins with a graph (i) in which every 

variable is linked with each other with no direction. It then eliminates an edge (or link) 

between V1 and V2 by an unconditional (or zero-order partial) correlation test, shown in 

(ii). Next, it tests for the 1st order partial correlation of each pair of variables conditional 

on one variable (V3), and leaves the edges as shown in (iii). In principle, it would 

continuously test for the kth order partial correlation of each pair of variables conditional 

on k variables. For each triple of variables (V1, V2, V3) in Figure 4.3 (iii), a pair V1,V3 and 

another pair V2,V3 are each adjacent to V3, but V1, and V2 are not adjacent to V3. If 

conditioning on V3 renders V1 and V2 correlated, then the edges are oriented as arrows 

pointing into V3 in (iv). Since V3 is identified as a collider on V1  V3  V2, the 

unshielded collider is fully directed. Next, we know from (iv) that V3 screens off the 

correlation between V1 and V4 or between V2 and V4. Usually this means V1 → V3 → V4 

or V2 → V3 → V4. This is consistent with the away-from-a collider test applied after 
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every potential unshielded collider has been fully directed. The last process leads to the 

directed acyclic graph in Figure 4.3 (v).  

 

  

                Figure 4.3 How Does the PC Algorithm Work?     

 

V1 

V2 

V3 V4 

V1 

V2 

V3 V4 

V1 

V2 

V3 V4 

Since V1  and  V2 are independent (V1_||_V2),  
remove an edge between V1  and  V2.  
 

V1 

V2 

V3 V4 

Since V1 and  V4  (V2 and V4) are independent 
conditional on V3, remove an edge between 
V1 and V4 (between V2 and  V4)  

V1 

V2 

V3 V4 

(i) 

(ii) 

(iii) 

(iv) (v) 
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Caveat 

 The approach on directed acyclic graphs is currently used in applied sciences22 

for classification, forecasting, and predicting the effects of interventions, but much of 

this approach is quite new and is generally unknown to planning professionals. Existing 

research using this method assumes that the causally ordered data are cross-sectional 

while time-series data are not directly applied to this method (Demiralp and Hoover 

2003). As a statistical method, the method of directed acyclic graphs can test and 

potentially discover cause-effect relationships between variables in circumstances in 

which it is not possible to conduct controlled experiments. In this vein, the PC algorithm 

is completely successful in identifying the correct causal structures with reasonable 

reliability. However, the theory and scientific practice of directed acyclic graphs in terms 

of causal structure depends on the following assumptions: causal sufficiency, causal 

Markov condition, and faithfulness condition.  

 These assumptions may be violated when the observational data are employed in 

empirical research. One should have a causally sufficient set of variables which includes 

all the common causes of the measured variables. In other words, there should be no 

omitted variable that causes two or more included variables. Failure to do so may lead to 

spurious causal flow between two or more included variables.23 The next requirement is 

the causal Markov assumption which states that all the relevant probabilistic information 

(or distribution) about a variable must be fully captured from its just parents or its direct 

22 Some applications have been taken by Druzdzel and Glymour (1999), Roh, Bessler, and Gilbert (1999), 
Shipley (1999, 2000), and Bessler and Loper (2001).  
23 Also see footnote 18. If X is a common cause of Y and Z but is omitted from the current analysis, then a 
causal flow, if any,  between Y and Z may be spurious due to the fact that X causes Y and Z.  
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causes. The last assumption, faithfulness, focuses on the relationship between d-

separation and probabilistic independence. This condition means that special 

combinations of causal strengths can result in unfaithful probability distribution 

information when captured by a graph. Although this is a very limiting case, the 

quantitative causal effect of two variables along different graphs exactly cancels each 

other out. The PC algorithm is applied with these three assumptions. When observational 

data are used for analysis, any result obtained from this application should be interpreted 

with caution in situations in which any assumption may be violated. 

 

Choice Model Structure 

Multinomial Logit (MNL) 

 The multinomial logit (MNL) model structure is based on the utility 

maximization theory. Each of the available modes (walk/bike, bus, driving-alone, and 

share-ride) has an associated utility that is a function of individual or household 

characteristics, mode attributes, and land-use characteristics. Binary logit is a simple 

case applied to two alternatives, specified with non-automobile (walk/bike and bus) and 

automobile (driving-alone and shared-ride) for the purpose of examining the causal 

structure of the choice model in the directed acyclic graph. Utility theory states that an 

individual trip maker chooses a mode that maximizes her or his utility. For a given 

observation, the utility of mode i of the trip-maker is given as 

 i i iU V ε= +        (4.4) 

where Ui is the utility of mode i to the trip maker, Vi is the deterministic (observed) 
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component of utility, and εi is the error (unobserved) component of utility (Train 2003).  

  The MNL structure depends on two basic assumptions. First, the error 

components of the utility function are an extreme value type I distribution referred to as 

the Gumbel distribution. This is the most commonly used distribution leading to a 

closed-form model for the choice probabilities. The second assumption requires equal 

variance for modes and for all individuals that there is no correlation between the error 

terms of modes and between the error terms of individuals. It is assumed that the error 

components are identically and independently distributed (IID) across observations as 

well as across modes (Horowitz 1986; Train 2003). The MNL structure is well-known 

for simple formulation and easy application. It provides the probability that the 

individual will choose a given mode based on the observable portion of the utility of the 

mode. Using MNL, the probability that a given individual chooses mode i from j modes 

is  
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 The benefit of MNL relies on how the maintained hypotheses of the study would 

be tested with the generic and/or specific specifications in the choice model. However, 

MNL in itself is plagued with the independence of the irrelevant alternative (IIA) 

property, which implies that for any given individual, the ratio of the choice probabilities 

of two alternatives is independent of all other alternatives. The MNL model, because of 

this property, overestimates the probability of taking either of the similar modes (for 
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example, red bus and blue bus) compared to intuitive judgment, but underestimates the 

distinct mode. Thus, there is a need for each alternative to be identified distinctly.     

As a goodness-of-fit, the likelihood ratio index ( 2ρ or 2ρ ) is often used with 

logit models to measure how well the models fit the data. The likelihood ratio index 

ranges from 0 to 1, but it should be noted that it is interpreted differently from R2 used in 

regression. R2 indicates the percentage of the variation in the dependent variable that is 

explained by the estimated model, while 2ρ is the percentage increase in the log-

likelihood function above the value taken at zero parameters. Another goodness-of-fit is 

the percent-correctly-predicted (%CP) which is calculated by identifying for each 

individual traveler the alternative with the highest probability, based on the estimated 

model, to the actual choice which the individual traveler made. The likelihood ratio test 

can be used to test for the model improvement by the land-use variables. 

 

Ordered Logit 

 The number of trips taken by a household is discrete and thus can be ordered.  

The discrete and ordinal nature of the dependent variable as an outcome can be fairly 

captured by the ordered probit and logit models rather than with ordinary regression, 

MNL or probit. Also, ordinary regression analysis would err. It should be noted that 

probability in the ordered logit model incorporates a binary logit formula, but the 

ordered logit model has only one utility function with multiple choices to represent the 

level of utility unlike a binary logit with two utility functions. Household trip 

frequencies in the samples of work and non-work trips are categorized by order (1 to 3 
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for work trips, and 1 to 4 for non-work trips) depending on the identification of 

empirical distribution of households by automobile trip frequency. The decision can be 

represented as; “subsistence” (household trips ≤ 2), “moderate” (2 < household trips ≤ 4), 

“high” (household work trips > 4 or 4 < household trips for non-work ≤ 7), and “very 

high” (household non-work trips > 7).  

 

 Logit Captivity 

 Methodology chosen for creating a feasible choice set is important because the 

assumptions made in the analytical process can affect the results and validity of the 

model (Thill 1992). The most straightforward approach in the research of mode choice 

was to assume that every individual has the same choice set. However, this is not 

realistic: every trip maker would have a different choice set based on the various 

constraints associated with individual preferences as well as surrounding environments.  

 When each individual is confronted with a choice situation, his or her choice is 

based on a non-empty subset of universal choice space (M) which includes all of the 

possible modes used by people involved in trips. If one determines the dimensions of the 

universal choice space, the number of the non-empty subsets of the universal choice 

space grows with 2M-1.  For example, when the universal choice space is composed of 

three different types of mode (walk, auto, and transit), the non-empty choice subsets are 

numerated as {walk}, {auto}, {transit}, {walk, auto}, {walk, transit}, {auto, transit}, 

and {walk, auto, transit}. A choice set composed of {walk, auto, transit} is a universal 

choice set, free to choose a mode given three available modes. A trip maker with two-
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space choice sets, {walk, auto}, {walk, transit} and {auto, transit}, is still free to choose 

a mode given two available modes, although the freedom to choose a mode is slightly 

reduced. Here, single choice sets such as {walk}, {auto}, and {transit}, are equivalent to 

mode captivity. These singleton choice sets arise not only from mode captivity but also 

from the availability constraints faced by the trip maker. 

 In earlier times, Manski (1977) proposed the two-stage choice model to consider 

all the non-empty subsets of the universal choice set. The general form to capture the 

probability to choose a mode is expressed as 

 

 ( ) ( | ) ( )n n n
C G

p i P i C Q C
∈

= ⋅�      (4.6) 

where Pn(i) is the probability of an individual (n) choosing mode i and Pn(i|C) represents

the probability of an individual choosing mode i among the modes contained in the 

choice subset C. Qn(C) is the probability that the individual considers choice subset C 

inside the all possible choice subsets G.  Let us simply apply this to a case of two modes 

for choice of travel: driving (d) or non-driving (t). We assume that an individual has been 

(historically) captive to driving by automobile or free to choose either mode between 

driving and non-driving. Now he or she is newly confronted with a choice of mode. His 

or her probability of choosing driving (d) is calculated as 

 ,( ) ( | ) ( ) ( | ) ( ) ( | , ) ( )d d t t d t d tP d P d C Q C P d C Q C P d C Q C= × + × + ×         (4.7) 

where P(d) is the probability that the individual chooses to drive in all choice situations, 

and P(d|Cd), P(d|Ct) and P(d|Cd,t) are the conditional probabilities of the choice subsets 

{driving}, {non-driving}, {driving, non-driving}, respectively. Q(Cd), Q(Ct) and Q(Cd,t) 
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are consideration probabilities for each choice subset containing mode(s), respectively. 

Consideration probability for singleton mode indicates the intensity of mode captivity.  

 The specification of a two-stage choice model may lead to estimation results 

different from the specification of a choice model from usual practice, assuming that all 

individuals have the same choice dimension equal to the universal choice space. An 

example is presented in Table 4.8 which shows the joint probability density function of 

two choices (driving, non-driving) and three choice subsets ({driving}, {non-driving}, 

{driving, non-driving}) with each consideration probability Qi(C). The choice 

probabilities of driving (d) and non-driving (t) from usual practice are equivalent to the 

marginal probability for driving (0.6) and for non-driving (0.4), respectively, while the 

choice probabilities from the practice of consideration subsets are 0.658 and 0.342, 

respectively. The main interest of the study of automobile dependence is the estimation 

of the captivity coefficients attributable to land-use variables and the exploration of the 

probabilities of captivity represented by as the bold-faced numbers in Table 4.8.    

 

Table 4.8 Hypothetical Probabilities of Choice and Consideration Set  

  Consideration Set 
  {d} {t} {d, t} 

Marginal 
Probability 

Choice 
Probability 

Choice Driving (d)  
Non-driving (t) 

0.3 
0.1 

0.1 
0.2 

0.2 
0.1 

0.6 
0.4 

0.658 
0.342 

Marginal Probability 0.4 0.3 0.3 - - 
Qi(C) 0.3 0.1 0.6 - - 

 

 The probability of having the full set of available modes is given 60%, whereas 

the probability of having the singleton set of a mode accounts for 30% for driving, and 

10% for non-driving, respectively. The potential importance of mode captivity from the 



80 

hypothetical probabilities of choice set should be noted (Table 4.8). The hypothetical 

result implies that trip makers have a 0.4 probability of being captive to a single mode. 

This may lead to a significant reduction of the impact of land-use relative to the MNL 

model, and there may be also biases in the estimated parameters and elasticities resulting 

from the MNL estimation.  

 The logit captivity model was first theoretically derived by McFadden (1976) and 

Ben-Akiva (1977), was developed by the ‘dogit’ model of Gaudry and his colleagues 

(Gaudry and Dagenais 1979; Gaudry and Wills 1979), and was generalized to a 

‘parameterized logit captivity’ (PLC) model dealing with random constraints to choice-

set formation by  Swait and Ben-Akiva (1987a, 1987b). Research focusing on the 

decision-making process is still underway, utilizing either a probabilistic choice set 

model (Ben-Akiva and Boccara, 1995) or a choice set generation model (Swait, 2001; 

Basar and Bhat, 2004). The functional form of the model is written as the multinomial 

logit (MNL) form with the same structure of likelihood function. The search process, 

however, is very complex because the log-likelihood of the model is not globally 

concave. The functional form to be estimated is given as 
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where vector z represents the variables to explain captivity to mode i, while vector 

x include a set of variables impacting the choice of mode i. Both vectors may partially or 

totally overlap. ββββ and γγγγ are the estimated coefficient vectors, particularly, the later is the 

vector of estimated captivity coefficients. 
iCQ is the probability that an individual is 

captive to mode i, or is referred to as captivity odds, and measures the intensity of 

automobile dependence as a probability for driving-alone or shared-ride. CQ is the 

probability that the individual becomes a free choice user, and |j CP is the probability of 

choosing mode i given that the individual is a free choice user. If theoretically there is no 

captivity to mode (γ′Zi = 0) or statistically there is no significant coefficient, the model is 

equivalent to the standard multinomial logit (MNL). As noted, this model may provide 

realistic estimates for choice captivity.  
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CHAPTER V 

EMPIRICAL RESULTS 

 

This chapter presents and interprets empirical results which estimate the 

specified models of individual mode choice, a household trip frequency, and household 

VMT. Then, logit captivity results follow. Prior to treating with the empirical results, 

land-use as the status quo is examined with the focus on land-use balance in the D-FW 

metropolitan area.     

 

Status Quo of Land-Use 

 According to the North Central Texas Council of Governments (NCTCOG), 58 

percent of the total developed land in the sixteen counties in question is residential. 

Residential land-use accounts for nearly three times the land area used for commercial, 

industrial, and institutional uses combined. Similar trends are seen from land-use in the 

D-FW metropolitan boundary. As shown in Table 5.1, single-family residential land-use 

appears to dominate the urban development patterns that have formed the D-FW area. In 

1995, residential land-use in the D-FW area accounted for 65 percent of total land-use 

considered (59 percent for single-family residential). Currently, the D-FW metropolitan 

boundary includes more than 150 municipal cities, many of which have their own zoning 

regulations to limit the density of new residential development.  

 Residential development is likely to be affected by zoning regulations in major 

metropolitan areas which highly rely on smaller municipalities for land-use planning. In 
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fact, zoning regulations enforced for a low-density development pattern may lead people 

to drive farther in order to meet their activity needs. Cities are highly motivated to build 

too much parking and multi-lane arterials for cars rather than developing pedestrian-

friendly (walkable, bikable or active-living) communities (Levine 2005). No empirical 

study, however, supports the connection that the urban design template written into land-

use (zoning) regulations leads to more driving. This is a testable hypothesis requiring 

future study. 

 
Table 5.1 Land-Use in the D-FW Metropolitan Area 

Land-Use Classification 1990 1995 2000 
Residential 
 
 
Commercial 
 
 
Industrial 
Institutional 
Infrastructure 
Under construction 

Single family 
Multi-family 
Mobile home 
Office 
Retail 
Hotel / Motel 

  362,593 
    26,932 
    18,149 
    10,588 
    39,891 
         911 
    67,988 
           na 
           na 
           na    

  421,472 
    27,202 
    16,550 
    10,707 
    45,458 
      1,048 
    67,291 
    35,644 
    81,774 
    10,211 

    58.8 
      3.8 
      2.3 
      1.5 
      6.3 
      0.1 
      9.4 
      5.0 
    11.4 
      1.4 

  435,583 
    27,326 
    22,555 
    21,819 
    45,105 
      1,080 
    64,947 
    45,791 
    81,895 
      7,071 

     57.8 
       3.6 
       3.0  
       2.9 
       6.0 
       0.1 
       8.6 
       6.1 
     10.9 
       0.9 

Total acres   527,053   717,359   100.0%   753,171    100.0% 
  

 There are many ways to measure land-use features which fall into categories 

such as density, diversity, accessibility, and design. These measures are directly or 

indirectly related to humans or their activities, but diversity measures, such as land-use 

balance (entropy), mixed-use indicator (ratio), and specific land-use share, represent the 

physical sizes or combinational portions of land-use per unit of area. As noted, the status 

quo analysis of land-use balance (entropy index) will provide a good diagnosis for how 

land in study area is used (or developed) in concert with a variety of human needs and 

activities.  
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The distribution of entropy index at TSZ is presented over each focused region in 

Table 5.2. The zonal distributions for four land-use types (residential, commercial, 

industrial, and public use) were considered for the computation of the entropy index. To 

compare the regional distribution to the county level, Dallas and Tarrant counties were 

also examined. The regional average entropy index is 0.3832, and 784 TSZs fall into a 

range of 0.4~5.0. The same trends are observed from two counties. TSZs with zero 

entropy are used for either no land-use or only of the four types of uses. Single-family-

residential use accounts for 199 out of 521 TSZs in D-FW. Out of 1,870 TSZs with a 

‘low’ (� 0.3) entropy index, 59 percent (1,094 TSZs) is used for single-family oriented 

residential, exceeding more than ten times the land area used for commercial, industrial, 

and institutional uses combined in terms of land area. 

 

Table 5.2 Distribution of Entropy Indices for Four Land-Use Types 

Entropy Index  D-FW-TSZs Dallas Co.-TSZs Tarrant Co.-TSZs 
 0.0000 
0.0001~0.1000 
0.1001~0.2000 
0.2001~0.3000 
0.3001~0.4000 
0.4001~0.5000 
0.5001~0.6000 
0.6001~0.7000 
0.7001~0.8000 
0.8001~0.9000 
0.9001~1.0000 

   521* 
344 
461 
544 
613 
785 
544 
468 
386 
131 
  77 

10.7 
  7.1 
  9.5 
11.2 
12.6 
16.1 
11.2 
  9.6 
  7.9 
  2.7 
  1.6 

  179* 
156 
217 
261 
304 
364 
243 
204 
176 
  54 
  34 

  8.2 
  7.1   
  9.9 
11.9 
13.9 
16.6 
11.1 
  9.3 
  8.0 
  2.5 
  1.6 

   115* 
  97 
115 
148 
173 
240 
164 
153 
120 
  72 
    0 

  8.2 
  6.9 
  8.2 
10.6 
12.4 
17.2 
11.7 
11.0 
  8.6 
  5.2 
  0.0 

Total     4,874     100.0%     2,192     100.0%     1,397      100.0 
Land-use types 

Four 
Three 
Two 

One or Zero 
Total 

  Average        EI Range 
   0.5999    0.1010~0.9930 
   0.4356    0.0098~0.7923 
   0.2504    0.0022~0.5000 
   0.0000    0.0000~0.0000 
   0.3832  

  Average        EI Range 
   0.5996    0.0968~0.9930 
   0.4356    0.0098~0.7923 
   0.2464    0.0022~0.5000 
   0.0000    0.0000~0.0000 
   0.3883  

  Average        EI Range 
   0.5908    0.0270~0.9900 
   0.7919    0.0209~0.7919 
   0.2562    0.0033~0.5000 
   0.0000    0.0000~0.0000 
   0.3883  

* 199 TSZs are used for single-family residential land in the D-FW area, 60 TSZs in Dallas county, and 
28 TSZs in Tarrant county respectively. 
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 Figure 5.1 portrays land-use balance (entropy index) at TSZ level. TSZs with 

relatively ‘high’ land-use balance (> 0.6000, pink- or brown-colored TSZs) are spatially 

heterogeneous among the four land-use types, while TSZs with white, light-blue, and 

light green colors (less than 0.4 in entropy index) have reduced land-use types (mostly 

singleton or two type uses). In the latter case, land-use is likely to be somewhat 

separated or isolated from other land-uses. As shown below, high-entropy TSZs are 

observed mainly along major arterials in the D-FW metropolitan area. It is thought that 

land along major roadways or within proximity of these roads has been developed for a 

variety of land-uses because of the convenient automobile access they provide.   

 

Figure 5.1 Land-Use Balance (Entropy Index) at TSZ Level in the D-FW Area 
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Mode Choice Results 

MNL Results and Choice Elasticities  

 For each trip purpose, such as home-based work (HBW) trips, home-based other 

(HBO) trips, and non-home based (NHB) trips, a sufficient sample size was available to 

estimate the multinomial logit (MNL) choice models across the four alternatives of 

walk/bike, transit, drive-alone, and shared-ride. The reference mode is transit, and, hence 

each coefficient for constant term on the utility function should be interpreted with 

reference to this category. Normally, the MNL models are sensitive to generic or 

alternative-specific specifications. While generic coefficients were assumed to have the 

same influence on mode options, alternative-specific coefficients were estimated under 

an assumption that individual travelers are influenced differently by the factors of 

different mode options. Results for the MNL models for HBW, HBO, and NHB trips 

appear in Table 5.3 and Table 5.4. Mode choice for each purpose was estimated in two 

model schemes (base model vs. extended model). Both tables display the estimated 

coefficients, t-values, goodness-of-fit, model improvement test, and choice prediction. 

 The estimation results under the extended models maintain the same patterns as 

the base models for socio-economic variables, but there are variations for mode 

attributes (travel times). Walk time for HBW, HBO, and NHB trips in the extended 

model was significant at 5% level. Transit time and auto time were significant at 5% and 

10% for HBW trips, but not for both HBO and NHB trips. As suggested by theory, an 

increase in travel time decreases each probability to choose each mode, but people are 

less likely to walk to work than they are to take transit, drive or carpool. Since most 



87 

work trips occur during a peak period, people are faced with higher time costs when 

choosing a mode with less mobility. Travel time is an important factor in influencing a 

decision to commute to work but not a significant factor in decreasing the choice of 

transit or automobile in non-work trips. From the results of mode choice estimation for    

 

Table 5.3 D-FW Multinomial Logit Models of Mode Choice for Home-Based Trips 

 Work Trips  Non-Work Trips 
 Base Model Extended Model Base Model Extended Model 
Variables Coef. t Coef. t Coef. t Coef. t 
Constant (W/B) 2.1086 7.24 2.9054 9.30 4.8686 20.14 4.6780 16.62 
Constant (D) 1.0957 3.32 28.5118 4.32 2.1947 6.67 11.4340 4.13 
Constant (S) -1.8331 -5.78 25.5791 3.88 1.2085 3.72 10.4452 3.78 
Walk/bike time (W/B) -0.0532 -6.63 -0.0566 -6.88 -0.0622 -9.95 -0.0610 -9.02 
Transit time (T) -0.0070 -1.82 -0.0159 -2.35 -0.0168 -2.21 -0.0159 -1.25 
Auto time (D,S) -0.0335 -1.54 -0.0455 -1.76 -0.0837 -2.07 -0.0490 -1.05 
Age (W/B, T) 0.0239 4.54 0.0225 3.83 -0.0227 -5.05 -0.0245 -5.35 
Sex (D, S) 0.3006 2.26 0.1388 0.93 -0.1784 -1.33 -0.1932 -1.41 
HH Income (D,S) 0.0237 6.83 0.0308 7.52 0.0179 5.56 0.0184 5.62 
HH Size (T,S) 0.2384 7.29 0.2286 6.80 0.3873 18.44 0.3891 18.49 
#. of Workers (D)  0.0081 0.15 -0.0094 -0.17 0.1493 5.28 0.1508 5.33 
Vehicles in HH (D,S) 1.3388 13.02 1.2200 10.64 0.8609 8.77 0.8030 8.10 
MF Housing (W/B,T) 0.5389 3.61 0.3906 2.21 0.9642 6.55 1.0197 6.34 
Pop density at O (W/B,T)    -0.0268 -1.68   -0.0168 -1.31 
Pop density at D (D, S)   0.0327 1.87   0.0223 1.59 
Job density at O (W/B, T)   0.0020 6.25   0.0024 1.06 
Job density at D (D, S)   -0.0020 -6.06   -0.0056 -6.56 
Resid. share at O (W/B,T)   0.0000 0.00   0.0003 0.09 
Resid. share at D (D,S)   0.0013 0.42   -0.0030 -0.84 
Com. share at O(W/B, T)   0.0181 5.17   -0.0091 -1.57 
Com. share at D (D,S)   -0.0090 -2.70   -0.0008 -0.16 
Accessibility at D (D,S)   -0.2748 -4.07   -0.1054 -3.45 
Entropy index at D (D,S)   -0.2324 -0.77   0.2636 0.95 
Sample size 4,672 4,672 7,112 7,112 
LLF(�� at converge -2,275.3 -2109.1 -5480.5 -5,438.8 
Goodness-of-fit : 2ρ , 2ρ                             0.6487,   0.6467 0.6744,   0.6709 0.4441,   0.4428 0.4483,  0.4460 
Model improvement test: 
-2[� (B)-�� (E)] 

2χ  = 332.40, df = 10, Prob. < 0.001 2χ  = 83.40, df = 10, Prob. < 0.001 

 (in extended models) 
Actual choice share    
%  correctly predicted            

 W/B   T (Bus)   D        S       Total         
1.2%  5.9%  83.8%  9.1% 100.0%  
0.2%  2.7%  83.4%  0.0%   86.3%      

 W/B   T(Bus)   D          S        Total         
 4.0%   0.9%   49.0%  46.1%, 100% 
 1.7%   0.1%   33.2%  23.4%, 58.4%  

a. W/B = walk/bike, T = bus, D = driving-alone, and S = shared-ride 
b. Parenthesis in variable column indicates the mode(s) to which the variable is specified.   
c. t-values in bold-face are significant at 95% level and in italic bold-faces at 90% respectively. 
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travel times, the coefficient estimate for transit time appears to be underestimated, 

compared to the coefficient estimate for auto mode in HBW, HBO, and NHB trips. It is 

thought that transit operational performance of 13.8 mph for non-rail is relatively low in 

the Dallas-Fort Worth area where many freeways have been developed to maintain high 

speed. Also unitary application of maximum walk access time (20 minutes) for different 

trip lengths is thought to contribute to underestimation.          

The effects of socioeconomic characteristics on mode choice are in accord with 

the literature. Personal characteristics were typical confounding variables: sex was not a 

significant factor in the extended models, while age is positively associated with non-

automobile choice in work trips and negatively associated with automobile choice in 

non-work trips. Household income, household size, the number of workers in household, 

and the number of vehicles owned by household have statistically significant effects on 

the probability that a trip maker walks for non-work trips, takes a bus, drives alone, or 

shares a ride. In three samples, higher household income and the number of vehicles 

owned by a household are more likely to depend on automobiles (i.e., drive alone or 

share a ride) than they are for walking or taking a bus. Those who dwell in multi-family 

housing have a higher probability of walking in work or non-work trips. From this 

finding, multi-family housing location appears to have much to do with density 

development pattern which may encourage residents to walk more rather than drive. 

 The most robust effect of land-use as measured at destination by job density and 

regional accessibility is to decrease the probability of choosing automobiles in any type 

of trip. Conversely job density and regional accessibility at destination increase the 
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chances that a trip-maker walks or takes a bus in any trip. The effect of land-use at trip 

origins stands out by job density and the commercial share of land for only the work-trip 

sample, increasing the probability of walking in work or taking a bus to work. However, 

the entropy index, a typical measure for a variety of land-uses, does not explain mode 

choice in the D-FW metropolitan area.  

 

Table 5.4 D-FW Multinomial Logit Model of Mode Choice for Non-Home-Based Trips 
 Non-Home Based Trips 
 Base Model Extended Model 
Variables          Coef.         t        Coef.         t 
Constant (W/B) 5.7015 19.54 4.5529 13.72 
Constant (D) 2.3725 5.66 28.2657 2.87 
Constant (S) 1.6491 4.01 27.5586 2.80 
Walk/bike time (W/B) -0.1201 -13.69 -0.0913 -9.65 
Transit time (T) -0.0283 -3.69 -0.0233 -1.64 
Auto time (D,S) -0.1540 -3.86 -0.0816 -1.58 
Age (W/B, T) -0.0035 -0.58 -0.0090 -1.29 
Sex (D, S) -0.3240 -2.13 -0.2971 -1.73 
HH Income (D,S) 0.0128 4.27 0.0160 4.60 
HH Size (T,S) 0.1552 4.94 0.1530 4.85 
#. of Workers (D)  0.1744 3.49 0.1810 3.59 
Vehicles in HH (D,S) 0.7059 6.58 0.7741 6.35 
MF Housing (W/B,T) -0.1487 -0.78 -0.0771 -0.36 
Population density at origin (W/B,T)    -0.0217 -1.02 
Population density at destination (D, S)   0.0291 1.38 
Job density at origin (W/B, T)   0.0031 6.95 
Job density at destination (D, S)   -0.0033 -6.16 
Residential share of land (W/B,T)   -0.0013 -0.35 
Residential share of land (D,S)   0.0025 0.64 
Commercial share of land (W/B, T)   -0.0011 -0.29 
Commercial share of land (D,S)   -0.0008 -0.21 
Regional accessibility at destination (D,S)   -0.2734 -2.75 
Entropy index at destination (D,S)   0.4891 1.39 
Number of Observations 3,354 3,354 
LLF(L) at converge -2,637.8 -2,522.9 

Goodness-of-fit : 2ρ , 2ρ  0.4327,  0.4299 0.4574,   0.4524 

Model improvement test: -2[L (B)- L (E)] 2χ  = 229.80,  df = 10,  Prob. < 0.001 
(in extended models) 
Actual choice share     
%  correctly predicted  

         W/B      T (Bus)     D          S         Total  
         8.4%    1.4%      57.9%   32.3%   100.0% 
         6.0%    0.2%      56.3%     0.5%     63.0% 

a. W/B = walk/bike, T = bus, D = driving-alone, and S = shared-ride 
b. Parenthesis in variable column indicates the mode(s) to which the variable is specified.   
c. t-values in bold-face are significant at 95% level and in italic bold-faces at 90% respectively. 



90 

A few resulting statistics such as like the goodness-of-fit (ρ2), the χ2 model 

improvement test statistic, and the percentage-correctly-predicted (%CP), support that 

expended models outperformed base models. As expected, the inclusion of land-use 

variables improved overall predictability in the extended models. Hence, land-use 

variables matter somewhat in explaining the travel decisions of mode options available 

to D-FW area residents.    

 Elasticity is used for measuring a choice probability in response to a change in 

some decision variable and, by definition, is the percentage change in one variable that is 

associated with 1% change in another variable. Table 5.5 shows the elasticities of mode 

choices that are associated with changes in selected land-use variables and travel time. 

Similar to the available literature, the travel time elasticities of mode options are higher 

 

Table 5.5 Mode Choice Elasticities 

Elasticities Trips Variables and Model Specifications* 
W/B T (Bus) D S 

Travel time (min)   [W/B], [T], [D, S]* -13.4405    -0.9463 -0.1485 -0.8357 
Job density at origin           [W/B, T] 0.0529 0.0032 -0.0449 -0.0048 
Job density at destination   [D, S] 0.0619 0.0037 -0.0525 -0.0057 
Commercial share at origin  [W/B, T] 0.2832 0.0169 -0.2403 -0.0259 
Commercial share at destination  [D,S] 0.1551 0.0093 -0.1316 -0.0142 

 
 

HBW 

Regional accessibility        [D,S] 0.2633 0.0158 -0.2235 -0.0241 
Travel time (minutes)     [W/B], [D, S] -10.6893    -1.2270 -0.3634 -0.3841 
Job density at destination   [D, S] 0.0386 0.0004 -0.0197 -0.0185 

 
HBO 

Regional accessibility        [D, S] 0.0905 0.0009 -0.0462 -0.0435 
Travel time (minutes)     [W/B], [D, S] -16.5216    -1.5400 -0.5259 -0.8448 
Job density at origin           [W/B, T] 0.1150 0.0018 -0.0727 -0.0406 
Job density at destination   [D, S] 0.1134 0.0018 -0.0716 -0.0400 

 
NHB 

Regional accessibility        [D, S] 0.2464 0.0038 -0.1557 -0.0869 
* Brackets, [ ], indicate alternative-specific specifications, and elasticities are calculated at a 
weighted-average choice probability. For alternative-specific counterparts, the signs of estimated 
coefficients are reversed, and then the resulting elasticities are calculated.  
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than those of land-use variables. The effect of land-use on the decision to drive less, 

though statistically significant, is generally smaller in absolute magnitude (|elasticity| < 

0.3) than travel time. For example, a 10% increase in the regional accessibility of 

automobile use reduces driving-alone by 2.2% in HBW trips, by 0.4% in HBO trips, and 

by 1.6% in NHB trips, respectively. A 10% increase in job density at destination 

increases the probabilities of walk/bike by 0.6%, 0.4%, and 1.1% in HBW, HBO, and 

NHB trips, respectively. 

 

Results on Directed Graphs 

 The estimation of choice models depends on the multivariate distribution of 

variables for each utility function for all choices, while directed graphs rely on a 

multivariate distribution of variables from data. It is not known whether directed graphs 

can be constructed for a multinomial choice, but a binary choice with alternative-specific 

specification is likely to construct the directed graphs. For the directed graphs four 

choices (walk/bike, transit, drive-alone, and shared-ride) in the MNL models are grouped 

into two choices: non-automobile and automobile. The estimated results of binary logit 

are presented in Table 5.6 to compare with the directed graphs. 

 The directed graphs of mode choice are presented for three types of trips (HBW, 

HBO, and NHB). The analysis proceeds from the lower triangular form of a correlation 

matrix between each of fifteen variables: automobile choice (AUTO), travel time 

differential (T_TIME), household income (INC), household size (HHSZ), the number of 

workers in household (WRKRS), the number of vehicles owned by household 
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(VEHNUM); for trip ends of origins and destinations, population densities (O_POPDEN, 

D_POPDEN), job densities (O_JOBDEN, D_JOBDEN), residential shares of land 

(O_RESID, D_RESID), commercial shares of land (O_COMM, D_COMM), and regional 

accessibility at destination (D_ACCESS). The unconditional correlations between each 

of the variables are summarized in Appendix A4. Such a correlation matrix provides the 

starting point for the analysis of causation using the directed graphs. As discussed in the 

previous chapter, the TETRAD II algorithm removes edges by taking into account the 

unconditional and conditional correlations between variables. Analysis begins by 

imposing two constraints on the orderings. First, socioeconomic characteristics precede  

 

Table 5.6 The Estimation Results of Binary Logit (Auto vs. Non-auto) Models 

Variables HBW HBO NHB 
 Coef. T Coef. t Coef. t 
Constant 28.7718 4.35 9.6416 3.62 33.3258 3.54 
Travel time diff. (walk – driving) -0.0006 -1.63 -0.0102 -8.14 -0.0107 -8.75 
Household income 0.0321 7.99 0.0243 7.73 0.0185 5.77 
Household size -0.2825 -5.34 -0.1116 -2.48 -0.1168 -1.85 
Number of workers in household 0.0250 0.21 -0.2310 -2.78 -0.4112 -3.28 
Number of vehicles in household 1.3368 11.47 1.0781 10.96 1.0612 8.23 
Pop density at origin 0.0107 0.74 -0.0176 -1.98 0.0268 1.35 
Pop density at destination 0.0191 1.18 -0.0095 -0.80 0.0319 1.52 
Job density at origin -0.0018 -5.91 -0.0027 -1.68 -0.0029 -6.78 
Job density at destination -0.0019 -5.82 -0.0047 -4.91 -0.0041 -7.81 
Residential share at origin  0.0008 0.26 0.0012 0.35 0.0008 0.25 
Residential share at destination 0.0014 0.49 -0.0022 -0.67 0.0019 0.57 
Commercial share at origin -0.0185 -5.45 0.0040 0.79 -0.0013 -0.42 
Commercial share at destination -0.0094 -2.90 -0.0022 -0.48 -0.0045 -1.42 
Reg. accessibility at destination  -0.2901 -4.28 -0.1035 -3.53 -0.3402 -3.57 
Number of Observations 4,672 7,112 3,354 
Goodness-of-fit : 2ρ , 2ρ  0.7828 0.7781 0.8028 0.7997 0.7385 0.7316 

Actual choice share     
%  correctly predicted 

Nonauto  Auto Total 
332     4,340   4,672 
3.0%  92.4% 95.4% 

Nonauto  Auto Total 
 350    6,762   7,112 
1.1%  94.8% 95.9% 

Nonauto  Auto Total 
329     3,025  3,354 
4.5%  89.7% 94.2% 

a. Non-auto is reference mode in the binary logit, and the estimated coefficients should be interpreted 
with reference to non-auto mode. Only travel time differential is specified as generic specific  
b. t-values in bold-face are significant at 5% significance level, and in italic bold-face at 10% level. 
�
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land-use variables and travel time. Second, the land-use variables at origin do not affect 

land-use variables at destination, and vice versa. A 1 % significance level is used for 

removing edge at sample size (e.g., 0.1 at sample sizes between 100 and 300) as 

suggested by Spirtes, et al. (2000).    

 As shown from a directed graph in Figure 5.2, the choice of automobile is 

explained for HBW trips by household income (INC: +), the number of vehicles in a 

household (VEHNUM: +), job densities at both origins (O_JOBDEN: −) and destinations 

(D_JOBDEN: −), the commercial shares of land at both origins (O_COMM: −) and 

destinations (D_COMM: −), and regional accessibility at destination (D_ACCESS: −). 

The directed arrows with these immediate causal factors found at 1% significance are 

causally connected to automobile choice for home-based work trips. The directed graph 

contains colliders (T_TIME, O_RESID, and D_RESID) in which information flows 

running from other variables collide. There are also the precedent (parent) variables 

(O_POPDEN, D_POPDEN, and WRKRS) of colliders of which the causal flow is 

blocked by colliders. Focusing on travel time and land-use variables shows that travel 

time and residential shares at both trip ends absorb causal flow running from their parent 

variables but never transmit causal flow to child variables. Population densities at both 

ends are parent variables that open up the path to a collider ‘travel time’. Thus, travel 

time, residential shares, and population densities are not causally connected to the 

decision of choosing an automobile. The direct causes found in Figure 5.2 are consistent 

with the estimated coefficients of significance in the binary logit model for HBW trips. 

 Household size (HHSZ) is causally connected to automobile choice running 
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through the regional accessibility. This causal flow, however, is quite difficult to 

interpret in terms of how household size works its way through accessibility. The 

bidirected edges between population density at destination and each land-use variable 

(regional accessibility, and residential and commercial shares at destination), and 

between residential share at destination and regional accessibility are difficult to 

understand but suggest the existence of a latent variable between two variables. Potential 

possibilities could be considered as zoning practices and regulations to qualitatively 

measure land-use. One interesting result in HBW trips is that travel time is not a direct 

cause of automobile choice. This result may be understood by the nature of work trips in 

auto-dependent cities. Work trips are especially associated with earning income and 

potential income sources. A rational trip-maker who owns a car will drive with the 

expectation of higher income, and hence travel time by driving is less likely to matter for 

his or her work trip. Another finding is that the number of vehicles owned by a 

household is causally connected to several land-use variables (population densities at 

both ends, job densities at both ends, and regional accessibility). A causal connection 

between the number of vehicles and the land-use variables is typically observed in low-

density and auto-dependent cities.  

 Figures 5.3 and 5.4 present the directed graphs at the 1% significance level for 

HBO and NHB trips, respectively. Data on HBO trips are causally explained by travel 

time (-), household income (+), the number of vehicles (+), job density at origin (-), job 

density at destination (-), population density at origin (-), and regional accessibility (-).



               

 
           Figure 5.2  Directed Graphs from Data on Binary Choice (Auto vs. Non-auto) for HBW  Trips at 1% 
                      Significance Level (Dotted Edges with Arrows Indicate a Need for a Common Cause between Two Variables).
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Regarding travel time, the direction of causal flow runs from household size, population 

densities at trip ends, and regional accessibility to travel time, which opens up a path to 

automobile choice. Travel time is a primary causative factor of automobile choice as 

well as being influenced by some land-use variables (O_POPDEN, D_POPDEN, 

D_ACCESS). The directed graph for NHB trips given in Figure 5.4 may well be 

reflective of similar causations of travel time (T_TIME). Travel time is a direct cause of 

automobile choice for NHB trips. Regarding travel time, the direction of causal flow 

runs from regional accessibility (D_ACCESS), population density at origin 

(O_POPDEN), and commercial share of land at origin (O_COMM) to travel time. 

Four bidirected edges between each pair of land-use variables are identified in the 

directed graph for HBO trips in Figure 5.3, while a directed graph for NHB trips in 

Figure 5.4 presents a bidirected edge between commercial share at origin (O_COMM) 

and residential share at origin (D_RESID). As suggested previously, zoning practices and 

regulations, and pedestrian-friendly environments can be candidates for the appropriate 

latent variables between these bidirected edges.  

 There is no collider to sink any causal paths in the directed graph given in Figure 

5.3, but non-directed edges are present between job density at origin (O_POPDEN) and 

residential share at origin (O_RESID). Let us presume that non-directed edges do not 

have much to do with causal connections between the variables (albeit it is more or less 

ambiguous). Thus, the residential share of land-use at origin (O_RESID) is virtually a 

sink where information flow stops. Once backing to its parent, causal flow running from 

the commercial share at origin (O_COMM) is blocked by the sink child, residential share 
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at origin (O_RESID). Both variables are not causally connected to the choice of an 

automobile for non-work trips. This intuition may be applied to model specification 

incorporating the appropriate variables into an empirical model to hold the fundamental 

pattern of causality. In contrast, the directed graph for NHB trips given in Figure 5.4 

displays a collider (O_RESID). 

 Look at the colliders and collider-blocked parent variables identified in the 

directed graphs. These variables may be candidates for irrelevant variables in empirical 

models. The identification of irrelevant variables can address somewhat an inconsistency 

between the direct causes of directed graph and the estimated significant coefficients of a 

regression model. These variables can be excluded from alternative regression models. 

For example, three colliders (T_TIME, O_RESID, D_RESID) and three colliders’ parents 

(O_POPDEN, D_POPDEN, WRKRS) may be dropped off for a parsimonious model for 

HBW trips. Two assumed colliders (O_RESID, D_COMM) in HBO trips and a collider 

(O_RESID) in NHB trips can be removed respectively for more parsimonious models.  
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The entire set of variables used for the directed graphs numbered fifteen because 

of the limitation of the number on variables handled in TETRAD II. Some variables of 

socio-demographics (i.e., age, sex, and multi-family housing) were not initially included 

in the directed graphs, while household characteristics (household size, number of 

vehicles, household income, and number of workers) included in the directed graphs 

resulted in undirected edges. The undirected edges among household characteristics did 

not characterize the connection between probability and causality. These undirected 

edges in three samples were directed on the basis of author’s judgment (blue-colored 

solid edges): household size as source is a direct common cause to increase the number 

of workers, vehicle ownership, and household income, the number of workers in 

household is a direct common cause of number of vehicles owned by household, and 

more household income, and the vehicle ownership is a cause of more household 

income.24 Land-use balance (entropy index) was not included in all the directed graphs 

models based on both the statistical test results of binary logit and no edge found 

between the entropy index and the other variables of the system at 1% and 5% 

significance. 

24  According to Cervero et al. (2002), car ownership significantly increased the odds that someone 
switched welfare-to-work. It is inferred further that car ownership results in income increase  through job 
accessibility 



                          

  
      Figure 5.3  Directed Graphs from Data on Binary Choice (Auto vs. Non-auto) for HBO Trips at 1% Significance 
                 Level (Dotted Edges with Arrows Indicate a Need for a Common Cause between Two Variables). 
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 Figure 5.4  Directed Graphs from Data on Binary Choice (Auto vs. Non-auto) for NHB Trips at 1% Significance 
            Level (Dotted Edges with an Arrow Indicate a Need for a Common Cause between Two Variables). 
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Trip Frequency Results 

 The ordered logit results of household trip frequency in work and non-work 

automobile trips are presented Table 5.7.  Explanatory variables included in the ordered 

logit models are the generalized cost per trip, household characteristics (household 

income, household size, number of workers, number of vehicles), and land-use variables 

at trip origins (population density, job density, residential share of land, commercial 

share of land, and regional accessibility, and entropy index). The results of extended 

models were compared to the base models by testing the influence of a set of land-use 

variables on household trip generation. That is to say, a likelihood ratio (LR) test was 

performed to assess the incremental contribution of the inclusion of land-use variables. 

The LR test results support the fact that models slightly increase the ability of prediction 

(goodness-of-fit was increased by 10.3% in work trips and by 8.2% in non-work trips) 

for the household trip rates when land-use variables are included.  

 The generalized cost computed per trip is significant at the 1% level in both 

samples. As expected, higher generalized costs reduce household trip generation. The 

inclusion of price variables (i.e., generalized cost) improve the model, fitting better than 

the base model otherwise does, although the LR test result is not presented here. 

Household income is significant at the 5% level for non-work trips and at the 10% level 

for work trips, contributing to the generation of both. Household size appears to matter 

in non-work trips, but does not in work trips based on the 1% statistical significance 

level. As the number of workers increases in a household, the work trips are significantly 

positive at the 1% level, but not significant for non-work trips. Both household size and 
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the number of workers in a household, have the opposite effect on the trip rates in the 

samples of work and non-work trips. The number of vehicles in a household is positively 

associated with both types of trip.  

 

Table 5.7 Household Auto Trip Frequency Models for Home-Based Trips 

 Work Trips Non-Work Trips 
Variables Base Model Extended Model Base Model Extended Model 
 Coef. z Coef z Coef. z Coef. Z 
Gen. cost ($ / trip) -0.1346 -5.64 -0.1406 -5.64 -0.1636 -11.55 -0.1638 -11.41 
HH income in $1K 0.0034 2.08 0.0031 1.83 0.0067 5.07 0.0074 5.43 
Household size -0.0745 -1.52 -0.0541 -1.10 0.3076 8.35 0.3016 8.10 
Number of workers  1.1420 12.58 1.1621 12.63 -0.0731 -1.28 0.0122 0.66 
Number of vehicles 0.1366 2.18 0.1706 2.67 0.2059 4.14 0.1917 3.80 
Pop. density at O   -0.0074 -0.66   0.0050 0.53 
Job density at O   -0.0022 -0.71   -0.0013 -0.63 
% Resid. use at O    0.0095 2.46   0.0018 0.61 
% Comm. Use at O   0.0105 1.92   0.0036 0.79 
Reg. accessibility   10.7086 4.62   -5.6185 -5.50 
Entropy index   0.3655 1.02   -0.3152 -1.10 
Cutoff 1 -2.8541 -21.73 -16.6779 -7.21 -3.8699 -23.14 1.1620 1.14 
Cutoff 2 -5.2911 -14.33 -14.2009 -6.18 -2.2870 -15.93 2.7642 2.76 
Cutoff 3     -0.9199 -6.84 4.1493 4.13 
Number of Obs. 1,955 1,955 2,072 2,072 
LLF(�� at converge -1,192.17 -1,175.26 -2,189.71 -2,171.66 

Goodness-of-fit: 2ρ  0.1213 0.1338 0.0840 0.0915 

Model improvement 
test: -2[� (B)-�� (E)] 

2χ  = 33.82,  df = 6,  Prob. < 0.001 2χ  = 36.10,  df = 6,  Prob. < 0.001 

a.  z-values in bold-face are significant at 95% level, and in italic bold-face are significant at 90 %. 
 
 

 Among the land-use variables, the residential share of land at origin (or 

household location) and regional accessibility are significantly positive with work trips. 

The positive impact of residential share on trip rates can be construed from the status 

quo of land-use in the D-FW area where low-density and single-family residential 

development has been dominant due to the high increase in the rate of population, and 

major employment centers have been contiguous to major highways and arterials. 
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Automobile-based regional accessibility, computed in gravity formula, evaluates the 

extent of opportunities (normally referred as to jobs) to a specific place from other 

locations given travel time. Such accessibility can be seen from the possibility of 

expected income at the expense of travel time to get to jobs. In this context, while work 

trips linked to higher expected earnings are positively associated with regional 

accessibility, non-work trips mainly oriented to consumption or non-work activities are 

decreased by an increase in such accessibility. That is to say, regional accessibility 

induces people to drive more to workplaces, while reducing trips for people driving to 

non-work activities as shown in Table 5.7. 

 

Directed Graphs on Trip Frequency 

 To search the statistical causal models of household trip frequency in TETRAD II, 

the lower triangular correlation matrix was made up of twelve variables (see Appendix 

A5): household trip frequency (FREQ), generalized cost per trip (G_COST), household 

income (INC), household size (HHSZ), the number of workers in a household (WRKRS), 

the number of vehicles owned by a household (VEHNUM); for trip origins, population 

density (POPDEN), job density (JOBDEN), residential share of land (%RESID), 

commercial share of land (%COMM),  regional accessibility (ACCESS), and entropy 

index (ENTROPY). Figure 5.5 and 5.6 show the directed graphs of the models for HBW 

and HBO trips, respectively, at the 1% significance level. A restriction imposed on the 

construction of directed graphs is that socioeconomic variables are the only causes of the 

generalized cost and land-use, but the opposite case never happens. The directed edges 
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(i.e., the connection between probability and causality) were not found between 

household characteristics. Author’s judgment was made to direct the undirected edges 

(as blue-colored solid edges) for both work and non-work trips like mode choice models.  

 Household trip frequency for HBW trips in Figure 5.5 is explained by the 

immediate causal factors such as the generalized cost (G_COST: −), the number of 

workers in a household (WRKRS: +), residential share (%RESID: +), and regional 

accessibility (ACCESS: +). This directed graph results in a collider (%COMM) that 

absorbs causal information running from parents but never opens up to its child. Also 

this model includes the bidirected edges between population density and residential 

share and between commercial share and residential share, suggested by the existence of 

latent variables like zoning practices and regulations. One interesting finding is that 

population density and household income are causally connected to the trip frequency 

running through the generalized cost as the same causal paths were found in the directed 

graph on the mode choice for HBW trips. Another interesting finding is that land-use 

balance and job density are causally connected to trip frequency running through the 

residential share of land. From this causal path and the impact sign for trip frequency, it 

is inferred that the residential land-use oriented to low-density and single-family housing 

development in the D-FW area induces people to drive more. However, such a 

development pattern has the possibility of being affected by other causal factors such as 

land-use balance and job density.  

 The directed graph of household trip frequency for HBO trips indicates that the 

generalized cost (G_COST: −), the number of vehicles in a household (VEHNUM: +), 



105 

household income (INC: +), household size (HHSZ: +), and regional accessibility 

(ACCESS: −) are the immediate causal factors at the 1% significance level as shown in 

Figure 5.6. Two colliders (% RESID and %COMM) are identified due to absorbing 

causal information running from other variables. In addition, two variables, JOBDEN 

and ENTROPY, are colliders’ parents which are not causally connected to trip frequency 

because both colliders block causal flow. The finding is useful for constructing a 

statistical model with the fundamental pattern of causality.   A regression model from the 

directed graph of household trip frequency for HBO trips is suggested to include the 

remaining variables after excluding two colliders and their colliders’ parents. Also this 

model includes the bidirected edges in which the existence of latent variables is implied.  

 In Figure 5.6, the direction of causal flow to the generalized cost runs from 

population density, regional accessibility, and household size, and then the generalized 

cost opens up its path to trip frequency. These causal paths empirically support a 

hypothesis addressed in Chapter VI that land-use is a cause of price (travel time or 

generalized cost) which directly causes people to drive less.  That is to say, travel time or 

travel cost affects travel patterns through land-use variables. It is noteworthy that 

population density and regional accessibility in HBO trip sample have causal flows from 

only socioeconomic variables such as household income and vehicle number to 

POPDEN, and household size and household income to ACCESS.  

 



                       

                      

 
  Figure 5.5  Directed Graphs on Household Trip Frequency Model for HBW Trips at 1% Significance 
   Level (Dotted Edges with Arrows Indicate a Need for a Common Cause between Two Variables). 
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  Figure 5.6  Directed Graphs on Household Trip Frequency Model for HBO Trips at 1% Significance 
   Level (Dotted Edges with Arrows Indicates a Need for a Common Cause between Two Variables). 
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Household VMT Models 

 The VMT models were estimated by regressing the generalized cost, 

socioeconomic characteristics, and land-use variables on the vehicle miles traveled 

(VMT) in both trip samples of home-based work (HBW) and home-based non-work 

(HBO). The dependent variable was transformed to the logarithm of VMT to better fit 

the model and an ordinary least squares method was used for regression. Table 5.8 

presents the results of household VMT models estimated for HBW trips and HBO trips. 

The results of extended models were compared to the base models by testing the 

influence of set of land-use variables. When generalized cost and socioeconomic 

variables (household income, household size, number of workers, and number of 

vehicles) are controlled, 54.9% of the variation in VMT is explained for work trips and 

50.6% for non-work trips, respectively. The explained variations of the models appear 

high, compared to most of the previous studies in which mode attributes (travel time and 

travel cost) have never been considered. A great deal of variation is explained by the 

addition of generalized cost, even if the results of the controlled model were not 

presented. The control variables are consistent with the expected signs.  

 For the extended model of non-work trips, population density, and regional 

accessibility are significant predictors of the household VMT. For work trips, the 

residential share of land adds a marginal contribution to the prediction of VMT at the 1% 

significance level. That is to say, household VMT is positively influenced by an increase 

in residential land-use share which is mainly characterized by the residential-dominant 

development oriented to low-density-single-family housing pattern in the D-FW 
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metropolitan area, appearing as isolated or segregated land-use. It is inferred from this 

finding that the low-density-single-family residential development pattern, easily 

observed in the D-FW area, is apparently not conductive to reducing automobile driving. 

In fact, dense population areas normally come with mixed land-use (i.e., vertically 

mixed with residences, retail stores, and offices) and are built for less automobile driving. 

It is also noted that regional accessibility is positively associated with work trips but 

negatively associated with non-work trips in explaining household VMT at the 1% 

significance level. From these findings, the land-use condition for less driving in the D-

FW area is associated with an increase in population density, the reduction of residential 

land-use share (or an increase in land-use diversity), and an increase in accessibility. 

 
 

Table 5.8 Household total VMT Models for Home-Based Trips 

 Work Trips Non-Work Trips 
 Base Model Extended Model Base Model Extended Model 
Variables Coef. t Coef. t Coef. T Coef. T 
Constant 4.7726 68.32 1.5489 2.85 2.9961 53.89 4.4165 9.76 
Gen. cost (US$ /mile) -1.3399 -45.92 -1.3362 -45.90 -7.0872 -44.94 -7.0403 -44.61 
HH Income in 1000$ 0.0029 6.24 0.0025 5.29 0.0008 1.45 0.0009 1.55 
Household size -0.0284 -2.17 -0.0257 -1.98 -0.0356 -2.15 -0.0432 -2.60 
Number of workers  0.1684 6.98 0.1658 6.69 -0.0244 -0.93 0.0030 0.11 
Number of vehicles 0.0677 3.66 0.0708 3.84 0.1148 5.03 0.1031 4.47 
Pop. density at origin   -0.0072 -2.51   -0.0089 -2.17 
Job density at origin   -0.0002 -0.45   0.0002 0.47 
% Resid. use at origin    0.0044 4.82   -0.0005 -0.41 
% Comm. use at origin   0.0001 0.07   -0.0022 -1.15 
Regional accessibility   3.0315 5.58   -1.4408 -3.12 
Entropy index   0.0835 0.91   0.1123 0.89 
Number of Obs. 1,955 1,955 2,072 2,072 
Sum of squared error 871.8 841.9 1,625.5 1,608.1 

2R , 2R  0.5491,   0.5480 0.5646,   0.5621 0.5064,   0.5052 0.5115,   0.5190 

Model improvement 
test 

F = 11.10,   m = 6,   dfE = 1,943 
Prob. < 0.001 

F = 3.67,   m = 6,   dfE = 2,060 
Prob. < 0.01 

a.  t-values in bold-face are significant at 95% level. 

b. ( ) /
/

B E

E E

SSE SSE m
F

SSE df
−= , where m = ( )E Bdf df−  and follows the F distribution with m and dfE.  
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  The magnitude impact of land-use variables on household VMT is trivially small 

by the land-use elasticities of household VMT computed from the estimation results: a 

10% increase in population density reduces household VMT by only 0.016% for work 

trips and 0.02% for non-work trips, and a 10% decrease in residential share (or increase 

in land-use diversity) resulting from the increase in land-use mix (commercial, industrial, 

and public purpose) leads to a 1% decrease in household VMT for work trips. A 10% 

increase in regional accessibility, on the other hand, induces one to drive more by 1% for 

work trips, but reduces household VMT by 0.5% for non-work trips.  

 
  
Directed Graphs on Household VMT 

 Twelve variables were used for creating the lower triangular correlation matrices 

(Appendix A6). The only difference from the household trip frequency is the use of a 

log-transformed VMT variable instead of trip frequency. Other variables are the same: 

household vehicle miles traveled (VMT), generalized cost per mile in a household 

(G_COST), household income (INC), household size (HHSZ), the number of workers in 

a household (WRKRS), the number of vehicles owned by a household (VEHNUM), for 

trip origins, population density (POPDEN), job density (JOBDEN), residential share of 

land (%RESID), commercial share of land (%COMM), regional accessibility (ACCESS), 

and the entropy index (ENTROPY). The directed graphs in Figure 5.7 and 5.8 were 

constructed for work trips and non-work trips respectively at the 1% significance level. 

 The same restriction imposed on trip frequency models was applied to the 

construction of directed acyclic graphs on household VMT: socioeconomic variables 
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cause land-use and travel cost, but the opposite never occurs.  Also author’s judgment 

was made to direct the undirected edges (as blue-colored solid edges) among household 

characteristics which did not show the connection between probability and causality: 

household size as source is a direct common cause to increase the number of workers, 

vehicle ownership, and household income, the number of workers in household is a 

direct common cause of number of vehicles owned by household, and more household 

income, and the vehicle ownership is a cause of more household income. 

   According to Figure 5.7, household VMT in work trips is affected by direct 

causes such as the generalized cost (G_COST: −), the number of vehicles in a household 

(VEHNUM: +), household income (INC: +), household size (HHSZ: −), and regional 

accessibility (ACCESS: +). However, careful interpretation should be made for the 

number of workers in household (WRKRS). The variable in Table 5.8 is a significant 

coefficient when household characteristics are included in the VMT model of home-

based work (HBW) trips, while the number of workers (WRKRS) is not the direct cause 

of household VMT. From such a gap, it is thought that a latent variable may exist 

between the numbers of workers and household VMT in work trips. Workers may be 

affected differently by the cost of automobile commuting trip or type of job (part- or full 

time). The identification of latent variable suggests the existence of another path. The 

directed graph identifies two colliders (%RESID and %COMM) which do not open up 

each path to child in question. Both colliders prevent the transmission of causal effects 

along each path from their parents (JOBDEN, ENTROPY) and then do not get to be 

causally connected to the VMT. That is to say, changes in either job density or entropy 
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index may provoke changes in either residential share or commercial share, but will not 

provoke changes in household VMT. Thus, only population density among land-use 

variables is found as indirectly connected to household VMT in work trips. 

 Similar Findings were evidenced by the results of the directed graph for non-

work trips (Figure 5.8). Compared to work trips, population density (POPDEN: −) was 

added to the direct causal factors of the VMT model, while household income (INC: +) 

and household size (HHSZ: −) were left out of the VMT model for non-work trips. Three 

colliders (%RESID, % COMM, ENTROPY) and a collider-parent (JOBDEN) were found 

in relation to directed path to VMT. These four variables are causally independent of 

household VMT in non-work trips. This means that changes in job density may provoke 

changes in residential share, but will not provoke any change in VMT because of the 

prevention of information transmission on three colliders. This insightful explanation 

supports the statistical insignificance of land-use variables resulting from the regression 

analysis of the VMT model for non-work trips, as presented in Table 5.8. Now, the entire 

set of land-use variables can be grouped into a causally-independent set (%RESID, % 

COMM, ENTROPY, JOBDEN)  and directed-path group (POPDEN, ACCESS).    

 Bidirected edges (dashed line with arrows) between land-use variables suggest 

the existence of an unmeasured common cause (or latent variable). However, it is 

difficult to justify latent variable(s), although zoning practices or regulations were earlier 

suggested among land-use variables. The generalized cost affects household VMT and is 

also affected by accessibility, supporting the hypothesis addressed earlier. One thing that 

should be carefully addressed from this causal model is the number of vehicles owned 
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by a household (VEHNUM), as automobile ownership is a direct cause to VMT as well 

as an indirect cause to population density, accessibility, and the generalized cost.  

 

 

                 

        
 
       Figure 5.7  Directed Graphs on Household Total VMT Model for Work Trips at 
       1% Significance Level (Dotted Edges with Arrows Indicate a Need for a Common 
       Cause between Two Variables). 
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       Figure 5.8  Directed Graphs on Household Total VMT Model for Non-Work 
       Trips at 1% Significance Level (Dotted Edges with Arrow Indicate a Need for  
       a Common Cause between Two Variables). 
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Logit Captivity Results 

 A main emphasis in investigating the potential captive factors of the logit 

captivity model for only home-based work (HBW) trips was placed on land-use 

variables, although some socio-demographic variables may be better candidates for 

captive factors. Initially, the same model specifications as the models in Table 5.3 and 

Table 5.4 were made for a comparison of estimation results. In addition, the models 

without transit time were specified in consideration of the underestimated coefficient for 

transit time. However, trip samples with other purposes (HBO and NHB) did not give 

convergent estimates under the given number of iterations for estimation. HBW trip 

sample resulted in convergent estimates for the model in which transit time was left out. 

Therefore, only the result of HBW trips was reported from the estimation of logit 

captivity model.    

 As shown in Table 5.9, two models of mode captivity were estimated and 

compared in an attempt to identify land-use factors which played an important role in 

choice set determination. Captivity model I has a notion that some trip-maker’s choices 

are based on singleton choice sets in which alternatives are not considered, while 

captivity model II is further parameterized by including variables that could explain 

singleton choice sets. That is to say, the first model captures captivity behavior 

distinguished from choice behavior as each constant term for each singleton choice 

mode in transportation markets, while the second model assumes that the probability of a 

singleton choice set for driving-alone or shared-ride depends on the land-use variables 

which indicate residential land-use dominance.    
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Table 5.9 The Estimation Results of Logit Captivity Models for HBW Trips 

 Captivity Model I Captivity Model II 
Variables Coefficients t-values Coefficients t-values 
Constant (W/B) 1.3623 5.97 2.2710 4.45 
Constant (D) 30.4460 2.97 31.9974 2.16 
Constant (S) 27.6244 2.67 29.1550 1.96 
Age (W/B, T) 0.0198 5.37 -0.0048 -1.54 
Sex (D, S) 0.0672 1.44 -0.1275 -2.05 
HH Income (D,S) 0.0322 2.59 0.0220 1.85 
HH Size (T,S) 0.1348 0.60 -0.0215 -0.41 
#. of Workers (D)  -0.0746 -5.21 -0.1135 -4.75 
Vehicles in HH (D,S) 1.1300 4.57 0.4328 5.08 
MF Housing (W/B,T) 0.4741 0.11 -0.3620 -0.11 
Walk time (W/B) -0.0347 -7.10 -0.0497 -7.13 
Auto time (D, S) -0.0140 -1.48 0.0377 0.99 
Population density at O (W/B,T)  -0.0304 -1.20 -0.0050 -1.31 
Population density at D (D, S) 0.0213 1.31 0.0210 1.42 
Job density at O (W/B, T) 0.0019 4.20 0.0027 3.70 
Job density at D (D, S) -0.0028 -4.17 -0.0049 -3.45 
Resid. share of land at O (W/B,T) 0.0010 0.03 0.0028 0.04 
Resid. share of land at D (D,S) 0.0030 0.18 -0.0023 -0.25 
Comm. share of land at O (W/B, T) 0.0202 3.49 0.0057 2.51 
Comm. share of land at D (D,S) -0.0066 -2.40 0.0057 2.04 
Regional accessibility at D (D,S) -0.2965 -2.81 -0.3200 -2.13 
Entropy index at D (D,S) -0.2417 -0.48 0.1575 0.56 
Captivity Variables     
Walk – constant -23.7187 -7.27 -6.8558 -4.81 
Transit – constant -19.6046 -3.66 -23.5230 -1.61 
Driving alone – constant -7.4525 -3.22 -2.8399 -2.12 
Residential-use dominance at O (D)   0.3988 2.08 
Residential-use dominance at D (D)   -0.0280 -1.00 
Shared ride – constant -5.5674 -1.82 -3.2897 -1.49 
Residential-use dominance at O (S)   0.3050 1.65 
Residential-use dominance at D (S)   0.0085 1.19 
Number of observations 3,354 3,354 
LLF(�� at zero 
LLF(�� at converge 

-6,476.7 
-2,088.6 

-6,476.7 
2,084.4 

Goodness-of-fit : 2ρ , 2ρ  0.6775,  0.6736 0.6782,   0.6735 

 
Actual choice share 
% correctly predicted 

W/B    T       D        S      Total 
1.2% 5.9% 83.8% 9.1% 100% 
0.2% 2.7% 83.4% 0.0% 86.3% 

W/B    T       D        S     Total 
1.2% 5.9% 83.8% 9.1% 100% 
0.2% 2.7% 83.4% 0.0% 86.3% 

a. W/B = walk/bike, T = bus, D = driving-alone, and S = shared-ride 
b. Parenthesis in variable column indicates the mode(s) to which the variable is specified.   
c. t-values in bold-face are significant at 95% level, and italic bold  face at 90 % level respectively. 
 

 A comparison of the estimated coefficients in Table 5.9 reveals a general decline 

in the effects of socioeconomic variables on mode choice in contrast to the MNL model 
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in Table 5.3. Household income and the number of vehicles owned by a household have 

positive effects on the choice of automobiles. The effect of land-use variables on mode 

choice is similar to that of MNL, although the magnitude of the effect decreases in the 

logit captivity models. The constant terms in both models are mostly significant, and the 

constants of captivity model I have larger magnitudes than those of the second model. A 

meaningful result was obtained in captivity model II when explanatory variables and 

residential land-use dominance indicators at both trip ends were specific to both modes 

(driving-alone and shared-ride). Residential land-use dominance at trip origins was 

found to increase the captivity probabilities of driving-alone and shared-ride at the 10% 

significance level. The alternative hypothesis that the observed captive behavior is 

generated by this model is accepted.  

 The choice set probabilities (or captivity odds) were calculated for each mode 

separately and for the full set of modes by taking the exponentials of the predicted values 

at the mean values of captive variables, given in Table 5.10. These probabilities lead to 

important implications regarding mode captivity and trip-maker mode choice sets. First, 

relative to a standard MNL model for HBW trips (see Table 5.3), the captivity model 

results are consistent with a notion that some trip-makers’ choices of automobile, 

although the probabilities are extremely small, are based on singleton choice sets. There 

is a 99.56% probability that trip-makers are free to choose a mode from all considered 

modes and therefore a 0.44% probability that trip-makers face a singleton choice set. 

The finding of singleton choice sets (driving-alone and shared-ride) has an impact on 

trip-maker sensitivity to changes in the explanatory (residential land-use dominance) 
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variables.  

 Second, the captivity probability that trip-makers face when presented with a 

non-singleton set of choices was decreased when residential land-use dominance 

variables were included. For example, the non-singleton choice probability decreased 

from 99.56% to 90.73%, and the probabilities of trip-makers captive to automobiles 

increased from 0.06% to 5.62% for driving-alone and from 0.38% to 3.55% for a shared-

ride. The change in captivity probabilities depends on the model parameterized by 

including variables that could explain singleton choice sets. In this study, residential 

land-use dominance was identified as a relevant land-use factor and was found to 

increase the probability of using automobiles. The inclusion of captive variables in a 

mode choice model could better explain captivity behavior as well as predict choice 

behavior. 

 

Table 5.10 Choice Set Probabilities 

Probabilities for Choice Set 
Captivity Model  I Captivity Model  II 

Walk/Bike 0.0000 0.0010 
Bus 0.0000 0.0000 
Driving-alone 0.0006 0.0562 
Shared-ride 0.0038 0.0355 

 
Singleton 
choice set 

 Sub-total 0.0044 0.0927 
Non-singleton choice set 0.9956 0.9073 

 
 

 Although the captive odds to automobile (driving-alone and shared-ride), 

targeted for a particular land-use variable, are small and viewed as tentative and arbitrary, 

it is worthy to note that some trip-makers are forced to make a captive choice of 

automobile. Five percent of automobile-trip makers are in a segmented travel market 
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with no alternative (4.7% for driving-alone and 0.3% for shared-ride).25 This finding 

points to the need for a better understanding of how land-use pattern constrains mode 

choice in transportation market. This may be useful for the planning of residential 

development reducing automobile dependence. However, despite the scope advantage 

for the purpose of this analysis, the logit captivity model generally includes high cost in 

terms of estimation and difficulty in identifying relevant factors to be parameterized into 

the model.  

25 Actual choice shares in work-trips are 83.8% for driving-alone and 9.1% for shared-ride, and captive 
odds attributable to residential land-use dominance are 5.62% for driving-alone and 3.55% for shared-ride. 
Thus, the captive factor segments mode choice market into 4.7% for driving-alone and .0.3% for shared-
ride.   
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CHAPTER VI 

CONCLUSION AND DISCUSSION 

  

 This chapter concludes by summarizing the important findings from this study 

and by discussing the land-use policy implications of the major findings. Then, the 

limitations and the future extensions of research are addressed. 

 

Conclusion 

 There has been a vital and pressing debate over the role of land-use and its 

relevant policies among academic scholars as well as planning professionals in an effort 

to reduce the problems associated with automobile dependence over recent decades. 

Much research has shed light on the relationships between transportation and land-use in 

parallel with the advances in using diary data, measuring land-use thanks to GIS 

techniques, specifying empirical models and applying analytical methods. Regardless of 

these advances in research exploring the predictability of effects of land-use on travel 

behavior, most empirical models linking land-use to transportation still maintain 

theoretical weakness and ignore causality issue. Moreover, the mixed and complex 

results in previous studies appear somewhat associative rather than causal in 

interpretation. To fill such a gap, this study investigates the causal effects of land-use on 

travel patterns using the datasets of the 1996 D-FW household survey, level-of-service, 

and land-use. 

 Land-use variables assessed at the TSZ level may have the limitation of fully 
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reflecting the spatial distribution of current land-use associated with a variety of human 

needs and activities over the D-FW area. Nonetheless, land-use variables measured at the 

TSZ level were used for the exploration of their causal effects on travel behavior. The 

land-use status quo analysis of the D-FW area preceded the analysis of empirical models. 

Then, conventional regression methods were used for the estimation of travel demand 

models, and a causal graphical analysis was performed to study the causal relationship 

among the variables. In addition, logit captivity model was utilized for exploring captive 

contribution to mode choice attributable to land-use.   

 

Empirical Findings 

 The status quo analysis of D-FW area land-use indicates that single-family 

residential use has dominated urban development patterns, accounting for nearly three 

times the land for commercial, industrial, and institutional uses combined. Such 

development patterns appear to be low-density-oriented and affected by zoning 

regulations of municipalities for land-use planning. Average land-use balance (entropy 

index) also appears relatively low with 0.38 and single-family-residential land-use 

accounts for 22 percent of total TSZs. Heterogeneous land-use (with entropy index > 

0.6) is mainly observed along major arterials. These observations by status quo analysis 

address the urban form of the D-FW area as low-density, single-family-residential-use 

oriented, isolated from other land-uses, and heavily reliant upon automobile access to 

out-of-home activities.  
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The urban form addressed in the status quo analysis is examined by the empirical 

models of transportation–land-use linkage. The impact of land-use on travel behavior 

(individual mode choice, household trip frequency, and household VMT) is summarized 

for work trips and non-work trips. 

 What land-use measures influence mode choice in the D-FW area in both work 

and non-work travel? The significant land-use factors in the conventional regression 

models are compared to the causal factors found in causal graphical models. The major 

findings of mode choice from multinomial logit and directed acyclic graphs are 

summarized below. 

1)  Multinomial choice results suggest that some measures of land-use have a small 

but statistically significant effect on travel demand. Job densities and regional 

accessibility are significant factors in reducing the choice of automobiles. The 

commercial shares of land at both trip ends are also significant factors in 

reducing automobile choice in HBW trips. However, their effects on travel 

demand are small, compared to that of travel time. For example, a 10% increase 

in regional accessibility lowers the chance that a trip maker drives to work, to 

non-work places, and from non-home to other places by 2.3%, 0.4%, and 1.5%, 

respectively.  

2) Direct causes on directed graphs from HBW, HBO, and NHB trips are very 

consistent with the estimated coefficients of the significance level in binary logit 

models. The indirect causes are eventually connected to automobile choice 

through a complex connection with other variables on the way, however, 



123 

colliders are not connected to automobile choice. Such a causal structure 

contributes to articulating the relationships among variables from the data.   

3)  Automobile choice for home-based work (HBW) trips is explained by the  direct 

 causes of the directed acyclic graph: household income, the number of vehicles 

 owned by a household, job densities at both trip ends, the commercial shares of 

 land-use at both trips ends, and regional accessibility. Travel time and residential 

 shares at trip ends absorb causal flow running from their parent variables but 

 never transmit to the child variables, and population densities at both ends are 

 parent variables to open the path to travel time only. Thus, travel time, residential 

 shares, and population densities are not causally connected to the decision of 

 choosing an automobile.  

4) The directed acyclic graph of mode choice for HBO trips relates direct 

 causation to socioeconomic characteristics (income, and number of vehicles 

 owned by a household), travel time, and some land-use variables (population 

 density at destination, job densities at both trip ends, regional accessibility).  

 Population density, job density, and residential share, which measure the 

 characteristics of trip destination, are indirectly connected to mode choice, while 

 residential and commercial shares at origins are not causally connected to mode 

 choice. In addition, travel time is explained by a function of land-use and 

 household size. 

5)  Job densities and commercial shares of land-use at both trip ends, travel time, 

household income, and number of vehicles in a household are direct causes of 
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automobile choice in NHB trips. The logit results for the commercial shares of   

land-use are not significant, while the causal graphical analysis results in the 

direct causes of automobile choice, as expected theoretically. Population 

densities at both trip ends, residential share at destinations, and regional 

accessibility are indirect causes of automobile choice in NHB trips. 

 What land-use factors reduce household automobile-trip generation in work trips 

and non-work trips? How are the generalized cost, socioeconomic characteristics, and 

land-use variables are causally connected to household trip rates? The following 

summarizes major findings from both the ordered logit model and directed acyclic 

graphs of household behavior of trip frequency. 

1)  Regional accessibility influences household trip frequency for both work and non-

work automobile trips, and an increase in residential share or commercial share 

of land-use induces people to make more HBW trips by automobiles. While work 

trips are likely to increase when automobile-based accessibility to jobs increases, 

non-work trips decrease due to the relative decrease in accessibility. As the 

residential or commercial share of total land-use at TSZ level gets higher, work 

trips made by automobile increase. The commercial share of land-use shows a 

different result from what is expected in HBW trips.  

2)  Household trip frequency for HBW trips is explained by causal factors like the 

 generalized cost, the number of workers in a household, the residential share, 

 and regional accessibility. Commercial share is not a direct cause leading to 

 auto-dependence in work trips by a causal graphic model. D-separation predicts 
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 that there is no dependence between commercial share and trip frequency, when 

 the collider set is removed due to a lack of a causal connection to trip frequency. 

 Population density, job density, and land-use balance are indirect causal factors.  

3) Regional accessibility is added to the direct causes of HBO trip frequency and 

 negatively contributes to trip frequency, but other land-use factors (residential 

 share, commercial share, job density, and land-use balance) are not causally 

 connected to trip frequency. The direction of causal flow runs from household 

 size, regional accessibility, and population density to the generalized cost. 

 Residential share and commercial share serve as colliders to absorb information 

 running from their parents. Job density and entropy are running to each collider.    

 How do land-use variables contribute to reducing household vehicle miles 

traveled (VMT)? How causally are the variables connected to less driving in work trips 

and non-work? Major findings are summarized from the results of regression and 

directed acyclic graphs. 

1) According to the regression results, population density negatively affects 

 household vehicle miles traveled (VMT), but the impact of regional accessibility 

 on VMT is positive with work trips and negative with non-work trips. Where 

 the spatial distribution of population is more compact, households are likely to 

 drive less. As regional accessibility is improved, households are more likely to 

 drive further to work but less likely to drive shorter distances for non-work trips. 

 Surprisingly, the residential share of land is positively associated with VMT in 

 HBW trips, and likely to contribute to urban sprawl in the D-FW area. However, 
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 the quantitative effect of these variables on household VMT is very small.  

2)  Regional accessibility is causally connected to household VMT for work and non-

work trips, and population density causes a decrease in VMT for non-work trips. 

Other land-use factors (residential share, commercial share, job density, and 

land-use balance) are not causally connected to VMT. The direction of causality 

for the generalized cost runs from only land-use variables (population density 

and accessibility) to household VMT for work trips, while it runs from both 

regional accessibility and the number of vehicles owned by household to 

household VMT for non-work trips. 

 If some trip-makers respond to mode choice in a captive manner, how such a 

choice behavior attributable to land-use can be captured to better predict choice 

behavior?  

1)  Land-use contributes to captive-driving choices for home-based work trips. 

Residential land-use dominance (or single-use for residence) at trip origins 

explains somewhat captivity behavior in the choice of automobile choice as well 

as better predicts choice behavior.  

2) Lack of land-use mix at trip origins increases the probabilities of trip-makers 

being captive to the automobile from 0.06% to 5.62% for driving-alone and from 

0.38% to 3.55% for shared-ride.   

 The empirical results of regression models suggest that some land-use measures 

have a small but statistically significant effect on travel demand in the Dallas-Fort Worth 

metropolitan area that is heavily dependent on automobiles. The direct causes derived 
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from the causal graphical models are mostly consistent with the significant results of 

regression models, but there are a few discrepancies. For work trips, increases in 

regional accessibility, job density, and share of commercial land-use reduce the use of 

automobiles. Higher regional accessibility, however, causes households to generate 

automobile trips and thus leads to the increase in vehicle miles of travel (VMT). For 

non-work trips, population density, job density, and regional accessibility are direct 

causes of the choice of automobile, while only regional accessibility is causally 

connected to degenerating automobile trips and VMT. In brief, density measures like 

population density, job density, and regional accessibility are the causal factors to reduce 

automobile dependence particularly in non-work trips, but the compositional (residential 

or commercial) share of land-use are least likely to be factors causally connected to 

automobile travel patterns. Land-use balance (entropy index) is not causally connected 

to travel behavior either. Logit captivity model results indicate that land-use contributes 

to captive-driving choices for home-based work trips.  

 

Policy Implications 

 Communities across the most metropolitan areas of the United States are now 

initiating various land-use strategies to reduce the negative impacts of automobile 

dependence and to attain “smart” urban growth. Currently, enhancing travel mode 

options and preserving air quality are among the top priority in those initiatives, and 

accordingly land-use policies are getting greatly emphasized to evaluate transportation 

alternatives. Then, what implications can be drawn from this study for planning 



128 

initiatives in the Dallas-Fort Worth metropolitan area? The discussion will focus on 

using land-use approach to urban transportation problems from the standpoint of land-

use densification. 

 One needs first to think about non-automobile travel choices (i.e., public transit, 

and pedestrian facilities). According to the trip distribution of data used for this study, 

the actual mode choice of automobile accounts for 93% in HBW trips and for 95% in 

HBO trips, while non-automobile choice just accounts for 7% (HBW) and for 5% 

(HBO). Walking and biking are perceived as the most sustainable modes in terms of 

resource consumption, but currently there is little indication that low-density-and-single-

family residential land-use in the D-FW area has much to do with relatively higher share 

of walking and biking. The level of bus transit accessibility is increased in the many 

urban centers of D-FW area, but there is no indication that bus ridership is increasing 

either (although the DART ridership is slightly increased over years). These facts are 

likely to make an appeal for the increase of density enough for public transit through 

changes in urban development pattern over long term. This approach will widen travel 

choices to eventually reduce the negative impacts of automobile dependence as well as 

to improve opportunities for transportation minorities who oftentimes have limited 

options for travel. As suggested by logit captivity results, an automobile choice with no 

alternative attributable to land-use may impose more burdens on the transportation 

expenditure and even limit the opportunities of social activities and participation to 

transportation minorities 

 Finding that diversity measures such as compositional shares of land-use and 
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entropy index are not causes of reducing automobile dependence dissents from with the 

current thought of mixed-use impact found in many empirical studies. Such a 

discrepancy appears to have much to do with the status quo of D-FW area land-use 

oriented to low-density-and-single-use for residential development. Residential land-use 

has extremely high share oriented to single-use development over overall area and the 

mixed-use development are not zoned encouragingly by many local governments. 

Moreover, lots of single-use areas are connected to automobile access only in the region.  

 Density measures may result in recommendations for efforts to reduce 

automobile dependence. Strategies for increasing density can include the infill mixed-

use development in single-use area and infill non-automobile options like rail transport 

or bike routes. Eventually these strategies should focus on compositional development 

through infill development, mixed-use development, and change of residential 

development’s paradigm. However, efforts to increase density probably ought to be 

conducted with the cooperation of local governments. A large gap can exist between 

empirical results and policies to modify land-use at the municipality level. Local 

governments mostly act to limit areas of increased density or mixed-use to protect 

established neighborhoods through zoning ordinances or regulations. For example, 

zoning regulations such as lot coverage, floor-area ratio, number of unrelated persons 

living together, minimum parking standards, engineering or architectural building 

requirements, and so on, can be used to limit density. In the role of zoning to shape 

metropolitan form, Levine (2006) suggests a rationale for land-use policy reform, 

indicating that municipal regulations may lead to low-density and automobile-oriented 



130 

development.  

 This study suggests that land-use intensification is effectual in reducing the 

overwhelming use of automobile in the D-FW. Practical planning and development 

strategies for land intensification include increasing employment and housing density, 

increasing activity-mix, clustering jobs, commercial (retail) activities in closer proximity 

to residence, although these strategies may differ from regional scales: local and regional. 

As discussed so far, these strategies should be a part of the solutions for urban 

transportation problems in the regional area.  

   

Limitations and Future Extensions 

 This study is methodologically new in drawing causal relationships using cross-

sectional data, and is reliable in incorporating the entire set of independent variables into 

the empirical models. However, there is a data deficiency in using the land-use variables 

with a variety of dimensions. In particular, lack of design measures (i.e., street 

connectivity, and street types) at TSZ level may limit the evaluation of land-use impact 

on travel behavior. 

 Another potential problem may exist in the geographical unit of analysis, the 

traffic study zone (TSZ). Recently, land-use variables at the TSZ level have been 

criticized for a deficiency of reliability in representing land-use features at trip points. 

Most trip points are located along or on streets, while land-use variables normally 

represent the features of areas encompassing street boundary as an average or total 

values. In reality, land-use does not explain the land-use features centering on trip points, 
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and may lead to a bias in spatial distribution. Seemingly looking better, spatial features 

are captured by the grid-cutting or spatially encompassed area within 1/4 mile.     

 The primary purpose of this study is to enhance the understanding of the causal 

influence of land-use (or urban form) variables on travel behavior. Thanks to causal 

graphical analysis, variable interactions are causally interpreted. Difficulty remains, 

however, in finding latent variables (represented as the bidirected edges) between land-

use variables, and including them in the empirical models. Much remains to be made in 

the latent variables. 

 The logit captivity model as choice set generation is more likely to explain the 

mode choice better for individual trip-makers who are faced with land-use constraints. 

Within empirical results, it is worth noting that the captivity of users of automobiles is 

attributable to land-use constraints for a rationale of specific land-use policy. However, 

despite the benefit of having better results, this model has high cost in terms of 

estimation (converging problem) and difficulty in estimating the captive variables into 

the model.  
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A1. Stratified Sampling in 1996 Dallas-Fort Worth Household Activity Survey. 

 
Table A1-1. Stratified Sampling in 1996 D-FW Household Activity Survey, Source: 1996 
     Dallas-Fort Worth Household Travel Survey: Report on Survey Methods. 
 

Survey Households Level Response 
N % 

D-FW  
CMSA 

Difference  
(% point) 

County Collin 
Dallas 
Denton 
Ellis 
Johnson 
Kaufman 
Parker 
Rockwall 
Tarrant 
(Refused) 

     372 
  1,633 
     440 
       64 
     117 
       13 
       20 
       47 
  1,264 
       26 

    9.3% 
  40.9% 
  11.0% 
    1.6% 
    2.9% 
    0.3% 
    0.5% 
    1.2% 
  31.6% 
    0.7% 

      6.8% 
    49.8% 
      7.2% 
      1.8% 
      2.1% 
      0.3% 
      0.2% 
      0.6% 
    31.1% 
         - 

     2.5% 
    -8.9% 
     3.8% 
    -0.2% 
     0.8% 
     0.0% 
     0.3% 
     0.6% 
     0.5% 
 

Household 
size 

1 
2 
3 
4 
5 
6 
7+ 

  1,028 
  1,424 
     651 
     585 
     209 
       67 
       32 

  25.7% 
  35.6% 
  16.3% 
  14.6% 
    5.2% 
    1.7% 
    0.8% 

    25.1% 
    30.3% 
    17.6% 
    15.6% 
      7.0% 
      2.4% 
      1.7% 

     0.6% 
     5.3% 
   -1.3% 
   -1.0% 
   -1.8% 
   -0.7% 
   -0.9% 

Vehicles 
available 

0 
1 
2 
3 
4 
5+ 

     207 
  1,316 
  1,731 
     521 
     148 
       73 

    5.2% 
  32.9% 
  43.3% 
  13.0% 
    3.7% 
    1.8% 

      6.4% 
    35.0% 
    41.6% 
    12.8% 
      3.3% 
      1.0% 

   -1.2% 
   -2.1% 
     1.7% 
     0.2% 
     0.4% 
     0.8% 

Source: 1996 Dallas-Fort Worth Household Travel Survey: Report on Survey Methods, NCTCOG 
 

The distributions of surveyed households are compared to data from the 1990 U.S. 

Census for Dallas-Fort Worth Consolidated Metropolitan Statistical Area (CMSA).    

Differences in the survey dataset of 3% points or more are identified with boldface 

letters in Table A1-1. 
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A2. Travel Time Components in the Dallas-Fort Worth Regional Travel Model 

 Estimates of roadway travel times used in calculating the value of time (VOT) 

savings include a combination of uncongested “free” speed travel time, delay time, and 

intrazonal travel time. First two travel times are calculated through the traffic assignment 

volume-delay function from interzonal trips, whereas intrazonal travel times are obtained 

separately from interzonal trips. 

 For interzonal trips, travel times between zones are calculated and travel time 

within a zone is assumed as zero. However, this assumption does not reflect reality 

because any trips within the zone are necessarily accompanied by travel times. The time 

matrices used in this analysis include interzonal as well as intrazonal trips. 

 

Volume-Delay Function (Interzonal Travel Times) 

 Volume-delay function in the Dallas-Fort Worth Regional Travel Model 

(DFWRTM) similar in form to the BPR-type functions, in that link speed decreases as 

the (volume/capacity) ratio increases. The general form of NCTCOG’s volume-delay 

function is as follows. 

 Travel Times  = Free Flow Time + ( / )[ , ]v cMin eβα γ⋅    (1) 

where �, �, and � are delay function parameters (see NCTCOG 2005). According to 

NCTCOG’s volume-delay function, when volume/capacity ratio for roadway links is no 

more than 0.3, vehicles are driving in speed taking free flow time for either freeway or 

arterial. However, traffic volume tends to depend on the total cost of traveling through a 
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roadway link. Such a total cost of traveling can be calculated as each link’s generalized 

cost consisting of operating cost, toll cost, and travel time. After taking initial steps to 

create network file and to identify centroids in transCAD, the key steps to run trip 

assignment by time period of day are taken in the setting of four modal classes (DA, 

SRHOV, SRNoHOV, and Truck). Then total traffic volume for each time period is 

calculated and new link travel times are estimated as shown in equation (1). 

 

Intrazonal Travel Times 

 Intrazonal travel time estimates are obtained from the path-building process to 

calculate a more precise value for each zone. In NCTCOG’s travel model, a zone is 

divided into 13 concentric squares, and the average distance from the center of the zone 

to the perimeter of each square is determined for zones at distances greater than walking 

distance. For each distance, a cost-per-mile value is applied to convert the distance to 

travel time. The cost-per-mile values vary by time-of-day (AM, PM, OP) and 5 area 

types. 
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A3. Relationships among Travel Time, Auto Operating Cost, and Trip Length  

 A3-1. Correlation( ρ =  0.9714) between Travel Time and Auto Operating Cost  

Travel Time vs. Auto Operating Cost
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A3-2. Correlation( ρ =  0.9947) between Travel Time and Auto Operating Cost  

Auto Operating Cost vs. Trip Length
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A4. Correlation Matrices for Mode Choice Models�
�

A4-1. Correlation Matrix for HBW Trips (n = 4,672) 
 

        auto         tt            inc       hhsz     wrkrs   vehnum  opopd   dpopd    ojobd     djobd     oresid    dresid   ocomm  dcomm  access 

 1.00               
 0.02 1.00              
 0.24 0.06 1.00             
 0.04 -0.01 0.18 1.00            
 0.14 -0.01 0.29 0.48 1.00           
 0.29 0.05 0.40 0.36 0.50 1.00          

Corr(HBW)= 0.00 -0.15 -0.08 -0.09 -0.02 -0.11 1.00         
  -0.01 -0.10 -0.07 -0.05 -0.00 -0.08 -0.08 1.00        
 -0.26 -0.01 -0.05 -0.01 -0.03 -0.07 -0.13 0.06 1.00       
 -0.24 -0.01 -0.04 -0.01 -0.03 -0.06 0.05 -0.14 0.00 1.00      
 0.11 -0.06 0.06 0.02 0.07 0.07 0.49 -0.20 -0.25 0.04 1.00     
 0.09 -0.01 0.03 0.06 0.07 0.05 -0.21 -0.51 0.05 -0.25 -0.30 1.00    
 -0.21 -0.01 -0.03 -0.05 -0.05 -0.09 -0.20 0.13 0.42 -0.02 -0.56 0.17 1.00   
 -0.16 -0.02 -0.01 -0.06 -0.04 -0.07 0.14 -0.20 -0.03 0.40 0.15 -0.55 -0.06 1.00  
 -0.16 -0.13 -0.05 -0.11 -0.09 -0.17 0.17 0.14 0.04 0.14 0.02 -0.25 0.05 0.30 1.00 
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A4-2. Correlation Matrix for HBO Trips (n = 7,112) 
 

        auto         tt            inc       hhsz     wrkrs   vehnum  opopd   dpopd    ojobd     djobd     oresid    dresid   ocomm  dcomm  access 

 1.00               
 0.12 1.00              
 0.19 0.00 1.00             
 0.03 -0.09 0.20 1.00            
 0.07 -0.01 0.25 0.45 1.00           
 0.22 0.04 0.38 0.32 0.42 1.00          

Corr(HBO)= -0.12 -0.15 -0.14 -0.08 -0.04 -0.14 1.00         
  -0.09 -0.16 -0.12 -0.05 -0.03 -0.12 0.24 1.00        
 -0.04 0.01 -0.01 -0.01 -0.01 0.00 -0.05 0.28 1.00       
 -0.16 0.00 -0.04 -0.02 -0.02 -0.05 0.04 -0.09 0.04 1.00      
 -0.01 -0.06 0.05 0.08 0.01 0.04 0.35 -0.03 -0.18 -0.01 1.00     
 0.02 -0.03 0.06 0.07 0.02 0.03 -0.02 0.38 0.00 -0.22 -0.08 1.00    
 -0.02 -0.01 -0.06 -0.10 -0.03 -0.06 -0.08 0.09 0.20 0.03 -0.63 0.07 1.00   
 -0.05 -0.03 -0.06 -0.08 -0.03 -0.07 0.08 -0.11 0.04 0.26 0.06 -0.62 0.00 1.00  
 -0.11 -0.19 -0.02 -0.10 -0.07 -0.13 0.22 0.31 0.02 0.09 0.02 -0.09 0.04 0.17 1.00 
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A7. GAUSS Statistical Code for Multinomial Logit Captivity Model  
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