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ABSTRACT

Electrodeposition of Ultrathin Pd, Co and Bi Films on Well-defined Noble-metal

Electrodes: Studies by Ultrahigh Vacuum-Electrochemistry

(UHV-EC). (August 2006)

Jack Hess L. Baricuatro, B.S.; M.S., University of San Carlos

Chair of Advisory Committee: Dr. Manuel P. Soriaga

Three illustrative cases involving the electrodeposition of ultrathin metal

films of varying reactivities onto noble-metal substrates were investigated: (i) Pd

on Pt(111), a noble admetal on a noble-metal surface; (ii) Bi on Pd(111), a less

noble admetal on a noble-metal surface; and (iii) Co on polycrystalline Pd and

Pd(111), a reactive metal on a noble-metal surface. The interfacial

electrochemistry of these prototypical systems was characterized using a

combination of electrochemical methods (voltammetry and coulometry) and

ultrahigh vacuum electron spectroscopies (Auger electron spectroscopy, AES;

low energy electron diffraction, LEED; and X-ray photoelectron spectroscopy,

XPS).

Potential-controlled adsorption-desorption cycles of aqueous bromide

exerted surface smoothening effects on ultrathin Pd films with defect sites

(steps). This procedure, dubbed as electrochemical (EC) annealing, constituted a

nonthermal analogue to conventional annealing. EC-annealed ultrathin Pd films

exhibited long-range surface order and remained free of oxygen adspecies. Pd
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adatoms occupying step-sites were selectively dissolved and/or rearranged to

assume equilibrium positions in a well-ordered (1x1) film.

Electrodeposition of Co was found to be highly surface-structure-

sensitive. While virtually no Co electrodeposition transpired on a clean Pd(111)

surface, Co was voltammetrically deposited on (i) a Pd(111) electrode

roughened by oxidation-reduction cycles; and (ii) thermally annealed

polycrystalline Pd, which is a composite of the (111) and (100) facets.

Electrodeposition of Co was also observed to be kinetically hindered and slow

potential scan rates (0.1 mV/s) were required.

Well-defined ultrathin Bi films were potentiostatically electrodeposited

onto Pd(111); a Stranski-Krastanov growth mode was indicated. The

electrochemical reactivity of ultrathin Bi films was characterized using two

surface probes: aqueous iodide and D-glucose. (i) Exposure of the prepared Bi

adlayers (ΘBi
 ≥ 0.33) to aqueous iodide gave rise to (√3x√7) I-on-Bi superlattice.

The same superlattice was obtained if Bi was electrodeposited onto

Pd(111)(√3x√3)R30o-I.  (ii) With respect to electrooxidation of D-glucose on

Pd(111), the presence of Bi adlayers inhibited the by-product-induced “surface

poisoning” of Pd(111) but reduced its electrocatalytic efficiency.



v

DEDICATION

The completion of this research work is a personal crucible that fuses,

tempers and purifies both character and conviction. Anyone who has willfully

chosen to finish an academic endeavor like this can attest to the arduous nature

of the task. A wellspring of hope and caring attention from family and friends

can certainly cultivate a man to do more in order to be more. No words, no gifts,

no fiery oblations materially exist to honor fully the following people who have

greatly influenced my life:

Dr. Francisco G. Baricuatro, my dad, whom I lost too early before the start

of my academic career, would have been proud to see another “doctor” in the

family; my mom, Estrellita, for her unqualified love; my brother, Farley, for the

personal sacrifices only a loyal big brother can muster; and my sister, Lea, for

unselfishly giving me the luxurious New York taste of life;

Leonarda C. Mission, my yaya, who gave up her life in the service of my

family;

co-volunteers at the Saturday church service of St. Mary’s Catholic

Church, College Station, specifically Vernon and Elaine Newland, Karen

Thompson and Helen Meyer; you have become my spiritual strength and

compass in a distant land away from home;

and all my mentors who have engendered my passion for science and

love for words.

This work is, hence, an offering so that in all things God may be glorified.



vi

ACKNOWLEDGMENTS

The author is indebted to Dr. Manuel P. Soriaga who, in his capacity as

research advisor and mentor, has amply provided expert counsel and

intellectual support for this project. Much of the success of this work stems from

the creative freedom nurtured in a laboratory that thrives upon his wisdom,

compassion and edifying admonition.

Fruitful discussions with Dr. Paul S. Cremer, Dr. Gyula Vigh and Dr.

Michael B. Weimer are gratefully acknowledged.

Contributions from past and present members of the Electrochemical

Surface Science Laboratory have enriched the depth and scope of this project.

The author, during his early years at Texas A&M University, has benefited from

the mentorship rendered by a pool of talented research-group alumni: Dr. Yeon-

Geun Kim, Dr. Yeon Su Park and Dr. Xiaole Chen. Logistical and manual

assistance from Mohammad Akhtar Hossain, Juan Cruz and Ding Li has

facilitated the maintenance of the ultrahigh vacuum-electrochemistry chamber

used in this work. The author deeply appreciates the company of and cerebral

conversations with Jean Sanabria-Chinchilla and his wife Silvia Sanchez, in and

out of the laboratory.

Funding for this research was provided by The Welch Foundation and

the National Science Foundation.



vii

TABLE OF CONTENTS

     Page

ABSTRACT..................................................................................................................... iii

DEDICATION..................................................................................................................v

ACKNOWLEDGMENTS ............................................................................................. vi

TABLE OF CONTENTS............................................................................................... vii

LIST OF FIGURES ..........................................................................................................ix

LIST OF TABLES .......................................................................................................... xv

INTRODUCTION............................................................................................................1

Modifying the Interfacial Properties of Pd...........................................................2
Ultrathin Pd Films on Pt..........................................................................................4
Ultrathin Co Films on Pd ........................................................................................6
Ultrathin Bi Films on Pd..........................................................................................9
Objectives ................................................................................................................11

METHODOLOGY .........................................................................................................12

Ultrahigh Vacuum (UHV) Surface Analysis ......................................................12
Low Energy Electron Diffraction..................................................................13
X-ray Photoelectron Spectroscopy................................................................22
Auger Electron Spectroscopy ........................................................................24

Electrochemistry.....................................................................................................28
Voltammetry....................................................................................................30
Coulometry ......................................................................................................30

UHV-EC Instrumentation .....................................................................................31
Well-defined Working Electrodes ................................................................34

Reagents and Gases................................................................................................35

RESULTS AND DISCUSSION.....................................................................................36

Electrodeposition of Ultrathin Pd Films on Pt(111) ..........................................36
Interfacial Electrochemistry of Ultrathin Pd Films ....................................39
Electrochemical Behavior in Sulfuric Acid Electrolyte..............................42
Electrochemical Behavior in NaF Solution (pH  4) ....................................46
Electrochemical Behavior in NaBr-NaF Solution (pH  4)..........................49



viii

  Page

Br-Assisted Electrochemical Annealing.......................................................49
Interfacial Electrochemistry of Bromine Chemisorbed on Ultrathin
Pd Films............................................................................................................55

Electrodeposition of Ultrathin Co Films on Pd Surfaces..................................65
Search for the Ideal Supporting Electrolyte ................................................65
Potentiodynamic Electrodeposition of Co...................................................70
Potentiostatic Electrodeposition of Co.........................................................76
Electrochemical Behavior of Ultrathin Co Films in Alkaline Medium ...77
Electrochemical Behavior of Ultrathin Co Films in Aqueous Iodide ......83
Attempts at Electrodepositing Co on Pd(111) ............................................88

Electrodeposition of Ultrathin Bi Films on Pd(111) ..........................................98
Cyclic Voltammetry of Pd(111) in Sulfuric Acid ........................................98
Electrochemical Behavior of Pd(111) in Aqueous Bi3+ ...............................99
Spontaneous Deposition of Bi on Pd(111) .................................................104
Underpotential Deposition of Bi on Pd(111).............................................109
Electrodeposition Isotherm of Bi on Pd(111) ............................................113
Electrochemical Behavior of Ultrathin Bi Films on Pd(111) ...................118
Emersion and Electrochemical Stability ....................................................119
Influence of Halides on the Electrochemical Behavior of Ultrathin
Bi Films ...........................................................................................................126
Electrooxidation of D-glucose on Bi/Pd(111) in Alkaline Media ..........135

CONCLUSIONS ..........................................................................................................144

REFERENCES ..............................................................................................................147

APPENDIX ...................................................................................................................155

VITA ..............................................................................................................................211



ix

LIST OF FIGURES

       Page

Figure 1.  The “Universal Curve” of inelastic mean free path as a function
of electron energy.......................................................................................15

Figure 2.  Schematic diagram of the LEED apparatus. ..........................................16

Figure 3. A (1×1) LEED pattern for a clean and well-ordered Pd(111)
electrode surface as predicted by a Ewald sphere construction
for a beam energy of 52 eV. ......................................................................20

Figure 4.  LEED pattern of a clean, well-ordered Pd(111) electrode as a
function of beam energy: (a) 62 eV, (b) 52 eV, and (c) 42 eV ...............21

Figure 5.  Core-level excitation involved in X-ray photoelectron
spectroscopy ...............................................................................................23

Figure 6.  Electronic relaxation of a K-shell vacancy via (a) X-ray
photoemission and (b) Auger process ....................................................25

Figure 7.  Schematic diagram of the AES module ..................................................27

Figure 8. Auger spectrum of Pd in its differentiated and integrated modes.....29

Figure 9. The UHV-EC assembly composed of an antechamber for
electrochemical experiments, and a gate-valve-isolable surface
analysis chamber, which houses both LEED and AES.........................33

Figure 10.  Cu UPD peaks on Pt(111) with (a) submonolayer and (b) 1 ML
coverages of Pd. .........................................................................................38

Figure 11.  Linear sweep voltammograms of Iads-catalyzed anodic
dissolution of ultrathin Pd films deposited at various potentials. .....40

Figure 12.  Electrodeposition isotherm of Pd on Pt(111). ........................................41

Figure 13. Cyclic voltammogram of a clean, well-ordered Pt(111) in 0.1 M
H2SO4............................................................................................................43

Figure 14. Cyclic voltammograms of n-ML Pd on Pt(111) in 0.1 M H2SO4 .........45

Figure 15.  Cyclic voltammogram of clean, well-ordered Pt(111) in 0.1 M
NaF...............................................................................................................47



x

  Page

Figure 16. Cyclic voltammogram of 1 ML Pd on Pt(111) in 0.1 M NaF with
pH adjusted to 4 using TFA. ....................................................................48

Figure 17. Schema of a complete potential cycle during electrochemical
annealing in NaBr solution.......................................................................51

Figure 18.  Current-potential profile of 8 ML Pd/Pt(111) before and after
electrochemical annealing in 1 mM NaBr–0.1 M NaF (pH = 4)
solution........................................................................................................52

Figure 19. LEED pattern of 8 ML Pd/Pt(111) (a) before and (b) after
electrochemical annealing in NaBr(aq)

 .....................................................53

Figure 20.  Auger electron spectrum of 8 ML Pd/Pt(111) after
electrochemical annealing in 1 mM NaBr/0.1 M H2SO4 (pH = 4) ......54

Figure 21. LEED pattern for 6 ML Pd/Pt(111) obtained after emersion from
1 mM NaBr in 0.1 M NaF (pH = 4) ..........................................................56

Figure 22. Voltammograms for Brads on (a) Pt(111), (b) 0.5 ML Pd film, and
(c) 4 ML Pd film in 0.1 M H2SO4...............................................................58

Figure 23.  Chronocoulogram of Br-modified 6 ML Pd/Pt(111) in 0.1 M
H2SO4 as the potential was switched from 0.22 V to 0.41 V.................59

Figure 24. Auger electron spectrum of Br-coated 6 ML Pd/Pt(111) after
immersion in 0.1 M H2SO4 at E = 0.41 V .................................................60

Figure 25.  LEED pattern after exposing Br-coated 4 ML Pd/Pt(111) in 0.1
M H2SO4 at E = 0.41 V................................................................................61

Figure 26.  Cyclic voltammogram of 6 ML Pd/Pt(111) in 0.1 M H2SO4,
before and after Br chemisorption and subsequent polarization
at –0.41 V .....................................................................................................63

Figure 27. Cyclic voltammogram for 4 ML Pd film on Pt(111) after the 8th

potential cycle in 0.1 mM H2SO4 ..............................................................64

Figure 28. Voltammetric profile for the electrodeposition and stripping of
Co on Pd using 2 mM CoSO4 in 0.1 M Na2SO4 at a slow scan rate
of 0.1 mV/s. ................................................................................................68

Figure 29. Voltammetric profile for the electrodeposition and stripping of
Co on Pd using 2 mM CoSO4 in 0.1 M NaClO4 at a slow scan
rate of 0.1 mV/s..........................................................................................69



xi

  Page

Figure 30. Cyclic voltammograms of Pt(111) in 0.1 M NaClO4 obtained at
different negative switching potentials ..................................................71

Figure 31.  Potentiodynamic deposition and stripping of Co on Pd surfaces
in the presence of different concentrations of Co2+ ...............................72

Figure 32. Potentiodynamic deposition of Co at various scan rates,
followed by electrochemical stripping at ultraslow scan rate.............75

Figure 33. Linear sweep voltammogram of potentiostatically deposited
ultrathin Co film on Pd .............................................................................78

Figure 34. Cyclic voltammogram of Pd in 0.1 M NaOH.........................................80

Figure 35. Cyclic voltammetric profile of Co-coated Pd electrodes in Co-
free 0.1 M NaOH ........................................................................................82

Figure 36. Multiple cycling of Co-coated Pd electrode in 0.1 M NaOH...............84

Figure 37. Cyclic voltammetry of Pd in 3 mM Co(ClO4)2 in the presence
and absence of 1 mM NaI. ........................................................................86

Figure 38. Linear sweep voltammogram of 8 ML Co/Pd(poly) in the
presence and absence of 1 mM NaI in 0.1 M NaClO4...........................87

Figure 39.  Cyclic voltammetry of clean, well-ordered Pd(111) electrode in
10 mM Co(ClO4)2/0.1 M NaClO4 .............................................................89

Figure 40. AES of Pd(111) after attempts of slow potentiodynamic
deposition using 10 mM Co(ClO4)2 in 0.1 M NaClO4 from ocp to
–0.85 V..........................................................................................................90

Figure 41.  Cyclic voltammogram of ORC-roughened Pd(111) in 0.1 M
NaClO4 at various negative switching potentials. ................................91

Figure 42.  LEED pattern of Pd(111) (a) before and (b) after anodic
roughening at 0.75 V for 2 minutes .........................................................93

Figure 43.  Cyclic voltammetry of anodically roughened Pd(111) electrode
in 10 mM Co(ClO4)2/0.1 M NaClO4.........................................................94

Figure 44.  Linear sweep voltammogram of potentiostatically deposited Co
on electrochemically roughened Pd(111) in 0.1 M NaClO4 .................96



xii

  Page

Figure 45.  Auger electron spectrum of Pd(111) after potentiodynamic
deposition of Co .........................................................................................97

Figure 46. Current-potential profile of clean, well-ordered Pd(111) disk
electrode at various levels of immersion in 0.1 M H2SO4...................100

Figure 47.  Effect of different positive switching potential on the reduction
potential of oxided Pd-surface ...............................................................101

Figure 48. Cyclic voltammogram of Pd(111) in 1 mM Bi3+/0.1 M H2SO4 at
different negative switching potentials ................................................102

Figure 49. Anodically initiated potential scan in 1 mM Bi3+/0.1 M H2SO4.
Scan rate = 5 mV/s ..................................................................................105

Figure 50. X-ray photoelectron spectrum of the Bi 4f core levels for a Bi/Pd
foil adlayer prepared by potentiostatic deposition at –0.10 V
followed by anodic polarization at 0.45 V............................................108

Figure 51. LEED pattern of Pd(111) surface (a) before and (b) after
spontaneous electrodeposition of Bi .....................................................110

Figure 52. Auger electron spectrum of Pd(111) surface modified by
spontaneously electrodeposited Bi........................................................111

Figure 53.  Underpotential deposition peaks of Bi on well-defined Pd(111)
observed at a slow scan rate of 0.5 mV/s.............................................112

Figure 54. Effect of multiple water rinses on the surface composition of
electrodeposited ultrathin Bi film as determined by AES .................115

Figure 55. Electrodeposition isotherm of Bi on Pd(111) based on
chronocoulometry (left axis) and Auger peak-to-peak analysis
(right axis) .................................................................................................116

Figure 56. LEED patterns of (a) clean, well-ordered Pd(111); and ultrathin
Bi films electrodeposited at (b) 0.00 V, (c) –0.10 V, (d) –0.15 V, (e)
–0.20 V, and (f) –0.30 V............................................................................117

Figure 57. Cyclic voltammogram of ultrathin Bi films (ΘBi
 = 0.2 to 1.4) in 0.1

M H2SO4 obtained after immersing the film without potential
control in 0.1 M H2SO4.............................................................................120



xiii

  Page

Figure 58. Ultrathin Bi films, emersed at their corresponding deposition
potentials, and subjected to cyclic voltammetry in Bi-free 0.1 M
H2SO4..........................................................................................................121

Figure 59. LEED pattern obtained (a) before and (b) after immersing
Pd(111) into a solution of 0.1 mM NaI/0.1 M H2SO4 at 0.28 V..........127

Figure 60.  Cyclic voltammogram of Pd(111)(√3x√3)R30o-I in 0.1 mM
Bi3+/0.1 M H2SO4 at a scan rate of 5 mV/s. ..........................................128

Figure 61. Effect of NaI(aq)-emersion on the Auger Bi transition peak
intensity for  ultrathin films potentiodynamically prepared by
scanning the potential from ocp to various final potentials : (a)
ocp, 0.27 V (b) –0.10 V, and (c) –0.20 V .................................................131

Figure 62. Effect of NaI(aq)-emersion on the Auger I transition peak
intensity for  ultrathin films potentiodynamically prepared by
scanning the potential from ocp to various final potentials : (a)
ocp, 0.27 V, (b) –0.10 V, and (c) –0.20 V ................................................132

Figure 63.  LEED pattern of Bi adlattice on Pd(111) deposited at open-
circuit potential, 0.27V (a) before and (b) after emersion from 0.1
mM NaI in 0.1 M H2SO4 at 0.27 V; deposition time is 5 minutes;
beam energy = 52 eV; beam current = 2.5 µA;  (c) proposed real-
space model for the observed LEED pattern: Red spheres =
iodine; green spheres = bismuth; white spheres = palladium. .........133

Figure 64. A (√3 x √7) LEED pattern obtained from (a) Bi adlayer
electrodeposited at –0.10 V and then emersed from NaI(aq); (b) Bi
adlayer electrodeposited at –0.20 V and then emersed from
NaI(a); (c) Bi adlayer electrodeposited at –0.10 V onto
Pd(111)(√3x√3)R30o-I; (d) Bi adlayer electrodeposited at –0.20 V
onto Pd(111)(√3x√3)R30o-I ......................................................................134

Figure 65. Proposed real-space model of (√3 x √7) LEED pattern.......................136

Figure 66.  Cyclic voltammogram of clean and well-ordered Pd(111) in 0.1
M Na2SO4 (pH 10) ....................................................................................137

Figure 67.  Cyclic voltammogram of Pd(111) in 5 mM D-glucose/0.1 M
Na2SO4 (pH 10) .........................................................................................139

Figure 68.  Steady-state cyclic voltammogram of ultrathin Bi film (ΘBi = 1.4)
in 5 mM D-glucose/0.1 M Na2SO4 (pH 10) ..........................................140



xiv

  Page

Figure 69.  Cyclic voltammogram of ultrathin Bi film (ΘBi = 0.19) in 5 mM
D-glucose/0.1 M Na2SO4 (pH 10) ..........................................................142

Figure 70.  Cyclic voltammogram of ultrathin Bi film (ΘBi
 = 0.33) on Pd(111)

in 5 mM D-glucose/0.1 M Na2SO4 with a scan initiated in the
anodic direction........................................................................................143



xv

LIST OF TABLES

  Page

Table 1.  Qualitative correlations between LEED pattern features and
surface morphology...................................................................................18

Table 2. Various electrolyte systems tested for the feasibility of
electrodepositing ultrathin Co films of well-defined coverages
on polycrystalline Pd surfaces .................................................................66

Table 3. Deposition and stripping charges as a function of the bulk Co2+

ion concentration during a slow voltammetric scan from the
double-layer region to various negative switching potentials............74

Table 4. Deposition and anodic oxidation charge-analysis for a potential-
step experiment from the deposition potential to 0.65 V...................123

Table 5. Deposition and anodic oxidation charge-analysis for a potential-
step experiment carried out in two sequential stages: from the
deposition potential to 0.0 V, followed by a potential switch
from 0.0 V to 0.65 V..................................................................................124



1

INTRODUCTION

The platinum-group metals are the main workhorses in the field of

catalysis [1].  This group consists of Pt, Pd, Rh, Ir, Ru, and Os. Although these

metals are characteristically bulk-oxidation-resistant, noble-metal surfaces have

provided a dynamic arena of industrially and technologically important

chemical reactions. The physico-chemical properties of these metals find

important applications, inter alia, in fuel cells, synthetic organic chemistry,

petrochemical refining and processing, and electronics.

Palladium is an atypical member of the platinum group in several

respects: (i) Although still considered to be a noble metal, Pd dissolves in

concentrated strong acids such as HCl and HNO3, especially in the presence of

O2 [2]. (ii) Pd has the ability to adsorb and absorb hydrogen; its hydrogen uptake

can reach up to 900 times its own volume at room temperature [3,4]. (iii) The

intermetallic Pd-Pd bonds are anomalously weak, thereby facilitating the

formation of adsorbate-substrate bonds [5]. Such combination of idiosyncratic

properties poses a fascinating prototypical case study for surface physicists,

materials scientists, and electrochemists whose ultimate goal is the fundamental

understanding and atomic-level manipulation of these properties for advanced

and novel applications.

_______________

This dissertation follows the style of the Journal of Electroanalytical Chemistry.
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Modifying the Interfacial Properties of Pd

The inherent interfacial properties of Pd can be dramatically altered in

many ways.  Alloy formation is a classical strategy of fusing together two or

more metals. Alloying can be typically accomplished either by thermal

treatment [6] or electrodeposition [7]. The resultant properties are concentration-

dependent and often manifest as hybrid features of the constituents. Because of

the changes in the electronic structure of the base metal, the emergence of

unique attributes is not unusual. A caveat to this preparative strategy is the

occurrence of surface segregation upon equilibration [8]. The component with

the lowest surface free-energy floats to the surface; consequently, the intended

bulk composition significantly varies from the surface composition [9].

Ultrathin film formation is an experimental tactic that can tailor physico-

chemical properties of metals. The term “ultrathin film” is used in stark

contradistinction to classical “thin films” of micrometer thicknesses.  In this

investigation, discrete well-defined atomic layers are prepared such that an ideal

full monolayer (ML) coverage constitutes a thickness in the order of 3 to 5 Å for

adsorbates occupying three-fold hollow surface-sites. The highest surface

coverage explored in this study is 8 ML.

 Ultrathin film deposition involves the growth of discrete atomic layers

onto a given substrate. Depending on the lattice parameters of the substrate and

the adsorbate, the film growth mode may occur in any of the following fashion:

(i) Frank-van der Merwe (layer-by-layer formation), (ii) Volmer-Weber (three-

dimensional island formation), or (iii) Stranski-Krastanov (island formation



3

preceded by an epitaxial “wetting” layer) [9, 10]. Except at the substrate-

adsorbate interface of a highly miscible metal pair, atomic intermixing and

compound formation are very limited, if not absent, under highly controlled

deposition; in contrast, such occurrences are sought for in vintage alloy

formation when drastic thermal or potential perturbation is employed [11].

Investigations on thin film formation are currently on an upsurge due to the

possibility of tailoring these ultrathin films into nanometer-scale surface

structures that exhibit size-quantization effects [12, 13].

High quality multimetallic thin films with well-characterized interfaces

have been prepared using a host of vacuum-based techniques such as vapor

deposition and sputtering [14]. While the successes of these preparative routes

are well documented, the stringent experimental protocols and the large capital

investment associated with these techniques make them difficultly accessible for

most laboratories. An inexpensive yet powerful alternative to vacuum-based

techniques is electrochemical deposition [13].  Electrochemical methods allow, at

ambient conditions, thermodynamic and kinetic control of the deposition

process by fine-tuning the applied potential, scan rate, solution pH, and

electrolyte composition.

Electronic and geometric effects on metal surfaces can be recognized and

analyzed by the systematic introduction of a family of elements onto a chosen

catalyst [15, 16, 17, 18, 19]. This combinatorial approach constitutes a

permutative scheme of discovering effective bimetallic catalysts [20] and

probing the mechanism behind their distinctive catalytic performance. For this
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purpose, a gamut of metals and semi-metals has already been deposited on both

polycrystalline and low-index single crystals of Pd and Pt. Previous

electrodeposition studies on the platinum-group metal surfaces are driven by

three-fold goals: (i) the quest for an ideal fuel cell electrode [21, 22] (ii)

fabrication of advanced materials and devices [23, 24, 25], and (iii) acquisition of

fundamental knowledge on the electrocatalytic phenomenon [26, 27]. This

research attempts to enrich the remarkably interesting, yet sparsely

documented, interfacial chemistry of ultrathin Pd films and ultrathin-film-

modified Pd(111).

Ultrathin Pd Films on Pt

Considerable interest on the growth of ultrathin Pd films on well-defined

Pt surfaces stems from the fact that the Pd-Pt pair represents a prototypical

bimetallic system whose constituents share similar lattice parameters and atomic

radii but have different cohesive energies [28]. Ultrathin Pd films do not suffer

from perturbations of hydrogen absorption [29], which often encumbers

voltammetric characterization of Pd bulk samples.  Of particular interest is the

possible emergence of properties that are otherwise absent in the pure state of

each constituent. These novel properties often vary concomitantly with

ultrathin-film-to-bulk transition [30]. The search for electrochemical surface

probes to monitor this transition is worthwhile pursuing to provide a robust

alternative to UHV-based electron spectroscopies.

In one of the earliest studies of Pd-film formation on single-crystal Pt

substrates, Attard and Bannister [31] reported the presence of a voltammetric
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peak associated with hydrogen adsorption on monolayer and submonolayer

coverages of Pd. A second hydrogen adsorption peak was later on observed by

Clavier and coworkers [32]. Studies using surface X-ray scattering [33] and

electrochemical scanning tunneling microscopy [34] indicated a Stranski-

Krastanov growth mode for Pd; i.e. the first Pd monolayer is pseudomorphic

with the Pt(111) substrate and subsequent Pd adatoms form islands.

Halides exhibit interesting interfacial behavior on ultrathin Pd film

surfaces. LEED studies on the coverage-dependent interaction of iodide ions

with ultrathin Pd films on Pt(111) [35] revealed that, for 1-2 ML Pd/Pt(111),

mixed iodine domains of (3x3) and (√3 x√3) were observed; at higher Pd

coverages, chemisorbed iodine exhibited only a (√3x√3) LEED pattern. On

pristine surfaces, iodine distinctly forms a (3x3) adlattice on Pt(111) and a

(√3x√3) adlattice on Pd(111). The aforementioned results underscored the

possibility of using chemisorbed halides in monitoring ultrathin-film-to-bulk

transition.

 One of the challenges in electrodepositing ultrathin metallic films is to

achieve surface order in an electrochemical environment replete with solvent

molecules and other solution species. The present report describes the

preparation, surface characterization, and interfacial electrochemistry of

ultrathin Pd films on Pt(111) surfaces. The interaction of bromine with the

prepared ultrathin films provided a premise for a proposed electrochemical

analogue to thermal annealing. Programmed electrode-potential excursions to

regions bordering dramatic surface perturbations (hydrogen adsorption and
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surface anodic oxidation) are demonstrated to produce surface smoothening

effects; this potential cycling is dubbed as electrochemical annealing  (EC

annealing).

For the purpose of this investigation, Pd multilayers (6 to 8 ML) that

clearly manifest H-atom desorption-adsorption peaks for terrace and step sites

were chosen. The underpotential deposition of hydrogen on Pd is notably a thin-

film phenomena because, in the presence of bulk Pd, the extremely high

hydrogen uptake makes adsorption virtually indistinguishable from absorption.

The appearance of these anomalous thin-film peaks on thick (bulk-like) films is

attributed to surface defects such as steps and pits; hence, these peaks can be

used as voltammetric markers for the progress of the so-called EC-annealing

process.

Ultrathin Co Films on Pd

Prospects of using superlattices of Co and Pd or Pt in the next-generation

magneto-optical (MO) storage devices provided the motivation to investigate

the preparation, growth, and interfacial properties of ultrathin Co films.  Both

novel systems offer greater chemical stability and better polar Kerr activity at

prolonged exposures to blue to blue-green lasers [36-38]. Of the two next-

generation MO materials, the Co-Pd superlattice is the better choice when it

comes to coercivity. Coercivity is the magnitude of the applied field needed to

flip the magnetic domain from one state to another; hence, it is related to the

stability of stored information in an MO device [39].
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Multiple stacking of magnetic and non-magnetic interfaces gives rise to

perpendicular magnetic anisotropy, as predicted by the Néel mechanism [37].

This mechanism maintains that interfacial symmetry discontinuities and

changes in the nearest-neighbor coordination lead to orientation-dependent

magnetization behavior. Strain anisotropy resulting from a large lattice

mismatch further enhances PMA [38]; such case is typified by the superlattices

of Co (fcc ao = 3.552Å) and Pd (fcc ao = 3.89Å). Another essential determinant of

PMA is spin-orbit interaction that emanates from both spin and orbital angular

momenta of electrons. Experimental evidence shows that Co thin films

deposited onto Pd have greatly enhanced orbital moment compared to bulk Co

[40].

Tailoring the magnetic properties of Co-Pd superlattices requires a clear

understanding of the growth mechanism of this bimetallic system. Early studies

utilizing low-energy ion scattering spectroscopy (LEIS) and X-ray photelectron

spectroscopy (XPS) describe the formation of islands with uniform thickness

[41]. However, contradictory reports indicate a Volmer-Weber growth mode

where pseudomorphic multilayer Co islands are observed up to 20 monolayers;

within the first two monolayers, a slight tetragonal distortion of the Co fcc

structure is implied by X-ray photoelectron diffraction (XPD) data [42]. Such

distortion is also the subject of contention from research groups using reflection

high-energy electron diffraction (RHEED) and low-energy electron diffraction

(LEED) [43, 44].  Recent studies using ultrahigh vacuum scanning tunneling

microscopy (UHV-STM) reveal layer-by-layer epitaxy up to a thickness of 2
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monolayers (ML); at high coverages of ca. 10 ML, the surface becomes uniformly

strewn with three-dimensional clusters [45].

These mechanistic discrepancies possibly originate from the nature of the

various preparative methods [42]. Popular methods include, inter alia, sputtering

[36] and vapor deposition [37]. Although the MO properties of sputtered films

are comparable to those of evaporated films, the magnitude of these properties

is often determined by parameters inherent to the method such as substrate

temperature and sputtering agents [46].  Subtle differences in physico-chemical

properties may also arise from the extent of atomic mingling at the interface.

Impacts coming from bombarding species during sputtering are shown to favor

interfacial alloying; evidences are provided by XPS shape-pattern recognition

[47] and polarized extended X-ray absorption fine structure (EXAFS) [48].

Enhancement of MO properties, such as remanent magnetization and PMA, has

been observed for sputtered surfaces [49]. Claims of better MO properties are

also noted from the evaporated films with intentionally alloyed layers [50].

The absence of deposition techniques that allow precise layer-by-layer

control and monitoring of interfacial structures provided strong impetus

towards the proposal of experimental protocols that can delineate monolayer

and multilayer depositions.

Electrodeposition is an attractive, yet underutilized, option for the

synthesis of metallic multilayered structures. Since the process is generally

carried out at temperatures much lower than those employed in vapor

deposition and sputtering techniques, sharper interfaces are produced due to
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minimal, if not negligible, interdiffusion. Electrodeposition employs low-cost

instrumentation and offers a flexible choice of precursor materials for the

constituent layers of the superlattice.  Deposition parameters, such as applied

potential, current density, solution pH, supporting electrolyte and agitation, can

be strategically programmed to yield compositionally controlled layers with

desired target properties.

The ability of electrochemical methods to prepare contaminant-free

heteroepitaxial ultrathin layers with sharp interfaces –- a proposition once

deemed to be exclusively accomplished under ultrahigh vacuum conditions –-

has been clearly demonstrated in the electrodeposition of ultrathin magnetic

films of Co and Cu [51]. Aside from the Co-Cu [52] system, investigations of

electrodeposited magnetic multilayered structures are generally limited to Co-Pt

[53-55] and Co-Au [56-57].

To accumulate fundamental knowledge of the interfacial chemistry of Co

and Pd, systematic studies were pursued on the electrodeposition of Co onto

both polycrystalline and single-crystal substrates.

Ultrathin Bi Films on Pd

A gaping void exists on the systematic investigation of Bi thin films on Pd

single crystals. It is interesting to note that studies of Bi underpotential

deposition (upd) on Pt(hkl) have already been elegantly performed [58-61].

While insights and useful forecasts on the Bi-Pd system can often be gleaned

from parallel studies employing Pt, such juxtaposition is not always valid

considering the so-called “palladium anomaly” [5].
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Early studies by Adziç [62] demonstrated Bi upd onto polycrystalline Pd

and its electrocatalytic effect on the oxidation of HCOOH.  Bi was believed to

exert a “third-body effect,” i.e., Bi precludes the adsorption of reaction-

intermediate poisons. Details on the stability, electrochemical reactivity,

electrovalency and adsorption isotherm of the electrodeposited Bi remain

unexplored.

The role of Bi as a catalytic promoter of Pd for the electrooxidation of D-

glucose had received some attention [63, 64].  Several patents have been

formulated based on the Bi-Pd catalyst whose superior activity and selectivity

toward the aerobic conversion of D-glucose to gluconate is comparable with

enzymatic processes [65]. Reasons for the sustained interest on this

electrochemical reaction are practically two-fold: (i) the need to develop simple

yet efficient glucose sensors and (ii) the drive to develop biologically compatible

fuel cells suitable for human implantation [66, 67].  The Bi-Pd catalyst has also

been used in the oxidation of other carbohydrates such as lactose and in the

production of fine chemicals typified by the partial oxidation of 2-

hydroxybenzyl alcohol [68].

The lack of atomic-level details on the chemical events that lead to the

unusually high activity and selectivity of Bi-Pd catalysts underscores the need

for surface-sensitive spectroscopic measurements on this bimetallic system. This

research, therefore, attempts to fill in this information gap by examining the

surface electrochemistry of idealized (single-crystal) Pd surfaces modified by

structurally well-characterized adlayers of Bi.



11

Objectives

The study primarily aimed to establish electrochemical protocols for the

deposition of well-defined ultrathin films of Pd, Co, and Bi onto noble-metal

surfaces.  The chosen adlayer-substrate pairs represented a gamut of interfaces

whose structure, composition, and electrochemical reactivity bear significant

impact on the formulation and advancement of surface science concepts in

selected emerging technological applications. Experiments were designed to

address three-pronged objectives:

(i) The interfacial properties of well-defined Pd/Pt(111) adlayers

exposed to aqueous bromide were investigated to propose an

electrochemical analogue of thermal annealing.

(ii) Studies on ultrathin films of Co on polycrystalline Pd and Pd(111)

were launched to explore the possibility of electrodepositing Co,

notwithstanding the imminent interference of hydrogen evolution

and the large (bulk) lattice mismatch between Co and Pd.

(iii) The interfacial chemistry of Bi ultrathin films on Pd(111) was

documented using a combination of electron spectroscopic

techniques (viz. LEED, AES, and XPS) and classical electrochemical

methods (coulometry and voltammetry). The chemisorption of

iodine and the electrooxidation of D-glucose were employed as

probe reactions to interrogate the nature of the Bi-Pd(111)

interface.
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METHODOLOGY

Ultrahigh Vacuum (UHV) Surface Analysis

Atomic-level interfacial studies on electrodeposited ultrathin films

require the use of single crystals as model substrates for surface-

structure–electrochemical-reactivity correlations. Prior to any electrochemical

experiment, a single-crystal electrode needs to be well-defined, i.e. the

composition and geometric structure of the surface have to be precisely

established. Interrogation of well-defined electrode surfaces, therefore, becomes

more meaningful because reproducible qualitative and quantitative comparison

of surface behavior is now possible before and after each electrochemical

treatment.

The aforementioned task is fulfilled by spectroscopic techniques that

typically rely on electrons and/or photons for signal generation and detection.

The surface sensitivity of these tools emanate from the fact that the shallow

penetration depth of impinging low-energy electrons can be fine-tuned to

examine the topmost surface layer; similarly, electrons escaping from surface

atoms have characteristically short inelastic mean free paths, making these

ejected electrons excellent surface probes. To ensure that the detected electrons

represent signals from the surface, not from processes resulting from collisional

energy losses, an ultrahigh vacuum (UHV) environment is imperative for

surface science investigations [9].
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UHV conditions involve an operative pressure range of ≤ 10-9 torr.  In

such environment, the mean free path of residual gases is kept reasonably large

to minimize contact with probe electrons. The Kinetic Theory of Gases also

stipulates that UHV conditions minimize the rate of bombardment of

background gases onto the electrode surface. For instance, at a high vacuum

(HV) environment of 10-6 torr containing traces of a common contaminant gas,

CO, assuming a sticking probability of 1, it takes 2.6 s to form a monolayer on

the surface at 300 K. Under similar conditions, it takes 7.3 hours to replicate such

monolayer formation at UHV [67].

All the surface-sensitive methods used in this investigation are briefly

described in the succeeding sections.

Low Energy Electron Diffraction

Low energy electron diffraction (LEED) is commonly employed to

ascertain the surface order of single-crystal electrodes.  In contrast to X-ray

diffraction that generally probes three-dimensional bulk lattices of solids, LEED

provides structural information regarding the surface unit mesh, i.e. two-

dimensional surface lattice.

Just like any diffraction method, LEED relies on the elastic backscattering

of the probe entity, in this case monoenergetic electrons. For diffraction to occur,

the wavelength λ of the incident electrons must be less than, but of the same

order of magnitude, as the interatomic spacing. Wave-particle duality treatment

of an electron yields the following modified de Broglie equation:
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λ (Å) =

€ 

h
2meE

 =

€ 

150.6
E(eV )

(1)

where h is Planck’s constant, me is the mass of an electron, and E is energy

measured in electron volts (eV).

The surface specificity of LEED diffraction patterns lies in the judicious

control of the electron beam energy. The so-called Universal Curve (Figure 1)

proposed by Seah and Dench reveals that electrons with energies of 20 – 500 eV

have short inelastic mean free paths. Thus, ordered atomic layers within a 5-Å

region from the surface typically contribute to the resulting LEED diffraction

pattern.

All surface crystallographic information presented in this work was

obtained using PE 15-120 LEED Optics and PE 11-020 LEED Electronics system

(Perkin-Elmer, Eden Prairie, MN).  A schematic diagram of the LEED apparatus

is presented in Figure 2.  An electron gun releases a stream of monoenergetic

electrons that are focused onto a well-grounded single-crystal surface. Diffracted

electrons are backscattered into a series of concentric grids, G1 to G4.  The four-

grid retarding field analyzer (RFA) is designed to allow only elastically

backscattered electrons to reach the phosphor-coated collector screen. Such

energy-selective process is accomplished by the negatively biased G2 and G3

that act as cut-off filters for the entering electrons. Grid 1 has to be grounded to

shield the electron trajectory from electromagnetic fields generated by G2 and
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Figure 1.  The “Universal Curve” of inelastic mean free path as a function of
electron energy [9].



16

Figure 2.  Schematic diagram of the LEED apparatus.
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G3. A large positive potential (2 – 5 kV) is imposed on the collector screen to

accelerate the admitted electrons so that they have sufficient kinetic energy to

induce light emission from the collector screen. The grid nearest to the screen

(G4), therefore, also needs to be grounded. A Nikon Coolpix E5200 digital

camera (Nikon Corporation, China) was used to take photographs of LEED

patterns.

LEED diffraction patterns represent the reciprocal-space lattice of the

surface.  From the position of the spots, the periodicity of the actual surface unit

mesh can be deduced using the following rules [9, 66, 67]:

G = na* + mb* (2)

a*  = 
  

€ 

2π
 a 

; b*= 
  

€ 

2π
 b 

(3)

a • b* =  a* • b =  0 (4)

The reciprocal lattice vector G  can be expressed as contribution of the

elementary vectors a* and b* of the reciprocal two-dimensional unit cell; m and

n are integers.  Equation (3) shows that a large real-space interatomic distance,

represented by vectors a and b, implies closely packed spots in reciprocal space.

Nuances in the spot brightness, sharpness, and shape are qualitative

indicators for structural changes of the surface. Table 1 summarizes LEED

pattern features and their corresponding surface topographical meaning.

Further refinement of surface geometrical assignment is also possible by

quantitatively analyzing spot intensity vs. beam energy; such data treatment is,
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Table 1.  Qualitative correlations between LEED pattern features and surface
morphology (Adapted from [68]).

LEED pattern Surface morphology

Diffuse background Disordered adlayer; random adatoms;
random vacancies

All spots broadened at all beam
energies

Small (<100 Å) domain size

Spot broadening greater for diffraction
beams of higher order

Random strain

Increased broadening of all spots with
increasing beam energies

Mosaic structure (microcrystals)

Emergence of additional spots or
change in intensity-energy profile of
the (1x1) adlayer

Ordered adlayer; large surface
domains

Mixed sharp and broad spots at all
beam energies

Antiphase domains

Multiple (00) beams Faceting

Alternately split and sharp spots with
changing beam energy

Ordered steps

Alternately split and broad spots with
changing beam energy

Random steps
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however, not available in the present UHV system employed in this

investigation.

The number of emerging diffraction spots detected by the collector screen

can be theoretically predicted using the Ewald sphere construction [1].  Since

surfaces are two-dimensional, the sphere reduces into a circle whose radius is

equal to the magnitude of wavevector, ko, of the incident electron, defined as

ko = 
  

€ 

2π
 a 

, where λ is the de Broglie wavelength given in Equation 1.

Figure 3 shows the Ewald construction for a Pd(111) surface probed by an

electron beam of 52 eV.  Given that the lattice parameter a for Pd is 3.89 Å and

its nearest-neighbor distance in the (111) Miller-index plane is a= a/√2 = 2.75

Å, the geometrical solution for the reciprocal-space lattice reveals that only six

spots, equally spaced from each other according to Equation 2, can be viewed

arranged in a hexagonal array under the present experimental conditions.

Given in Figure 4 is a series of experimentally acquired LEED patterns at

various beam energies: (a) 62 eV, (b) 52 eV, and (c) 42 eV.  While the sharpest

LEED spots were obtained at 62 eV, the pattern at 52 eV represented the one

with optimum brightness. Spots at 42 eV occupy the border of the visible area of

the screen, thus creating an apparent elongation.

Two single-crystal electrodes were employed in this study: Pd(111) and

Pt(111).  Both surfaces exhibit a hexagonal array of LEED diffraction spots. The

acquired LEED patterns were compared with those obtained from calculations
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Figure 3. A (1×1) LEED pattern for a clean and well-ordered Pd(111) electrode
surface as predicted by a Ewald sphere construction for a beam energy of 52 eV.
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A

B

C

Figure 4.  LEED pattern of a clean, well-ordered Pd(111) electrode as a function
of beam energy: (a) 62 eV, (b) 52 eV, and (c) 42 eV.
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[69]. Wood’s notation [70] was used to describe the structural information

derived from the LEED patterns.

X-ray Photoelectron Spectroscopy

X-ray Photoelectron Spectroscopy (XPS) is a surface science tool that

provides information about elemental surface composition.  In this respect, XPS

is supplementary to Auger Electron Spectroscopy (AES) and, therefore, is also

referred to as Electron Spectroscopy for Chemical Analysis (ESCA).

Conventionally, the binding energy, Eb is measured with respect to the Fermi

level (highest occupied level) of the spectrometer to which the sample is

connected.  From Einstein’s relation, Eb can be converted to kinetic energy: EKin =

hν - EB - φ, where φ is the work function, i.e. the minimum energy needed to

remove an electron from the highest occupied level in the solid to the vacuum.

Since changes in the electronic environment often alter the binding energy of

core-level electrons, subtle shifts in the XPS peak position can be used to

determine the oxidation state of surface elements [71]. The entire XPS process is

depicted in Figure 5.

XPS measurements made in this investigation were performed using a

Kratos Axis Ultra Imaging X-ray photoelectron spectrometer, under the auspices

of the Texas A&M University Materials Characterization Facility. The X-ray

source used was a Mg anode that emitted the Kα line (1253.6 eV) with a full-

width at half-maximum of 0.7 eV. The bandpass energy of the concentric

hemispherical energy analyzer was set at 25 eV.
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Figure 5.  Core-level excitation involved in X-ray photoelectron spectroscopy.
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Auger Electron Spectroscopy

When a low-lying inner core electron is ejected from an atom, the

positively-charged “hole” that is created can be neutralized via two competing

processes: (i) photoemission of X-ray fluorescence and (ii) the Auger process.

The Auger process is a radiationless process involving an upper-level electron

that relaxes to fill in the vacancy. The released energy ejects a third electron,

called the Auger electron, whose kinetic energy is diagnostic of a particular

element [67]. Figure 6 shows a schematic representation of the (a) photoemission

and (b) Auger processes.

Using the electronic transitions depicted in Figure 6 as an example, the

kinetic energy of the Auger electron is given by:

EKin = [EK – EL] – EM - φ

where the term [EK – EL] refers to the energy available to the Auger electron as

an L-shell electron fills the K-shell electron vacancy; the last two terms account

for the energy required for the Auger electron to escape into the vacuum: EM is

the binding energy of  the electron at  the M - s h e l l ;

φ is the work function of the spectrometer.  In this example, the Auger transition

is called a KLM transition.

The elemental specificity of this technique originates from that fact that

the kinetic energy of the Auger electron is characteristic of the three energy

levels involved.     Elements with three or more electrons can be qualitatively
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(a) (b)
Figure 6.  Electronic relaxation of a K-shell vacancy via (a) X-ray photoemission
and (b) Auger process.
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assayed using AES, although the Auger relaxation process predominates among

elements with low atomic numbers (Z ≤ 20) [66].

This investigation uses a PE AES system (Perkin Elmer, Eden Prairie,

MN) that consists of the following modules: PE 10-155 Cylindrical Auger-

Electron Optics, PE 32-150 Digital AED Control, PE 32-100 Electron Multiplier

Supply, PE 11-010 Electron Gun Control, and PE 96B V/f Preamplifier. A

schematic diagram of the AES system is given in Figure 7.

Initial core-level excitation is induced by an electron beam (typically with

a primary energy Ep = 2 keV) emanating from a normal-incidence electron gun.

The scattered electrons enter a cylindrical mirror analyzer (CMA), which

discriminates the Auger electrons from a plume of secondary electrons.  During

data collection, the negative DC voltage on the outer cylinder is ramped so that

only those electrons with appropriate kinetic energy can pass through the exit

slit and reach the electron multiplier.  The kinetic energy resolution of the CMA

is 0.6%; the resulting band pass window is scanned at 2 eV/s. A low incident

current is maintained (1 µA above the background) to minimize electron-beam-

induced surface damage.

Auger peak identification is often difficult because of the superimposition

of the signal over a large sloping background originating from the inelastic

scattering of the incident electron beam. To circumvent this problem, the Auger

signal voltage is electronically differentiated to give a derivative spectrum of the

electron energy distribution, reported as dN(E)/dE; N(E) represents the number
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Figure 7.  Schematic diagram of the AES module.
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of counts for a particular kinetic energy, E. Consequently, the signal-to-noise

ratio is greatly enhanced, giving rise to a detection limit 0.1% of a monolayer

[72].

Shown in Figure 8 is the Auger spectrum of Pd in its (a) integrated and

(b) differentiated modes.  Peak-area integration of the major AES transition

peaks, obtained from reference materials of known purity, can be used as a

direct measurement of the atomic concentration of surface species. Assuming

that peak shape does not vary with coverage, the integrated peak area correlates

well with peak-to-peak height.  In this investigation, quantitative information

was derived by normalizing the peak-to-peak heights of the adatoms with

respect to the heights of the pristine substrate prior to electrodeposition; such

quantitation is typically used in conjunction with coulometric measurements.

Other methods of determining absolute surface coverages, such as double

integration of the second harmonic amplitude, are discussed elsewhere [73].

Electrochemistry

A CV-27 Voltammograph (Bioanalytical Systems, West Lafayette, IN) was

used in all electrochemical experiments. Unless otherwise stated, Ag/AgCl (1

mM NaCl) was employed as reference electrode paired with a piece of Pt wire as

the auxiliary electrode. Completing the three-electrode potentiostat assembly

was a single-crystal working electrode made of Pt(111) or Pd(111).  Current and

charge measurements were recorded using a VP-6414S X-Y recorder (Soltec, Sun

Valley, CA).
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Figure 8. Auger spectrum of Pd in its differentiated and integrated modes.
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Preliminary survey of the electrochemical behavior of the ultrathin films

was performed using thin-layer electrochemistry (TLE). A thin-layer electrode is

typically a flame-annealed metal billet inserted into a glass cell specially

designed to allow a minute volume (ca. 4 µL) of the analyte solution to come in

contact with the electrode. This design ensures that the thickness of the

adsorbed layer is less than the Nernst diffusion layer; thus, voltammetric waves

are not complicated by mass transport effects.

Voltammetry

Voltammetry is an electrochemical method that involves measuring

current as a function of applied potential.  The electrode potential is initially

poised at a desired value, and is subsequently swept at a particular scan rate.

Linear sweep voltammetry is a technique that involves terminating the potential

scan at a final potential different from that of the original.  When the potential

scan is returned to the initial potential, the technique is referred to as cyclic

voltammetry.

Cyclic voltammetry is routinely used in inorganic electroanalytical

chemistry to characterize the chemical reversibility of certain redox processes.

Typical scan rates lie between 20 mV/s and 100 mV/s.  In this investigation,

slow scan rates (5 mV/s to 0.1 mV/s) are strategically employed to enhance

peak separation and probe kinetically hindered surface processes [74].

Coulometry

Switching the applied potential from the double-layer region (where no

Faradaic charge is accumulated) to a pre-determined final potential is equivalent
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to a voltammetric sweep at an infinitely fast scan rate.  Coulometry involves

measuring the charge (integrated current) obtained during this potential-step

experiment.  If the charge is monitored as a function of time, the technique is

called chronocoulometry.

From Faraday’s Law, the amount of electrodeposited material (expressed

as Γ in nmol/cm2) can be quantitatively calculated using charge measurements

(Q).  If the area (A) of the electrode is known, Γ can be evaluated from the

equation:

Q – Qblank = nFAΓ

where n is the number moles of electrons required or given up per mole of redox

process, and F is Faraday’s constant.  Faraday’s Law underpins the construction

of an electrodeposition isotherm, which is practically a calibration curve of

adsorbate surface coverage vs. the final applied potential for a defined period of

time.

UHV-EC Instrumentation

Surfaces of polycrystalline electrodes, such as those used in TLE

experiments, provide complicated and preparation-dependent morphology and

reactivity. The use of well-oriented single crystals as substrates for

electrodeposition is desirable for studies that aim to explore atomic-level

phenomena. To preserve the monocrystallinity and cleanliness of a single-crystal

electrode, experiments have to be performed under ultrahigh vacuum

conditions where the mean free path of residual gases are kept reasonably large

to minimize contact with or contamination of the surface electrode.
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Tandem UHV-EC experiments were performed using a stainless steel

assembly (Perkin-Elmer, Eden Prairie, MN) consisting of an antechamber, where

electrochemistry experiments were conducted; a gate-valve (MDC Vacuum

Products, Hayward, CA) that isolated the antechamber from the surface-analysis

chamber; and a valve-isolable ion pump well.  An X-Y-Z manipulator (Varian,

Lexington, MA) mounted on a linear positioning table (Lintech, Los Angeles,

CA) allowed rotational and translational displacement of the single-crystal

electrode inside the UHV-EC assembly. A custom-built electrochemical cell can

be introduced into the EC antechamber via another gate-valve (MDC Vacuum

Products). Figure 9 is a photograph of the UHV-EC assembly.

The surface analysis chamber housed the modules for LEED, AES, and

temperature-programmed desorption-mass spectrometry (TPD-MS).  Oxygen

(for oxidation thermal annealing) and argon (for surface bombardment) were

introduced into the chamber using two separate variable leak-valves (Varian,

Lexington, MA). A custom-built ion gun was employed for argon-ion

sputtering.
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Figure 9. The UHV-EC assembly composed of an antechamber for
electrochemical experiments, and a gate-valve-isolable surface analysis chamber,
which houses both LEED and AES.
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A three-stage pump-down procedure was used in reducing the pressure

inside the chamber to UHV conditions. Two liquid-nitrogen-cooled sorption

pumps were operated to remove most of the moisture and N2 that typically

prevailed after an electrochemical experiment in the antechamber.  Once the

pressure reached 10-3 torr, a cryopump (AP-8 Displex Cryopump, APD

Cryogenics, Inc., Allentown, PA) was used to further reduce the pressure to 10-7

torr. Ultimate pressure reduction to 10-10 torr was accomplished using an ion

pump (Perkin-Elmer TNBX Series 1000) coupled with a cryogenically cooled

titanium sublimation pump.  A four-day 200-oC bake-out of the UHV-EC

assembly was regularly conducted, especially if the base pressure exceeded 10-9

torr.

Well-defined Working Electrodes

Commercially oriented and metallurgically polished 99.999% pure

Pt(111) and Pd(111) (Aremco Products, Ossining, NY) disc electrodes were used.

For Pt(111), the electrode area exposed to the electrochemical cell was measured

to be 1.12 cm2 based on the hydrogen underpotential deposition-desorption

charge; the value is very close to the calculated geometric area of 1.1192 cm2.

The geometrical surface area of the Pd(111) electrode is 1.9796 cm2; unlike

Pt(111), no generally accepted experimental protocols exist to determine the real

surface  area of Pd single-crystals.  The single crystal was suspended from the

manipulator via a pair of 0.5 mm Pt or Pd wires (99.99% purity, Johnson-

Matthey Inc., Seabrook, NH) that were spot-welded to the disc edge.  Two

Pt(10%)-Rh(90%) thermocouple wires were also spot-welded to the disc edge to
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allow resistive heating using a crystal temperature controller (Omega

Engineering).

Prior to any electrochemical experiment, the single-crystal electrode was

cleaned by multiple cycles of Ar+ bombardment (Ar+ current = 4 -10 µA) and

thermal oxidation at 550oC (PO2 = 5 x 10 –6 torr); ultimately, the electrode was

annealed to 750oC-800oC under UHV conditions to restore long-range surface

order.  The cleaning cycle was repeated until surface purity and order were

verified by AES and LEED, respectively.

Reagents and Gases

All pieces of glassware were cleaned using hot chromic acid (3% K2Cr2O7

in 10 M H2SO4).  All solutions were made up using 18.2 Ω Millipore water

(Millipore Systems, Houston, TX).  The following high-purity reagents were

used without further purification: PdSO4 (Aldrich, Milwaukee, WI), fuming

H2SO4 (Aldrich), NaI (Curtin Matheson Scientific, Houston, TX), NaBr (Johnson

Mathey, England), NaCl (Johnson Mathey), NaF (Aldrich), Cu(ClO4)2 (Aldrich),

CF3COOH (Aldrich), D-glucose (Aldrich), Bi2O3 (Sigma-Aldrich) and K2Cr2O7

(EM Science, Gibbstown, NJ). High-purity N2 (BOTCO, Bryan, TX), Ar (BOTCO),

and O2 (Proxair, Dunbury, CT) gases were used.
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RESULTS AND DISCUSSION

An underlying theme of this investigation is the electrodeposition of well-

defined ultrathin metallic films onto Pt(111) and Pd(111) surfaces.  The first

section is a discourse on the electrochemical preparation of Pd adlayers on

Pt(111). Also described herein is the interaction of aqueous and adsorbed

bromine on these electrodeposits, as probed by voltammetric and surface

spectroscopic methods.  The second section describes a systematic attempt at

electrodepositing Co ultrathin films on Pd surfaces.  An extended part of this

investigation is conducted on smooth polycrystalline Pd; results from these

studies are juxtaposed with the experimental challenges encountered in

establishing electrochemical protocols for the deposition of Co on the Pd(111)

surfaces. The final section deals with the electrosynthesis and interfacial

characterization of ultrathin Bi films on Pd(111).

Electrodeposition of Ultrathin Pd Films on Pt(111)

Various electrochemical methods for the preparation of thin Pd films

have been described in the literature [31-34]. In this study, electrodeposition of

Pd was performed under potentiostatic control. The deposition potential (Edep)

window was set between the open-circuit potential (ocp, typically 0.40 V) and

–0.20 V; further excursions to more negative potentials were not made to avoid

complications from the hydrogen evolution reaction (HER). Various coverages

of Pd can be electrodeposited, at the same potential, using different deposition

times; it was initially decided to employ a 2-minute deposition time to limit the
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exposure of the electrochemical antechamber of the UHV system to air and other

contaminants.

The amount of Pd electrodeposited at a particular potential was

determined from chronocoulometric measurements during the potentiostatic

deposition. All charge (Q) measurements were duly corrected for background

charge using Pd-free 0.1 M H2SO4 as blank electrolyte. Calculations from

Faraday’s law revealed that the deposition charge of a full monolayer (1 ML) of

Pd, assuming pseudomorphic morphology on a Pt(111) electrode with a surface

area of 1.12 cm2, is 539 µC.  Under the present experimental conditions, the

potential that afforded this deposition charge was 0.221 V. Verification of this

result was made using two strategies: (i) titration of bare Pt(111) with

underpotential deposition (UPD) of Cu; and (ii) I(ads)-catalyzed dissolution of Pd.

The surface-structure sensitivity of the peak position of Cu UPD [75] was

exploited to verify the exact potential at which 1 ML Pd was deposited.  At

submonolayer coverages of Pd deposited at 0.222V, signature Cu UPD peaks on

both Pt and Pd surfaces were evident (broken-line trace in Figure 10).

Deposition and stripping peaks between –0.14 and –0.05 V corresponded to Cu

on Pd [76, 77] while the redox pair between 0.06 and 0.12 V belonged to Cu on Pt

[78]. A Pd deposition potential of 0.221 V marked the threshold at which the Cu-

on-Pt peaks were fully attenuated (solid trace in Figure 10);  this result closely



38

-25

-15

-5

5

15

25

-0.3 -0.2 -0.1 0 0.1 0.2
E/V vs. Ag/AgCl (1 mM NaCl)

i/ µ
A

b

a

Figure 10.  Cu UPD peaks on Pt(111) with (a) submonolayer and (b) 1 ML
coverages of Pd.
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concurred with the chronocoulometric experiments that showed the formation

of 1 ML Pd at 0.221 V.

Quantitation of the amount of electrodeposited Pd was also done using

I(ads)-catalyzed dissolution of Pd [35].    Peak-area integration of the anodic signal

due to Pd stripping in the presence of I(ads) yielded Q = 455.4 ± 9.0 µC at Edep =

0.222 V and Q = 547.2 ± 8.0 µC at Edep = 0.221 V.  Within the acceptable error

margin for this quantitative technique, the potentiostatic deposition at 0.221 V

yielded 1 ML Pd. Linear sweep voltammograms for various Edep were displayed

in Figure 11.

Based on the agreement between charge measurements obtained during

electrodeposition and stripping, the following equivalence was defined: 1 ML

Pd ≡ 539 µC;  in this case, ΘPd = 1 ML represents a full surface coverage of 1 Pd

adatom for every 1 Pt atom.  All coulometric data, therefore, can be transformed

into coverages using this definition. Figure 12 is a plot of Pd coverage as a

function of Edep.

Interfacial Electrochemistry of Ultrathin Pd Films

Two supporting electrolytes were employed in the electrochemical

characterization of the prepared ultrathin Pd films: H2SO4 and acidified NaF.

Extensive studies had already been published on the merits of each electrolyte.

The rationale for the use of both systems in the current investigation is driven by

the intention to compare, contrast, and consolidate the present results with those

earlier published.
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Figure 11.  Linear sweep voltammograms of Iads-catalyzed anodic dissolution of
ultrathin Pd films deposited at various potentials. Ultrathin films were prepared
using 0.5 mM PdSO4 in 0.1 M H2SO4. Geometric area of disk electrode = 1.12 cm2.
Scan rate = 0.5 mV/s.
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Figure 12.  Electrodeposition isotherm of Pd on Pt(111). Ultrathin films were
prepared using 0.5 mM PdSO4 in 0.1 M H2SO4.
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Electrochemical Behavior in Sulfuric Acid Electrolyte

The electrochemical behavior of the prepared ultrathin Pd films in 0.1 M

H2SO4 was investigated using cyclic voltammetry.  The voltammetric profile of a

clean, well-ordered Pt(111) electrode is given in Figure 13. Prior to any

deposition experiment, the emergence of “butterfly” peaks between –0.17 V and

0.00 V, ascribed to (bi)sulfate desorption/adsorption [79, 80], was inspected as a

diagnostic electrochemical marker for a well-defined Pt(111) surface in 0.1 M

H2SO4.  The broad peaks between –0.17 V and –0.45 V marked the hydrogen

adsorption-desorption region.  The anodic oxidation of Pt began at 0.17 V and

peaked at 0.78 V; the corresponding reduction peak appeared at 0.24 V.

Before the describing further the voltammetric and spectroscopic data of

the present investigation, a brief summary of the replicated work [81], is

necessary:

(i) At coverages ranging from 0.5, 1, 2, 3, 4, and 8 ML Pd, a (1x1)

hexagonal LEED pattern was obtained. The LEED spots were

brightest for 1 ML Pd on Pt(111) and progressively decreased in

intensity with increasing Pd surface coverage.

(ii) The Auger electron spectra showed concomitant increase in the

MNN transition peak for Pd at 330 eV with increasing Pd surface

coverage. The Pt signal at 168 eV became negligible above 1 ML

Pd.
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Figure 13. Cyclic voltammogram of a clean, well-ordered Pt(111) in 0.1 M H2SO4.
Geometric area of the disc electrode is 1.12 cm2.  Scan rate = 2 mV/s.
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(iii) Pd thin-film behavior was voltammetrically manifested by the

emergence of H UPD adsorption-desorption peaks that are

otherwise absent in the presence of bulk Pd [32, 82]. The reversible

peaks at ca. –0.34 V and –0.29 V (Figure 14 a-f) were ascribed to the

adsorption-desorption of H UPD and/or HSO4
—SO4

2- on terrace

and step sites, respectively [34, 79-80].

(iv) A Stranski-Krastanov growth mode was indicated for the

potential-step electrodeposition of Pd on Pt(111).

(v) A thin-film-to-bulk transition was observed at a coverage of 3 ML

Pd, based on the voltammetric peaks associated with H UPD on

terrace sites. Thick non-annealed Pd multilayers exhibited non-bulk

voltammetric properties; i.e. at 8 ML Pd, thin-film-like voltammetric

H UPD peaks were still observed.

Built on the premise of this previous report (cf. Appendix), the current

study focused on the interfacial electrochemistry of aqueous and adsorbed

bromide.
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Figure 14. Cyclic voltammograms of n-ML Pd on Pt(111) in 0.1 M H2SO4 [81].
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Previous studies on the interaction of bromine with well-defined surfaces

[83] were carried out using 0. 1 M NaF, adjusted to pH = 4 with trifluoroacetic

acid (TFA), as supporting electrolyte; thus, the same experimental conditions

were employed here. The choice of the electrolyte system was dictated by the

fact that, in contrast with the sulfate-bisulfate ions, both F- and trifluoracetate

ions are non-specifically adsorbed on the Pt(111) surface, and therefore do not

compete with the chemisorption of Br [83].

Electrochemical Behavior in NaF Solution (pH  4)

The nondescript features of the voltammogram of Pt(111) in 0.1 M NaF

(pH = 4) (Figure 15) attested to the surface inertness of the prevailing ions in the

blank solution. Except for the absence of the so-called “butterfly” peaks, the

voltammetric features resembled those obtained in 0.1 M H2SO4: (i) H UPD

adsorption-desorption region between –0.55 V and –0.33 V; (ii) the Pt surface

oxidation peaks at 0.35 V and 0.65 V; (iii) the reduction peak for the oxided

surface centered at 0.07 V.

In the presence of 1 ML Pd on Pt(111), a pair of relatively sharp H UPD

adsorption-desorption peak, not found on either bulk Pd(111) [84] or Pt(111),

emerged at –0.43 V (Figure 16). Surface oxidation of the Pd adlayer was

observed at a relatively broad potential window between –0.10 V and 0.70 V.

The Pd reduction peak appeared at –0.01 V.
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Figure 15.  Cyclic voltammogram of clean, well-ordered Pt(111) in 0.1 M NaF.
Solution pH was adjusted to 4 using concentrated trifluoroacetic acid (TFA).
Geometric area of disk electrode = 1.12 cm2. Scan rate = 2 mV/s.
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Figure 16. Cyclic voltammogram of 1 ML Pd on Pt(111) in 0.1 M NaF with pH
adjusted to 4 using TFA.  Geometric area of disk electrode = 1.12 cm2. Scan rate =
2 mV/s.
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Electrochemical Behavior in NaBr-NaF Solution (pH  4)   

Cyclic voltammetry of 1 ML Pd on Pt(111) in 1 mM NaBr–0.1 M NaF (pH

4) solution produced a reversible set of H UPD adsorption-desorption peaks at

–0.45 V. Notably, the anodic oxidation peak of the Pd film at 0.35 V became

more prominent and a reduction peak for Pt appeared at 0.18 V. The emergence

of the substrate signal during the cathodic scan implied that the ultrathin Pd

film was stripped off in the presence of bromine.  Potential excursion to 0.55 V

led to the oxidation of aqueous Br- to BrO3
-. Reduction of the electrogenerated

BrO3
- ions registered a peak at 0.67 V during the cathodic scan.

Br-Assisted Electrochemical Annealing

Proposed nonthermal analogues for the annealing process of ultrathin Pd

films had been previously carried out in H2SO4 [81], although the smoothening

effects were not dramatic. Electrochemical (EC) annealing is anchored on the

fact that, by cycling the electrode between potentials that border surface

perturbation, surface atoms can be rearranged to desirable equilibrium

positions. A continuation of the preliminary work on the effects of chemisorbed

bromine (Brads) and aqueous Br- ions was launched in the present investigation

using multiple cycles of large-amplitude potential steps.

A surface coverage of 8 ML Pd was chosen to represent a bulk Pd surface

that exhibited non-bulk voltammetric peaks typified by the terrace- and step-site

H UPD adsorption-desorption peaks. Bromine was chemisorbed onto the

prepared ultrathin Pd film by exposing it to 1 mM NaBr in 0.1 M NaF (pH 4)

solution at 0.22 V for 3 min. For this EC-annealing process in the presence of
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NaBr(aq), a complete potential cycle consisted of initially setting the potential at

E1 = 0.22 V (at which Br chemisorption occurred) and then switching it to E2 =

–0.40 V (near the onset of HER).  A waiting time of 3 minutes was sufficient to

allow the measured current to drop to zero after the imposition of each

potential.  A total of 10 cycles was performed; the final potential was poised at

–0.40 V.  Figure 17 shows a diagrammatic representation of a complete potential

cycle.

The electrochemically annealed Pd film was rinsed thrice in blank

electrolyte solution under potential control (E2 = –0.40 V).  Cyclic voltammetry

was performed in Br-free 0.1 M H2SO4 (pH = 4) solution.  Figure 18 displays the

voltammograms of both pre- and post-EC-annealed surfaces. The dramatic

extinction of the H UPD adsorption-desorption peaks after EC-annealing

heralded the disappearance of surface step-sites that are most likely the origin of

this anomalous thin-film-like behavior. The resultant post-EC-annealing

voltammogram displayed the expected voltammetric features of bulk Pd

electrodes.

The disappearance of surface defects, and thereby the restoration of long-

range surface order, was further corroborated by the acquisition of sharper (1x1)

LEED pattern (Figure 19) for post-EC-annealed surfaces.  A comparison of the

peak-to-peak heights for the Pd AES transition  (Figure 20) revealed that, within

the expected precision of such AES signal quantitation (± 0.05 cm), the Pd

surface coverage on Pt(111) remained virtually the same after multiple potential
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Figure 17. Schema of a complete potential cycle during electrochemical
annealing in NaBr solution.
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Figure 18.  Current-potential profile of 8 ML Pd/Pt(111) before and after
electrochemical annealing in 1 mM NaBr–0.1 M NaF (pH = 4) solution.  The
cyclic voltammograms were obtained in Br-free 0.1 M NaF (pH = 4) solution at a
scan rate of 2 mV/s.
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Figure 19. LEED pattern of 8 ML Pd/Pt(111) (a) before and (b) after
electrochemical annealing in NaBr(aq)

 . Beam energy = 62 eV; beam current = 2
µA.
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Figure 20.  Auger electron spectrum of 8 ML Pd/Pt(111) after electrochemical
annealing in 1 mM NaBr/0.1 M H2SO4 (pH = 4).  Incident beam = 2 keV; beam
current = 1 µA.
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cycling; further verification was afforded by the similarity of the pre- and post-

EC-annealed Pd stripping charges assayed by Iads-catalyzed anodic dissolution

of Pd. Thus, during EC-annealing in the presence of NaBr(aq), Pd adatoms

occupying defect sites were rearranged to assume equilibrium positions on well-

ordered terraces of the (111)-texture.

Interfacial Electrochemistry of Bromine Chemisorbed on Ultrathin Pd Films

The ability of bromine to facilitate Pd adatom rearrangement is

reminiscent of the surfactant-like action of chemisorbed iodine (Iads) in restoring

the atomic-level smoothness of electrochemically roughened and ion-

bombarded electrode surfaces [85]. Previous studies have uncovered interesting

surface-confined phenomena by examining the electrochemistry of Iads in iodide-

free solution [35]. For instance, a place-exchange mechanism [86] has been

demonstrated to transpire between the Iads and Pd during the anodic dissolution

of Pd electrodes in I-free sulfuric acid; i.e. iodine always stays on the surface

during the ensuing stripping process. Along the same vein, the electrochemical

behavior of Brads on ultrathin Pd films, in Br-free electrolyte solution, demands

special attention. For this purpose, Br was chemisorbed onto a well-defined 6

ML Pd/Pt(111) surface by immersing it into a solution of 1 mM NaBr/0.1 M

NaF (pH = 4) at 0.22 V for 3 minutes. The acquisition of a (√3x√3)-Br adlattice

(Figure 21), under this experimental condition, was consistent with previous

reports [87].
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Figure 21. LEED pattern for 6 ML Pd/Pt(111) obtained after emersion from 1
mM NaBr in 0.1 M NaF (pH = 4). Beam energy = 62.0 eV; beam current = 2 µA.
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The prepared Br adlayer was transferred to Br-free 0.1 M H2SO4. The

potential was switched from 0.22 V to 0.41 V; the final potential corresponds to

the shoulder of a huge peak ascribed to be a composite of the anodic dissolution

of both ultrathin Pd film and the chemisorbed Br adlayer (Figure 22)  [81]. In this

polarization experiment, the potential was strategically poised at the chosen

value to ascertain if – in a manner similar to the Iads-catalyzed anodic dissolution

of Pd – chemisorbed Br would stay on the ultrathin Pd film surface until the film

would be exhaustively removed.

As revealed by the chronocoulogram in Figure 23, a monotonic increase

in the electrolytic charge was noted. Compositional analysis by AES (Figure 24)

showed a 10% decline in the Pd signal due to anodic dissolution, as indicated by

the linear rise in electrolytic charge beyond 12 minutes of polarization at 0.41 V.

The rapid increase in charge during the first 3 minutes of polarization was

ascribed to the anodic oxidation of chemisorbed Br.  This finding was supported

by the absence of both the AES Br signal and the characteristic (√3 x √3) pattern

(Figure 25).

Quantitative analysis, by Iads-catalyzed dissolution, of the Pd film

remaining after polarization at 0.41 V indicated a Pd surface coverage of 4.8 ML.

The amount of anodically dissolved Pd (1.2 ML) represented adatoms that

occupy terrace and step sites. It was evident from the linear increase in

electrolytic charge after 10 minutes (Figure 23) that the anodic dissolution of

ultrathin Pd film would have proceeded towards completion if the imposition of
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Figure 23.  Chronocoulogram of Br-modified 6 ML Pd/Pt(111) in 0.1 M H2SO4 as
the potential was switched from 0.22 V to 0.41 V.
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Figure 24. Auger electron spectrum of Br-coated 6 ML Pd/Pt(111) after
immersion in 0.1 M H2SO4 at E = 0.41 V. Incident beam = 2 keV; beam current =
1 µA.
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Figure 25.  LEED pattern after exposing Br-coated 4 ML Pd/Pt(111) in 0.1 M
H2SO4 at E = 0.41 V. Beam energy = 62 eV; beam current = 2 µA. Experimental
details are described in the text.
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potential were continued. This scenario is different from bulk Pd electrodes at

which anodic dissolution (at ca. 0.41 V) is impeded by the formation of surface

oxides [5].

Cyclic voltammetry of the resultant adlayer in 0.1 M H2SO4 showed the

disappearance of the H UPD peak on step-sites and the dramatic decrease in the

signal intensity for the H UPD peak on terraces (Figure 26). The presence of

chemisorbed Br activates the preferential anodic dissolution of step-site Pd

adatoms. This claim is borne out of the observation that, in the absence of

chemisorbed Br, the step-site H UPD feature still persists (Figure 27) even after

multiple sweeps involving switching potentials greater than 0.41 V [81].  The

presence of the terrace-related peak is not surprising since the anodic

dissolution process leaves behind a Pd adlayer of ultrathin film coverages.

The ability of chemisorbed Br to facilitate anodic dissolution of ultrathin

Pd films is, hence, different from that of iodine.  Since the Pd-Br bond is weaker

relative to that of Pd-I bond, Br adatoms preferentially seek out the more

reactive surface defects (e.g., steps) on Pd, thereby making the chemisorption

more site-selective. In contrast, I adatoms are readily chemisorbed and

tenaciously sticks to the surface even at potentials bordering the anodic surface

oxidation of Pd. Within the same potential region, Br adatoms are easily

desorbed, consequently giving rise to a Br-free Pd surface as evidenced by both

AES and LEED. While it is certain that the above voltammetric results imply

Brads-enhanced surface mobility of Pd atoms, the mechanism of such

enhancement remains to be elucidated. The proximity of the potentials needed
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Figure 26.  Cyclic voltammogram of 6 ML Pd/Pt(111) in 0.1 M H2SO4, before and
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mV/s. Experimental details are described in the text.
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Figure 27. Cyclic voltammogram for 4 ML Pd film on Pt(111) after the 8th

potential cycle in 0.1 mM H2SO4. Scan rate = 2 mV/sec. Electrode area = 1.12
cm2.
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to initiate both Pd anodic dissolution and Br desorption accrues to the

complexity of electrochemically delineating the two processes.

Electrodeposition of Ultrathin Co Films on Pd Surfaces

Efforts to deposit electrochemically Co films on the Pd surfaces remain

exceedingly sparse, if not non-existent, because of the proximity of the

Nernstian deposition potential of Co and the onset potential of the hydrogen

evolution region. Furthermore, Co2+ ions precipitate out as hydroxides or

hydrated oxides in aqueous solutions close to neutral pH, and form sparingly

soluble salts with carbonates, phosphates, and sulfides [88]. Such combination

of chemical behavior limits the selection of supporting electrolytes and narrows

down the pH window to regions where the onset of the HER is delayed to

capture the Co deposition and stripping peaks.

Search for the Ideal Supporting Electrolyte

A good starting point for the electrolyte selection was the host of

industrial recipes that aim to deposit bulk Co coatings without prescriptive

concerns for well-defined surface coverages. Only feasible combinations were

ventured, considering that Pd surfaces are readily “poisoned” by organic

functionalities, e.g. –SH, -OH, -NH2, and phenyl groups, [5] that may be found

in elaborate buffer systems.

This broad survey was performed on thermally annealed polycrystalline

Pd surfaces; favorable results obtained from this work were used as basis for the

electrochemical protocols in the UHV-EC experiments. Documented on Table 2
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Table 2. Various electrolyte systems tested for the feasibility of electrodepositing
ultrathin Co films of well-defined coverages on polycrystalline Pd surfaces.
Experimental conditions were as described in the text.

Electrolyte System Feasibility of Co Electrodeposition

H2SO4

(i) 1 M
(ii) 0.1 M

No discernible Co deposition and stripping
peaks:
Onset of HER close to ocp, at E = –0.03 V
Onset of HER close to ocp, at E = –0.05 V

Na2SO4

(i) 0.1 M, pH = 7

(ii) 0.1 M, pH = 4 (added
with H2SO4)

(iii) 0.1 M, pH = 4
(buffered with 0.1M
CH3COOH –0.1 M
CH3COONa)

(iv) 0.1 M, pH = 7
(buffered with 0.1M
CH3COOH –0.1 M
CH3COONa,
adjusted with drops
of 0.01M NaOH)

(v) 0.1 M, 0.1 M H3BO3

Broad cathodic shoulder, centered at –0.65 V,
riding on a highly steep cathodic baseline,
suggests simultaneous occurrence of HER;
broad anodic peak at –0.35 V

No discernible Co deposition and stripping
peaks: Early onset of HER at E = –0.07 V

Broad cathodic shoulder, centered at –0.95 V,
riding on highly steep cathodic baseline,
suggests simultaneous occurrence of HER;
two irresolvable anodic peaks

Broad cathodic shoulder, between –0.10 V and
–0.40 V, riding on highly steep cathodic
baseline, suggests simultaneous occurrence of
HER; two irresolvable anodic peaks

Very small cathodic shoulder between –0.10 V
and –0.20 V; riding on a highly steep cathodic
baseline, suggests simultaneous occurrence of
HER; two irresolvable anodic peaks

NaClO4

(i) 0.1 M, pH = 7
(ii) 0.1 M, 0.1 M H3BO3

Broad cathodic shoulder, centered at –0.65 V,
riding on a highly steep cathodic baseline,
suggests simultaneous occurrence of HER;
broad anodic peak at –0.35 V
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are the electrolytes used in various attempts to deposit quantitatively ultrathin

Co films. The comments and observations were derived from cyclic

voltammetric experiments using 10 mM CoSO4•7H2O at a slow scan rate of 2

mV/s.  The potential scan was initiated in the cathodic direction and was

reversed typically at ca. –0.75 V to –1.10 V at which bulk deposition of Co should

have commenced; all potential readings were referenced against a Ag/AgCl (1M

NaCl) electrode. The feasibility of observing a Co-stripping peak was also

assessed for each complete potential cycle. None of these systems offered

feasible protocols for a quantitative electrodeposition of Co on Pd.

Employing a slow scan rate of 0.1 mV/s partly resolved the apparent

impasse presented by the tested electrolyte systems. This modification, however,

introduced additional challenges. To finish scanning the dynamic potential

window for a complete cyclic voltammetric survey (typically from ocp to a

negative switching potential ranging from –0.70 to –1.1V, and then back to the

double-layer potential region) required at least 3 hours. Such atypically long

deposition periods necessitated a constant supply of inert gas hovering over the

solution to prevent the entry of atmospheric contaminants such as O2.

Both the Na2SO4 and NaClO4 electrolyte systems showed promising

deposition and stripping peaks for Co at slow scan rate. Figures 28 and 29

showed that Co deposition and HER peaks can be separated at a scan rate of 0.1

mV/s. Special attention was, however, directed to the use of NaClO4 because of

the fact that sulfate ions form specifically adsorbed ordered adlayers on Pd and
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Figure 28. Voltammetric profile for the electrodeposition and stripping of Co on
Pd using 2 mM CoSO4 in 0.1 M Na2SO4 at a slow scan rate of 0.1 mV/s.
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Figure 29. Voltammetric profile for the electrodeposition and stripping of Co on
Pd using 2 mM CoSO4 in 0.1 M NaClO4 at a slow scan rate of 0.1 mV/s.
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Pt surfaces [89] while perchlorate ions are considered surface inactive within the

potential window of interest [90].

Potentiodynamic Electrodeposition of Co

The voltammetric profile of the chosen blank electrolyte, 0.1 M NaClO4, is

shown in Figure 30.  All scans were initiated in the cathodic direction at a scan

rate of 1.0 mV/s. The positive switching potential (E+λ) was set at –0.65V while

the following negative switching potentials (E-λ) were employed: –0.50 V, –0.60

V, –0.65 V, –0.70 V, and –0.75V.

The inception of HER was observed at ca. –0.10 V. The position and

intensity of the hydrogen desorption peak were dependent on the negative

switching potential, with the peak centered at –0.48 V for E-λ =  -0.75 V and –0.38

V for E-λ = –0.50 V.  The double-layer region lay between ca. 0.10 V to 0.20 V.

Surface oxidation of Pd commenced at ca. 0.40 V

A series of cyclic voltammetric experiments was conducted using 1, 2, 5,

and 10 mM Co2+ in 1.0 M NaClO4. Figure 31 revealed that the intensity of both

the cathodic and anodic features concomitantly increased with Co2+ ion

concentration. The peak separation, ΔE, between the cathodic and anodic peaks

decreased with increasing bulk Co2+ ion concentration.

A clear delineation of the Co deposition and stripping peaks allowed a

quantitative determination of the amount of Co electrodeposited on the Pd

surface. Calculations were based on the numerical integration of the area of the

cathodic and anodic peaks whose baselines were defined by the

superimposition of the corresponding blank-electrolyte voltammograms. The
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Figure 30. Cyclic voltammograms of Pt(111) in 0.1 M NaClO4 obtained at
different negative switching potentials.  Experimental details are described in
the text.
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Figure 31.  Potentiodynamic deposition and stripping of Co on Pd surfaces in
the presence of different concentrations of Co2+.  Experimental conditions are
described in the text.
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following approximations were employed: (i) Previous studies demonstrated

that a thermally annealed Pd polycrystalline surface is a composite of the (111)

(with a surface atom density, Γ = 1.5282 x 1015 atoms/cm2) and (100) (Γ = 1.3235

x 1015 atoms/cm2) facets in an empirical surface-area ratio of 55:45 [91]. (ii) Akin

to the Co/Pt system, ultrathin films of Co grew pseudomorphically on these

facets, i.e. a fully covered Pd surface contained one Co adatom for every one Pd

surface atom. The proximity of the lattice parameters of Pt and Pd made this

assumption not unreasonable. Based on these two approximations, the

integrated charges during the voltammetric scan can be nominally converted to

Co surface coverages, using the factor Q1 ML ≡ 598 µC for a 2e--electrodeposition

process.

Table 3 shows the subsequent increase in deposition charges as a function

of the bulk Co2+ ion concentration. It is important to note that the choice of the

negative switching potentials was determined by the emergence of the HER

peak, as evidenced by the formation of a cathodic plateau that terminated the

developing deposition peak. It can be inferred from the tabulated values that

only submonolayer coverages of Co can be formed using this slow

potentiodynamic deposition.

To obviate the long deposition times associated with such slow

voltammetric deposition, a combination of moderately fast deposition coupled

with ultraslow post-deposition analysis was tested. It was previously

demonstrated that a scan rate greater than 2 mV/s did not produce any

observable Co deposition peak; thus, it was not surprising to obtain a broad
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Table 3. Deposition and stripping charges as a function of the bulk Co2+ ion
concentration during a slow voltammetric scan from the double-layer region to
various negative switching potentials.

[Co2+] (mmol/L) Qdeposition (µC)  Qstripping (µC)

1 43.89 24.84

2 98.92 56.95

5 191.89 163.18

10 469.08 402.61
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Figure 32. Potentiodynamic deposition of Co at various scan rates, followed by
electrochemical stripping at ultraslow scan rate.
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cathodic peak in Figure 32. Results, however, clearly demonstrated the

possibility of quantitating the amount of electrodeposited Co after the fast

deposition (scan rate = 10 mV/s) because of the separation of anodic peaks

during a slow post-deposition analysis.

Potentiostatic Electrodeposition of Co

Prospects of depositing Co using a potential step experiment were

explored. Attempts of measuring the potentiostatic deposition charge were

stymied by the fact that the background charge (in 0.1 M NaClO4 as blank

electrolyte) was larger than the charge measured during Co deposition. It can be

inferred from these observations that Co and H compete for Pd surface sites, i.e.

the presence of Co on the surface slows down, if not impedes, the entry of H

into the Pd bulk. At potentials poised not far inside the HER (E < 0.75 V), Co can

coexist with H on a partly perturbed surface.

Various deposition potentials, ranging from the open-circuit value to

–0.75V (the deposition potential dictated by the Nernst equation), were tested.

The assumption that Co deposition can transpire at potentials more positive

than the Nernstian value was based upon the expected underpotential

deposition (UPD) phenomenon predicted by Kolb and Gerischer’s correlation

using work function differences between Co and Pd [92]. A typical

potentiostatic deposition experiment involved immersing a smooth Pd electrode

into a solution of 3 mM Co2+ in 0.1 M NaClO4 at the double-layer region (ca. 0.20

V) for 1 minute and switching the potential to the desired value for 5 minutes.
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The electrode was then rinsed thrice, under the chosen deposition potential,

with 0.1 M NaClO4 before conducting linear sweep voltammetry in Co-free

blank electrolyte at a slow scan rate of 0.1 mV/s.

At a deposition potential of –0.70 V (Figure 33), a large envelope anodic

peak was observed. Evident from the superimposed voltammogram for the

blank (broken-line trace) was the fact that the stripping charge from the Co-

coated electrode was larger than that of the bare Pd. Taking the difference

between the measured anodic charges of the pristine and Co-coated electrodes

did not represent the amount of electrodeposited Co since, as the deposition

charges suggested, the extent of H absorption-desorption for both surfaces was

highly dissimilar.  It was, however, clear from a comparison of the full-width-at-

half-maximum values for both anodic peaks in Figure 33, that Co-stripping and

H-desorption intricately overlapped. The possibility of improving the resolution

of these two peaks was explored by performing a post-deposition stripping in

basic media, in which H-desorption effects were expected to be minimized.

Electrochemical Behavior of Ultrathin Co Films in Alkaline Medium

Before the interfacial electrochemistry of the prepared ultrathin Co films

in basic medium can be fully investigated, the electrochemical behavior of clean,

smooth Pd electrodes needs to be established under the current experimental

conditions.



78

-8

-4

0

4

-0.8 -0.6 -0.4 -0.2 0 0.2
E/V vs. Ag/AgCl (1 mM NaCl)

i/ µ
A

Figure 33. Linear sweep voltammogram of potentiostatically deposited ultrathin
Co film on Pd.  Electrodeposition potential was set at –0.70 V for 5 minutes.
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The steady-state voltammetric profile of Pd in 0.1 M NaOH is presented

in Figure 34.   All scans were initiated from the open-circuit potential (ca. –0.20

V). Typically after the second cycle, a steady-state voltammogram can be

obtained. Two scan rates were employed for comparison: 1 mV/s and 10 mV/s.

The voltammetric features depicted in Figure 34 are congruent with the

generally accepted current-potential profile of Pd in basic medium [5]. It is

important to note that the reference electrode used for this purpose was a

Ag/AgCl electrode containing a saturated solution of NaCl; the measured

potential for this electrode was –0.60 V vs. a standard hydrogen electrode. The

onset of HER was observed to shift negatively, depending on the scan rate: ca.

–0.50 V at 1 mV/s, and –0.60 V at 10 mV/s.  The early inception of Pd-surface

oxidation at ca. –0.30 for both scan rates was not surprising since previous

studies have demonstrated that the electrochemical behavior of Pd in neutral-to-

basic aqueous solutions is predominantly governed by the surface-coordination

chemistry of Pd hydroxo complexes.

The prospect of performing post-deposition analysis in basic medium to

delineate different surface coverages of Co was investigated. Co electrodeposits

were potentiostatically prepared at –0.90 V using 2 mM and 10 mM Co(ClO4)4 in

0.1 M NaClO4 at a fixed deposition time of 5 min.  A large overpotential was

employed to ensure that sufficient Co was electrodeposited. The adlayers were

rinsed thoroughly with 0.1 M NaClO4 while holding the potential at –0.90 V

before initiating the scan in the anodic direction.
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Figure 34. Cyclic voltammogram of Pd in 0.1 M NaOH.  Experimental details are
described in the text.
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The Pourbaix diagram for Co stipulates [88] that Co is converted to CoO

or its hydrated form when in contact with 0.1 M NaOH at –0.89V. Thus, upon

immersing the prepared Co adlayer into 0.1 M NaOH, at a potential of –0.90V, a

positive upsurge in current was detected, indicating a solid-state anodic

conversion of zerovalent Co into divalent Co oxide. The current then declined

towards a stable negative reading after 2 minutes; the steady-state negative

current at –0.90 V implied that the oxided Co adlayer appeared to be permeable

towards hydrogen absorption and/or evolution.

The broad anodic oxidation peak (Figure 35) centered at ca. –0.70 V

marked the hydrogen desorption process.  The asymmetric peak at 0.17 V

signaled the formation of Co oxides of higher oxidation states. Beyond 0.55 V,

extensive oxygen evolution occurred. In the reverse scan, the reduction of the

oxided Co was marked by two cathodic peaks at 0.12 V and –0.10 V.  At the

positive switching potential (0.65 V) employed in the anodic scan, the Co oxide

layer was peeled off. Subsequently, the exposed Pd substrate was oxidized, as

can be inferred from the emergence of Pd-oxide reduction peak at ca. –0.30 V.

Results showed that, under potentiostatic conditions, the amount of Co

that can be electrodeposited at a chosen overpotential depends upon the initial

Co2+ concentration of the deposition bath. The fact that the Pd-oxide reduction

peak at ca. –0.30 V was smaller for the Co adlayer potentiostatically deposited

using 10 mM Co2+ implied that a higher initial surface coverage was prepared

using more concentrated Co2+ solution.  Also, the intensity of the Co-oxide
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Figure 35. Cyclic voltammetric profile of Co-coated Pd electrodes in Co-free 0.1
M NaOH.  Scan rate = 1.0 mV/s. Co electrodeposits were potentiostatically
prepared as described in the text. Superimposed is the voltammogram of bare
Pd in 0.1 M NaOH.
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formation/reduction peaks was found to be dependent on the initial surface

coverage of Co.

The nature of the asymmetric anodic peak at 0.17 V was elucidated by

performing multiple voltammetric cycles (Figure 36). A Co adlayer, prepared by

potentiostatic electrodeposition using 10 mM Co2+, was cycled in Co-free 0.1 M

NaOH at a scan rate of 1.0 mV/s.  The second cycle revealed that the anodic

peak at 0.17 V was actually composed of two peaks: the first peak at 0.02 V was

proposed to represent the formation of Co(III) oxide and/or oxide while the

peak at ca. 0.24 V marked its conversion to Co(IV) form. These assignments were

corroborated by the color changes that accompanied the potential sweep:

Vestiges of pink CoO/Co(OH)2 were transformed into a black-brown film

[Co(OH)2 or Co2O3•3H2O] as the potential hit 0.0 V in the anodic scan.

Multiple cycling led to the diminution of the redox-couple peaks for the

Co(II) →  Co(III) and Co(III) → Co(IV) solid-state transformation. A possible

anodic dissolution of these oxides at 0.65 V transpired, leading to the

regeneration of a voltammetric profile that resembled that of a Co-free Pd

surface in 0.1 M NaOH.

Electrochemical Behavior of Ultrathin Co Films in Aqueous Iodide

The ability of chemisorbed iodine to facilitate the surface ordering of

electrochemically roughened Pd surfaces is well-documented [93].  The unique
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Figure 36. Multiple cycling of Co-coated Pd electrode in 0.1 M NaOH.  Scan rate
= 1.0 mV/s.
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interfacial chemistry of between Pd and iodine provided the rationale for

studying the influence of this halogen on Co adlayers Pd surfaces.

Superimposed in Figure 37 are cyclic voltammograms for Pd immersed in

a Co deposition bath with and without 1 mM NaI.  A slow scan rate of 0.1 mV/s

was employed.  The deposition bath was composed of 3 mM Co(ClO4)2 in 0.1 M

NaClO4.  Similar voltammetric features were observed for both runs, except for

the notable peak potential shifts.  In the presence aqueous iodide, Co was

electrodeposited at a more negative potential, registering a peak at ca. –0.60 V.

This result implied that additional potential was required to deposit the same

amount of Co obtained under iodine-free conditions.

The anodic sweep gave identical onset potential for the Co-stripping

process.  Although the anodic peak in the presence of aqueous iodide appeared

more drawn out than that of the iodine-free system, a comparison of the

background-corrected Co-stripping charges for both cases revealed that they are

identical. Thus, the anodic Co dissolution process was evidently not altered by

the presence of iodine in bulk solution.  This finding was further confirmed

when the experiment was repeated by potentiodynamically electrodepositing

Co in iodine-free conditions, and then anodically scanning the potential while

the Co adlayer was exposed to 1 mM NaI in 0.1 M NaClO4.  Results in Figure 38

clearly showed that the voltammograms obtained with and without iodine are

indeed congruent.
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Figure 37. Cyclic voltammetry of Pd in 3 mM Co(ClO4)2 in the presence and
absence of 1 mM NaI.  Cyclic voltammogram for 1 mM NaI in 1.0 M NaClO4
was included for comparison. Scan rate = 0.1 mV/s.
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Figure 38. Linear sweep voltammogram of 8 ML Co/Pd(poly) in the presence
and absence of 1 mM NaI in 0.1 M NaClO4.  The Co film was prepared by
potentiodynamic deposition from the open-circuit potential to –0.55 V. Included
for comparison is the cyclic voltammogram for a smooth Pd electrode in 1 mM
NaI in 0.1 M NaClO4. Scan rate = 0.1 mV/s.
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Attempts at Electrodepositing Co on Pd(111)

The electrochemical preparation and characterization of ultrathin Co

films described in the previous sections were a prolegomenon to the

experimental protocols needed for the electrodeposition of Co on well-defined

single-crystal Pd surfaces.

Just like in the thin-layer electrochemical work, the interfacial

electrochemistry of a well-defined Pd(111) electrode in 0.1 M NaClO4 needed to

be characterized. Voltammetric features similar to those observed on

polycrystalline Pd surfaces were observed.  At a scan rate of 0.5 mV/s, the

inception of the HER was at ca. –0.35 V while the H-desorption process was

centered at ca. –0.15 V.  Figure 39 shows an overlay of the voltammetric profiles

of the blank electrolyte and that of 10 mM Co(ClO4)2 in 0.1 M NaClO4. No Co

electrodeposition and stripping peaks were discernible.  Similar negative results

were obtained when a much slower scan rate of 0.1 mV/s was employed.

The Auger electron spectrum (Figure 40), obtained after the replicating

the potentiodynamic deposition protocols established earlier, revealed the

absence of any Co deposit.  It is important to note that even at an extremely high

Co concentration of 1.0 M, no Co deposition was observed from voltammetric

and AES analyses.

When cyclic voltammetry in 0.1 M NaClO4 was performed using a

Pd(111) electrode that had been previously subjected to very positive potentials

(E ≥  0.70 V), dramatic changes in the voltammetric profile of the blank

electrolyte were observed.  Figure 41 is a collection of cyclic voltammograms of
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Figure 39.  Cyclic voltammetry of clean, well-ordered Pd(111) electrode in 10
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Figure 41.  Cyclic voltammogram of ORC-roughened Pd(111) in 0.1 M NaClO4 at
various negative switching potentials. Scan rate = 0.5 mV/s.  Superimposed for
comparison is the voltammogram (broken-line trace) for clean, well-ordered
Pd(111) in 0.1 M NaClO4.
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Pd(111) electrode in blank electrolyte (0.1 M NaClO4) at various negative

switching potentials; the electrode was roughened by oxidation-reduction cycles

(ORC). Included for comparison was the voltammetric profile of a highly-

ordered Pd(111) electrode. Specifically, a cathodic plateau developed between

–0.70 V and –1.0 V; the potential range for such plateau depended on the

duration and applied potential during anodic polarization. The H-desorption

peak in the anodic scan appeared very delayed and overlapped the region

where Co-stripping was expected to occur.

The extent of surface disorder brought about by anodic roughening upon

immersing the electrode in 0.1 M NaClO4 at 0.75 V for 2 minutes is clearly

depicted by the LEED pattern shown in Figure 42.

Attempts to deposit Co potentiodynamically were repeated using

electrochemically roughened Pd(111) substrates. Cyclic voltammograms in 10

mM Co2+ (Figure 43) showed the emergence of a new anodic peak centered at

–0.68 V.  The origin of this peak was ascribed to the Co-stripping process, as can

be deduced from the overlaid voltammetric profile of the blank solution.

The Co electrodeposition peak appeared as an ill-defined shoulder near

–0.75 V.  Results suggest that, on the electrochemically roughened Pd(111), the

Co adlayer has to be stripped off first before H-adsorption can begin.  This result

differed with observations from polycrystalline surfaces that indicated the H-

permeability of the formed Co adlayer.

The electrodeposition of Co on ORC-roughened surfaces was also

performed potentiostatically. A previously roughened Pd(111) electrode was
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Figure 42.  LEED pattern of Pd(111) (a) before and (b) after anodic roughening at
0.75 V for 2 minutes. Beam energy = 52 eV; beam current = 2 µA.
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Figure 43.  Cyclic voltammetry of anodically roughened Pd(111) electrode in 10
mM Co(ClO4)2/0.1 M NaClO4. Scan rate = 0.5 mV/s.
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exposed to 10 mM Co(ClO4)2 in 0.1 M NaClO4.  Co was electrodeposited by

switching the potential from the double-layer region to –0.85 V; deposition time

was set at 2 minutes.  A linear sweep voltammogram was recorded (Figure 44)

in Co-free 0.1 M NaClO4 at a scan rate of 0.5 mV/s.  The voltammetric signal at

–0.68 V resembled that obtained from the potentiodynamically electrodeposited

Co adlayer in Figure 43. A comparison of superimposed voltammograms for the

blank and the prepared adlayer clearly showed that the Co stripping and H-

desorption peaks were distinctly separated.

The presence of Co electrodeposits on the electrochemically roughened

Pd(111) surface was confirmed by Auger electron spectroscopy (Figure 45).  Co

registered a trio of peaks at ca. 650 eV, 710 eV, and 780 eV.  The appearance of Cl

and O peaks was noticeable amid the fact that the emersed electrode was

thoroughly rinsed ten times with water.  It can be argued that the application of

very positive potentials, close to the oxygen evolution region, introduced

surface defects that physically entrapped any remnant supporting electrolyte.

The proposed occurrence of electrochemical surface roughening was supported

by the absence of any discernible LEED pattern.

It is interesting to note that if the ORC-roughened Pd(111) electrode was

treated with 0.1 mM NaI in 0.1 M NaClO4 at open-circuit potential – an in-situ,

nonthermal procedure known to restore surface order [5] – no Co peaks were

discernible from voltammetric and AES analyses.  That an electrochemically

roughened Pd(111) surface is prerequisite to a successful Co electrodeposition

precluded further pursuits in establishing structure-reactivity correlations.
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Figure 44.  Linear sweep voltammogram of potentiostatically deposited Co on
electrochemically roughened Pd(111) in 0.1 M NaClO4. Co was electrodeposited
as described in the text. Scan rate = 0.5 mV/s.
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Figure 45.  Auger electron spectrum of Pd(111) after potentiodynamic deposition
of Co. Incident beam energy = 2 keV; beam current = 1 µA.
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Electrodeposition of Ultrathin Bi Films on Pd(111)

The so-called “green chemistry” movement has provided impetus for

designing environmentally friendly materials in various applied fields, such as

industrial catalysis, where the use of toxic transition heavy metals is

conceptually de rigueur [94]. For this purpose, bulk bismuth electrodes have been

investigated as alternative materials in mercury-based electroanalytical

detection of trace heavy metals [95]. Additional research interest emanates from

the special propensity of biomolecules, such as D-ribose [96] and adenosine [97],

to electrosorb at well-defined Bi(111) surfaces.  Thus far, no investigations have

been made on how the aforestated properties are affected if bulk Bi was

strategically scaled down to ultrathin film dimensions.

The following section describes the electrochemical preparation and

subsequent surface characterization of ultrathin Bi films on Pd(111) using

combined ultrahigh vacuum-electrochemical methods. The interfacial chemistry

of the prepared Bi electrodeposits was explored using the chemisorption of

iodine and the electrooxidation of D-glucose as surface probe reactions.

Cyclic Voltammetry of Pd(111) in Sulfuric Acid

Figure 46 displays a typical current-potential profile for a clean, well-

ordered Pd(111) disc.  The following features closely match with those reported

in previous works [89]:

(i) The onset of hydrogen evolution at –0.30 V is often preceded by a

cathodic spike close to –0.20 V; the origin of this shoulder and its anodic

counterpart at –0.25 V is ascribed to the hydrogen adsorption-desorption [98].
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(ii) A prominent peak centered at 0.55 V marks the anodic surface-

oxidation of Pd. Step-like shoulders at 0.27 V and 0.39 V originate from the

oxidation of the polycrystalline edges of the Pd(111) disc and the Pd wires of the

crystal holder. By changing the level of immersion of the electrode, such that the

exposed portion of the polycrystalline wires is minimized, it can be verified that

majority of the anodic signal observed within this potential region is ascribable

to the (111) facet (Figure 46).

(iii) The oxygen evolution region begins at ca. 0.70 V.

(iv) The large cathodic peak at 0.15 V indicates the reduction of the oxided

Pd surface.  The peak position slightly shifts negatively with increasing positive

switching potential as can be seen from Figure 47.

Electrochemical Behavior of Pd(111) in Aqueous Bi3+

A systematic study of the electrodeposition of Bi on Pd(111) entails

documenting the voltammetric profile of the electrode in the presence of Bi3+

ions in bulk solution. Figure 48 shows the cyclic voltammogram of a clean

Pd(111) in 1 mM Bi3+ in 0.1 M H2SO4. All scans were initially headed to the

cathodic direction.
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Figure 46. Current-potential profile of clean, well-ordered Pd(111) disk electrode
at various levels of immersion in 0.1 M H2SO4. Scan rate = 5 mV/s.  Geometrical
area = 1.9796 cm2.
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Figure 47. Effect of different positive switching potential on the reduction
potential of oxided Pd-surface.  Scan rate = 5 mV/s.
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Figure 48. Cyclic voltammogram of Pd(111) in 1 mM Bi3+/0.1 M H2SO4 at
different negative switching potentials.  Scan rate = 5 mV/s. Experimental
details are described in the text. The broken-line trace corresponds to the
voltammetric profile of 0.1 M H2SO4.
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Under the present experimental conditions, the electroreduction of Bi3+ to

zerovalent Bi is expected to occur at –0.27 V.  The emergence of a sharp cathodic

peak at –0.20 V signified the underpotential deposition (UPD) of Bi (from hereon

designated as BiUPD). Excursions to negative potentials that border the HER led to

the bulk deposition of Bi; its subsequent stripping appeared at ca. –0.04 V.

Adjacent to this bulk-stripping peak was a small shoulder (ca. 0.02 V) whose

position depended on the negative switching potential; by reversing the scan

just before the onset of bulk Bi deposition (Figure 48), this anodic peak appeared

at ca. 0.0 V.  This switching-potential-dependent peak was assigned to the

stripping of BiUPD.

The nature of the large anodic peak at 0.45 V deserved additional

attention.  The superimposed voltammogram of the blank electrolyte (broken-

line trace in Figure 48) showed that, on a pristine Pd(111) electrode, surface

oxidation began at ca. 0.22 V.  It was, therefore, not unreasonable to invoke the

possibility that the oxidative process represented by the peak at 0.45 V was a

composite of anodic signals from Pd surface-oxidation and anodic oxidation of

remnant BiUPD.  Essential to the understanding of the origin of this peak was the

observation that (i) its onset was more positive than that of the Pd-surface

oxidation; (ii) a flat double-layer potential region exists prior to its emergence;

the significantly large difference between the double-layer currents of bare

Pd(111) and its Bi-coated state can be ascribed to the capacitive contribution of

Bi3+ in bulk solution.  To further elucidate the anodic processes occurring within
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the 0.20 – 0.60 V region, a clean Pd(111) electrode was immersed in 1 mM

Bi3+/0.1 M H2SO4. A potential scan was initiated from the open-circuit potential

(0.27 V) and headed to the anodic direction.  Results are displayed in Figure 49.

The anodic sweep yielded two sharp peaks: The peak at 0.55 V corresponded to

the Pd surface-oxidation of the (111)-facet while the one at 0.45 V represented

the anodic oxidation of Bi adspecies.  These results, therefore, implied that by

simply immersing the Pd(111) electrode in Bi3+
(aq), without any applied potential

(i.e. at open-circuit condition), spontaneous electrodeposition of Bi on Pd(111)

transpires.

Spontaneous Deposition of Bi on Pd(111)

The phenomenon of spontaneous deposition of metals on noble-metal

surfaces has been noted in literature. For instance, mere exposure of Pt(hkl)

electrodes to a solution RuCl3 in acid electrolyte leads to the formation of Ru

islands that enhances the electrocatalytic performance of Pt for methanol

oxidation [99]. The electrodeposition of Bi on Pt(111) is an illustrative case where

a less noble metal, like Bi, is reduced to form zerovalent Bi [58-61]. This

apparently counterintuitive phenomenon is not surprising for catalytic surfaces

[61], such as Pd, which show propensity to form surface hydroxo- and oxo-

complexes, especially in neutral to basic media. It can be surmised that the

signal between 0.20 V and 0.60 V is a result of the anodic oxidation of adsorbed
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Figure 49. Anodically initiated potential scan in 1 mM Bi3+/0.1 M H2SO4. Scan
rate = 5 mV/s.  Experimental details are described in the text.  The broken-line
trace corresponds to the voltammetric profile of 0.1 M H2SO4.
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Bi0 and/or contributions from Pd-surface oxidation that becomes more

predominant at more positive potentials.

Coulometric charge measurements between 0.20 V and 0.65 V allowed a

quantitative assessment of the contribution of each oxidative process.  A pristine

Pd(111), immersed in 0.1 M H2SO4, accumulated 955.2  ± 0.6 µC of anodic charge

for 2 minutes, while a Pd surface modified by spontaneously deposited Bi

produced a total anodic charge of 958.1  ± 0.6 µC. The difference between the

two values (2.9 µC) represented the charge associated with the anodic process

involving Bi electrodeposits.  Such background-corrected anodic charge can be

converted to the amount of Bi spontaneously deposited, by virtue of Faraday’s

Law, if the number of moles electrons released per mole reaction were known.

Similar challenges surrounding the determination of the exact anodic

process between 0.20 V and 0.65 V were documented in electrodeposition

studies of Bi on Pt(111).  Clavilier originally proposed the possible formation of

BiOads or Bi(OH)2ads [61]. Using temperature-dependent voltammetric

measurements, Feliu and Jerkiewicz [58] claimed that the adsorbed Bi is

anodically converted to Bi(OH)2 via surface electronic effects; based on

thermodynamic arguments, a Born-Haber cycle was constructed, allowing an

empirically derived ΔHf
o value of –44 kJ/mol ascribed to Bi(OH)2.  On the other

hand, Kolb and coworkers inferred from ex situ XPS analysis the post-anodic

presence of zerovalent Bi [60] even though a slight 0.5 eV-shift from the

zerovalent Bi 5f core level was observed; such shift was ascribed to the strong
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Bi-Pd interaction, the influence of coadsorbed anions, [60] and Bi-induced

changes in the local potential of zero charge (pzc) for Pd(111) [100]. The absence

of a consensus in the interpretation of the aforestated anodic process in the Bi-

Pt(111) case prompted a similar ex situ XPS analysis of the Bi adlayer prepared

in the present investigation.

Shown in Figure 50 is the XPS spectrum for a Bi adlayer electrodeposited

onto a thermally annealed polycrystalline Pd foil at a deposition potential of

–0.10 V for 2 minutes using 1 mM Bi3+/0.1M H2SO4. The resulting Bi adlayer was

thoroughly rinsed with blank electrolyte under potential control (–0.10 V), after

which the potential was switched to 0.45 V for 2 min. Superimposed for

comparison on the spectrum is a Bi2O3 standard.

XPS results revealed that the doublet (159.40 eV and 164.48 eV) exhibited

by the anodically oxidized Bi adlayer corresponded to a set of slightly blue-

shifted peaks (+0.31 eV) for a trivalent Bi. Binding energies for zerovalent Bi lie

between 156.9 eV and 157.1 eV. While these results failed to render

unambiguous evidence to the existence of divalent Bi, the peak positions

demonstrated the absence of zerovalent Bi; i.e. it is possible that the metastable,

anodically generated divalent Bi was converted to the thermodynamically stable

trivalent state during sample transfer. A caveat to this interpretation is the

inherently complicated nature of an ex situ analysis that is highly vulnerable to

extraneous factors arising from the temporal gap between the electrochemical

preparation and surface characterization.  Moreover, the absence of a stable XPS
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Figure 50. X-ray photoelectron spectrum of the Bi 4f core levels for a Bi/Pd foil
adlayer prepared by potentiostatic deposition at –0.10 V followed by anodic
polarization at 0.45 V. Included for comparison is the spectrum of Bi2O3
standard.
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standard for the divalent species debilitated the elucidation of the real chemical

state of Bi. Further support to the existence of this divalent Bi, however, can be

gleaned from a background-corrected conservation-of-charge analysis [vide

infra].

Efforts to document further the surface structure and geometry of

spontaneously deposited Bi adatoms on Pd(111), using LEED and AES, were

thwarted by the fact that there were no discernible differences between pre- and

post-spontaneous-deposition LEED patterns (Figure 51), indicating the absence

of long-range surface order. A similar case was observed UHV-prepared Bi

adlayers on Pt(111), where it was concluded that, at very low coverages, Bi

adatoms are randomly dispersed without forming two-dimensional surface

islands [101, 102]. Complementary quantitation revealed that a Bi surface

coverage of ca. 0.30 ML was spontaneously electrodeposited (Figure 52).

Underpotential Deposition of Bi on Pd(111)

Electrochemical preparation of ultrathin Bi films with well-defined

coverages relies on the construction of an electrodeposition isotherm. Unlike

most surface-coverage isotherms that assume reversible conditions, the isotherm

presented in this study involves a thermodynamically irreversible deposition of

Bi on Pd(111), i.e. the applied potential required for electrodeposition is

distinctly different from the potential needed for dissolution.

Figure 48 had already demonstrated the existence of Bi UPD.  A slow

potential sweep, shown in Figure 53, however, revealed an additional UPD peak
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Figure 51. LEED pattern of Pd(111) surface (a) before and (b) after spontaneous
electrodeposition of Bi.  Beam energy = 52 eV; beam current = 2 µA.
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Figure 52. Auger electron spectrum of Pd(111) surface modified by
spontaneously electrodeposited Bi.  Incident beam energy = 2 keV; beam current
= 1 µA.



112

-6

-3

0

3

6

9

-0.3 0 0.3 0.6

E/V vs. Ag/AgCl (1 mM NaCl)

i/ µ
A

Figure 53.  Underpotential deposition peaks of Bi on well-defined Pd(111)
observed at a slow scan rate of 0.5 mV/s. Potential scans are carried at various
negative switching potentials.
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at 0.10 V.  For multivalent ions, such as Cu2+, the appearance of multiple UPD

peaks is not uncommon [103].

That the first UPD peak was only discernible at a slow scan rate

underscored the kinetic barrier for such deposition.  Upon reversing the sweep

after the completion of the first UPD peak (Figure 53), the anodic counterpart

appeared to be a composite part of the huge peak centered at 0.45 V.  When the

scan was returned to the cathodic direction, the first UPD peak became ill-

defined. This behavior is often associated with the fact that UPD is a highly

surface-structure-sensitive process that is influenced by potential-induced

surface perturbations. The first UPD, therefore, demands a smooth Pd surface;

any topographical modification, possibly due to minuscule traces of Bi adatoms

left after reducing the oxided Pd surface, precludes the already kinetically

hindered UPD of Bi.  On the other hand, the second UPD peak at –0.10 V

appeared to be more kinetically facile and less structure sensitive, since its

emergence was not seriously affected by the second round of potential scan and

was observable at moderately slow sweep rates.

Electrodeposition Isotherm of Bi on Pd(111)

A series of potentiostatic deposition at various potentials, ranging from

the open-circuit value to a slight Bi-deposition overpotential, was performed.

For each selected potential, chronocoulometric measurements were obtained to

determine the amount of electrodeposited Bi.  Also, post-deposition quantitative

analysis of Bi was performed using peak-to-peak measurements of the Auger Bi

peak at 101 eV. Each peak-to-peak value of Bi was normalized by dividing it by
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the corresponding value of the accompanying Pd MNN transition. It is

important to note that, as the electrode is transferred from the electrolyte

solution into the UHV chamber, the emersion layer surrounding the

electrodeposited Bi adlayer contains a lot of sulfate ions.  These remnant ions,

however, can be removed by multiple rinsing with water, as can be gleaned

from the Auger electron spectrum displayed in Figure 54.

Figure 55 shows the constructed electrodeposition isotherm for Bi.  A

well-defined Pd(111) electrode was immersed for two minutes in 1 mM Bi3+/0.1

M H2SO4 at the following potentials: 0.0 V, –0.05 V, –0.10 V, –0.15 V, –0.20 V, and

–0.30 V. The y-axis on the left represents Bi coverage, ΘBi, calculated from

chronocoulometric analyses. In this case, ΘBi is the ratio of the surface packing

density of Bi to that of the Pd substrate.  It is, however, important to note that

based on geometric considerations of the Bi metallic radius (1.85 Å), a full Bi

monolayer is completed at ΘBi
 = 0.56 [101].

The y-axis on the left represents the normalized peak-to-peak Bi Auger

signals. While the nominal scale for both y-axes is different, the close

morphological correspondence of the two isotherms points to the fact that one

technique complements the other.

From the LEED pattern (Figure 56 a-f) that accompanies each deposition

experiment, the following trends can be inferred:

(i) Submonolayer coverages of Bi (ΘBi ≤ 0.2) do not form long-range well-
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Figure 55. Electrodeposition isotherm of Bi on Pd(111) based on
chronocoulometry (left axis) and Auger peak-to-peak analysis (right axis).
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Figure 56. LEED patterns of (a) clean, well-ordered Pd(111); and ultrathin Bi
films electrodeposited at (b) 0.00 V, (c) –0.10 V, (d) –0.15 V, (e) –0.20 V, and (f)
–0.30 V. Beam energy = 42 eV; beam current = 2 µA.  Corresponding Bi
coverages are given in Figure 55.

A B

E F

a b

c d

e f



118

ordered adlattices as indicated by the diffuse (1 x 1) hexagonal LEED pattern;

this result is in contrast to the acquisition of p(2x2) LEED pattern from vapor

deposited Bi films on Pt(111) at 110 K at ΘBi = 0.25 [101].

(ii) The persistence of the (√3 x √3) adlattice geometry beyond ΘBi = 0.33,

terminating at ΘBi
 = 0.59, implies that the electrodeposited Bi adlayer is

compressible; i.e. additional Bi adatoms can be accommodated by the surface

with minimal adlattice distortion that is undetectable the LEED system

employed in the study.

(iii) Beyond the surface saturation coverage of ΘBi
 = 0.56, a highly

disordered surface is indicated, most probably due to island formation and

growth.  It can be deduced that the growth of Bi on Pd(111) follows the Stranski-

Krastanov mode.

Electrochemical Behavior of Ultrathin Bi Films on Pd(111)

The interfacial electrochemistry of the prepared metal adlayer often

varies significantly when exposed to an electrolytic solution that does not

contain the corresponding metal ion. This behavioral change is predicted by the

Nernst equation, which stipulates the logarithmic influence of solution ion

concentration on the effective reduction/oxidation potential, E, of the metal

film.

  

€ 

M(aq)
n+  + n e-   

€ 

M(s)
0

E  = Eo -  
  

€ 

0.0591
n

 log 1
[Mn+]
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 To establish that the redox peaks observed in Figure 53 were ascribable to

surface-confined, not bulk solution, reactions, ultrathin Bi films of various

coverages were subjected to a series of voltammetric experiments in blank

electrolyte solution.

Emersion and Electrochemical Stability

Ultrathin Bi films, with coverages ranging from ΘBi = 0.2 to 1.4, were

potentiostatically prepared at deposition potentials (Edep) indicated by the

constructed isotherm. The films were rinsed thrice with 0.1 M H2SO4 under

potential control (specifically at Edep) before they were exposed to a fresh batch

of blank electrolyte solution without any applied potential.  After 10 minutes,

the open-circuit potential for all three Bi adlayers converged at ca. 0.20 V.

Subsequent cyclic voltammetry, initiated in the anodic direction, gave rise to

identical current-potential profile for the three adlayers as shown in Figure 57.

The emergence of the anodic peak at 0.45 V suggested that submonolayer

coverages of Bi remained on the Pd surface after the soaking experiment.

To preserve the integrity of the electrodeposited Bi adlayer, emersion

techniques were employed after each electrodeposition; i.e. the electrode was

removed from the deposition bath under potential control that corresponded to

the deposition potential; subsequent rinses were also performed under the same

potential control regimes. Figure 58 displays the voltammograms of the

ultrathin Bi films emersed from various potentials. The similarity of the

voltammetric features in Figure 58 with those obtained in the presence of bulk
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Figure 57. Cyclic voltammogram of ultrathin Bi films (ΘBi
 = 0.2 to 1.4) in 0.1 M

H2SO4 obtained after immersing the film without potential control in 0.1 M
H2SO4. Scan rate = 5 mv/s.
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Figure 58. Ultrathin Bi films, emersed at their corresponding deposition
potentials, and subjected to cyclic voltammetry in Bi-free 0.1 M H2SO4. Scan rate
= 0.5 mV/s.



122

Bi3+ ions (Figure 49) supported the claim that the redox signals emanated from

surface reactions.

A charge-balance analysis for the anodic oxidation for 0.39 and 1.4 ML Bi

was performed. A potential-step experiment was conducted from the deposition

potential, Edep, to 0.65 V.  The accumulated charge was measured after 2 minutes.

All charge measurements were corrected using the background charge for a

pristine Pd(111) immersed in 0.1 M H2SO4.  At first glance, the total oxidation

charge appeared smaller than the deposition charge as can be gleaned from the

Qoxidation/ Qdeposition ratio, which is less than 1.0  (Table 4).

This apparent discrepancy was further scrutinized by performing a two-

step sequential anodic oxidation at the following potential ranges: Edep to 0.0 V;

0.0 V to 0.65 V.  The choice for these potential regimes was dictated by the fact

that 0.0 V marked the anodic oxidation of bulk Bi electrodeposited at the

Nernstian potential,  

€ 

EBi3+/Bi . Results are shown in Table 5.
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Table 4. Deposition and anodic oxidation charge-analysis for a potential-step
experiment from the deposition potential to 0.65 V.

ΘBi   

€ 

Qdeposition  (mC)   

€ 

Qoxidation  (mC)
  

€ 

Q oxidation

Qdeposition

0.39 0.49 ± 0.06 0.33 ± 0.08 0.67 ± 0.18

1.4 1.2 ± 0.01 0.89 ± 0.06 0.74 ± 0.05
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Table 5. Deposition and anodic oxidation charge-analysis for a potential-step
experiment carried out in two sequential stages: from the deposition potential to
0.0 V, followed by a potential switch from 0.0 V to 0.65 V.

ΘBi   

€ 

Qdeposition

(mC)
  

€ 

Qa
oxidation

(mC)
  

€ 

Qb
oxidation

(mC)   

€ 

Qb
oxidation

Qdeposition −Qa
oxidation

0.39 0.49 ± 0.06 0.00 ± 0.01 0.33 ± 0.06 0.67

1.4 1.2 ± 0.01 0.29 ± 0.01 0.61 ± 0.01 0.67

a Potential was switched from E1 = -0.10 V to E2 = 0.0 V
b  Potential was switched from E1 = 0.0 V to E2 = 0.65 V
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Conservation of deposition-oxidation charges was attained by proposing

the following sequence of redox processes. Between –0.15 V and 0.0 V, BiUPD was

anodically stripped off, releasing Bi3+ ions to the bulk solution.  The stripping

process was, however, not exhaustive. Remnant BiUPD was completely peeled off

from the Pd(111) surface, as the potential was switched from 0.0 V to 0.65 V.

Such anodic dissolution involved the conversion of BiUPD into Bi2+, an

electrogenerated metastable adspecies that has been previously reported on

Pt(111) surfaces [58-59, 61]. The formation of Bi2+ was inferred from the

observation that only 2/3 of the deposition charge remaining after the potential-

step experiment terminated at 0.0 V was used up at 0.65 V.  Cyclic voltammetry,

after this 2-minute polarization at 0.65 V, yielded a current-potential profile of a

Bi-free Pd(111) electrode, suggesting complete anodic dissolution of Bi adatoms.

From the above results, it can be deduced that for multilayer Bi-on-Bi

surface ensembles (typified by ΘBi = 1.4), anodic dissolution proceeds at

potentials between –0.15 V and 0.0 V, until only a full monolayer of Bi remains

on the Pd(111) surface. To strip off Bi adatoms that are directly in contact with

the Pd surface requires the application of more positive potential (E ≥ 0.65 V).

The following equations summarize the coverage-dependent anodic

processes of ultrathin Bi films:

 (i) Pd(111)–Bi–Bi  Bi3+
(aq) + 3e- E = 0.0 V

 (ii) Pd(111)–Bi Bi2+
(aq) + 2e- E ≥ 0.65 V
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The accompanying reduction reaction is surmised to be the conversion of

aqueous H+ to hydrogen gas:

(iii) 2 H+
(aq) + 2e- H2 (g)

Influence of Halides on the Electrochemical Behavior of Ultrathin Bi Films

Interest on examining the effects of iodide and bromide ions on the

interfacial electrochemistry of ultrathin Bi films on Pd(111) emanates from the

fact that: (i) Iodide ions are oxidatively chemisorbed onto Pd surfaces to form a

well-characterized zerovalent iodine adlayer that retains the metallic nature of

the substrate [5, 104]. (ii) While Iads is strongly bound to Pd, the Brads-on-Pd

system represents a prototypical case of intermediate surface-ligand-to-metal-

substrate interactions among members of the halogen family. (iii) Bismuth ions

form insoluble precipitates with iodide and bromide ions; in the presence of

excess halide, the precipitate dissolves to form the halo complex, BiX2- [105].

A well-defined Pd(111) electrode was immersed for 2 minutes in a

solution of 0.1 mM NaI/0.1 M H2SO4 at a potential slightly more positive than

the open-circuit value (ca. 0.28 V). The resulting adlayer had a (√3 x√3) geometry

(Figure 59) as previously reported [35].

The current-potential profile of the iodine-modified Pd electrode

immersed in 1 mM Bi3+/0.1 M H2SO4 (Figure 60) shared similar features with a

pristine Pd(111) electrode exposed to the same deposition bath (inner trace of

Figure 48). Background-corrected anodic and cathodic currents were, however,

almost twice as large as those obtained from unmodified Pd electrodes.  Such
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Figure 59. LEED pattern obtained (a) before and (b) after immersing Pd(111) into
a solution of 0.1 mM NaI/0.1 M H2SO4 at 0.28 V.  Beam energy = 42 eV; beam
current = 2 µA.
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Figure 60.  Cyclic voltammogram of Pd(111)(√3x√3)R30o-I in 0.1 mM Bi3+/0.1 M
H2SO4 at a scan rate of 5 mV/s.  Broken-line trace is the voltammetric profile of
Pd(111)(√3x√3)R30o-I in 0.1 M H2SO4.
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current-signal enhancement suggested that the electrodeposition-desorption of

BiUPD was more kinetically facile on the Pd(111)(√3x√3)R30o-I electrode.

Furthermore, the presence of Iads altered the energetics of BiUPD electrodeposition:

A full Bi coverage was achieved at a potential (–0.06 V) more positive than that

on an unmodified Pd(111) surface (–0.15 V). The origin of this deposition-

potential shift is not yet fully understood although it is reasonable to ascribe this

shift to Iads-induced changes in the electronic properties of Pd.

The effect of aqueous iodide on the electrodeposited Bi adlayers was

investigated by emersing ultrathin Bi films of various coverages in 0.1 mM

NaI/0.1 M H2SO4 at potentials corresponding to the those needed to deposit Bi

potentiostatically. The resulting surface structure and composition were

monitored by LEED and AES, respectively.

Post-iodine-emersion Auger electron spectra were monitored for Bi

adlayers with different surface coverages. On a Pd(111) surface modified by

spontaneously electrodeposited Bi adatoms, iodine was chemisorbed along with

Bi at coverages of ΘBi = 0.07 and ΘI
 = 0.29, as can be gleaned from the peak-to-

peak analysis of the Auger Bi (Figure 61a) and I (Figure 62a) transitions. Such

mixed Bi-I adlayer gave rise to a √3x√3 LEED pattern as shown in Figure 63.

These results suggested that the presence of trace amounts of Bi on the Pd(111)-

(√3x√3)-I adlattice did not drastically perturb the long-range order of the Pd-I

interface; i.e. it can be argued that Bi (metallic radius, 1.85 Å) behaved like a

substitutional impurity for I (van der Waal’s radius, 1.96 Å) on the



130

Pd(111)(√3x√3)R30o-I adlattice.  A proposed real-space model of this mixed

adlayer is given in Figure 63c.

From the electrodeposition isotherm and its accompanying LEED pattern

analysis (Figures 55 and 56), it had established that, within a potential window

of –0.10 V to –0.20 V, Bi adatoms assumed a (√3x√3) geometry on the Pd(111)

surface.  When ultrathin Bi films with coverages of ΘBi
  = 0.33 and 0.59 were

emersed from 0.1 mM NaI/0.1 M H2SO4, both adlayers yielded (√3 x √7) LEED

patterns (Figure 64). Considering that at ΘBi = 0.56 the Pd(111) surface is already

saturated by a full monolayer of Bi, it can be deduced that the iodine adatoms

detected by AES (Figure 62) rest on the Bi adlayer. The slight decline in the Bi

peak intensity after the iodine emersion process supports the notion that iodine

forms a superlattice on top of Bi, thereby attenuating the Bi AES signal.

The (√3 x √7) Bi-I superlattice observed on both emersed ultrathin Bi films

(ΘBi = 0.33 and 0.59) is most probably a composite of a (√3 x√3)-Bi adlayer

decorated with a fixed coverage of iodine as evidenced by the similarity of the

AES I peak-to-peak heights for both systems (Figures 62 a and b). When an I-

coated Pd(111) electrode was submerged to a Bi3+-deposition bath at –0.10 V and

–0.20 V (respectively corresponding to ΘBi = 0.33 and 0.59), the same (√3 x √7) Bi-

I superlattice (Figure 64 c and d) was obtained. Hence, regardless of the order of

deposition, iodine would always like to stay on surface of the superlattice in a

manner reminiscent to what was observed between Ag and I on Pt(111) [106].
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Figure 61. Effect of NaI(aq)-emersion on the Auger Bi transition peak intensity for
ultrathin films potentiodynamically prepared by scanning the potential from
ocp to various final potentials : (a) ocp, 0.27 V (b) –0.10 V, and (c) –0.20 V. The
broken-line trace is the spectrum for (Bi-free surface) Pd(111)(√3x√3)R30o-I
adlayer.
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Figure 62. Effect of NaI(aq)-emersion on the Auger I transition peak intensity for
ultrathin films potentiodynamically prepared by scanning the potential from
ocp to various final potentials : (a) ocp, 0.27 V, (b) –0.10 V, and (c) –0.20 V. The
broken-line trace is the spectrum for (Bi-free surface) Pd(111)(√3x√3)R30o-I
adlayer.
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Figure 63.  LEED pattern of Bi adlattice on Pd(111) deposited at open-circuit
potential, 0.27V (a) before and (b) after emersion from 0.1 mM NaI in 0.1 M
H2SO4 at 0.27 V; deposition time is 5 minutes; beam energy = 52 eV; beam
current = 2.5 µA;  (c) proposed real-space model for the observed LEED pattern:
Red spheres = iodine; green spheres = bismuth; white spheres = palladium.
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Figure 64. A (√3 x √7) LEED pattern obtained from (a) Bi adlayer
electrodeposited at –0.10 V and then emersed from NaI(aq); (b) Bi adlayer
electrodeposited at –0.20 V and then emersed from NaI(a); (c) Bi adlayer
electrodeposited at –0.10 V onto Pd(111)(√3x√3)R30o-I; (d) Bi adlayer
electrodeposited at –0.20 V onto Pd(111)(√3x√3)R30o-I.  Beam energey = 34 eV;
beam current = 2 µA.
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A proposed real-space model for the (√3 x √7) Bi-I superlattice is

displayed in Figure 65. The (√3 x √7) notation pertains to the dimensions of unit

mesh of the I adlayer on Bi. The proposed model posits the I atoms on the 3-fold

site of the (√3 x √3) Bi adlattice; this site is also coincident with an exposed 3-fold

hollow site of the underlying Pd substrate.

Electrooxidation of D-glucose on Bi/Pd(111) in Alkaline Media

Bismuth-modified Pd electrodes have been reported to exhibit enhanced

electrocatalytic performance in the electrooxidation of HCOOH [62] and in the

electrosynthesis of fine chemicals [68]. In this investigation, D-glucose was

chosen as a surface probe to interrogate the aptitude of the prepared ultrathin Bi

films towards electrooxidation. Current interest on the Bi-Pd system also lies on

its potential as biocompatible fuel cell electrodes using glucose-based feedstock.

The chosen experimental conditions were suited to match those that produce δ-

gluconolactone, an industrially important ligand in the food and cosmetics

industry.

Shown in Figure 66 is the base cyclic voltammetry of a clean, well-

ordered Pd(111) electrode in 0.1 M Na2SO4 solution adjusted to pH 10 with

drops of 1 M NaOH(aq). Anodic surface oxidation commenced quite early at 0.10

V, a phenomenon that was quite typical in basic media where the

electrochemistry of Pd(111) was dominated by the formation of hydroxo surface

complexes [5].  Unlike the case of 0.1 M H2SO4, no sharp signature peak

corresponding to the anodic oxidation of the (111) facet was discernible.
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Figure 65. Proposed real-space model of (√3 x √7) LEED pattern.  Red spheres =
iodine; green spheres = bismuth; white spheres = palladium.
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Figure 66.  Cyclic voltammogram of clean and well-ordered Pd(111) in 0.1 M
Na2SO4 (pH 10).  Scan rate = 5 mV/s.
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The electrochemical reactivity of bare Pd(111) surface towards the

electrooxidation of D-glucose was surveyed in Figure 67. A potential scan

initiated in the cathodic direction yielded a sharp anodic peak at –0.28 V, which

marked the formation of δ-gluconolactone.  As the scan was reversed at –0.70 V,

a broad anodic envelope developed, with its center close to 0.0 V.  This huge

peak was attributed to the further oxidation of δ-gluconolactone. While the

present experiment did not aim to identify these oxidation products, it was

evident from the reverse scan at 0.35 V that the absence of any anodic peak

between 0.0 V and –0.80 V (broken-trace in Figure 67) indicated the suppression

of D-glucose electrooxidation by remnant oxidation products that blocked the

Pd(111) surface from further reaction.

If the positive switching potential was poised at 0.80 V, where Pd-surface

oxidation transpired, the anodic peak for the electrooxidation of D-glucose re-

emerged.  The onset of such process took place at a potential (–0.40 V) more

negative  than the initial scan, indicating a more energetically favored

electrooxidation but the kinetics became sluggish as evidenced by the smaller

anodic peak intensity.

The influence of ultrathin Bi films on the electrocatalytic effects of Pd was

investigated by cycling a Bi adlayer (ΘBi
 =  1.4) in 5 mM D-glucose/0.1 M Na2SO4

(pH 10).  A quick comparison between Figures 67 and 68 suggested no dramatic

kinetic enhancement brought about by the presence of ultrathin Bi films.

However, no excursion to very positive potentials are necessary to remove the
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Figure 67.  Cyclic voltammogram of Pd(111) in 5 mM D-glucose/0.1 M Na2SO4
(pH 10).  Scan rate = 5 mV/s.
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Figure 68.  Steady-state cyclic voltammogram of ultrathin Bi film (ΘBi = 1.4) in 5
mM D-glucose/0.1 M Na2SO4 (pH 10).  Scan rate = 5 mV/s.
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oxidation products of δ-gluconolactone; i.e. the Bi-modified Pd(111) surface was

not deactivated towards further electrooxidation of D-glucose. Under the same

potential window, a bare Pd(111) electrode would have been poisoned by any

remnant surface species. It is possible that these surface poisons are not strongly

attracted to the ultrathin Bi film, and are therefore readily desorbed anodically

at ca. 0.20 V.

The same electrooxidation experiment was repeated using an ultrathin Bi

film with θBi = 0.19. The absence of the signature anodic peak for D-glucose

oxidation (Figure 69) implies that, at very low coverages, randomly dispersed Bi

adatoms act as surface blocks for the electrosorption and subsequent

electrooxidation of D-glucose. The same site-blocking effect was observed when

a Pd(111)-(√3x√3)-Bi adlayer (θBi = 0.33) was subjected to a voltammetric scan

initially headed to the anodic direction. As previously demonstrated, excursions

to potentials greater than 0.70 V led to the anodic dissolution of the

electrodeposited Bi. The present results, however, showed that after the

potential scan small traces of Bi remained on the surface, consequently

preventing the electrooxidation of D-glucose (Figure 70).
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Figure 69.  Cyclic voltammogram of ultrathin Bi film (ΘBi = 0.19) in 5 mM D-
glucose/0.1 M Na2SO4 (pH 10).  Scan rate = 5 mV/s.
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Figure 70.  Cyclic voltammogram of ultrathin Bi film (ΘBi
 = 0.33) on Pd(111) in 5

mM D-glucose/0.1 M Na2SO4 with a scan initiated in the anodic direction. Scan
rate = 5 mV/s.
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CONCLUSIONS

Electrochemical protocols were established for the potentiostatic

deposition of ultrathin films of (i) Pd on Pt(111); (ii) Co on polycrystalline Pd

and Pd(111); and (iii) Bi on Pd(111). The investigation consolidated the

capabilities of conventional electrochemistry (voltammetry and coulometry) and

ultrahigh vacuum electron spectroscopies (Auger electron spectroscopy, AES;

low energy electron diffraction, LEED; X-ray photoelectron spectroscopy, XPS)

to characterize the interfacial electrochemistry of the prepared adlayers.

Step-site-selective interaction of aqueous bromide with ultrathin Pd films

on Pt(111) allowed the possibility of electrochemical annealing, a nonthermal

analogue of inducing long-range surface order. Surface smoothening effects

were anchored on the fact that, in the presence of chemisorbed bromine, Pd

adatoms occupying defect sites (steps) were preferentially dissolved or

rearranged by potential excursions to regions that bordered the hydrogen

evolution reaction and the anodic surface oxidation of the ultrathin Pd film.

Unlike chemisorbed iodine that tenaciously lingered on the Pd surface, the

bromine case presented a relatively facile adsorption-desorption process that left

behind an ordered, bromine-free and oxide-free Pd surface.

On a clean Pd(111) electrode, Co electrodeposition was virtually nil

except when the surface was roughened by oxidation-reduction cycles (ORC);

under this condition no Co surface coverages were measured.  Electrodeposition

was, however, possible on a thermally annealed polycrystalline Pd surface,
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which is a composite surface of the (111) and (100) facets. The deposition process

was electrochemically irreversible.  In the absence of large overpotentials (E >

E  

€ 

Co2+/ Co
o ), only submonolayer coverages of Co were formed.

Iodine chemisorption at Pd surfaces retarded not only the onset of

hydrogen absorption but  a lso the e lectrodeposit ion of

Co.  Exposure of the prepared Co adlayer to aqueous iodide did not alter the

anodic behavior of the Co electrodeposit.  The current-potential profile of the

ultrathin Co films in basic medium was characterized by a complex set of anodic

peaks representing the subsequent conversion of Co oxide/hydroxide into

higher oxidation states.

Well-defined ultrathin Bi films were electrodeposited at controlled

potential onto Pd(111). At submonolayer coverages (ΘBi
 ≤ 0.2), Bi adatoms did

not form long-range well-ordered surface structures. The persistence of the

(√3x√3)R30o adlattice geometry between ΘBi = 0.33 and ΘBi
 = 0.59 demonstrated

the compressibility of the Bi adlayer with minimal adlattice distortion. At higher

coverages, the surface became strewn with island formation, indicating a

Stranski-Krastanov film-growth mode.

Ultrathin Bi films emersed from aqueous iodide yielded a (√3x√7) I-on-Bi

superlattice.  The same superlattice was obtained when the order of deposition

was reversed (iodine first, followed by Bi), indicating that iodine stayed on top

of the superlattice.

The presence of an ultrathin Bi film on Pd(111) precluded the adsorption

of by-products from the electrooxidation of D-glucose in basic medium;
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consequently, Bi-modified Pd(111) surfaces need not be subjected to positive

potentials (E ≥ 0.80 V) in order to resume multiple electrooxidation cycles.

Unfortunately, no significant enhancement in the electrooxidation current

density was observed in the presence of Bi adlayers.  The complete suppression

of electrooxidation activity at Pd surfaces modified by very low submonolayer

coverages (ΘBi ≤ 0.19) underscored the existence of a yet-undetermined threshold

Bi- and Pd-domain size necessary for effective and sustained electrooxidation of

D-glucose.
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ABSTRACT

Well-defined ultrathin films of palladium, with coverages ranging from

submonolayer, ΘPd (≡  ΓPd/ΓPt) = 0.5 monolayer, to multilayer, ΘPd = 8, were

potentiostatically deposited on Pt(111). Between the coverage regimes studied,

the growth of the Pd films followed the Stranski-Krastanov mechanism.

The interfacial electrochemical properties associated with the film-to-bulk

transition were characterized by conventional voltammetric techniques in

combination with low-energy electron diffraction (LEED) and Auger electron

spectroscopy (AES). Voltammetric peaks associated with H-atom adsorption

and desorption on terrace sites indicated that the Pd electrodeposit started to

exhibit bulk-like properties at ΘPd = 3.

Voltammetric cycling in sulfuric acid solution, between the hydrogen

evolution and the double-layer regions, was found to exert minimal influence on

the annealing (smoothening) of the electrodeposited Pd films. However, cycling

within the same potential region in the presence of bromide anions (at which Br-

adsorption/Br desorption takes place) smoothened the initially rough Pd films

essentially as well as high-temperature annealing.

The influence of chemisorbed bromine on the anodic dissolution of Pd

was also studied; this was for comparison with previous work on the anodic

dissolution of Pd, in inert electrolyte, catalyzed by chemisorbed iodine. The

present studies indicated that bromine was desorbed along with the dissolution

of the Pd step atoms in a manner that may be described as electrochemical

digital etching.
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INTRODUCTION

Ultrathin metallic films on foreign metal surfaces exhibit surface

phenomena that are of significant interest in catalysis [1, 2, 3] and magneto-

optics [4, 5, 6]. The choice of the film-substrate combination is essentially

determined by the intended resultant properties. For instance, the quest for

high-performing fuel cell catalysts has stimulated investigations on the use of

multimetallic films to improve the catalytic action and CO-poisoning tolerance

of Pt [7]. Another illustrative example is the surface modification of Au, Pt, Pd,

and Cu substrates by the deposition of ultrathin layers of ferromagnetic metals

[for examples see Ref. 8, 9, 10, 11, 12] to create well-defined superstructures that

can be incorporated in memory storage devices. In all these cases, the desired

properties of the prepared material are highly dependent on surface coverage of

the ultrathin metallic film. Establishing preparation methods that not only allow

precise film-thickness control but also satisfy both technological demands and

fundamental scientific interest remains to be an active research endeavor.

Deposition methods for the Pt-group metals classically involve ultrahigh

vacuum (UHV) conditions that effectively minimize contamination and allow

surface characterization [13,14]. However, for ultrathin films, whose function or

application involves solid-liquid interfaces, such as electrocatalysts and

protective coatings, the films are best prepared and characterized in situ. In this

regard, electrochemical methods offers the advantage of creating surface

structures that can be reproducibly controlled by judicious choice of supporting

electrolytes, buffers, surfactants, applied electrode potential, and scan rate [15].
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Furthermore, electrochemical quantitative analysis is afforded by Faraday’s

Law, which relates the accumulated electrodeposition charge to the amount of

ultrathin film formed. Depending on the intended use of the ultrathin metallic

films, the quality of electrodeposits can adequately rival that of vacuum-

deposited materials [16, 17].

Considerable interest on the growth of ultrathin Pd films on well-defined

Pt surfaces stems from the fact that the Pd-Pt pair represents a prototypical

bimetallic system whose constituents share similar lattice parameters and atomic

radii. Ultrathin Pd films do not suffer from perturbations of hydrogen

absorption, which often encumbers voltammetric characterization of Pd bulk

samples.  Of particular interest is the possible emergence of properties that are

otherwise absent in the pure state of each constituent. These novel properties

often vary concomitantly with ultrathin-film-to-bulk transition. The search for

electrochemical surface probes to monitor this transition is worthwhile pursuing

to provide a robust alternative to UHV-based electron spectroscopies.

One of the challenges in electrodepositing ultrathin metallic films is to

achieve surface order in an electrochemical environment replete with solvent

molecules and other solution species. The present report describes the

preparation, surface characterization, and interfacial electrochemistry of

ultrathin Pd films on Pt(111) surfaces. The interaction of bromine with the

prepared ultrathin films provided a premise for a proposed electrochemical

analog to thermal annealing. Programmed electrode-potential excursions to

regions bordering dramatic surface perturbations are demonstrated to produce
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surface smoothening effects; this potential cycling is dubbed as electrochemical

annealing  (EC annealing).

For the purpose of this investigation, Pd multilayers (6 to 8 ML) that

clearly manifest Hupd desorption-adsorption peaks for terrace and step sites are

chosen. Hupd desorption-adsorption is notably a thin-film phenomenon because,

in the presence of bulk Pd, the extremely high hydrogen uptake makes

adsorption virtually indistinguishable from absorption.  The appearance of these

anomalous thin-film peaks on thick (bulk-like) films is attributed to surface

defects such as steps and pits; hence, these peaks can be used as voltammetric

markers for the progress of the so-called EC-annealing process.
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EXPERIMENTAL METHODS

Experiments were conducted in an ultrahigh-vacuum electrochemistry

(UHV-EC) apparatus that integrated gate-valve-isolable chambers for

electrochemical and surface characterization. The surface analysis chamber is

equipped with low-energy electron diffraction (LEED) optics (Perkin Elmer,

Eden Prairie, MN); a cylindrical mass analyzer (Perkin Elmer, Eden Prairie, MN)

for Auger electron spectroscopy (AES); and a quadrupole mass analyzer

(Quadrex 100, Leybold Inficon, East Syracuse, NY).

A commercially oriented and metallurgically polished 99.999% pure

Pt(111) (Aremco Products, Ossining, NY) disc electrode was used.  The electrode

area exposed to the electrochemical cell was measured, based on the hydrogen

underpotential deposition-desorption charge, to be 1.12 cm2, which is very close

to the calculated geometric area of 1.1192 cm2.  Prior to any electrochemical

experiment, the single-crystal electrode was cleaned by multiple cycles of Ar+

bombardment (Ar+ current = 4 -10 µA) and thermal oxidation at 550oC (PO2 = 5 x

10 –6 torr); ultimately, the electrode was annealed to 750oC under UHV

conditions to restore long-range surface order.  The cleaning cycle was repeated

until surface purity and order were verified by AES and LEED, respectively.

Electrochemical experiments were performed using a CV-27

Voltammograph (Bioanalytical Systems, West Lafayette, IN). The

electrochemical cell consisted two compartments separated by a glass frit: one

compartment for the Pt(111) working electrode and the other one for the

Ag/AgCl (1 mM NaCl) reference electrode and Pt-wire counter-electrode.
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Current-potential curves and chronocoulograms were monitored using a VP-

6414S X-Y recorder (Soltec, Sun Valley, CA).

All pieces of glassware were cleaned using hot chromic acid (3% K2Cr2O7

in 10 M H2SO4).  All solutions were made up using 18.2 Ω Millipore water

(Millipore Systems, Houston, TX).  The following high-purity reagents were

used without further purification: PdSO4 (Aldrich, Milwaukee, WI), fuming

H2SO4 (Aldrich), NaI (Curtin Matheson Scientific, Houston, TX), NaBr (Johnson

Mathey, England), NaCl (Johnson Mathey), NaF (Aldrich), Cu(ClO4)2 (Aldrich),

CF3COOH (Aldrich), and K2Cr2O7 (EM Science, Gibbstown, NJ). High-purity N2

(BOTCO, Bryan, TX), Ar (BOTCO), and O2 (Proxair, Dunbury, CT) gases were

used.
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RESULTS AND DISCUSSION

Electrodeposition of Ultrathin Pd Films. Ultrathin Pd films of various surface

coverages were prepared by initially immersing the Pt(111) electrode into a

solution of 0.50 mM PdSO4 in 0.1M H2SO4 at open-circuit potential (0.42V) for 60

s before holding the applied potential at a predetermined value ranging from

0.230V to –0.400V for 120 s. For a given electrolysis time, at low overpotentials

ηPd, the deposition charge linearly increased with the applied potential until

near-exhaustive electrolysis of the remaining Pd2+
(aq) occurs. Based on Faraday’s

Law, the amount of charge measured during this potential-step experiment,

corrected for background capacitive charge, provided a quantitative measure of

the amount of electrodeposited Pd.

The formation of a pseudomorphic 1 ML Pd was established using the

underpotential deposition (UPD) of Cu.  At submonolayer Pd coverages, it was

not unexpected to see Cu UPD peaks associated with both Pd and Pt [18]. The

complete attenuation of the Cu UPD-onto-Pt peak after a potential-step Pd

deposition at 0.221V marked the formation of 1 ML Pd; under the present

experimental conditions, 1 ML Pd corresponded to a deposition charge of 539

µC.  When the electrodeposited 1 ML Pd was quantitatively stripped off by

chemisorbed-iodine-catalyzed anodic dissolution [19], the stripping charge

matched with the deposition charge.  All Pd coverages reported in this study

were, henceforth, based on the value 539 µC/ML. An electrodeposition isotherm

based on this definition of coverage is shown in Figure 2.
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Surface Characterization of Ultrathin Pd Films: LEED and AES. The surface

geometry of Pd adatoms was monitored as function of coverage using LEED

(Figure 1). Interfacial structures of the following coverages were compared: 0.5,

1, 2, 3, 4, and 8 ML. At a submonolayer coverage of 0.5 ML, where high surface-

step density was expected, relatively dim spots were observed. The deposition

of 1 ML Pd led to the formation of large, highly ordered Pd domains that fully

cover the Pt(111) substrate, as evidenced by the acquisition of the sharpest and

brightest LEED spots at this coverage. The slight, yet reproducible, decrease in

the brightness of the LEED pattern obtained after the deposition of 2 ML marked

the onset of three-dimensional island formation on top of the first conformal

layer. Based on the progressive decline in spot brightness, it can be surmised

that more island growth continued at 3 ML and became most prominent at 4

ML, as can be gleaned from the changes in spot brightness of the LEED patterns.

Similar topographical changes could be inferred from the voltammetric profiles

[vide infra] of the prepared ultrathin films.

Based on LEED and AES data (Figure 2) alone, no definitive descriptions

could be made on the surface structural changes as the Pd coverage increased

from 3 ML to 8 ML. Further characterization of the island growth and

nucleation, at 3 ML and higher, would have been possible by LEED spot-

intensity-vs-beam-energy analysis, which is currently unavailable in our

laboratory.

The observed evolution of LEED spot sharpness and intensity suggests

that the growth of the electrodeposited ultrathin Pd films proceeds via the
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Stranski-Krastanov mechanism; i.e., the completion of the first full monolayer is

followed by three-dimensional island formation. The observed growth mode is

dictated by the interplay of the relative surface energy of the Pd film and Pt(111)

substrate (σPd and σPt, respectively) and the specific free interfacial energy, σi.

The relation, in its simplest form, can be expressed as Δ = σPd + σ i - σPt, where

edge-, shape- and size-effects on the reported surface energies are neglected [20].

Three-dimensional island growth is observed when Δ  > 0 while layer-by-layer

growth is expected when Δ ≤ 0.

Taking the specific surface free energies [21] of Pd (111) and Pt (111), as

1382 and 1656 ergs/cm2, respectively, and considering the similarity in lattice

parameter of both metals (hence, σ i ≈  0 ergs/cm2 for 1 ML or lower Pd

coverage), it is expected that complete 1 ML Pd film is formed initially. At 2 ML

or higher, island formation occurs, suggesting that the contribution of σi exceeds

274 ergs/cm2. The Stranski-Krastanov growth mode of Pd on Pt substrate has

been supported by previous studies using X-ray diffraction (XRD) [22], surface

X-ray scattering [21], electrochemical-scanning tunneling microscopy (EC-STM)

[23], and electrochemistry [21, 23].

Electrochemistry of Ultrathin Pd Films on Pt(111) in Halide-Free Electrolyte.

Shown in Figure 3 is a typical cyclic voltammogram of the Pt (111) substrate

used in this investigation. The following voltammetric features are consistent

with previously reported current-potential profile of a clean and well-ordered

Pt(111) disc electrode in 0.1 M H2SO4: (i) broad hydrogen adsorption-desorption

region between –0.45 V and –0.17 V; (ii) the so-called butterfly peaks, between
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–0.17 and 0.00 V, associated with (bi)sulfate desorption-adsorption [22,24]; (iii)

Pt-surface oxidation peaks that initially emerge as a broad anodic feature at 0.17

V, leading to a large peak centered at 0.78 V; (iv) and a Pt reduction peak at 0.24

V.

The electrochemical behavior of the prepared ultrathin Pd films was

characterized by cycling the ultrathin films in 0.1 M H2SO4 at a scan rate of 2

mV/s. Figure 4 displays the cyclic voltammograms of ultrathin Pd films at

various surface coverages, n, expressed in terms of monolayers, ML. Common to

all these ultrathin films were twin redox peaks whose intensities strongly

depend upon Pd coverage: One reversible pair centered at –0.33 V that was

associated with hydrogen underpotential adsorption-desorption (hereafter

referred to as HUPD adsorption-desorption) processes at terrace sites; and an

analogous set at –0.29 V that was a voltammetric signature of step sites [22, 24].

Some researchers [23] have ascribed the redox pair at ca. –0.29 V to adsorption-

desorption processes on terrace sites of bulk Pd deposits.

At submonolayer coverages of Pd (n = 0.5 ML, Figure 4a) two distinct

anodic peaks were evident beyond the double-layer potential region. Based on

the voltammogram of bare Pt(111) and the established redox peak positions for

ultrathin Pd films [18, 24-29] and bulk Pt [30, 31] reported in literature, the peaks

at 0.58 V and 0.78 V in Figure 4(a) corresponded to the oxidation of ultrathin Pd

film and uncovered Pt substrate, respectively. The peak at 0.18 V was assigned

to Pd reduction.
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At submonolayer coverages of Pd, it was not surprising to detect

voltammetric signals from the exposed Pt substrate, such as the nondescript

features between –0.17 V and 0.00 V and the broad reduction peak at 0.24 V. A

comparison of the voltammogram of 0.5 ML Pd film with that of 1 ML Pd film in

Figure 4(b) showed an increase in the signal intensities of the terrace and step

Hupd adsorption-desorption peaks  with the growth of the terrace-related peak

much more dramatic than the step counterpart.

For 1 ML Pd/Pt(111), the surface was predominantly made up of large

terraces as indicated by the very intense terrace Hupd adsorption-desorption

peaks. The close agreement between the experimentally determined charge (213

µC) and the theoretical charge (212 µC) for a pseudomorphic Pd film on Pt(111)

supported the assertion that the 1 ML Pd  completely covers the Pt substrate.

The disappearance of the characteristic broad voltammetric features of Pt(111)

between –0.17 and 0.0 V rendered further evidence to this claim. Additional

voltammetric evidence was also provided by the fact that only Pd-related Cu

UPD signals are observed at a Pd coverage of 1 ML.

Voltammetric features of 2 and 3 ML Pd films, as shown in Figures 4(c-d),

respectively, resembled those of 1 ML Pd film, except for the small differences in

peak size. Compared to films of lower Pd coverages, a 4 ML Pd film (Figure 4(e))

showed much larger step Hupd adsorption-desorption peaks and much smaller

terrace-related peaks. The fact that the step Hupd adsorption-desorption peaks

are much larger than the terrace-related peaks suggested the existence of a lot of

Pd islands on the 4 ML Pd film. Along with these changes it was also important
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to note that the Pd oxidation peak at 0.52 V became larger than the one at 0.58 V.

The former peak (at 0.52 V) was, therefore, ascribed to Pd-surface oxidation at

steps sites, while the latter one was associated with the same process on the

terraces.

Underpotential Deposition of Hydrogen (HUPD). The desorption-adsorption of

hydrogen on Pd is notably a thin-film phenomenon. In the presence of bulk Pd,

surface Hupd is readily transformed into a stable Pd-H phase; this interfacial

transformation is a result of the lowering of the hydrogen absorption energy

barrier due to bulk Pd lattice relaxation. As the Pd film thickness decreases, both

the diffusion coefficient and solubility of hydrogen in Pd are notably decreased

[32]; thus it is not unexpected to observe Hupd adsorption-desorption without

absorption in ultrathin Pd films.

The dependence of the Hupd deposition-desorption peak intensity on the

Pd surface coverage is depicted on Figure 5 as a plot of Hupd-desorption charge

as a function of Pd coverage. The conversion of submonolayer coverages (0.5

ML Pd) into a full monolayer (1 ML Pd) was accompanied by a remarkable

increase in the terrace Hupd desorption charge. As the Pd coverage increased

from 1 ML to 3 ML, the terrace Hupd desorption charge decreased slightly while

step Hupd desorption charge marginally increased. A critical crossover in the

trend for the desorption charges was observed between 3 ML to 4 ML: Terrace

Hupd desorption charge became much smaller than that of the step Hupd

desorption charge. Further increase in the Pd coverage, from 4 to 8 ML Pd, led to

a decline of both terrace and step Hupd desorption charges.
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Based on the changes in the voltammetric terrace- and step-peak charges

from 1 to 3 ML Pd, the following surface events were deemed to transpire: The

growth of three-dimensional islands occurred at the expense of the diminution

of the surface area associated with ordered terraces. When Pd coverage

increased from 3 to 4 ML, the number of islands on the film surface increased,

thereby a substantial fraction of the terraces disappeared. As the Pd surface

coverage continued to increase, so did the bulk-like character of the ultrathin

film; thus, the overall Hupd desorption charge should concomitantly decrease

with Pd surface coverage, considering that H UPD is a thin-film phenomenon.

It is, however, interesting to note that at a considerably high Pd coverage of 8

ML, Hupd adsorption-desorption peaks are still observed. Similar results have

been reported in the literature [23] suggesting the pervasiveness of highly-

stepped thin-film structures (manifested by Hupd) even up to 10 ML under

various deposition conditions and anion effects.

Potential Cycling in Sulfuric Acid. The notion that programmed potential

cycles can induce surface order was investigated. Shown in Figure 6 is the

steady-state voltammogram obtained after multiply cycling (5 cycles) 4 ML Pd

film in 0.1 M H2SO4 between the hydrogen evolution region (–0.48 V) and the

double-layer region (–0.02 V). That the voltammetric profiles after the first and

fifth scans are virtually identical indicates negligible surface smoothening

effects.

Extending the positive switching potential to 0.88 V (at which Pd surface

oxidation transpires) only led to a gradual dissolution of the Pd ultrathin film as
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evidenced by the decrease in the Pd AES signal (Figure 7). At the end of the 8th

potential cycle, only submonolayer coverages (less than 0.3 ML) of Pd remained

on the Pt(111) surface.

Electrochemistry in Bromide-free NaF Solution. The use of 0.1 M sodium

fluoride (NaF) solution, adjusted to pH 4 with trifluoroacetic acid (TFA), as the

supporting electrolyte solution (hereafter referred as NaF (pH 4)) ensures a wide

potential window for the formation of ordered bromine adlayers [33]. Both NaF

and TFA are known not to chemisorb on Pd surfaces under the present

experimental conditions. Using NaF (pH 4) as supporting electrolyte also allows

direct comparison of results from the present study with those obtained from

previous works utilizing bulk Pd(111).

Figure 8 displays typical features of a cyclic voltammogram of Pt(111) in

100 mM NaF (pH 4): (i) a broad Hupd adsorption-desorption region between

–0.33 and –0.66V; (ii) a broad Pt oxidation region stretching from –0.12 to 0.78 V,

which includes relatively large oxidation peaks at 0.35 and 0.65 V; and (iii) a Pt

reduction peak at 0.07 V.

The cyclic voltammogram of 1 ML Pd film in 0.1 mM NaF (pH 4) is given

in Figure 9. The observed features are very similar to those of bulk Pd(111) [34],

except for the existence of Hupd adsorption-desorption peak. Furthermore, the Pd

redox peak sizes associated with thin films are about 3 times smaller than those

of bulk Pd(111) [34] because of the evidently smaller amount of Pd present on

ultrathin Pd films. Broad voltammetric features for Pd oxidation can be
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discerned between –0.10 and 0.70 V. The Pt reduction peak at 0.07 V is

indistinguishable from the Pd reduction peak at –0.01 V.

Electrochemical Behavior of Ultrathin Pd Films in Aqueous Bromide. The

following voltammetric features are observed when 1 ML Pd/Pt(111) was

exposed to aqueous bromide solution (Figure 9): (i) a pair of sharp Hupd

adsorption/desorption peaks at –0.45 V; (ii) Pd oxidation peak at 0.35 V; (iii) a

large voltammetric wave, starting at 0.55 V, corresponding to bromide-to-

bromate oxidation; (iv) a small bromate-to-bromide reduction peak at 0.67 V;

and (v) a broad Pt reduction peak at 0.18 V. The notable enhancement of the Pd

oxidation peak, along with the emergence of broad Pt reduction peak, in the

presence of aqueous bromide, strongly suggests a bromide-induced Pd stripping

phenomenon during the anodic scan.

Subtle differences exist between the voltammetric features of thin films

and bulk Pd(111) in the presence of bromide ions [28]. Bulk Pd typically exhibits

a large Pd reduction peak at 0.10 V but does not show Hupd adsorption-

desorption. The observance of Pd reduction peak current about 10 times larger

than that of ultrathin Pd films is a natural consequence of the fact that bulk Pd

offers a much larger supply of Pd atoms available for redox reactions than thin

films.

Potential-dependent Chemisorption of Br on Ultrathin Pd Films. Bromine

chemisorption was carried out by immersing 1 ML Pd films in bromide-

containing 0.1 M NaF (pH 4) at various constant potentials. Under the present

experimental conditions, bromine adsorption on 1 ML Pd film occurred at
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Edeposition ≥ –0.10 V. Resulting adlayers were characterized using LEED and AES.

Bromine adsorption was confirmed by the appearance of Auger Br peak at 102

eV and the observation of the characteristic (√3×√3)R30°-Br LEED pattern.

Bromine coverage strongly depends on the chemisorption potential.

Potential-controlled chemisorption between –0.10 and 0.50 V yields the same

characteristic (√3×√3)R30°-Br LEED pattern. Since Br chemisorption on Pd

surfaces is known to be an oxidative process, potential excursions to positive

regions are expected to increase bromine coverage; it is, therefore, not surprising

to see such trend within the chemisorption potential range of –0.10 to 0.22 V

(Figure 10b).

It can be seen in Figure 10a that the open circuit potential (0.22 V)

corresponds to the inception of Pd dissolution into Pd2+ (Pd stripping). The drop

in bromine coverage, from 0.22 V to 0.60 V, indicates that the adsorbed Br

departs along with the stripped Pd. That the subsequent voltammetric Pd

stripping peak is really small suggests that the amount of stripped Pd is also

minuscule; hence, AES only detects a decrease in the Pd peak intensity at ca. 0.50

V or higher (Figure 11). As the Auger electron spectra reveals, bromide-induced

Pd stripping occurs without the formation of surface oxides.

To understand the Br coverage upturn at 0.60 V, it is essential to

underscore two experimental observations: (i) This potential marks the onset of

the oxidation of aqueous bromide to aqueous bromate.  (ii) The Auger Pd signal

intensity essentially remains the same from 0.60 to 0.80 V. It is believed that an

increase in Br coverage leads to the accumulation of Br as part of a passivating
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PdBr2 film in a manner akin to what has been previously observed in bulk

Pd(111) [33, 34]. The highly diffuse (1×1) LEED pattern probably emanates from

the Pd film covered with the passivating PdBr2 layer. It is also important to note

that the measured Br coverage at 0.80 V would have given rise to the usual

(√3×√3)R30° pattern, but its absence indicates that the bromine is incorporated,

in a disordered fashion, into the passivating film.  The nature of this passivating

film requires further elucidation.

Electrochemical (EC) Annealing in Aqueous Bromide. Electrochemical (EC)

annealing was anchored on the fact that, by cycling the electrode between

potentials that border surface perturbation, surface atoms can be rearranged to

desirable equilibrium positions. The possibility of EC annealing by multiple

potential cycles, at a scan rate of 2 mV/s, in bromide-containing 0.1 M NaF (pH

4) was scrutinized.  In this case, EC annealing consisted of 5 potential cycles

between –0.65 V (onset of HER) and 0.22 V (double-layer region). Smoothening

effects were adjudged based on: (i) the widening of terraces and the

disappearance of step sites and (ii) the enhancement of surface order evaluated

by LEED.

Results indicated that surface imperfections were readily removed from 1

ML (Figure 12) and 2 ML (Figure 13) Pd films. The relative ease of smoothening

was a consequence of the fact that the pre-annealed surfaces bear only very few

step sites. 3 ML (Figure 14) and 4 ML (Figure 15) Pd films were initially strewn

with three-dimensional islands; thus, a single potential cycle was inadequate to

induce complete smoothening. Two cycles of EC annealing produced the same
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effect as the first one, suggesting that more EC annealing cycles provided

minimal changes in the surface order of Pd films.

The EC annealing process described above was modified by switching,

instead of scanning, the potentials. A complete potential cycle consisted of

initially setting the potential at E1 = 0.22 V (at which Br chemisorption occurred)

and then switching it to E2 = –0.40 V (near the onset of HER).  A waiting time of

3 minutes was sufficient to allow the measured current to drop to zero after the

imposition of each potential.  A total of 10 cycles was performed; the final

potential was poised at –0.40 V. Figure 16 shows a diagrammatic representation

of a complete potential cycle.

A surface coverage of 8 ML Pd was chosen to represent a bulk Pd surface

that exhibited non-bulk voltammetric peaks typified by the terrace- and step-site

H UPD adsorption-desorption peaks. After EC annealing, the resulting surface

was rinsed thrice in blank NaF electrolyte solution under potential control (E2 =

–0.40 V).  Cyclic voltammetry was performed in Br-free 0.1 M NaF (pH = 4)

solution to ascertain any changes in the surface order.  Figure 17 displays the

voltammograms of both pre- and post-EC-annealed surfaces. The dramatic

extinction of the H UPD adsorption-desorption peaks after EC-annealing

heralded the disappearance of surface step-sites that were most likely the origin

of this anomalous thin-film-like behavior. The post-EC-annealing

voltammogram displayed the expected voltammetric features of bulk Pd

electrodes.
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The disappearance of surface defects, and thereby the restoration of long-

range surface order, was further corroborated by the acquisition of sharper (1x1)

LEED pattern (Figure 18) for post-annealed surfaces.  A comparison of the peak-

to-peak heights for the Pd AES transition (Figure 19) revealed that, within the

expected precision of such AES signal quantitation (± 0.05 cm), the Pd surface

coverage on Pt(111) remained virtually the same after multiple potential cycling.

This result was also verified by Iads-catalyzed dissolution of Pd, which revealed

no changes in the Pd coverages before and after the cycling experiment. Thus,

during EC-annealing in the presence of NaBr(aq), Pd adatoms occupying defect

sites were rearranged to assume equilibrium positions on well-ordered terraces

of the (111)-texture.

Thin-film-to-bulk Transition of EC Annealed Ultrathin Pd Films. The

emergence of bulk-like properties of step-free films was monitored by the

extinction of the voltammetric Hupd desorption-desorption peaks on terraces. Pd

films began to manifest bulk-like properties, after EC annealing, at a Pd

coverage of 3 ML. If the post-EC-annealed 3 ML Pd film were to behave purely

like thin films, the terrace Hupd adsorption-desorption peaks would have

increased due to the lowering of Pd island density; however, a decrease in the

terrace Hupd adsorption-desorption peak intensity was noted, signifying the start

of bulk-like behavior.

Chemisorbed Bromine-induced Anodic Dissolution of Ultrathin Pd Films.

Ultrathin Pd films, unlike bulk Pd, readily undergoes anodic dissolution in the

presence of chemisorbed bromine [33,19]. Such corrosive effects were examined
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using a 5 ML Pd film coated with bromine chemisorbed at 0.22 V for 3 minutes.

The resulting film was then transferred to a Br--free 0.1 M H2SO4. The potential

was scanned from the open-circuit potential to the potential tail-end of the Brads-

induced Pd dissolution wave (typically ranging from 0.58 to 0.62 V). Before

another dissolution cycle was launched, bromine is re-adsorbed to the Pd film.

Brads-induced dissolution cycles promoted the removal of both Pd and

Brads (Figure 19) within the present potential window. Pd coverage decreased

drastically  (1.9 ML) at the 1st cycle and then decreased gradually in almost

linear fashion (0.8 ML/cycle) between 2nd and 4th cycles. The 5th cycle, however,

led to a slight decrease in Pd coverage, as compared to the 4th cycle.

After each dissolution cycle, the remnant Brads adlayer was less than a full

coverage of 0.33 ML; this case was unlike the Iads-induced dissolution where the

remnant Iads adlayer retained its original structure and coverage. The remnant

Brads coverage was practically the same between 1st and 3rd cycles, but it

decreased gradually thereafter. After one cycle, the resulting surface remained

oxide-free and exhibited significant long-range order. A significant degree of

surface order was still preserved after the 5th cycle as evidenced by the

acquisition of a diffuse (√3×√3)R30°-Br pattern.

Interestingly, after the 1st cycle, a discernible (√3×√3)R30°-Br adlayer

structure emerged along with a significant decrease in Pd coverage. Subsequent

cycles, however, led to a further decrease in Pd coverage, almost linearly with

the number of cycle while maintaining LEED patterns similar to that of the 1st

cycle. Remnant Brads coverage remained essentially the same between the 1st and
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3rd cycles, but gradually decreased as more of the Pt(111) substrate surface was

exposed between the 4th and 5th cycles. These observations suggest that (i) Brads

desorption occurs from the step Pd atoms; no Br desorption takes place from the

terrace Pd atoms, (ii) Brads-induced dissolution of smooth Pd proceeds in layer-

by-layer fashion, and (iii) only after all of the Pd is dissolved will the Brads, which

then resides on the Pt(111) substrate, be oxidatively desorbed.

Brads desorption starts at the early stage of Pd film dissolution. This

finding is derived from the fact that both Auger Pd and Br peak intensities

decrease upon fixing the potential of the bromine-coated 5 ML PdCPD film at 0.41

V for 2 to 7 minutes after potential scanning from 0.22 to 0.41 V. The rate of Pd

stripping is higher than the rate of Br desorption as can be gleaned from the

time-dependent changes of the Pd and Br coverages. When the potential is held

at 0.41 V, a very rough surface is obtained; the experiment does not induce oxide

formation, as evidenced by the absence of the Auger O peak.

EC Annealing of Brads-modified Ultrathin Pd Films in Br-free Solution. The

ability of bromine to facilitate Pd adatom rearrangement is reminiscent of the

surfactant-like action of chemisorbed iodine (Iads) in restoring the atomic-level

smoothness of electrochemically roughened and ion-bombarded electrode

surfaces. Previous studies have uncovered interesting surface-confined

phenomena by examining the electrochemistry of Iads in iodide-free solution. For

instance, a place-exchange mechanism has been demonstrated to transpire

between the Iads and Pd during the anodic dissolution of Pd electrodes in I-free

sulfuric acid; i.e. iodine always stays on the surface during the ensuing stripping
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process [35]. Along the same vein, the electrochemical behavior of Brads on

ultrathin Pd films, in Br-free electrolyte solution, demands special attention. For

this purpose, Br was chemisorbed onto a well-defined 6 ML Pd/Pt(111) surface

by immersing it into a solution of 1 mM NaBr/0.1 M NaF (pH = 4) at 0.22 V for 3

minutes. The acquisition of a (√3 x√3)-Br adlattice (Figure 20), under this

experimental condition, was consistent with previous reports [33].

The prepared Br adlayer was transferred to Br-free 0.1 M H2SO4, and the

potential was stepped from 0.22 V to 0.41 V; the final potential corresponded to

the shoulder of a huge peak ascribed to be a composite of the anodic dissolution

of both ultrathin Pd film and the chemisorbed Br adlayer (cf. Figure 21). In this

polarization experiment, the potential was strategically poised at the chosen

value to ascertain if, in a manner similar to the Iads-catalyzed anodic dissolution

of Pd, chemisorbed Br would stay on the ultrathin Pd film surface until the film

would be exhaustively removed.

As revealed by the chronocoulogram in Figure 22, a monotonic increase

in the electrolytic charge was noted. Compositional analysis by AES showed a

10% decline in the Pd signal due to anodic dissolution, as indicated by the linear

rise in electrolytic charge beyond 12 minutes of polarization at 0.41 V. The

initially rapid increase in charge during the first 3 minutes of polarization was

ascribed to the anodic oxidation of chemisorbed Br. This finding was supported

by the absence of both the AES Br signal and the characteristic (√3 x √3) LEED

pattern.
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Quantitative analysis, by Iads-catalyzed dissolution, of the Pd film

remaining after polarization at 0.41 V indicated a Pd surface coverage of 4.8 ML.

The amount of anodically dissolved Pd (1.2 ML) represented adatoms that

occupied terrace and step sites. It was evident from the linear increase in

electrolytic charge after 10 minutes of polarization (Figure 22) that the anodic

dissolution of ultrathin Pd film would have proceeded towards completion if

the imposition of potential were continued. This scenario is different from bulk

Pd electrodes at which anodic dissolution is impeded by the formation of

surface oxides [19, 35].

Cyclic voltammetry of the resultant adlayer in 0.1 M H2SO4 indicates the

disappearance of the H UPD peak on step-sites and the dramatic decrease in the

signal intensity for the H UPD peak on terraces (Figure 23). AES analysis (Figure

24) of the remaining film shows a decrease in the Pd surface coverage. Such

decrease in coverage suggests that the presence of chemisorbed Br activates the

preferential anodic dissolution of step-site Pd adatoms. This claim is borne out of

the observation that, in the absence of chemisorbed Br, the step-site H UPD

feature still persists (cf. Figures 6 and 7) even after multiple sweeps involving

switching potentials greater than 0.41 V. The disappearance of step sites gives

rise to a well-ordered film surface as can be gleaned from the LEED results in

Figure 25.

The ability of chemisorbed Br to facilitate anodic dissolution of ultrathin

Pd films is, hence, different from that of iodine.  Since the Pd-Br bond is weaker

relative to that of Pd-I bond, Br adatoms preferentially seek out the more
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reactive surface defects (e.g., steps) on Pd, thereby making the chemisorption

more site-selective. In contrast, I adatoms are readily chemisorbed and

tenaciously sticks to the surface even at potentials bordering the anodic surface

oxidation of Pd. Within the same potential region, Br adatoms are easily

desorbed, consequently giving rise to a Br-free Pd surface as evidenced by both

AES and LEED. The accompanying smoothening process is, therefore, similar to

electrochemical digital etching, in which the etching agent (Br) can be

strategically introduced (adsorbed) onto and removed (desorbed) from the

surface upon the imposition of appropriate potentials. While it is certain that the

above voltammetric results imply Brads-enhanced surface mobility of Pd atoms,

the mechanism of such enhancement remains to be elucidated. The proximity of

the potentials needed to initiate both Pd anodic dissolution and Br desorption

accrues to the complexity of electrochemically delineating the two processes.
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CONCLUSIONS

Ultrathin Pd films of various surface coverages were electrochemically

prepared via potentiostatic deposition. The tandem use of surface science tools

and conventional electrochemical techniques allowed the formulation of atomic-

level descriptions of the interfacial structure and reactivity of the prepared

ultrathin films in aqueous bromide solution.

At ΘPd = 1, the electrodeposited film completely and pseudomorphically

covered the Pt(111) substrate. At ΘPd > 1, three-dimensional island formation

and growth were indicated. The electrodeposited Pd films assumed a Stranski-

Krastanov growth mode.

Voltammetric peaks associated with Hupd adsorption-desorption on

terrace- and step-sites were surface-sensitive indicators of the thin-film-to-bulk

transition of (thermally or electrochemically) annealed surfaces. Pd films began

to manifest bulk-like properties at ΘPd = 3, provided the film was atomically

smooth and essentially defect-free. For non-annealed surfaces, non-bulk-like

behavior was shown even at higher coverages.

Atomically smooth, well-defined ultrathin Pd films can be prepared

using potential-controlled adsorption-desorption cycles of aqueous bromide.

Similar smoothening effects were previously demonstrated using the

chemisorption of iodine onto ultrathin Pd films followed by reductive

desorption of I(ads) at pH 10 (where Edes > EHER). Exposure of step-laden ultrathin

Pd films to aqueous bromide led to its preferential chemisorption at step sites.

Bromine-decorated step sites were thereby activated towards anodic dissolution
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even in the absence of bromide ions in solution. Both Br(ads) and the Pd substrate

were anodically stripped off leaving behind wide well-ordered Pd film terraces.
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Figure A-1. LEED patterns for ultrathin Pd films on Pt(111) at various Pd
coverages: (a) 0.5, (b) 1, (c) 2, (d) 3, (e) 4, and (f) 8 ML. Ultrathin films were
electrochemically prepared by potentiostatic deposition. Beam energy = 62.0 eV;
beam current = 2 µA.
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Figure A-2.  AES spectra of ultrathin Pd films on Pt(111). Incident beam energy
= 2 keV; beam current = 1 µA.
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Figure A-3. Cyclic voltammogram of a Pt(111) disc electrode in 0.1 M H2SO4.
Scan rate = 2 mV/sec. Electrode area = 1.12 cm2.
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Figure A-4. Cyclic voltammograms of n-ML Pd on Pt(111) in 0.1 M H2SO4.
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Figure A-5 . Hupd desorption charge of ultrathin Pd films as a function of Pd
surface coverage. Experimental details are as in Figure 3.
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Figure A-6. Cyclic voltammograms for 4 ML Pd/Pt(111) during potential cycling
in 0.1 M H2SO4 between the double layer and hydrogen evolution regions.
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Figure A-7. Pd Auger signal intensity as a function of the number of potential
cycles. The Pd intensity was obtained from Auger electron spectra of 4 ML Pd
film after each potential cycle between –0.48 V and 0.88 V. Incident beam energy
= 2 keV; beam current = 1 µA.
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Figure A-8. Cyclic voltammogram of a Pt(111) disc electrode in 0.1 mM NaF
solution adjusted to pH = 4 with trifluoroacetic acid (TFA). Scan rate = 2
mV/sec. Electrode area = 1.12 cm2.
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Figure A-9. Cyclic voltammogram of 1 ML Pd film on Pt(111) in 0.1 M NaF
solution adjusted to pH 4 with trifluoroacetic acid (TFA). Scan rate = 2 mV/sec.
Electrode area = 1.12 cm2.
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Figure A-10. Correlation between Br coverage and voltammetric features of 1
ML Pd film in bromide-containing electrolyte. (a) Linear sweep voltammogram
of 1 ML Pd/Pt(111) in 1 mM NaBr in 0.1 M NaF (pH = 4) ( b) Bromine coverage
on 1 ML Pd film as a function of bromine adsorption potential. Bromine was
adsorbed from 1 mM NaBr in 0.1 M NaF (pH = 4). Bromine adsorption time = 3
minutes.
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Figure A-12. Voltammograms for 1 ML PdCPD film on Pt(111) in 100 mM H2SO4
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Figure A-13. Voltammograms for 2 ML PdCPD film on Pt(111) in 100 mM H2SO4
obtained (A) before and (B) after EC annealing. Scan rate = 2 mV/sec. Electrode
area = 1.12 cm2. Inset: LEED patterns obtained (A) before and (B) after EC
annealing. Beam energy = 62.0 eV; beam current = 2 µA.
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Figure A-14. Voltammograms for 3 ML PdCPD film on Pt(111) in 100 mM H2SO4
obtained (A) before and (B) after EC annealing. Scan rate = 2 mV/sec. Electrode
area = 1.12 cm2. Inset: LEED patterns obtained (A) before and (B) after EC
annealing. Beam energy = 62.0 eV; beam current = 2 µA.
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Figure A-15. Voltammograms for 4 ML PdCPD film on Pt(111) in 100 mM H2SO4
obtained (A) before and (B) after EC annealing. Scan rate = 2 mV/sec. Electrode
area = 1.12 cm2. Inset: LEED patterns obtained (A) before and (B) after EC
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Figure A-16. Schema of a complete potential cycle during electrochemical
annealing in NaBr solution. E1 = 0.22 V, at which Br chemisorption occurred; E2
= –0.40 V, near the onset of hydrogen evolution.
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Figure A-17. Current-potential profile of 8 ML Pd/Pt(111) before and after
electrochemical annealing in 1 mM NaBr–0.1 M NaF (pH = 4) solution. Cyclic
voltammograms were obtained in Br-free 0.1 M NaF (pH = 4) solution at a scan
rate of 2 mV/s.
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Figure A-18.  LEED pattern of 8 ML Pd/Pt(111) (a) before and (b) after
electrochemical annealing in NaBr(aq)

 . Beam energy = 62 eV; beam current = 2
µA.
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Figure A-19.  Auger electron spectrum of 8 ML Pd/Pt(111) after electrochemical
annealing in 1 mM NaBr/0.1 M NaF (pH = 4).  Incident beam = 2 keV; beam
current = 1 µA.
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Figure A-20. LEED pattern for 6 ML Pd/Pt(111) obtained after emersion from 1
mM NaBr in 0.1 M NaF (pH = 4). Beam energy = 62.0 eV; beam current = 2 µA.
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Figure A-21. Linear sweep voltammograms for Brads on (a) Pt(111), (b) 0.5 ML Pd
film, and (c) 4 ML Pd film in 0.1 M H2SO4. Sweep rate = 2 mV/sec. Electrode
area = 1.12 cm2.   
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Figure A-22. Chronocoulogram of Br-modified 6 ML Pd/Pt(111) in 0.1 M H2SO4
as the potential was switched from 0.22 V to 0.41 V.
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Figure A-23.  Cyclic voltammogram of 6 ML Pd/Pt(111) in 0.1 M H2SO4, before
and after Br chemisorption and subsequent polarization at 0.41 V. Scan rate = 2
mV/s. Experimental details are described in the text.
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Figure A-24. Auger electron spectrum of Br-coated 6 ML Pd/Pt(111) after
immersion in 0.1 M H2SO4 at E = 0.41 V. Incident beam = 2 keV; beam current =
1 µA.
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Figure A-25. LEED pattern after exposing Br-coated 4 ML Pd/Pt(111) in 0.1 M
H2SO4 at E = 0.41 V. Beam energy = 62 eV; beam current = 2 µA. Experimental
details are described in the text.
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