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ABSTRACT

Intervention in Gene Regulatory Networks. (August 2006)

Ashish Choudhary, B.Tech., Indian Institute of Technology Bombay;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Aniruddha Datta

In recent years Boolean Networks (BN) and Probabilistic Boolean Networks

(PBN) have become popular paradigms for modeling gene regulation. A PBN is a

collection of BNs in which the gene state vector transitions according to the rules

of one of the constituent BNs, and the network choice is governed by a selection

distribution.

Intervention in the context of PBNs was first proposed with an objective of avoid-

ing undesirable states, such as those associated with a disease. The early methods of

intervention were ad hoc, using concepts like mean first passage time and alteration

of rule based structure. Since then, the problem has been recognized and posed as

one of optimal control of a Markov Network, where the objective is to find optimal

strategies for manipulating external control variables to guide the network away from

the set of undesirable states towards the set of desirable states. This development

made it possible to use the elegant theory of Markov decision processes (MDP) to

solve an array of problems in the area of control in gene regulatory networks, the

main theme of this work.

We first introduce the optimal control problem in the context of PBN models

and review our solution using the dynamic programming approach. We next discuss

a case in which the network state is not observable but for which measurements that

are probabilistically related to the underlying state are available.

We then address the issue of terminal penalty assignment, considering long term
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prospective behavior and the special attractor structure of these networks.

We finally discuss our recent work on optimal intervention for the case of a family

of BNs. Here we consider simultaneously controlling a set of Boolean Models that

satisfy the constraints imposed by the underlying biology and the data. This situation

arises in a case where the data is assumed to arise by sampling the steady state of

the real biological network.
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CHAPTER I

INTRODUCTION

Numerous gene regulatory models have been proposed. For the most part these have

been developed for descriptive purposes, by which we mean that their purpose is to

characterize gene interaction. From a translational perspective, a salient objective

is to base diagnosis and treatment for disease upon these models. For treatment,

this constitutes the derivation of intervention strategies that affect the network in

beneficial ways.

To date, the largest effort in deriving intervention methods for gene regulatory

networks has been in the context of probabilistic Boolean networks (PBNs). PBNs are

essentially probabilistic generalizations of the standard Boolean networks (introduced

by Kauffman [1, 2, 3]), in which at any discrete time point the gene state vector

transitions according to the rules of one of the constituent Boolean networks [4].

Early efforts in intervention included ad hoc methods like -resetting the state of

the PBN, as necessary, to a more desirable initial state and letting the network evolve

from there [5], and changing the steady-state (long-run) behavior of the network by

minimally altering its rule-based structure [6].

In [7] it was explicitly recognized that since PBNs are essentially Markov chains,

the well researched theory of Markov decision processes could be used to find optimal

intervention strategies. In this seminal work, for the first time notions of (i) control

cost i.e. the cost of using control, (ii) terminal penalty i.e. the cost of terminating

control in a state (based on desirability and undesirable of the state profile), and

(iii) minimization of the composite cost function over a time horizon; were formalized

The journal model is IEEE Transactions on Automatic Control.
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in the context of biological networks. Since then the optimal intervention problem

has been studied for (i) the imperfect information case [8], (ii) the context sensitive

case [9], (iii)the infinite horizon case [10], (iv) and the family of networks case [11].

This thesis deals with the various aspects of this optimal intervention problem and is

organized as follows.

We begin by reviewing the basic concepts and motivation of BNs and PBN models

in chapter II. In chapter III we introduce the control problem in the context of the

above models and also review our solution using the dynamic programming approach.

In chapter IV we extend the results in chapter III to cover the case where the state is

not observable. In chapter V we discuss the problem of assigning terminal penalties

in PBNs. In chapter VI we pose and solve the problem of simultaneously controlling

a family of Boolean Networks. Chapter VII has a discussion on issues not addressed

in this thesis and possible future research directions. Certain technical details are

relegated to the appendix.

Examples based on a hypothetical 3 gene network, and WNT5A networks( de-

signed from data obtained from the study of metastatic melanoma) have been worked

out in all chapters for illustration purposes.
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CHAPTER II

DISCRETE MODELS OF GENE REGULATORY NETWORKS

In this chapter we review the philosophy and mechanics of BNs and PBNs.

A. Boolean Network

Boolean networks compose a class of discrete models where the expression levels

of each gene are assumed to have two possible values: ON or OFF [1]. Such a

model cannot capture the underlying continuous and stochastic biochemical nature

of protein production and gene regulation; however, one often encounters genes that

are essentially ON or OFF throughout a given biochemical pathway. The switch-like

regulatory function of these genes determines their role in regulation, and this activity

is well represented by a coarse-grain model like a BN. This, together with the relative

simplicity of the dynamical system described by a BN, explains why such networks

have attracted significant attention from the research community [3, 4, 12].

A Boolean Network (BN ) consists of a set of genes (nodes) in which each gene

can take on one of two binary values, 0 or 1 ([1, 3]). Given n genes, the activity level

of gene i at time step k is denoted by xi(k), where xi(k) = 0 indicates that gene i

is not expressed and xi(k) = 1 indicates that it is expressed. The overall expression

levels of all the genes in the network at time step k is given by the state (row) vector

x(k) = [x1(k), x2(k), · · · , xn(k)], also called the gene activity profile (GAP) of the

network at time k. Gene i evolves from time k to k + 1 according to the Boolean

function fi(x1(k), x2(k), . . . , xn(k)). Usually the value of fi does not depend on the

entire set {x1, x2, · · · , xn} of n gene values but only on a finite subset Pi of it. This

set Pi is called the predictor set for the ith gene. Specifying the truth table for the

functions f1, f2, · · · , fn along with the associated predictor sets P1,P2, . . . ,Pn supplies
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Fig. 1. 3 gene BN with P1 = {x1, x2, x3},P2 = {x1, x3} and P3 = {x1}

all the information necessary to determine the time evolution of the states of the BN.

Table I. Table of functions.

x1 x2 x3 f1 f2 f3

0 0 0 0 0 0

0 0 1 0 0 0

0 1 0 0 0 0

0 1 1 1 0 0

1 0 0 1 0 1

1 0 1 1 0 1

1 1 0 0 0 1

1 1 1 1 0 1

The binary n-digit state vector x(k) can be mapped to positive integers z(k) so

that as x(k) ranges from 00 · · · 0 to 11 · · · 1, z(k) goes from 1 to 2n. Here we employ

the decimal representation z(k) and the set S = {1, 2, · · · , 2n} constitutes the state

space for the Boolean network.

The truth table and the corresponding boolean networks state transition diagram

for a 3 gene network are shown in Table I and Figure 1 respectively.
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Attractors play a key role in Boolean networks. Given a starting state, within

a finite number of steps, the network will transition into a cycle of states, called an

attractor, and will continue to cycle thereafter. Each attractor is a subset of a basin

composed of those states that lead to the attractor if chosen as starting states. The

basins form a partition of the state space for the network. Non-attractor states are

transient. They are visited at most once on any network trajectory.

For the network in Figure 1 there are two singleton attractors, 1{000} and 6{101}.

There are two transient levels, where a state in level k transitions to an attractor in

k time steps.

B. Probabilistic Boolean Network

A Probabilistic Boolean Network (PBN ) consists of a finite collection of BNs over

a fixed set of genes, where each BN is defined by a fixed network function. The

network transitions according to one of the constituent BN at each time step. At

each moment of time there is a probability q of switching to a different constituent

BN, where, given a switch, each BN composing the network has a probability of being

selected. If q = 1, then a new network function is randomly selected at each time

point; if q < 1, then the PBN remains in a given constituent BN until the random

binary variable governed by q calls for a network switch. If q = 1, the PBN is said to

be instantaneously random, the idea being to model uncertainty in model selection;

if q < 1, it is said to be context-sensitive, the idea being to model the situation where

the model is affected by latent variables outside the model. Moreover, if at any given

moment of discrete time there is a probability p of randomly switching the state of

the PBN; such a PBN is said to be a PBN with random perturbations. A detailed

exposition can be found in [4, 9].
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Fig. 2. 3 Boolean Networks (N1,N2 and N3) over 3 genes

Figure 2 shows a set of 3 BNs over 3 genes. The corresponding instantaneously

random PBN when each of the 3 BNs are equally likely to be selected is shown in

Figure 3.
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Fig. 3. The instantaneously random PBN obtained from the 3 BNs in Figure 2
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CHAPTER III

INTERVENTION IN GENE REGULATORY NETWORKS

In this chapter we present our original analysis of the control problem for an instan-

taneously random PBN [7]. Subsequent advances in the control of PBNs like the

imperfect information case; the context sensitive case and the infinite horizon case

are discussed in [8], [9] and [10] respectively.

Consider the problem of external control in an instantaneously random PBN

with n genes and m control inputs, u1, u2, · · · , um, each of which can take on only the

binary values 0 or 1. At any time k, the row vector u(k) = [u1(k), u2(k), · · · , um(k)]

describes the complete status of all the control inputs. u(k) can take on all binary

values from 00 · · · 0 to 11 · · · 1. One can equivalently represent the control input status

using a decimal number v(k) ranging from 0 to 2m −1, so that A = {0, 1, · · · , 2m −1}

is the set of possible control actions. This set could be a function of the state, because

not all control alternatives may be available from all states. As shown in [7], the one-

step evolution of the probability distribution vector in the case of a PBN containing

2n states with control inputs takes place according to the equation

w(k + 1) = w(k)A(v(k)) (3.1)

where w(k) is the 2n dimensional state probability distribution vector and A(v(k)) is

the 2n × 2n control-dependent transition probability matrix (TPM). Since the tran-

sition probability matrix is a function of the control input v(k), the evolution of the

probability distribution vector of the PBN with control now depends not only on the

initial distribution vector but also on the values of the control input at different time

steps. Intuitively, it appears possible to make the states of the network evolve in a

desirable fashion by appropriately choosing the control input at each time step.
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A. Definitions and Problem Statement

To formalize the ideas from previous section we define the following quantities:

• aij(v) is the ith row, jth column entry of the stochastic matrix A(v), v ∈ A.

• M represents the treatment/intervention window; control actions are taken at

steps 0, 1, · · · ,M − 1.

• For any i ∈ S, Ck(i, v) is the cost of applying the control v in state i at the kth

time step.

• For any i ∈ S, CM(i) is the terminal cost associated with the state i, i.e. the

cost of ending up in state i at the Mth time step, when no more control steps

are remaining.

The number of steps over which the control input is to be applied has been a

priori determined to be M and we are interested in controlling the behavior of the

PBN over the interval k= 0, 1, 2,. . . , M − 1. Suppose at time step k, the state of the

PBN is given by z(k) and the corresponding control input is v(k), then by definition

Ck(z(k), v(k)) is the associated control cost.

Thus expected cost of control over the entire treatment horizon becomes

E[
M−1
∑

k=0

Ck(z(k), v(k))|z(0)] (3.2)

Note that even if the network starts from a given (deterministic) initial state z(0), the

subsequent states will be random because of the stochastic nature of the evolution

in (3.1). Consequently, the cost in (3.2) must be defined using expectation. (3.2)

provides one component of the finite-horizon cost, namely the cost of control. We

next discuss the second component.
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The net result of the control actions v(0), v(1),. . . , v(M− 1) is that the state

of the PBN will transition according to (3.1) and will end up in some state z(M).

Owing to the probabilistic nature of the evolution, the terminal state z(M) is a

random variable that can possibly take on any of the values in S = {1, 2, . . . , 2n}.

Depending on the particular PBN and the control inputs used at each step, it is

possible that some of these states may never be reached because of non-communicating

states in the resulting Markov chains; however, since the control strategy itself has not

yet been determined, it would be difficult, if not impossible, to identify and exclude

such states from further consideration.

Instead, we assume that all 2n terminal states are reachable and we need to assign

a penalty, or terminal cost, CM(z(M)) to each of them. Thus we arrive at the second

component of our cost function. Once again, note that the quantity CM(z(M)) is a

random variable and so we must take its expectation while defining the cost function

to be minimized. In view of (3.2), the finite-horizon cost to be minimized is given by

E[
M−1
∑

k=0

Ck(z(k), v(k)) + CM(z(M))|z(0)] (3.3)

To proceed further, let us assume that at time k the control input v(k) is a

function of the current state z(k), namely,

v(k) = µk(z(k)) (3.4)

where µk : S → A. The optimal control problem can now be stated:

Given an initial state z(0), find a control law π = {µ0, µ1, ....., µM−1}that mini-

mizes the cost functional

Jπ(z(0)) = E[
M−1
∑

k=0

Ck(z(k), µk(z(k))) + CM(z(M))] (3.5)
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subject to the constraint

Pr{z(k + 1) = j|z(k) = i, v(k) = v} = aij(v) (3.6)

where aij(v)) is the ith row, jth column entry of the matrix A(v).

B. Solution Using Dynamic Programming

As explained in [7] the optimal control problem described by (3.5) and (3.6) can be

solved using the technique of Dynamic Programming. For a given initial state z(0),

the optimal cost for the finite horizon optimal control problem is given by J0(z(0)),

where for k = 0, 1, 2, · · · ,M − 1, Jk(i) is known as the cost to go function at the kth

time step from state i [7]. The Jk’s can be found using the following recursive formula

Jk(i) = min
v∈A

[Ck(i, v) +
∑

j∈S

aij(v).Jk+1(j)]., k = M − 1,M − 2, · · · , 0. (3.7)

JM(i) = CM(i). (3.8)

Intuitively equation (3.7) states that the optimal cost to go from state i at the

kth time step is the sum of the cost of the optimal control action at state i and the

expected value of the cost to go at the (k + 1)th time step. Since there is no control

action in the terminal time step, (3.8) simply formalizes the fact that the cost to go

at the terminal time step equals the penalty associated with the terminal state.

The optimal control obtained from (3.7), (3.8) can be represented as a table

S × T → A, where T is the discrete time variable. To set up such a table, we first

tabulate JM(i) for any i ∈ S using (3.8). JM−1(i) and the corresponding minimizing

control v can be calculated and stored for all i ∈ S using (3.7) and making use of the
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JM(j) values tabulated earlier. By repeating these steps we can fill up the table for

k = M − 2, · · · , 0.

C. 3 Gene PBN Example

To illustrate the algorithmic details, we consider the 3-gene network in Figure 3.

Suppose x3 is the penalty gene.1 When x3 = 1 in a state, it is undesirable, and a

terminal penalty of +5 is assigned. States with x3 = 0 are assigned a terminal penalty

of 0. Let x1 be the control gene and suppose that the control action is to forcibly flip

this gene: for v(k) = 1, flip gene x1 at the kth time step and for v(k) = 0 leave it as

is. Let the cost of control Ck(i, v) = C(v) = v.

Transitions take place according to the network transition rule – for example,

in the network in Figure 3, if z(k) = 6 (101) and v(k) = 1 , then z(k + 1) = 1,

corresponding to a jump from state 6 (101) to state 2 (001) and then evolution to the

state 1 (000) with a probability 0.67 or to state 5 (100) with probability 0.33.

Table II shows the optimal control action from each state at each time step while

the optimal cost to go is shown in Table III. Figure 4 compares the expected cost of

using control to that of not using control when for an M = 2 step policy.

Table II. Table of optimal control action. The entry in kth row and ith column is the

optimal control v at time k in state i.

Time (k) State

1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0 0

1 0 0 0 0 1 1 1 1

1A penalty gene is a gene for which certain expression statuses are known to be
undesirable.
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Table III. Table of optimal cost to go for an M=2 step control. J2 is the terminal

penalty.

Time(k) State i

1 2 3 4 5 6 7 8

J0(i) 0 0.33 0 0.66 0.66 1.0 0.33 1.0

J1(i) 0 0 0 0 1.0 1.0 1.0 1.0

J2(i) 0 5 0 5 0 5 0 5

1 2 3 4 5 6 7 8
0

1

2

3

4

5

Uncontrolled Cost
Controlled Cost

C
os

t 

State z

Fig. 4. Expected costs with the optimal control and no control

D. Metastatic Melanoma Application

In this section, we derive an optimal intervention strategy for a particular gene regu-

latory network, originally discussed in [7]. The network chosen is one developed from

the data collected in a study of metastatic melanoma [13]. In this expression profil-

ing study, the abundance of messenger RNA for the gene WNT5A was found to be

a highly discriminating between cells with properties typically associated with high

metastatic competence versus those with low metastatic competence. These findings



14

were validated and expanded in a second study [14]. In this study, experimentally

increasing the levels of the Wnt5a protein secreted by a melanoma cell line via ge-

netic engineering methods directly altered the metastatic competence of that cell as

measured by the standard in vitro assays for metastasis. A further finding of interest

in the current study was that an intervention that blocked the Wnt5a protein from

activating its receptor, by the use of an antibody that binds Wnt5a protein, could

substantially reduce Wnt5a’s ability to induce a metastatic phenotype. This of course

suggests a study of control based on interventions that alter the contribution of the

WNT5A gene’s action to biological regulation, since the available data suggests that

disruption of this influence could reduce the chance of a melanoma metastasizing, a

desirable outcome.

The methods for choosing the genes involved in a small local network that in-

cludes the activity of the WNT5A gene and the rules of interaction have been de-

scribed in [15]. As discussed in that paper, the WNT5A network was obtained by

studying the predictive relationship between 587 genes. The expression status of

each gene was quantized to one of three possible levels: −1 (down-regulated), 0 (un-

changed) and 1(up-regulated). Thus in this case, the gene activity profile at any

time step is not a binary number but a ternary one. However, the PBN formulation

and the associated control strategy can be developed exactly as described in earlier

sections, with the only difference that now for an n-gene network, we will have 3n

states instead of the 2n states encountered earlier. A network with 587 genes will

have 3587 states which is an intractably large number to use either for modeling or

for control. Consequently, the number of genes was narrowed down to the 10 most

significant ones. The dataset and the corrsponding 10 gene network are shown in

Figure 5 and Figure 6 respectively.

We further narrowed down the number of genes in the network to 7 by using
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Case No. pirin WNT5A S100P RET1 MMP3 PHOC MART1 HADHB synuclein STC2

UACC457 1 −1 1 −1 −1 −1 1 1 1 −1

UACC383

UACC1022

TC 1376 3

TD 1376 3

TD 1730

TD 1638

TD 1720

UACC3093 0 −1 1 −1 −1 −1 1 1 1 −1

M92 001 1 −1 1 0 0 −1 1 1 1 −1

UACC257

WM1791C 0 1 0 −1 1 −1 0 0 1 1

UACC1097 0 0 0 0 0 0 0 0 1 0

UACC903 0 0 0 0 0 0 1 1 0 0

UACC2534 1 −1 1 −1 0 −1 1 0 1 −1

M93 007 1 −1 0 0 0 0 1 1 0 0

UACC1273

UACC1265 1 −1 1 0 0 0 1 1 1 0

UACC091 1 −1 0 0 0 0 1 1 0 −1

UACC502

TD1348 0 −1 1 −1 −1 −1 1 0 1 −1

UACC1012 0 1 0 −1 1 0 0 0 1 0

M91 054 1 −1 1 −1 0 0 1 1 0 0

M92 047 1 1 −1 0 0 0 0 0 0 −1

HA A 0 −1 1 −1 0 0 0 0 0 −1

TC F027 0 −1 1 0 −1 0 1 0 1 −1

UACC647 0 1 0 −1 1 0 0 0 0 0

UACC930 0 1 −1 −1 0 0 0 0 −1 1

UACC1529 −1 0 0 0 −1 0 0 0 1 −1

UACC827T 0 0 1 −1 0 −1 0 0 1 1

UACC2837 0 −1 −1 0 0 0 0 0 −1 0

Fig. 5. WNT5A dataset.
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pirin

WNT5A

S100P

RET-1

MMP-3

PHO-C

MART-1

HADHB

synucleinSTC2

Fig. 6. 10 Gene network for metastatic melanoma.

COD analysis([16, 17, 18]) on the 31 samples. The resulting genes along with their

multivariate relationship are shown in Figure 7.

For each gene in this network, we determined their two best two-gene predictors

and their corresponding CODs. Using the procedure discussed in [4], the COD infor-

mation for each of the predictors was then used to determine the 37 × 37 matrix of

transition probabilities for the Markov Chain corresponding to the dynamic evolution

of the gene-activity profile of the seven gene network.

In this context, it is appropriate to point out that to apply the control algorithm,

it is not necessary to actually construct a PBN; all that is required are the transition

probabilities between the different states under the different controls.

The optimal control problem can now be completely specified by choosing (i)

the treatment/intervention window, (ii) the terminal penalty and (iii) the types of

controls and the costs associated with them. For the treatment window, we arbitrarily

chose a window of length M = 5, i.e. control inputs would be applied only at time
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Fig. 7. 7 Gene network for metastatic melanoma

steps 0, 1, 2, 3 and 4. The terminal penalty at time step 5 was chosen as follows. Since

our objective is to ensure that WNT5A is down regulated, we assigned a penalty of

zero to all states for which WNT5A equals −1, a penalty of 3 to all states for which

WNT5A equals 0 and a penalty of 6 to all states for which WNT5A equals 1. Here

the choice of the numbers 3 and 6 is arbitrary but they do reflect our attempt to

capture the intuitive notion that states where WNT5A equals 1 are less desirable

than those where WNT5A equals 0. Two types of possible controls were used and

next we discuss the two cases separately.

Case 1. WNT5A Controlled Directly: In this case, the control action at any given

time step is to force WNT5A equal to −1, if necessary, and let the network evolve

from there. Biologically such a control could be implemented by using a WNT5A

inhibitory protein. In this case, the control variable is binary with 0 indicating that

the expression status of WNT5A has not been forcibly altered while 1 indicates that

such a forcible alteration has taken place. Of course, whether at a given time step,

such intervention takes place or not is decided by the solution to the resulting dynamic

programming algorithm and the actual state of the network immediately prior to the
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intervention. With this kind of intervention strategy, it seems reasonable to incur

a control cost at a given time step if and only if the expression status of WNT5A

has to be forcibly changed at that time step. Once again, we arbitrarily assigned

a cost of 1 to each such forcible change and solved for the optimal control using

dynamic programming. The net result was a table of optimal control inputs for

each of the 2187(= 37) states at each of the five time points. Using these control

inputs, we studied the evolution of the state probability distribution vectors with and

without control. For every possible initial state, our simulations indicated that at

every time step from 1 to 5, the probability of WNT5A being equal to −1 was higher

with control than that without control. Furthermore, with control, WNT5A always

reached −1 at the final time point (k = 5). Thus, we conclude that the optimal

control strategy, indeed, successful in achieving the desired control objective. In this

context, it is significant to point out that if the network starts from the initial state

STC2 = −1, HADHB = 0,MART − 1 = 0, RET − 1 = 0, S100P = −1, pirin =

1,WNT5A = 1 and if no control is used, then it quickly transitions to a bad absorbing

state (absorbing state with WNT5A = 1). With optimal control, however, this does

not happen.

Case 2. WNT5A Controlled Through pirin: In this case, the control objective is

the same as in Case 1, namely to keep WNT5A down-regulated. The only difference

is that this time, we use another gene, pirin to achieve this control. The treatment

window and the terminal penalties are kept exactly the same as before. The control

action consists of either forcing pirin to −1 (corresponding to a control input of 1) or

letting it remain wherever it is (corresponding to a control input of 0). As before, at

any step, a control cost of 1 is incurred if and only if pirin has to be forcibly reset to

−1 at that time step. Having chosen these design parameters, we implemented the

dynamic programming algorithm with pirin as the control.
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Using the resulting optimal controls, we studied the evolution of the state prob-

ability distribution vectors with and without control. For every possible initial state,

our simulations indicated that, at the final state, the probability of WNT5A being

equal to −1 was higher with control than that without control. In this case, there was,

however, no definite ordering of probabilities between the controlled and uncontrolled

cases at the intermediate time points. Moreover, the probability of WNT5A being

equal to −1 at the final time point was not, in general, equal to 1. This is not surpris-

ing given that, in this case, we are trying to control the expression status of WNT5A

using another gene and the control horizon of length 5 simply may not be adequate for

achieving the desired objective with such a high probability. Nevertheless, even in this

case, if the network starts from the state corresponding to STC2 = −1, HADHB =

0,MART − 1 = 0, RET − 1 = 0, S100P = −1, pirin = 1,WNT5A = 1 and evolves

under optimal control, then the probability of WNT5A = −1 at the final time point

equals 0.6735. This is quite good in view of the fact that the same probability would

have been equal to zero in the absence of any control action.

E. Conclusions

In this chapter we formally introduced the optimal control problem. We also demon-

strated the efficacy of optimal control in reducing the expected cumulative cost func-

tion for the PBNs in Figure 3, and the Metastatic melanoma application. In this

chapter we used full state feedback assuming that the entire state vector is observ-

able, in the next chapter we relax this assumption.



20

CHAPTER IV

THE IMPERFECT INFORMATION CASE

The control table that emerges from (3.7) depends explicitly on knowledge of the

current state zk to compute the minimizing vk at each time state.1

When the state vector zk of the PBN is not available for measurement, such a

control law cannot be implemented. In that case, we will assume that when the PBN

is in the state zk, it emits q measurable outputs, each of which could take on the value

0 or 1. Like state and control, we can represent θk, the output status at time k of the

PBN using a decimal number ranging from 1 to 2q, so that Q={1, · · · , 2q} is the set

of possible outputs.

This output θk at time k is probabilistically related to the state zk at time k and

the input vk−1 through the known conditional probability measure Prθk
(.|zk, vk−1)

defined by

Pr{θk = θ|zk = j, vk−1 = v} = rv
jθ. (4.1)

Let Ik denote the total information that is available for control at time k. Then

clearly Ik = [θ0, v0, θ1, v1, · · · , vk−1, θk]
T . Furthermore, Ik can be generated recursively

using the equation

Ik+1 = [IT
k , vk, θk+1]

T , I0 = θ0. (4.2)

Since the state zk is not available, we would to replace the state feedback by

information feedback.

1In this chapter we use subscript for the time variable i.e zk is equivalent to z(k)
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A. Belief Vector

Along the lines of [19, 20], we now define the belief vector Pk = [p1
k, p

2
k, · · · , p

2n

k ] at

time k, where pj
k = Pr{zk = j|Ik} is the probability of state being j given the current

information vector Ik. In the appendix it is proved that the belief vector is a sufficient

statistic for the control problem. The update rule T for Pk+1 = [p1
k+1, p

2
k+1, · · · , p

2n

k+1]

T (Pk|vk, θk+1) =

[

· · · ,

∑

i∈S pi
kaij(vk).r

vk

j,θk+1
∑

j∈S

∑

i∈S pi
kaij(vk).r

vk

j,θk+1

, · · ·

]

. j = 1, 2, · · · , 2n. (4.3)

is also proved. In other words, knowledge of the current value of the belief vector, the

current control and the next output is sufficient to determine the value of the belief

vector at the next time step.

B. Cost to Go Functions

Analogous to the perfect information case we get the solution in terms of minimizing

cost to go functions. The cost to go functions now become a function of the current

belief vector instead of the current state. Let Jk(Pk) be the optimal cost to go at

time step k with belief vector Pk. Then

Jk(Pk) = min
vk∈A

∑

i∈S

pi
k



Ck(i, vk) +
∑

j∈S

aij(vk){
∑

θ∈Q

rvk

jθ Jk+1(T (Pk|θ, vk))}



 (4.4)

This is obtained by considering the expectation of the immediate control cost, and

the expectation of the costs Jk+1 over the all possible next states and observations. In

the network we consider the control is external and thus independent of the state and

the time i.e Ck(i, v) = C(v). Also the type of observation we consider are independent

of the control action at previous time step and just a function of the current state i.e.

rvk

jθ = rjθ. Thus equation (4.4) becomes
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Jk(Pk) = min
vk∈A



C(vk) +
∑

i∈S

pi
k

∑

j∈S

aij(vk)
∑

θ∈Q

rjθJk+1(T (Pk|θ, vk))



 (4.5)

The terminal cost to go function is the expectation of terminal penalty.

JM(PM) =
∑

i∈S

pi
MCM(i). (4.6)

C. 3 Gene PBN Example

To illustrate the algorithmic details, we consider the 3-gene network in Figure 3

discussed in chapter III. As before we consider x3 to be the penalty gene with a

terminal penalty of +5 being assigned when x3 = 1 in a state. x1 is the control gene

and the control action is a forcible flipping of this gene.

We consider M = 2 step control, under 3 different observation schemes (i) gene

x1 is perfectly observable, (ii) a noisy version of x1 is available (iii) No observation.

The vector rjθ for the different cases are plotted in figure 8. The expected costs are

tabulated in Table IV starting from each initial state.

Table IV. Table of optimal costs for an M=2 step control.

Observation Model Initial State i

1 2 3 4 5 6 7 8

Full State Feedback 0.0 0.33 0.0 0.66 0.66 1.0 0.33 1.0

(i) 0.0 0.33 0.0 0.66 0.66 1.0 0.33 1.00

(ii) 0.0 1.40 0.0 1.60 1.00 1.0 1.00 1.00

(iii) 0.0 1.66 0.0 2.0 1.00 1.0 1.00 1.00

No Control 0.0 1.66 0.0 3.33 3.33 5.0 1.66 5.00
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D. Metastatic Melanoma Application

In this section, we apply the methodology of this chapter to derive an optimal in-

tervention strategy for a network obtained from the study of metastatic melanoma

discussed in chapter III.

For each gene in this network, we determined their two best two-gene predictors

and their corresponding COD’s. Using the procedure discussed in [4], the COD

information for each of the predictors was then used to determine the 27×27 matrix of

transition probabilities for the Markov Chain corresponding to the dynamic evolution

of the gene-activity profile of the seven gene network. The transition probability

matrix A(v(k)), the probability distribution of the observations given the current state

and the immediately prior control (rv
jθ), and the initial state probability distribution

vector (P0) together constitute the data needed for setting up the optimal control

problem in the presence of imperfect state information. In our construction, the

vector rv
jθ for θ, does not depend on the prior control input v and probabilistically

relates only to the current state of the network. This relationship is shown in Figure

9 and it closely mimics the behavior of a gene MMP-3 which appears in the 10-gene

network (Figure 6) but does not appear in the 7-gene network ( Figure 7).

The optimal control problem can now be completely specified by choosing (i)

the treatment/intervention window, (ii) the terminal penalty and (iii) the types of

controls and the costs associated with them. For the treatment window, we arbitrarily

chose a window of length 5, i.e. the control inputs would be applied only at time steps

0, 1, 2, 3 and 4. The terminal penalty at time step 5 was chosen as follows. Since

our objective is to ensure that WNT5A is not up-regulated, we assigned a penalty

of zero to all states for which WNT5A equals 0 and a penalty of 3 to all states for

which WNT5A equals 1. Here the choice of the number 3 is somewhat arbitrary but
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Fig. 9. Plot of probability{observed variable θ = 0} versus the current state

it does reflect our attempt to numerically capture the biological notion that states

where WNT5A equals 1 are less desirable than those where WNT5A equals zero. The

cost of intervention is 1.

We next discuss two possible types of control actions for various initial state

probability distributions.

Case 1. WNT5A Controlled Directly: In this case, the control action at any given

time step is to force WNT5A equal to 0, if necessary, and let the network evolve from

there. Biologically such a control could be implemented by using a WNT5A inhibitory

protein. In this case, the control variable is binary with 0 indicating that no WNT5A

inhibitory protein is used while 1 indicates that such an intervention has been applied.

The one step cost of control is taken to be equal to the value of the control variable.

Of course, whether at a given time step, such intervention takes place or not is decided

by the solution to the resulting dynamic programming algorithm depending on the
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Table V. Expected costs for different initial state distributions

Pz0 Control, Observation Control, State feedback No Control

Pdata 0.4079 0.3226 0.9677
[

1
128

, 1
128

, . . .
]

0.7068 0.3395 0.9990
[

0, 1
64

, 0, 1
64

, . . .
]

0.7296 0.3395 0.9990
[

1
64

, 0, 1
64

, 0, . . .
]

0.5692 0.3395 0.9990

initial distribution P0 and the subsequent total information vector Ik. Note that

unlike the perfect information scenario considered in [7], we are now not in a position

to determine if forcible alteration of the state takes place or not. Consequently, it is

reasonable to expect that WNT5A inhibition may be used, even when not absolutely

necessary, thereby contributing to a possible increase in the total optimal expected

cost, compared to the perfect information case.

Using the algorithm in [20] we can find the complete solution to this optimal

control problem. Unfortunately that would involve spanning a 27(= 128) dimensional

probability distribution space. Instead we used (4.6), and (4.5) recursively to calculate

the optimal controls for certain given initial state probability distributions. The net

result, in each case, was a tree with optimal control action followed by branches

corresponding to subsequent observation.

Starting with Pdata, the distribution of states in the 31 point data set, we found

the optimal expected cost based on imperfect information to be 0.4079. The corre-

sponding optimal cost using full state observation as in [7] was found to be 0.3226.

The expected cost incurred by not using any control was 0.9677. We computed these

quantities for a few different cases of initial state distributions. The relevant quanti-

ties are tabulated in Table V.

We also calculated the optimal expected costs when the initial state is determin-



27

20 40 60 80 100 120
0

1

2

3
(a)

20 40 60 80 100 120
0

0.5

1

(b)

20 40 60 80 100 120
0

0.5

1

(c)

Fig. 10. Optimal expected cost versus initial states (a) uncontrolled (b) control using

imperfect information (c) control using full state information

istic. These values for all the 128 possible initial states are shown in Figure 10.

Note that, as expected, the optimal cost for control with imperfect information

is higher than that for control with perfect state information. The cost function,

however, is a somewhat subjective quantity chosen by us to mathematically capture

the underlying biological objective. A more natural way to look at the performance

of the control scheme would be to examine the probability of WNT5A being equal

to zero at the final time step, i.e. at k = 5. This quantity was computed for each

(deterministic) initial state for both the uncontrolled and imperfect-information-based

controlled cases. These plots are shown in Figure 11.

From this figure, it is clear that the control strategy for each initial state is

increasing the probability for WNT5A equal to zero at the terminal time point relative

to the corresponding probability in the uncontrolled case. This is, indeed, a desirable

outcome achieved by using control.
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for the uncontrolled and imperfect-information-based controlled cases

Case 2. WNT5A Controlled Through Pirin: In this case, the control objective

is the same as in Case 1, namely to keep WNT5A at 0. The only difference is that

this time, we use another gene, pirin, to achieve this control. The treatment window

and the terminal penalties are kept exactly the same as before. The control action

consists of either using a pirin inhibitor (corresponding to a control input of 1) or not

employing such an inhibitor (corresponding to a control input of 0). The one step cost

of control is taken to be equal to the value of the control variable. As before, at any

step, whether such intervention takes place or not is decided by the solution to the

resulting dynamic programming algorithm. Having chosen these design parameters,

we implemented the algorithm with pirin as the control.

We found that using pirin as a control is totally ineffective. The expected cost,

with pirin as the control, was found to be the same as the one obtained in Table V with

no control. Even with full state feedback we still found that pirin was as ineffective
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as before (data not shown). This is in stark contrast to our results in [7],Chapter III

where we demonstrated the feasibility of doing full state feedback control of WNT5A

through pirin. It is possible that going from a ternary setup in [7],Chapter III to the

binary setup here may have drastically reduced our ability to control WNT5A through

pirin. This suggests that sophisticated procedures need to be developed to reduce the

number of states, that preserve properties like controllability and observability.

E. Conclusions

In this chapter, we have extended our earlier results on external control in Markovian

genetic regulatory networks to the case where perfect information about the state of

the network is not available. In such a situation, the optimal control must be designed

based on the available measurements, which are assumed to be probabilistically re-

lated to the state of the genetic regulatory network. The conditional probability

measure of the state, given the information, serves as a sufficient statistic for com-

puting the optimal control.
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CHAPTER V

ASSIGNMENT OF TERMINAL PENALTIES

In this chapter we provide an algorithm for assigning terminal penalties, (an issue not

discussed in [7]) by taking the long term uncontrolled behavior into account. We also

discuss the possibility of using gene influence for pre selection of genes to be used for

intervention.

A. Attractors

Attractors play a key role in Boolean networks. Given a starting state, within a finite

number of steps, the network will transition into a cycle of states, called an attractor

cycle, and will continue to cycle thereafter. Non-attractor states are transient and

are visited at most once on any network trajectory. The level of a state is the number

of transitions required for the network to transition from the state into an attractor

cycle. Attractors are often identified with phenotypes [3]. Real biological systems

are typically assumed to have short attractor cycles. Singleton attractors are a key

interest since these are associated with phenomena such as cell proliferation and

apoptosis [12].

The key objective of intervention in BNs/PBNs is to steer the network from an

undesirable attractor to a desirable attractor. I.e if a state is an undesirable attractor

or in the basin of one, it should have a higher terminal penalty, since by stopping the

control in such a state the network would transition to undesirable attractor and stay

there ever after.
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B. Terminal Penalty J

In [7] penalties were assigned to states based on the expression level of certain key

genes which we call penalty genes. In particular we used WNT5A a gene known to

be over expressed in metastatic melanoma.

We now present a more sophisticated procedure for terminal penalty assignment

by looking at the long term prospective behavior of the system in the absence of

control. Though this procedure was worked out in [21] for any Markov chain, it is

particularly suited for applications on biological networks, that have few singleton

attractors.

• Partition the states of the Markov chain into transient and persistent states.

• For singleton attractors the penalty J is set according to the status of the

penalty gene or genes, e.g. for the Markov chain in Figure 12 the penalty gene

is gene No.3 and if the gene is upregulated, the corresponding state penalty is

+3.

• For a cycle the penalty is based on the fraction of time spent in states having

penalty gene or genes in undesirable profile.

• For a transient state j, the penalty J(j) =
∑

i P (S∞ = i|St = j).J(i), where i

is a cycle or a singleton attractor.

We illustrate this procedure using the following example

Consider the Markov chain in Figure 12, with upregulated penalty gene No.3

with a penalty 3. There are two persistent equivalence classes. Attractor {000} with

penalty 0 and cycle {100, 111} with penalty 1/3 × 0 + 2/3 × 3 = 2 corresponding to

the stationary distribution π = [1/3, 2/3] of states {100, 111}.The penalties are listed
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Fig. 12. Markov chain for a 3 gene PBN, x3 = 1 is penalized with +3

in Table VI. The quantities P({000})and P({100, 111}) are the probabilities of falling

in the attractor {000} and the cycle {100, 111}, respectively.

Table VI. Terminal penalty Jeq is based on the procedure in section B. Js is based

on the instantaneous state profile. Upregulated gene No.3 is used as the

penalty gene with weight +3.

State P({000}) P({100, 111}) Jeq Js

000 1 0 0 0

100 0 1 2 0

010 0.5 0.5 1 0

110 0.25 0.75 1.5 0

001 0.75 0.25 .5 3

101 0.25 0.75 1.5 3

011 0.5 0.5 1 3

111 0 1 2 3

A particular advantage of using the above procedure is that starting from any

initial state, we can say that using more control steps is never disadvantageous. This

is proved in section C.
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C. Cost Function and Number of Control Steps

We now present a proof by induction of the fact that by doing the penalty assignment

using the procedure in section B the cost function J is a non-increasing function of

the number of control steps used, under some reasonable assumptions.

To do so, we first make the following observations/assumptions:

• From the definition of the terminal penalties, the following relationship holds

JM(i) =
∑

j∈S

aij(0)JM(j) (5.1)

• In equation (5.1) the control input v = 0 corresponds to u = [0, 0, . . . , 0] , the

case with no control input i.e. autonomous evolution. Furthermore Ck(i, 0) = 0,

since it is the cost of applying no control input.

• The cost of applying control is stationary and non-negative i.e. Ck(i, v) =

C(i, v) and C(i, v) ≥ 0 for all v ∈ A.

We now prove that the cost function for a 1 step procedure is less than that of a 0

step procedure. For any i ∈ S consider JM−1(i), the one step value function.

Then from (3.7),

JM−1(i) = min
v∈A

(C(i, v) +
∑

j∈S

aij(v).JM(j)) (5.2)

= min( min
v∈A−{0}

(C(i, v) +
∑

j∈S

aij(v).JM(j)), C(i, 0) +
∑

j∈S

aij(0).JM(j)) (5.3)

In view of (5.1) and C(i, 0) = 0, we have

JM−1(i) = min( min
v∈A−{1}

(C(i, v) +
∑

j∈S

aij(v).JM(j)), JM(i)) (5.4)
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i.e. we have

JM−1(i) ≤ JM(i) (5.5)

By process of induction, assume this to hold true for an M−k−1 step procedure,

i.e.

JK+1(i) ≤ JK+2(i) (5.6)

Now from (3.7), we have

JK+1(i) = min
v∈A

(C(i, v) +
∑

j∈S

aij(v).JK+2(j)) (5.7)

Let v∗ be an input that attains this minimum i.e.

JK+1(i) = (C(i, v∗) +
∑

j∈S

aij(v
∗).JK+2(j)) (5.8)

Now consider the step K:

JK(i) = min
v∈A

(C(i, v) +
∑

j∈S

aij(v).JK+1(j)) (5.9)

= min( min
v∈A−v∗

(C(i, v) +
∑

j∈S

aij(v).JK+1(j)), C(i, v∗) +
∑

j∈S

aij(v
∗).JK+1(j)) (5.10)

⇒ JK(i) ≤ C(i, v∗) +
∑

j∈S

aij(v
∗).JK+1(j) (5.11)

Now using (5.8) we get,

JK(i) − JK+1(i) ≤
∑

j∈S

aij(v
∗){JK+1(j) − JK+2(j)} (5.12)

Now using (5.6) we have JK+1(j) ≤ JK+2(j) ∀j ∈ S,

⇒ JK(i) ≤ JK+1(i) (5.13)
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Hence for any initial state i ∈ S, the value function JK(i) is a non increasing function

of the number of control time steps used.

D. 3 Gene PBN Example

Let us consider the problem of assigning terminal penalty and optimal control for

the problem in Figure 3. The long probabilities of falling into attractors 1 and 6 are

shown in figure 13. For J(6) = 5 and J(1) = 0 the terminal penalties are shown in

figure 14.

Fig. 13. P (z(∞) = j|z(0) = i)

With cost of control C(., 1) = 1, C(., 0) = 0 as before the optimal expected cost

as a function of time horizon used is shown in figure 15.

E. Selection of Genes for Intervention

For the purposes of intervention, in theory we could flip a number of genes. However

from a biological perspective we would want the intervention to be minimal. Thus

it makes sense to choose a particular gene, that is likely to be the most effective in

bringing about the desired intervention.

In principle the optimal control problem could be solved for each gene and then

the best gene chosen. However this would be a computationally demanding procedure.
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Fig. 14. State, terminal penalties are shown in the oval. Notice that (5.1) is satisfied

Here we suggest two different heuristic approaches for gene selection and compare

their performance for the WNT5A example. These two approaches are based on (1)

gene influence and (2) a one step control(with 0 control cost).

Gene influence is a property of the underlying PBN and depends only on the

state distribution. It is independent of the cost of control, terminal penalties and

time steps. This is unlike the optimal control problem which would have to be solved

every time the cost functions are changed; gene influence has to be calculated only

once. We could use gene influence to narrow down the pool of genes, that can then

be studied using dynamic programming. We next present the formal definition of

influence.

F. Influence

Gene influence as a possible way of quantifying the relative importance of different

predictor genes on a target was introduced in [4]. The influence Ij(f) of the gene xj

on the Boolean function f , with respect to a probability distribution of states D(x)
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Fig. 15. Expected cost as a function of time horizon from each initial state

is defined as

Ij(f) = ED

[

∂f(x)

∂xj

]

(5.14)

where E is the expectation operator, ∂f(x)
∂xj

is defined as f(x)⊕f(xj) and xj is defined

as (x1, x2, . . . , xj−1, xj ⊕1, xj+1, . . . , xn). Essentially influence is the weighted average

over states of the change in the value of function f in the event of the flipping of a

variable. In the context of PBN’s the influence of gene xk on gene xi becomes

Ik(xi) =
l(i)
∑

j=1

Ik(f
(i)
j ).c

(i)
j (5.15)

The influence matrix Γ has entries Γij = Ii(xj). Also by taking the row sum we can

find Γi which is the influence of the gene xi on the network in general under the state

distribution D. Under perfect observation D is degenerate, with Γ easy to calculate

and interpret.
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G. Metastatic Melanoma Application

In this section, we apply our methods to a network developed from data collected in

a study of metastatic melanoma [13] discussed in chapter III.

The website [22] shows this 10 gene network and provides insights to the de-

termination of the 210 × 210 matrix of transition probabilities for the Markov Chain

corresponding to the dynamic evolution of the gene-activity profile of the 10 gene

network. The predictors and functions were determined from the data using COD

analysis.

The optimal control problem can now be completely specified by choosing (i)

the treatment/intervention window, (ii) the terminal penalty and (iii) the types of

controls and the costs associated with them.

Fig. 16. Terminal penalty with WNT5A as the penalty gene

We next discuss two different aspects of the control scheme: We used the pro-

cedures in section B and [7] to assign the terminal penalties Jeq and Js respectively,

using WNT5A as a penalty gene with a penalty of +5, as shown in Figure 16. In
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the optimal control problem, we used gene 1 (PIRIN) for intervention purposes. In

particular consider the state 791 a data point corresponding to [0, 1, 1, 0, 1, 0, 0, 0, 1, 1]

(LSB→ MSB) as the initial state. For the scheme based on states we observe that

the value function Js is not monotonic. Nevertheless we observe that after a certain

number of steps the expected cost function decreases monotonically (12 steps in this

case). This lack of monotonicity complicates the problem of selection of an appropri-

ate control horizon particularly if the control horizon cannot be too large. We believe

that the number of steps upto which the oscillations occur is related to the distance of

the states in the network from the attractors. This is a topic still under investigation.

Using the terminal penalty based on equivalence classes mitigates this problem.

It is guaranteed that starting from any initial state, using additional control steps,

we cannot do any worse even in the short term (Figure 17).

One of the ten genes is to be preselected to be used as control. At each time step

the control action is chosen according to equation (3.7) as either flipping that gene

or leaving it as is. We found that genes 1(PIRIN), 2(WNT5A) itself and 8(HADHB)

dominate other genes in reducing the expected cost after 5 steps of control from any

of the 210 initial states. However there is no one particular gene that performs better

than other genes for all initial states. This is clear from Figure 18.

This motivated us to use the rank expectation to rank the genes. We used a

uniform distribution over

• S: All 210 = 1024 states.

• SDATA: States in the dataset.

• SDATA WNT5A=1: States in dataset with WNT5A upregulated(9 in number).

In general we observed that the influence heuristic performs better if the number

of states over which the ranks are averaged are in particular, the states which need
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Fig. 17. With initial state 791 the expected cost is plotted for control with two different

types of terminal penalty assignments, Js based on the individual states and

Jeq based on equivalence classes

more intervention. The heuristic does not perform well when we use averaging over

all states since the majority of states need very little or no intervention.

We also found that gene influence was very effective in ruling out genes that

should not be used for intervention. For the WNT5A network we discovered that

the set of genes with least influence matched very closely the set of genes which were

least effective when used for intervention. In particular the set of genes ranked in the

bottom 20% by influence matched the set ranked by expected cost reduction in the

5 step optimal control with an accuracy ranging from 50 − 100% for all states. We

display the detailed results on the companion website [22].
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H. Conclusions

In this chapter we have refined our method of assignment of terminal penalties based

on the individual state profile (Chapter III and [7]) by using equivalence classes of

states. We also proved that such a terminal penalty assignment ensures that using

more control steps produces better results, something that is not necessarily true for

individual state based assignment in the short run.

We also introduced gene influence as a simple heuristic to narrow down the pool

of candidate genes to be used for intervention purposes by selecting genes with high

influence or more so by rejecting genes with low influence. This is important since

the states in the network grow exponentially with the number of variables, and it

may not be possible to check all candidate genes using the dynamic programming

approach.
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CHAPTER VI

FAMILY OF NETWORKS

Given a data set consisting of gene-expression measurements, PBN design constitutes

an ill-posed inverse problem that is treated by using a design algorithm to generate

a solution. Inference can be formalized by postulating criteria that constitute a

solution space for the inverse problem. The criteria come in two forms: (1) the

constraint criteria are composed of restrictions on the form of the network, and (2)

the operational criteria are composed of relations that must be satisfied between

the model and the data. The solution space consists of all PBNs that satisfy the

two sets of criteria. Recognizing that PBNs are composed of Boolean networks, and

since it is difficult to infer the probabilistic structure among the constituent Boolean

networks from the steady-state data typically used for design, a more general view

may be taken in which the inverse problem is restricted to determining a solution

space of Boolean networks and then finding networks in that space [23]. Without a

probabilistic structure between the Boolean networks, we have a family of Boolean

networks satisfying both the constraint and operational criteria. If desired, one can

then go further and construct a PBN by using networks from the family, or one can

simply treat the family as a collection of solutions to the Boolean-network inverse

problem.

In this chapter, we derive a control algorithm that can be applied to a family

of Boolean networks. This is accomplished by minimizing a composite cost function

that is a weighted average cost over the entire family. Ideally, the weighting for each

member of the family at any time point would be proportional to the instantaneous

probability of a particular network being the governing network. Although these

instantaneous probabilities are not known, we adaptively estimate them from the
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available data and the estimate is used to implement the control algorithm.

A. BN Design Algorithm

In most cases we lack time-course gene-expression measurements correspondng to the

temporal evolution of the network, and our assumption is that the measurements (or

almost all of them) are taken in the steady state [24, 9, 23] – see [23] for a discussion

of the biological considerations concerning the steady-state assumption. Under this

assumption data states are, with probability near one, attractor states. Thus, we

would like them to be attractors in the model and their inclusion or lack of inclusion

in a designed network can be used to support or not support network validity. If we

take the view that there is no reason to believe that data states are not attractor

states, then we may wish to require that the attractor states of a designed network

exactly match the data states. To achieve this end, an algorithm has been developed

to generate Boolean networks with a prescribed attractor structure [23]. To look

for biologically meaningful networks in the space of desired networks, the number of

predictors for a gene and the number of levels for a transient state are bounded. To

avoid the inclusion of non-regulating genes, each gene must occur in the predictor

set of at least one other gene. The algorithm can function in two modes. In one, it

begins with genes, attractor states, predictor sets, and a maximum number of levels,

and generates all possible networks having these; in a more general mode, it begins

with genes, attractor states, a maximum predictor-set size, and a maximum level,

and generates networks having these.
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Table VII. Table of functions. Some parts have been filled using the information on at-

tractors. Distinct networks obtained by assigning values to a = [a1, · · · , a8]

N1 a=[0,0,1,1,0,1,0,0] N2 a=[0,0,1,0,1,1,0,0] N3 a=[1,0,0,1,0,1,0,1]. See Fig-

ure 2.

x1 x2 x3 f1 f2 f3

0 0 0 0 0 0

0 0 1 a1 a7 0

0 1 0 a2 0 0

0 1 1 a3 a7 0

1 0 0 a4 a8 1

1 0 1 1 0 1

1 1 0 a5 a8 1

1 1 1 a6 0 1

B. BN Design Example

Let us consider Boolean networks with three 3 genes x1, x2, x3. Consider states

{000},{101} as attractors and predictor sets P1 = {x1, x2, x3},P2 = {x1, x3} and

P3 = {x1}. Now using the attractor structure we could fill out some parts of the

truth Table VII leaving variable a1, · · · , a8 to be randomly assigned. Three 3-gene

networks with the given singleton attractors, predictor sets, and maximum level were

shown in Figure 2 using decimal representation.

C. Dynamic Programming over a Family of Networks

If a family of BNs is designed whose attractors match the data, assuming the family

is not too small we have the expectation that the underlying biological phenomena

are closely modeled by at least some of the BNs in the family. In the absence of
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perfect knowledge as to which BNs are capable of better representing the underlying

phenomena, we develop a control policy that optimizes a composite cost function over

the entire family of BNs.

Let N be a set of L Boolean networks N1, N2, . . . , NL possessing identical sets of

singleton attractors, all sharing the same state space S and the same control space A.

Associated with each network is an initial probability of it representing the underlying

phenomenon. Since this information is not available, we will adaptively estimate these

probabilities as more transitions are observed. For each network Nl, l = 1, 2, · · · , L

define:

• al
ij(v) to be the ith row, jth column entry of the matrix Al(v) of the network

Nl;

• C l
k(i, v) to be the cost of applying the control v at the kth time step in state i

in network Nl;

• C l
M(i) to be the terminal cost associated with state i in network Nl.

We define the belief vector πk = [π1
k, π

2
k, . . . , π

L
k ], where πl

k is the probability of

network Nl being the underlying network at the kth time step. πk is the probability

distribution vector for the family of networks at the kth time step. Since πk is

unknown, we will make an initial guess for it and update it as more information

becomes available. The use of this vector is inspired by the information vector in

[20].

Suppose i is the current state at step k, π is the current estimate of the belief

vector, and upon application of control v we observe state j at the next time step.

Then the new belief vector is π′ = T (π, i|j, v), where the transformation T can be
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obtained by use of Bayes’ theorem and the theorem of total probability,

π′ = [· · · ,
al

ij(v).πl
k

∑

s∈N as
ij(v).πs

k

, · · ·] (6.1)

The optimal control problem over a family of networks problem is equivalent to

solving(3.5),(3.6) under imperfect state information. This equivalence is proved in

[25]. As before the solution can be presented as minimization of the of the cost to go

function J .

Suppose we are given an initial belief vector π0 and an initial state z(0). The

initial belief vector is based on our prior knowledge of the system. It could be a

function of likelihood or Bayesian scores of networks, or it could be uniform to reflect

no prior knowledge. Our objective is to find controls v(0), v(1), · · · , v(k), · · · , v(M−1)

to minimize the expectation of the cost-to-go function over all networks in N . The

cost to go function J the kth time step (0 ≤ k < M) is a function of the current

state z(k) and the updated belief vector πk and is given by

Jk(πk, i) = min
v∈A

[
∑

l∈N

πl
k{C

l
k(i, v) +

∑

j∈S

al
ij(v).Jk+1(T (πk, i|j, v), j)}] (6.2)

Intuitively, the inner summation is the expectation over all j ∈ S of the cost to

go at the (k +1)th step in the lth network on observing j. We then add to it the cost

of control at the kth step and average over all the networks in the family. Finally we

take the minimum over all control actions in A to obtain the optimal policy and the

cost to go at the kth step.

The terminal cost for a state i is trivially defined to be the average terminal cost

over the entire family:

JM(πM , i) =
∑

l∈N

πl
M .C l

M(i). (6.3)
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The terminal penalties are assinged using the procudure discussed in chapter V.

Since the attractors are shared by each network in the family, the attractor states

will have the same penalty across the different networks; however, penalties for non-

attractor states will differ across networks, depending on the particular attractor in

whose basin that non-attractor state may happen to lie in.

A version of this work that relates [7] and [21] is available in [11].

D. Implementation

The solution to the minimization problem (6.2), ( 6.3 ) will now be presented as a

policy tree that is optimal specific to a particular initial state and an initial belief

vector. An M -step policy tree has an optimal action as its root with branches for each

possible observation (in our case states) followed by M -1 step policy trees. A detailed

exposition on construction and pruning of such trees can be found in [26]. Here we

state an algorithm that is close to exhaustive enumeration and subsequent pruning.

We use a data structure node with five components STATE, BELIEF -V ECTOR,

OPTIMAL-COST , OPTIMAL-CONTROL and DEPTH. The algorithm involves

the following steps:

1. Compute the M step control and the corresponding J0(i), J1(i), · · · JM(i) ∀i ∈ S

for each of the networks N1, · · · , NL as a table. Table VIII is such a table of

controls for the example to be presented later in the next section.

2. Initialize the tree’s root node with the first observed state STATE = z(0),

BELIEF -V ECTOR = π0 and DEPTH = 0.

3. Expand the root node and all the subsequently generated nodes; while BELIEF -

V ECTOR 6= el (i.e. the network Nl is not uniquely identified to be the under-

lying network) and DEPTH ≤ M .
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To expand a particular node in the tree with STATE = i, BELIEF -V ECTOR =

πk and DEPTH = k, we consider all possible states that could be observed

next. In other words, a child node is created for any j, such that al
ij(v) > 0 with

πl
k > 0. Such a node has STATE = j, BELIEF -V ECTOR = T (πk, i|j, v) and

DEPTH = k + 1.

4. Now consider all the leaf nodes. For the nodes with DEPTH = M we use (

6.3) to obtain OPTIMAL-COST . For leaf nodes with DEPTH = k 6= M and

BELIEF -V ECTOR = el and some STATE = i, OPTIMAL-COST is set to

Jk(i) from the table for network Nl.

5. Now use (6.2) for all nodes with DEPTH = M−1, · · · 0 (in that order) to obtain

OPTIMAL-COST and the minimizing v as the OPTIMAL-CONTROL.

6. Prune the subtrees generated with non optimal actions to obtain PolTR, the

policy tree. The optimal policy follows the table for network Nl onwards from

a node which has BELIEF -V ECTOR = el.

At first glance, generating the tree may seem to be a formidable task due to the

potentially large branching factor which can be as high as |S| × |A|. However, in the

case of a family of BNs this is a much more manageable task due to the following

mitigating factors: (1) the branching factor is small since not all states would be

observed following an action due to similarities in the different BN transitions – for

instance, in Figure 2 state 3 goes to state 1 in all the three networks; (2) from a given

node, if more than one node is generated for some v, then the BELIEF -V ECTORs

for the children would be more sparse than the parent, and in some cases it would

become a leaf node with BELIEF -V ECTOR = el; and (3) the set of possible control

actions A is not large owing to the limited number of genes for intervention.
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Fig. 19. Tree calculation for initial belief vector π0=[1/3,1/3,1/3], initial state

z(0) = 4. The shaded region is pruned. � is a leaf node at DEPTH < M

E. 3 BN Example

To illustrate the algorithmic details, we consider the 3-gene network introduced pre-

viously. Suppose state 1 (000) is a desirable attractor state with terminal penalty

0 and state 6 (101) is an undesirable state with terminal penalty +5. The terminal

cost of any other non-attractor state is the cost of the attractor whose basin it is in.

For instance for the network N2, the nonattractor states 2, 3, 4 , and 5 have terminal

penalty 0, while states 7 and 8 have terminal penalty +5. Let x1 be the control gene

and suppose that the control action is to forcibly flip this gene: for v(k) = 1, flip

gene x1 at the kth time step and for v(k) = 0 leave it as is. Let the cost of control

C l
k(i, v) = C(v) = v. Transitions take place according to the network transition rule

– for example, in network N2, if z(k) = 6 (101) and v(k) = 1 , then z(k + 1) = 1,

corresponding to a jump from state 6 (101) to state 2 (001) and then evolution to

the state 1 (000). We show the evaluation of the policy tree PolTR starting from

an initial state z(0) = 4 and π0 =[1/3,1/3,1/3] in Figure 19. Figure 20 shows the
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Fig. 20. Pruned policy tree. The number inside the circle is the optimal control action.

The arc corresponds to the next observation, which leads to the next optimal

control action.

corresponding policy tree obtained after pruning.

We now proceed to compare the performance of a M = 2 step policy PolTR and

policies obtained using two other methods to control this family of networks.

Single network.-We calculate the optimal policy Poll for each network Nl in the

family. We obtain the control policy as a table with M rows and |S| columns. Each

element v(m, i) is the control alternative to be used when the state is i at the mth time

step. Since a single-network policy does not apply to the entire family, to implement

a policy tree we follow one of the possible state observations after each action. It may

happen that some of the possible states observed may not be listed as an option in a

single-network policy tree. For a single BN the policy tree is a tree with a branching

factor of 1, i.e. a path. Single network optimal policies for each network are listed in

Table VIII.

Context Switching.- The context-sensitive PBN design of [9] is more general than

the method proposed here because there is no requirement that the constituent BNs

possess identical attractor structures; however, it is more constrained in the sense

that it assumes knowledge of the PBN switching structure. If, as is assumed here, we

lack knowledge of the probabilistic structure governing BN selection so that we do

not view the family of BNs as composing a single PBN and if the attractor structures

are identical, as with a design strategy in which the attractors of each BN match the
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Table VIII. Optimal control policies obtained from different networks. NSW is ob-

tained for π=[1/3,1/3,1/3].

Network Time Step(k) State

1 2 3 4 5 6 7 8

N1 0 0 0 0 0 0 0 0 0

1 0 0 0 0 1 1 0 0

N2 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 1 1 1

N3 0 0 0 0 0 0 1 0 1

1 0 0 0 0 1 0 0 1

NSW 0 0 0 0 0 1 1 1 1

1 0 0 0 0 1 1 1 1

data states, then it may well be that the policy proposed here could outperform the

context-sensitive-PBN method. If, for the present 3-gene example, we assume that

the BNs compose a PBN in which each has equal probability of being selected, then

the method of [9] yields the optimal control policy, PolSW , presented in the last row

of Table VIII.

To assess the performance of a particular policy Pol, we apply it to all the

networks in the family starting from each initial state i and obtain J l,Pol
0 (i). We then

compute

JPol
0 (i) =

∑

l∈N

J l,Pol
0 (i).πl (6.4)

by averaging over all the networks. Assuming that π0=[1/3,1/3,1/3], Table IX shows

the results of applying various policies for all possible initial states. As measured

by the value of the optimal cost, the policy PolTR of this work is superior. More

examples appear on the companion website [27].
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Table IX. Performance of control with π0=[1/3,1/3,1/3], M = 2.

Policy JPol
0 (1) JPol

0 (2) JPol
0 (3) JPol

0 (4) JPol
0 (5) JPol

0 (6) JPol
0 (7) JPol

0 (8)

Pol1 0.00 0.33 0.00 0.66 2.00 2.66 0.33 2.66

Pol2 0.00 1.66 0.00 1.66 0.66 2.66 0.33 2.66

Pol3 0.00 0.33 0.00 0.66 2.00 1.33 1.66 1.66

PolSW 0.00 0.33 0.00 0.66 1.00 1.33 1.00 1.66

PolTR 0.00 0.33 0.00 0.66 0.66 1.33 0.33 1.66

F. Metastatic Melanoma Application

We now apply the methodology of this chapter to derive an optimal intervention strat-

egy for a family of gene regulatory networks obtained from the study of metastatic

melanoma discussed in Chapter III. We began with the binary 7 gene data.

Since all 31 data points correspond to steady-state behavior, they should be

considered as attractors in the networks. However, out of the 31 samples only 18

were distinct. To reduce the number of attractors, we formed seven clusters from the

data points and treated the cluster centers as attractors. These attractors are shown

in Table X. The first column is used to classify them into two categories, GOOD and

BAD, depending on the status of the WNT5A gene.

Using the procedure of [23], we obtained 4 distinct BN’s (N1, N2, N3, N4) with

the same set of 7 attractors.
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Table X. Cluster centers as attractors for the WNT5A network. The good attractors

are the ones with the profile of WNT5A gene downregulated. PIRIN is the

most significant bit(MSB) and WNT5A is the least significant bit(LSB)

z Gene Activity Profile x

PIRIN S100P RET1 MART1 HADHB STC2 WNT5A

B 4 0 0 0 0 0 1 1

A 32 0 0 1 1 1 1 1

D 82 1 0 1 0 0 0 1

G 33 0 1 0 0 0 0 0

O 57 0 1 1 1 0 0 0

O 95 1 0 1 1 1 1 0

D 109 1 1 0 1 1 0 0
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Fig. 21. WNT5A network N1
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Fig. 22. WNT5A network N2
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Fig. 23. WNT5A network N3
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Fig. 24. WNT5A network N4
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We assigned a penalty of 5 to all states in the basin of the undesirable attractors

(WNT5A = 1) and 0 to all the other states. We used PIRIN as the control gene.

A forcible alteration in the expression level of PIRIN is associated with v = 1 while

v = 0 represents no control. In a reasoning similar to our previous work [7, 8], a

terminal penalty of 5 for bad states vs. 0 for good states and a control cost of 1 for

intervention vs. 0 for no intervention is our attempt to capture the intuitive notions

of the relative costs of ending up in desirable vs. undesirable state and the cost of

intervention.

Fig. 25. Policy tree for M = 3, initial state z(0) = 3 and initial belief vector π0=[1/4,

1/4, 1/4, 1/4]

A pruned policy tree for M = 3 with initial belief vector π0=[1/4, 1/4, 1/4, 1/4]

and initial state z(0) = 3 is shown in Figure 25. The expected cost is 0.75 when we

control using PolTR, 1.5 when using PolSW , and 1.75, 2.5, 1.5 and 1.75 when using

Pol1, Pol2, Pol3 and Pol4, respectively. The expected uncontrolled cost is 2.5. For all

horizons M and all initial states z(0) = i ∈ S the method of this chapter is superior

to those discussed in the earlier chapters. Out of the 128 states in the network, 89

states needed to be controlled in at least one of the 4 networks. In particular for

M = 5, starting from such states PolTR was more effective than PolSW in reducing

the cost by 0.1152 on average. In terms of absolute probabilities PolTR was able
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to take the system to a desirable attractor starting from all initial states and all

networks with a probability 1.0, except for states 4, 36, 68, 100 in network N2, which

are uncontrollable from PIRIN. For PolSW , states 4, 8, 24, 36, 68, 100 are not taken to

a desirable attractor in N2. In the event of N2 being the underlying network, starting

from states 4, 36, 68, 100, PolTR recognizes this and gives up promptly, while PolSW

keeps on applying control, incurring extra costs, without any extra benefit.

Policy trees for initial state z(0) = 93, π0=[1/4, 1/4, 1/4, 1/4], and M = 2, 3 and

4 are shown in Figure 26. The expected cost with M = 2 is 1.0 which can be further

reduced to 0.25 if M ≥ 4. This is reasonable because the algorithm has more time

steps to identify and control the system. For this M = 4, the policy computation

took 0.28 seconds on a 2.4 GHz, P4 processor system.

For this example no states needed more than M = 4 steps to reach the minimum

possible value of the expected cost.

More examples appear on the website [27].

G. Conclusion

In conclusion, we have developed a method to optimally control a family of BNs

that share a common attractor structure. Such a family arises naturally from the

steady state data obtained from gene expression microarrays. The control algorithm

is presented as a policy tree depending on an initial belief vector that is updated in an

adaptive fashion. At every stage of the evolution, the estimated belief vector is used

to appropriately weight the individual networks in the construction of the composite

cost function to be minimized.
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Fig. 26. Policy trees and optimal costs, for initial state z(0) = 93, π0=[1/4, 1/4, 1/4,

1/4], M = 2(a), M = 3(b) and M = 4(c).
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CHAPTER VII

CONCLUSIONS

In this work, we discussed several approaches that have been recently developed for

addressing the issue of intervention in gene regulatory networks.

The results reported indicate that significant progress has been made in this area;

however, numerous open issues remain and these will have to be successfully tackled

before the methods suggested in this thesis find application in actual clinical practice.

We next discuss some of the issues that we are aware of at the current time:

A. Choice of Control Input

In the case of the melanoma cell line study presented in this thesis, one of the genes in

the PBN, namely pirin, has been used as a control input. The question is how to decide

which gene to use. Of course, one consideration is to use genes for which inhibitors or

enhancers are readily available. However, even if such a gene is chosen, how can we

be certain that it is capable of controlling some other gene(s)? Although the answer

is not clear at this stage, we do believe that the traditional control theoretic concepts

such as controllability and observability [28] may yield some useful insights. Another

possibility is to use the concept of gene influence introduced in [4], an approach that

we have preliminarily explored in chapter V.

B. Intervening to Alter the Steady-State Behavior

Given a Boolean network, one can partition the state-space into a number of attrac-

tors along with their basins of attraction. The attractors characterize the long-run

behavior of the Boolean network and have been conjectured by Kauffman to be indica-
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tive of the cell type and phenotypic behavior of the cell. Consequently, a reasonable

objective of therapeutic intervention could be to explore intervention by altering the

attractor landscape in the associated Boolean network.

C. PBN Design Issues

The optimal control results presented in this thesis assume known transition probabil-

ities and pertain to a finite-horizon problem of known length. Their extension to the

situation where the transition probabilities and the horizon length are unknown is a

topic for further investigation. Finally, the results presented in this thesis correspond

to the following stages in standard control design: modeling, controller design and

verification of the performance of the designed controller via computer simulations.

The designed controllers will have to be successfully implemented in practical stud-

ies, at least with cancer cell lines, to validate the use of engineering approaches in

translational medicine. A considerable amount of effort needs to be focused on this

endeavor.
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APPENDIX A

Proof of (4.3)

Now for any j = 1, 2, · · · , 2n, we have

pj
k+1 = Pr {zk+1 = j|Ik+1}

= Pr {zk+1 = j|Ik, vk, θk+1}

=
Pr {zk+1 = j, θk+1|Ik, vk}

Pr {θk+1|Ik, vk}

=
Pr {zk+1 = j, θk+1|Ik, vk}

∑2n

j=1 Pr {zk+1 = j, θk+1|Ik, vk}
(A.1)

We next evaluate the numerator of the above expression:

Pr {zk+1 = j, θk+1|Ik, vk}

=
2n
∑

i=1

Pr {zk+1 = j, zk = i, θk+1|Ik, vk}

=
2n
∑

i=1

Pr {zk = i|Ik, vk} .P r {zk+1 = j, θk+1|Ik, vk, zk = i}

=
2n
∑

i=1

Pr {zk = i|Ik} .P r {zk+1 = j|Ik, vk, zk = i}

.P r {θk+1|zk+1 = j, Ik, vk, zk = i}

(since zk does not depend on vk)

=
2n
∑

i=1

Pr {zk = i|Ik} .P r {zk+1 = j|zk = i, vk}

.P r {θk+1|zk+1 = j, vk}

(since zk+1 given zk and vk does not depend on Ik; and θk+1 given

zk+1 and vk does not depend on Ik or zk)

=
2n
∑

i=1

pi
k.aij(vk).r

vk

j,θk+1
(A.2)
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Substituting (A.2) into (A.1), we obtain

pj
k+1 =

∑2n

i=1 pi
kaij(vk).r

vk

j,θk+1
∑2n

j=1

∑2n

i=1 pi
kaij(vk).r

vk

j,θk+1

, j = 1, 2, · · · , 2n
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