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ABSTRACT 
 
 

Making the Business Case for Process Safety Using Value-at-Risk 
 

Concepts.  (August 2006) 
 

Jayming Sha Fang, B.S., The University of Texas at Austin 
 

Chair of Advisory Committee:   Dr. David M. Ford 
 

 
An increasing emphasis on chemical process safety over the last two decades has 

led to the development and application of powerful risk assessment tools.  Hazard 

analysis and risk evaluation techniques have developed to the point where quantitatively 

meaningful risks can be calculated for processes and plants.  However, the results are 

typically presented in semi-quantitative “ranked list” or “categorical matrix” formats, 

which are certainly useful but not optimal for making business decisions.  A relatively 

new technique for performing valuation under uncertainty, Value at Risk (VaR), has 

been developed in the financial world.  VaR is a method of evaluating the probability of 

a gain or loss by a complex venture, by examining the stochastic behavior of its 

components. We believe that combining quantitative risk assessment techniques with 

VaR concepts will bridge the gap between engineers and scientists who determine 

process risk and business leaders and policy makers who evaluate, manage, or regulate 

risk.  We present a few basic examples of the application of VaR to hazard analysis in 

the chemical process industry.  We discover that by using the VaR tool we are able to 

present data that allows management to make better informed decisions. 
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CHAPTER I 
 

INTRODUCTION 
 
 

 
1.1. Background 

 
Due to the inherent sensitivity of the chemical process industry (CPI) to the 

consequences of failure, chemical process safety has been a major concern for some time 

(AICHE, 1989).  In the current era of market mechanisms and efficiency, the underlying 

driving force is to make production as cheap as possible, to save investment money 

where possible, and to avoid overdoing measures that just serve to safeguard.  History, 

however, reveals that safety does pay in the long run. (Pasman, 2000) Chemical process 

quantitative risk assessment (CPQRA) identifies areas in operations, engineering, and 

management systems that might be modified to reduce process risk.  CPQRA deals with 

both aspects of risk, namely likelihood and consequence.  Likelihood is typically 

estimated through some combination of historical data and fault/event tree analysis.  

Consequence modeling generally consists of two parts; detailed science models predict 

the parameters of incident-specific events (e.g. gas release, explosion overpressure), and 

effect/mitigation models predict the final consequences on people and the environment 

(natural and built).  The product of likelihood and consequence is a measure of risk.   

 

 

 
____________________ 
This thesis conforms to the Journal of Loss Prevention in the Process Industries. 
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Presently, CPQRA has developed to the point where quantitatively meaningful risks 

may be calculated for individual processes and entire plants.  (Fang et al., 2004)1

Obviously, implementing safety devices and procedures to remove all risks in a 

chemical plant is not feasible.  Thus, an important part of a CPQRA analysis is 

prioritizing the risks for appropriate action.  The results are typically reported in a 

likelihood-consequence matrix format, or perhaps in a ranked list.  While this semi-

quantitative approach is useful, we believe that CPQRA has progressed to a point where 

the results may be presented in more detail and with more quantitative precision.  

Furthermore, they should be presented in a comprehensive format that is useful to CPI 

management and other policy makers.  This is not an easy task, primarily due to the 

inherently probabilistic nature of the problem.  However, the rewards of such an 

approach would be substantial; a more quantitative and coherent business case for 

process safety would certainly result in a better-focused investment by the CPI. (Fang et 

al., 2004) 

In this thesis, we present a new approach for understanding, organizing, and 

packaging the results of CPQRA analyses.  The approach is based on a technique, Value 

at Risk (VaR), borrowed from the financial industry (Jorion, 2001); it will provide a 

bridge between the engineers and scientists who calculate process risk and the business 

leaders and policy makers who evaluate, manage, or regulate risk in a broader context.  

VaR is a method of evaluating the probability of a gain or loss by a complex venture, by 

                                                 
1 Reprinted with permission from “Making the business case for process safety using value-at-risk 
concepts” Fang, J.S., Ford, D.F., & Mannan, M.S, 2004. Journal of Hazardous Materials, 115, 17-26.  
2004 by Elsevier.  
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examining the stochastic behavior of its components.  The framework is firmly grounded 

in the theory of VaR, yet flexible enough so that it may be: 

• used at several different organizational levels (process, plant, industry 

segment). 

• integrated with other business risk concerns (operational, market) so 

that complete and accurate cost-benefit decisions may be made. 

• implemented in software targeted for industrial risk professionals. 

• extended to other types of risk (environmental, societal) and for use by 

other stakeholders (governmental agencies, public interest groups). 

(Fang et al., 2000) 

The primary focus of this thesis is to introduce the approach and demonstrate its use 

on case problems from the literature.  We note that VaR concepts have begun to appear 

in other areas of process design research.  For example, Barbaro and Bagajewicz (in 

press) have employed VaR in developing a two-stage stochastic formulation for 

managing financial risk in planning under uncertainty.   

In addition to the CPQRA analyses, we investigate the Layers of Protection Analysis 

(LOPA) to VaR analysis. LOPA defines a series of independent layers of defense against 

harmful events and their consequences.  This represents an increase in complexity 

because this allows us to investigate the impact of individual safety devices (i.e. 

interlocks, alarms) on the inherent safety of the component and how removing or placing 

a safety device can affect the safety.  However, as before, the VaR is still represented as 

one curve.  (Fang et al., 2004) 
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1.2.  Organization 

Chapter II contains the theoretical development for combining VaR and CPQRA.  

Chapter III demonstrates the procedure on two different example problems using the 

basic concepts.  Chapter IV demonstrates a more advanced case study using dollars and 

process known as the Layers of Protection Analysis technique.  The first example is 

based on a single event tree and a simple damage valuation index, with various layers of 

probabilistic complexity sequentially added in.  The second is closer to a real-world 

example, using a hazard quantification index from the literature.  And the third is the 

closest to simulating a real world problem that uses valuation in terms of dollars and 

uses several event trees, consisting of independent layers of protection.  Chapter V 

concludes this study. 
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CHAPTER II 

BACKGROUND 

 

2.1.  Value at Risk 

VaR is a method of evaluating the probability of a gain or loss by a complex 

financial venture, by examining the stochastic behavior of its components (Jorion, 2001).  

VaR approaches generally involve a combination of likelihood estimation and valuation: 

how likely is an event to happen, and what is the financial impact on the portfolio?  

Quantification of both of these aspects may involve sophisticated probabilistic analyses.  

A major strength of the VaR technique is that it provides a total cost-benefit analysis of 

an entire portfolio in terms of a single probability distribution function for value.  VaR 

itself is technically defined as the worst loss that is expected in a portfolio, within a 

given probability, over a specified time period. (Fang et al., 2004) 

The flexibility of the VaR approach (i.e., the ability to accept input from different 

events), combined with the comprehensive, straightforward presentation of results (i.e., 

the use of a single probabilistic value function), makes it attractive for application to 

problems in CPQRA.  
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2.2.  Integration of CPQRA and VaR  

The diagram in Figure 1 shows how we envision the procedure.  Traditional CPQRA 

tools are used to determine the probabilities and consequences of undesired events 

associated with a plant or process.  The consequences are passed to a valuation model, 

where they are assigned values (or distributions of values).  The valuation may be done 

in monetary terms, or with a customized index appropriate to the particular situation or 

stakeholders. For undesired events, the values will typically be negative by convention.  

The results of the CPQRA and valuation are sent to the VaR engine, where they are 

combined to generate a single VaR probability distribution function representing 

process/plant value.  (Fang et al., 2004) 

The VaR approach is capable of handling complex situations in which the 

fundamental stochastic events are related in a nonlinear fashion within the portfolio; this 

level of complexity typically requires simulation using Monte Carlo techniques (Jorion, 

2001)  This level of treatment is not required for the simple example situations described 

below, but it might be for many real-world problems in the CPI. 

We also note that the cumulative versions of our VaR probability curves are 

somewhat analogous to the frequency-number, or F-N, curves often used to describe 

societal risk (AICHE, 1989).  F-N curves show the cumulative frequency of undesired 

events with respect to the number of individuals affected (e.g. killed, injured, exposed).  

Our cumulative VaR curves represent the cumulative frequency of experiencing a loss 

with respect to the damage value.  In this thesis, we consider damage value in an abstract 

sense and do not relate it to human life. 
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Natural & built environment 
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VaR probability-value curve

Figure 1.  Flow chart of the integration of VaR and CPQRA  
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CHAPTER III 

APPLICATION EXAMPLES 

 

3.1.  First Example Problem: Leak from LPG Storage Tank 

This example problem applies a VaR analysis to a problem illustrated in Chapter 3 of 

the CPQRA.  The possible events and outcomes, and their frequencies, are taken directly 

from that example.  We created the damage index described below, specifically for 

illustrative purposes related to this example.  The values of the damage index for the 

different possible outcomes were assigned based on our judgment. 

 

3.1.1.  Scenario description 

In this example, we assume that a fault tree analysis has identified the potential 

problem of a large leakage from an isolated LPG storage tank and estimated the 

frequency with which this problem is expected to occur.  A further event tree analysis, as 

shown in Figure 1 yields 10 possible scenarios comprised of six distinct outcomes.  The 

six outcomes and their associated frequencies are summarized in Table 1. 

 

 

 

 

 

 



 9

Table 1  Data for the LPG leak problem 

Incident Damage 
Index 

Uncertainty Frequency (10-

6/yr) 
BLEVE -200 25 2 
Flash fire -150 15 32.4 
Flash Fire and 

Bleve 
-275 20 8.1 

UVCE -425 20 40.5 
Local Thermal 

Hazard 
-30 5 8 

Safe Dispersal -3 1 9 
 
 
Detailed descriptions of the possible outcomes may be found in (AICHE, 1989), but 

we briefly outline them here.  A boiling liquid expanding vapor explosion (BLEVE) 

occurs when a pressurized vessel suddenly fails and its contents flash to the atmosphere, 

producing a pressure wave.  If the expanding substance is also flammable, there is the 

additional danger of a flash fire.  An unconfined vapor cloud explosion (UVCE) occurs 

when a drifting cloud of flammable vapor ignites and explodes, producing a shock wave.  

Such a cloud may also ignite but not produce an overpressure wave, thus generating a 

flash fire.  A local thermal hazard will occur if the release burns locally, without flashing 

back into the tank to cause an explosion.  Of course, safe dispersal is the most desirable 

of these undesirable events, but even this outcome has a negative value associated with a 

shutdown of the facility.  (Fang et al., 2004) 

The event tree supplies the possible outcomes and frequencies.  In order to apply the 

VaR analysis, we also need values for these outcomes.  We have done this using a 

damage index that we created, somewhat arbitrarily, for this example. 
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3.1.2.  Point system for event damage 

We perform our valuation based on the following damage index scale: 

 

0-10 points:  minor damage to the local built environment; rare minor injuries 

10-20 points:   significant damage to the local built environment; common minor 

injuries; rare major injuries 

20-30 points:  severe damage to the local built environment; significant damage 

to the surrounding built environment; common minor and major injuries; at least one 

fatality is likely 

30-40 points: severe damage to the local and surrounding built environment; 

significant damage to the natural environment; many minor and major injuries; 

several fatalities 

40-50 points: catastrophic damage to the local and surrounding built 

environment; permanent damage to the natural environment; many minor and major 

injuries; dozens of fatalities (Fang et al., 2004) 

 

Based on this scale and our judgment of the damage potentials of the various 

outcomes, we have assigned damage points to the outcomes, as shown in Table 2.  We 

have also assigned an “uncertainty” to the damage points, which will be used and 

described later (sections 3.1.4-3.1.6); generally, the uncertainties represent underlying 

stochastic processes specific to the events but beyond the desired level of model detail. 
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Table 2.  Revised data for the LPG leak problem 
Incident Damage 

Index 
Uncertainty Frequency (10-

6/yr) 
BLEVE -200 25 2 

Flash fire -150 15 32.4 
Flash Fire and 

Bleve 
-275 20 8.1 

UVCE -425 20 40.5 
Local Thermal 

Hazard 
-30 5 8 

Safe Dispersal -3 1 9 
 

Note that we will report the negative of the point value when referring to the damage 

index, so that negative numbers with higher absolute values indicate worse damage. 

 

3.1.3.  VaR for the case of no uncertainty in event damage 

If there is no uncertainty in the damage associated with any outcome, then the VaR 

curve is actually a discrete frequency mass function as opposed to a continuous 

frequency density function.  This function is shown in the simple bar graph of Fig. 2. 

Each event contributes to the VaR at exactly one value of the damage index, with a 

frequency determined by the event tree.  We do not show the bar for the outcome of zero 

damage, which has a frequency of 0.9999 yr-1 (assuming that our other outcomes cover 

all other possibilities), because it would be well off the scale of the chart.  The 

cumulative frequency mass function is shown in Fig. 3. (Fang et al., 2004) 
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Figure 2. Damage outcome frequencies for the LPG leak (no uncertainty) 
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Figure 3.  Cumulative mass function for the LPG leak (no uncertainty) 

 

In the financial world, the actual “value at risk” is defined as the value that sets some 

probability limit on the VaR frequency function.  For example, say that the value v 

represents a lower limit where 95% of the frequency lies above it.  Then we can state 

that we are 95% certain that we will lose no more than v over the time horizon used to 

construct the frequency curve, or equivalently, “the value at risk is v.”  Based on the data 

in Fig. 3, we may make statements such as the following:  (Fang et al., 2004) 

• We are 99.99% certain that we will suffer no damage from an LPG 

storage tank leak over the next year. 
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• We are 99.995% certain that we will suffer a damage value of no more 

than 30 points from an LPG storage tank leak over the next year. 

• Over a one-year time horizon, to a 99.995% probability level, our value at 

risk from an LPG storage tank leak is 30 points. 

The last two statements are equivalent. 

The main assumptions used to generate Figs. 2 and 3 are that (1) the fault tree 

prediction of 10-4 LPG storage tank failures per year is accurate, (2) the event tree 

captures all possible failure outcomes and their associated probabilities, and (3) a single 

number is sufficient to capture the damage effects of each outcome.  The next few 

sections address the relaxation of the third assumption.  

 

3.1.4.  VaR for the case of uniform uncertainty in event damage 

In reality, many failure outcomes will result in a distribution of possible damage 

effects, due to stochastic variables such as atmospheric conditions or human factors.  To 

capture the random nature of these processes, damage effects are often modeled as 

probabilistic functions instead of single values. (Fang et al., 2004) 

The simplest approach is to assume a uniform distribution of frequency across some 

damage range, for each outcome.  We demonstrate this approach using the numbers 

given in Table 1 for the LPG storage tank scenario.  The uncertainties of the damage 

events in the table are used as upper and lower bounds on the distributions, with the 

frequency being constant between them and zero elsewhere, and the total frequency 

(area under the curve) being equal to the frequency given in the Table 1.  For example, 
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the damage index associated with the “safe dispersal” outcome ranges from 2 to 4, with 

a uniform frequency density of 4.5*10-6 events per year per damage point, yielding a 

total (integrated) frequency of  9.0*10-6 events per year.  Figure 4 shows the resulting 

VaR curve.  With the use of frequency distributions to describe the damage effects, the 

curve becomes a frequency density function, instead of a frequency mass function.  The 

curves for different individual outcomes now overlap in certain regions of damage index 

value and are combined additively in those regions.  This additivity is justified because 

the event tree produces the outcomes as a set of complementary events, in a probabilistic 

sense.  (Fang et al., 2004) 
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Figure 4.  Frequency density function for the LPG leak (uniform uncertainty) 
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The corresponding cumulative curve is shown in Fig. 5.  The effects of the sharp 

discontinuities in frequency that exist at the edges of the uniform distributions are 

evident in the discontinuities of the slope at several locations in Fig. 5. 

0 points at 99.99% 
confidence

-26 points at 99.995% 
confidence

-45 points at 99.999% 
confidence0

10

20

30

40

50

60

70

80

90

100

-50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0

Damage Index

C
um

ul
at

iv
e 

Fr
eq

 (1
0-6

/y
ea

r)

Figure 5.  Cumulative distribution function for the LPG leak (uniform uncertainty) 
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3.1.5.  VaR for the case of Gaussian uncertainty in event damage 

In this case, we assume that the damage effects are distributed normally.  The 

uncertainties listed in Table 1 are now assumed to be the standard deviations in the 

Gaussian distributions.  For clarity, the entire point scale for damage (section 3.1.2) has 

been increased by a factor of 10 with new damage scores for each event.  These new 

scores are reflected in Table 2.  As with the uniform distributions, each Gaussian is 

normalized so that the total area under the curve equals the frequency given in Table 2.  

The frequency density function is shown in Fig. 6 and the corresponding cumulative 

function is shown in Fig. 7.  (Fang et al., 2004) 
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Figure 6.  Outcome density function for the LGP leak (Gaussian uncertainty) 
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Figure 7.  Cumulative distribution function for the LPG leak (Gaussian uncertainty) 

 

With the Gaussian curves, both frequency functions are now smoother.  One problem 

with the normal distribution is that it has infinite range, which may have two undesirable 

side effects in the present analysis.  First, all damage events make some contribution 

(albeit small) to the positive side of the value curve, which is not sensible.  Furthermore, 

even minor damage events make some contribution (albeit small) to extreme damage 

values, which is also not sensible.  (Fang et al., 2004) 

 

3.1.6.  VaR for the case of beta uncertainty in event damage 

An obvious fix to the problem mentioned above is to use a frequency function with 

limited range.  For this purpose, we employed the beta distribution, which has both 

lower and upper bounds.  The parameters α and β for the beta distribution were chosen 

to match the averages and standard deviations (uncertainties) given in Table 1. 
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The density function is shown in Fig. 8, while the cumulative function is shown in 

Fig. 9.  In theory, this is probably the best representation of the results, in that the 

individual damage events are bounded appropriately.  In practice, it doesn’t appear to be 

much different from the Gaussian results, on this scale. (Fang et al., 2004) 
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Figure 8.  Frequency density function for the LPG leak (beta uncertainty) 
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Figure 9.  Cumulative distribution function for the LPG leak (beta uncertainty) 
 

 

3.2.  Second Example Problem: Loading of Chlorine Rail Tank Car 

This example problem applies VaR analysis to a problem illustrated in Chapter VIII 

of CPQRA.  The representative outcomes and their frequencies are taken directly from 

that reference.  The damage index used for this example was created by Khan and 

Abbasi (1997a). 

 

3.2.1.  Scenario description 

In this example, we assume that an incident identification analysis has generated a 

set of representative events associated with a chlorine tank car loading facility, and we 

further assume that a combination of historical data and fault tree analysis has been used 
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to estimate their frequency.  The three representative outcomes and their associated 

frequencies are summarized in Table 3.  Another parameter that affects the consequences 

of the incidents is prevailing wind conditions.  We will assume eight possible wind 

directions that are given an equal frequency of occurring.  (Fang et al, 2004) 

 

Table 3.  Data for the chlorine rail car problem 
Chlorine Potential 
Accidents Estimated frequency (yr-1)

Gas 
release(kg/s) Gas release in one hour

Liquid Leak 5.80E-04 2.7 1620 
Vapor Leak 6.60E-04 0.26 156 
Relief valve discharge 3.00E-06 2.4 8640 
 
 

Detailed descriptions of the possible incidents may be found in CCPS, but we briefly 

outline them here.  The main elements of the facility are a storage tank, a rail tank car, 

and associated transfer equipment.  A small leak of liquid chlorine (~ 2 kg/s for 10 min) 

might arise from a defective hose or valve, or an impact to a transfer pipe.  A small 

vapor leak (~ 0.2 kg/s for 20 min) might arise from the same sources.  A large vapor leak 

(~ 2 kg/s for 60 min) might occur due to a lifting of the relief valve under the stress 

caused by an external fire.  In all three cases, the primary concern is the toxic effects of 

the released chlorine; the loading facility is located 100 m west of a residential area 400 

m square, containing a uniformly distributed population of 400 persons. (AICHE, 1989) 

 

3.2.2.  Point scale for damage events 

 We use the Accident Hazard Index (AHI) due to Khan and Abbasi (1997a).  

While their approach provides a means to rank three types of damage, namely thermal, 
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mechanical (blast), and toxic, we will focus on toxic damage for this example problem 

of chlorine release. 

 Khan and Abbasi’s procedure for determining the contribution to the AHI of a 

toxic load involves the following steps.  First, a parameter R is estimated from 

 

 R =
q

LC50

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
1/ 3

 (1) 

 

where LC50 is the concentration (kg/m3) of chlorine vapor that is expected to be lethal to 

50% of the exposed population and q is the total quantity (kg) released.  The value of R 

is used as input to a function that produces a dimensionless severity factor X.  If the 

event is completely contained in the process area, this severity factor X is then the AHI.  

If an external effect (such as harm to population areas) is a concern, a population impact 

factor must be integrated with the severity factor X to produce the final AHI.     

 In this example, the direction of the prevailing wind during a release event is an 

extra stochastic factor.  If the wind carries the chlorine vapor into the nearby residential 

area, an impact factor must be included.  We assume that this will happen when the wind 

blows towards the northeast, east, and southeast (a total of 37.5% of the time).  There are 

now two possibilities for the AHI associated with each event, one with the population 

impact factor and one without.  The population impact factor is derived from a special 

formula derived from Khan and Abbasi (1997b); the input parameters are population 

density, which is the number of people (thousands) per square kilometer.  
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3.2.3.  Analysis of scenario 

Since no uncertainty in the hazard index was available, we carried out a simple 

frequency mass function analysis for the VaR plot, as in Section 3.1.3. 

The frequency mass distribution function featuring the three unwanted events (with 

and without the population damage input) is shown in Fig. 10.  The relief valve 

discharge had the highest hazard index, followed by the vapor and liquid leaks.  The 

vapor indices had the greatest frequency.  However, the wind did not affect the vapor 

leak’s AHI, because the rate of gas release (~0.2 kg/s) was too small to be a hazard to a 

residential population 100 meters away.  The resulting frequency mass function plot is 

shown below in figure 10.  The cumulative mass density plot is shown in Fig. 11. 
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Figure 10.  Frequency mass function for the chlorine rail car problem 
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Figure 11.  Cumulative distribution function for the chlorine rail car problem 
 

 

The following VaR statements may be made from the data: 

 

• Over a one-year time horizon, to a 99.9% probability level, our value at risk from 

toxic leaks at the tank car facility is 2.82 on the AHI. 

• Over a one-year time horizon, to a 99.99% probability level, our value at risk 

from toxic leaks at the tank car facility is 5.89 on the AHI. 
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CHAPTER IV 
 

LAYERS OF PROTECTION ANALYSIS EXAMPLE 
 
 
 

4.1. Introduction 

In the previous section, we demonstrated the application of VaR to two process 

safety case studies; event trees for potential incidents with chlorine rail transport and 

propane gas storage were used to generate VaR loss probability functions and assess 

risk.  In this chapter we demonstrate the application of VaR to an ethylene compressor 

using the Layers of Protection Analysis (LOPA) as it applies to process safety.   

 

4.1.1 Process description and potential failures 

The main focus of our analysis is an individual ethylene gas refrigeration compressor 

with a capacity of processing millions of pounds of material per day.  Such a device 

would be found in a liquefied natural gas processing complex, condensing light 

hydrocarbons for storage and transportation.  The compressor, like any piece of 

equipment, is subject to failures of varying type and severity.  We will consider six 

different types of failure, namely failures associated with surge control, high suction 

drum level process demand, lube oil control, seal oil control, speed suction control, and 

vibration process demand.  Most of these failure types, if unchecked, would result in 

approximately one million dollars of equipment damage plus the loss of production from 

being shut down for about 7 days.  The exception is a seal oil control failure, which 

would incur a 30-day loss of production.  To prevent these high levels of damage, one 
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may install safety interlocks that shut down, or “trip,” the compressor in response to an 

undesirable event.  These shutdowns typically cause the compressor to be down for one 

business day, significantly limiting the loss.  However, one drawback of the interlocks is 

that they occasionally have spurious trips that shut down the compressor when there is 

no true process fault; this causes unnecessary loss in production.  Details of the interlock 

implementation are described in the next section. 

 

4.1.2 Layers of protection 

SIS-Tech (2004) has performed a QRA on a set of safety interlocks for the ethylene 

refrigeration compressor as described above.  The interlocks are layered in series so that 

if the first interlock does not successfully shut down the system, the second can shut it 

down, and so on.  The QRA is represented as a set of event trees, each modeling the 

response of the safety system to one of the failure events described in the previous 

section.  Each interlock and event tree is considered to be independent of the others.  

Figure 12 shows the generic event tree structure.  The top event (failure) occurs with an 

estimated frequency.  Each of the safety interlocks provides a success/failure node; there 

is a certain probability (x) that the interlock will successfully trip the compressor and a 

complementary probability (1-x) that it will not trip.  The upward branch represents a 

successful trip and ends with a shutdown; the downward branch represents a failure to 

trip and leads to either a subsequent interlock or ultimate compressor failure (if it is the 

last layer).  The appropriate branch probabilities are multiplied by the top event 
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frequency to yield the frequencies of a given sub-event (a successful shutdown or an 

ultimate compressor failure). 

While we consider six types of failure events, there are multiple surge controllers, so 

there are actually eight distinct top events: (1) 1st SG surge control failure, (2) 2nd/3rd SG 

surge control failure, (3) 4th/5th SG surge control failure, (4) high suction drum level 

process demand failure, (5) lube oil control system failure, (6) LC01 seal oil control 

failure, (7) speed suction control failure, and (8) vibration process demand failure.  Each 

of the eight top events was given a frequency determined from historical data. 

Table 4 provides a summary of the eight top events and their sub-events, 

corresponding to the response of the safety devices in the different layers of protection.  

The first column of Table 4 lists the events and sub-events.  The second column provides 

the cost associated with each individual sub-event outcome.  The third column provides 

the frequency associated with each top and sub-event, for the base case of full layers of 

protection (all devices in place).  Subsequent columns represent the same information, 

but for perturbations of the base case (called “scenarios”) where one layer of protection 

has been removed.  The cost data for each sub-event is not scenario-dependent, so it 

appears in only one column.  The frequencies and costs for a top event and its sub-events 

can be mapped directly onto an event tree like that shown in Fig. 12. 
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Figure 12: General form of event tree 

 

Spurious trips of these safety devices are summarized at the bottom of Table 4, with 

the considered possible trips being (1) Overspeed 1, (2) Overspeed 2, (3) Vibration, (4) 

KO drum level 1-5, (5) lube oil pressure, and (6) SO level.  Each of these spurious trips 

may be considered as an independent, individual sub-event for the purposes of the 

following discussion. 
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Table 4.  Frequencies and cost data for all the events and cases 
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4.2. Theory and Methods 

 

4.2.1. Calculations of frequencies and cost values 

As mentioned in Section 4.1.2, the sub-event frequencies in Table 4 were obtained 

from an event tree like that shown in Fig. 12.  The frequency of sub-event i is given by  

 

  (2) fi = Ftop p j
j=1

i
∏

 

where Ftop is the top event frequency and pj is the appropriate conditional branch 

probability at node j.  The pj were obtained from historical performance data. 

For clarity, we briefly describe an example of our frequency calculations for the case 

of SG surge control failure (top event 1) in the scenario without Overspeed interlock 1 

(fourth column in Table 4).  The top event frequency was assigned a value of 0.16 yr-1 

based on historical data.  Since Overspeed interlock 1 is absent in this scenario, the 

probability of its success is 0 and therefore the frequency of its success is (0.16 yr-1 

)*(0.0) = 0.0 yr-1.  Overspeed interlock 2 is present in this scenario and we assign the 

probability of its successful response on demand as 0.9769 based on historical data.  The 

frequency for Overspeed interlock 2 success is the product of this probability and the 

demand frequency under this scenario, i.e. (0.16 yr-1)*(1.0-0.0)*(0.9769) = .0156 yr-1.  

The final layer of protection is the vibration interlock, to which we assign a success 

probability of 0.9760 on demand.  The frequency for successful vibration interlock 
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intervention is therefore (0.16 yr-1)*(1.0-0.0)*(1-0.9769)*(0.9760) =  0.00364 yr-1, and 

the frequency of failed vibration interlock intervention is (0.16 yr-1)*(1.0-0.0)*(1-

0.9769)*(1-0.9760) =  0.0000896 yr-1.  These calculations produce the numerical values 

found in Table 1.  We note that the top event frequency Ftop and the probability of 

success on demand for a given interlock type is held fixed across the different scenarios; 

it is the presence or absence of a given layer of protection that causes the differences in 

frequencies observed in Table 4.  

Each of the sub-event outcomes has an associated cost.  We assume that the cost may 

comprise both asset damage and business interruption.  Business interruption may 

include both lost (flared) feed and product that was not made.  We assume that two hours 

of feed flaring occurs at every shutdown and that the feed costs $0.20/pound.  We also 

assume that the earnings before interest, taxes, depreciation, and amortization (EBITDA) 

is $0.05/pound of product.  A one-day shutdown from any safety interlock trip will then 

cost roughly 
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⎛
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For most events in which all interlocks fail, there will be approximately $1MM in 

damage to the compressor plus a seven day shutdown of the process.  The cost will be 
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  (4) 

In the special case of the failure of the seal oil control with subsequent failure of all 

interlocks, the downtime will be 30 days, leading to a cost of 
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  (5) 

 

So in this particular QRA example there are only three different possible cost 

outcomes, c = $270,000, $2,500,000, or $7,100,000.  One of these costs is assigned to 

each sub-event as shown in Table 4, and that cost is independent of scenario. 

 

4.2.2.  Generation of frequency-cost graphs and VaR statistics 

For a given scenario, the total frequency Fc at a given cost outcome c was obtained 

by summing up all of the frequencies as 

 

  (6) Fc = fi
sub-events i{ }c

∑
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where the sum includes only those sub-events that have the particular cost outcome c 

(spurious trips included).  This was done for each different scenario shown in Table 4 

and the results are presented as bar graphs in Section 4.3.  These graphs are similar to 

probability mass function (pmf) graphs in statistics, except that we are plotting 

frequency (in yr-1) instead of normalized probability. 

In this chapter we determine VaR in a more real life method as opposed to the 

previous theoretical methods in the previous chapters.  In financial applications, the 

actual “value at risk” is defined as the value that sets some lower probability limit on the 

normalized probability-value function.  For example, say that the value v represents a 

lower limit (typically negative, indicating a loss) where pv of the probability lies above 

it.  Then we can state that we are (pv x 100)% certain that we will lose no more than v 

over the time horizon used to construct the probability curve, or equivalently, with (pv x 

100)% certainty over the next time period t, the VaR is v (Jorion, 2001) .  A cumulative 

representation of the probability curve is particularly useful in determining VaR, since 

one may simply read off the abscissa value v corresponding to the ordinate at the chosen 

probability level pv.  In the present case we have only three discrete cost values, so it is 

more convenient to choose the median cost value and report the corresponding 

probability level. 

As a first step in calculating VaR, we must convert our event frequencies Fc to 

normalized probabilities over a chosen time horizon.  Perhaps the simplest approach is to 

assume that failure events are uncorrelated in time over a given horizon.  This 

assumption is likely to be accurate in our case, because the overarching QRA analysis 
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assumes that failures arise from a variety of independent event types and sub-types (as 

shown in Table 4).  So we employ a Poisson distribution of events with a one-year time 

horizon 

Since we have a finite number of distinct events and costs, then the Poisson process 

assumption implies that the subprocesses dealing with the individual scenarios are 

independent Poisson processes.  Specifically, assume there are k costs associated with 

frequencies f1, f2… fK normalized to sum to 1.  Then the number of events with cost cj in 

a time period of length T is a poisson with mean fcTλ and is an independent set of events 

with different costs.  The chance of at least one event with cost cc in a time period of 

length is shown in equation 9.  

 

  (9) λTf
c

cep −= 1

 

where T is equal to the time horizon, in our case one year, and λ is the rate of events in 

units of yr-1. These probabilities can be used to construct the cumulative mass functions 

(cmf) and subsequently calculate VaR values, as described above. 

 

4.2.3.  Total expected cost value 

A total expected cost value for each scenario was calculated as 

 

  λTfcE CC=  (10) 
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where the sum runs over all possible cost outcomes c (in our example, there are three 

outcomes). 

 

4.3.  Results 

 

4.3.1. Overview 

Results for the four scenarios shown in Table 1 are presented and discussed in this 

section.  The scenarios are the base case (full layers of protection), overspeed interlock 1 

removed, overspeed interlock 2 removed, and the vibrational interlock removed.  The 

different scenarios are presented side-by-side in the figures for convenient comparison.  

The frequency versus cost graphs are shown in Fig. 13, the cumulative mass function 

(cmf) graphs (as calculated via the procedure described in section 4.2.2) are shown in 

Fig. 13a, and the total expected values (section 4.2.3) are shown in Fig. 14a.  The (b,c) 

figures associated with Figs. 13 and 14 are magnifications of the low-frequency, high-

cost events, which can be difficult to see.  The results of all the function studies are 

summarized in Table 5.   
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Figure 13a.  Outcome frequencies at all cost levels across all scenarios 
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Figure 13b.  Close-up view of outcome frequencies at the $2,500,000 cost level 
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Figure 13c.  Close-up view of outcome frequencies at the $7,100,000 cost level 
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Figure 14a. Cumulative mass probability functions for each scenario 
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Figure 14b.  Close-up view of the cumulative mass functions at the $2,500,000 cost 

level 
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Figure 14c. Close-up view of the cumulative mass functions at the $7,100,000 cost 

level 
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Table 5. Frequency and cumulative probability data for all of the scenarios 

 
 
 

 
4.3.2.  Base case 

The base case represents full layers or protection, meaning the compressor is 

equipped with Overspeed interlock 1, Overspeed interlock 2, and Vibrational interlock.  

The base case data in Fig. 13a may be used to make several statements.  For example, a 

catastrophic event costing the company $7,100,000 will happen with a frequency of 

0.002259 per year (which equates to ~440 years per loss of this magnitude), and a 

shutdown at the least costly level of $266,667 will happen with a frequency of 1.066 per 

year.  Value-at-risk statements can also be made from the corresponding cumulative 

probabilities shown in Fig. 14a.  For example, over a one-year time horizon, we are 

99.9994% confident that there will be no worse than a $270,000 loss. 
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4.3.3.  Case without overspeed interlock 1 

In this case, we examine the impact of removing overspeed interlock 1 layer of 

protection.  As shown in Table 4, we removed the benefits of overspeed interlock 1 from 

all top events and removed the possibility of spurious trips of that device.  Removal of 

this layer of protection affected five of the eight top events. 

Figure 14a shows that removing overspeed interlock 1 involves a tradeoff between 

risk at different cost levels.  Removing this interlock reduces the frequency of $270,000 

cost events to 1.022 yr-1, as compared to 1.066 yr-1 in the base case.  However, for the 

medium ($2,500,000) cost category the frequency is increased by 0.0031 yr-1.  With this 

tradeoff comes less satisfying VaR values as compared to the base case; there is only a 

99.9969% probability level that the cost will be no worse than $270,000.  This analysis 

clearly frames the impact of including, or omitting, Overspeed interlock 1 layer of 

protection. 

 

4.3.4.  Case without overspeed interlock 2 

In this scenario, we removed a different layer of protection, Overspeed interlock 2 

(Overspeed 1 layer remained in place).  Using the same procedure as in the previous 

scenario, we altered the frequencies of sub-events and spurious trips accordingly (see 

Table 4).  The removal of this interlock affected the same 5 out of 8 top events that first 

scenario did.  
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Figures 13b and 14b show that the effects of removing overspeed interlock 2 are 

almost identical to the effects of removing overspeed  interlock 1.  The VaR value is 

99.9969% at the $270,000 mark. This is perhaps not surprising because the Overspeed 

interlock 1 and Overspeed interlock 2 always appeared in series under the same top 

events. 

 

4.3.5.  Case without the vibrational interlock 

In this scenario we removed the vibration interlock, a layer of protection that does 

not always follow in series with the two aforementioned layers of protection.  This 

particular layer of protection affects six of the eight top events. 

Removing the vibrational interlock is much more detrimental to the entire safety 

plan.  Although there is a significant 0.1735 yr-1 decrease in frequency at the low 

($270,000) level, there is a two order-of-magnitude increase in frequency in the medium 

($2,500,000) level.  There is a 98.95% probability level that the cost will be no greater 

than $270,000, which is a much lower probability than any of the previous cases. 

 

4.3.6. Total expected value for damage cost 

The total expected loss value for each scenario is shown in Fig. 15; this is a 

simplified approach where the low probability/high cost – high probability/low cost 

tradeoffs are not thoroughly examined, but rather all costs are integrated to produce a 

single expectation value for each scenario.  In order of increasing expected cost, the 

scenario without Vibrational interlock is the least costly followed by overspeed interlock 
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2, the scenario without overspeed interlock 1 the base case.  As ranked solely by this 

criterion, the base case scenario is the least costly.  The scenario without the vibrational 

interlock is the most desirable.  There is an interesting contrast between this ranking and 

one based on the VaR criterion, which would show that the base case is the most 

desirable.  This is discussed more fully in the next subsection. 
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Figure 15.  Total expected cost values for the four scenarios 
 
 
 
 

4.3.7. Best choice among the four scenarios? 

The numerical results of the analysis are summarized in Table 5.  The total expected 

cost analysis and the VaR analysis (CMFs) have contrasting messages.  The total 
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expected cost favors the scenario without the vibrational interlock over the other three 

scenarios but  the VaR analysis favors the base case over the other three scenarios.  The 

two scenarios without the overspeed interlocks were both medians in both analyses.  The 

total expected cost analysis showed that the vibrational interlock 

The difference in conclusions occurs because the VaR probability criterion places 

more weight on the higher cost levels, while the expected value criterion is based on a 

straight average.  Clearly, one effect of altering the layers of protection scheme is to shift 

the probability between different cost levels. 
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CHAPTER V 
 

CONCLUSIONS AND FUTURE WORK 
 
 

 
We discussed how VaR concepts from finance might be used to make a better 

business case for process safety in the CPI.  We demonstrated the procedure on two 

example problems from the CPQRA literature, creating VaR curves based on valuation 

with different damage/hazard indices (literature-based and customized).  The effects of 

uncertainty in damage associated with possible events were included.  In addition, we 

applied a VaR analysis to the ethylene refrigeration compressor system safety data 

provided to us by SIS-Tech (2004).  We analyzed the data with all layers of protection 

included (based case) and in three different scenarios in which one type of interlock was 

removed.  We found that the full layers of protection scheme was conservative, with low 

frequencies of occurrence for the most costly events but relatively frequent low-cost 

incidents (spurious trips).  Removing the Overspeed 1 and Overspeed 2 interlock 

lowered the frequency of minor spurious shutdowns but raised the chances, albeit 

slightly, of a more severe event while the vibrational interlock raised the frequency.  The 

expected value of the costs integrated both the conservative and aggressive schemes.    

But the VaR tool could give comprehensive approach to which scenario was riskier. 

The future work involves using programming software to automate this process of 

selecting which safety interlocks to use and which safety devices would be worth the 

cost.  Human factors and reliability could also be utilized in this context of valuating 

process safety.   
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 Finally, cost benefit and analysis is imperative for decision makers to 

comprehend the results from risk analysis tools correctly and efficiently and interpret 

them to informed decisions for the wealth of their enterprise.   
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