

NAVIGATION SOLUTION FOR THE TEXAS A&M AUTONOMOUS

GROUND VEHICLE

A Thesis

by

CRAIG ALLEN ODOM

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

August 2006

Major Subject: Mechanical Engineering

NAVIGATION SOLUTION FOR THE TEXAS A&M AUTONOMOUS

GROUND VEHICLE

A Thesis

by

CRAIG ALLEN ODOM

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, Make McDermott
Committee Members, Glen Williams
 Darbha Swaroop
Head of Department, Dennis O’Neal

August 2006

Major Subject: Mechanical Engineering

 iii

ABSTRACT

Navigation Solution for the Texas A&M Autonomous Ground Vehicle. (August 2006)

Craig Allen Odom, B.S., Texas A&M University

Chair of Advisory Committee: Dr. Make McDermott

The need addressed in this thesis is to provide an Autonomous Ground Vehicle (AGV)

with accurate information regarding its position, velocity, and orientation. The system chosen to

meet these needs incorporates (1) a differential Global Positioning System, (2) an Inertial

Measurement Unit consisting of accelerometers and angular-rate sensors, and (3) a Kalman

Filter (KF) to fuse the sensor data. The obstacle avoidance software requires position and

orientation to build a global map of obstacles based on the returns of a scanning laser

rangefinder. The path control software requires position and velocity.

 The development of the KF is the major contribution of this thesis. This technology can

either be purchased or developed, and, for educational and financial reasons, it was decided to

develop instead of purchasing the KF software. This thesis analyzes three different cases of

navigation: one-dimensional, two dimensional and three-dimensional (general). Each becomes

more complex, and separating them allows a three step progression to reach the general motion

solution.

 Three tests were conducted at the Texas A&M University Riverside campus that

demonstrated the accuracy of the solution. Starting from a designated origin, the AGV traveled

along the runway and then returned to the same origin within 11 cm along the North axis, 19 cm

along the East axis and 8 cm along the Down axis. Also, the vehicle traveled along runway 35R

which runs North-South within 0.1°, with the yaw solution consistently within 1° of North or

South. The final test was mapping a box onto the origin of the global map, which requires

accurate linear and angular position estimates and a correct mapping transformation.

 iv

ACKNOWLEDGMENTS

 I would like to thank my committee chair, Dr. McDermott, and my committee members,

Dr. Williams and Dr. Swaroop, for their assistance and guidance during my research. I am very

grateful for the wonderful project that I was and continue to be part of throughout my graduate

career. I have gained an abundance of knowledge inside and outside of the classroom.

 Thanks also to my family and friends who have supported me throughout my college

career. I have had my high and low moments, but the love and support of my family and friends

have remained steadfast and high.

 I would like to especially acknowledge the patience and love of my wife.

 v

NOMENCLATURE

pitchA The rotation matrix for Pitch

rollA The rotation matrix for Roll

sweepA The rotation matrix for Sweep

yawA The rotation matrix for Yaw

ARS Angular-rate sensor

(diag())C i j− Denotes the diagonal from row i to row j of matrix C

BCS
ICSDCM Matrix that maps a vector with components in the Inertial Co-ordinate

System (ICS) to components in the Body Co-ordinate System (BCS)

{ }E x Expected value

()if t i-th function

f (x(),u(),)t t t Vector of nonlinear functions defining the derivatives of the state vector

ˆ(x(),)F t t Partial derivatives of f (x(),u(),)t t t used for propagation

g Gravitational constant at the surface of the Earth (~ 9.807 m/s/s)

()G t Matrix that maps the process noise into the nonlinear functions

h(x)k Vector of GPS position measurements as functions of the states

ˆh(x)k
− Vector of predicted GPS measurements

ˆ(x)k kH − Measurement sensitivity matrix utilizing the a priori state estimate at

discrete-time kt

kK Kalman gain matrix at discrete-time kt

m Range value, in meters, from the origin of the SICK co-ordinate system

to the SICK hit, with components in SICKx and SICKy axes (with β as

the angle provided by the SICK)

.. ..N E D The primary axes of the ICS (North, East and Down)

'.. '.. 'N E D The secondary axes of the ICS (after the Yaw rotation)

''.. ''.. ''N E D The third set of axes of the ICS (after the Pitch rotation)

 vi

(0, ())N Q t Normal distribution with zero mean and covariance matrix ()Q t

(0,)kN R Normal distribution with zero mean and covariance matrix kR

, , p q r Body-fixed angular rates about the x, y and z axes, respectively

, , p q r� � � ARS measurements (in °/s) about the x, y and z axes, respectively

0P Initial estimation error covariance matrix

()P t Continuous-time estimation error covariance matrix

()P t� Continuous-time, time derivative of estimation error covariance matrix

kP− a priori estimation error covariance matrix at discrete-time k

kP+ a posteriori estimation error covariance matrix at discrete-time k

()Q t Process noise error covariance matrix

,h s sr
�

 Vector that locates the SICK hit with respect to the origin of the SICK

co-ordinate system, in SICK co-ordinates

,s i ir
�

 Vector of offsets of SICK origin from IMU origin in IMU co-ordinate

system
kR Measurement noise error covariance matrix

SFT Scale factor transformation

t Continuous-time

u()t Vector of true inputs

2
,GPS N E Dv Variance of the GPS position measurement error along the N, E and D

axes, respectively

vk GPS position measurement noise at discrete-time k

2
,Acc x y zw Variance of the accelerometer measurement error along the x, y and z

axes, respectively

w()t Continuous-time process noise

.. ..x y z The axes of the SICK or IMU BCS

()ix t i-th state

x()t Vector of true states

x()t� Vector of time derivatives of true states

0x̂()t Initial state estimate vector

 vii

x̂()t Continuous-time vector of estimated states used for propagation

x̂()t� Continuous-time vector of time derivatives of estimated states

xk True state at discrete-time k

x̂k
− a priori state estimate at discrete-time k

x̂k
+ a posteriori state estimation vector at discrete-time k

, , k k kx y z�� �� ��� � � Accelerometer measurements (in m/s/s) along the x, y and z axes,

respectively

yk� GPS position measurements available at discrete-time k

β Angle to object in SICK co-ordinate system that is provided by SICK

s ixδ Offset of SICK origin from IMU origin along IMUx axis (constant)

s iyδ Offset of SICK origin from IMU origin along IMUy axis (constant)

s izδ Offset of SICK origin from IMU origin along IMUz axis (constant)

bη Determines the level to which the bias will randomly walk (0 if no

walk)

θ Pitch angle defined as the amount of rotation about the E′ axis from the

N ′ axis to the IMUx axis

θ� Pitch rate

µ� Time derivative of a bias (either accelerometer or ARS)

µ̂� Estimated time propagation of the bias (KF has no knowledge of

dynamics of bias, therefore it is 0)

φ Roll angle defined as the amount of rotation about the N ′′ axis from the

E′′ axis to the IMUy axis

φ� Roll rate

ψ Yaw angle defined as the amount of rotation about the D axis from the

N axis to the projection of the IMUx axis onto the N E− plane

ψ� Yaw rate

ζ� Time derivative of ζ (used as an example; ζ not located in text)

 viii

ζ�� Second time derivative of ζ

ζ� Value of measurement of ζ

ζ̂ Estimated value of ζ

 ix

TABLE OF CONTENTS

Page

ABSTRACT.. iii

ACKNOWLEDGMENTS... iv

NOMENCLATURE... v

TABLE OF CONTENTS .. ix

LIST OF FIGURES... xi

LIST OF TABLES .. xiv

1. INTRODUCTION... 1

2. CHOICE OF SENSORS ... 4

3. KALMAN FILTER AND SENSOR INTEGRATION... 9

4. SIMULATION .. 14

4.1 1-D Model... 17
4.2 2-D Model... 23
4.3 3-D Model... 36

5. REAL-TIME IMPLEMENTATION ON THE AGV.. 59

5.1 Repeatability of NED position estimate ... 60
5.2 Accuracy of the yaw angle estimate ... 61
5.3 Precision of mapping solution .. 62
5.4 State/Parameter estimates ... 63
5.5 Tuning parameters comparison between real case and 3-D simulation case 71
5.6 Comparison of results with performance requirements .. 72

6. CONCLUSIONS... 74

7. SUMMARY .. 75

8. RECOMMENDATIONS FOR FURTHER STUDY/DEVELOPMENT................................ 76

 x

Page

APPENDIX A .. 78

APPENDIX B .. 120

APPENDIX C .. 141

APPENDIX D .. 149

APPENDIX E... 151

VITA .. 152

 xi

LIST OF FIGURES

Page

Figure 1. True North position of AGV for 1-D case ... 19

Figure 2. North position estimation error for 1-D case ... 19

Figure 3. North velocity estimation error for 1-D case ... 20

Figure 4. x-axis accelerometer bias estimation error for 1-D case .. 20

Figure 5. x-axis accelerometer SFT percentage error for 1-D case ... 21

Figure 6. Random walk of x-axis accelerometer bias for 1-D case... 21

Figure 7. True motion of AGV in N-E plane for 2-D and 3-D cases .. 27

Figure 8. North position estimation error for 2-D case ... 28

Figure 9. East position estimation error for 2-D case.. 28

Figure 10. North velocity estimation error for 2-D case ... 29

Figure 11. East velocity estimation error for 2-D case.. 29

Figure 12. Yaw estimation error for 2-D case ... 30

Figure 13. x-axis accelerometer bias estimation error for 2-D case .. 30

Figure 14. y-axis accelerometer bias estimation error for 2-D case\ ... 31

Figure 15. z-axis ARS bias estimation error for 2-D case... 31

Figure 16. x-axis accelerometer SFT percentage error for 2-D case ... 32

Figure 17. y-axis accelerometer SFT percentage error for 2-D case ... 32

Figure 18. z-axis ARS SFT percentage error for 2-D case.. 33

Figure 19. Random walk of x-axis accelerometer bias for 2-D case... 33

Figure 20. Random walk of y-axis accelerometer bias for 2-D case... 34

Figure 21. Random walk of z-axis ARS bias for 2-D case.. 34

Figure 22. True Down position of AGV.. 43

Figure 23. True pitch of AGV ... 43

Figure 24. True roll of AGV.. 44

Figure 25. North position estimation error for 3-D case ... 44

Figure 26. East position estimation error for 3-D case.. 45

Figure 27. Down position estimation error.. 45

Figure 28. North velocity estimation error for 3-D case ... 46

Figure 29. East velocity estimation error for 3-D case.. 46

 xii

Page

Figure 30. Down velocity estimation error.. 47

Figure 31. Yaw estimation error for 3-D case ... 47

Figure 32. Pitch estimation error ... 48

Figure 33. Roll estimation error .. 48

Figure 34. x-axis accelerometer bias estimation error for 3-D case .. 49

Figure 35. y-axis accelerometer bias estimation error for 3-D case .. 49

Figure 36. z-axis accelerometer bias estimation error ... 50

Figure 37. x-axis ARS bias estimation error ... 50

Figure 38. y-axis ARS bias estimation error ... 51

Figure 39. z-axis ARS bias estimation error for 3-D case... 51

Figure 40. x-axis accelerometer SFT percentage error for 3-D case ... 52

Figure 41. y-axis accelerometer SFT percentage error for 3-D case ... 52

Figure 42. z-axis accelerometer SFT percentage error.. 53

Figure 43. x-axis ARS SFT percentage error .. 53

Figure 44. y-axis ARS SFT percentage error .. 54

Figure 45. z-axis ARS SFT percentage error for 3-D case.. 54

Figure 46. Random walk of x-axis accelerometer bias for 3-D case... 55

Figure 47. Random walk of y-axis accelerometer bias for 3-D case... 55

Figure 48. Random walk of z-axis accelerometer bias.. 56

Figure 49. Random walk of x-axis ARS bias .. 56

Figure 50. Random walk of y-axis ARS bias .. 57

Figure 51. Random walk of z-axis ARS bias for 3-D case.. 57

Figure 52. Path of AGV on the North-East plane.. 60

Figure 53. Yaw angle estimate of AGV during North to South and South to North operation... 62

Figure 54. Yaw angle estimate .. 63

Figure 55. Pitch angle estimate.. 64

Figure 56. Roll angle estimate... 64

Figure 57. x-axis accelerometer bias estimate... 65

Figure 58. y-axis accelerometer bias estimate... 65

Figure 59. z-axis accelerometer bias estimate ... 66

Figure 60. x-axis ARS bias estimate ... 66

 xiii

Page

Figure 61. y-axis ARS bias estimate ... 67

Figure 62. z-axis ARS bias estimate.. 67

Figure 63. x-axis accelerometer SFT estimate .. 68

Figure 64. y-axis accelerometer SFT estimate .. 68

Figure 65. z-axis accelerometer SFT estimate... 69

Figure 66. x-axis ARS SFT estimate ... 69

Figure 67. y-axis ARS SFT estimate ... 70

Figure 68. z-axis ARS SFT estimate ... 70

Figure 69. SICK, IMU and inertial co-ordinate systems on the AGV....................................... 141

Figure 70. Yaw angle rotation ... 143

Figure 71. Pitch angle rotation .. 144

Figure 72. Roll angle rotation.. 144

Figure 73. Sweep angle rotation .. 145

Figure 74. Vectors used to map the SICK hit to the ICS... 145

 xiv

LIST OF TABLES

Page

Table 1. Candidate list with functional/performance requirements... 8

Table 2. List of states/parameters for 1-D case ... 17

Table 3. Statistical data for truth and state estimations for 1-D case... 22

Table 4. List of states/parameters for 2-D case ... 24

Table 5. Statistical data for truth and state estimations for 2-D case... 35

Table 6. List of states/parameters for 3-D case ... 39

Table 7. Statistical data for truth and state estimations for 3-D case... 58

 1

1. INTRODUCTION

Navigation is essential to the operation of an Autonomous Ground Vehicle (AGV). The

current position, velocity and yaw of the AGV are required to control the vehicle’s movements

through a series of waypoints. A Global Positioning System (GPS) receiver only receives

position information and then computes the velocity and heading (not yaw) of the vehicle.

Heading is defined as the direction of travel, which can be computed by using the North and East

velocities. The yaw angle describes where the front of the vehicle is pointing rather than where

it is going. For example, if the vehicle were traveling in reverse, heading and yaw would be

180° from each other. Yaw requires an angular rotation to change, whereas heading requires a

change in the North and/or East velocities.

GPS cannot be the sole provider of navigation information because it is susceptible to

outages and jamming and cannot provide orientation information. During GPS outages, the

AGV has no state information and thus is unable to make any decisions concerning a new

direction of travel. Losing all navigation information is an unacceptable situation, especially

during deployment in a military setting. However, the AGV does not house any military

personnel, making it an alternative to sending in manned vehicles.

 In order to reduce the effect of outages and jamming, the GPS information is fused with

information from an Inertial Measurement Unit (IMU) that has three orthogonal accelerometers

and three orthogonal angular-rate sensors (ARS’s). The GPS position information has a large

error associated with it, but it is bounded. The accelerations and angular rates from the IMU

must be integrated which introduces error that can grow unbounded. Each of these sensors are

useful separately but when combined they are exceptional.

 Before purchasing these sensors, a design analysis was required to develop a needs

statement and functional/performance requirements. This is a very systematic, top-down

approach to purchasing sensors. The benefit is that the sensors purchased should meet the

requirements of the project, reducing some of the problems associated with integrating new

sensors.

This thesis follows the style of Journal of Dynamic Systems, Measurement, and Control.

 2

The outputs from these two sensors are combined by the Kalman Filter (KF) to produce

a “best” estimate of the actual AGV states. With knowledge of the accuracy of the sensors and a

kinematic model the KF develops a weighting matrix. This weight matrix quantifies how much

the model will be corrected by the measurements.

 This thesis separates the analysis of the navigation system into four parts. The first three

sections describe the simulations associated with particular motions that the AGV will undergo.

The first is one-dimensional (1-D) motion, the second is two-dimensional (2-D) motion and the

third is three-dimensional (3-D) or general motion. The last section of the analysis shows the

results of using the general motion KF on the real AGV.

The 1-D model is the simplest motion possible. The simulated AGV motion is driving

North with no angular rotations. There is one GPS position measurement (latitude) and one

accelerometer measurement available. The purpose of simulating 1-D motion is to create the

foundation for the other two motions while maintaining the simplest configuration possible.

Debugging the 1-D model is also much simpler than attempting to debug the 3-D model outright.

The 2-D model incorporates two GPS position measurements (latitude and longitude),

two accelerometer measurements and one ARS measurement. This model is valid if the AGV

travels on a flat plane, normal to the gravity vector of the Earth (thereby removing any gravity

components in the accelerations). There is no pitching or rolling in this model, but the AGV will

pitch and roll during braking/acceleration and turning. This motion will affect the accelerometer

outputs by adding the gravitational component due to the pitch and roll angles. Performance will

degrade as the pitch and roll angles increase, but the effect is quite small at lower angles (< 5°).

 The 3-D model is the general model. It incorporates three GPS position measurements

(latitude, longitude and height above sea level), three accelerometer measurements, and three

ARS measurements. This model is valid for all motion, except if the AGV pitches ± 90°,

wherein there is a singularity. During normal operation, the AGV will not experience a pitch

angle of ± 90°.

 It should be noted that the latitudes, longitudes and heights above sea level provided by

the GPS receiver are converted into displacements from a designated origin. For the simulations,

the displacements are generated rather than creating latitudes and longitudes and then converting

them to displacements. Implementing the general motion KF for use on the AGV requires the

conversion of GPS measurement data to displacements along the North, East and Down axes.

Refer to section four regarding details of this transformation.

 3

The KF also provides state information to the obstacle avoidance software. The

information used by the software is: North, East and Down position of the AGV, the Euler

angles (yaw, pitch and roll), offsets of the SICK from the IMU and the SICK returns (range and

angle). Once the software has this information it can build an accurate global map of the

surrounding environment. Additional work was required to cluster the hits to create obstacles

that the AGV must avoid.

 4

2. CHOICE OF SENSORS

A design analysis is a systematic method for choosing an option, whether it is a product

to meet some demand, or a choice concerning an action. For the purposes of this project, it was

used to purchase sensors for the AGV. Initially, the desire was to purchase an Integrated

Navigation System (INS) which would provide the AGV with all the required states at 100 Hz.

The INS includes a GPS receiver, an IMU and a KF. However, due to cost restrictions, the

entire system was not purchased. Rather, only the GPS receiver was purchased, with intentions

of purchasing the IMU separately at a later time along with the integration software support,

which contains the KF.

 Three items are necessary in a design analysis: Needs statement, functional/performance

requirements, and a list of options that could resolve the needs statement. The needs statement is

the most important step in a design analysis. This is the initial step from which the other steps

must follow. Posing the needs statement correctly and capturing exactly what the sensor’s

purpose is critical. The needs statement for the INS is the following:

“Utilize integrated GPS, IMU and a Kalman filter to provide fast and accurate linear and

angular position/velocity states for an AGV at a cost compatible with project budget”.

 This is not the most general needs statement that could be posed. However, it was

decided very early in the project that a GPS/IMU/KF combination would be used for navigation

and mapping. This combination was used extensively by the teams competing in the DARPA

Grand Challenge [1], thus it was a good starting point. Other means of providing vehicle states

were discussed, but their usefulness for this project was limited.

The needs statement is the basis for the functional/performance requirements. The

functional requirements are the functions the INS must perform, i.e. providing AGV states fast

enough to raise the maximum stable vehicle speed. The performance requirements are how well

the functional requirements are performed, i.e. providing state information to the AGV at six Hz.

The performance requirements must be able to be tested because they are quantitative in nature.

The functional/performance requirements are listed below, with a short justification for each

performance requirement.

 5

FR # 1: Provide position and velocity readings to path controller fast enough to increase

maximum stable vehicle speed to 40+ mph.

PR # 1: Navigation system must update states at Six Hz.

Justification: The digital path controller is very reliant on the update rate. As time delays in

state feedback increase, controller performance will degrade and eventually

become unstable. The higher the update rate, the better the controller will

perform (assuming good controller design), within AGV response limits..

Previously, the update rate was one Hz, with a maximum stable vehicle speed ~

15 mph. If a linear trend is assumed, a three Hz update rate would be required

to achieve a maximum stable vehicle speed of 40+ mph. Therefore, a six Hz

update rate is specified which includes a safety factor of two.

FR # 2: Provide accurate linear/angular position and velocity states to AGV.

PR # 2: Linear position error less than 1 3meter. Yaw angular position error less than

0.5°.

Justification: The path width on the DARPA course can be narrow at times (three meters).

With the AGV track width of two meters, this leaves 1 2 meter on either side,

thus requiring a position error less than 1 3meter. Also, the obstacle avoidance

requires accurate attitude information to build the obstacle map. At 60 meters,

with an error of 0.5° in the yaw angle, a SICK hit will have a global position

error of 1 2 meter, which is an acceptable error. The yaw angle is the least

accurate of the three Euler angles and thus it is used as the requirement.

FR # 3: IMU must have high operating range.

PR # 3: Linear operating range greater than 10g. Angular operating range greater than

200°/s.

Justification: The required operating range is dictated by the AGV and operating conditions.

It is not advisable to saturate the operating range of the IMU. The maximum

rotational speed and heave acceleration experienced by the AGV were

approximated by testing and analysis to be 100°/s and five g’s, respectively.

With a safety factor of two, the required operating ranges are 200°/s and 10g’s.

 6

FR # 4: Navigation system must include a KF.

PR # 4: KF must be capable of fusing IMU/GPS data.

Justification: A KF is required to provide orientation information (not provided by GPS or

IMU) and continuosly provide all vehicle states, including during GPS outages.

FR # 5: IMU must have low drift rate.

PR # 5: Drift rate needs to be less than 30°/hr.

Justification: The biases for the three accelerometers and three ARS’s will drift. The KF

continually compensates for these biases, but it requires that a GPS signal is

available. Without GPS, the error in the states will grow without bound.

Assuming that a one minute loss in GPS is a reasonable amount of time, and a

yaw angle error of 0.5° is an acceptable error, then a 30°/hr drift is a

reasonable requirement.

FR # 6: GPS receiver must be able to acquire a commercially available Differential GPS

(DGPS) signal, i.e. OmniSTAR.

PR # 6: Must be able to acquire DGPS signal in Mojave Desert.

Justification: This is a two-fold requirement. DGPS provides sub-meter position accuracy,

which is required by the path controller. The other is that DARPA requires that

a commercially or publicly available differential signal be used (no proprietary

differential correction). OmniSTAR is an example of a reliable, satellite-based

differential signal with wide geographic availability.

FR # 7: IMU/GPS communication must be based on protocol familiar to AGV team.

PR # 7: Communication must be serial or TCP/IP.

Justification: The AGV team is most familiar with these protocols, reducing the development

time.

 7

FR # 8: INS must be robust in shock and vibration.

PR # 8: Shock survivability must be greater than 20 g for 5 ms.

Justification: During testing, the AGV experienced a maximum of five-g heave acceleration

for five ms while driving over large parking lot dividers at 20mph. Therefore,

the shock survival was chosen to be 20 g for five ms to give an additional factor

of safety. It is imperative that the INS survive these accelerations.

A search was performed to identify candidate INS systems. The list of candidates is

given in table 1. The NovaTel INS [2] with the G2-H58 IMU (SPAN # 2) is the best candidate

because it meets all the requirements (except shock robustness) and is less expensive than the

SPAN # 1 package. Once funds become available, the SPAN # 2 package will be the final

solution, outside of purchasing the support software.

 8

Table 1. Candidate list with functional/performance requirements

Func. Req. Update
Rate

Linear /
Angular

Accuracy

Linear /
Angular

Operating
Range

Kalman
Filter? Drift Rate

DGPS
comm.
Signal?

Com. Shock
Robust

Price /
Lead
Time

Perf. Req. 6 Hz 1/3 m /
0.5°

10 g /
200°/s Yes 30°/hr Yes

Serial
or

TCP/IP

20 g for
5 ms Minimal

Applanix
POS LV

1 - 200
Hz

Not
provided /

0.07°

Not
provided

Not
provided

Not
provided

Not
provided RS232 Not

provided
$65,000 /
4 - 8 wks

Crossbow
NAV 420

2 - 100
Hz

3 m /
0.5°

4 g /
200°/s Yes 2700°/hr No RS232 200 g for

1 ms
$9,500 /
3 - 4 wks

NovaTel
SPAN # 1 100 Hz 0.10 m /

0.05°
50 g /

1000°/s Yes 1°/hr Yes
RS232

or
RS422

100 g for
14 ms

$23,000 /
4 wks

NovaTel
SPAN # 2 100 Hz 0.10 m /

0.05°
50 g /

1000°/s Yes 10°/hr Yes
RS232

or
RS422

100 g for
14 ms

$13,000 /
4 wks

OTS
RT3040 100 Hz 0.10 m /

0.03°
30 g /
300°/s Yes Not

provided Yes Ethernet
UDP

100 g for
11 ms

$52,000 /
4 - 8 wks

Micro -
botics

MIDG II
50 Hz 2 m /

0.1°
10 g /
300°/s Yes 150°/hr Yes Serial 100 g for

8 ms
$5,800 /
No lead

 9

3. KALMAN FILTER AND SENSOR INTEGRATION

 Measurements from sensors are inherently noisy and have biases that fluctuate with

time. When taking a measurement, the engineer or scientist wants the truth that is masked by the

biases and noise. The truth is never known outside of a simulation where it is generated by the

software. Estimating the truth requires some knowledge of the noise in the sensor and the

physics of the action that the sensor is monitoring. The estimator used most often for accurate

state information of dynamic systems is the Kalman filter.

 The KF is an optimal estimator that minimizes the variance between a propagated state

(model) and an observation (measurement). Neither the model nor the measurement is perfect,

thus requiring that the information from both is fused together at a ratio determined by the KF.

The fused information is more accurate than either the model or the measurement, even if one is

much better than the other [3].

 The dynamics of the model are based on either equations of motion developed by the

engineer, or a kinematic model. A kinematic model is one based solely on positions, velocities

and accelerations and does not include or require knowledge of forces or moments. This is the

model to use when accelerometers/ARS’s are available.

 The main assumption inherent in the KF is that the noise is white with zero mean. At

any instant, the value of the noise does not depend on any prior values, and it follows the normal

distribution curve (bell curve) developed by Gauss. This holds for many instances, including

IMU and GPS dynamics, and is therefore a reasonable assumption.

The KF estimates a state that is governed by a model. The general form of the truth

model is given in equation (3.1) [4].

 x() f (x(),u(),) ()w()t t t t G t t= +� (3.1)

The notation conventions for the variables in the equations provide insight into what the

equation is to accomplish. The list below provides the notation conventions that are followed

throughout this thesis.

 10

• A bold variable represents a vector, e.g., x

• A lowercase variable that is not bold represents a scalar, e.g., t

• An uppercase variable represents a matrix, e.g., G

• A variable with a ^ represents an estimate, e.g., x̂

• A variable with a ~ represents a measurement, e.g., y�

• A variable with nothing above it represents the truth, e.g., x

• The subscript (e.g., k) represents a value at a discrete time tk

• A variable with a superscript, − , represents the a priori estimate, e.g., x̂k
−

• A variable with a superscript, + , represents the a posteriori estimate, e.g., x̂k
+

In equation (3.1), the propagation of the state vector is dependent on the state itself x()t ,

the input u()t , time t and the process noise w()t . The process noise is the error in the model

from the true process. There is also a measurement model used by the KF [4]:

 y h(x) vk k k= +� (3.2)

Where: yk� is the vector of GPS position measurements given to the KF

 vk is the measurement noise

The states and the measurements are not always of the same parameter. For instance, if

the states were North and East positions, but the measurement was heading, there is not a 1:1

relationship. The vector of functions h(x)k maps the states into the GPS position

measurements.

The two models each have noise. The variables w()t and vk represent the process

noise and measurement noise, respectively. Each are white Gaussian noise with zero mean.

This can be stated as [4]:

w() ~ (0, ())

v ~ (0,)k k

t N Q t
N R

 (3.3)

 11

 ()Q t is the process noise covariance matrix, and kR is the measurement noise

covariance matrix. These matrices arise from the expected value of their respective noises,

namely [4]:

{ }

{ }
w()w() ()

v v

T

T
k k k

E t t Q t

E R

=

=
 (3.4)

 Once the models have been developed, which is indeed the most time-consuming and

difficult step, the KF algorithm can be implemented. The KF needs the initial state estimates

0x̂()t as well as the uncertainty in these initial state estimates 0P . The 0P matrix is the initial

estimation error covariance matrix, or the initial information matrix. This matrix is pivotal to the

operation of the KF and is used to determine the Kalman gain matrix.

Yielding good performance from the KF is highly dependent on 0P . If the values

chosen for the diagonals of 0P are set too low (little uncertainty about the initial estimates) the

KF estimates will be sluggish and not track the dynamics of the system very well. If they are set

too high the KF estimates will be very sensitive to the noise in the measurements and will also

not track very well.

There is not a unique solution for 0P . The nonlinear functions in equation (3.8) and

cross-coupling of the states makes it very difficult to provide a closed-form solution for 0P .

There are formulae for determining the 0P matrix, but mostly 0P is chosen by trial and error on

a system simulator. A good approach is to find a state that initially is known very well and have

its diagonal element set to one. Then increase the value of the diagonal elements of 0P based on

the corresponding uncertainty of their initial estimates. For example, the scale factor

transformation will be very close to one (which is indeed the initial estimate) and thus that

diagonal element is set to one. However, the orientation of the vehicle is not known very well

and thus the diagonal elements corresponding to the yaw, pitch and roll angles are set to 10.

This process is done for all the states. There is much additional work required to fine tune the

0P matrix to provide the performance that is desired.

 Once 0x̂()t and 0P are chosen, the KF algorithm can begin with the first GPS position

measurement that is available. During the periods between these measurements, the KF is not

 12

functioning; rather the model is used without correction. An uncorrected solution will drift with

time, thus requiring a sufficiently fast update rate from the GPS.

Once the first set of GPS position measurements is available, the Kalman gain matrix

kK can be determined [4] using the gain propagation equation (3.5). This equation is very

important to the function of the KF algorithm.

1

x̂

ˆ ˆ ˆ(x) (x) (x)

hˆ(x)
x

T T
k k k k k k k k k k

k k
k

K P H H P H R

H

−− − − − −

−
−

� �= +
� �

∂≡
∂

 (3.5)

 Initially, the 0P matrix becomes kP− and 0x̂()t becomes x̂k
− . Once the Kalman gain

matrix has been determined, it is used to correct the state estimation vector. Beyond the initial

period, the state estimation vector will be propagated by a model (shown later) which produces

the a priori estimate. This a priori estimate is corrected by the Kalman gain matrix acting on the

difference between the predicted measurement and the actual measurement. The new estimate is

the a posteriori estimate which is given to the AGV because it is the best available estimate.

The equation below demonstrates this process [4].

 ˆ ˆ ˆx x y h(x)k k k k kK+ − −� �= + −
� �
� (3.6)

 The information matrix is corrected by the following equation [4].

 ˆ(x)k k k k kP I K H P+ − −� �= −
� �

 (3.7)

 Equation (3.7) demonstrates that the correction from the KF reduces the uncertainty of

the estimation. The kP+ matrix is referred to as the information matrix because it contains

information vital to the KF. The elements of the information matrix should be decreasing as

time progresses; otherwise the solution will be unstable.

 13

 The final step in the KF algorithm is the propagation. The a posteriori estimates are

used as the initial conditions to propagate to the next time step via an integration tool (see

equation 3.8).

x̂()

ˆ ˆx() f (x(),u(),)

ˆ ˆ() (x(),) () () (x(),) () () ()

fˆ(x(),)
x

T T

t

t t t t

P t F t t P t P t F t t G t Q t G t

F t t

=

= + +
∂≡
∂

�

� (3.8)

The state estimates are propagated by the process model. The information matrix is

propagated by a form similar to the Riccati equation [4]. Recalling that ()Q t is the process

noise covariance matrix, it can be seen in the information matrix propagation equation that the

process noise will try to increase the uncertainty in the estimation. The update in equation (3.7)

reduces uncertainty in the estimates, whereas the propagation in equation (3.8) increases the

uncertainty. Therefore, it is desired to have the fastest measurement update rate possible to

reduce the effect ()Q t has on the certainty of the estimates.

The results of the propagation step are the a priori estimates, 1x̂k
−

+ and 1kP−
+ . When a

measurement is not available, there are no updates and thus the propagation continues. Between

measurements, the uncertainty in the estimates grows because the P matrix is growing.

 14

4. SIMULATION

The KF code was tested first in simulation and then in the AGV with the GPS and IMU.

The general motion KF was the only model to be tested in the AGV. The simulation tests are

efficient in terms of time and resources. Also, any problems that arise in the simulation can be

fixed and do not endanger life or property. Thus, it is important to mimic the environment that

the AGV will encounter. With the simulation, the truth is available and can be used to evaluate

and tune the KF. The simulation implements the process and measurement models required by

the KF and adds the noise, bias and scale factor transformation errors (explained later).

The displacements along the North, East and Down axes from the origin are defined as

the position of the AGV. However, GPS provides latitude, longitude and height above sea level.

These need to be converted to displacements for use in the KF. The transformation used is the

following:

2 sin
2

2 sin cos
2 2

c o
Earth

c o c o
Earth

o c

Lat Lat
N R

Lon Lon Lat Lat
E R

D H H

−� �= � �
	

− −� � � �= � � � �
	
 	

= −

 (4.1)

Where: 6366564.864EarthR m=
 , , c c cLat Lon H are the current latitude, longitude and height above sea level of

the AGV, respectively
 , , o o oLat Lon H are the latitude, longitude and height above sea level of the

origin of the Inertial Co-ordinate System, respectively (explained later)

Starting with a simple example makes it much easier to debug both the simulation and

the KF. For this reason, the initial case that was simulated is 1-D motion. Only one GPS

position measurement (North) and one accelerometer measurement are available. This case

models the vehicle traveling in a straight line with no rotations. Each measurement is corrupted

with white, Gaussian noise with zero mean (the ideal noise characteristics for the KF). Also,

there is a bias applied to the accelerometer reading that, if uncompensated, will reduce the

accuracy of the estimated positions and velocities very quickly. This is known as integration

error. Also, the bias is simulated as having a random walk to make its dynamics more realistic.

 15

A random walk is defined as the current value of the noise being dependent on the previous

value. It is unstable, but can be compensated for by the KF. The model for a bias with random

walk is the following [4]:

 bµ η=� (4.2)

Where: µ� is the time-derivative of the bias and bη is a random number

 If bη were zero, no random walk would exist. The model used in the KF is the
following [4]:

 ˆ 0µ =� (4.3)

 This states that the KF assumes that the bias is constant thus the KF has no information

about the bias dynamics. However, the value of bη is usually very small, on the order of e-7 for

a good sensor, and thus the random walk of the bias is low. The value of bη is not known for

the Watson Industries IMU. The slower the random walk of the bias, the easier the KF can

compensate for it.

 The other corruption estimated by the KF is the scale factor transformation (SFT).

When the accelerometer senses acceleration, the sensor outputs a voltage. This is a V/g scaling.

Then, the microcontroller inside the IMU applies the reverse scaling to provide a 13 bit number

(plus a sign bit) proportional to the sensed acceleration to the communication port. Thus, the

SFT should be one in this configuration. However, the sensor does not always apply the correct

scaling to the sensed acceleration. Estimating this variable instead of assuming it is one provides

greater flexibility for the KF. Since the value should be close to one this is the initial estimate.

 16

 Once the 1-D case is solved and the results are satisfactory, the next step is to simulate

the 2-D case. For this, there are two GPS position measurements (North and East), two

accelerometer measurements (x, y) and one ARS measurement. This case models an AGV

traveling on a flat plane, normal to the gravity vector of the Earth, while maintaining a perfectly

upright orientation (no pitch or roll). The ARS measurement is necessary because the

accelerometers are measuring accelerations in a body-fixed co-ordinate system, which is not an

inertial co-ordinate system. The angular rate measurement provides information about the

orientation of the vehicle (body) with respect to the inertial co-ordinate system.

 The Inertial Co-ordinate System (ICS) is a plane normal to the gravity vector on the

earth’s surface, having axes North, East and Down. The origin of the ICS is a designated

waypoint. North, East and Down (in that order) define a right-hand co-ordinate system. The

Body-fixed Co-ordinate System (BCS) is based on SAE co-ordinates, having axes x, y and z,

where +x is toward the front of the vehicle, +y is toward the passenger side and +z is down. The

origin of the BCS is the location of the IMU.

The final case is the 3-D, or general case. This includes three GPS position

measurements (North, East and Down), three accelerometer measurements (x, y and z) and three

ARS measurements (p, q and r). This is the general (and most difficult) case. It can be reduced

to the 1-D or 2-D cases if appropriate assumptions are made. The analysis will start with the 1-D

case and finish with the 3-D case.

 17

4.1 1-D Model

The 1-D motion utilizes one accelerometer measurement and the GPS North position

measurement. The accelerometer measurement contains a bias that walks over time and a SFT

error. The GPS measurements were simulated as having a one-sigma error of one meter with

zero mean. There are no biases or SFT’s for the GPS measurements because they are not

observable by the KF. Differential GPS removes most of the bias in the position measurement.

The IMU characteristics used for the simulation were based on the Watson Industries IMU-

BA604 [5] because it is the IMU currently available (located in table 3). The final solution IMU

will perform much better, but the additional development of the KF dynamics will change very

little.

The 1-D motion has the characteristics listed in table 2 and equations (4.4) through (4.8).

These are the equations used in the simulation and are vital to the operation of the KF.

Table 2. List of states/parameters for 1-D case

1()x t North position

2 ()x t North velocity

3()x t Bias in x-axis accelerometer

4 ()x t SFT for x-axis accelerometer

Model

()

1 2

2 4 3

3

4

() ()

() () ()

() 0

() 0

k

x t x t

x t x t x x t

x t

x t

=

= −

=
=

�

��� �

�

�

 (4.4)

Initial State Estimate Vector

 []0x̂() 0 25 0 1 Tt = (4.5)

 18

Measurement and Process Noise Covariance Matrices

 2 2 2 2
, ,1 , () (0.005)k GPS N Acc xR v m Q t w g= = = = (4.6)

Process Noise Mapping Matrix

 []4() 0 () 0 0 TG t x t= (4.7)

Initial Estimation Error Covariance Matrix

 []0 diag 0.5 0.5 0.005 0.005P = (4.8)

 The simulation was run for 200 seconds. Multiple maneuvers were tested including

constant acceleration, random acceleration and sinusoidal acceleration. The results for the

sinusoidal acceleration are shown in this thesis. The path of the vehicle along the North axis can

be seen in figure 1 and is shown in equation (4.9).

 () 200sin 2
50
t

N t π� �= � �
	

 (4.9)

Figures 2-6 show that the KF requires some time to converge while it is getting educated

about the dynamics of the system. After approximately 60 seconds the bias and SFT have

converged and the filtered outputs are very close to the truth. Again, the truth is not known in

the real world, but the simulation knows the truth and thus the error can be calculated. Figure 2

displays the North position estimation error. Figure 3 displays the error of the North velocity

estimate. Figure 4 displays the error of the x-axis accelerometer bias estimate. Figure 5 displays

the SFT percentage error of x-axis accelerometer estimate. Figure 6 displays the random walk of

the x-axis accelerometer.

 19

0 20 40 60 80 100 120 140 160 180 200
-250

-200

-150

-100

-50

0

50

100

150

200

Simulation Time [sec]

Tr
ue

 N
or

th
 P

os
iti

on
 o

f A
G

V
 [m

]

Figure 1. True North position of AGV for 1-D case

0 20 40 60 80 100 120 140 160 180 200
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Simulation Time [sec]

N
or

th
 P

os
iti

on
 E

st
im

at
io

n
E

rro
r [

m
]

Figure 2. North position estimation error for 1-D case

 20

0 20 40 60 80 100 120 140 160 180 200
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Simulation Time [sec]

N
or

th
 V

el
oc

ity
 E

st
im

at
io

n
E

rro
r [

m
/s

]

Figure 3. North velocity estimation error for 1-D case

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

Simulation Time [sec]

x-
ax

is
 A

cc
el

er
om

et
er

 B
ia

s
E

st
im

at
io

n
E

rro
r [

m
g]

Figure 4. x-axis accelerometer bias estimation error for 1-D case

 21

0 20 40 60 80 100 120 140 160 180 200
-1

0

1

2

3

4

5

6

7

8

9

Simulation Time [sec]

x-
ax

is
 A

cc
el

er
om

et
er

 S
FT

 E
rro

r [
%

]

Figure 5. x-axis accelerometer SFT percentage error for 1-D case

0 20 40 60 80 100 120 140 160 180 200
19.98

20

20.02

20.04

20.06

20.08

20.1

20.12

20.14

20.16

Simulation Time [sec]

Tr
ue

 x
-a

xi
s

A
cc

el
er

om
et

er
 B

ia
s

[m
g]

Figure 6. Random walk of x-axis accelerometer bias for 1-D case

 22

The expected values (or standard deviation) for the estimate errors were taken after 100

seconds. The statistics for the 1-D model are given in table 3.

Table 3. Statistical data for truth and state estimations for 1-D case

Standard Deviation (SD) of GPS North position
measurement error 1m

SD of North position estimation error 0.15m

SD of North velocity estimation error 0.04m s

SD of x-axis accelerometer noise 5mg

SD of x-axis accelerometer bias-rate noise 0.0001g s

True initial value of x-axis accelerometer bias 20mg

 23

4.2 2-D Model

The 2-D motion utilizes two accelerometer measurements, two GPS position

measurements and one angular rate measurement. The two accelerometer measurements

available are along the body-fixed x and y axes. The two GPS position measurements are along

the North and East axes. The angular rate measurement is about the body-fixed z axis. In order

to use the body-fixed accelerometer and angular rate measurements, the Direction Cosine Matrix

(DCM) is developed. This relates the orientation of the AGV in the ICS.

Before the DCM can be developed, the order of rotations must be defined. Even though

this 2-D case has only one rotation, it will be necessary in the next section (3-D) to have a sound

understanding of the remaining rotations. The first rotation is yaw. Yaw is the angle in the N-E

plane from the North axis to the projection of the body-fixed x axis onto the N-E plane. The

other rotations (pitch and roll) will be discussed in Section 4.3. Therefore, the DCM for the 2-D

case is given by (4.10) (with yaw being ψ):

cos() sin() 0
sin() cos() 0

0 0 1

BCS
ICSDCM

ψ ψ
ψ ψ

� �
� �= −� �
� �� �

 (4.10)

Note that the time notation has been removed but it is implied that each state fluctuates

through time. A vector with components expressed in the ICS can be converted to components

expressed in the BCS by multiplying it by BCS
ICSDCM . For the reverse, the DCM must be

transposed. In order to relate the body-fixed angular rates from the IMU to the Euler rates (yaw

rate, pitch rate and roll rate) some additional work is required. For this 2-D case, it is trivial.

The body-fixed angular rate about the z axis is the yaw rate, i.e.:

 r ψ= � (4.11)

For the 3-D case it will not be trivial. The step-by-step operation for the 3-D case will

be presented in section 4.3. Once the Euler rates are known, they can be integrated to provide

the Euler angles (yaw, pitch and roll).

For direction cosine matrices the inverse is the transpose because it is an orthogonal

matrix. Therefore, the matrix ICS
BCSDCM is the transpose of BCS

ICSDCM , where the superscript

 24

denotes the desired co-ordinate system, and the subscript the previous co-ordinate system. These

matrices are used extensively throughout this thesis; therefore, it is essential to understand the

notation. The characteristics and functions for the 2-D motion are listed in table 4 and equations

(4.12) through (4.16).

Table 4. List of states/parameters for 2-D case

1x North position

2x East position

3x North velocity

4x East velocity

5x Yaw (ψ)

6x Bias in x-axis accelerometer

7x Bias in y-axis accelerometer

8x Bias in z-axis ARS

9x SFT for x-axis accelerometer

10x SFT for y-axis accelerometer

11x SFT for z-axis ARS

 25

Model

()
()

()

1 3

2 4

9 63

4 10 7

5 11 8

6 11 0

ICS
BCS

x x

x x

x x xx
DCM

x x y x

x x r x

x −

=
=

� �−� � � �=� � � �−� � � �

= −
=

�

�

����

� ���

� �

�

 (4.12)

Initial State Estimate Vector

 []0x̂() 0 0 25 5 0 0 0 0 1 1 1 Tt = (4.13)

Measurement and Process Noise Covariance Matrices

2 2 2 2
, ,

2 2 2
, ,

2 2 2

diag diag 1 1

 () diag

() diag (0.005) (0.005) (0.05)

k GPS N GPS E

Acc x Acc y r

R v v m m

Q t w w w

Q t g g s

� � � �= =
� � � �

� �=
� �

°� �∴ =
� �

 (4.14)

 26

Process Noise Mapping Matrix

9 5 10 5

9 5 10 5

11

0 0 0
0 0 0

cos() sin() 0
sin() cos() 0

0 0
() 0 0 0

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

x x x x

x x x x

x
G t

� �
� �
� �
� �−
� �
� �
� �
� �

= � �
� �
� �
� �
� �
� �
� �
� �
� �

 (4.15)

Initial Estimation Error Covariance Matrix

0

.5 0 0 0 0 0 0 0 0 0 0
0 .5 0 0 0 0 0 0 0 0 0
0 0 .5 0 0 0 0 0 0 0 0
0 0 0 .5 0 0 0 0 0 0 0
0 0 0 0 .005 0 0 0 0 0 0
0 0 0 0 0 .005 0 0 0 0 0
0 0 0 0 0 0 .005 0 0 0 0
0 0 0 0 0 0 0 .005 0 0 0
0 0 0 0 0 0 0 0 .005 0 0
0 0 0 0 0 0 0 0 0 .005 0
0 0 0 0 0 0 0 0 0 0 .005

P

� �
� �
� �
� �
� �
� �
� �
� �

= � �
� �
� �
� �
� �
� �
� �
� �
� �

 (4.16)

Or can be defined as:

0 0(diag(1-4)) 0.5, (diag(5-11)) 0.005P P= =

To simulate the measurements, the truth was generated by maneuvering the vehicle in

2-D space. There were three maneuvers that were tested. The first used random numbers for the

two accelerations. The second modeled the AGV driving in a circle. For the final maneuver the

vehicle path was a sinusoid with the function shown in equation (4.17).

 27

() 200sin 2

250
() 5

E
N t

E t t

π� �= � �
	

=
 (4.17)

There are 15 figures for the 2-D case because of the addition of an accelerometer

measurement, an ARS measurement and a GPS position measurement. Each of these increases

the complexity of the system, which is one reason for discussing each of the cases separately, as

opposed to displaying the 3-D case only. Figure 7 shows the true path of the AGV in the N-E

plane. Figure 8 displays the North position estimation error. Figure 9 displays the East position

estimation error. Figure 10 displays the error of the North velocity estimate. Figure 11 displays

the error of the East velocity estimate. Figures 12 and 13 display the errors of the x and y-axis

accelerometer bias estimates, respectively. Figure 14 shows the error of the z-axis ARS bias

estimate. Figure 15 shows how well the yaw angle was estimated. Figures 16, 17 and 18 show

the percentage error of the SFT estimates for the three IMU measurements. Finally, Figures 19,

20 and 21 demonstrate the random walk of the three IMU measurements that were compensated

for by the KF. Also, table 5 includes the statistics of the simulation (both truth and estimates).

0 100 200 300 400 500 600 700 800 900 1000
-200

-150

-100

-50

0

50

100

150

200

East Position of AGV

N
or

th
 P

os
iti

on
 o

f A
G

V

Figure 7. True motion of AGV in N-E plane for 2-D and 3-D cases

 28

0 20 40 60 80 100 120 140 160 180 200
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Simulation Time [sec]

N
or

th
 P

os
iti

on
 E

st
im

at
io

n
E

rro
r [

m
]

Figure 8. North position estimation error for 2-D case

0 20 40 60 80 100 120 140 160 180 200
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Simulation Time [sec]

E
as

t P
os

iti
on

 E
st

im
at

io
n

E
rro

r [
m

]

Figure 9. East position estimation error for 2-D case

 29

0 20 40 60 80 100 120 140 160 180 200
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Simulation Time [sec]

N
or

th
 V

el
oc

ity
 E

st
im

at
io

n
E

rro
r [

m
/s

]

Figure 10. North velocity estimation error for 2-D case

0 20 40 60 80 100 120 140 160 180 200
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Simulation Time [sec]

E
as

t V
el

oc
ity

 E
st

im
at

io
n

E
rro

r [
m

/s
]

Figure 11. East velocity estimation error for 2-D case

 30

0 20 40 60 80 100 120 140 160 180 200
-30

-25

-20

-15

-10

-5

0

5

10

15

Simulation Time [sec]

Y
aw

 E
st

im
at

io
n

E
rro

r [
de

g]

Figure 12. Yaw estimation error for 2-D case

0 20 40 60 80 100 120 140 160 180 200
-5

0

5

10

15

20

25

Simulation Time [sec]

x-
ax

is
 A

cc
el

er
om

et
er

 B
ia

s
E

st
im

at
io

n
E

rro
r [

m
g]

Figure 13. x-axis accelerometer bias estimation error for 2-D case

 31

0 20 40 60 80 100 120 140 160 180 200
-5

0

5

10

15

20

25

Simulation Time [sec]

y-
ax

is
 A

cc
el

er
om

et
er

 B
ia

s
E

st
im

at
io

n
E

rro
r [

m
g]

Figure 14. y-axis accelerometer bias estimation error for 2-D case\

0 20 40 60 80 100 120 140 160 180 200
-1

0

1

2

3

4

5

6

7

Simulation Time [sec]

z-
ax

is
 A

R
S

 B
ia

s
E

st
im

at
io

n
E

rro
r [

de
g/

s]

Figure 15. z-axis ARS bias estimation error for 2-D case

 32

0 20 40 60 80 100 120 140 160 180 200
-2

0

2

4

6

8

10

Simulation Time [sec]

x-
ax

is
 A

cc
el

er
om

et
er

 S
FT

 E
rro

r [
%

]

Figure 16. x-axis accelerometer SFT percentage error for 2-D case

0 20 40 60 80 100 120 140 160 180 200
-5

-4

-3

-2

-1

0

1

2

3

4

Simulation Time [sec]

y-
ax

is
 A

cc
el

er
om

et
er

 S
FT

 E
rro

r [
%

]

Figure 17. y-axis accelerometer SFT percentage error for 2-D case

 33

0 20 40 60 80 100 120 140 160 180 200
-12

-10

-8

-6

-4

-2

0

2

Simulation Time [sec]

z-
ax

is
 A

R
S

 S
FT

 E
rro

r [
%

]

Figure 18. z-axis ARS SFT percentage error for 2-D case

0 20 40 60 80 100 120 140 160 180 200
19.94

19.96

19.98

20

20.02

20.04

20.06

20.08

20.1

Simulation Time [sec]

Tr
ue

 x
-a

xi
s

A
cc

el
er

om
et

er
 B

ia
s

[m
g]

Figure 19. Random walk of x-axis accelerometer bias for 2-D case

 34

0 20 40 60 80 100 120 140 160 180 200

19.92

19.94

19.96

19.98

20

20.02

20.04

Simulation Time [sec]

Tr
ue

 y
-a

xi
s

A
cc

el
er

om
et

er
 B

ia
s

[m
g]

Figure 20. Random walk of y-axis accelerometer bias for 2-D case

0 20 40 60 80 100 120 140 160 180 200
0.0995

0.1

0.1005

0.101

0.1015

0.102

0.1025

0.103

Simulation Time [sec]

T
ru

e
z-

ax
is

 A
R

S
 B

ia
s

[d
eg

/s
]

Figure 21. Random walk of z-axis ARS bias for 2-D case

 35

Table 5. Statistical data for truth and state estimations for 2-D case

SD of North and East position measurement errors 1m
SD of North and East position estimation errors 0.15m
SD of North and East velocity estimation errors 0.05m s

SD of Yaw estimation error 0.15°
SD of x,y-axes accelerometers noises 5mg

SD of x,y-axes accelerometers bias-rate noises 0.0001g s

True initial value of x,y-axes accelerometers biases 2mg

SD of z-axis ARS noise 0.05 s°

SD of z-axis ARS bias-rate noise 20.002 s°

True initial value z-axis ARS bias 0.1 s°

 36

4.3 3-D Model

The general model has six degrees of freedom. The AGV can translate in the North,

East and Down directions, as well as rotate about the x, y and z axes. The measurements

available are the three GPS position measurements (N, E and D), the three accelerometer (x, y

and z) measurements and three ARS measurements (p, q and r). The DCM for the general case

is much more complex than the two-dimensional case because the AGV can pitch and roll for the

3-D case. The order of rotation is yaw (ψ), pitch (θ) and then roll (φ). Thus, the DCM for

general motion, using the order specified is the following:

 BCS
ICS roll pitch yawDCM A A A= (4.18)

Where:

1 0 0
0 cos() sin()
0 sin() cos()

cos() 0 sin()
0 1 0

sin() 0 cos()

cos() sin() 0
sin() cos() 0

0 0 1

roll

pitch

yaw

A

A

A

φ φ
φ φ

θ θ

θ θ
ψ ψ
ψ ψ

� �
� �= � �
� �−� �

−� �
� �= � �
� �� �

� �
� �= −� �
� �� �

 (4.19)

Therefore,

c s c

BCS
ICS

c c s c s

DCM c s s s c s s s c c c s

s s s s c c s c c

ψ θ ψ θ θ
ψ θ φ ψ φ ψ θ φ ψ φ θ φ
ψ θ φ ψ φ ψ θ φ ψ φ θ φ

−� �
� �= − +� �
� �+ −� �

 (4.20)

Where: cos(), sin()c sψ ψ ψ ψ= = , etc…

 37

In order to acquire the Euler rates from the body-fixed angular rates (p, q and r), a step-

by-step analysis using the order of the rotations must be performed. The following demonstrates

this process:

Step 1: Determine the order of rotations and the axes about which they rotate

about D axis

about E' axis

about N'' axis

ψ
θ
φ

 (4.21)

Step 2: Determine the body-fixed angular velocities for each of the rotations

' {0} '{0} '{ } '

'' { sin()} ''{ } ''{ cos()} ''

''' { } { } { }

sin()

cos() cos()sin()

sin() cos()cos()

BCS

N E D

N E D

p x q y r z

p

q

r

ω ψ
ω ψ θ θ ψ θ

ω ω
φ ψ θ

θ φ ψ θ φ
θ φ ψ θ φ

= + +

= − + +
= = + +

= −

= +

= − +

�

�� �

� �

� �

� �

 (4.22)

Where: ' { } '.....a Nω = + denotes that “a” is the scalar value of the 'N component of the

vector 'ω

Step 3: Put solution into matrix format

0 1

0

0

p s

q c s c

r c c s

θ ψ
θ φ φ θ
θ φ φ φ

−� � � � � �
� � � �� �=� � � �� �
� � � �� �−� � � �� �

�

�

�

 (4.23)

 38

Step 4: Invert the 3x3 matrix to obtain the Euler Rates

0

0
1

s c
pc c

c s q

t s t c r

φ φ
ψ θ θ
θ φ φ
φ θ φ θ φ

� �
� �� � � �
� �� � � �= −� �� � � �
� �� � � �� � � �� �
� �

�

�

�

 (4.24)

Where: tan()tθ θ=

 Once the Euler rates are available, they can be integrated (using initial conditions) to

obtain the Euler angles. Several elements of the transformation matrix of equation (4.24) are

undefined for θ = ± 90° which corresponds to the AGV pitching ± 90° which will not occur for

normal operations. The AGV may roll or yaw to any position and not cause any mathematical

singularities.

 The general motion consists of 21 states/parameters. The first nine components are the

system states which include North, East and Down positions/velocities, as well as the yaw, pitch

and roll angles. The next 12 components are the system parameters which include the biases and

SFT’s for the accelerometers and ARS’s along and about the x, y and z axes, respectively. The

definitions are in table 6.

 39

Table 6. List of states/parameters for 3-D case

1x North position

2x East position

3x Down position

4x North velocity

5x East velocity

6x Down velocity

7x Yaw (ψ)

8x Pitch (θ)

9x Roll (φ)

10x Bias in x-axis accelerometer

11x Bias in y-axis accelerometer

12x Bias in z-axis accelerometer

13x Bias in x-axis ARS

14x Bias in y-axis ARS

15x Bias in x-axis ARS

16x SFT for x-axis accelerometer

17x SFT for y-axis accelerometer

18x SFT for z-axis accelerometer

19x SFT for x-axis ARS

20x SFT for y-axis ARS

21x SFT for z-axis ARS

 40

With the general motion, the gravity model must now be included. The accelerometers

will sense and output the gravitational component which must be compensated for by the KF.

Therefore, the general motion accelerometer models (and the ARS models) are the following:

()
()
()

()
()
()

16 10 8

17 11 8 9

18 12 8 9

19 13

20 14

21 15

sin()

cos()sin()

cos()cos()

x x x x g x

y x y x g x x

z x z x g x x

p x p x

q x q x

r x r x

= − −

= − +

= − +

= −

= −

= −

���� �

���� �

���� �

�

�

�

 (4.25)

The KF has to compensate for six biases, six SFT’s and three gravitational components

while the system is dynamic. This is why it is an extraordinary filter. As the system has become

more complex, it becomes more sensitive to noise and inaccuracies. The functions used by the

KF are shown in equations (4.24) through (4.28).

Model

1 4

2 5

3 6

4

5

6

7 9 9
8

8 9 9

9 8 9 9

10 21

1
(sin() cos())

cos()

cos() sin()

tan()(sin() cos())

0

ICS
BCS

x x

x x

x x

x x

x DCM y

x z

x q x r x
x

x q x r x

x p x q x r x

x −

=
=
=

� � � �
� � � �=� � � �
� � � �� �� �

= +

= −
= + +

=

�

�

�

� ��

� ��

� ��

�

�

�

�

 (4.26)

Initial State Estimate Vector

[]

[]
0

0

x̂(,1 9) 0 0 0 25 5 0 0 0 0

x̂(,10 21) 0 0 0 0 0 0 1 1 1 1 1 1

T

T

t

t

− =

− =
 (4.27)

 41

Measurement and Process Noise Covariance Matrices

2 2 2
, , ,

2 2 2 2
, , ,

2 2 2 2 2 2
, , ,

2 2 2 2 2 2 2 2
, , ,

diag

diag

1

 ()

(0.005) , (0.05)

k GPS N GPS E GPS D

GPS N GPS E GPS D

Acc x Acc y Acc z p q r

Acc x Acc y Acc z p q r

R v v v

v v v m

Q t w w w w w w

w w w g w w w s

� �=
� �

= = =

� �=
� �

°= = = = = =

 (4.28)

Process Noise Mapping Matrix

41 42 43

51 52 53

61 62 63

9 9
20 21

8 8

9 20 9 21

19 8 9 20 8 9 21

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0
0 0 0

() 0 0 0

0 0 0 0

0 0 0 0
0 0 0

0(12x6)

G G G

G G G
G t G G G

sx sx
x x

cx cx

cx x sx x

x tx sx x tx cx x

� �
� �
� �
� �
� �
� �
� �
� �

= � �
� �
� �
� �
� �−� �
� �
� �
� �

 (4.29)

Where:
41 42 43 16

51 52 53 17

61 62 63 18

0 0
0 0
0 0

ICS
BCS

G G G x

G G G DCM x

G G G x

� � � �
� � � �=� � � �
� � � �� � � �

Initial Estimation Error Covariance Matrix

 0 0

0

(diag(1 6)) 0.5, (diag(7 12,16 18)) 0.05

(diag(13 15,19 21)) 0.005

P P

P

− = − − =
− − =

 (4.30)

 42

 Simulating the GPS North and East positions was based on the same maneuver as in the

2-D case. The GPS Down position as well as the pitch and roll angles were based on sinusoidal

motions shown in equation (4.31). Refer to figure 22 for the true Down position as a function of

time. Figures 23 and 24 are the true pitch and roll angles of the AGV. Several different

combinations of frequencies and amplitudes were used to reasonably simulate the pitching and

rolling of the AGV.

()

() 4.5cos 5cos
3 5

() 1.2cos 3.6sin
2 3

() 1.2cos 3.6sin
2

t t
D t

t t
t

t
t t

θ

φ

� � � �= − +� � � �
	
 	

� � � �= − −� � � �
	
 	

� �= − − � �
	

 (4.31)

The solution for the general motion is presented in 30 figures. Figures 25 through 27

demonstrate both the stability and the accuracy of the North, East and Down position estimates

from the KF. Figures 28 through 30 show the respective North, East and Down velocity

estimation errors. Figures 31 through 33 represent the errors in the Euler angle estimates.

Notice that yaw is the least accurate of the three. This is because the yaw is the least observable

of the three angles. If a magnetometer were used to observe the yaw directly, the yaw estimate

would be as good as the pitch and roll estimates, or better. Figures 34 through 39 show how the

KF is estimating the acceleration and ARS biases, which are randomly walking. Figures 40

through 45 show the SFT estimate percentage errors for all six IMU measurements. Figures 46

through 51 represent the true accelerometer and ARS biases to give an idea of how much they

are walking. Also, table 7 includes the statistical information for the results.

 43

0 50 100 150 200 250 300
-10

-8

-6

-4

-2

0

2

4

6

8

10

Simulation Time [sec]

Tr
ue

 D
ow

n
P

os
iti

on
 o

f A
G

V
 [m

]

Figure 22. True Down position of AGV

0 50 100 150 200 250 300
-4

-3

-2

-1

0

1

2

3

4

5

6

Simulation Time [sec]

Tr
ue

 P
itc

h
of

 A
G

V
 [d

eg
]

Figure 23. True pitch of AGV

 44

0 50 100 150 200 250 300
-2

-1

0

1

2

3

4

5

6

Simulation Time [sec]

Tr
ue

 R
ol

l o
f A

G
V

 [d
eg

]

Figure 24. True roll of AGV

0 50 100 150 200 250 300
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Simulation Time [sec]

N
or

th
 P

os
iti

on
 E

st
im

at
io

n
E

rro
r [

m
]

Figure 25. North position estimation error for 3-D case

 45

0 50 100 150 200 250 300
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Simulation Time [sec]

E
as

t P
os

iti
on

 E
st

im
at

io
n

E
rro

r [
m

]

Figure 26. East position estimation error for 3-D case

0 50 100 150 200 250 300
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Simulation Time [sec]

D
ow

n
P

os
iti

on
 E

st
im

at
io

n
E

rro
r [

m
]

Figure 27. Down position estimation error

 46

0 50 100 150 200 250 300
-2

-1.5

-1

-0.5

0

0.5

1

1.5

Simulation Time [sec]

N
or

th
 V

el
oc

ity
 E

st
im

at
io

n
E

rro
r [

m
/s

]

Figure 28. North velocity estimation error for 3-D case

0 50 100 150 200 250 300
-1

-0.5

0

0.5

1

1.5

Simulation Time [sec]

E
as

t V
el

oc
ity

 E
st

im
at

io
n

E
rro

r [
m

/s
]

Figure 29. East velocity estimation error for 3-D case

 47

0 50 100 150 200 250 300
-1.5

-1

-0.5

0

0.5

1

1.5

Simulation Time [sec]

D
ow

n
V

el
oc

ity
 E

st
im

at
io

n
E

rro
r [

m
/s

]

Figure 30. Down velocity estimation error

0 50 100 150 200 250 300
-20

-15

-10

-5

0

5

10

15

20

25

Simulation Time [sec]

Y
aw

 E
st

im
at

io
n

E
rro

r [
de

g]

Figure 31. Yaw estimation error for 3-D case

 48

0 50 100 150 200 250 300
-12

-10

-8

-6

-4

-2

0

2

4

6

8

Simulation Time [sec]

P
itc

h
E

st
im

at
io

n
E

rro
r [

de
g]

Figure 32. Pitch estimation error

0 50 100 150 200 250 300
-6

-4

-2

0

2

4

6

8

Simulation Time [sec]

R
ol

l E
st

im
at

io
n

E
rro

r [
de

g]

Figure 33. Roll estimation error

 49

0 50 100 150 200 250 300
-10

-5

0

5

10

15

20

25

Simulation Time [sec]

x-
ax

is
 A

cc
el

er
om

et
er

 B
ia

s
E

st
im

at
io

n
E

rro
r [

m
g]

Figure 34. x-axis accelerometer bias estimation error for 3-D case

0 50 100 150 200 250 300
-20

-15

-10

-5

0

5

10

15

20

25

30

Simulation Time [sec]

y-
ax

is
 A

cc
el

er
om

et
er

 B
ia

s
E

st
im

at
io

n
E

rro
r [

m
g]

Figure 35. y-axis accelerometer bias estimation error for 3-D case

 50

0 50 100 150 200 250 300
0

5

10

15

20

25

30

35

Simulation Time [sec]

z-
ax

is
 A

cc
el

er
om

et
er

 B
ia

s
E

st
im

at
io

n
E

rro
r [

m
g]

Figure 36. z-axis accelerometer bias estimation error

0 50 100 150 200 250 300
-2

-1.5

-1

-0.5

0

0.5

1

Simulation Time [sec]

x-
ax

is
 A

R
S

 B
ia

s
E

st
im

at
io

n
E

rro
r [

de
g/

s]

Figure 37. x-axis ARS bias estimation error

 51

0 50 100 150 200 250 300
-2

-1.5

-1

-0.5

0

0.5

1

1.5

Simulation Time [sec]

y-
ax

is
 A

R
S

 B
ia

s
E

st
im

at
io

n
E

rro
r [

de
g/

s]

Figure 38. y-axis ARS bias estimation error

0 50 100 150 200 250 300
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Simulation Time [sec]

z-
ax

is
 A

R
S

 B
ia

s
E

st
im

at
io

n
E

rro
r [

de
g/

s]

Figure 39. z-axis ARS bias estimation error for 3-D case

 52

0 50 100 150 200 250 300
-5

0

5

10

15

20

Simulation Time [sec]

x-
ax

is
 A

cc
el

er
om

et
er

 S
FT

 E
rro

r [
%

]

Figure 40. x-axis accelerometer SFT percentage error for 3-D case

0 50 100 150 200 250 300
-15

-10

-5

0

5

10

15

Simulation Time [sec]

y-
ax

is
 A

cc
el

er
om

et
er

 S
FT

 E
rro

r [
%

]

Figure 41. y-axis accelerometer SFT percentage error for 3-D case

 53

0 50 100 150 200 250 300
-6

-4

-2

0

2

4

6

8

10

Simulation Time [sec]

z-
ax

is
 A

cc
el

er
om

et
er

 S
FT

 E
rro

r [
%

]

Figure 42. z-axis accelerometer SFT percentage error

0 50 100 150 200 250 300
-3

-2

-1

0

1

2

3

4

5

6

7

Simulation Time [sec]

x-
ax

is
 A

R
S

 S
FT

 E
rro

r [
%

]

Figure 43. x-axis ARS SFT percentage error

 54

0 50 100 150 200 250 300
-2

-1

0

1

2

3

4

Simulation Time [sec]

y-
ax

is
 A

R
S

 S
FT

 E
rro

r [
%

]

Figure 44. y-axis ARS SFT percentage error

0 50 100 150 200 250 300
-8

-6

-4

-2

0

2

4

6

Simulation Time [sec]

z-
ax

is
 A

R
S

 S
FT

 E
rro

r [
%

]

Figure 45. z-axis ARS SFT percentage error for 3-D case

 55

0 50 100 150 200 250 300
19.88

19.9

19.92

19.94

19.96

19.98

20

20.02

20.04

20.06

20.08

Simulation Time [sec]

Tr
ue

 x
-a

xi
s

A
cc

el
er

om
et

er
 B

ia
s

[m
g]

Figure 46. Random walk of x-axis accelerometer bias for 3-D case

0 50 100 150 200 250 300
19.9

19.95

20

20.05

Simulation Time [sec]

Tr
ue

 y
-a

xi
s

A
cc

el
er

om
et

er
 B

ia
s

[m
g]

Figure 47. Random walk of y-axis accelerometer bias for 3-D case

 56

0 50 100 150 200 250 300
19.9

19.95

20

20.05

20.1

20.15

Simulation Time [sec]

Tr
ue

 z
-a

xi
s

A
cc

el
er

om
et

er
 B

ia
s

[m
g]

Figure 48. Random walk of z-axis accelerometer bias

0 50 100 150 200 250 300
0.0995

0.1

0.1005

0.101

0.1015

0.102

0.1025

0.103

0.1035

0.104

Simulation Time [sec]

Tr
ue

 x
-a

xi
s

A
R

S
 B

ia
s

[d
eg

/s
]

Figure 49. Random walk of x-axis ARS bias

 57

0 50 100 150 200 250 300
0.099

0.0995

0.1

0.1005

0.101

0.1015

0.102

0.1025

0.103

Simulation Time [sec]

Tr
ue

 y
-a

xi
s

A
R

S
 B

ia
s

[d
eg

/s
]

Figure 50. Random walk of y-axis ARS bias

0 50 100 150 200 250 300
0.099

0.1

0.101

0.102

0.103

0.104

0.105

0.106

Simulation Time [sec]

Tr
ue

 z
-a

xi
s

A
R

S
 B

ia
s

[d
eg

/s
]

Figure 51. Random walk of z-axis ARS bias for 3-D case

 58

Table 7. Statistical data for truth and state estimations for 3-D case

SD of North, East and Down position measurement
errors 1m

SD of North, East and Down position estimation
 errors []0.17 0.22 0.15m m m

SD of North, East and Down velocity estimation
 errors []0.06 0.09 0.04m s m s m s

SD of Yaw estimation error 0.14°
SD of Pitch estimation error 0.05°
SD of Roll estimation error 0.07°

SD of x,y,z-axes accelerometer noises 5mg

SD of x,y,z-axes accelerometers bias-rate noises 0.0001g s

True initial value of x,y,z-axes accelerometer biases 20mg

SD of x,y,z-axes ARS noises 0.05 s°

SD of x,y,z-axes ARS bias-rate noises 20.002 s°

True initial value x,y,z-axes ARS biases 0.1 s°

 59

5. REAL-TIME IMPLEMENTATION ON THE AGV

 The majority of the code written in MatLab was for producing simulated measurements

that were used by the KF. In reality, the measurements are produced by the GPS and IMU as the

truck interfaces with the world. Therefore, the sections of the MatLab code that are required

only for the simulation were not converted to C++. The other sections (KF and integration tool)

were converted to C++ but required additional code to communicate with the hardware. Caleb

Wells and Justin Bozalina (the computer scientists on the project) were of great help with

communicating with the hardware and writing the C++ code. Appendix A contains the MatLab

code, Appendix B contains the C++ code, Appendix C provides the global mapping

transformations and Appendix D provides the necessary steps to start the INS and conduct

testing.

 Once the KF/IMU/GPS system was integrated, the tuning process began. The North,

East and Down (NED) position of the AGV is measured by GPS (once the latitude, longitude

and height above sea level have been converted). The KF solution for the NED position is

therefore more robust than for the other states, which are not directly measured. The most

difficult parameters to converge (through multiple updates from KF) were the biases and SFT’s

of the IMU because they are not propagated by the Runge-Kutta differential equation solver and

therefore are only adjusted once the KF algorithm runs every 0.05 seconds. During GPS signal

loss, these estimates do not change. They also directly affect the accuracy of the Euler angles.

 It is very difficult to validate the KF estimates because the truth is not known. The most

accurate measurements available are being used as inputs to the KF. Therefore, there is no

reference by which the accuracy of the KF estimates can be measured. However, the

precision/repeatability of the estimates can be demonstrated. Therefore, three tests were used to

demonstrate the accuracy of the KF information.

The first test demonstrates the repeatability of the NED position estimate. The second

shows the precision of the Yaw estimate. The third test included the mapping of an object onto

the global map using the KF information and mapping transformations of Appendix C. In

addition to these tests, there will also be intentional GPS blockages to show the drift of the

model’s solution. Also, the convergence of the biases and SFT’s will be shown for

completeness.

 60

There is initialization required for each of these tests. The first step is to identify the

origin of the ICS. The AGV will always start from this position for all the tests. Before the

vehicle starts its run, the location of the tires is marked on the runway with the origin as the

location of the IMU. The AGV will return to this position at the end of all tests.

5.1 Repeatability of NED position estimate

In order to test the repeatability of the NED position estimate from the KF, the vehicle

returns to the origin where the precision error is calculated. The AGV returned to the origin

within 11 cm along the North axis, 19 cm along the East axis and 8 cm along the Down axis.

This test was performed many times with consistent results. The AGV initially traveled North

on runway 35R and then turned clockwise. The vehicle then traveled northeast approaching the

flight lab and returned along the same path, now traveling southwest. The AGV then traveled

north for approximately 600 meters followed by a u-turn to travel south. The vehicle finished

the test by approaching the origin from the South. Figure 52 shows the path of the AGV on the

North-East plane.

-50 0 50 100 150 200 250 300 350 400 450
-100

0

100

200

300

400

500

600

700

East position of AGV [m]

N
or

th
 p

os
iti

on
 o

f A
G

V
 [m

]

Figure 52. Path of AGV on the North-East plane

 61

Once the AGV returned to the origin, the GPS signal was intentionally blocked for 61

seconds. The NED position estimates drifted due to the integration of uncompensated biases in

the IMU. The NED position estimates drifted 66 meters, 30 meters and 9 meters over 61

seconds, respectively, indicating uncompensated biases in the x, y and z axis accelerometers of

3.6 mg, 1.6 mg and 0.5 mg. The yaw, pitch and roll angles drifted by 0.2°, 0.9° and 0.01°,

respectively. If the GPS signal was blocked for 10 seconds, the drift in the NED position

estimates would have been 1.8 meters, 0.8 meters and 0.25 meters, respectively.

5.2 Accuracy of the yaw angle estimate

 Determining the accuracy of the yaw angle was one of the most difficult tasks in tuning

the KF. The yaw angle is one of the most important states used by the controller and mapping

software. To test the validity of the estimate, it has to be compared with the truth. At the

Riverside campus, runway 35R has painted traffic lines that are parallel to North and South

within 0.1°.

 The offset in the runway was determined by driving the AGV parallel to these traffic

lines and logging the GPS position information. After 600 meters, the East position drifted by ~

1 meter indicating an overall offset of 0.1° clockwise about the D axis. This is the best reference

available for determining the error in the yaw angle estimate.

The path of the AGV was shown in figure 52. The best yaw angle estimates were

available at the end of the run and were taken while driving North and South. While driving

north, the yaw angle estimate was between 359.2° and 359.9°. While driving south, the yaw

angle estimate was between 179.4° and 179.8°. The plot of the yaw angle estimate for this

section of the run is in figure 53.

The yaw angle estimates above indicate that there is an offset between the body-fixed x-

axis of the IMU and the axis of the AGV that is parallel to the wheelbase and pointing forward.

The Euler angle estimates provided by the KF are with respect to the IMU body-fixed co-

ordinate system. It is impossible to mount the IMU such that all offsets are eliminated; rather,

they are included when the state information is provided to the mapping and path control

software. The exact offsets are not known but can be estimated (though not very well because

the true orientation of the AGV is not known). For the yaw, it is estimated that the offset is 0.4°

 62

meaning that the x-axis of the IMU is pointing 0.4° counter-clockwise from the centerline of the

AGV.

200 220 240 260 280 300 320 340 360 380 400

180

240

300

360

400

Time [sec]

Y
aw

 A
ng

le
 E

st
im

at
io

n
[d

eg
]

Figure 53. Yaw angle estimate of AGV during North to South and South to North operation

5.3 Precision of mapping solution

 The final test was the most comprehensive. If multiple observations of an object are

mapped within close proximity to one another (and to the correct location) then the information

provided by the KF meets the performance requirements associated with obstacle mapping of the

AGV project. The object mapped was a box measuring four meters by two meters and two

meters in height.

 For the final test, the AGV again started at the origin and was driven North for 200

meters and then performed a u-turn to drive South for an additional 400 meters. The AGV then

performed another u-turn to approach the origin where it was stopped 10 meters to the East of

the origin. The box was then rolled over the origin to make it easier to see its mapped location.

The AGV then continued to drive North and performed another u-turn to head South. The

vehicle then performed one last u-turn before the mapping process began, wherein the AGV was

now approaching the box from the South.

 63

 Once the AGV was within 50 meters of the box, the time stamped returns from the SICK

were logged. The SICK LMS [6] had a fixed sweep angle of -7° in order that the ground was

contacted at ~ 20 meters. The box was mapped multiple times with the precision of these

multiple observations being one meter (open the “mapping.avi” movie file in Appendix E to

view the video demonstrating the mapping of this box).

5.4 State/Parameter estimates

 There are an additional 18 figures included in this section. Figures 54 through 56 show

the yaw, pitch and roll angle estimates. Figures 57 through 59 show the bias estimates for the x,

y and z-axis accelerometers, respectively. Figures 60 through 62 show the bias estimates for the

x, y and z-axis ARS’s, respectively. Figures 63 through 65 display the SFT estimates for the x, y

and z-axis accelerometers, respectively. Figures 66 through 68 display the SFT estimates for the

x, y and z-axis ARS’s, respectively.

0 50 100 150 200 250 300 350 400
-200

-100

0

100

200

300

400

Time [sec]

Y
aw

 A
ng

le
 E

st
im

at
e

[d
eg

]

Figure 54. Yaw angle estimate

 64

0 50 100 150 200 250 300 350 400
-4

-3

-2

-1

0

1

2

3

Time [sec]

P
itc

h
A

ng
le

 E
st

im
at

e
[d

eg
]

Figure 55. Pitch angle estimate

0 50 100 150 200 250 300 350 400
-5

-4

-3

-2

-1

0

1

2

3

4

Time [sec]

R
ol

l A
ng

le
 E

st
im

at
e

[d
eg

]

Figure 56. Roll angle estimate

 65

0 50 100 150 200 250 300 350 400
-25

-20

-15

-10

-5

0

5

10

Time [sec]

x-
ax

is
 A

cc
el

er
om

et
er

 B
ia

s
E

st
im

at
e

[m
g]

Figure 57. x-axis accelerometer bias estimate

0 50 100 150 200 250 300 350 400
-60

-50

-40

-30

-20

-10

0

10

Time [sec]

y-
ax

is
 A

cc
el

er
om

et
er

 B
ia

s
E

st
im

at
e

[m
g]

Figure 58. y-axis accelerometer bias estimate

 66

0 50 100 150 200 250 300 350 400
-20

-10

0

10

20

30

40

Time [sec]

z-
ax

is
 A

cc
el

er
om

et
er

 B
ia

s
E

st
im

at
e

[m
g]

Figure 59. z-axis accelerometer bias estimate

0 50 100 150 200 250 300 350 400
-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

Time [sec]

x-
ax

is
 A

R
S

 B
ia

s
E

st
im

at
e

[d
eg

/s
]

Figure 60. x-axis ARS bias estimate

 67

0 50 100 150 200 250 300 350 400
-0.5

0

0.5

1

1.5

2

2.5

3

Time [sec]

y-
ax

is
 A

R
S

 B
ia

s
E

st
im

at
e

[d
eg

/s
]

Figure 61. y-axis ARS bias estimate

0 50 100 150 200 250 300 350 400
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

Time [sec]

z-
ax

is
 A

R
S

 B
ia

s
E

st
im

at
e

[d
eg

/s
]

Figure 62. z-axis ARS bias estimate

 68

0 50 100 150 200 250 300 350 400
0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

Time [sec]

x-
ax

is
 A

cc
el

er
om

et
er

 S
FT

 E
st

im
at

e
[m

g]

Figure 63. x-axis accelerometer SFT estimate

0 50 100 150 200 250 300 350 400
0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

Time [sec]

y-
ax

is
 A

cc
el

er
om

et
er

 S
FT

 E
st

im
at

e
[m

g]

Figure 64. y-axis accelerometer SFT estimate

 69

0 50 100 150 200 250 300 350 400
0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

Time [sec]

z-
ax

is
 A

cc
el

er
om

et
er

 S
FT

 E
st

im
at

e
[m

g]

Figure 65. z-axis accelerometer SFT estimate

0 50 100 150 200 250 300 350 400
0.8

0.85

0.9

0.95

1

1.05

Time [sec]

x-
ax

is
 A

R
S

 S
FT

 E
st

im
at

e
[d

eg
/s

]

Figure 66. x-axis ARS SFT estimate

 70

0 50 100 150 200 250 300 350 400
0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

Time [sec]

y-
ax

is
 A

R
S

 S
FT

 E
st

im
at

e
[d

eg
/s

]

Figure 67. y-axis ARS SFT estimate

0 50 100 150 200 250 300 350 400
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

Time [sec]

z-
ax

is
 A

R
S

 S
FT

 E
st

im
at

e
[d

eg
/s

]

Figure 68. z-axis ARS SFT estimate

 71

5.5 Tuning parameters comparison between real case and 3-D simulation case

 The diagonal elements of the real 0P matrix had values much higher than the diagonal

elements of the 0P matrix for the 3-D simulation (as can be seen in section 4.3). The same is

true for the diagonal elements of ()Q t . The higher values indicate that there is more uncertainty

in the IMU measurements for the real case. There is less certainty in the IMU measurements for

multiple reasons. One reason is that the ideal noise characteristics used in the simulation are not

present in the real measurements. Another reason for the discrepancy is that the biases were

more active in the real IMU, which makes it more difficult for the KF to converge. Also, the real

IMU measurements were corrupted with more noise than what the simulation included.

However, the simulations still provided insight into how the KF reacts to the tuning parameters.

Without this knowledge, it would have been much more difficult to arrive at the converged

solution. The 0P , kR and ()Q t matrices are defined in equations (5.1) through (5.3) below.

Initial Estimation Error Covariance Matrix

0

0

0

0

(diag(1 3,7 9)) 5

(diag(4 6)) 2

(diag(10 15)) 1

(diag(16 21)) 0.05

P

P

P

P

− − =
− =
− =

− =

 (5.1)

Measurement Noise Covariance Matrix

.1 0 0
0 .1 0

0 0 .2
kR

� �
� �= � �
� �� �

 (5.2)

Process Noise Covariance Matrix

2 2 2 2 2 2
, , ,

2 2 2 2
, , ,

2 2 2 2 2

diag()

(0.01)

(0.5) , (1.0)

Acc x Acc y Acc z p q r

Acc x Acc y Acc z

p q r

Q t w w w w w w

w w w g

w w ws s

� �=
� �

= = =

° °= = =

 (5.3)

 72

5.6 Comparison of results with performance requirements

 The first performance requirement of the navigation system was to provide six Hz

updates of state information to the path controller, to the data frequency required to maintain a

maximum stable vehicle speed of 40+ mph. The update rate provided by the navigation system

is currently 71 Hz which is the update rate of IMU measurements to the KF. Therefore, the

navigation system has satisfied the first performance requirement.

 The second performance requirement of the navigation system was to provide a NED

position error of less than 1/3 meter and yaw angular position error less than 0.5°. The NED

position solution from the KF follows the differential GPS position closely because it is the most

accurate position measurement available. The horizontal error of the NED position solution was

11 cm along the North axis and 19 cm along the East axis which is better than the 33 cm

performance requirement. Also, the average yaw angle estimation error (excluding the offset)

was 0.4° even though it was impossible to maintain a perfectly straight path along the traffic

lines on runway 35R. Therefore, the second performance requirement has been satisfied.

 The third performance requirement of the navigation system was that the IMU must

have accelerometers and ARS’s capable of sensing ± 10 g and ± 200°/s, respectively. The

Watson Industries BA-604 IMU does not meet these requirements. This IMU is capable of

± 2 g and ± 100°/s. However, the Ring Laser Gyroscope (RLG) IMU discussed later will be

capable of satisfying these requirements.

 The fourth performance requirement of the navigation system was that it must include a

KF that is capable of fusing the IMU/GPS information. A KF is required to provide all the

necessary state information (NED position/velocity as well as orientation) which is mostly not

available from GPS or IMU alone. Since the major contribution of this thesis was the

development of the KF, this performance requirement is satisfied.

 73

 The fifth performance requirement of the navigation system was that the drift rate of the

Euler angles be less than 30°/hr. When there is a momentary loss in the GPS signal, the

navigation solution provided by the KF will drift. As was shown earlier, after one minute the

drift in the Euler angles can be between 0.01° and 0.9°. Since the yaw angle is used as the

benchmark, the drift rate of the navigation solution was 12°/hr. Therefore, the fifth performance

requirement has been satisfied.

 The next two performance requirements were that the differential GPS must be available

in the Mojave Desert and that the communication from C++ to the hardware must be serial or

TCP/IP. The differential GPS signal used by the navigation system is provided by OmniSTAR

and is available in the Mojave Desert. The communication between the hardware and C++ was

serial. Therefore, the sixth and seventh performance requirements have been satisfied.

 The last performance requirement of the navigation system was that the hardware must

have shock survivability greater than 20 g for 5 ms. This information has not been provided by

Watson Industries, therefore it is unknown if it meets the requirements. However, during the

operation of the AGV, the hardware did survive the vibrations. Nonetheless, the last

performance requirement has not been satisfied.

 The current navigation system does not meet all the performance requirements.

However, with the replacement of the current IMU with the IMU in the SPAN # 2 package

(Honeywell G2-H58) these requirements will be satisfied. However, the failed performance

requirements did not hinder the overall performance of the INS. The accelerations and angular

rates sensed by the IMU were never above its maximum range. Also, the IMU survived the

vibrations it experienced during the operation of the AGV on the runways at Riverside.

However, the runway environment does not fully define the strength of vibrations that the AGV

can experience in an off-road or less smooth environment.

 74

6. CONCLUSIONS

 The current navigation system is sufficient for following waypoints, as was the previous

INS. However, the current INS also can withstand a loss in GPS signal for no more than 10

seconds where the NED position estimates will drift by at most two meters. With the orientation

information provided by the current INS, a locally ‘global’ map of the terrain is possible which

is the first step toward identifying obstacles that the AGV must avoid.

 The current INS does not satisfy all the performance requirements developed through the

design analysis. However, all of the performance requirements would be satisfied by the

integration of the Honeywell G2-H58 RLG IMU into the INS. The accuracy of the Euler angles

and the drift associated with the biases of the three accelerometers and three ARS’s will be

improved significantly. With the biases more accurately estimated, the INS could withstand a

longer GPS signal loss.

 The simulations developed in this thesis helped tremendously in learning the behavior of

the KF, especially when adjusting the tuning parameters. Also, the simulations show the

observability of each of the states/parameters (whether or not they can be estimated). Without

these simulations, it would have been much more difficult with respect to time and effort to

develop an INS that performed as well as the current INS.

 The KF is a very useful tool for navigation. Without the KF, the biases of the IMU

sensors would not be estimated. Integrating the IMU measurements with these biases would

introduce integration errors that would render the navigation solution useless. If the biases were

fully known, there is still noise in the measurements that affect the accuracy of the solution. The

KF essentially provides the most accurate solution possible.

 75

7. SUMMARY

The design analysis was a crucial step in this project. It was intentionally placed in the

beginning of this thesis because it should be the first step in solving a problem. The needs

statement focuses on posing the problem correctly, in order that any ambiguity is removed. The

functional/performance requirements present the necessary requirements a candidate solution

must possess, and how well it must perform them. Much time is spent analyzing the problem to

determine the levels of performance required of the design.

Once the framework for the solution was developed, some background on the KF was

presented. The KF is a tool which has many applications. For navigation, it can take body-fixed

accelerations and angular-rates, along with an inertial linear position update and provide linear

positions/velocities as well as the yaw, pitch and roll angles of the AGV. If there were no data

corruption by noise, biases and/or SFT’s, a KF would not be required. The measurement data

could be simply integrated and arrive at the true solution. However, all measurements are

corrupted and thus the use of a KF is warranted.

The simulations developed in section four were used to confirm that the KF could indeed

provide a viable navigation solution. Even though the truth was available, it was corrupted

before it was sent to the KF, mimicking a real measurement. Since the truth was known, the

solution provided by the KF could be evaluated, a luxury not available in reality.

Appendix C described the obstacle mapping process in detail and provided definitions of

the Euler angles (yaw, pitch and roll). It is very important that every system on the AGV that

requires orientation uses the correct order and definitions of the Euler angles. Along with the

orientation definitions, the vector analysis for mapping a SICK return onto the global map is also

critical to the operation of the AGV. If the mapping software does not correctly map the

environment, the AGV cannot determine the safest route to the goal.

Although simulation is a very powerful and useful tool, the ultimate test of any system is

how it performs in its operating environment. Without the truth as a gauge, it was difficult to

determine the tests required to show that the current INS performs adequately. However, the

results of the tests employed show that the KF algorithm developed in this thesis is useful for

navigation of an AGV.

 76

8. RECOMMENDATIONS FOR FURTHER STUDY/DEVELOPMENT

 It is recommended that an IMU with the lowest bias drift/walk be purchased that is

within the current budget. The navigation system on the AGV will benefit from an IMU that has

a bias drift/random walk less than the current IMU. During GPS outages, the information from

the IMU (linear accelerations and angular rates) is integrated to provide the linear

positions/velocities as well as the Euler angles. When the KF is active (GPS is available) it is

compensating for the biases in the IMU, but the biases can never be fully compensated for

because they drift and walk. However, the amount that they drift/walk is slow relative to the

bandwidth of the KF. The problem arises when the KF is not able to compensate for them which

occurs when the GPS signal is unavailable.

 There is not an IMU available that eliminates the problem of biases. A better IMU will

only provide a viable, uncorrected solution longer than the current IMU. A viable solution is one

in which the errors developed in the linear positions and Euler angles are acceptable. The lower

the bias drift/walk, the longer an acceptable navigation solution can be used by the AGV in the

absence of GPS.

 With the addition of a new IMU, there will need to be additional development. Outside

of communication and mounting issues, there are additional tuning requirements. Since the new

IMU will indeed provide a more accurate solution, the tuning parameters described earlier will

have to be adjusted. The recommended process is to start with the current tuning parameters and

then lower the diagonals of the 0P matrix that pertain to the biases and SFT’s of the IMU. Also,

repeat this process for the diagonals of the ()Q t matrix. Lowering the values of the elements of

these matrices will place more weight on the IMU.

 77

REFERENCES

[1] Defense Advanced Research Projects Agency, DARPA and the DARPA Grand Challenge.

http://www.darpa.mil/grandchallenge. Accessed: January 2005.

[2] NovAtel, NovAtel SPAN Package. http://www.novatel.com/products/span.htm. Accessed:

June 2005.

[3] Andrews, A.P. and Grewal, M.S. and Weill, L.R., 2001, Global Positioning Systems, Inertial

Navigation, and Integration, John Wiley & Sons, New York, NY.

[4] Crassidis, J.L. and Junkins, J.L., 2004, Optimal Estimation of Dynamic Systems, Chapman

and Hall, New York, NY.

[5] Watson Industries, Watson Industries IMU BA-604. http://www.watson-gyro.com.

Accessed: August 2005.

[6] SICK Automatic Identification Sensors, SICK LMS221-30206. http://www.sickusa.com.

Accessed: January 2005.

 78

APPENDIX A

MatLAB code for simulating 1-D IMU/GPS measurements:

% Author: Craig Odom

% Simulated measurement code for 1-D case

clc;
clear;
close all;

global x_acc_eta Q offset amp w_length

g = 9.807;

% Noise parameters
GPS_N_noise = 1;
x_acc_noise = 0.005;
x_acc_eta = 0.0001;

% IMU--->GPS offsets
x_offset = -1.0;

offset = [x_offset];

% Scale factor actual and nominal (V/g, V/(deg/s))
S_act_x_acc = 2.57;

S_nom_x_acc = 0.4;

% Time parameters
t_begin = 0;
dt_cont = 0.01;
dt_disc = 0.05;
t_final = 200;
time = t_begin:dt_cont:t_final;
time_disc = t_begin:dt_disc:t_final;

% True motion
amp = 200;
w_length = 50;

N_pos = 0;
N_vel = 2*amp*pi/w_length;
x_acc_bias_true = 0.02;

 79

x0_true_motion(1:3,1) = [N_pos N_vel x_acc_bias_true]';

N_acc = -4*amp*sin(2*pi*time/w_length)*pi^2/w_length^2;

% Calling the ode4 function (Runge Kutta 4th order)
x_true = ode4(@true_motion_1D,time,x0_true_motion);

N_pos = x_true(:,1);
N_vel = x_true(:,2);
x_acc_bias_true = x_true(:,3);

x_acc_body = N_acc/g;

% Scale factor errors
S_a_x = S_act_x_acc*S_nom_x_acc;

S_accel = [S_a_x];

% Building IMU measurements
for i=1:length(time)

 x_acc_meas(i) = S_accel*x_acc_body(i) + x_acc_bias_true(i) + x_acc_noise*randn;

end

% Rounding the IMU data for true resolution
x_acc_meas = round(x_acc_meas*1000)/1000;

% Building the GPS measurements
for i=1:length(time_disc)

 j = (dt_disc/dt_cont)*i - (dt_disc/dt_cont - 1);

 N_offset(i) = offset;

 GPS_N_meas(i,1) = N_pos(j) + N_offset(i) + GPS_N_noise*randn;

end

% Rounding the GPS data
GPS_N_meas = round(GPS_N_meas*100)/100;

% Building the y_tilde vector
for i=1:length(time_disc)

 y_tilde(i,1) = GPS_N_meas(i,1);

end

 80

GPS_data = [GPS_N_meas];

IMU_data = [x_acc_meas'];

save Initial_1D.mat

run EKF_1D

MatLab code that runs Runge-Kutta 4th order to produce the true motion for the 1-D case:

% Author: Craig Odom

% Simulated truth code for 1-D case

function f = true_motion_1D(t,x)

global x_acc_eta amp w_length

% Initializing the functions
f = zeros(3,1);

% Equations of motion
f(1) = x(2);
f(2) = -4*amp*sin(2*pi*t/w_length)*pi^2/w_length^2;
f(3) = x_acc_eta*randn;

MatLab code that runs the Kalman Filter algorithm for the 1-D case:

% Author: Craig Odom

% Kalman Filter code that uses simulated measurements from Initial_1D.mat

clc;
clear;
close all;

load Initial_1D.mat

global x_acc_m Q offset

% Initial Estimation Error Covariance Matrix
for i=1:4

 if i<=2

 81

 P0(i,i) = 0.5;

 elseif i==3

 P0(i,i) = 0.005;

 elseif i==4

 P0(i,i) = 0.005;

 end

end

% Process Noise Covariance Matrix
x_acc_noise_mss = x_acc_noise*g;

Q = [x_acc_noise_mss^2];

% Measurement Noise Covariance Matrix
R = [GPS_N_noise^2];

% Initial State Estimation
x_start = [0 25 0 1];

x_k_neg = x_start';

P_k_neg = P0;

step = dt_disc/dt_cont;

z = 1;

iteration = 0;

print = 0;

% Extended Kalman Filter
for i=1:length(time)

 % step builds until a new GPS measurement is available
 if step == dt_disc/dt_cont;

 h = x_k_neg(1,1) + offset;

 % Measurement Sensitivity Matrix
 H = [1 0 0 0];

 82

 % Kalman Gain Matrix
 K = P_k_neg*H'*inv(H*P_k_neg*H' + R);

 Inn(:,i) = y_tilde(z,1) - h;

 % Correction to state vector
 x_k_pos = x_k_neg + K*(Inn(:,i));

 % Correction to P matrix
 P_k_pos = (eye(length(P0)) - K*H)*P_k_neg;

 step = 0;

 z = z + 1;

 end

 % Saving all state information
 x_plot(:,i) = x_k_pos;

 % Augmenting the IMU measurements from g's to m/s/s and deg/s to rad/s
 x_acc_m = x_acc_meas(i)*g;

 % Setting the first part of the initial condition vector for Runge
 % Kutta
 x0(1:length(P0),1) = x_k_pos;

 % Converting elements of P matrix to an array
 for d=1:length(P0)

 j = length(P0)*d - (length(P0)-1);
 k = length(P0)*d;

 P_k_pos_col(j:k,1) = P_k_pos(d,1:length(P0));

 end

 % Setting the last part of the initial condition vector for Runge Kutta
 x0(length(P0)+1:length(P0)+length(P0)^2,1) = P_k_pos_col;

 % Calling the ode4 (Runge Kutta 4th order) integration tool
 x_est = ode4(@Prop_1D,[0 0.01],x0);

 % Taking the last part of the RK solution
 P_est = x_est(length(x_est(:,1)),length(P0)+1:length(P0)+length(P0)^2);

 % Converting the array P_est into the elements of P_k_neg
 for d=1:length(P0)

 83

 j = length(P0)*d - (length(P0)-1);
 k = length(P0)*d;
 P_k_neg(d,1:length(P0)) = P_est(j:k);

 end

 % Converting the first part of the solution to x_k_neg
 x_k_neg = x_est(length(x_est(:,1)),1:length(P0))';

 % x_k_pos/P_k_pos are the best estimates available
 x_k_pos = x_k_neg;

 P_k_pos = P_k_neg;

 step = step + 1;

 % Printing out the simulation time every second
 if iteration == 100

 print = print + 1;

 Sim_time = print

 iteration = 0;

 end

 iteration = iteration + 1;

end

% Solving for the percentage error of the SFT estimate
for i=1:length(time)

 x_acc_per_error(i) = (S_a_x - 1/x_plot(4,i))/S_a_x*100;

end

% Saving all the data
save EKF_1D.mat

% Printing all the figures
figure (1)
plot(time,x_plot(1,:) - N_pos')
xlabel('Simulation Time [sec]')
ylabel('North Position Estimation Error [m]')
axis([0 200 -2 2])

 84

figure (2)
plot(time,x_plot(2,:) - N_vel')
xlabel('Simulation Time [sec]')
ylabel('North Velocity Estimation Error [m/s]')
axis([0 200 -1 1])

figure (3)
plot(time,(x_acc_bias_true - x_plot(3,:)'/9.807)*1000)
xlabel('Simulation Time [sec]')
ylabel('x-axis Accelerometer Bias Estimation Error [mg]')

figure (4)
plot(time,x_acc_per_error)
xlabel('Simulation Time [sec]')
ylabel('x-axis Accelerometer SFT Error [%]')

figure (5)
plot(time,x_acc_bias_true*1000)
xlabel('Simulation Time [sec]')
ylabel('True x-axis Accelerometer Bias [mg]')

figure (6)
plot(time,N_pos)
xlabel('Simulation Time [sec]')
ylabel('True North Position of AGV [m]')

MatLab code that runs Runge-Kutta 4th order to produce the apriori estimates (including the
estimation error covariance matrix):

% Author: Craig Odom

% Propagation code for apriori solution for 1-D case

function f = Prop_1D(t, x)

global x_acc_m Q

% Initializing the functions
f = zeros(4,1);

% Truth model
a_x = x(4)*(x_acc_m - x(3));

% Equations of motion
f(1) = x(2);
f(2) = a_x;

 85

f(3) = 0;
f(4) = 0;

% Process Noise mapping matrix
G = [0
 x(4)
 0
 0];

% Partial derivatives matrix
F23 = -x(4);
F24 = x_acc_m - x(3);

F = [0 1 0 0
 0 0 F23 F24
 0 0 0 0
 0 0 0 0];

st = length(F) + 1;

% Filling the P matrix with the states
for i=1:length(F)

 for j=1:length(F)

 P(i,j) = x(st);

 st = st + 1;

 end

end

% Variation of Ricatti equation
P_dot = F*P + P*F' + G*Q*G';

st = length(F) + 1;

% Filling the functions with the elements of P_dot
for i=1:length(F)

 for j=1:length(F)

 f(st) = P_dot(i,j);

 st = st + 1;

 end

 86

end

MatLAB code for simulating 2-D IMU/GPS measurements:

% Author: Craig Odom

% Simulated measurement code for 2-D case

clc;
clear;
close all;

global x_acc_eta y_acc_eta omega_r_eta g Q offset amp w_length

g = 9.807;

% Noise parameters

GPS_N_noise = 1;
GPS_E_noise = 1;
x_acc_noise = 0.005;
y_acc_noise = 0.005;
omega_r_noise = 0.05;
x_acc_eta = 0.0001;
y_acc_eta = 0.0001;
omega_r_eta = 0.002;

% IMU--->GPS offsets

x_offset = -1.0;
y_offset = 0.2;

offset = [x_offset;y_offset];

% Scale factor actual and nominal (V/g, V/(deg/s))

S_act_x_acc = 2.57;
S_act_y_acc = 2.56;
S_act_omega_r = 0.097;

S_nom_x_acc = 0.4;
S_nom_y_acc = 0.4;
S_nom_omega_r = 10;

% Time parameters

 87

t_begin = 0;
dt_cont = 0.01;
dt_disc = 0.05;
t_final = 200;
time = t_begin:dt_cont:t_final;
time_disc = t_begin:dt_disc:t_final;

% True motion

amp = 200;
w_length = 50;

N_pos = 0;
E_pos = 0;
N_vel = 2*amp*pi/w_length;
E_vel = 5;
yaw = 0;
x_acc_bias_true = 0.02;
y_acc_bias_true = 0.02;
omega_r_bias_true = 0.1;

x0_true_motion(1:7,1) = [N_pos E_pos N_vel E_vel x_acc_bias_true y_acc_bias_true
omega_r_bias_true]';

N_acc = -4*amp*sin(2*pi*time/w_length)*pi^2/w_length^2;

E_acc = zeros(1,length(time));

% Calling the ode4 function (Runge Kutta 4th order)
x_true = ode4(@true_motion_2D,time,x0_true_motion);

N_pos = x_true(:,1);
E_pos = x_true(:,2);
N_vel = x_true(:,3);
E_vel = x_true(:,4);
x_acc_bias_true = x_true(:,5);
y_acc_bias_true = x_true(:,6);
omega_r_bias_true = x_true(:,7);

% Building the true yaw motion
for i=1:length(time)-1

 yaw(i+1) = atan2(E_vel(i+1),N_vel(i+1));

 yaw_rate(i) = (E_acc(i)*N_vel(i) - N_acc(i)*E_vel(i))/(E_vel(i)^2 + N_vel(i)^2);

 if i==length(time)-1

 88

 yaw_rate(i+1) = (E_acc(i+1)*N_vel(i+1) - N_acc(i+1)*E_vel(i+1))/(E_vel(i+1)^2 +
N_vel(i+1)^2);

 end

end

y = yaw;

% Building the true rotation
for i=1:length(time)

 omega_r(i) = yaw_rate(i);

end

% Direction Cosine Matrix
for i=1:length(time)

 DCM(1,1) = cos(y(i));
 DCM(1,2) = sin(y(i));
 DCM(2,1) = -sin(y(i));
 DCM(2,2) = cos(y(i));

 x_acc_body(i) = DCM(1,:)*[N_acc(i) E_acc(i)]';

 y_acc_body(i) = DCM(2,:)*[N_acc(i) E_acc(i)]';

end

x_acc_body = x_acc_body/g;
y_acc_body = y_acc_body/g;

omega_r = omega_r*180/pi;

acc_body = [x_acc_body;y_acc_body];

omega_body = [omega_r];

% Scale factor errors
S_a_x = S_act_x_acc*S_nom_x_acc;
S_a_y = S_act_y_acc*S_nom_y_acc;

S_g_r = S_act_omega_r*S_nom_omega_r;

S_accel = [S_a_x 0
 0 S_a_y];

 89

S_gyro = [S_g_r];

% Building IMU measurements
for i=1:length(time)

 x_acc_meas(i) = S_accel(1,:)*acc_body(:,i) + x_acc_bias_true(i) + x_acc_noise*randn;

 y_acc_meas(i) = S_accel(2,:)*acc_body(:,i) + y_acc_bias_true(i) + y_acc_noise*randn;

 omega_r_meas(i) = S_gyro*omega_body(i) + omega_r_bias_true(i) + omega_r_noise*randn;

end

% Rounding the IMU data for true resolution
x_acc_meas = round(x_acc_meas*1000)/1000;
y_acc_meas = round(y_acc_meas*1000)/1000;

omega_r_meas = round(omega_r_meas*100)/100;

% Building the GPS measurements
for i=1:length(time_disc)

 j = (dt_disc/dt_cont)*i - (dt_disc/dt_cont - 1);

 DCM_t(1,1) = cos(y(j));
 DCM_t(1,2) = -sin(y(j));
 DCM_t(2,1) = sin(y(j));
 DCM_t(2,2) = cos(y(j));

 N_offset(i) = DCM_t(1,:)*offset;

 E_offset(i) = DCM_t(2,:)*offset;

 GPS_N_meas(i,1) = N_pos(j) + N_offset(i) + GPS_N_noise*randn;

 GPS_E_meas(i,1) = E_pos(j) + E_offset(i) + GPS_E_noise*randn;

end

% Rounding the GPS data
GPS_N_meas = round(GPS_N_meas*100)/100;
GPS_E_meas = round(GPS_E_meas*100)/100;

% Building the y_tilde vector
for i=1:length(time_disc)

 j = 2*i-1;

 90

 k = 2*i;

 y_tilde(j,1) = GPS_N_meas(i,1);

 y_tilde(k,1) = GPS_E_meas(i,1);

end

GPS_data = [GPS_N_meas GPS_E_meas];

IMU_data = [x_acc_meas' y_acc_meas' omega_r_meas'];

save Initial_2D.mat

run EKF_2D

MatLab code that runs Runge-Kutta 4th order to produce the true motion for the 2-D case:

% Author: Craig Odom

% Simulated truth code for 2-D case

function f = true_motion_2D(t,x)

global x_acc_eta y_acc_eta omega_r_eta amp w_length

% Initializing the functions
f = zeros(7,1);

% Equations of motion
f(1) = x(3);
f(2) = x(4);
f(3) = -4*amp*sin(2*pi*t/w_length)*pi^2/w_length^2;
f(4) = 0;
f(5) = x_acc_eta*randn;
f(6) = y_acc_eta*randn;
f(7) = omega_r_eta*randn;

MatLab code that runs the Kalman Filter algorithm for the 2-D case:

% Author: Craig Odom

% Kalman Filter code that uses simulated measurements for 2-D case

clc;
clear;

 91

close all;

load Initial_2D.mat

global x_acc_m y_acc_m omega_r_m g Q offset

% Initial Estimation Error Covariance Matrix
for i=1:11

 if i<=4

 P0(i,i) = 0.5;

 elseif i==5

 P0(i,i) = 0.005;

 elseif i==6||i==7

 P0(i,i) = 0.005;

 elseif i==8

 P0(i,i) = 0.005;

 elseif i==9||i==10

 P0(i,i) = 0.005;

 else

 P0(i,i) = 0.005;

 end

end

% Process Noise Covariance Matrix
x_acc_noise_mss = x_acc_noise*g;
y_acc_noise_mss = y_acc_noise*g;

omega_r_noise_rs = omega_r_noise*pi/180;

Q = [x_acc_noise_mss^2 0 0
 0 y_acc_noise_mss^2 0
 0 0 omega_r_noise_rs^2];

% Measurement Noise Covariance Matrix

 92

R = [GPS_N_noise^2 0
 0 GPS_E_noise^2];

% Initial State Estimation
x_start = [0 0 25 5 0 0 0 0 ones(1,3)];

x_k_neg = x_start';

P_k_neg = P0;

step = dt_disc/dt_cont;

z = 1;

iteration = 0;

print = 0;

% Extended Kalman Filter
for i=1:length(time)

 % step builds until a new GPS measurement is available
 if step == dt_disc/dt_cont;

 j = 2*z-1;
 k = 2*z;

 % Direction Cosine Matrix
 DCM_ap(1,1) = cos(x_k_neg(5,1));
 DCM_ap(1,2) = sin(x_k_neg(5,1));
 DCM_ap(2,1) = -sin(x_k_neg(5,1));
 DCM_ap(2,2) = cos(x_k_neg(5,1));

 DCM_t_ap = DCM_ap';

 h(1,1) = x_k_neg(1,1) + DCM_t_ap(1,:)*offset;
 h(2,1) = x_k_neg(2,1) + DCM_t_ap(2,:)*offset;

 % Measurement Sensitivity Matrix
 H15 = -sin(x_k_neg(5,1))*x_offset-cos(x_k_neg(5,1))*y_offset;
 H25 = cos(x_k_neg(5,1))*x_offset-sin(x_k_neg(5,1))*y_offset;

 H = [1 0 0 0 H15 0 0 0 0 0 0
 0 1 0 0 H25 0 0 0 0 0 0];

 % Kalman Gain Matrix
 K = P_k_neg*H'*inv(H*P_k_neg*H' + R);

 93

 Inn(:,i) = y_tilde(j:k,1) - h;

 % Correction to State Vector
 x_k_pos = x_k_neg + K*(Inn(:,i));

 % Correction to P Matrix
 P_k_pos = (eye(length(P0)) - K*H)*P_k_neg;

 step = 0;

 z = z + 1;

 end

 % Saving all state information
 x_plot(:,i) = x_k_pos;

 % Augmenting the IMU measurements from g's to m/s/s and deg/s to rad/s
 x_acc_m = x_acc_meas(i)*g;

 y_acc_m = y_acc_meas(i)*g;

 omega_r_m = omega_r_meas(i)*pi/180;

 % Setting the first part of the initial condition vector for Runge
 % Kutta
 x0(1:length(P0),1) = x_k_pos;

 % Converting elements of P matrix to an array
 for d=1:length(P0)

 j = length(P0)*d - (length(P0)-1);
 k = length(P0)*d;

 P_k_pos_col(j:k,1) = P_k_pos(d,1:length(P0));

 end

 % Setting the last part of the initial condition vector for Runge Kutta
 x0(length(P0)+1:length(P0)+length(P0)^2,1) = P_k_pos_col;

 % Calling the ode4 (Runge Kutta 4th order) integration tool
 x_est = ode4(@Prop_2D,[0 0.01],x0);

 % Taking the last part of the RK solution
 P_est = x_est(length(x_est(:,1)),length(P0)+1:length(P0)+length(P0)^2);

 % Converting the array P_est into the elements of P_k_neg

 94

 for d=1:length(P0)

 j = length(P0)*d - (length(P0)-1);
 k = length(P0)*d;
 P_k_neg(d,1:length(P0)) = P_est(j:k);

 end

 % Converting the first part of the solution to x_k_neg
 x_k_neg = x_est(length(x_est(:,1)),1:length(P0))';

 % x_k_pos/P_k_pos are the best estimates available
 x_k_pos = x_k_neg;

 P_k_pos = P_k_neg;

 step = step + 1;

 % Printing out the simulation time every second
 if iteration == 100

 print = print + 1;

 Sim_time = print

 iteration = 0;

 end

 iteration = iteration + 1;

end

% Solving for the percentage error of the SFT estimate
for i=1:length(time)

 x_acc_per_error(i) = (S_a_x - 1/x_plot(9,i))/S_a_x*100;
 y_acc_per_error(i) = (S_a_y - 1/x_plot(10,i))/S_a_y*100;

 omega_r_per_error(i) = (S_g_r - 1/x_plot(11,i))/S_g_r*100;

end

% Saving all the data
save EKF_2D.mat

% Printing all the figures
figure (1)

 95

plot(time,x_plot(1,:) - N_pos')
xlabel('Simulation Time [sec]')
ylabel('North Position Estimation Error [m]')
axis([0 200 -2 2])

figure (2)
plot(time,x_plot(2,:) - E_pos')
xlabel('Simulation Time [sec]')
ylabel('East Position Estimation Error [m]')
axis([0 200 -2 2])

figure (3)
plot(time,x_plot(3,:) - N_vel')
xlabel('Simulation Time [sec]')
ylabel('North Velocity Estimation Error [m/s]')

figure (4)
plot(time,x_plot(4,:) - E_vel')
xlabel('Simulation Time [sec]')
ylabel('East Velocity Estimation Error [m/s]')

figure (5)
plot(time,(yaw - x_plot(5,:))*180/pi)
xlabel('Simulation Time [sec]')
ylabel('Yaw Estimation Error [deg]')

figure (6)
plot(time,(x_acc_bias_true - x_plot(6,:)'/9.807)*1000)
xlabel('Simulation Time [sec]')
ylabel('x-axis Accelerometer Bias Estimation Error [mg]')

figure (7)
plot(time,(y_acc_bias_true - x_plot(7,:)'/9.807)*1000)
xlabel('Simulation Time [sec]')
ylabel('y-axis Accelerometer Bias Estimation Error [mg]')

figure (8)
plot(time,(omega_r_bias_true - x_plot(8,:)'*180/pi))
xlabel('Simulation Time [sec]')
ylabel('z-axis ARS Bias Estimation Error [deg/s]')

figure (9)
plot(time,x_acc_per_error)
xlabel('Simulation Time [sec]')
ylabel('x-axis Accelerometer SFT Error [%]')

figure (10)
plot(time,y_acc_per_error)

 96

xlabel('Simulation Time [sec]')
ylabel('y-axis Accelerometer SFT Error [%]')

figure (11)
plot(time,omega_r_per_error)
xlabel('Simulation Time [sec]')
ylabel('z-axis ARS SFT Error [%]')

figure (12)
plot(time,x_acc_bias_true*1000)
xlabel('Simulation Time [sec]')
ylabel('True x-axis Accelerometer Bias [mg]')

figure (13)
plot(time,y_acc_bias_true*1000)
xlabel('Simulation Time [sec]')
ylabel('True y-axis Accelerometer Bias [mg]')

figure (14)
plot(time,omega_r_bias_true)
xlabel('Simulation Time [sec]')
ylabel('True z-axis ARS Bias [deg/s]')

figure (15)
plot(E_pos,N_pos)
xlabel('East Position of AGV')
ylabel('North Position of AGV')
axis([0 1000 -200 200])

MatLab code that runs Runge-Kutta 4th order to produce the apriori estimates for the 2-D case
(including the estimation error covariance matrix):

% Author: Craig Odom

% Propagation code for apriori solution for 2-D case

function f = Prop_2D(t,x)

global x_acc_m y_acc_m omega_r_m g Q

% Initialzing the functions
f = zeros(132,1);

cx5 = cos(x(5));
sx5 = sin(x(5));

% Truth model

 97

w_r = x(11)*(omega_r_m - x(8));

f3x = cx5;
f3y = -sx5;
f4x = sx5;
f4y = cx5;

a_x = x(9)*(x_acc_m - x(6));
a_y = x(10)*(y_acc_m - x(7));

% Equations of motion
f(1) = x(3);
f(2) = x(4);
f(3) = f3x*a_x + f3y*a_y;
f(4) = f4x*a_x + f4y*a_y;
f(5) = w_r;
f(6) = 0;
f(7) = 0;
f(8) = 0;
f(9) = 0;
f(10) = 0;
f(11) = 0;

% Process Noise Mapping Matrix
G = [0 0 0
 0 0 0
 f3x*x(9) f3y*x(10) 0
 f4x*x(9) f4y*x(10) 0
 0 0 x(11)
 0 0 0
 0 0 0
 0 0 0
 0 0 0
 0 0 0
 0 0 0];

% Partial derivatives matrix
F35 = -sx5*x(9)*(x_acc_m-x(6))-cx5*x(10)*(y_acc_m-x(7));
F36 = -cx5*x(9);
F37 = sx5*x(10);
F38 = 0;
F39 = cx5*(x_acc_m-x(6));
F310 = -sx5*(y_acc_m-x(7));
F311 = 0;
F45 = cx5*x(9)*(x_acc_m-x(6))-sx5*x(10)*(y_acc_m-x(7));
F46 = -sx5*x(9);
F47 = -cx5*x(10);
F48 = 0;

 98

F49 = sx5*(x_acc_m-x(6));
F410 = cx5*(y_acc_m-x(7));
F411 = 0;
F55 = 0;
F56 = 0;
F57 = 0;
F58 = -x(11);
F59 = 0;
F510 = 0;
F511 = omega_r_m-x(8);

F = [0 0 1 0 0 0 0 0 0 0 0
 0 0 0 1 0 0 0 0 0 0 0
 0 0 0 0 F35 F36 F37 F38 F39 F310 F311
 0 0 0 0 F45 F46 F47 F48 F49 F410 F411
 0 0 0 0 F55 F56 F57 F58 F59 F510 F511
 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0];

st = length(F) + 1;

% Filling the P matrix with the states
for i=1:length(F)

 for j=1:length(F)

 P(i,j) = x(st);

 st = st + 1;

 end

end

% Variation of Ricatti equation
P_dot = F*P + P*F' + G*Q*G';

st = length(F) + 1;

% Filling the functions with the elements of P_dot
for i=1:length(F)

 for j=1:length(F)

 99

 f(st) = P_dot(i,j);

 st = st + 1;

 end

end

MatLAB code for simulating 3-D IMU/GPS measurements:

% Author: Craig Odom

% Simulated measurement code for 3-D case

clc;
clear;
close all;

global x_acc_eta y_acc_eta z_acc_eta omega_p_eta omega_q_eta omega_r_eta g Q offset amp
w_length

g = 9.807;

% Noise parameters

GPS_N_noise = 1;
GPS_E_noise = 1;
GPS_D_noise = 1;
x_acc_noise = 0.005;
y_acc_noise = 0.005;
z_acc_noise = 0.005;
omega_p_noise = 0.05;
omega_q_noise = 0.05;
omega_r_noise = 0.05;
x_acc_eta = 0.0001;
y_acc_eta = 0.0001;
z_acc_eta = 0.0001;
omega_p_eta = 0.002;
omega_q_eta = 0.002;
omega_r_eta = 0.002;

% IMU--->GPS offsets

x_offset = -0.67;
y_offset = 0;
z_offset = -0.9;

 100

offset = [x_offset;y_offset;z_offset];

% Scale factor actual and nominal (V/g, V/(deg/s))

S_act_x_acc = 2.57;
S_act_y_acc = 2.56;
S_act_z_acc = 2.44;
S_act_omega_p = 0.103;
S_act_omega_q = 0.1028;
S_act_omega_r = 0.097;

S_nom_x_acc = 0.4;
S_nom_y_acc = 0.4;
S_nom_z_acc = 0.4;
S_nom_omega_p = 10;
S_nom_omega_q = 10;
S_nom_omega_r = 10;

% Time parameters

t_begin = 0;
dt_cont = 0.01;
dt_disc = 0.05;
t_final = 300;
time = t_begin:dt_cont:t_final;
time_disc = t_begin:dt_disc:t_final;

% True motion

amp = 200;
w_length = 50;

N_pos = 0;
E_pos = 0;
D_pos = 0;
N_vel = 2*amp*pi/w_length;
E_vel = 5;
D_vel = 0;
yaw = 0;
pitch = 0;
roll = 0;
x_acc_bias_true = 0.02;
y_acc_bias_true = 0.02;
z_acc_bias_true = 0.02;
omega_p_bias_true = 0.1;
omega_q_bias_true = 0.1;
omega_r_bias_true = 0.1;

 101

x0_true_motion(1:8,1) = [N_pos E_pos D_pos N_vel E_vel D_vel pitch roll]';
x0_true_motion(9:14,1) = [x_acc_bias_true y_acc_bias_true z_acc_bias_true
omega_p_bias_true omega_q_bias_true omega_r_bias_true]';

N_acc = -4*amp*sin(2*pi*time/w_length)*pi^2/w_length^2;

E_acc = zeros(1,length(time));

D_acc = 0.5*cos(time/3) - 0.2*cos(time/5);

% Calling the ode4 function (Runge Kutta 4th order)
x_true = ode4(@true_motion_3D,time,x0_true_motion);

N_pos = x_true(:,1);
E_pos = x_true(:,2);
D_pos = x_true(:,3);
N_vel = x_true(:,4);
E_vel = x_true(:,5);
D_vel = x_true(:,6);
pitch = x_true(:,7);
roll = x_true(:,8);
x_acc_bias_true = x_true(:,9);
y_acc_bias_true = x_true(:,10);
z_acc_bias_true = x_true(:,11);
omega_p_bias_true = x_true(:,12);
omega_q_bias_true = x_true(:,13);
omega_r_bias_true = x_true(:,14);

pitch_rate = 0.01*sin(time/2) - 0.02*cos(time/3);

roll_rate = 0.02*sin(time) - 0.03*cos(time/2);

% Building the true yaw motion
for i=1:length(time)-1

 yaw(i+1) = atan2(E_vel(i+1),N_vel(i+1));

 yaw_rate(i) = (E_acc(i)*N_vel(i) - N_acc(i)*E_vel(i))/(E_vel(i)^2 + N_vel(i)^2);

 if i==length(time)-1

 yaw_rate(i+1) = (E_acc(i+1)*N_vel(i+1) - N_acc(i+1)*E_vel(i+1))/(E_vel(i+1)^2 +
N_vel(i+1)^2);

 end

end

 102

y = yaw;
p = pitch;
r = roll;

% Building the true rotations
for i=1:length(time)

 omega_p(i) = -sin(p(i))*yaw_rate(i) + roll_rate(i);

 omega_q(i) = cos(p(i))*sin(r(i))*yaw_rate(i) + cos(r(i))*pitch_rate(i);

 omega_r(i) = cos(p(i))*cos(r(i))*yaw_rate(i) - sin(r(i))*pitch_rate(i);

end

% Direction Cosine Matrix
for i=1:length(time)

 DCM(1,1) = cos(p(i))*cos(y(i));
 DCM(1,2) = cos(p(i))*sin(y(i));
 DCM(1,3) = -sin(p(i));
 DCM(2,1) = sin(p(i))*sin(r(i))*cos(y(i)) - cos(r(i))*sin(y(i));
 DCM(2,2) = sin(p(i))*sin(r(i))*sin(y(i)) + cos(r(i))*cos(y(i));
 DCM(2,3) = cos(p(i))*sin(r(i));
 DCM(3,1) = sin(p(i))*cos(r(i))*cos(y(i)) + sin(r(i))*sin(y(i));
 DCM(3,2) = sin(p(i))*cos(r(i))*sin(y(i)) - sin(r(i))*cos(y(i));
 DCM(3,3) = cos(p(i))*cos(r(i));

 x_acc_body(i) = DCM(1,:)*[N_acc(i) E_acc(i) D_acc(i)]';

 y_acc_body(i) = DCM(2,:)*[N_acc(i) E_acc(i) D_acc(i)]';

 z_acc_body(i) = DCM(3,:)*[N_acc(i) E_acc(i) D_acc(i)]';

end

x_acc_body = x_acc_body/g;
y_acc_body = y_acc_body/g;
z_acc_body = z_acc_body/g;

omega_p = omega_p*180/pi;
omega_q = omega_q*180/pi;
omega_r = omega_r*180/pi;

acc_body = [x_acc_body;y_acc_body;z_acc_body];

omega_body = [omega_p;omega_q;omega_r];

 103

% Scale factor errors
S_a_x = S_act_x_acc*S_nom_x_acc;
S_a_y = S_act_y_acc*S_nom_y_acc;
S_a_z = S_act_z_acc*S_nom_z_acc;

S_g_p = S_act_omega_p*S_nom_omega_p;
S_g_q = S_act_omega_q*S_nom_omega_q;
S_g_r = S_act_omega_r*S_nom_omega_r;

S_accel = [S_a_x S_a_y S_a_z];

S_gyro = [S_g_p S_g_q S_g_r];

% Building IMU measurements
for i=1:length(time)

 x_acc_meas(i) = S_accel(1)*(acc_body(1,i) + sin(p(i))) + x_acc_bias_true(i) +
x_acc_noise*randn;

 y_acc_meas(i) = S_accel(2)*(acc_body(2,i) - cos(p(i))*sin(r(i))) + y_acc_bias_true(i) +
y_acc_noise*randn;

 z_acc_meas(i) = S_accel(3)*(acc_body(3,i) - cos(p(i))*cos(r(i))) + z_acc_bias_true(i) +
z_acc_noise*randn;

 omega_p_meas(i) = S_gyro(1)*omega_body(1,i) + omega_p_bias_true(i) +
omega_p_noise*randn;

 omega_q_meas(i) = S_gyro(2)*omega_body(2,i) + omega_q_bias_true(i) +
omega_q_noise*randn;

 omega_r_meas(i) = S_gyro(3)*omega_body(3,i) + omega_r_bias_true(i) +
omega_r_noise*randn;

end

% Rounding the IMU data for true resolution
x_acc_meas = round(x_acc_meas*1000)/1000;
y_acc_meas = round(y_acc_meas*1000)/1000;
z_acc_meas = round(z_acc_meas*1000)/1000;

omega_p_meas = round(omega_p_meas*100)/100;
omega_q_meas = round(omega_q_meas*100)/100;
omega_r_meas = round(omega_r_meas*100)/100;

% Building the GPS measurements
for i=1:length(time_disc)

 104

 j = (dt_disc/dt_cont)*i - (dt_disc/dt_cont - 1);

 DCM_t(1,1) = cos(p(j))*cos(y(j));
 DCM_t(1,2) = sin(p(j))*sin(r(j))*cos(y(j)) - cos(r(j))*sin(y(j));
 DCM_t(1,3) = sin(p(j))*cos(r(j))*cos(y(j)) + sin(r(j))*sin(y(j));
 DCM_t(2,1) = cos(p(j))*sin(y(j));
 DCM_t(2,2) = sin(p(j))*sin(r(j))*sin(y(j)) + cos(r(j))*cos(y(j));
 DCM_t(2,3) = sin(p(j))*cos(r(j))*sin(y(j)) - sin(r(j))*cos(y(j));
 DCM_t(3,1) = -sin(p(j));
 DCM_t(3,2) = cos(p(j))*sin(r(j));
 DCM_t(3,3) = cos(p(j))*cos(r(j));

 N_offset(i) = DCM_t(1,1:3)*offset;

 E_offset(i) = DCM_t(2,1:3)*offset;

 D_offset(i) = DCM_t(3,1:3)*offset;

 GPS_N_meas(i,1) = N_pos(j) + N_offset(i) + GPS_N_noise*randn;

 GPS_E_meas(i,1) = E_pos(j) + E_offset(i) + GPS_E_noise*randn;

 GPS_D_meas(i,1) = D_pos(j) + D_offset(i) + GPS_D_noise*randn;

end

% Rounding the GPS data
GPS_N_meas = round(GPS_N_meas*100)/100;
GPS_E_meas = round(GPS_E_meas*100)/100;
GPS_D_meas = round(GPS_D_meas*100)/100;

% Building the y_tilde vector
for i=1:length(time_disc)

 j = 3*i-2;
 k = 3*i-1;
 w = 3*i;

 y_tilde(j,1) = GPS_N_meas(i,1);

 y_tilde(k,1) = GPS_E_meas(i,1);

 y_tilde(w,1) = GPS_D_meas(i,1);

end

GPS_data = [GPS_N_meas GPS_E_meas GPS_D_meas];

 105

IMU_data = [x_acc_meas' y_acc_meas' z_acc_meas' omega_p_meas' omega_q_meas'
omega_r_meas'];

save Initial_3D.mat

run EKF_3D

MatLab code that runs Runge-Kutta 4th order to produce the true motion for the 3-D case:

% Author: Craig Odom

% Simulated truth code for 3-D case

function f = true_motion_3D(t,x)

global x_acc_eta y_acc_eta z_acc_eta omega_p_eta omega_q_eta omega_r_eta amp w_length

% Initialzing the functions
f = zeros(14,1);

% Equations of motion
f(1) = x(4);
f(2) = x(5);
f(3) = x(6);
f(4) = -4*amp*sin(2*pi*t/w_length)*pi^2/w_length^2;
f(5) = 0;
f(6) = 0.5*cos(t/3) - 0.2*cos(t/5);
f(7) = 0.01*sin(t/2) - 0.02*cos(t/3);
f(8) = 0.02*sin(t) - 0.03*cos(t/2);
f(9) = x_acc_eta*randn;
f(10) = y_acc_eta*randn;
f(11) = z_acc_eta*randn;
f(12) = omega_p_eta*randn;
f(13) = omega_q_eta*randn;
f(14) = omega_r_eta*randn;

MatLab code that runs the Kalman Filter algorithm for the 3-D case:

% Author: Craig Odom

% Kalman Filter code that uses simulated measurements for 3-D case

clc;
clear;
close all;

 106

load Initial_3D.mat

global x_acc_m y_acc_m z_acc_m omega_p_m omega_q_m omega_r_m g Q offset

% Initial Estimation Error Covariance Matrix
for i=1:21

 if i<=6

 P0(i,i) = 0.5;

 elseif i==7||i==8||i==9

 P0(i,i) = 0.05;

 elseif i==10||i==11||i==12

 P0(i,i) = 0.05;

 elseif i==13||i==14||i==15

 P0(i,i) = 0.005;

 elseif i==16||i==17||i==18

 P0(i,i) = 0.05;

 else

 P0(i,i) = 0.005;

 end

end

% Process Noise Covariance Matrix
x_acc_noise_mss = x_acc_noise*g;
y_acc_noise_mss = y_acc_noise*g;
z_acc_noise_mss = z_acc_noise*g;

omega_p_noise_rs = omega_p_noise*pi/180;
omega_q_noise_rs = omega_q_noise*pi/180;
omega_r_noise_rs = omega_r_noise*pi/180;

Q = [x_acc_noise_mss^2 0 0 0 0 0
 0 y_acc_noise_mss^2 0 0 0 0
 0 0 z_acc_noise_mss^2 0 0 0
 0 0 0 omega_p_noise_rs^2 0 0

 107

 0 0 0 0 omega_q_noise_rs^2 0
 0 0 0 0 0 omega_r_noise_rs^2];

% Measurement Noise Covariance Matrix
R = [GPS_N_noise^2 0 0
 0 GPS_E_noise^2 0
 0 0 GPS_D_noise^2];

% Initial State Estimation
x_start = [0 0 0 25 5 0 0 0 0 0 0 0 0 0 0 ones(1,6)];

x_k_neg = x_start';

P_k_neg = P0;

step = dt_disc/dt_cont;

z = 1;

iteration = 0;

print = 0;

% Extended Kalman Filter
for i=1:length(time)

 % step builds until a new GPS measurement is available
 if step == dt_disc/dt_cont;

 j = 3*z-2;
 k = 3*z-1;
 w = 3*z;

 % Direction Cosine Matrix
 DCM_ap(1,1) = cos(x_k_neg(8,1))*cos(x_k_neg(7,1));
 DCM_ap(1,2) = cos(x_k_neg(8,1))*sin(x_k_neg(7,1));
 DCM_ap(1,3) = -sin(x_k_neg(8,1));
 DCM_ap(2,1) = sin(x_k_neg(8,1))*sin(x_k_neg(9,1))*cos(x_k_neg(7,1)) -
cos(x_k_neg(9,1))*sin(x_k_neg(7,1));
 DCM_ap(2,2) = sin(x_k_neg(8,1))*sin(x_k_neg(9,1))*sin(x_k_neg(7,1)) +
cos(x_k_neg(9,1))*cos(x_k_neg(7,1));
 DCM_ap(2,3) = cos(x_k_neg(8,1))*sin(x_k_neg(9,1));
 DCM_ap(3,1) = sin(x_k_neg(8,1))*cos(x_k_neg(9,1))*cos(x_k_neg(7,1)) +
sin(x_k_neg(9,1))*sin(x_k_neg(7,1));
 DCM_ap(3,2) = sin(x_k_neg(8,1))*cos(x_k_neg(9,1))*sin(x_k_neg(7,1)) -
sin(x_k_neg(9,1))*cos(x_k_neg(7,1));
 DCM_ap(3,3) = cos(x_k_neg(8,1))*cos(x_k_neg(9,1));

 108

 DCM_t_ap = DCM_ap';

 h(1,1) = x_k_neg(1,1) + DCM_t_ap(1,1:3)*offset;
 h(2,1) = x_k_neg(2,1) + DCM_t_ap(2,1:3)*offset;
 h(3,1) = x_k_neg(3,1) + DCM_t_ap(3,1:3)*offset;

 % Measurement Sensitivity Matrix
 H17 = -cos(x_k_neg(8,1))*sin(x_k_neg(7,1))*x_offset+(-
sin(x_k_neg(8,1))*sin(x_k_neg(9,1))*sin(x_k_neg(7,1))-
cos(x_k_neg(9,1))*cos(x_k_neg(7,1)))*y_offset+(-
sin(x_k_neg(8,1))*cos(x_k_neg(9,1))*sin(x_k_neg(7,1))+sin(x_k_neg(9,1))*cos(x_k_neg(7,1)))
*z_offset;
 H18 = -
sin(x_k_neg(8,1))*cos(x_k_neg(7,1))*x_offset+cos(x_k_neg(8,1))*sin(x_k_neg(9,1))*cos(x_k_
neg(7,1))*y_offset+cos(x_k_neg(8,1))*cos(x_k_neg(9,1))*cos(x_k_neg(7,1))*z_offset;
 H19 =
(sin(x_k_neg(8,1))*cos(x_k_neg(9,1))*cos(x_k_neg(7,1))+sin(x_k_neg(9,1))*sin(x_k_neg(7,1))
)*y_offset+(-
sin(x_k_neg(8,1))*sin(x_k_neg(9,1))*cos(x_k_neg(7,1))+cos(x_k_neg(9,1))*sin(x_k_neg(7,1)))
*z_offset;
 H27 =
cos(x_k_neg(8,1))*cos(x_k_neg(7,1))*x_offset+(sin(x_k_neg(8,1))*sin(x_k_neg(9,1))*cos(x_k_
neg(7,1))-
cos(x_k_neg(9,1))*sin(x_k_neg(7,1)))*y_offset+(sin(x_k_neg(8,1))*cos(x_k_neg(9,1))*cos(x_k
_neg(7,1))+sin(x_k_neg(9,1))*sin(x_k_neg(7,1)))*z_offset;
 H28 = -
sin(x_k_neg(8,1))*sin(x_k_neg(7,1))*x_offset+cos(x_k_neg(8,1))*sin(x_k_neg(9,1))*sin(x_k_n
eg(7,1))*y_offset+cos(x_k_neg(8,1))*cos(x_k_neg(9,1))*sin(x_k_neg(7,1))*z_offset;
 H29 = (sin(x_k_neg(8,1))*cos(x_k_neg(9,1))*sin(x_k_neg(7,1))-
sin(x_k_neg(9,1))*cos(x_k_neg(7,1)))*y_offset+(-
sin(x_k_neg(8,1))*sin(x_k_neg(9,1))*sin(x_k_neg(7,1))-
cos(x_k_neg(9,1))*cos(x_k_neg(7,1)))*z_offset;
 H37 = 0;
 H38 = -cos(x_k_neg(8,1))*x_offset-sin(x_k_neg(8,1))*sin(x_k_neg(9,1))*y_offset-
sin(x_k_neg(8,1))*cos(x_k_neg(9,1))*z_offset;
 H39 = cos(x_k_neg(8,1))*cos(x_k_neg(9,1))*y_offset-
cos(x_k_neg(8,1))*sin(x_k_neg(9,1))*z_offset;

 H = [1 0 0 0 0 0 H17 H18 H19 0 0 0 0 0 0 0 0 0 0 0 0
 0 1 0 0 0 0 H27 H28 H29 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 1 0 0 0 H37 H38 H39 0 0 0 0 0 0 0 0 0 0 0 0];

 % Kalman Gain Matrix
 K = P_k_neg*H'*inv(H*P_k_neg*H' + R);

 Inn(:,i) = y_tilde(j:w,1) - h;

 % Correction to State Vector

 109

 x_k_pos = x_k_neg + K*(Inn(:,i));

 % Correction to P Matrix
 P_k_pos = (eye(length(P0)) - K*H)*P_k_neg;

 step = 0;

 z = z + 1;

 end

 % Saving all State information
 x_plot(:,i) = x_k_pos;

 % Augmenting the IMU measurements from g's to m/s/s and deg/s to rad/s
 x_acc_m = x_acc_meas(i)*g;

 y_acc_m = y_acc_meas(i)*g;

 z_acc_m = z_acc_meas(i)*g;

 omega_p_m = omega_p_meas(i)*pi/180;

 omega_q_m = omega_q_meas(i)*pi/180;

 omega_r_m = omega_r_meas(i)*pi/180;

 % Setting the first part of the initial condition vector for Runge
 % Kutta
 x0(1:length(P0),1) = x_k_pos;

 % Converting elements of P matrix to an array
 for d=1:length(P0)

 j = length(P0)*d - (length(P0)-1);
 k = length(P0)*d;

 P_k_pos_col(j:k,1) = P_k_pos(d,1:length(P0));

 end

 % Setting the last part of the initial condition vector for Runge Kutta
 x0(length(P0)+1:length(P0)+length(P0)^2,1) = P_k_pos_col;

 % Calling the ode4 (Runge Kutta 4th order) integration tool
 x_est = ode4(@Prop_3D,[0 0.01],x0);

 % Taking the last part of the RK solution

 110

 P_est = x_est(length(x_est(:,1)),length(P0)+1:length(P0)+length(P0)^2);

 % Converting the array P_est into the elements of P_k_neg
 for d=1:length(P0)

 j = length(P0)*d - (length(P0)-1);
 k = length(P0)*d;
 P_k_neg(d,1:length(P0)) = P_est(j:k);

 end

 % Converting the first part of the solution to x_k_neg
 x_k_neg = x_est(length(x_est(:,1)),1:length(P0))';

 % x_k_pos/P_k_pos are the best estimates available
 x_k_pos = x_k_neg;

 P_k_pos = P_k_neg;

 step = step + 1;

 % Printing out the simulation time every second
 if iteration == 100

 print = print + 1;

 Sim_time = print

 iteration = 0;

 end

 iteration = iteration + 1;

end

% Solving for the percentage error of the SFT estimate
for i=1:length(time)

 x_acc_per_error(i) = (S_a_x - 1/x_plot(16,i))/S_a_x*100;
 y_acc_per_error(i) = (S_a_y - 1/x_plot(17,i))/S_a_y*100;
 z_acc_per_error(i) = (S_a_z - 1/x_plot(18,i))/S_a_z*100;

 omega_p_per_error(i) = (S_g_p - 1/x_plot(19,i))/S_g_p*100;
 omega_q_per_error(i) = (S_g_q - 1/x_plot(20,i))/S_g_q*100;
 omega_r_per_error(i) = (S_g_r - 1/x_plot(21,i))/S_g_r*100;

end

 111

% Saving all the data
save EKF_3D.mat

% Printing all the figures
figure (1)
plot(time,x_plot(1,:) - N_pos')
xlabel('Simulation Time [sec]')
ylabel('North Position Estimation Error [m]')
axis([0 300 -2 2])

figure (2)
plot(time,x_plot(2,:) - E_pos')
xlabel('Simulation Time [sec]')
ylabel('East Position Estimation Error [m]')
axis([0 300 -2 2])

figure (3)
plot(time,x_plot(3,:) - D_pos')
xlabel('Simulation Time [sec]')
ylabel('Down Position Estimation Error [m]')
axis([0 300 -2 2])

figure (4)
plot(time,x_plot(4,:) - N_vel')
xlabel('Simulation Time [sec]')
ylabel('North Velocity Estimation Error [m/s]')

figure (5)
plot(time,x_plot(5,:) - E_vel')
xlabel('Simulation Time [sec]')
ylabel('East Velocity Estimation Error [m/s]')

figure (6)
plot(time,x_plot(6,:) - D_vel')
xlabel('Simulation Time [sec]')
ylabel('Down Velocity Estimation Error [m/s]')

figure (7)
plot(time,(yaw - x_plot(7,:))*180/pi)
xlabel('Simulation Time [sec]')
ylabel('Yaw Estimation Error [deg]')

figure (8)
plot(time,(pitch' - x_plot(8,:))*180/pi)
xlabel('Simulation Time [sec]')
ylabel('Pitch Estimation Error [deg]')

 112

figure (9)
plot(time,(roll' - x_plot(9,:))*180/pi)
xlabel('Simulation Time [sec]')
ylabel('Roll Estimation Error [deg]')

figure (10)
plot(time,(x_acc_bias_true - x_plot(10,:)'/9.807)*1000)
xlabel('Simulation Time [sec]')
ylabel('x-axis Accelerometer Bias Estimation Error [mg]')

figure (11)
plot(time,(y_acc_bias_true - x_plot(11,:)'/9.807)*1000)
xlabel('Simulation Time [sec]')
ylabel('y-axis Accelerometer Bias Estimation Error [mg]')

figure (12)
plot(time,(z_acc_bias_true - x_plot(12,:)'/9.807)*1000)
xlabel('Simulation Time [sec]')
ylabel('z-axis Accelerometer Bias Estimation Error [mg]')

figure (13)
plot(time,(omega_p_bias_true - x_plot(13,:)'*180/pi))
xlabel('Simulation Time [sec]')
ylabel('x-axis ARS Bias Estimation Error [deg/s]')

figure (14)
plot(time,(omega_q_bias_true - x_plot(14,:)'*180/pi))
xlabel('Simulation Time [sec]')
ylabel('y-axis ARS Bias Estimation Error [deg/s]')

figure (15)
plot(time,(omega_r_bias_true - x_plot(15,:)'*180/pi))
xlabel('Simulation Time [sec]')
ylabel('z-axis ARS Bias Estimation Error [deg/s]')

figure (16)
plot(time,x_acc_per_error)
xlabel('Simulation Time [sec]')
ylabel('x-axis Accelerometer SFT Error [%]')

figure (17)
plot(time,y_acc_per_error)
xlabel('Simulation Time [sec]')
ylabel('y-axis Accelerometer SFT Error [%]')

figure (18)
plot(time,z_acc_per_error)
xlabel('Simulation Time [sec]')

 113

ylabel('z-axis Accelerometer SFT Error [%]')

figure (19)
plot(time,omega_p_per_error)
xlabel('Simulation Time [sec]')
ylabel('x-axis ARS SFT Error [%]')

figure (20)
plot(time,omega_q_per_error)
xlabel('Simulation Time [sec]')
ylabel('y-axis ARS SFT Error [%]')

figure (21)
plot(time,omega_r_per_error)
xlabel('Simulation Time [sec]')
ylabel('z-axis ARS SFT Error [%]')

figure (22)
plot(time,x_acc_bias_true*1000)
xlabel('Simulation Time [sec]')
ylabel('True x-axis Accelerometer Bias [mg]')

figure (23)
plot(time,y_acc_bias_true*1000)
xlabel('Simulation Time [sec]')
ylabel('True y-axis Accelerometer Bias [mg]')

figure (24)
plot(time,z_acc_bias_true*1000)
xlabel('Simulation Time [sec]')
ylabel('True z-axis Accelerometer Bias [mg]')

figure (25)
plot(time,omega_p_bias_true)
xlabel('Simulation Time [sec]')
ylabel('True x-axis ARS Bias [deg/s]')

figure (26)
plot(time,omega_q_bias_true)
xlabel('Simulation Time [sec]')
ylabel('True y-axis ARS Bias [deg/s]')

figure (27)
plot(time,omega_r_bias_true)
xlabel('Simulation Time [sec]')
ylabel('True z-axis ARS Bias [deg/s]')

figure (28)

 114

plot(time,D_pos)
xlabel('Simulation Time [sec]')
ylabel('True Down Position of AGV [m]')

figure (29)
plot(time,pitch*180/pi)
xlabel('Simulation Time [sec]')
ylabel('True Pitch of AGV [deg]')

figure (30)
plot(time,roll*180/pi)
xlabel('Simulation Time [sec]')
ylabel('True Roll of AGV [deg]')

MatLab code that runs Runge-Kutta 4th order to produce the apriori estimates for the 3-D case
(including the estimation error covariance matrix):

% Author: Craig Odom

% Propagation code for apriori solution for 3-D case

function f = Prop_3D(t,x)

global x_acc_m y_acc_m z_acc_m omega_p_m omega_q_m omega_r_m g Q

% Initialzing the functions
f = zeros(462,1);

cx7 = cos(x(7));
sx7 = sin(x(7));
tx7 = tan(x(7));
cx8 = cos(x(8));
sx8 = sin(x(8));
tx8 = tan(x(8));
cx9 = cos(x(9));
sx9 = sin(x(9));
tx9 = tan(x(9));

% Truth model
w_p = x(19)*(omega_p_m - x(13));
w_q = x(20)*(omega_q_m - x(14));
w_r = x(21)*(omega_r_m - x(15));

f4x = cx7*cx8;
f4y = sx9*sx8*cx7-cx9*sx7;
f4z = cx9*sx8*cx7+sx9*sx7;
f5x = sx7*cx8;

 115

f5y = sx9*sx8*sx7+cx9*cx7;
f5z = cx9*sx8*sx7-sx9*cx7;
f6x = -sx8;
f6y = sx9*cx8;
f6z = cx9*cx8;

a_x = x(16)*(x_acc_m - x(10)) - g*sx8;
a_y = x(17)*(y_acc_m - x(11)) + g*cx8*sx9;
a_z = x(18)*(z_acc_m - x(12)) + g*cx8*cx9;

% Equations of motion
f(1) = x(4);
f(2) = x(5);
f(3) = x(6);
f(4) = f4x*a_x + f4y*a_y + f4z*a_z;
f(5) = f5x*a_x + f5y*a_y + f5z*a_z;
f(6) = f6x*a_x + f6y*a_y + f6z*a_z;
f(7) = 1/cx8*(sx9*w_q+cx9*w_r);
f(8) = cx9*w_q - sx9*w_r;
f(9) = w_p + tx8*(sx9*w_q+cx9*w_r);
f(10) = 0;
f(11) = 0;
f(12) = 0;
f(13) = 0;
f(14) = 0;
f(15) = 0;
f(16) = 0;
f(17) = 0;
f(18) = 0;
f(19) = 0;
f(20) = 0;
f(21) = 0;

% Process Noise Mapping Matrix
G = [0 0 0 0 0 0
 0 0 0 0 0 0
 0 0 0 0 0 0
 f4x*x(16) f4y*x(17) f4z*x(18) 0 0 0
 f5x*x(16) f5y*x(17) f5z*x(18) 0 0 0
 f6x*x(16) f6y*x(17) f6z*x(18) 0 0 0
 0 0 0 0 1/cx8*sx9*x(20) 1/cx8*cx9*x(21)
 0 0 0 0 cx9*x(20) -sx9*x(21)
 0 0 0 x(19) tx8*sx9*x(20) tx8*cx9*x(21)
 0 0 0 0 0 0
 0 0 0 0 0 0
 0 0 0 0 0 0
 0 0 0 0 0 0
 0 0 0 0 0 0

 116

 0 0 0 0 0 0
 0 0 0 0 0 0
 0 0 0 0 0 0
 0 0 0 0 0 0
 0 0 0 0 0 0
 0 0 0 0 0 0
 0 0 0 0 0 0];

% Partial derivatives matrix
F47 = -sx7*cx8*(x(16)*(x_acc_m-x(10))-g*sx8)+(-sx9*sx8*sx7-cx9*cx7)*(x(17)*(y_acc_m-
x(11))+g*cx8*sx9)+(-cx9*sx8*sx7+sx9*cx7)*(x(18)*(z_acc_m-x(12))+g*cx8*cx9);
F48 = -cx7*sx8*(x(16)*(x_acc_m-x(10))-g*sx8)-cx7*cx8^2*g+sx9*cx8*cx7*(x(17)*(y_acc_m-
x(11))+g*cx8*sx9)-(sx9*sx8*cx7-cx9*sx7)*g*sx8*sx9+cx9*cx8*cx7*(x(18)*(z_acc_m-
x(12))+g*cx8*cx9)-(cx9*sx8*cx7+sx9*sx7)*g*sx8*cx9;
F49 = (cx9*sx8*cx7+sx9*sx7)*(x(17)*(y_acc_m-x(11))+g*cx8*sx9)+(sx9*sx8*cx7-
cx9*sx7)*g*cx8*cx9+(-sx9*sx8*cx7+cx9*sx7)*(x(18)*(z_acc_m-x(12))+g*cx8*cx9)-
(cx9*sx8*cx7+sx9*sx7)*g*cx8*sx9;
F410 = -cx7*cx8*x(16);
F411 = -(sx9*sx8*cx7-cx9*sx7)*x(17);
F412 = -(cx9*sx8*cx7+sx9*sx7)*x(18);
F413 = 0;
F414 = 0;
F415 = 0;
F416 = cx7*cx8*(x_acc_m-x(10));
F417 = (sx9*sx8*cx7-cx9*sx7)*(y_acc_m-x(11));
F418 = (cx9*sx8*cx7+sx9*sx7)*(z_acc_m-x(12));
F419 = 0;
F420 = 0;
F421 = 0;
F57 = cx7*cx8*(x(16)*(x_acc_m-x(10))-g*sx8)+(sx9*sx8*cx7-cx9*sx7)*(x(17)*(y_acc_m-
x(11))+g*cx8*sx9)+(cx9*sx8*cx7+sx9*sx7)*(x(18)*(z_acc_m-x(12))+g*cx8*cx9);
F58 = -sx7*sx8*(x(16)*(x_acc_m-x(10))-g*sx8)-sx7*cx8^2*g+sx9*cx8*sx7*(x(17)*(y_acc_m-
x(11))+g*cx8*sx9)-(sx9*sx8*sx7+cx9*cx7)*g*sx8*sx9+cx9*cx8*sx7*(x(18)*(z_acc_m-
x(12))+g*cx8*cx9)-(cx9*sx8*sx7-sx9*cx7)*g*sx8*cx9;
F59 = (cx9*sx8*sx7-sx9*cx7)*(x(17)*(y_acc_m-
x(11))+g*cx8*sx9)+(sx9*sx8*sx7+cx9*cx7)*g*cx8*cx9+(-sx9*sx8*sx7-
cx9*cx7)*(x(18)*(z_acc_m-x(12))+g*cx8*cx9)-(cx9*sx8*sx7-sx9*cx7)*g*cx8*sx9;
F510 = -sx7*cx8*x(16);
F511 = -(sx9*sx8*sx7+cx9*cx7)*x(17);
F512 = -(cx9*sx8*sx7-sx9*cx7)*x(18);
F513 = 0;
F514 = 0;
F515 = 0;
F516 = sx7*cx8*(x_acc_m-x(10));
F517 = (sx9*sx8*sx7+cx9*cx7)*(y_acc_m-x(11));
F518 = (cx9*sx8*sx7-sx9*cx7)*(z_acc_m-x(12));
F519 = 0;
F520 = 0;

 117

F521 = 0;
F67 = 0;
F68 = -cx8*(x(16)*(x_acc_m-x(10))-g*sx8)+sx8*g*cx8-sx9*sx8*(x(17)*(y_acc_m-
x(11))+g*cx8*sx9)-sx9^2*cx8*g*sx8-cx9*sx8*(x(18)*(z_acc_m-x(12))+g*cx8*cx9)-
cx9^2*cx8*g*sx8;
F69 = cx9*cx8*(x(17)*(y_acc_m-x(11))+g*cx8*sx9)-sx9*cx8*(x(18)*(z_acc_m-
x(12))+g*cx8*cx9);
F610 = sx8*x(16);
F611 = -sx9*cx8*x(17);
F612 = -cx9*cx8*x(18);
F613 = 0;
F614 = 0;
F615 = 0;
F616 = -sx8*(x_acc_m-x(10));
F617 = sx9*cx8*(y_acc_m-x(11));
F618 = cx9*cx8*(z_acc_m-x(12));
F619 = 0;
F620 = 0;
F621 = 0;
F77 = 0;
F78 = 1/cx8^2*(sx9*x(20)*(omega_q_m-x(14))+cx9*x(21)*(omega_r_m-x(15)))*sx8;
F79 = 1/cx8*(cx9*x(20)*(omega_q_m-x(14))-sx9*x(21)*(omega_r_m-x(15)));
F710 = 0;
F711 = 0;
F712 = 0;
F713 = 0;
F714 = -1/cx8*sx9*x(20);
F715 = -1/cx8*cx9*x(21);
F716 = 0;
F717 = 0;
F718 = 0;
F719 = 0;
F720 = 1/cx8*sx9*(omega_q_m-x(14));
F721 = 1/cx8*cx9*(omega_r_m-x(15));
F87 = 0;
F88 = 0;
F89 = -sx9*x(20)*(omega_q_m-x(14))-cx9*x(21)*(omega_r_m-x(15));
F810 = 0;
F811 = 0;
F812 = 0;
F813 = 0;
F814 = -cx9*x(20);
F815 = sx9*x(21);
F816 = 0;
F817 = 0;
F818 = 0;
F819 = 0;
F820 = cx9*(omega_q_m-x(14));

 118

F821 = -sx9*(omega_r_m-x(15));
F97 = 0;
F98 = (1+tx8^2)*(sx9*x(20)*(omega_q_m-x(14))+cx9*x(21)*(omega_r_m-x(15)));
F99 = tx8*(cx9*x(20)*(omega_q_m-x(14))-sx9*x(21)*(omega_r_m-x(15)));
F910 = 0;
F911 = 0;
F912 = 0;
F913 = -x(19);
F914 = -tx8*sx9*x(20);
F915 = -tx8*cx9*x(21);
F916 = 0;
F917 = 0;
F918 = 0;
F919 = omega_p_m-x(13);
F920 = tx8*sx9*(omega_q_m-x(14));
F921 = tx8*cx9*(omega_r_m-x(15));

F = [0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 F47 F48 F49 F410 F411 F412 F413 F414 F415 F416 F417 F418 F419 F420 F421
 0 0 0 0 0 0 F57 F58 F59 F510 F511 F512 F513 F514 F515 F516 F517 F518 F519 F520 F521
 0 0 0 0 0 0 F67 F68 F69 F610 F611 F612 F613 F614 F615 F616 F617 F618 F619 F620 F621
 0 0 0 0 0 0 F77 F78 F79 F710 F711 F712 F713 F714 F715 F716 F717 F718 F719 F720 F721
 0 0 0 0 0 0 F87 F88 F89 F810 F811 F812 F813 F814 F815 F816 F817 F818 F819 F820 F821
 0 0 0 0 0 0 F97 F98 F99 F910 F911 F912 F913 F914 F915 F916 F917 F918 F919 F920 F921
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0];

st = length(F) + 1;

% Filling the P matrix with the states
for i=1:length(F)

 for j=1:length(F)

 P(i,j) = x(st);

 119

 st = st + 1;

 end

end

% Variation of Ricatti equation
P_dot = F*P + P*F' + G*Q*G';

st = length(F) + 1;

% Filling the functions with the elements of P_dot
for i=1:length(F)

 for j=1:length(F)

 f(st) = P_dot(i,j);

 st = st + 1;

 end

end

 120

APPENDIX B

C++ code that includes the definitions of variables, initialization parameters, and function calls
to the KF, Runge Kutta and IMU/GPS communication programs (the MAIN program):

// Author: Caleb Wells

// Main program

include <cstdlib>
include <iostream>
include <iomanip>
include <cmath>
#include <conio.h>
#include "Matrix.h"
#include "kalmanfilter.h"
#include "rungeKutta.h"
#include "MTGPS.h"
#include "IMUSerial.h"
#include "IPC.h"
//#define _CRTDBG_MAP_ALLOC
//#include <stdlib.h>
//#include <crtdbg.h>

using namespace std;

#ifndef PI
#define PI 3.1415926535
#endif
#ifndef IMU_Hz
#define IMU_Hz 71.1
#endif
#define R_EARTH 6366564.864
#define g 9.807

// Defining all the elements of the Process Noise Covariance Matrix
#define X_ACCEL_NOISE .01 * g
#define Y_ACCEL_NOISE .01 * g
#define Z_ACCEL_NOISE .01 * g
#define OMEGA_P_NOISE .5 * PI / 180
#define OMEGA_Q_NOISE .5 * PI / 180
#define OMEGA_R_NOISE 1.0 * PI / 180

// Beginning yaw angle of the IMU
#define YAW_BEG -40 * PI / 180

// Defining the initial offsets of the origin of the GPS antenna co-
ordinate system and the Earth co-ordinate system
#define N_OFF X_OFF*cos(YAW_BEG) - Y_OFF*sin(YAW_BEG)
#define E_OFF X_OFF*sin(YAW_BEG) + Y_OFF*cos(YAW_BEG)
#define D_OFF Z_OFF

 121

// Yaw offset from IMU to centerline of AGV
#define YAW_OFF 0 * PI / 180

// Number of points to average while sitting to define the origin of
the ICS
#define NUM_AVG 20

extern Matrix* R_Mat;
extern Matrix* identity;
extern double state_est[21];

double x_accel_m;
double y_accel_m;
double z_accel_m;
double omega_p_m;
double omega_q_m;
double omega_r_m;
int fail=0;
int first_iter =0;
double state_est[21];
double array2[6];
double ORIGIN_LAT;
double ORIGIN_LON;
double ORIGIN_ALT;

int GPSFLAG;

/*FILES FOR LOGGING*/
FILE * kflog;
FILE * imulog;
FILE * rklog;

Matrix* Q;
Matrix* G;
Matrix* P;
Matrix* F;
Matrix* P_dot;
Matrix* P_est;

//typedef enum {init, transmission, header, set_reference,
clear_reference, binary, decimal} IMU_telegram;
int main (void);

void RK_KF ();

void initialize();

void dump(void);
DWORD WINAPI GPS_Flagger(LPVOID Param);
void GPS_Stopper();

//***

 122

int main(void)
{
 double lat_sum = 0;
 double lon_sum = 0;
 double alt_sum = 0;
 //atexit(dump);
 //_CrtSetBreakAlloc(455855);

 imulog = fopen("imu_log.xls","w");
 kflog = fopen("kf_log.xls","w");
 rklog = fopen("rk_log.txt","w");
 if(!imulog||!kflog||!rklog)
 {
 printf("Error Opening Files");
 return 0;
 }
 //initialize
 initialize();
 GPSreading * GPSData = (GPSreading*)malloc(sizeof(GPSreading));
IMU_init(); //start the IMU
//Wait until the IMU starts sending the header, then...
wait_for_data();
//Wait 3 seconds
Sleep(3000);
//Send the first space bar "hit"
IMU((IMU_telegram)0);
//Wait a quarter of a second since back to back hits won't work
Sleep(250);
//Send another space bar "hit"
IMU((IMU_telegram)0);

//Wait for streaming data from the IMU
wait_for_data();
//Read 25 lines, just to let it get going...
for(int i = 0; i < 25; i++)
 read_IMU_line(array2);
//Then send the 'r' character to set it in reference mode.
IMU((IMU_telegram)3);

 //start threads
while(startGPSSerial()==0)
{
 printf("Error Starting Thread");
}

 //KF
 double * y_t;
 y_t = (double*)malloc(sizeof(double)*3);

 123

 //get first gps() (GPS on separate thread

 // Setting up the origin of the GPS antenna
for(int i = 0; i<NUM_AVG;i++)
{
 while(getGPS(&GPSData)==0)
 {
 if(i==0)
 printf("w\n");
 Sleep(10);
 }
 lat_sum+=GPSData->lat;
 lon_sum+=GPSData->lon;
 alt_sum+=GPSData->alt;

}

 ORIGIN_LAT = lat_sum/NUM_AVG;
 ORIGIN_LON = lon_sum/NUM_AVG;
 ORIGIN_ALT = alt_sum/NUM_AVG;

 y_t[0] = N_OFF;
 y_t[1] = E_OFF;
 y_t[2] = D_OFF;

 kalmanFilter(y_t);

//loop
 while(1)
 {
 //BLOCK IMU (wait until you get an IMU)
 read_IMU_line(array2); //how big is the IMU array, what is
the time thing
 //RK for XX ms (1/Hz)

x_accel_m = array2[0];
y_accel_m = array2[1];
z_accel_m = array2[2];
omega_p_m = array2[3];
omega_q_m = array2[4];
omega_r_m = array2[5];

 // Modifying the incoming measurements from g's and deg/s
to m/s/s and rad/s
 x_accel_m *= g;
 y_accel_m *= g;
 z_accel_m *= g;
 omega_p_m *= PI/180.;
 omega_q_m *= PI/180.;
 omega_r_m *= PI/180.;
 if(imulog)
 {

 124

 fprintf(imulog,"%lf\t%lf\t%lf\t%lf\t%lf\t%lf\n",x_accel_m/g,y_acc
el_m/g,z_accel_m/g,omega_p_m*180/PI,omega_q_m*180/PI,omega_r_m*180/PI);

 //printf("%lf\t%lf\t%lf\n",omega_p_m*180/PI,omega_q_m*180/PI,omeg
a_r_m*180/PI);
 }
 else
 {
 printf("ERROR\n");
 }
 RK_KF();

 //CHECK for GPS
 //if gps
 // run KF

 if(getGPS(&GPSData)==1)
 {
 //set the values here
 //printf("NEW GPS\n");
 y_t[0] = 2*R_EARTH*sin(((GPSData->lat*PI/180) -
(ORIGIN_LAT * PI/180))/2) + N_OFF;
 y_t[1] = 2*R_EARTH*sin(((GPSData->lon*PI/180) -
(ORIGIN_LON * PI/180))/2) + E_OFF;
 y_t[2] = ORIGIN_ALT - GPSData->alt + D_OFF;
 if(GPSFLAG==0)
 kalmanFilter(y_t);

 fprintf(kflog,"%d\t%.9lf\t%.9lf\t%.9lf\t%.9lf\t%.9lf\t%.9lf\t%.9l
f\t%.9lf\t%.9lf\t%.9lf\t%.9lf\t%.9lf\t%.9lf\t%.9lf\t%.9lf\t%.9lf\t%.9lf
\t%.9lf\t%.9lf\t%.9lf\t%.9lf\t%.9lf\t%.9lf\t%.9lf\n",GPSFLAG,state_est[
0],state_est[1],state_est[2],state_est[3],state_est[4],state_est[5],sta
te_est[6]*180/PI,state_est[7]*180/PI,state_est[8]*180/PI,state_est[9]/g
,state_est[10]/g,state_est[11]/g,state_est[12]*180/PI,state_est[13]*180
/PI,state_est[14]*180/PI,state_est[15],state_est[16],state_est[17],stat
e_est[18],state_est[19],state_est[20],y_t[0],y_t[1],y_t[2],GPSData-
>numSat);
 }
// printf("yaw = %lf\npitch = %lf\nroll = %lf\nN = %lf\nE =
%lf\nD =
%lf\n\n",state_est[6]*180/PI,state_est[7]*180/PI,state_est[8]*180/PI,st
ate_est[0],state_est[1],state_est[2]);
 if(quit==1)
 break;

 char* cont_message = (char*)malloc(sizeof(char)*150);
 sprintf(cont_message,"%lf,%lf,%lf,%lf,%lf",GPSData-
>lat,GPSData->lon,state_est[6]+YAW_OFF,state_est[7],state_est[8]);
 sendMSG(cont_message,CLIENT);
 free(cont_message);

 125

 }

}

void RK_KF()
{
define NEQN 462

 int flag;

 double y[NEQN];

 flag = 1;

 first_iter = 1;

 int st = 0;
 for(int i = 0;i<21;i++)
 {
 y[st] = state_est[i];
 st++;
 }
 for(int i=0;i<21;i++)
 for(int j=0;j<21;j++)
 {
 y[st] = P_est->mat[i][j];
 st++;
 }

 rungeKutta(y,1./IMU_Hz,1./IMU_Hz,462);

 SYSTEMTIME sys_time;
 FILETIME new_time;
 GetSystemTime(&sys_time);
 SystemTimeToFileTime(&sys_time, &new_time);
 ULARGE_INTEGER *time =
(ULARGE_INTEGER*)(&new_time);

 fprintf(rklog,"%I64i\t%.9lf\t%.9lf\t%.9lf\t%.9lf\t%.9lf\t%.9lf\t%
.9lf\t%.9lf\t%.9lf\t%.9lf\t%.9lf\t%.9lf\t%.9lf\t%.9lf\t%.9lf\t%.9lf\t%.
9lf\t%.9lf\t%.9lf\t%.9lf\t%.9lf\n",time-
>QuadPart,y[0],y[1],y[2],y[3],y[4],y[5],y[6]*180/PI,y[7]*180/PI,y[8]*18
0/PI,y[9]/g,y[10]/g,y[11]/g,y[12]*180/PI,y[13]*180/PI,y[14]*180/PI,y[15
],y[16],y[17],y[18],y[19],y[20]);

 for(st=0;st<21;st++)
 {

 126

 state_est[st] = y[st];
 }

 for(int i=0;i<21;i++)
 for(int j=0;j<21;j++)
 {
 P_est->mat[i][j] = y[st];
 st++;
 }
 return;
undef NEQN
}
//***

void initialize()
{

 // Process Noise Covariance Matrix
 double Q_data[36] = {
 pow(X_ACCEL_NOISE,2),0,0,0,0,0,
 0,pow(Y_ACCEL_NOISE,2),0,0,0,0,
 0,0,pow(Z_ACCEL_NOISE,2),0,0,0,
 0,0,0,pow(OMEGA_P_NOISE,2),0,0,
 0,0,0,0,pow(OMEGA_Q_NOISE,2),0,
 0,0,0,0,0,pow(OMEGA_R_NOISE,2)};

 // Initial Estimation Error Covariance Matrix
 double P_est_data[441] = {
 5,0,
 0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
 0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
 0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
 0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
 0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
 0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
 0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,
 0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,
 0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,
 0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,
 0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,
 0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,
 0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,
 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,
 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,.05,0,0,0,0,0,
 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,.05,0,0,0,0,
 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,.05,0,0,0,
 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,.05,0,0,
 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,.05,0,
 0,.05};

 // Identity Matrix

 127

 double iden_data[441] = {
 1,0,
 0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
 0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
 0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
 0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
 0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
 0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
 0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,
 0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,
 0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,
 0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,
 0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,
 0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,
 0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,
 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,
 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,
 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,
 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,
 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,
 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,
 0,1};

 // Measurement Noise Covariance Matrix
 double R_data[9] = {
 .1,0,0,
 0,.1,0,
 0,0,.2};

 Q = createMat(6,6);
 identity = createMat(21,21);
 G = createMat(21,6);
 R_Mat = createMat(3,3);
 P = createMat(21,21);
 F = createMat(21,21);
 P_dot = createMat(21,21);
 P_est = createMat(21,21);
 fillMat(identity,iden_data);
 fillMat(Q,Q_data);
 fillMat(P_est,P_est_data);
 fillMat(R_Mat,R_data);

 // Initial Estimates
 for(int i=0;i<15;i++)
 state_est[i] = 0;
 state_est[3] = 0;
 state_est[4] = 0;
 state_est[6] = YAW_BEG-YAW_OFF;
 state_est[15] = 1;
 state_est[16] = 1;
 state_est[17] = 1;
 state_est[18] = 1;
 state_est[19] = 1;
 state_est[20] = 1;

 128

 GPSFLAG = 0;
 GPS_Stopper();
 Sleep(2000);
 printf("Setting Up Server\n");
 setupServer(); //setup the IPC Server
 printf("Connection Established\n");

 Sleep(200);
}

//void dump(void)
//{
// _CrtDumpMemoryLeaks();
//}

void GPS_Stopper()
{
 DWORD ThreadID;
 HANDLE ThreadHandle;
 int Param;
 Param = 5;
 newRead = 0;

 //create the thread
 ThreadHandle = CreateThread(
 NULL, //default security attributes
 0, //default stack size
 GPS_Flagger, //thread Function
 &Param, //parameter to thread function
 0, //default creation flags
 &ThreadID); //returns the thread Identifier

 return;
}

DWORD WINAPI GPS_Flagger(LPVOID Param)
{
 char test;

 while(1)
 {
 fflush(stdin);
 scanf("%c",&test);
 printf("\n");
 if(test == 'k' || test == 'K')
 {

 if(GPSFLAG == 1)
 {
 printf("GPS Resumed\n");
 GPSFLAG = 0;
 }

 129

 else
 {
 printf("GPS Blocked\n");
 GPSFLAG = 1;
 }
 }
 else
 {
 printf("Invalid Input\n");
 }
 }
return 0;
}

C++ code that includes the KF algorithm:

// Author: Caleb Wells

// Kalman Filter algorithm code

#include <iostream>
#include <conio.h>
#include "Matrix.h"

using namespace std;

// Defining the offsets from the IMU to the GPS antenna
#define X_OFF -45.0/39.31
#define Y_OFF 6.0/39.31
#define Z_OFF -51.0/39.31

extern Matrix* P_est;
extern double state_est[21];

Matrix* R_Mat;
Matrix* identity;
//R_mat = fillMat(R_Mat,R_data);

double trigMatKF[9]; // matrix to store trig conversions (for KF)

//prototypes

void kalmanFilter(double * y_Tilde)
{

 double *h_data;
 Matrix* H_Mat = createMat(3,21);
 Matrix* h = createMat(3,1);
 Matrix* K = createMat(21,3);
 Matrix* y_T = createMat(3,1);
 Matrix* DCM_AP = createMat(3,3);

 130

 Matrix* state = createMat(21,1);

 trigMatKF[0] = cos(state_est[6]);
 trigMatKF[1] = sin(state_est[6]);
 trigMatKF[2] = tan(state_est[6]);
 trigMatKF[3] = cos(state_est[7]);
 trigMatKF[4] = sin(state_est[7]);
 trigMatKF[5] = tan(state_est[7]);
 trigMatKF[6] = cos(state_est[8]);
 trigMatKF[7] = sin(state_est[8]);
 trigMatKF[8] = tan(state_est[8]);

 // Defining the Direction Cosine Matrix from the ICS to BCS
 double DCM_data[9] = {
 trigMatKF[3]*trigMatKF[0],trigMatKF[3]*trigMatKF[1],-
trigMatKF[4],
 trigMatKF[4]*trigMatKF[7]*trigMatKF[0]-
trigMatKF[6]*trigMatKF[1],trigMatKF[4]*trigMatKF[7]*trigMatKF[1]+trigMa
tKF[6]*trigMatKF[0],trigMatKF[3]*trigMatKF[7],

 trigMatKF[4]*trigMatKF[6]*trigMatKF[0]+trigMatKF[7]*trigMatKF[1],
trigMatKF[4]*trigMatKF[6]*trigMatKF[1]-
trigMatKF[7]*trigMatKF[0],trigMatKF[3]*trigMatKF[6]};

 fillMat(DCM_AP,DCM_data);
// print(DCM_AP);

 Matrix* DCM_APt = trans(DCM_AP);
// print(DCM_APt);

 h_data = (double *)malloc(3*sizeof(double));
 h_data[0] = state_est[0] + DCM_APt->mat[0][0]*X_OFF + DCM_APt-
>mat[0][1]*Y_OFF + DCM_APt->mat[0][2]*Z_OFF;
 h_data[1] = state_est[1] + DCM_APt->mat[1][0]*X_OFF + DCM_APt-
>mat[1][1]*Y_OFF + DCM_APt->mat[1][2]*Z_OFF;
 h_data[2] = state_est[2] + DCM_APt->mat[2][0]*X_OFF + DCM_APt-
>mat[2][1]*Y_OFF + DCM_APt->mat[2][2]*Z_OFF;

 double H06 = -trigMatKF[3]*trigMatKF[1]*X_OFF+(-
trigMatKF[4]*trigMatKF[7]*trigMatKF[1]-
trigMatKF[6]*trigMatKF[0])*Y_OFF+(-
trigMatKF[4]*trigMatKF[6]*trigMatKF[1]+trigMatKF[7]*trigMatKF[0])*Z_OFF
;
 double H07 = -
trigMatKF[4]*trigMatKF[0]*X_OFF+trigMatKF[3]*trigMatKF[7]*trigMatKF[0]*
Y_OFF+trigMatKF[3]*trigMatKF[6]*trigMatKF[0]*Z_OFF;
 double H08 =
(trigMatKF[4]*trigMatKF[6]*trigMatKF[0]+trigMatKF[7]*trigMatKF[1])*Y_OF
F+(-
trigMatKF[4]*trigMatKF[7]*trigMatKF[0]+trigMatKF[6]*trigMatKF[1])*Z_OFF
;
 double H16 =
trigMatKF[3]*trigMatKF[0]*X_OFF+(trigMatKF[4]*trigMatKF[7]*trigMatKF[0]
-

 131

trigMatKF[6]*trigMatKF[1])*Y_OFF+(trigMatKF[4]*trigMatKF[6]*trigMatKF[0
]+trigMatKF[7]*trigMatKF[1])*Z_OFF;
 double H17 = -
trigMatKF[4]*trigMatKF[1]*X_OFF+trigMatKF[3]*trigMatKF[7]*trigMatKF[1]*
Y_OFF+trigMatKF[3]*trigMatKF[6]*trigMatKF[1]*Z_OFF;
 double H18 = (trigMatKF[4]*trigMatKF[6]*trigMatKF[1]-
trigMatKF[7]*trigMatKF[0])*Y_OFF+(-
trigMatKF[4]*trigMatKF[7]*trigMatKF[1]-
trigMatKF[6]*trigMatKF[0])*Z_OFF;
 double H26 = 0;
 double H27 = -trigMatKF[3]*X_OFF-trigMatKF[4]*trigMatKF[7]*Y_OFF-
trigMatKF[4]*trigMatKF[6]*Z_OFF;
 double H28 = trigMatKF[3]*trigMatKF[6]*Y_OFF-
trigMatKF[3]*trigMatKF[7]*Z_OFF;

 // Measurement Sensitivity Matrix
 double H_Mat_data[63] = {
 1,0,0,0,0,0,H06,H07,H08,0,0,0,0,0,0,0,0,0,0,0,0,
 0,1,0,0,0,0,H16,H17,H18,0,0,0,0,0,0,0,0,0,0,0,0,
 0,0,1,0,0,0,H26,H27,H28,0,0,0,0,0,0,0,0,0,0,0,0};

 fillMat(H_Mat,H_Mat_data);
 fillMat(h,h_data);
 fillMat(y_T,y_Tilde);
// print(H_Mat);
// print(h);
// print(y_T);

// print(identity);

 fillMat(state,state_est);
// print(state);

 Matrix* H_trans = trans(H_Mat);
 Matrix* temp1 = mul(P_est,H_trans);
 Matrix* temp2 = mul(H_Mat,P_est);
 Matrix* temp3 = mul(temp2,H_trans);
 Matrix* temp4 = add(temp3,R_Mat);
 Matrix* tempInv = inv(temp4);
 deleteMat(&K); //save the memory before it gets reallocated
 K = mul(temp1,tempInv);

 deleteMat(&H_trans);
 deleteMat(&temp1);
 deleteMat(&temp2);
 deleteMat(&temp3);
 deleteMat(&temp4);
 deleteMat(&tempInv);

 Matrix * suba = sub(y_T,h);
 Matrix * multa = mul(K,suba);

 132

 Matrix * tempa = add(state, multa);

 deleteMat(&suba);
 deleteMat(&multa);

 deleteMat(&state); //save the memory before it gets reallocated
 state = tempa;
 Matrix * mult = mul(K,H_Mat);
 Matrix * subt = sub(identity,mult);
 Matrix * tempa2 = mul(subt, P_est);
 deleteMat(&mult);
 deleteMat(&subt);

 deleteMat(&P_est); //save the memory of P_est
 P_est = tempa2;

 for(int i = 0; i<21; i++)
 {
 state_est[i] = state->mat[i][0];
 }

 deleteMat(&h);
 deleteMat(&DCM_AP);
 deleteMat(&DCM_APt);
 deleteMat(&K);
 deleteMat(&y_T);
 deleteMat(&state);
 deleteMat(&H_Mat);
 if(h_data)
 {
 free(h_data);
 h_data = NULL;
 }
}

C++ code that runs Runge-Kutta 4th order to produce the apriori estimates (including the
estimation error covariance matrix):

// Author: Unknown, but modified by Caleb Wells

// Runge Kutta 4th order code

/* Runge Kutta for a set of first order differential equations */

#include "stdAfx.h"
#include "PreciseTimer.h"

#include <iostream>
#include <string>
#include <algorithm>

 133

using namespace std;
#include "Matrix.h"
#include <math.h>

using namespace std;

extern Matrix* Q;
extern Matrix* G;
extern Matrix* P;
extern Matrix* F;
extern Matrix* P_dot;
extern Matrix* P_est;

extern double x_accel_m;
extern double y_accel_m;
extern double z_accel_m;
extern double omega_p_m;
extern double omega_q_m;
extern double omega_r_m;

#define N 462 /* number of first order equations */
#ifndef PI
//#define PI 4.0*atan(1.0)
#define PI 3.1415926535
#endif
#ifndef IMU_Hz
#define IMU_Hz 71.1
#endif
#define g 9.807

double trigMat[9]; //matrix to store trig conversions
FILE *output; /* internal filename */
void rungeKutta(double y[],double timestep,double maxTime,int NUMEQ);
void runge4(double y[], double step); /* Runge-Kutta function */

void f(double y[]); /* function for derivatives */
double yp[N];

void rungeKutta(double y[],double timestep,double maxTime,int NUMEQ)
{
 double t;
 int j;
 for (j=1; j*timestep<=maxTime ;j++) /* time
loop */
 {
 t=j*timestep;
 runge4(y, timestep);

 }
}

void runge4(double y[], double step)
{

 134

 double h=step/2.0, /* the midpoint */
 t1[N], t2[N], t3[N], /* temporary storage arrays
*/
 k1[N], k2[N], k3[N],k4[N]; /* for Runge-Kutta */
 int i;

 f(y);

 for (i=0;i<N;i++)
 t1[i]=y[i]+0.5*(k1[i]=step*yp[i]);

 // CPreciseTimer timer;
 // timer.StartTimer();

 f(t1);

 for (i=0;i<N;i++)
 t2[i]=y[i]+0.5*(k2[i]=step*yp[i]);

 f(t2);

 for (i=0;i<N;i++)
 t3[i]=y[i]+ (k3[i]=step*yp[i]);

 f(t3);

 for (i=0;i<N;i++)
 k4[i]= step*yp[i];
 for (i=0;i<N;i++)
 y[i]+=(k1[i]+2*k2[i]+2*k3[i]+k4[i])/6.0;
 // timer.StopTimer();

 // __int64 i64Diff = timer.GetTime();
 // printf("Diff2 (PreciseTimer) =
%lf\n",(double)i64Diff*.000001);

}

void f(double y[])
{
 int st;

 double
f3x,f3y,f3z,f4x,f4y,f4z,f5x,f5y,f5z,a_x,a_y,a_z,w_p,w_q,w_r;
 double
F36,F37,F38,F39,F310,F311,F312,F313,F314,F315,F316,F317,F318,F319,F320;
 double
F46,F47,F48,F49,F410,F411,F412,F413,F414,F415,F416,F417,F418,F419,F420;
 double
F56,F57,F58,F59,F510,F511,F512,F513,F514,F515,F516,F517,F518,F519,F520;
 double
F66,F67,F68,F69,F610,F611,F612,F613,F614,F615,F616,F617,F618,F619,F620;

 135

 double
F76,F77,F78,F79,F710,F711,F712,F713,F714,F715,F716,F717,F718,F719,F720;
 double
F86,F87,F88,F89,F810,F811,F812,F813,F814,F815,F816,F817,F818,F819,F820;

 // Truth model
 w_p = y[18]*(omega_p_m - y[12]);
 w_q = y[19]*(omega_q_m - y[13]);
 w_r = y[20]*(omega_r_m - y[14]);

 trigMat[0] = cos(y[6]);
 trigMat[1] = sin(y[6]);
 trigMat[2] = tan(y[6]);
 trigMat[3] = cos(y[7]);
 trigMat[4] = sin(y[7]);
 trigMat[5] = tan(y[7]);
 trigMat[6] = cos(y[8]);
 trigMat[7] = sin(y[8]);
 trigMat[8] = tan(y[8]);

 f3x = trigMat[0]*trigMat[3];
 f3y = trigMat[7]*trigMat[4]*trigMat[0]-trigMat[6]*trigMat[1];
 f3z = trigMat[6]*trigMat[4]*trigMat[0]+trigMat[7]*trigMat[1];
 f4x = trigMat[1]*trigMat[3];
 f4y = trigMat[7]*trigMat[4]*trigMat[1]+trigMat[6]*trigMat[0];
 f4z = trigMat[6]*trigMat[4]*trigMat[1]-trigMat[7]*trigMat[0];
 f5x = -trigMat[4];
 f5y = trigMat[7]*trigMat[3];
 f5z = trigMat[6]*trigMat[3];

 a_x = y[15]*(x_accel_m - y[9]) - g*trigMat[4];
 a_y = y[16]*(y_accel_m - y[10]) + g*trigMat[3]*trigMat[7];
 a_z = y[17]*(z_accel_m - y[11]) + g*trigMat[3]*trigMat[6];

 // Equations of motion that are integrated by RK4
 yp[0] = y[3];
 yp[1] = y[4];
 yp[2] = y[5];
 yp[3] = f3x*a_x + f3y*a_y + f3z*a_z;
 yp[4] = f4x*a_x + f4y*a_y + f4z*a_z;
 yp[5] = f5x*a_x + f5y*a_y + f5z*a_z;
 yp[6] = 1/trigMat[3]*(trigMat[7]*w_q+trigMat[6]*w_r);
 yp[7] = trigMat[6]*w_q - trigMat[7]*w_r;
 yp[8] = w_p + trigMat[5]*(trigMat[7]*w_q+trigMat[6]*w_r);
 yp[9] = 0;
 yp[10] = 0;
 yp[11] = 0;
 yp[12] = 0;
 yp[13] = 0;
 yp[14] = 0;
 yp[15] = 0;
 yp[16] = 0;
 yp[17] = 0;
 yp[18] = 0;

 136

 yp[19] = 0;
 yp[20] = 0;

 // Process Noise Mapping Matrix
 double G_data[126] = {
 0,0,0,0,0,0,
 0,0,0,0,0,0,
 0,0,0,0,0,0,
 f3x*y[15],f3y*y[16],f3z*y[17],0,0,0,
 f4x*y[15],f4y*y[16],f4z*y[17],0,0,0,
 f5x*y[15],f5y*y[16],f5z*y[17],0,0,0,

 0,0,0,0,1/trigMat[3]*trigMat[7]*y[19],1/trigMat[3]*trigMat[6]*y[2
0],
 0,0,0,0,trigMat[6]*y[19],-trigMat[7]*y[20],

 0,0,0,y[18],trigMat[5]*trigMat[7]*y[19],trigMat[5]*trigMat[6]*y[2
0],
 0,0,0,0,0,0,
 0,0,0,0,0,0,
 0,0,0,0,0,0,
 0,0,0,0,0,0,
 0,0,0,0,0,0,
 0,0,0,0,0,0,
 0,0,0,0,0,0,
 0,0,0,0,0,0,
 0,0,0,0,0,0,
 0,0,0,0,0,0,
 0,0,0,0,0,0,
 0,0,0,0,0,0};

 fillMat(G,G_data);

 // Matrix of Partial Derivatives
 F36 = -trigMat[1]*trigMat[3]*(y[15]*(x_accel_m-y[9])-
g*trigMat[4])+(-trigMat[7]*trigMat[4]*trigMat[1]-
trigMat[6]*trigMat[0])*(y[16]*(y_accel_m-
y[10])+g*trigMat[3]*trigMat[7])+(-
trigMat[6]*trigMat[4]*trigMat[1]+trigMat[7]*trigMat[0])*(y[17]*(z_accel
_m-y[11])+g*trigMat[3]*trigMat[6]);
 F37 = -trigMat[0]*trigMat[4]*(y[15]*(x_accel_m-y[9])-
g*trigMat[4])-
trigMat[0]*pow(trigMat[3],2)*g+trigMat[7]*trigMat[3]*trigMat[0]*(y[16]*
(y_accel_m-y[10])+g*trigMat[3]*trigMat[7])-
(trigMat[7]*trigMat[4]*trigMat[0]-
trigMat[6]*trigMat[1])*g*trigMat[4]*trigMat[7]+trigMat[6]*trigMat[3]*tr
igMat[0]*(y[17]*(z_accel_m-y[11])+g*trigMat[3]*trigMat[6])-
(trigMat[6]*trigMat[4]*trigMat[0]+trigMat[7]*trigMat[1])*g*trigMat[4]*t
rigMat[6];
 F38 =
(trigMat[6]*trigMat[4]*trigMat[0]+trigMat[7]*trigMat[1])*(y[16]*(y_acce
l_m-y[10])+g*trigMat[3]*trigMat[7])+(trigMat[7]*trigMat[4]*trigMat[0]-
trigMat[6]*trigMat[1])*g*trigMat[3]*trigMat[6]+(-
trigMat[7]*trigMat[4]*trigMat[0]+trigMat[6]*trigMat[1])*(y[17]*(z_accel

 137

_m-y[11])+g*trigMat[3]*trigMat[6])-
(trigMat[6]*trigMat[4]*trigMat[0]+trigMat[7]*trigMat[1])*g*trigMat[3]*t
rigMat[7];
 F39 = -trigMat[0]*trigMat[3]*y[15];
 F310 = -(trigMat[7]*trigMat[4]*trigMat[0]-
trigMat[6]*trigMat[1])*y[16];
 F311 = -
(trigMat[6]*trigMat[4]*trigMat[0]+trigMat[7]*trigMat[1])*y[17];
 F312 = 0;
 F313 = 0;
 F314 = 0;
 F315 = trigMat[0]*trigMat[3]*(x_accel_m-y[9]);
 F316 = (trigMat[7]*trigMat[4]*trigMat[0]-
trigMat[6]*trigMat[1])*(y_accel_m-y[10]);
 F317 =
(trigMat[6]*trigMat[4]*trigMat[0]+trigMat[7]*trigMat[1])*(z_accel_m-
y[11]);
 F318 = 0;
 F319 = 0;
 F320 = 0;
 F46 = trigMat[0]*trigMat[3]*(y[15]*(x_accel_m-y[9])-
g*trigMat[4])+(trigMat[7]*trigMat[4]*trigMat[0]-
trigMat[6]*trigMat[1])*(y[16]*(y_accel_m-
y[10])+g*trigMat[3]*trigMat[7])+(trigMat[6]*trigMat[4]*trigMat[0]+trigM
at[7]*trigMat[1])*(y[17]*(z_accel_m-y[11])+g*trigMat[3]*trigMat[6]);
 F47 = -trigMat[1]*trigMat[4]*(y[15]*(x_accel_m-y[9])-
g*trigMat[4])-
trigMat[1]*pow(trigMat[3],2)*g+trigMat[7]*trigMat[3]*trigMat[1]*(y[16]*
(y_accel_m-y[10])+g*trigMat[3]*trigMat[7])-
(trigMat[7]*trigMat[4]*trigMat[1]+trigMat[6]*trigMat[0])*g*trigMat[4]*t
rigMat[7]+trigMat[6]*trigMat[3]*trigMat[1]*(y[17]*(z_accel_m-
y[11])+g*trigMat[3]*trigMat[6])-(trigMat[6]*trigMat[4]*trigMat[1]-
trigMat[7]*trigMat[0])*g*trigMat[4]*trigMat[6];
 F48 = (trigMat[6]*trigMat[4]*trigMat[1]-
trigMat[7]*trigMat[0])*(y[16]*(y_accel_m-
y[10])+g*trigMat[3]*trigMat[7])+(trigMat[7]*trigMat[4]*trigMat[1]+trigM
at[6]*trigMat[0])*g*trigMat[3]*trigMat[6]+(-
trigMat[7]*trigMat[4]*trigMat[1]-
trigMat[6]*trigMat[0])*(y[17]*(z_accel_m-
y[11])+g*trigMat[3]*trigMat[6])-(trigMat[6]*trigMat[4]*trigMat[1]-
trigMat[7]*trigMat[0])*g*trigMat[3]*trigMat[7];
 F49 = -trigMat[1]*trigMat[3]*y[15];
 F410 = -
(trigMat[7]*trigMat[4]*trigMat[1]+trigMat[6]*trigMat[0])*y[16];
 F411 = -(trigMat[6]*trigMat[4]*trigMat[1]-
trigMat[7]*trigMat[0])*y[17];
 F412 = 0;
 F413 = 0;
 F414 = 0;
 F415 = trigMat[1]*trigMat[3]*(x_accel_m-y[9]);
 F416 =
(trigMat[7]*trigMat[4]*trigMat[1]+trigMat[6]*trigMat[0])*(y_accel_m-
y[10]);

 138

 F417 = (trigMat[6]*trigMat[4]*trigMat[1]-
trigMat[7]*trigMat[0])*(z_accel_m-y[11]);
 F418 = 0;
 F419 = 0;
 F420 = 0;
 F56 = 0;
 F57 = -trigMat[3]*(y[15]*(x_accel_m-y[9])-
g*trigMat[4])+trigMat[4]*g*trigMat[3]-
trigMat[7]*trigMat[4]*(y[16]*(y_accel_m-
y[10])+g*trigMat[3]*trigMat[7])-
pow(trigMat[7],2)*trigMat[3]*g*trigMat[4]-
trigMat[6]*trigMat[4]*(y[17]*(z_accel_m-
y[11])+g*trigMat[3]*trigMat[6])-
pow(trigMat[6],2)*trigMat[3]*g*trigMat[4];
 F58 = trigMat[6]*trigMat[3]*(y[16]*(y_accel_m-
y[10])+g*trigMat[3]*trigMat[7])-
trigMat[7]*trigMat[3]*(y[17]*(z_accel_m-
y[11])+g*trigMat[3]*trigMat[6]);
 F59 = trigMat[4]*y[15];
 F510 = -trigMat[7]*trigMat[3]*y[16];
 F511 = -trigMat[6]*trigMat[3]*y[17];
 F512 = 0;
 F513 = 0;
 F514 = 0;
 F515 = -trigMat[4]*(x_accel_m-y[9]);
 F516 = trigMat[7]*trigMat[3]*(y_accel_m-y[10]);
 F517 = trigMat[6]*trigMat[3]*(z_accel_m-y[11]);
 F518 = 0;
 F519 = 0;
 F520 = 0;
 F66 = 0;
 F67 = 1/pow(trigMat[3],2)*(trigMat[7]*y[19]*(omega_q_m-
y[13])+trigMat[6]*y[20]*(omega_r_m-y[14]))*trigMat[4];
 F68 = 1/trigMat[3]*(trigMat[6]*y[19]*(omega_q_m-y[13])-
trigMat[7]*y[20]*(omega_r_m-y[14]));
 F69 = 0;
 F610 = 0;
 F611 = 0;
 F612 = 0;
 F613 = -1/trigMat[3]*trigMat[7]*y[19];
 F614 = -1/trigMat[3]*trigMat[6]*y[20];
 F615 = 0;
 F616 = 0;
 F617 = 0;
 F618 = 0;
 F619 = 1/trigMat[3]*trigMat[7]*(omega_q_m-y[13]);
 F620 = 1/trigMat[3]*trigMat[6]*(omega_r_m-y[14]);
 F76 = 0;
 F77 = 0;
 F78 = -trigMat[7]*y[19]*(omega_q_m-y[13])-
trigMat[6]*y[20]*(omega_r_m-y[14]);
 F79 = 0;
 F710 = 0;
 F711 = 0;

 139

 F712 = 0;
 F713 = -trigMat[6]*y[19];
 F714 = trigMat[7]*y[20];
 F715 = 0;
 F716 = 0;
 F717 = 0;
 F718 = 0;
 F719 = trigMat[6]*(omega_q_m-y[13]);
 F720 = -trigMat[7]*(omega_r_m-y[14]);
 F86 = 0;
 F87 = (1+pow(trigMat[5],2))*(trigMat[7]*y[19]*(omega_q_m-
y[13])+trigMat[6]*y[20]*(omega_r_m-y[14]));
 F88 = trigMat[5]*(trigMat[6]*y[19]*(omega_q_m-y[13])-
trigMat[7]*y[20]*(omega_r_m-y[14]));
 F89 = 0;
 F810 = 0;
 F811 = 0;
 F812 = -y[18];
 F813 = -trigMat[5]*trigMat[7]*y[19];
 F814 = -trigMat[5]*trigMat[6]*y[20];
 F815 = 0;
 F816 = 0;
 F817 = 0;
 F818 = omega_p_m-y[12];
 F819 = trigMat[5]*trigMat[7]*(omega_q_m-y[13]);
 F820 = trigMat[5]*trigMat[6]*(omega_r_m-y[14]);

 double F_data[441] = {
 0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
 0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
 0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

 0,0,0,0,0,0,F36,F37,F38,F39,F310,F311,F312,F313,F314,F315,F316,F3
17,F318,F319,F320,

 0,0,0,0,0,0,F46,F47,F48,F49,F410,F411,F412,F413,F414,F415,F416,F4
17,F418,F419,F420,

 0,0,0,0,0,0,F56,F57,F58,F59,F510,F511,F512,F513,F514,F515,F516,F5
17,F518,F519,F520,

 0,0,0,0,0,0,F66,F67,F68,F69,F610,F611,F612,F613,F614,F615,F616,F6
17,F618,F619,F620,

 0,0,0,0,0,0,F76,F77,F78,F79,F710,F711,F712,F713,F714,F715,F716,F7
17,F718,F719,F720,

 0,0,0,0,0,0,F86,F87,F88,F89,F810,F811,F812,F813,F814,F815,F816,F8
17,F818,F819,F820,
 0,
 0,
 0,
 0,
 0,

 140

 0,
 0,
 0,
 0,
 0,
 0,
 0,0};

 fillMat(F,F_data);

 st = 21;
 for(int i=0;i<21;i++)
 for(int j=0;j<21;j++)
 {
 P->mat[i][j] = y[st];
 st++;
 }

 // CPreciseTimer timer2;
 // timer2.StartTimer();
 // cout << endl << endl;

Matrix * F_Trans = trans(F);
Matrix * temp1 = mul(F,P);
Matrix * temp2 = mul(P,F_Trans);
Matrix * temp3 = mul(G,Q);
Matrix * temp4 = trans(G);
Matrix * temp5 = mul(temp3,temp4);
Matrix * add1 = add(temp1,temp2);

deleteMat(&P_dot);
P_dot = add(add1, temp5);

deleteMat(&F_Trans);
deleteMat(&add1);
deleteMat(&temp1);
deleteMat(&temp2);
deleteMat(&temp3);
deleteMat(&temp4);
deleteMat(&temp5);
 // timer2.StopTimer();
 // printf("%d\n",(int)timer2.SupportsHighResCounter());
 // printf("Mat Mult =
%lf\n",(double)timer2.GetTime()*.000001);
 st = 21;
 for(int i = 0; i<21;i++)
 for(int j = 0; j<21;j++)
 {
 yp[st] = P_dot->mat[i][j];
 st++;
 }
}

 141

APPENDIX C

 In order for the AGV to follow waypoints through a rich environment of obstacles, it

must know the locations of those obstacles. This will be referred to as the mapping of obstacles.

The SICK LMS [6] is the only source of terrain information for the TEES AGV. It pulses a laser

at a rotating mirror to produce a 180° planar scan of the terrain. If the beam reflects off an object

(a hit) the return is received by the SICK. The range is computed by measuring the time of flight

of the pulsed beam. An encoder on the mirror provides the angle at which the hit was received.

This information, contained in a single SICK ‘scan’, would be considered a local map of

obstacles, that is, local to the current SICK co-ordinate system. However, for longer term use,

i.e., in terms of minutes or so, it is necessary to store the locations of all recent as well as current

obstacles, at least temporarily, which requires a ‘global’ map instead of a local map.

 The global map is the collection of locations for all objects in the environment that have

been sensed (recently) by the SICK and processed. These locations are in the ICS. This co-

ordinate system has a stationary origin and axes. In order to map a SICK hit to the ICS, a

detailed analysis must first be performed.

 First, a more thorough understanding of the co-ordinate systems is required. Refer to

figure 69 that contains the three co-ordinate systems: SICK, IMU and Inertial. Figures 69

through 73 were produced by Justin T. Bozalina in the Computer Science Department at Texas

A&M University.

Figure 69. SICK, IMU and inertial co-ordinate systems on the AGV

 142

1) Inertial Co-ordinate System – Also known as the Earth or Global Co-ordinate System.

The axes and origin are as follows:

 a. N - positive pointing towards North Pole

 b. E - positive pointing 90° clockwise from North Pole

 c. D - positive pointing towards center of Earth

 d. Origin is designated by team

2) IMU Co-ordinate System – The body-fixed co-ordinate system attached to the IMU,

which is (assumed) rigidly mounted to vehicle. Note that this co-ordinate system defines the

orientation of the AGV because it is assumed that the AGV is a rigid body. The axes and origin

are the following:

 a. IMUx - positive from rear of vehicle to front of vehicle, orthogonal to track

 b. IMUy - positive from driver’s side of vehicle to passenger’s side of vehicle,

orthogonal to wheelbase

 c. IMUz - positive from roof of vehicle to undercarriage of vehicle, orthogonal to other

IMU body co-ordinate axes

 d. Origin is the center of the cluster of IMU sensors

3) SICK Co-ordinate System – The body-fixed co-ordinate system attached to the SICK

LMS. The axes and origin are as follows:

 a. SICKx - positive from flat rear mount of SICK to front of SICK, orthogonal to flat

rear mount

 b. SICKy - positive from left side of SICK to right side of SICK, looking from the rear

of the SICK, parallel to IMUy

 c. SICKz - positive from top of SICK to bottom of SICK, orthogonal to other SICK

body co-ordinate axes

 d. Origin is center of mirror located inside SICK

 Refer again to figure 69 to gain additional understanding of the three co-ordinate

systems. The next step is to provide the foundation for the order of rotations. It is essential that

the different programs on the AGV use the same order of rotations. It was demonstrated earlier

that the order of rotations for the AGV from ICS to BCS was yaw, pitch and then roll. These are

 143

the first three rotations. The last rotation is the sweep of the SICK. The SICK LMS will also be

rotated about its y-axis to provide a 3-D sensing of the environment. This movement will create

the last rotation, the sweep, or the vertical angle, of the SICK. To eliminate any ambiguities or

confusion, the definitions of each of the rotations will be discussed. Please refer to figures 70

through 73 that graphically show each of the rotations.

1) Yaw – Denoted as ψ , is the rotation about the D axis from the N axis to the projection

of the IMUx axis onto the N E− plane

2) Pitch – Denoted as θ , is the rotation about the E′ axis from the N ′ axis to the

IMUx axis

3) Roll – Denoted as φ , is the rotation about the N ′′ axis from the E′′ axis to the IMUy axis

4) Sweep – Denoted as α , is the rotation about the IMUy axis from the IMUx axis to the

SICKx axis

Figure 70. Yaw angle rotation

 144

Figure 71. Pitch angle rotation

Figure 72. Roll angle rotation

 145

Figure 73. Sweep angle rotation

 In order to continue with the mapping process, please refer to the nomenclature section

regarding the following vector analysis. Figure 74 displays the vectors used to find the correct

location of the SICK hit in the ICS.

Figure 74. Vectors used to map the SICK hit to the ICS

 146

 When using vector analysis, there is some accounting that is required. One needs to

follow a very systematic analysis and be consistent with notation in order that complete

understanding of the material is achieved. Vector analysis is not the unique path to the solution,

but it is a more graphical analysis which should be easier to understand.

For this mapping process, there are four steps:

1) Find the vector, in Earth co-ordinates, that locates the origin of the IMU co-ordinate

system with respect to the origin of the ICS

 imu
earth earth

r� �
� �
	

�
�������� ,i e er

�

2) Find the vector, in Earth co-ordinates, that locates the origin of the SICK co-ordinate

system with respect to the origin of the IMU co-ordinate system

 sick
imu earth

r� �
� �
	

�
��������� ,s i er

�

3) Find the vector, in Earth co-ordinates, that locates the SICK hit with respect to the origin

of the SICK co-ordinate system

 hit
sick earth

r� �
� �
	

�
��������� ,h s er

�

4) Finally, add the above three vectors to find the vector, in Earth co-ordinates, that locates

the SICK hit with respect to the origin of the ICS

 hit
earth earth

r� �
� �
	

�
��������� , , , ,h e e i e e s i e h s er r r r= + +� � � �

The origin of the IMU co-ordinate system, in Earth co-ordinates, will be given by the

KF. Therefore, part one is concluded. The origin of the SICK does not translate when a sweep

occurs. Therefore ,s i er
�

 is dependent on the yaw, pitch and roll of the vehicle, along with ,s i ir
�

.

The rotation matrices below map forward (based on figures 70 through 73). These would be

directly applied if the desire is to map the vector components in an inertial co-ordinate system to

components in a body-fixed co-ordinate system. The objective here is the reverse or backward

mapping. This requires the transpose of the forward rotation matrices, as well as reversing the

order in which they are multiplied.

 147

Therefore, the forward rotation matrices for yaw, pitch and roll are the following:

0
0

0 0 1

0

0 1 0
0

1 0 0
0
0

yaw

pitch

roll

c s

A s c

c s

A

s c

A c s

s c

ψ ψ
ψ ψ

θ θ

θ θ

φ φ
φ φ

� �
� �= −� �
� �� �

−� �
� �= � �
� �� �

� �
� �= � �
� �−� �

 (C.1)

Where cψ represents the cosine of ψ and sψ represents the sine ofψ . The same is

true for θ and φ .

Therefore, ,s i er
�

 is the following:

 , ,
T T T

s i e yaw pitch roll s i ir A A A r=� �
 (C.2)

The next task is to find ,h s er
�

. The forward rotation matrix for sweep is the following,

along with the range vector:�

 ,

0 sin
0 1 0 , cos

0 0
sweep h s s

c s m

A r m

s c

α α β
β

α α

−� � � �
� � � �= =� � � �
� � � �� � � �

�
 (C.3)

Where: , m β are the range and angle to the hit from the SICK in SICK co-ordinates,

respectively (information provided by SICK)

Therefore, ,h s er

�
 is the following:

 , ,
T T T T

h s e yaw pitch roll sweep h s sr A A A A r=� �
 (C.4)

 148

The final task is to combine the previous three vectors to obtain the final vector, ,h e er
�

.

This yields the following:

, , , ,h e e h s e s i e i e er r r r= + +� � � �

, , ,

, , ,

, , ,

sin
cos
0

h e N s i i i e N
T T T T

h e E yaw pitch roll sweep s i i i e E

h e D s i i i e D

r x rm

r A A A A m y r

r z r

δβ
β δ

δ

� �� � � � � �� �� �� � � � � �� �� �= + +� � � � � �� �� �
� � � � � �� �� �� �� � � � � �� �� � � � � �� �

 (C.5)

Where: ,s i ixδ is the offset of the SICK from the IMU along the x-axis in IMU

co-ordinates (same notation for y and z axes)

 149

APPENDIX D

 There are multiple steps required to start the INS. There are four items that need to be

powered up: the inverter, computer, GPS and IMU. Start the vehicle and switch on the inverter

(make sure that the GPS and IMU are not powered at this time). After the inverter has started,

turn on the computer and log onto one of the user names that has the C++ code for navigation.

 The GPS requires a few steps in addition to being powered on. Plug the GPS power

cord into the 12V accessory port (the green light on the plug will indicate when it is powered

on). On the desktop, double-click the GPS_9600.hpt shortcut which will open com1. Wait 10

seconds before typing the following command:

com com1 57600

 This command tells the GPS to switch from 9600 baud to 57600 baud. Every time the

GPS is started, it reverts back to 9600 baud. It is necessary to communicate at 57600 baud to

achieve 20 Hz strings from the GPS receiver. After typing the previous command in the

HyperTerminal, close the window. Return to the desktop and double-click the GPS_57600.hpt

shortcut. Type in the following command:

log com1 gpggalong ontime .05

 This command tells the GPS receiver that the user wishes to log the gpggalong string

(which includes latitude, longitude, height above sea level and a flag that indicates whether

differential correction is available). The C++ code automatically connects to the GPS receiver

after this point, but this step is required to verify that the GPS receiver is sending the gpggalong

strings at 20 Hz. Also, OmniSTAR requires a few minutes for the differential correction to

converge (which is indicated on the strings) for which the vehicle must not move. After the “W”

on the gpggalong string, there will be a number indicating the accuracy of the solution. A “0”

indicates that no solution is available because not enough satellites are available. A “1” indicates

that the autonomous GPS solution is available (not corrected). A “2” or a “5” indicates that the

GPS signal includes the correction from OmniSTAR. Once the GPS receiver has the corrected

solution, close the window.

 Drive the vehicle to the starting location which will be defined as the origin in the

“main.cpp” C++ code. The vehicle will have a yaw angle that must be initially estimated. Open

 150

the “RKF.sln” in Visual Studio.NET. At the top of the “main.cpp” code, there is a variable

called “YAW_BEG”. Set the value of “YAW_BEG” as the initial estimate of the yaw angle of

the AGV. Verify that the GPS is streaming at 57600 baud and that the IMU is not on.

 Start the “RKF.sln” by hitting CTRL-F5. A command window will open waiting for

further instruction. Run the “Controller.sln” program. Allow time for the connection to be

established. Once both solutions are running, turn on the IMU by switching from 3V to 12V.

The INS will now begin to send state information. The controller display will be visible when

communication between all hardware is achieved. Once the pitch and roll angles have stabilized

begin the test run.

 To block GPS, make sure that the first command window is on top and hit “k” and then

enter. “GPS blocked” will appear on the command window. In order to reacquire GPS, hit “k”

and enter again. “GPS resumed” will now appear on the command window.

 Once the test is concluded, close all command windows. The logs for the IMU, KF and

Runge Kutta will now be available for viewing. The IMU log contains the accelerations and

angular rates in units of g’s and °/s. The KF log contains all 21 states/parameters at 20 Hz

including a flag that indicates GPS blockage (“0” for GPS available, “1” for GPS blocked). The

Runge Kutta log contains the same information as the KF log (minus the flag) but at 71 Hz. If

multiple runs are desired, make sure to change the names of the logs, otherwise they will be

written over by the next run.

 When the AGV is returned to the flight lab, turn off all the hardware. GPS needs to be

unplugged otherwise it will drain the battery. The IMU just needs to be switched from 12V to

3V. Once the computer is shut down, the inverter can be turned off. Also, make sure to remove

the batteries from the mouse.

 151

APPENDIX E

 The movie file included with this thesis is used to show the overall validity of the

navigation solution for the Texas A&M AGV. The AGV (grey object) and SICK (blue object)

locations are shown in the video for clarity. The AGV is traveling on the flat runway while

logging the SICK returns and IMU measurements. The SICK hits can be seen as white dots and

the ground is a flat, green plane with 1 meter squares.

 152

VITA

Name: Craig Allen Odom

Address: 4201 Hemlock St.
 Fort Worth, TX 76137-2020

Email Address: craigodom@gmail.com

Education: B.S., Mechanical Engineering, Texas A&M University, 2004
 M.S., Mechanical Engineering, Texas A&M University, 2006

