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ABSTRACT 
 

 
Navigation Solution for the Texas A&M Autonomous Ground Vehicle.  (August 2006) 

Craig Allen Odom, B.S., Texas A&M University 

Chair of Advisory Committee:  Dr. Make McDermott 
 
 

The need addressed in this thesis is to provide an Autonomous Ground Vehicle (AGV) 

with accurate information regarding its position, velocity, and orientation.  The system chosen to 

meet these needs incorporates (1) a differential Global Positioning System, (2) an Inertial 

Measurement Unit consisting of accelerometers and angular-rate sensors, and (3) a Kalman 

Filter (KF) to fuse the sensor data.  The obstacle avoidance software requires position and 

orientation to build a global map of obstacles based on the returns of a scanning laser 

rangefinder.  The path control software requires position and velocity. 

 The development of the KF is the major contribution of this thesis.  This technology can 

either be purchased or developed, and, for educational and financial reasons, it was decided to 

develop instead of purchasing the KF software.  This thesis analyzes three different cases of 

navigation:  one-dimensional, two dimensional and three-dimensional (general).  Each becomes 

more complex, and separating them allows a three step progression to reach the general motion 

solution. 

 Three tests were conducted at the Texas A&M University Riverside campus that 

demonstrated the accuracy of the solution.  Starting from a designated origin, the AGV traveled 

along the runway and then returned to the same origin within 11 cm along the North axis, 19 cm 

along the East axis and 8 cm along the Down axis.  Also, the vehicle traveled along runway 35R 

which runs North-South within 0.1°, with the yaw solution consistently within 1° of North or 

South.  The final test was mapping a box onto the origin of the global map, which requires 

accurate linear and angular position estimates and a correct mapping transformation. 
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NOMENCLATURE 
 

 
pitchA  The rotation matrix for Pitch 

rollA  The rotation matrix for Roll 

sweepA  The rotation matrix for Sweep 

yawA  The rotation matrix for Yaw 

ARS Angular-rate sensor 

(diag( ))C i j−  Denotes the diagonal from row i to row j of matrix C 

BCS
ICSDCM  Matrix that maps a vector with components in the Inertial Co-ordinate 

System (ICS) to components in the Body Co-ordinate System (BCS) 

{ }E x  Expected value 

( )if t  i-th function 

f (x( ),u( ), )t t t  Vector of nonlinear functions defining the derivatives of the state vector 

ˆ(x( ), )F t t  Partial derivatives of f (x( ),u( ), )t t t  used for propagation 

g  Gravitational constant at the surface of the Earth (~ 9.807 m/s/s) 

( )G t  Matrix that maps the process noise into the nonlinear functions 

h(x )k  Vector of GPS position measurements as functions of the states 

ˆh(x )k
−  Vector of predicted GPS measurements 

ˆ(x )k kH −  Measurement sensitivity matrix utilizing the a priori state estimate at 

discrete-time kt  

kK  Kalman gain matrix at discrete-time kt  

m  Range value, in meters, from the origin of the SICK co-ordinate system 

to the SICK hit, with components in SICKx and SICKy axes (with β  as 

the angle provided by the SICK) 

.. ..N E D  The primary axes of the ICS (North, East and Down) 

'.. '.. 'N E D  The secondary axes of the ICS (after the Yaw rotation) 

''.. ''.. ''N E D  The third set of axes of the ICS (after the Pitch rotation) 
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(0,  ( ))N Q t  Normal distribution with zero mean and covariance matrix ( )Q t  

(0,  )kN R  Normal distribution with zero mean and covariance matrix kR  

,  ,  p q r  Body-fixed angular rates about the x, y and z axes, respectively 

,  ,  p q r� � �  ARS measurements (in °/s) about the x, y and z axes, respectively 

0P  Initial estimation error covariance matrix 

( )P t  Continuous-time estimation error covariance matrix 

( )P t�  Continuous-time, time derivative of estimation error covariance matrix 

kP−  a priori estimation error covariance matrix at discrete-time k 

kP+  a posteriori estimation error covariance matrix at discrete-time k 

( )Q t  Process noise error covariance matrix 

,h s sr
�

 Vector that locates the SICK hit with respect to the origin of the SICK 

co-ordinate system, in SICK co-ordinates 

,s i ir
�

 Vector of offsets of SICK origin from IMU origin in IMU co-ordinate 

system 
kR  Measurement noise error covariance matrix 

SFT Scale factor transformation 

t  Continuous-time 

u( )t  Vector of true inputs 

2
, .. ..GPS N E Dv  Variance of the GPS position measurement error along the N, E and D 

axes, respectively 

vk  GPS position measurement noise at discrete-time k 

2
, .. ..Acc x y zw  Variance of the accelerometer measurement error along the x, y and z 

axes, respectively 

w( )t  Continuous-time process noise 

.. ..x y z  The axes of the SICK or IMU BCS  

( )ix t  i-th state 

x( )t  Vector of true states 

x( )t�  Vector of time derivatives of true states   

0x̂( )t  Initial state estimate vector 
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x̂( )t  Continuous-time vector of estimated states used for propagation 

x̂( )t�  Continuous-time vector of time derivatives of estimated states 

xk  True state at discrete-time k 

x̂k
−  a priori state estimate at discrete-time k 

x̂k
+  a posteriori state estimation vector at discrete-time k 

,  ,  k k kx y z�� �� ��� � �  Accelerometer measurements (in m/s/s) along the x, y and z axes, 

respectively 

yk�  GPS position measurements available at discrete-time k 

β  Angle to object in SICK co-ordinate system that is provided by SICK 

s ixδ    Offset of SICK origin from IMU origin along IMUx axis (constant) 

s iyδ    Offset of SICK origin from IMU origin along IMUy axis (constant) 

s izδ    Offset of SICK origin from IMU origin along IMUz axis (constant) 

bη  Determines the level to which the bias will randomly walk (0 if no 

walk) 

θ  Pitch angle defined as the amount of rotation about the E′  axis from the 

N ′ axis to the IMUx axis 

θ�  Pitch rate 

µ�  Time derivative of a bias (either accelerometer or ARS) 

µ̂�  Estimated time propagation of the bias (KF has no knowledge of 

dynamics of bias, therefore it is 0) 

φ  Roll angle defined as the amount of rotation about the N ′′ axis from the 

E′′ axis to the IMUy axis 

φ�  Roll rate 

ψ  Yaw angle defined as the amount of rotation about the D axis from the 

N axis to the projection of the IMUx  axis onto the N E−  plane 

ψ�  Yaw rate 

ζ�  Time derivative of ζ (used as an example; ζ not located in text) 

 



 viii 

ζ��  Second time derivative of ζ  

ζ�  Value of measurement of ζ  

ζ̂  Estimated value of ζ  
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1.  INTRODUCTION 
 
 

Navigation is essential to the operation of an Autonomous Ground Vehicle (AGV).  The 

current position, velocity and yaw of the AGV are required to control the vehicle’s movements 

through a series of waypoints.  A Global Positioning System (GPS) receiver only receives 

position information and then computes the velocity and heading (not yaw) of the vehicle.  

Heading is defined as the direction of travel, which can be computed by using the North and East 

velocities.  The yaw angle describes where the front of the vehicle is pointing rather than where 

it is going.  For example, if the vehicle were traveling in reverse, heading and yaw would be 

180° from each other.  Yaw requires an angular rotation to change, whereas heading requires a 

change in the North and/or East velocities. 

GPS cannot be the sole provider of navigation information because it is susceptible to 

outages and jamming and cannot provide orientation information.  During GPS outages, the 

AGV has no state information and thus is unable to make any decisions concerning a new 

direction of travel.  Losing all navigation information is an unacceptable situation, especially 

during deployment in a military setting.  However, the AGV does not house any military 

personnel, making it an alternative to sending in manned vehicles. 

 In order to reduce the effect of outages and jamming, the GPS information is fused with 

information from an Inertial Measurement Unit (IMU) that has three orthogonal accelerometers 

and three orthogonal angular-rate sensors (ARS’s).  The GPS position information has a large 

error associated with it, but it is bounded.  The accelerations and angular rates from the IMU 

must be integrated which introduces error that can grow unbounded.  Each of these sensors are 

useful separately but when combined they are exceptional. 

 Before purchasing these sensors, a design analysis was required to develop a needs 

statement and functional/performance requirements.  This is a very systematic, top-down 

approach to purchasing sensors.  The benefit is that the sensors purchased should meet the 

requirements of the project, reducing some of the problems associated with integrating new 

sensors. 

  

 

   
This thesis follows the style of Journal of Dynamic Systems, Measurement, and Control. 
 



 2 

The outputs from these two sensors are combined by the Kalman Filter (KF) to produce 

a “best” estimate of the actual AGV states.  With knowledge of the accuracy of the sensors and a 

kinematic model the KF develops a weighting matrix.  This weight matrix quantifies how much 

the model will be corrected by the measurements. 

 This thesis separates the analysis of the navigation system into four parts.  The first three 

sections describe the simulations associated with particular motions that the AGV will undergo.  

The first is one-dimensional (1-D) motion, the second is two-dimensional (2-D) motion and the 

third is three-dimensional (3-D) or general motion.  The last section of the analysis shows the 

results of using the general motion KF on the real AGV.  

The 1-D model is the simplest motion possible.  The simulated AGV motion is driving 

North with no angular rotations.  There is one GPS position measurement (latitude) and one 

accelerometer measurement available.  The purpose of simulating 1-D motion is to create the 

foundation for the other two motions while maintaining the simplest configuration possible.  

Debugging the 1-D model is also much simpler than attempting to debug the 3-D model outright. 

The 2-D model incorporates two GPS position measurements (latitude and longitude), 

two accelerometer measurements and one ARS measurement.  This model is valid if the AGV 

travels on a flat plane, normal to the gravity vector of the Earth (thereby removing any gravity 

components in the accelerations).  There is no pitching or rolling in this model, but the AGV will 

pitch and roll during braking/acceleration and turning.  This motion will affect the accelerometer 

outputs by adding the gravitational component due to the pitch and roll angles.  Performance will 

degrade as the pitch and roll angles increase, but the effect is quite small at lower angles (< 5°). 

 The 3-D model is the general model.  It incorporates three GPS position measurements 

(latitude, longitude and height above sea level), three accelerometer measurements, and three 

ARS measurements.  This model is valid for all motion, except if the AGV pitches ± 90°, 

wherein there is a singularity.  During normal operation, the AGV will not experience a pitch 

angle of ± 90°. 

 It should be noted that the latitudes, longitudes and heights above sea level provided by 

the GPS receiver are converted into displacements from a designated origin.  For the simulations, 

the displacements are generated rather than creating latitudes and longitudes and then converting 

them to displacements.  Implementing the general motion KF for use on the AGV requires the 

conversion of GPS measurement data to displacements along the North, East and Down axes.  

Refer to section four regarding details of this transformation.   
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The KF also provides state information to the obstacle avoidance software.  The 

information used by the software is:  North, East and Down position of the AGV, the Euler 

angles (yaw, pitch and roll), offsets of the SICK from the IMU and the SICK returns (range and 

angle).  Once the software has this information it can build an accurate global map of the 

surrounding environment.  Additional work was required to cluster the hits to create obstacles 

that the AGV must avoid. 
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2.  CHOICE OF SENSORS 
 
 

A design analysis is a systematic method for choosing an option, whether it is a product 

to meet some demand, or a choice concerning an action.  For the purposes of this project, it was 

used to purchase sensors for the AGV.  Initially, the desire was to purchase an Integrated 

Navigation System (INS) which would provide the AGV with all the required states at 100 Hz.  

The INS includes a GPS receiver, an IMU and a KF.  However, due to cost restrictions, the 

entire system was not purchased.  Rather, only the GPS receiver was purchased, with intentions 

of purchasing the IMU separately at a later time along with the integration software support, 

which contains the KF. 

 Three items are necessary in a design analysis:  Needs statement, functional/performance 

requirements, and a list of options that could resolve the needs statement.  The needs statement is 

the most important step in a design analysis.  This is the initial step from which the other steps 

must follow.  Posing the needs statement correctly and capturing exactly what the sensor’s 

purpose is critical.  The needs statement for the INS is the following: 

 
“Utilize integrated GPS, IMU and a Kalman filter to provide fast and accurate linear and 

angular position/velocity states for an AGV at a cost compatible with project budget”. 

 
 This is not the most general needs statement that could be posed.  However, it was 

decided very early in the project that a GPS/IMU/KF combination would be used for navigation 

and mapping.  This combination was used extensively by the teams competing in the DARPA 

Grand Challenge [1], thus it was a good starting point.  Other means of providing vehicle states 

were discussed, but their usefulness for this project was limited.   

The needs statement is the basis for the functional/performance requirements.  The 

functional requirements are the functions the INS must perform, i.e. providing AGV states fast 

enough to raise the maximum stable vehicle speed.  The performance requirements are how well 

the functional requirements are performed, i.e. providing state information to the AGV at six Hz.  

The performance requirements must be able to be tested because they are quantitative in nature.  

The functional/performance requirements are listed below, with a short justification for each 

performance requirement. 
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FR # 1: Provide position and velocity readings to path controller fast enough to increase 

maximum stable vehicle speed to 40+ mph. 

PR # 1: Navigation system must update states at Six Hz. 

Justification: The digital path controller is very reliant on the update rate.  As time delays in 

state feedback increase, controller performance will degrade and eventually 

become unstable.  The higher the update rate, the better the controller will 

perform (assuming good controller design), within AGV response limits..  

Previously, the update rate was one Hz, with a maximum stable vehicle speed ~ 

15 mph.  If a linear trend is assumed, a three Hz update rate would be required 

to achieve a maximum stable vehicle speed of 40+ mph.  Therefore, a six Hz 

update rate is specified which includes a safety factor of two. 

 

FR # 2: Provide accurate linear/angular position and velocity states to AGV. 

PR # 2: Linear position error less than 1 3meter.  Yaw angular position error less than 

0.5°. 

Justification: The path width on the DARPA course can be narrow at times (three meters).  

With the AGV track width of two meters, this leaves 1 2 meter on either side, 

thus requiring a position error less than 1 3meter.  Also, the obstacle avoidance 

requires accurate attitude information to build the obstacle map.  At 60 meters, 

with an error of 0.5° in the yaw angle, a SICK hit will have a global position 

error of  1 2 meter, which is an acceptable error.  The yaw angle is the least 

accurate of the three Euler angles and thus it is used as the requirement. 

 

FR # 3: IMU must have high operating range. 

PR # 3: Linear operating range greater than 10g.  Angular operating range greater than 

200°/s. 

Justification: The required operating range is dictated by the AGV and operating conditions.  

It is not advisable to saturate the operating range of the IMU.  The maximum 

rotational speed and heave acceleration experienced by the AGV were 

approximated by testing and analysis to be 100°/s and five g’s, respectively.  

With a safety factor of two, the required operating ranges are 200°/s and 10g’s. 
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FR # 4: Navigation system must include a KF. 

PR # 4: KF must be capable of fusing IMU/GPS data. 

Justification: A KF is required to provide orientation information (not provided by GPS or 

IMU) and continuosly provide all vehicle states, including during GPS outages. 

 

FR # 5: IMU must have low drift rate. 

PR # 5: Drift rate needs to be less than 30°/hr. 

Justification: The biases for the three accelerometers and three ARS’s will drift.  The KF 

continually compensates for these biases, but it requires that a GPS signal is 

available.  Without GPS, the error in the states will grow without bound.  

Assuming that a one minute loss in GPS is a reasonable amount of time, and a 

yaw angle error of 0.5° is an acceptable error, then a 30°/hr drift is a 

reasonable requirement. 

 

FR # 6: GPS receiver must be able to acquire a commercially available Differential GPS 

(DGPS) signal, i.e. OmniSTAR. 

PR # 6: Must be able to acquire DGPS signal in Mojave Desert. 

Justification: This is a two-fold requirement.  DGPS provides sub-meter position accuracy, 

which is required by the path controller.  The other is that DARPA requires that 

a commercially or publicly available differential signal be used (no proprietary 

differential correction).  OmniSTAR is an example of a reliable, satellite-based 

differential signal with wide geographic availability. 

 

FR # 7:  IMU/GPS communication must be based on protocol familiar to AGV team. 

PR # 7:  Communication must be serial or TCP/IP. 

Justification: The AGV team is most familiar with these protocols, reducing the development 

time. 
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FR # 8: INS must be robust in shock and vibration. 

PR # 8: Shock survivability must be greater than 20 g for 5 ms. 

Justification: During testing, the AGV experienced a maximum of five-g heave acceleration 

for five ms while driving over large parking lot dividers at 20mph.  Therefore, 

the shock survival was chosen to be 20 g for five ms to give an additional factor 

of safety.  It is imperative that the INS survive these accelerations. 

 
A search was performed to identify candidate INS systems.  The list of candidates is 

given in table 1.  The NovaTel INS [2] with the G2-H58 IMU (SPAN # 2) is the best candidate 

because it meets all the requirements (except shock robustness) and is less expensive than the 

SPAN # 1 package.  Once funds become available, the SPAN # 2 package will be the final 

solution, outside of purchasing the support software. 
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Table 1.  Candidate list with functional/performance requirements 
 

Func. Req. Update 
Rate 

Linear / 
Angular 

Accuracy 

Linear / 
Angular 

Operating 
Range 

Kalman 
Filter? Drift Rate 

DGPS 
comm. 
Signal? 

Com. Shock 
Robust 

Price / 
Lead         
Time 

Perf. Req. 6 Hz 1/3 m / 
0.5° 

10 g / 
200°/s Yes 30°/hr Yes 

Serial 
or 

TCP/IP 

20 g for        
5 ms Minimal 

Applanix 
POS LV 

1 - 200 
Hz 

Not 
provided / 

0.07° 

Not 
provided 

Not 
provided 

Not 
provided 

Not 
provided RS232 Not 

provided 
$65,000 /     
4 - 8 wks 

Crossbow 
NAV 420 

2 - 100 
Hz 

3 m /     
0.5° 

4 g /     
200°/s Yes 2700°/hr No RS232 200 g for 

1 ms 
$9,500 /   
3 - 4 wks 

NovaTel 
SPAN # 1 100 Hz 0.10 m /   

0.05° 
50 g /     

1000°/s Yes 1°/hr Yes 
RS232 

or 
RS422 

100 g for 
14 ms 

$23,000 /   
4 wks 

NovaTel 
SPAN # 2 100 Hz 0.10 m /   

0.05° 
50 g /     

1000°/s Yes 10°/hr Yes 
RS232 

or 
RS422 

100 g for 
14 ms 

$13,000 /   
4 wks 

OTS 
RT3040 100 Hz 0.10 m /   

0.03° 
30 g /    
300°/s Yes Not 

provided Yes Ethernet 
UDP 

100 g for 
11 ms 

$52,000 /   
4 - 8 wks 

Micro -    
botics     

MIDG II 
50 Hz 2 m /      

0.1° 
10 g / 
300°/s Yes 150°/hr Yes Serial 100 g for 

8 ms 
$5,800 /   
No lead 
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3.  KALMAN FILTER AND SENSOR INTEGRATION 
 
 
 Measurements from sensors are inherently noisy and have biases that fluctuate with 

time.  When taking a measurement, the engineer or scientist wants the truth that is masked by the 

biases and noise.  The truth is never known outside of a simulation where it is generated by the 

software.  Estimating the truth requires some knowledge of the noise in the sensor and the 

physics of the action that the sensor is monitoring.  The estimator used most often for accurate 

state information of dynamic systems is the Kalman filter. 

 The KF is an optimal estimator that minimizes the variance between a propagated state 

(model) and an observation (measurement).  Neither the model nor the measurement is perfect, 

thus requiring that the information from both is fused together at a ratio determined by the KF.  

The fused information is more accurate than either the model or the measurement, even if one is 

much better than the other [3].   

 The dynamics of the model are based on either equations of motion developed by the 

engineer, or a kinematic model.  A kinematic model is one based solely on positions, velocities 

and accelerations and does not include or require knowledge of forces or moments.  This is the 

model to use when accelerometers/ARS’s are available. 

 The main assumption inherent in the KF is that the noise is white with zero mean.  At 

any instant, the value of the noise does not depend on any prior values, and it follows the normal 

distribution curve (bell curve) developed by Gauss.  This holds for many instances, including 

IMU and GPS dynamics, and is therefore a reasonable assumption. 

The KF estimates a state that is governed by a model.  The general form of the truth 

model is given in equation (3.1) [4]. 

 
 x( ) f (x( ),u( ), ) ( )w( )t t t t G t t= +�  (3.1) 

 
The notation conventions for the variables in the equations provide insight into what the 

equation is to accomplish.  The list below provides the notation conventions that are followed 

throughout this thesis. 
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• A bold variable represents a vector, e.g., x  

• A lowercase variable that is not bold represents a scalar, e.g., t 

• An uppercase variable represents a matrix, e.g., G  

• A variable with a ^ represents an estimate, e.g., x̂  

• A variable with a ~ represents a measurement, e.g., y�  

• A variable with nothing above it represents the truth, e.g., x  

• The subscript (e.g., k) represents a value at a discrete time tk  

• A variable with a superscript, −  , represents the a priori estimate, e.g., x̂k
−  

• A variable with a superscript, +  , represents the a posteriori estimate, e.g., x̂k
+  

 
 

In equation (3.1), the propagation of the state vector is dependent on the state itself x( )t , 

the input u( )t , time t  and the process noise w( )t .  The process noise is the error in the model 

from the true process.  There is also a measurement model used by the KF [4]: 

 
 y h(x ) vk k k= +�  (3.2) 

 
Where:  yk� is the vector of GPS position measurements given to the KF 

  vk  is the measurement noise 

  
The states and the measurements are not always of the same parameter.  For instance, if 

the states were North and East positions, but the measurement was heading, there is not a 1:1 

relationship.  The vector of functions h(x )k  maps the states into the GPS position 

measurements. 

The two models each have noise.  The variables w( )t and vk  represent the process 

noise and measurement noise, respectively.  Each are white Gaussian noise with zero mean.  

This can be stated as [4]: 

 

 
w( ) ~ (0, ( ))

v ~ (0, )k k

t N Q t
N R

 (3.3) 
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 ( )Q t  is the process noise covariance matrix, and kR  is the measurement noise 

covariance matrix.  These matrices arise from the expected value of their respective noises, 

namely [4]: 

 

 
{ }

{ }
w( )w( ) ( )

v v

T

T
k k k

E t t Q t

E R

=

=
 (3.4) 

 
 Once the models have been developed, which is indeed the most time-consuming and 

difficult step, the KF algorithm can be implemented.  The KF needs the initial state estimates 

0x̂( )t  as well as the uncertainty in these initial state estimates 0P .  The 0P  matrix is the initial 

estimation error covariance matrix, or the initial information matrix.  This matrix is pivotal to the 

operation of the KF and is used to determine the Kalman gain matrix. 

Yielding good performance from the KF is highly dependent on 0P .  If the values 

chosen for the diagonals of 0P  are set too low (little uncertainty about the initial estimates) the 

KF estimates will be sluggish and not track the dynamics of the system very well.  If they are set 

too high the KF estimates will be very sensitive to the noise in the measurements and will also 

not track very well. 

There is not a unique solution for 0P .  The nonlinear functions in equation (3.8) and 

cross-coupling of the states makes it very difficult to provide a closed-form solution for 0P .  

There are formulae for determining the 0P  matrix, but mostly 0P  is chosen by trial and error on 

a system simulator.  A good approach is to find a state that initially is known very well and have 

its diagonal element set to one.  Then increase the value of the diagonal elements of 0P based on 

the corresponding uncertainty of their initial estimates.  For example, the scale factor 

transformation will be very close to one (which is indeed the initial estimate) and thus that 

diagonal element is set to one.  However, the orientation of the vehicle is not known very well 

and thus the diagonal elements corresponding to the yaw, pitch and roll angles are set to 10.  

This process is done for all the states.  There is much additional work required to fine tune the 

0P  matrix to provide the performance that is desired. 

 Once 0x̂( )t  and 0P  are chosen, the KF algorithm can begin with the first GPS position 

measurement that is available.  During the periods between these measurements, the KF is not 
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functioning; rather the model is used without correction.  An uncorrected solution will drift with 

time, thus requiring a sufficiently fast update rate from the GPS.   

Once the first set of GPS position measurements is available, the Kalman gain matrix 

kK  can be determined [4] using the gain propagation equation (3.5).  This equation is very 

important to the function of the KF algorithm. 

 

 

1

x̂

ˆ ˆ ˆ(x ) (x ) (x )

hˆ(x )
x

T T
k k k k k k k k k k

k k
k

K P H H P H R

H

−− − − − −

−
−

� �= +
� �

∂≡
∂

 (3.5) 

 

 Initially, the 0P  matrix becomes kP−  and 0x̂( )t  becomes x̂k
− .  Once the Kalman gain 

matrix has been determined, it is used to correct the state estimation vector.  Beyond the initial 

period, the state estimation vector will be propagated by a model (shown later) which produces 

the a priori estimate.  This a priori estimate is corrected by the Kalman gain matrix acting on the 

difference between the predicted measurement and the actual measurement.  The new estimate is 

the a posteriori estimate which is given to the AGV because it is the best available estimate.  

The equation below demonstrates this process [4]. 

 

 ˆ ˆ ˆx x y h(x )k k k k kK+ − −� �= + −
� �
�  (3.6) 

 
 The information matrix is corrected by the following equation [4]. 

 

 ˆ(x )k k k k kP I K H P+ − −� �= −
� �

 (3.7) 

 
 Equation (3.7) demonstrates that the correction from the KF reduces the uncertainty of 

the estimation.  The kP+  matrix is referred to as the information matrix because it contains 

information vital to the KF.  The elements of the information matrix should be decreasing as 

time progresses; otherwise the solution will be unstable. 
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 The final step in the KF algorithm is the propagation.  The a posteriori estimates are 

used as the initial conditions to propagate to the next time step via an integration tool (see 

equation 3.8).   

 

 

x̂( )

ˆ ˆx( ) f (x( ),u( ), )

ˆ ˆ( ) (x( ), ) ( ) ( ) (x( ), ) ( ) ( ) ( )

fˆ(x( ), )
x

T T

t

t t t t

P t F t t P t P t F t t G t Q t G t

F t t

=

= + +
∂≡
∂

�

�  (3.8) 

 
The state estimates are propagated by the process model.  The information matrix is 

propagated by a form similar to the Riccati equation [4].  Recalling that ( )Q t  is the process 

noise covariance matrix, it can be seen in the information matrix propagation equation that the 

process noise will try to increase the uncertainty in the estimation.  The update in equation (3.7) 

reduces uncertainty in the estimates, whereas the propagation in equation (3.8) increases the 

uncertainty.  Therefore, it is desired to have the fastest measurement update rate possible to 

reduce the effect ( )Q t  has on the certainty of the estimates. 

The results of the propagation step are the a priori estimates, 1x̂k
−

+  and 1kP−
+ .  When a 

measurement is not available, there are no updates and thus the propagation continues.  Between 

measurements, the uncertainty in the estimates grows because the P  matrix is growing.   
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4.  SIMULATION 
 
 

The KF code was tested first in simulation and then in the AGV with the GPS and IMU.  

The general motion KF was the only model to be tested in the AGV.  The simulation tests are 

efficient in terms of time and resources.  Also, any problems that arise in the simulation can be 

fixed and do not endanger life or property.  Thus, it is important to mimic the environment that 

the AGV will encounter.  With the simulation, the truth is available and can be used to evaluate 

and tune the KF.  The simulation implements the process and measurement models required by 

the KF and adds the noise, bias and scale factor transformation errors (explained later). 

The displacements along the North, East and Down axes from the origin are defined as 

the position of the AGV.  However, GPS provides latitude, longitude and height above sea level.  

These need to be converted to displacements for use in the KF.  The transformation used is the 

following: 

 

 

2 sin
2

2 sin cos
2 2

c o
Earth

c o c o
Earth

o c

Lat Lat
N R

Lon Lon Lat Lat
E R

D H H

−� �= � �
	 


− −� � � �= � � � �
	 
 	 


= −

 (4.1) 

 
Where:  6366564.864EarthR m=  
 , , c c cLat Lon H  are the current latitude, longitude and height above sea level of 

the AGV, respectively 
 , , o o oLat Lon H  are the latitude, longitude and height above sea level of the 

origin of the Inertial Co-ordinate System, respectively (explained later) 
 

Starting with a simple example makes it much easier to debug both the simulation and 

the KF.  For this reason, the initial case that was simulated is 1-D motion.  Only one GPS 

position measurement (North) and one accelerometer measurement are available.  This case 

models the vehicle traveling in a straight line with no rotations.  Each measurement is corrupted 

with white, Gaussian noise with zero mean (the ideal noise characteristics for the KF).  Also, 

there is a bias applied to the accelerometer reading that, if uncompensated, will reduce the 

accuracy of the estimated positions and velocities very quickly.  This is known as integration 

error.  Also, the bias is simulated as having a random walk to make its dynamics more realistic.  
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A random walk is defined as the current value of the noise being dependent on the previous 

value.  It is unstable, but can be compensated for by the KF.  The model for a bias with random 

walk is the following [4]: 

 
 bµ η=�  (4.2) 

 
Where:  µ�  is the time-derivative of the bias and bη  is a random number 
 
 If bη  were zero, no random walk would exist.  The model used in the KF is the 
following [4]: 
 
 ˆ 0µ =�  (4.3) 

 
 This states that the KF assumes that the bias is constant thus the KF has no information 

about the bias dynamics.  However, the value of bη  is usually very small, on the order of e-7 for 

a good sensor, and thus the random walk of the bias is low.  The value of bη  is not known for 

the Watson Industries IMU.  The slower the random walk of the bias, the easier the KF can 

compensate for it. 

 The other corruption estimated by the KF is the scale factor transformation (SFT).  

When the accelerometer senses acceleration, the sensor outputs a voltage.  This is a V/g scaling.  

Then, the microcontroller inside the IMU applies the reverse scaling to provide a 13 bit number 

(plus a sign bit) proportional to the sensed acceleration to the communication port.  Thus, the 

SFT should be one in this configuration.  However, the sensor does not always apply the correct 

scaling to the sensed acceleration.  Estimating this variable instead of assuming it is one provides 

greater flexibility for the KF.  Since the value should be close to one this is the initial estimate. 
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 Once the 1-D case is solved and the results are satisfactory, the next step is to simulate 

the 2-D case.  For this, there are two GPS position measurements (North and East), two 

accelerometer measurements (x, y) and one ARS measurement.  This case models an AGV 

traveling on a flat plane, normal to the gravity vector of the Earth, while maintaining a perfectly 

upright orientation (no pitch or roll).  The ARS measurement is necessary because the 

accelerometers are measuring accelerations in a body-fixed co-ordinate system, which is not an 

inertial co-ordinate system.  The angular rate measurement provides information about the 

orientation of the vehicle (body) with respect to the inertial co-ordinate system. 

 The Inertial Co-ordinate System (ICS) is a plane normal to the gravity vector on the 

earth’s surface, having axes North, East and Down.  The origin of the ICS is a designated 

waypoint.  North, East and Down (in that order) define a right-hand co-ordinate system.  The 

Body-fixed Co-ordinate System (BCS) is based on SAE co-ordinates, having axes x, y and z, 

where +x is toward the front of the vehicle, +y is toward the passenger side and +z is down.  The 

origin of the BCS is the location of the IMU.  

The final case is the 3-D, or general case.  This includes three GPS position 

measurements (North, East and Down), three accelerometer measurements (x, y and z) and three 

ARS measurements (p, q and r).  This is the general (and most difficult) case.  It can be reduced 

to the 1-D or 2-D cases if appropriate assumptions are made.  The analysis will start with the 1-D 

case and finish with the 3-D case. 
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4.1  1-D Model 
 

The 1-D motion utilizes one accelerometer measurement and the GPS North position 

measurement.  The accelerometer measurement contains a bias that walks over time and a SFT 

error.  The GPS measurements were simulated as having a one-sigma error of one meter with 

zero mean.  There are no biases or SFT’s for the GPS measurements because they are not 

observable by the KF.  Differential GPS removes most of the bias in the position measurement.  

The IMU characteristics used for the simulation were based on the Watson Industries IMU-

BA604 [5] because it is the IMU currently available (located in table 3).  The final solution IMU 

will perform much better, but the additional development of the KF dynamics will change very 

little. 

The 1-D motion has the characteristics listed in table 2 and equations (4.4) through (4.8).  

These are the equations used in the simulation and are vital to the operation of the KF. 

 
 

Table 2.  List of states/parameters for 1-D case 
 

1( )x t  North position 

2 ( )x t  North velocity 

3( )x t  Bias in x-axis accelerometer 

4 ( )x t  SFT for x-axis accelerometer 

 
 

Model 
 

 
( )

1 2

2 4 3

3

4

( ) ( )

( ) ( ) ( )

( ) 0

( ) 0

k

x t x t

x t x t x x t

x t

x t

=

= −

=
=

�

��� �

�

�

 (4.4) 

 
 

Initial State Estimate Vector 
 

 [ ]0x̂( ) 0 25 0 1 Tt =  (4.5) 
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Measurement and Process Noise Covariance Matrices 
 

 2 2 2 2
, ,1 ,  ( ) (0.005 )k GPS N Acc xR v m Q t w g= = = =  (4.6) 

 
Process Noise Mapping Matrix 

 

 [ ]4( ) 0 ( ) 0 0 TG t x t=  (4.7) 
 

 
Initial Estimation Error Covariance Matrix 

 
 [ ]0 diag 0.5 0.5 0.005 0.005P =  (4.8) 
 
 
 The simulation was run for 200 seconds.  Multiple maneuvers were tested including 

constant acceleration, random acceleration and sinusoidal acceleration.  The results for the 

sinusoidal acceleration are shown in this thesis.  The path of the vehicle along the North axis can 

be seen in figure 1 and is shown in equation (4.9). 

 

 ( ) 200sin 2
50
t

N t π� �= � �
	 


 (4.9) 

 
Figures 2-6 show that the KF requires some time to converge while it is getting educated 

about the dynamics of the system.  After approximately 60 seconds the bias and SFT have 

converged and the filtered outputs are very close to the truth.  Again, the truth is not known in 

the real world, but the simulation knows the truth and thus the error can be calculated.  Figure 2 

displays the North position estimation error.  Figure 3 displays the error of the North velocity 

estimate.  Figure 4 displays the error of the x-axis accelerometer bias estimate.  Figure 5 displays 

the SFT percentage error of x-axis accelerometer estimate.  Figure 6 displays the random walk of 

the x-axis accelerometer. 
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Figure 1.  True North position of AGV for 1-D case 
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Figure 2.  North position estimation error for 1-D case 
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Figure 3.  North velocity estimation error for 1-D case 

 
 

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

Simulation Time [sec]

x-
ax

is
 A

cc
el

er
om

et
er

 B
ia

s 
E

st
im

at
io

n 
E

rro
r [

m
g]

 
Figure 4.  x-axis accelerometer bias estimation error for 1-D case 
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Figure 5.  x-axis accelerometer SFT percentage error for 1-D case 
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Figure 6.  Random walk of x-axis accelerometer bias for 1-D case 
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The expected values (or standard deviation) for the estimate errors were taken after 100 

seconds.  The statistics for the 1-D model are given in table 3. 

 
 

Table 3.  Statistical data for truth and state estimations for 1-D case 
 

Standard Deviation (SD) of GPS North position 
measurement error 1m  

SD of North position estimation error 0.15m  

SD of North velocity estimation error 0.04m s  

SD of x-axis accelerometer noise 5mg  

SD of x-axis accelerometer bias-rate noise 0.0001g s  

True initial value of x-axis accelerometer bias 20mg  
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4.2  2-D Model 
 

The 2-D motion utilizes two accelerometer measurements, two GPS position 

measurements and one angular rate measurement.  The two accelerometer measurements 

available are along the body-fixed x and y axes.  The two GPS position measurements are along 

the North and East axes.  The angular rate measurement is about the body-fixed z axis.  In order 

to use the body-fixed accelerometer and angular rate measurements, the Direction Cosine Matrix 

(DCM) is developed.  This relates the orientation of the AGV in the ICS. 

Before the DCM can be developed, the order of rotations must be defined.  Even though 

this 2-D case has only one rotation, it will be necessary in the next section (3-D) to have a sound 

understanding of the remaining rotations.  The first rotation is yaw.  Yaw is the angle in the N-E 

plane from the North axis to the projection of the body-fixed x axis onto the N-E plane.  The 

other rotations (pitch and roll) will be discussed in Section 4.3.  Therefore, the DCM for the 2-D 

case is given by (4.10) (with yaw being ψ ): 

 

 
cos( ) sin( ) 0
sin( ) cos( ) 0

0 0 1

BCS
ICSDCM

ψ ψ
ψ ψ

� �
� �= −� �
� �� �

 (4.10) 

 
Note that the time notation has been removed but it is implied that each state fluctuates 

through time.  A vector with components expressed in the ICS can be converted to components 

expressed in the BCS by multiplying it by BCS
ICSDCM .  For the reverse, the DCM must be 

transposed.  In order to relate the body-fixed angular rates from the IMU to the Euler rates (yaw 

rate, pitch rate and roll rate) some additional work is required.  For this 2-D case, it is trivial.  

The body-fixed angular rate about the z axis is the yaw rate, i.e.: 

 
 r ψ= �  (4.11) 

 
For the 3-D case it will not be trivial.  The step-by-step operation for the 3-D case will 

be presented in section 4.3.  Once the Euler rates are known, they can be integrated to provide 

the Euler angles (yaw, pitch and roll). 

For direction cosine matrices the inverse is the transpose because it is an orthogonal 

matrix.  Therefore, the matrix ICS
BCSDCM  is the transpose of BCS

ICSDCM , where the superscript 
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denotes the desired co-ordinate system, and the subscript the previous co-ordinate system.  These 

matrices are used extensively throughout this thesis; therefore, it is essential to understand the 

notation.  The characteristics and functions for the 2-D motion are listed in table 4 and equations 

(4.12) through (4.16). 

 
 

Table 4.  List of states/parameters for 2-D case 
 

1x  North position 

2x  East position 

3x  North velocity 

4x  East velocity 

5x  Yaw (ψ ) 

6x  Bias in x-axis accelerometer 

7x  Bias in y-axis accelerometer 

8x  Bias in z-axis ARS 

9x  SFT for x-axis accelerometer 

10x  SFT for y-axis accelerometer 

11x  SFT for z-axis ARS 
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Model 
 

 
( )
( )

( )

1 3

2 4

9 63

4 10 7

5 11 8

6 11 0

ICS
BCS

x x

x x

x x xx
DCM

x x y x

x x r x

x −

=
=

� �−� � � �=� � � �−� � � �

= −
=

�

�

����

� ���

� �

�

 (4.12) 

 
 

Initial State Estimate Vector 
 

 [ ]0x̂( ) 0 0 25 5 0 0 0 0 1 1 1 Tt =  (4.13) 
 

 
Measurement and Process Noise Covariance Matrices 

 

 

2 2 2 2
, ,

2 2 2
, ,

2 2 2

diag diag 1 1

 ( ) diag

( ) diag (0.005 ) (0.005 ) (0.05 )

k GPS N GPS E

Acc x Acc y r

R v v m m

Q t w w w

Q t g g s

� � � �= =
� � � �

� �=
� �

°� �∴ =
� �

 (4.14) 
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Process Noise Mapping Matrix 
 

 

9 5 10 5

9 5 10 5

11

0 0 0
0 0 0

cos( ) sin( ) 0
sin( ) cos( ) 0

0 0
( ) 0 0 0

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

x x x x

x x x x

x
G t

� �
� �
� �
� �−
� �
� �
� �
� �

= � �
� �
� �
� �
� �
� �
� �
� �
� �

 (4.15) 

 
 

Initial Estimation Error Covariance Matrix 
 

0

.5 0 0 0 0 0 0 0 0 0 0
0 .5 0 0 0 0 0 0 0 0 0
0 0 .5 0 0 0 0 0 0 0 0
0 0 0 .5 0 0 0 0 0 0 0
0 0 0 0 .005 0 0 0 0 0 0
0 0 0 0 0 .005 0 0 0 0 0
0 0 0 0 0 0 .005 0 0 0 0
0 0 0 0 0 0 0 .005 0 0 0
0 0 0 0 0 0 0 0 .005 0 0
0 0 0 0 0 0 0 0 0 .005 0
0 0 0 0 0 0 0 0 0 0 .005

P

� �
� �
� �
� �
� �
� �
� �
� �

= � �
� �
� �
� �
� �
� �
� �
� �
� �

 (4.16) 

 
Or can be defined as: 

 
0 0(diag(1-4)) 0.5,  (diag(5-11)) 0.005P P= =  

To simulate the measurements, the truth was generated by maneuvering the vehicle in  

2-D space.  There were three maneuvers that were tested.  The first used random numbers for the 

two accelerations.  The second modeled the AGV driving in a circle.  For the final maneuver the 

vehicle path was a sinusoid with the function shown in equation (4.17).   
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( ) 200sin 2

250
( ) 5

E
N t

E t t

π� �= � �
	 


=
 (4.17) 

 
There are 15 figures for the 2-D case because of the addition of an accelerometer 

measurement, an ARS measurement and a GPS position measurement.  Each of these increases 

the complexity of the system, which is one reason for discussing each of the cases separately, as 

opposed to displaying the 3-D case only.  Figure 7 shows the true path of the AGV in the N-E 

plane.  Figure 8 displays the North position estimation error.  Figure 9 displays the East position 

estimation error.  Figure 10 displays the error of the North velocity estimate.  Figure 11 displays 

the error of the East velocity estimate.  Figures 12 and 13 display the errors of the x and y-axis 

accelerometer bias estimates, respectively.  Figure 14 shows the error of the z-axis ARS bias 

estimate.  Figure 15 shows how well the yaw angle was estimated.  Figures 16, 17 and 18 show 

the percentage error of the SFT estimates for the three IMU measurements.  Finally, Figures 19, 

20 and 21 demonstrate the random walk of the three IMU measurements that were compensated 

for by the KF.  Also, table 5 includes the statistics of the simulation (both truth and estimates). 
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Figure 7.  True motion of AGV in N-E plane for 2-D and 3-D cases 
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Figure 8.  North position estimation error for 2-D case 
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Figure 9.  East position estimation error for 2-D case 
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Figure 10.  North velocity estimation error for 2-D case 
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Figure 11.  East velocity estimation error for 2-D case 
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Figure 12.  Yaw estimation error for 2-D case 
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Figure 13.  x-axis accelerometer bias estimation error for 2-D case 
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Figure 14.  y-axis accelerometer bias estimation error for 2-D case\ 
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Figure 15.  z-axis ARS bias estimation error for 2-D case 
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Figure 16.  x-axis accelerometer SFT percentage error for 2-D case 
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Figure 17.  y-axis accelerometer SFT percentage error for 2-D case 

 



 33 

0 20 40 60 80 100 120 140 160 180 200
-12

-10

-8

-6

-4

-2

0

2

Simulation Time [sec]

z-
ax

is
 A

R
S

 S
FT

 E
rro

r [
%

]

 
Figure 18.  z-axis ARS SFT percentage error for 2-D case 

 
 

0 20 40 60 80 100 120 140 160 180 200
19.94

19.96

19.98

20

20.02

20.04

20.06

20.08

20.1

Simulation Time [sec]

Tr
ue

 x
-a

xi
s 

A
cc

el
er

om
et

er
 B

ia
s 

[m
g]

 
Figure 19.  Random walk of x-axis accelerometer bias for 2-D case 
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Figure 20.  Random walk of y-axis accelerometer bias for 2-D case 
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Figure 21.  Random walk of z-axis ARS bias for 2-D case 
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Table 5.  Statistical data for truth and state estimations for 2-D case 
 

SD of North and East position measurement errors 1m  
SD of North and East position estimation errors 0.15m  
SD of North and East velocity estimation errors 0.05m s  

SD of Yaw estimation error 0.15°  
SD of x,y-axes accelerometers noises 5mg  

SD of x,y-axes accelerometers bias-rate noises 0.0001g s  

True initial value of x,y-axes accelerometers biases 2mg  

SD of z-axis ARS noise 0.05 s°  

SD of z-axis ARS bias-rate noise 20.002 s°  

True initial value z-axis ARS bias 0.1 s°  
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4.3  3-D Model 
 

The general model has six degrees of freedom.  The AGV can translate in the North, 

East and Down directions, as well as rotate about the x, y and z axes.  The measurements 

available are the three GPS position measurements (N, E and D), the three accelerometer (x, y 

and z) measurements and three ARS measurements (p, q and r).  The DCM for the general case 

is much more complex than the two-dimensional case because the AGV can pitch and roll for the 

3-D case.  The order of rotation is yaw (ψ ), pitch (θ ) and then roll (φ ).  Thus, the DCM for 

general motion, using the order specified is the following: 

 

 BCS
ICS roll pitch yawDCM A A A=  (4.18) 

 
Where: 

 

1 0 0
0 cos( ) sin( )
0 sin( ) cos( )

cos( ) 0 sin( )
0 1 0

sin( ) 0 cos( )

cos( ) sin( ) 0
sin( ) cos( ) 0

0 0 1

roll

pitch

yaw

A

A

A

φ φ
φ φ

θ θ

θ θ
ψ ψ
ψ ψ

� �
� �= � �
� �−� �

−� �
� �= � �
� �� �

� �
� �= −� �
� �� �

 (4.19) 

 
Therefore,  

 
c s c

BCS
ICS

c c s c s

DCM c s s s c s s s c c c s

s s s s c c s c c

ψ θ ψ θ θ
ψ θ φ ψ φ ψ θ φ ψ φ θ φ
ψ θ φ ψ φ ψ θ φ ψ φ θ φ

−� �
� �= − +� �
� �+ −� �

 (4.20) 

 
Where:  cos( ),  sin( )c sψ ψ ψ ψ= = , etc… 
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In order to acquire the Euler rates from the body-fixed angular rates (p, q and r), a step-

by-step analysis using the order of the rotations must be performed.  The following demonstrates 

this process: 

 
Step 1:  Determine the order of rotations and the axes about which they rotate 

 

 
about D axis

about E' axis

about N'' axis

 
 
 

ψ
θ
φ

 (4.21) 

 
 

Step 2:  Determine the body-fixed angular velocities for each of the rotations 
 

 

' {0} '{0} '{ } '

'' { sin( )} ''{ } ''{ cos( )} ''

''' { } { } { }

sin( )

cos( ) cos( )sin( )

sin( ) cos( )cos( )

BCS

N E D

N E D

p x q y r z

p

q

r

ω ψ
ω ψ θ θ ψ θ

ω ω
φ ψ θ

θ φ ψ θ φ
θ φ ψ θ φ

= + +

= − + +
= = + +

= −

= +

= − +

�

�� �

� �

� �

� �

 (4.22) 

 
Where: ' { } '.....a Nω = +  denotes that “a” is the scalar value of the 'N  component of the 

vector 'ω  

 
 

Step 3:  Put solution into matrix format 
 

 
0 1

0

0

p s

q c s c

r c c s

θ ψ
θ φ φ θ
θ φ φ φ

−� � � � � �
� � � �� �=� � � �� �
� � � �� �−� � � �� �

�

�

�

 (4.23) 
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Step 4:  Invert the 3x3 matrix to obtain the Euler Rates 
 

 

0

0
1

s c
pc c

c s q

t s t c r

φ φ
ψ θ θ
θ φ φ
φ θ φ θ φ

� �
� �� � � �
� �� � � �= −� �� � � �
� �� � � �� � � �� �
� �

�

�

�

 (4.24) 

 
Where:  tan( )tθ θ=  
  

 Once the Euler rates are available, they can be integrated (using initial conditions) to 

obtain the Euler angles.  Several elements of the transformation matrix of equation (4.24) are 

undefined for θ = ± 90° which corresponds to the AGV pitching ± 90° which will not occur for 

normal operations.  The AGV may roll or yaw to any position and not cause any mathematical 

singularities. 

 The general motion consists of 21 states/parameters.  The first nine components are the 

system states which include North, East and Down positions/velocities, as well as the yaw, pitch 

and roll angles.  The next 12 components are the system parameters which include the biases and 

SFT’s for the accelerometers and ARS’s along and about the x, y and z axes, respectively.  The 

definitions are in table 6. 
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Table 6.  List of states/parameters for 3-D case 
 

1x  North position 

2x  East position 

3x  Down position 

4x  North velocity 

5x  East velocity 

6x  Down velocity 

7x  Yaw (ψ ) 

8x  Pitch (θ ) 

9x  Roll (φ ) 

10x  Bias in x-axis accelerometer 

11x  Bias in y-axis accelerometer 

12x  Bias in z-axis accelerometer 

13x  Bias in x-axis ARS 

14x  Bias in y-axis ARS 

15x  Bias in x-axis ARS 

16x  SFT for x-axis accelerometer 

17x  SFT for y-axis accelerometer 

18x  SFT for z-axis accelerometer 

19x  SFT for x-axis ARS 

20x  SFT for y-axis ARS 

21x  SFT for z-axis ARS 
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With the general motion, the gravity model must now be included.  The accelerometers 

will sense and output the gravitational component which must be compensated for by the KF.  

Therefore, the general motion accelerometer models (and the ARS models) are the following: 

 

 

( )
( )
( )

( )
( )
( )

16 10 8

17 11 8 9

18 12 8 9

19 13

20 14

21 15

sin( )

cos( )sin( )

cos( )cos( )

x x x x g x

y x y x g x x

z x z x g x x

p x p x

q x q x

r x r x

= − −

= − +

= − +

= −

= −

= −

���� �

���� �

���� �

�

�

�

 (4.25) 

 
The KF has to compensate for six biases, six SFT’s and three gravitational components 

while the system is dynamic.  This is why it is an extraordinary filter.  As the system has become 

more complex, it becomes more sensitive to noise and inaccuracies.  The functions used by the 

KF are shown in equations (4.24) through (4.28). 
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 (4.26) 

 
Initial State Estimate Vector 

 

 
[ ]

[ ]
0

0

x̂( ,1 9) 0 0 0 25 5 0 0 0 0

x̂( ,10 21) 0 0 0 0 0 0 1 1 1 1 1 1

T

T

t

t

− =

− =
 (4.27) 

 



 41 

Measurement and Process Noise Covariance Matrices 
 

 

2 2 2
, , ,

2 2 2 2
, , ,

2 2 2 2 2 2
, , ,

2 2 2 2 2 2 2 2
, , ,

diag

diag

1

 ( )

(0.005 ) ,  (0.05 )

k GPS N GPS E GPS D

GPS N GPS E GPS D

Acc x Acc y Acc z p q r

Acc x Acc y Acc z p q r

R v v v

v v v m

Q t w w w w w w

w w w g w w w s

� �=
� �

= = =

� �=
� �

°= = = = = =

 (4.28) 

 
 

Process Noise Mapping Matrix 
 

 

41 42 43

51 52 53

61 62 63

9 9
20 21

8 8

9 20 9 21

19 8 9 20 8 9 21
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 (4.29) 

 

Where:        
41 42 43 16

51 52 53 17

61 62 63 18

0 0
0 0
0 0

ICS
BCS

G G G x

G G G DCM x

G G G x

� � � �
� � � �=� � � �
� � � �� � � �

 

Initial Estimation Error Covariance Matrix 
 

 0 0

0

(diag(1 6)) 0.5, (diag(7 12,16 18)) 0.05

(diag(13 15,19 21)) 0.005

P P

P

− = − − =
− − =

 (4.30) 
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 Simulating the GPS North and East positions was based on the same maneuver as in the 

2-D case.  The GPS Down position as well as the pitch and roll angles were based on sinusoidal 

motions shown in equation (4.31).  Refer to figure 22 for the true Down position as a function of 

time.  Figures 23 and 24 are the true pitch and roll angles of the AGV.  Several different 

combinations of frequencies and amplitudes were used to reasonably simulate the pitching and 

rolling of the AGV. 

 

 

( )

( ) 4.5cos 5cos
3 5

( ) 1.2cos 3.6sin
2 3

( ) 1.2cos 3.6sin
2

t t
D t

t t
t

t
t t

θ

φ

� � � �= − +� � � �
	 
 	 


� � � �= − −� � � �
	 
 	 


� �= − − � �
	 


 (4.31) 

 
The solution for the general motion is presented in 30 figures.  Figures 25 through 27 

demonstrate both the stability and the accuracy of the North, East and Down position estimates 

from the KF.  Figures 28 through 30 show the respective North, East and Down velocity 

estimation errors.  Figures 31 through 33 represent the errors in the Euler angle estimates.  

Notice that yaw is the least accurate of the three.  This is because the yaw is the least observable 

of the three angles.  If a magnetometer were used to observe the yaw directly, the yaw estimate 

would be as good as the pitch and roll estimates, or better.  Figures 34 through 39 show how the 

KF is estimating the acceleration and ARS biases, which are randomly walking.  Figures 40 

through 45 show the SFT estimate percentage errors for all six IMU measurements.  Figures 46 

through 51 represent the true accelerometer and ARS biases to give an idea of how much they 

are walking.  Also, table 7 includes the statistical information for the results. 
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Figure 22.  True Down position of AGV 
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Figure 23.  True pitch of AGV 
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Figure 24.  True roll of AGV 
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Figure 25.  North position estimation error for 3-D case 
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Figure 26.  East position estimation error for 3-D case 
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Figure 27.  Down position estimation error 
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Figure 28.  North velocity estimation error for 3-D case 
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Figure 29.  East velocity estimation error for 3-D case 
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Figure 30.  Down velocity estimation error 
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Figure 31.  Yaw estimation error for 3-D case 
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Figure 32.  Pitch estimation error 
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Figure 33.  Roll estimation error 
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Figure 34.  x-axis accelerometer bias estimation error for 3-D case 
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Figure 35.  y-axis accelerometer bias estimation error for 3-D case 
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Figure 36.  z-axis accelerometer bias estimation error 
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Figure 37.  x-axis ARS bias estimation error 
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Figure 38.  y-axis ARS bias estimation error 
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Figure 39.  z-axis ARS bias estimation error for 3-D case 
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Figure 40.  x-axis accelerometer SFT percentage error for 3-D case 
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Figure 41.  y-axis accelerometer SFT percentage error for 3-D case 
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Figure 42.  z-axis accelerometer SFT percentage error 
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Figure 43.  x-axis ARS SFT percentage error 
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Figure 44.  y-axis ARS SFT percentage error 
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Figure 45.  z-axis ARS SFT percentage error for 3-D case 
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Figure 46.  Random walk of x-axis accelerometer bias for 3-D case 
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Figure 47.  Random walk of y-axis accelerometer bias for 3-D case 
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Figure 48.  Random walk of z-axis accelerometer bias 
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Figure 49.  Random walk of x-axis ARS bias 
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Figure 50.  Random walk of y-axis ARS bias 
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Figure 51.  Random walk of z-axis ARS bias for 3-D case 
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Table 7.  Statistical data for truth and state estimations for 3-D case 
 

SD of North, East and Down position measurement 
errors 1m  

SD of North, East and Down position estimation 
 errors [ ]0.17 0.22 0.15m m m  

SD of North, East and Down velocity estimation 
 errors [ ]0.06 0.09 0.04m s m s m s  

SD of Yaw estimation error 0.14°  
SD of Pitch estimation error 0.05°  
SD of Roll estimation error 0.07°  

SD of x,y,z-axes accelerometer noises 5mg  

SD of x,y,z-axes accelerometers bias-rate noises 0.0001g s  

True initial value of x,y,z-axes accelerometer biases 20mg  

SD of x,y,z-axes ARS noises 0.05 s°  

SD of x,y,z-axes ARS bias-rate noises 20.002 s°  

True initial value x,y,z-axes ARS biases 0.1 s°  
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5.  REAL-TIME IMPLEMENTATION ON THE AGV 
 
 
 The majority of the code written in MatLab was for producing simulated measurements 

that were used by the KF.  In reality, the measurements are produced by the GPS and IMU as the 

truck interfaces with the world.  Therefore, the sections of the MatLab code that are required 

only for the simulation were not converted to C++.  The other sections (KF and integration tool) 

were converted to C++ but required additional code to communicate with the hardware.  Caleb 

Wells and Justin Bozalina (the computer scientists on the project) were of great help with 

communicating with the hardware and writing the C++ code.  Appendix A contains the MatLab 

code, Appendix B contains the C++ code, Appendix C provides the global mapping 

transformations and Appendix D provides the necessary steps to start the INS and conduct 

testing. 

 Once the KF/IMU/GPS system was integrated, the tuning process began.  The North, 

East and Down (NED) position of the AGV is measured by GPS (once the latitude, longitude 

and height above sea level have been converted).  The KF solution for the NED position is 

therefore more robust than for the other states, which are not directly measured.  The most 

difficult parameters to converge (through multiple updates from KF) were the biases and SFT’s 

of the IMU because they are not propagated by the Runge-Kutta differential equation solver and 

therefore are only adjusted once the KF algorithm runs every 0.05 seconds.  During GPS signal 

loss, these estimates do not change.  They also directly affect the accuracy of the Euler angles. 

 It is very difficult to validate the KF estimates because the truth is not known. The most 

accurate measurements available are being used as inputs to the KF.  Therefore, there is no 

reference by which the accuracy of the KF estimates can be measured. However, the 

precision/repeatability of the estimates can be demonstrated.  Therefore, three tests were used to 

demonstrate the accuracy of the KF information.   

The first test demonstrates the repeatability of the NED position estimate.  The second 

shows the precision of the Yaw estimate.  The third test included the mapping of an object onto 

the global map using the KF information and mapping transformations of Appendix C.  In 

addition to these tests, there will also be intentional GPS blockages to show the drift of the 

model’s solution.  Also, the convergence of the biases and SFT’s will be shown for 

completeness. 
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There is initialization required for each of these tests.  The first step is to identify the 

origin of the ICS.  The AGV will always start from this position for all the tests.  Before the 

vehicle starts its run, the location of the tires is marked on the runway with the origin as the 

location of the IMU.  The AGV will return to this position at the end of all tests. 

 
 
5.1  Repeatability of NED position estimate 
 

In order to test the repeatability of the NED position estimate from the KF, the vehicle 

returns to the origin where the precision error is calculated.  The AGV returned to the origin 

within 11 cm along the North axis, 19 cm along the East axis and 8 cm along the Down axis.  

This test was performed many times with consistent results.  The AGV initially traveled North 

on runway 35R and then turned clockwise.  The vehicle then traveled northeast approaching the 

flight lab and returned along the same path, now traveling southwest.  The AGV then traveled 

north for approximately 600 meters followed by a u-turn to travel south.  The vehicle finished 

the test by approaching the origin from the South.  Figure 52 shows the path of the AGV on the 

North-East plane. 
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Figure 52.  Path of AGV on the North-East plane 
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Once the AGV returned to the origin, the GPS signal was intentionally blocked for 61 

seconds.  The NED position estimates drifted due to the integration of uncompensated biases in 

the IMU.  The NED position estimates drifted 66 meters, 30 meters and 9 meters over 61 

seconds, respectively, indicating uncompensated biases in the x, y and z axis accelerometers of 

3.6 mg, 1.6 mg and 0.5 mg.  The yaw, pitch and roll angles drifted by 0.2°, 0.9° and 0.01°, 

respectively.  If the GPS signal was blocked for 10 seconds, the drift in the NED position 

estimates would have been 1.8 meters, 0.8 meters and 0.25 meters, respectively. 

 
 

5.2  Accuracy of the yaw angle estimate 
 
 Determining the accuracy of the yaw angle was one of the most difficult tasks in tuning 

the KF.  The yaw angle is one of the most important states used by the controller and mapping 

software.  To test the validity of the estimate, it has to be compared with the truth.  At the 

Riverside campus, runway 35R has painted traffic lines that are parallel to North and South 

within 0.1°. 

 The offset in the runway was determined by driving the AGV parallel to these traffic 

lines and logging the GPS position information.  After 600 meters, the East position drifted by ~ 

1 meter indicating an overall offset of 0.1° clockwise about the D axis.  This is the best reference 

available for determining the error in the yaw angle estimate. 

The path of the AGV was shown in figure 52.  The best yaw angle estimates were 

available at the end of the run and were taken while driving North and South.  While driving 

north, the yaw angle estimate was between 359.2° and 359.9°.  While driving south, the yaw 

angle estimate was between 179.4° and 179.8°.  The plot of the yaw angle estimate for this 

section of the run is in figure 53. 

The yaw angle estimates above indicate that there is an offset between the body-fixed x-

axis of the IMU and the axis of the AGV that is parallel to the wheelbase and pointing forward.  

The Euler angle estimates provided by the KF are with respect to the IMU body-fixed co-

ordinate system.  It is impossible to mount the IMU such that all offsets are eliminated; rather, 

they are included when the state information is provided to the mapping and path control 

software.  The exact offsets are not known but can be estimated (though not very well because 

the true orientation of the AGV is not known).  For the yaw, it is estimated that the offset is 0.4° 
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meaning that the x-axis of the IMU is pointing 0.4° counter-clockwise from the centerline of the 

AGV. 
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Figure 53.  Yaw angle estimate of AGV during North to South and South to North operation 

 
 
5.3  Precision of mapping solution 
 
 The final test was the most comprehensive.  If multiple observations of an object are 

mapped within close proximity to one another (and to the correct location) then the information 

provided by the KF meets the performance requirements associated with obstacle mapping of the 

AGV project.  The object mapped was a box measuring four meters by two meters and two 

meters in height. 

 For the final test, the AGV again started at the origin and was driven North for 200 

meters and then performed a u-turn to drive South for an additional 400 meters.  The AGV then 

performed another u-turn to approach the origin where it was stopped 10 meters to the East of 

the origin.  The box was then rolled over the origin to make it easier to see its mapped location.  

The AGV then continued to drive North and performed another u-turn to head South.  The 

vehicle then performed one last u-turn before the mapping process began, wherein the AGV was 

now approaching the box from the South. 
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 Once the AGV was within 50 meters of the box, the time stamped returns from the SICK 

were logged.  The SICK LMS [6] had a fixed sweep angle of -7° in order that the ground was 

contacted at ~ 20 meters.  The box was mapped multiple times with the precision of these 

multiple observations being one meter (open the “mapping.avi” movie file in Appendix E to 

view the video demonstrating the mapping of this box). 

 
 
5.4  State/Parameter estimates 
 
 There are an additional 18 figures included in this section.  Figures 54 through 56 show 

the yaw, pitch and roll angle estimates.  Figures 57 through 59 show the bias estimates for the x, 

y and z-axis accelerometers, respectively.  Figures 60 through 62 show the bias estimates for the 

x, y and z-axis ARS’s, respectively.  Figures 63 through 65 display the SFT estimates for the x, y 

and z-axis accelerometers, respectively.  Figures 66 through 68 display the SFT estimates for the 

x, y and z-axis ARS’s, respectively. 
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Figure 54.  Yaw angle estimate 
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Figure 55.  Pitch angle estimate 
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Figure 56.  Roll angle estimate 
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Figure 57.  x-axis accelerometer bias estimate 
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Figure 58.  y-axis accelerometer bias estimate 
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Figure 59.  z-axis accelerometer bias estimate 
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Figure 60.  x-axis ARS bias estimate 
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Figure 61.  y-axis ARS bias estimate 
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Figure 62.  z-axis ARS bias estimate 
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Figure 63.  x-axis accelerometer SFT estimate 
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Figure 64.  y-axis accelerometer SFT estimate 
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Figure 65.  z-axis accelerometer SFT estimate 
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Figure 66.  x-axis ARS SFT estimate 
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Figure 67.  y-axis ARS SFT estimate 
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Figure 68.  z-axis ARS SFT estimate 
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5.5  Tuning parameters comparison between real case and 3-D simulation case 
 
 The diagonal elements of the real 0P  matrix had values much higher than the diagonal 

elements of the 0P  matrix for the 3-D simulation (as can be seen in section 4.3).  The same is 

true for the diagonal elements of ( )Q t .  The higher values indicate that there is more uncertainty 

in the IMU measurements for the real case.  There is less certainty in the IMU measurements for 

multiple reasons.  One reason is that the ideal noise characteristics used in the simulation are not 

present in the real measurements.  Another reason for the discrepancy is that the biases were 

more active in the real IMU, which makes it more difficult for the KF to converge.  Also, the real 

IMU measurements were corrupted with more noise than what the simulation included.  

However, the simulations still provided insight into how the KF reacts to the tuning parameters.  

Without this knowledge, it would have been much more difficult to arrive at the converged 

solution.  The 0P , kR  and ( )Q t  matrices are defined in equations (5.1) through (5.3) below. 
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Process Noise Covariance Matrix 
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5.6  Comparison of results with performance requirements 
 
 The first performance requirement of the navigation system was to provide six Hz 

updates of state information to the path controller, to the data frequency required to maintain a 

maximum stable vehicle speed of 40+ mph.  The update rate provided by the navigation system 

is currently 71 Hz which is the update rate of IMU measurements to the KF.  Therefore, the 

navigation system has satisfied the first performance requirement. 

 The second performance requirement of the navigation system was to provide a NED 

position error of less than 1/3 meter and yaw angular position error less than 0.5°.  The NED 

position solution from the KF follows the differential GPS position closely because it is the most 

accurate position measurement available.  The horizontal error of the NED position solution was 

11 cm along the North axis and 19 cm along the East axis which is better than the 33 cm 

performance requirement.  Also, the average yaw angle estimation error (excluding the offset) 

was 0.4° even though it was impossible to maintain a perfectly straight path along the traffic 

lines on runway 35R.  Therefore, the second performance requirement has been satisfied. 

 The third performance requirement of the navigation system was that the IMU must 

have accelerometers and ARS’s capable of sensing ± 10 g and ±  200°/s, respectively.  The 

Watson Industries BA-604 IMU does not meet these requirements.  This IMU is capable of     

± 2 g and ± 100°/s.  However, the Ring Laser Gyroscope (RLG) IMU discussed later will be 

capable of satisfying these requirements. 

 The fourth performance requirement of the navigation system was that it must include a 

KF that is capable of fusing the IMU/GPS information.  A KF is required to provide all the 

necessary state information (NED position/velocity as well as orientation) which is mostly not 

available from GPS or IMU alone.  Since the major contribution of this thesis was the 

development of the KF, this performance requirement is satisfied. 
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 The fifth performance requirement of the navigation system was that the drift rate of the 

Euler angles be less than 30°/hr.  When there is a momentary loss in the GPS signal, the 

navigation solution provided by the KF will drift.  As was shown earlier, after one minute the 

drift in the Euler angles can be between 0.01° and 0.9°.  Since the yaw angle is used as the 

benchmark, the drift rate of the navigation solution was 12°/hr.  Therefore, the fifth performance 

requirement has been satisfied.  

 The next two performance requirements were that the differential GPS must be available 

in the Mojave Desert and that the communication from C++ to the hardware must be serial or 

TCP/IP.  The differential GPS signal used by the navigation system is provided by OmniSTAR 

and is available in the Mojave Desert.  The communication between the hardware and C++ was 

serial.  Therefore, the sixth and seventh performance requirements have been satisfied. 

 The last performance requirement of the navigation system was that the hardware must 

have shock survivability greater than 20 g for 5 ms.  This information has not been provided by 

Watson Industries, therefore it is unknown if it meets the requirements.  However, during the 

operation of the AGV, the hardware did survive the vibrations.  Nonetheless, the last 

performance requirement has not been satisfied. 

 The current navigation system does not meet all the performance requirements.  

However, with the replacement of the current IMU with the IMU in the SPAN # 2 package 

(Honeywell G2-H58) these requirements will be satisfied.  However, the failed performance 

requirements did not hinder the overall performance of the INS.  The accelerations and angular 

rates sensed by the IMU were never above its maximum range.  Also, the IMU survived the 

vibrations it experienced during the operation of the AGV on the runways at Riverside.  

However, the runway environment does not fully define the strength of vibrations that the AGV 

can experience in an off-road or less smooth environment. 
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6.  CONCLUSIONS 
 
 
 The current navigation system is sufficient for following waypoints, as was the previous 

INS.  However, the current INS also can withstand a loss in GPS signal for no more than 10 

seconds where the NED position estimates will drift by at most two meters.  With the orientation 

information provided by the current INS, a locally ‘global’ map of the terrain is possible which 

is the first step toward identifying obstacles that the AGV must avoid. 

 The current INS does not satisfy all the performance requirements developed through the 

design analysis.  However, all of the performance requirements would be satisfied by the 

integration of the Honeywell G2-H58 RLG IMU into the INS.  The accuracy of the Euler angles 

and the drift associated with the biases of the three accelerometers and three ARS’s will be 

improved significantly.  With the biases more accurately estimated, the INS could withstand a 

longer GPS signal loss.  

 The simulations developed in this thesis helped tremendously in learning the behavior of 

the KF, especially when adjusting the tuning parameters.  Also, the simulations show the 

observability of each of the states/parameters (whether or not they can be estimated).  Without 

these simulations, it would have been much more difficult with respect to time and effort to 

develop an INS that performed as well as the current INS. 

 The KF is a very useful tool for navigation.  Without the KF, the biases of the IMU 

sensors would not be estimated.  Integrating the IMU measurements with these biases would 

introduce integration errors that would render the navigation solution useless.  If the biases were 

fully known, there is still noise in the measurements that affect the accuracy of the solution.  The 

KF essentially provides the most accurate solution possible. 
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7.  SUMMARY 
 
 

The design analysis was a crucial step in this project.  It was intentionally placed in the 

beginning of this thesis because it should be the first step in solving a problem.  The needs 

statement focuses on posing the problem correctly, in order that any ambiguity is removed.  The 

functional/performance requirements present the necessary requirements a candidate solution 

must possess, and how well it must perform them.  Much time is spent analyzing the problem to 

determine the levels of performance required of the design. 

Once the framework for the solution was developed, some background on the KF was 

presented.  The KF is a tool which has many applications.  For navigation, it can take body-fixed 

accelerations and angular-rates, along with an inertial linear position update and provide linear 

positions/velocities as well as the yaw, pitch and roll angles of the AGV.  If there were no data 

corruption by noise, biases and/or SFT’s, a KF would not be required.  The measurement data 

could be simply integrated and arrive at the true solution.  However, all measurements are 

corrupted and thus the use of a KF is warranted. 

The simulations developed in section four were used to confirm that the KF could indeed 

provide a viable navigation solution.  Even though the truth was available, it was corrupted 

before it was sent to the KF, mimicking a real measurement.  Since the truth was known, the 

solution provided by the KF could be evaluated, a luxury not available in reality. 

Appendix C described the obstacle mapping process in detail and provided definitions of 

the Euler angles (yaw, pitch and roll).  It is very important that every system on the AGV that 

requires orientation uses the correct order and definitions of the Euler angles.  Along with the 

orientation definitions, the vector analysis for mapping a SICK return onto the global map is also 

critical to the operation of the AGV.  If the mapping software does not correctly map the 

environment, the AGV cannot determine the safest route to the goal. 

Although simulation is a very powerful and useful tool, the ultimate test of any system is 

how it performs in its operating environment.  Without the truth as a gauge, it was difficult to 

determine the tests required to show that the current INS performs adequately.  However, the 

results of the tests employed show that the KF algorithm developed in this thesis is useful for 

navigation of an AGV. 
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8.  RECOMMENDATIONS FOR FURTHER STUDY/DEVELOPMENT 
 
 
 It is recommended that an IMU with the lowest bias drift/walk be purchased that is 

within the current budget.  The navigation system on the AGV will benefit from an IMU that has 

a bias drift/random walk less than the current IMU.  During GPS outages, the information from 

the IMU (linear accelerations and angular rates) is integrated to provide the linear 

positions/velocities as well as the Euler angles.  When the KF is active (GPS is available) it is 

compensating for the biases in the IMU, but the biases can never be fully compensated for 

because they drift and walk.  However, the amount that they drift/walk is slow relative to the 

bandwidth of the KF.  The problem arises when the KF is not able to compensate for them which 

occurs when the GPS signal is unavailable. 

 There is not an IMU available that eliminates the problem of biases.  A better IMU will 

only provide a viable, uncorrected solution longer than the current IMU.  A viable solution is one 

in which the errors developed in the linear positions and Euler angles are acceptable.  The lower 

the bias drift/walk, the longer an acceptable navigation solution can be used by the AGV in the 

absence of GPS. 

 With the addition of a new IMU, there will need to be additional development.  Outside 

of communication and mounting issues, there are additional tuning requirements.  Since the new 

IMU will indeed provide a more accurate solution, the tuning parameters described earlier will 

have to be adjusted.  The recommended process is to start with the current tuning parameters and 

then lower the diagonals of the 0P  matrix that pertain to the biases and SFT’s of the IMU.  Also, 

repeat this process for the diagonals of the ( )Q t  matrix.  Lowering the values of the elements of 

these matrices will place more weight on the IMU. 
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APPENDIX A 
 
 
MatLAB code for simulating 1-D IMU/GPS measurements: 
 
% Author:  Craig Odom 
 
% Simulated measurement code for 1-D case 
 
clc; 
clear; 
close all; 
 
global x_acc_eta Q offset amp w_length 
 
g = 9.807; 
 
% Noise parameters 
GPS_N_noise = 1; 
x_acc_noise = 0.005; 
x_acc_eta = 0.0001; 
 
% IMU--->GPS offsets 
x_offset = -1.0; 
 
offset = [x_offset]; 
 
% Scale factor actual and nominal (V/g, V/(deg/s)) 
S_act_x_acc = 2.57; 
 
S_nom_x_acc = 0.4; 
 
% Time parameters 
t_begin = 0; 
dt_cont = 0.01; 
dt_disc = 0.05; 
t_final = 200; 
time = t_begin:dt_cont:t_final; 
time_disc = t_begin:dt_disc:t_final; 
 
% True motion 
amp = 200; 
w_length = 50; 
 
N_pos = 0; 
N_vel = 2*amp*pi/w_length; 
x_acc_bias_true = 0.02; 
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x0_true_motion(1:3,1) = [N_pos N_vel x_acc_bias_true]'; 
 
N_acc = -4*amp*sin(2*pi*time/w_length)*pi^2/w_length^2; 
 
% Calling the ode4 function (Runge Kutta 4th order) 
x_true = ode4(@true_motion_1D,time,x0_true_motion); 
 
N_pos = x_true(:,1); 
N_vel = x_true(:,2); 
x_acc_bias_true = x_true(:,3); 
 
x_acc_body = N_acc/g; 
 
% Scale factor errors 
S_a_x = S_act_x_acc*S_nom_x_acc; 
 
S_accel = [S_a_x]; 
 
% Building IMU measurements 
for i=1:length(time) 
 
    x_acc_meas(i) = S_accel*x_acc_body(i) + x_acc_bias_true(i) + x_acc_noise*randn; 
 
end 
 
% Rounding the IMU data for true resolution 
x_acc_meas = round(x_acc_meas*1000)/1000; 
 
% Building the GPS measurements 
for i=1:length(time_disc) 
 
    j = (dt_disc/dt_cont)*i - (dt_disc/dt_cont - 1); 
     
    N_offset(i) = offset; 
 
    GPS_N_meas(i,1) = N_pos(j) + N_offset(i) + GPS_N_noise*randn; 
 
end 
 
% Rounding the GPS data 
GPS_N_meas = round(GPS_N_meas*100)/100; 
 
% Building the y_tilde vector 
for i=1:length(time_disc) 
 
    y_tilde(i,1) = GPS_N_meas(i,1); 
 
end 
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GPS_data = [GPS_N_meas]; 
 
IMU_data = [x_acc_meas']; 
 
save Initial_1D.mat 
 
run EKF_1D 
 
 
MatLab code that runs Runge-Kutta 4th order to produce the true motion for the 1-D case: 
 
% Author:  Craig Odom 
 
% Simulated truth code for 1-D case 
 
function f = true_motion_1D(t,x) 
 
global x_acc_eta amp w_length 
 
% Initializing the functions 
f = zeros(3,1); 
 
% Equations of motion 
f(1) = x(2); 
f(2) = -4*amp*sin(2*pi*t/w_length)*pi^2/w_length^2; 
f(3) = x_acc_eta*randn; 
 
 
MatLab code that runs the Kalman Filter algorithm for the 1-D case: 
 
% Author:  Craig Odom 
 
% Kalman Filter code that uses simulated measurements from Initial_1D.mat 
 
clc; 
clear; 
close all; 
 
load Initial_1D.mat 
 
global x_acc_m Q offset 
 
% Initial Estimation Error Covariance Matrix 
for i=1:4 
 
    if i<=2 
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        P0(i,i) = 0.5; 
 
    elseif i==3 
 
        P0(i,i) = 0.005; 
 
    elseif i==4 
 
        P0(i,i) = 0.005; 
 
    end 
 
end 
 
% Process Noise Covariance Matrix 
x_acc_noise_mss = x_acc_noise*g; 
 
Q = [x_acc_noise_mss^2]; 
 
% Measurement Noise Covariance Matrix 
R = [GPS_N_noise^2]; 
 
% Initial State Estimation 
x_start = [0 25 0 1]; 
 
x_k_neg = x_start'; 
 
P_k_neg = P0; 
 
step = dt_disc/dt_cont; 
 
z = 1; 
 
iteration = 0; 
 
print = 0; 
 
% Extended Kalman Filter 
for i=1:length(time) 
     
    % step builds until a new GPS measurement is available 
    if step == dt_disc/dt_cont; 
 
        h = x_k_neg(1,1) + offset; 
         
        % Measurement Sensitivity Matrix 
        H = [1 0 0 0]; 
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        % Kalman Gain Matrix 
        K = P_k_neg*H'*inv(H*P_k_neg*H' + R); 
 
        Inn(:,i) = y_tilde(z,1) - h; 
         
        % Correction to state vector 
        x_k_pos = x_k_neg + K*(Inn(:,i)); 
         
        % Correction to P matrix 
        P_k_pos = (eye(length(P0)) - K*H)*P_k_neg; 
 
        step = 0; 
 
        z = z + 1; 
 
    end 
     
    % Saving all state information 
    x_plot(:,i) = x_k_pos; 
     
    % Augmenting the IMU measurements from g's to m/s/s and deg/s to rad/s 
    x_acc_m = x_acc_meas(i)*g; 
     
    % Setting the first part of the initial condition vector for Runge 
    % Kutta 
    x0(1:length(P0),1) = x_k_pos; 
     
    % Converting elements of P matrix to an array 
    for d=1:length(P0) 
 
        j = length(P0)*d - (length(P0)-1); 
        k = length(P0)*d; 
 
        P_k_pos_col(j:k,1) = P_k_pos(d,1:length(P0)); 
 
    end 
     
    % Setting the last part of the initial condition vector for Runge Kutta 
    x0(length(P0)+1:length(P0)+length(P0)^2,1) = P_k_pos_col; 
     
    % Calling the ode4 (Runge Kutta 4th order) integration tool 
    x_est = ode4(@Prop_1D,[0 0.01],x0); 
     
    % Taking the last part of the RK solution 
    P_est = x_est(length(x_est(:,1)),length(P0)+1:length(P0)+length(P0)^2); 
     
    % Converting the array P_est into the elements of P_k_neg 
    for d=1:length(P0) 
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        j = length(P0)*d - (length(P0)-1); 
        k = length(P0)*d; 
        P_k_neg(d,1:length(P0)) = P_est(j:k); 
 
    end 
     
    % Converting the first part of the solution to x_k_neg 
    x_k_neg = x_est(length(x_est(:,1)),1:length(P0))'; 
     
    % x_k_pos/P_k_pos are the best estimates available 
    x_k_pos = x_k_neg; 
     
    P_k_pos = P_k_neg; 
 
    step = step + 1; 
     
    % Printing out the simulation time every second 
    if iteration == 100 
 
        print = print + 1; 
         
        Sim_time = print         
 
        iteration = 0; 
 
    end 
 
    iteration = iteration + 1; 
 
end 
 
% Solving for the percentage error of the SFT estimate 
for i=1:length(time) 
 
    x_acc_per_error(i) = (S_a_x - 1/x_plot(4,i))/S_a_x*100; 
 
end 
 
% Saving all the data 
save EKF_1D.mat 
 
% Printing all the figures 
figure (1) 
plot(time,x_plot(1,:) - N_pos') 
xlabel('Simulation Time [sec]') 
ylabel('North Position Estimation Error [m]') 
axis([0 200 -2 2]) 
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figure (2) 
plot(time,x_plot(2,:) - N_vel') 
xlabel('Simulation Time [sec]') 
ylabel('North Velocity Estimation Error [m/s]') 
axis([0 200 -1 1]) 
 
figure (3) 
plot(time,(x_acc_bias_true - x_plot(3,:)'/9.807)*1000) 
xlabel('Simulation Time [sec]') 
ylabel('x-axis Accelerometer Bias Estimation Error [mg]') 
 
figure (4) 
plot(time,x_acc_per_error) 
xlabel('Simulation Time [sec]') 
ylabel('x-axis Accelerometer SFT Error [%]') 
 
figure (5) 
plot(time,x_acc_bias_true*1000) 
xlabel('Simulation Time [sec]') 
ylabel('True x-axis Accelerometer Bias [mg]') 
 
figure (6) 
plot(time,N_pos) 
xlabel('Simulation Time [sec]') 
ylabel('True North Position of AGV [m]') 
 
 
MatLab code that runs Runge-Kutta 4th order to produce the apriori estimates (including the 
estimation error covariance matrix): 
 
% Author:  Craig Odom 
 
% Propagation code for apriori solution for 1-D case 
 
function f = Prop_1D(t, x) 
 
global x_acc_m Q 
 
% Initializing the functions 
f = zeros(4,1); 
 
% Truth model 
a_x = x(4)*(x_acc_m - x(3)); 
 
% Equations of motion 
f(1) = x(2); 
f(2) = a_x; 
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f(3) = 0; 
f(4) = 0; 
 
% Process Noise mapping matrix 
G = [0 
     x(4) 
     0 
     0]; 
  
% Partial derivatives matrix 
F23 = -x(4); 
F24 = x_acc_m - x(3); 
 
F = [0 1 0 0 
     0 0 F23 F24 
     0 0 0 0 
     0 0 0 0]; 
 
st = length(F) + 1; 
 
% Filling the P matrix with the states 
for i=1:length(F) 
 
    for j=1:length(F) 
 
        P(i,j) = x(st); 
 
        st = st + 1; 
 
    end 
 
end 
 
% Variation of Ricatti equation 
P_dot = F*P + P*F' + G*Q*G'; 
 
st = length(F) + 1; 
 
% Filling the functions with the elements of P_dot 
for i=1:length(F) 
 
    for j=1:length(F) 
 
        f(st) = P_dot(i,j); 
 
        st = st + 1; 
 
    end 
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end 
 
 
MatLAB code for simulating 2-D IMU/GPS measurements: 
 
% Author:  Craig Odom 
 
% Simulated measurement code for 2-D case 
 
clc; 
clear; 
close all; 
 
global x_acc_eta y_acc_eta omega_r_eta g Q offset amp w_length 
 
g = 9.807; 
 
% Noise parameters 
 
GPS_N_noise = 1; 
GPS_E_noise = 1; 
x_acc_noise = 0.005; 
y_acc_noise = 0.005; 
omega_r_noise = 0.05; 
x_acc_eta = 0.0001; 
y_acc_eta = 0.0001; 
omega_r_eta = 0.002; 
 
% IMU--->GPS offsets 
 
x_offset = -1.0; 
y_offset = 0.2; 
 
offset = [x_offset;y_offset]; 
 
% Scale factor actual and nominal (V/g, V/(deg/s)) 
 
S_act_x_acc = 2.57; 
S_act_y_acc = 2.56; 
S_act_omega_r = 0.097; 
 
S_nom_x_acc = 0.4; 
S_nom_y_acc = 0.4; 
S_nom_omega_r = 10; 
 
% Time parameters 
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t_begin = 0; 
dt_cont = 0.01; 
dt_disc = 0.05; 
t_final = 200; 
time = t_begin:dt_cont:t_final; 
time_disc = t_begin:dt_disc:t_final; 
 
% True motion 
 
amp = 200; 
w_length = 50; 
 
N_pos = 0; 
E_pos = 0; 
N_vel = 2*amp*pi/w_length; 
E_vel = 5; 
yaw = 0; 
x_acc_bias_true = 0.02; 
y_acc_bias_true = 0.02; 
omega_r_bias_true = 0.1; 
 
x0_true_motion(1:7,1) = [N_pos E_pos N_vel E_vel x_acc_bias_true y_acc_bias_true 
omega_r_bias_true]'; 
 
N_acc = -4*amp*sin(2*pi*time/w_length)*pi^2/w_length^2; 
 
E_acc = zeros(1,length(time)); 
 
% Calling the ode4 function (Runge Kutta 4th order) 
x_true = ode4(@true_motion_2D,time,x0_true_motion); 
 
N_pos = x_true(:,1); 
E_pos = x_true(:,2); 
N_vel = x_true(:,3); 
E_vel = x_true(:,4); 
x_acc_bias_true = x_true(:,5); 
y_acc_bias_true = x_true(:,6); 
omega_r_bias_true = x_true(:,7); 
 
% Building the true yaw motion 
for i=1:length(time)-1 
 
    yaw(i+1) = atan2(E_vel(i+1),N_vel(i+1)); 
 
    yaw_rate(i) = (E_acc(i)*N_vel(i) - N_acc(i)*E_vel(i))/(E_vel(i)^2 + N_vel(i)^2); 
 
    if i==length(time)-1 
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        yaw_rate(i+1) = (E_acc(i+1)*N_vel(i+1) - N_acc(i+1)*E_vel(i+1))/(E_vel(i+1)^2 + 
N_vel(i+1)^2); 
 
    end 
 
end 
 
y = yaw; 
 
% Building the true rotation 
for i=1:length(time) 
     
    omega_r(i) = yaw_rate(i); 
     
end 
 
% Direction Cosine Matrix 
for i=1:length(time) 
 
    DCM(1,1) = cos(y(i)); 
    DCM(1,2) = sin(y(i)); 
    DCM(2,1) = -sin(y(i)); 
    DCM(2,2) = cos(y(i)); 
 
    x_acc_body(i) = DCM(1,:)*[N_acc(i) E_acc(i)]'; 
 
    y_acc_body(i) = DCM(2,:)*[N_acc(i) E_acc(i)]'; 
 
end 
 
x_acc_body = x_acc_body/g; 
y_acc_body = y_acc_body/g; 
 
omega_r = omega_r*180/pi; 
 
acc_body = [x_acc_body;y_acc_body]; 
 
omega_body = [omega_r]; 
 
% Scale factor errors 
S_a_x = S_act_x_acc*S_nom_x_acc; 
S_a_y = S_act_y_acc*S_nom_y_acc; 
 
S_g_r = S_act_omega_r*S_nom_omega_r; 
 
S_accel = [S_a_x 0 
           0 S_a_y]; 
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S_gyro = [S_g_r]; 
 
% Building IMU measurements 
for i=1:length(time) 
 
    x_acc_meas(i) = S_accel(1,:)*acc_body(:,i) + x_acc_bias_true(i) + x_acc_noise*randn; 
 
    y_acc_meas(i) = S_accel(2,:)*acc_body(:,i) + y_acc_bias_true(i) + y_acc_noise*randn; 
     
    omega_r_meas(i) = S_gyro*omega_body(i) + omega_r_bias_true(i) + omega_r_noise*randn; 
 
end 
 
% Rounding the IMU data for true resolution 
x_acc_meas = round(x_acc_meas*1000)/1000; 
y_acc_meas = round(y_acc_meas*1000)/1000; 
 
omega_r_meas = round(omega_r_meas*100)/100; 
 
% Building the GPS measurements 
for i=1:length(time_disc) 
 
    j = (dt_disc/dt_cont)*i - (dt_disc/dt_cont - 1); 
     
    DCM_t(1,1) = cos(y(j)); 
    DCM_t(1,2) = -sin(y(j)); 
    DCM_t(2,1) = sin(y(j)); 
    DCM_t(2,2) = cos(y(j)); 
     
    N_offset(i) = DCM_t(1,:)*offset; 
     
    E_offset(i) = DCM_t(2,:)*offset; 
 
    GPS_N_meas(i,1) = N_pos(j) + N_offset(i) + GPS_N_noise*randn; 
 
    GPS_E_meas(i,1) = E_pos(j) + E_offset(i) + GPS_E_noise*randn; 
     
 
end 
 
% Rounding the GPS data 
GPS_N_meas = round(GPS_N_meas*100)/100; 
GPS_E_meas = round(GPS_E_meas*100)/100; 
 
% Building the y_tilde vector 
for i=1:length(time_disc) 
 
    j = 2*i-1; 
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    k = 2*i; 
 
    y_tilde(j,1) = GPS_N_meas(i,1); 
 
    y_tilde(k,1) = GPS_E_meas(i,1); 
 
end 
 
GPS_data = [GPS_N_meas GPS_E_meas]; 
 
IMU_data = [x_acc_meas' y_acc_meas' omega_r_meas']; 
 
save Initial_2D.mat 
 
run EKF_2D 
 
 
MatLab code that runs Runge-Kutta 4th order to produce the true motion for the 2-D case: 
 
% Author:  Craig Odom 
 
% Simulated truth code for 2-D case 
 
function f = true_motion_2D(t,x) 
 
global x_acc_eta y_acc_eta omega_r_eta amp w_length 
 
% Initializing the functions 
f = zeros(7,1); 
 
% Equations of motion 
f(1) = x(3); 
f(2) = x(4); 
f(3) = -4*amp*sin(2*pi*t/w_length)*pi^2/w_length^2; 
f(4) = 0; 
f(5) = x_acc_eta*randn; 
f(6) = y_acc_eta*randn; 
f(7) = omega_r_eta*randn; 
 
 
MatLab code that runs the Kalman Filter algorithm for the 2-D case: 
 
% Author:  Craig Odom 
 
% Kalman Filter code that uses simulated measurements for 2-D case 
 
clc; 
clear; 
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close all; 
 
load Initial_2D.mat 
 
global x_acc_m y_acc_m omega_r_m g Q offset 
 
% Initial Estimation Error Covariance Matrix 
for i=1:11 
 
    if i<=4 
 
        P0(i,i) = 0.5; 
 
    elseif i==5 
 
        P0(i,i) = 0.005; 
 
    elseif i==6||i==7 
 
        P0(i,i) = 0.005; 
 
    elseif i==8 
 
        P0(i,i) = 0.005; 
 
    elseif i==9||i==10 
 
        P0(i,i) = 0.005; 
         
    else 
         
        P0(i,i) = 0.005; 
 
    end 
 
end 
 
% Process Noise Covariance Matrix 
x_acc_noise_mss = x_acc_noise*g; 
y_acc_noise_mss = y_acc_noise*g; 
 
omega_r_noise_rs = omega_r_noise*pi/180; 
 
Q = [x_acc_noise_mss^2 0 0 
    0 y_acc_noise_mss^2 0 
    0 0 omega_r_noise_rs^2]; 
 
% Measurement Noise Covariance Matrix 
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R = [GPS_N_noise^2 0 
    0 GPS_E_noise^2]; 
 
% Initial State Estimation 
x_start = [0 0 25 5 0 0 0 0 ones(1,3)]; 
 
x_k_neg = x_start'; 
 
P_k_neg = P0; 
 
step = dt_disc/dt_cont; 
 
z = 1; 
 
iteration = 0; 
 
print = 0; 
 
% Extended Kalman Filter 
for i=1:length(time) 
 
    % step builds until a new GPS measurement is available 
    if step == dt_disc/dt_cont; 
 
        j = 2*z-1; 
        k = 2*z; 
 
        % Direction Cosine Matrix 
        DCM_ap(1,1) = cos(x_k_neg(5,1)); 
        DCM_ap(1,2) = sin(x_k_neg(5,1)); 
        DCM_ap(2,1) = -sin(x_k_neg(5,1)); 
        DCM_ap(2,2) = cos(x_k_neg(5,1)); 
 
        DCM_t_ap = DCM_ap'; 
 
        h(1,1) = x_k_neg(1,1) + DCM_t_ap(1,:)*offset; 
        h(2,1) = x_k_neg(2,1) + DCM_t_ap(2,:)*offset; 
 
        % Measurement Sensitivity Matrix 
        H15 = -sin(x_k_neg(5,1))*x_offset-cos(x_k_neg(5,1))*y_offset; 
        H25 = cos(x_k_neg(5,1))*x_offset-sin(x_k_neg(5,1))*y_offset; 
 
        H = [1 0 0 0 H15 0 0 0 0 0 0 
             0 1 0 0 H25 0 0 0 0 0 0]; 
 
        % Kalman Gain Matrix 
        K = P_k_neg*H'*inv(H*P_k_neg*H' + R); 
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        Inn(:,i) = y_tilde(j:k,1) - h; 
 
        % Correction to State Vector 
        x_k_pos = x_k_neg + K*(Inn(:,i)); 
 
        % Correction to P Matrix 
        P_k_pos = (eye(length(P0)) - K*H)*P_k_neg; 
 
        step = 0; 
 
        z = z + 1; 
 
    end 
 
    % Saving all state information 
    x_plot(:,i) = x_k_pos; 
 
    % Augmenting the IMU measurements from g's to m/s/s and deg/s to rad/s 
    x_acc_m = x_acc_meas(i)*g; 
 
    y_acc_m = y_acc_meas(i)*g; 
 
    omega_r_m = omega_r_meas(i)*pi/180; 
 
    % Setting the first part of the initial condition vector for Runge 
    % Kutta 
    x0(1:length(P0),1) = x_k_pos; 
 
    % Converting elements of P matrix to an array 
    for d=1:length(P0) 
 
        j = length(P0)*d - (length(P0)-1); 
        k = length(P0)*d; 
 
        P_k_pos_col(j:k,1) = P_k_pos(d,1:length(P0)); 
 
    end 
 
    % Setting the last part of the initial condition vector for Runge Kutta 
    x0(length(P0)+1:length(P0)+length(P0)^2,1) = P_k_pos_col; 
 
    % Calling the ode4 (Runge Kutta 4th order) integration tool 
    x_est = ode4(@Prop_2D,[0 0.01],x0); 
 
    % Taking the last part of the RK solution 
    P_est = x_est(length(x_est(:,1)),length(P0)+1:length(P0)+length(P0)^2); 
 
    % Converting the array P_est into the elements of P_k_neg 
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    for d=1:length(P0) 
 
        j = length(P0)*d - (length(P0)-1); 
        k = length(P0)*d; 
        P_k_neg(d,1:length(P0)) = P_est(j:k); 
 
    end 
 
    % Converting the first part of the solution to x_k_neg 
    x_k_neg = x_est(length(x_est(:,1)),1:length(P0))'; 
     
    % x_k_pos/P_k_pos are the best estimates available 
    x_k_pos = x_k_neg; 
     
    P_k_pos = P_k_neg; 
 
    step = step + 1; 
 
    % Printing out the simulation time every second 
    if iteration == 100 
 
        print = print + 1; 
         
        Sim_time = print         
 
        iteration = 0; 
 
    end 
 
    iteration = iteration + 1; 
 
end 
 
% Solving for the percentage error of the SFT estimate 
for i=1:length(time) 
 
    x_acc_per_error(i) = (S_a_x - 1/x_plot(9,i))/S_a_x*100; 
    y_acc_per_error(i) = (S_a_y - 1/x_plot(10,i))/S_a_y*100; 
 
    omega_r_per_error(i) = (S_g_r - 1/x_plot(11,i))/S_g_r*100; 
 
end 
 
% Saving all the data 
save EKF_2D.mat 
 
% Printing all the figures 
figure (1) 
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plot(time,x_plot(1,:) - N_pos') 
xlabel('Simulation Time [sec]') 
ylabel('North Position Estimation Error [m]') 
axis([0 200 -2 2]) 
 
figure (2) 
plot(time,x_plot(2,:) - E_pos') 
xlabel('Simulation Time [sec]') 
ylabel('East Position Estimation Error [m]') 
axis([0 200 -2 2]) 
 
figure (3) 
plot(time,x_plot(3,:) - N_vel') 
xlabel('Simulation Time [sec]') 
ylabel('North Velocity Estimation Error [m/s]') 
 
figure (4) 
plot(time,x_plot(4,:) - E_vel') 
xlabel('Simulation Time [sec]') 
ylabel('East Velocity Estimation Error [m/s]') 
 
figure (5) 
plot(time,(yaw - x_plot(5,:))*180/pi) 
xlabel('Simulation Time [sec]') 
ylabel('Yaw Estimation Error [deg]') 
 
figure (6) 
plot(time,(x_acc_bias_true - x_plot(6,:)'/9.807)*1000) 
xlabel('Simulation Time [sec]') 
ylabel('x-axis Accelerometer Bias Estimation Error [mg]') 
 
figure (7) 
plot(time,(y_acc_bias_true - x_plot(7,:)'/9.807)*1000) 
xlabel('Simulation Time [sec]') 
ylabel('y-axis Accelerometer Bias Estimation Error [mg]') 
 
figure (8) 
plot(time,(omega_r_bias_true - x_plot(8,:)'*180/pi)) 
xlabel('Simulation Time [sec]') 
ylabel('z-axis ARS Bias Estimation Error [deg/s]') 
 
figure (9) 
plot(time,x_acc_per_error) 
xlabel('Simulation Time [sec]') 
ylabel('x-axis Accelerometer SFT Error [%]') 
 
figure (10) 
plot(time,y_acc_per_error) 
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xlabel('Simulation Time [sec]') 
ylabel('y-axis Accelerometer SFT Error [%]') 
 
figure (11) 
plot(time,omega_r_per_error) 
xlabel('Simulation Time [sec]') 
ylabel('z-axis ARS SFT Error [%]') 
 
figure (12) 
plot(time,x_acc_bias_true*1000) 
xlabel('Simulation Time [sec]') 
ylabel('True x-axis Accelerometer Bias [mg]') 
 
figure (13) 
plot(time,y_acc_bias_true*1000) 
xlabel('Simulation Time [sec]') 
ylabel('True y-axis Accelerometer Bias [mg]') 
 
figure (14) 
plot(time,omega_r_bias_true) 
xlabel('Simulation Time [sec]') 
ylabel('True z-axis ARS Bias [deg/s]') 
 
figure (15) 
plot(E_pos,N_pos) 
xlabel('East Position of AGV') 
ylabel('North Position of AGV') 
axis([0 1000 -200 200]) 
 
 
MatLab code that runs Runge-Kutta 4th order to produce the apriori estimates for the 2-D case 
(including the estimation error covariance matrix): 
 
% Author:  Craig Odom 
 
% Propagation code for apriori solution for 2-D case 
 
function f = Prop_2D(t,x) 
 
global x_acc_m y_acc_m omega_r_m g Q 
 
% Initialzing the functions 
f = zeros(132,1); 
 
cx5 = cos(x(5)); 
sx5 = sin(x(5)); 
 
% Truth model 
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w_r = x(11)*(omega_r_m - x(8)); 
 
f3x = cx5; 
f3y = -sx5; 
f4x = sx5; 
f4y = cx5; 
 
a_x = x(9)*(x_acc_m - x(6)); 
a_y = x(10)*(y_acc_m - x(7)); 
 
% Equations of motion 
f(1) = x(3); 
f(2) = x(4); 
f(3) = f3x*a_x + f3y*a_y; 
f(4) = f4x*a_x + f4y*a_y; 
f(5) = w_r; 
f(6) = 0; 
f(7) = 0; 
f(8) = 0; 
f(9) = 0; 
f(10) = 0; 
f(11) = 0; 
 
% Process Noise Mapping Matrix 
G = [0 0 0 
    0 0 0 
    f3x*x(9) f3y*x(10) 0 
    f4x*x(9) f4y*x(10) 0 
    0 0 x(11) 
    0 0 0 
    0 0 0 
    0 0 0 
    0 0 0 
    0 0 0 
    0 0 0]; 
 
% Partial derivatives matrix 
F35 = -sx5*x(9)*(x_acc_m-x(6))-cx5*x(10)*(y_acc_m-x(7)); 
F36 = -cx5*x(9); 
F37 = sx5*x(10); 
F38 = 0; 
F39 = cx5*(x_acc_m-x(6)); 
F310 = -sx5*(y_acc_m-x(7)); 
F311 = 0; 
F45 = cx5*x(9)*(x_acc_m-x(6))-sx5*x(10)*(y_acc_m-x(7)); 
F46 = -sx5*x(9); 
F47 = -cx5*x(10); 
F48 = 0; 
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F49 = sx5*(x_acc_m-x(6)); 
F410 = cx5*(y_acc_m-x(7)); 
F411 = 0; 
F55 = 0; 
F56 = 0; 
F57 = 0; 
F58 = -x(11); 
F59 = 0; 
F510 = 0; 
F511 = omega_r_m-x(8); 
 
F = [0 0 1 0 0 0 0 0 0 0 0 
     0 0 0 1 0 0 0 0 0 0 0 
     0 0 0 0 F35 F36 F37 F38 F39 F310 F311 
     0 0 0 0 F45 F46 F47 F48 F49 F410 F411 
     0 0 0 0 F55 F56 F57 F58 F59 F510 F511 
     0 0 0 0 0 0 0 0 0 0 0 
     0 0 0 0 0 0 0 0 0 0 0 
     0 0 0 0 0 0 0 0 0 0 0 
     0 0 0 0 0 0 0 0 0 0 0 
     0 0 0 0 0 0 0 0 0 0 0 
     0 0 0 0 0 0 0 0 0 0 0]; 
 
st = length(F) + 1; 
 
% Filling the P matrix with the states 
for i=1:length(F) 
 
    for j=1:length(F) 
 
        P(i,j) = x(st); 
 
        st = st + 1; 
 
    end 
 
end 
 
% Variation of Ricatti equation 
P_dot = F*P + P*F' + G*Q*G'; 
 
st = length(F) + 1; 
 
% Filling the functions with the elements of P_dot 
for i=1:length(F) 
 
    for j=1:length(F) 
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        f(st) = P_dot(i,j); 
 
        st = st + 1; 
 
    end 
 
end 
 
 
MatLAB code for simulating 3-D IMU/GPS measurements: 
 
% Author:  Craig Odom 
 
% Simulated measurement code for 3-D case 
 
clc; 
clear; 
close all; 
 
global x_acc_eta y_acc_eta z_acc_eta omega_p_eta omega_q_eta omega_r_eta g Q offset amp 
w_length 
 
g = 9.807; 
 
% Noise parameters 
 
GPS_N_noise = 1; 
GPS_E_noise = 1; 
GPS_D_noise = 1; 
x_acc_noise = 0.005; 
y_acc_noise = 0.005; 
z_acc_noise = 0.005; 
omega_p_noise = 0.05; 
omega_q_noise = 0.05; 
omega_r_noise = 0.05; 
x_acc_eta = 0.0001; 
y_acc_eta = 0.0001; 
z_acc_eta = 0.0001; 
omega_p_eta = 0.002; 
omega_q_eta = 0.002; 
omega_r_eta = 0.002; 
 
% IMU--->GPS offsets 
 
x_offset = -0.67; 
y_offset = 0; 
z_offset = -0.9; 
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offset = [x_offset;y_offset;z_offset]; 
 
% Scale factor actual and nominal (V/g, V/(deg/s)) 
 
S_act_x_acc = 2.57; 
S_act_y_acc = 2.56; 
S_act_z_acc = 2.44; 
S_act_omega_p = 0.103; 
S_act_omega_q = 0.1028; 
S_act_omega_r = 0.097; 
 
S_nom_x_acc = 0.4; 
S_nom_y_acc = 0.4; 
S_nom_z_acc = 0.4; 
S_nom_omega_p = 10; 
S_nom_omega_q = 10; 
S_nom_omega_r = 10; 
 
% Time parameters 
 
t_begin = 0; 
dt_cont = 0.01; 
dt_disc = 0.05; 
t_final = 300; 
time = t_begin:dt_cont:t_final; 
time_disc = t_begin:dt_disc:t_final; 
 
% True motion 
 
amp = 200; 
w_length = 50; 
 
N_pos = 0; 
E_pos = 0; 
D_pos = 0; 
N_vel = 2*amp*pi/w_length; 
E_vel = 5; 
D_vel = 0; 
yaw = 0; 
pitch = 0; 
roll = 0; 
x_acc_bias_true = 0.02; 
y_acc_bias_true = 0.02; 
z_acc_bias_true = 0.02; 
omega_p_bias_true = 0.1; 
omega_q_bias_true = 0.1; 
omega_r_bias_true = 0.1; 
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x0_true_motion(1:8,1) = [N_pos E_pos D_pos N_vel E_vel D_vel pitch roll]'; 
x0_true_motion(9:14,1) = [x_acc_bias_true y_acc_bias_true z_acc_bias_true 
omega_p_bias_true omega_q_bias_true omega_r_bias_true]'; 
 
N_acc = -4*amp*sin(2*pi*time/w_length)*pi^2/w_length^2; 
 
E_acc = zeros(1,length(time)); 
 
D_acc = 0.5*cos(time/3) - 0.2*cos(time/5); 
 
% Calling the ode4 function (Runge Kutta 4th order) 
x_true = ode4(@true_motion_3D,time,x0_true_motion); 
 
N_pos = x_true(:,1); 
E_pos = x_true(:,2); 
D_pos = x_true(:,3); 
N_vel = x_true(:,4); 
E_vel = x_true(:,5); 
D_vel = x_true(:,6); 
pitch = x_true(:,7); 
roll = x_true(:,8); 
x_acc_bias_true = x_true(:,9); 
y_acc_bias_true = x_true(:,10); 
z_acc_bias_true = x_true(:,11); 
omega_p_bias_true = x_true(:,12); 
omega_q_bias_true = x_true(:,13); 
omega_r_bias_true = x_true(:,14); 
 
pitch_rate = 0.01*sin(time/2) - 0.02*cos(time/3); 
 
roll_rate = 0.02*sin(time) - 0.03*cos(time/2); 
 
% Building the true yaw motion 
for i=1:length(time)-1 
 
    yaw(i+1) = atan2(E_vel(i+1),N_vel(i+1)); 
 
    yaw_rate(i) = (E_acc(i)*N_vel(i) - N_acc(i)*E_vel(i))/(E_vel(i)^2 + N_vel(i)^2); 
 
    if i==length(time)-1 
 
        yaw_rate(i+1) = (E_acc(i+1)*N_vel(i+1) - N_acc(i+1)*E_vel(i+1))/(E_vel(i+1)^2 + 
N_vel(i+1)^2); 
 
    end 
 
end 
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y = yaw; 
p = pitch; 
r = roll; 
 
% Building the true rotations 
for i=1:length(time) 
     
    omega_p(i) = -sin(p(i))*yaw_rate(i) + roll_rate(i); 
     
    omega_q(i) = cos(p(i))*sin(r(i))*yaw_rate(i) + cos(r(i))*pitch_rate(i); 
     
    omega_r(i) = cos(p(i))*cos(r(i))*yaw_rate(i) - sin(r(i))*pitch_rate(i); 
     
end 
 
% Direction Cosine Matrix 
for i=1:length(time) 
 
    DCM(1,1) = cos(p(i))*cos(y(i)); 
    DCM(1,2) = cos(p(i))*sin(y(i)); 
    DCM(1,3) = -sin(p(i)); 
    DCM(2,1) = sin(p(i))*sin(r(i))*cos(y(i)) - cos(r(i))*sin(y(i)); 
    DCM(2,2) = sin(p(i))*sin(r(i))*sin(y(i)) + cos(r(i))*cos(y(i)); 
    DCM(2,3) = cos(p(i))*sin(r(i)); 
    DCM(3,1) = sin(p(i))*cos(r(i))*cos(y(i)) + sin(r(i))*sin(y(i)); 
    DCM(3,2) = sin(p(i))*cos(r(i))*sin(y(i)) - sin(r(i))*cos(y(i)); 
    DCM(3,3) = cos(p(i))*cos(r(i)); 
 
    x_acc_body(i) = DCM(1,:)*[N_acc(i) E_acc(i) D_acc(i)]'; 
 
    y_acc_body(i) = DCM(2,:)*[N_acc(i) E_acc(i) D_acc(i)]'; 
 
    z_acc_body(i) = DCM(3,:)*[N_acc(i) E_acc(i) D_acc(i)]'; 
 
end 
 
x_acc_body = x_acc_body/g; 
y_acc_body = y_acc_body/g; 
z_acc_body = z_acc_body/g; 
 
omega_p = omega_p*180/pi; 
omega_q = omega_q*180/pi; 
omega_r = omega_r*180/pi; 
 
acc_body = [x_acc_body;y_acc_body;z_acc_body]; 
 
omega_body = [omega_p;omega_q;omega_r]; 
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% Scale factor errors 
S_a_x = S_act_x_acc*S_nom_x_acc; 
S_a_y = S_act_y_acc*S_nom_y_acc; 
S_a_z = S_act_z_acc*S_nom_z_acc; 
 
S_g_p = S_act_omega_p*S_nom_omega_p; 
S_g_q = S_act_omega_q*S_nom_omega_q; 
S_g_r = S_act_omega_r*S_nom_omega_r; 
 
S_accel = [S_a_x S_a_y S_a_z]; 
 
S_gyro = [S_g_p S_g_q S_g_r]; 
 
% Building IMU measurements 
for i=1:length(time) 
 
    x_acc_meas(i) = S_accel(1)*(acc_body(1,i) + sin(p(i))) + x_acc_bias_true(i) + 
x_acc_noise*randn; 
 
    y_acc_meas(i) = S_accel(2)*(acc_body(2,i) - cos(p(i))*sin(r(i))) + y_acc_bias_true(i) + 
y_acc_noise*randn; 
 
    z_acc_meas(i) = S_accel(3)*(acc_body(3,i) - cos(p(i))*cos(r(i))) + z_acc_bias_true(i) + 
z_acc_noise*randn; 
     
    omega_p_meas(i) = S_gyro(1)*omega_body(1,i) + omega_p_bias_true(i) + 
omega_p_noise*randn; 
     
    omega_q_meas(i) = S_gyro(2)*omega_body(2,i) + omega_q_bias_true(i) + 
omega_q_noise*randn; 
     
    omega_r_meas(i) = S_gyro(3)*omega_body(3,i) + omega_r_bias_true(i) + 
omega_r_noise*randn; 
 
end 
 
% Rounding the IMU data for true resolution 
x_acc_meas = round(x_acc_meas*1000)/1000; 
y_acc_meas = round(y_acc_meas*1000)/1000; 
z_acc_meas = round(z_acc_meas*1000)/1000; 
 
omega_p_meas = round(omega_p_meas*100)/100; 
omega_q_meas = round(omega_q_meas*100)/100; 
omega_r_meas = round(omega_r_meas*100)/100; 
 
% Building the GPS measurements 
for i=1:length(time_disc) 
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    j = (dt_disc/dt_cont)*i - (dt_disc/dt_cont - 1); 
     
    DCM_t(1,1) = cos(p(j))*cos(y(j)); 
    DCM_t(1,2) = sin(p(j))*sin(r(j))*cos(y(j)) - cos(r(j))*sin(y(j)); 
    DCM_t(1,3) = sin(p(j))*cos(r(j))*cos(y(j)) + sin(r(j))*sin(y(j)); 
    DCM_t(2,1) = cos(p(j))*sin(y(j)); 
    DCM_t(2,2) = sin(p(j))*sin(r(j))*sin(y(j)) + cos(r(j))*cos(y(j)); 
    DCM_t(2,3) = sin(p(j))*cos(r(j))*sin(y(j)) - sin(r(j))*cos(y(j)); 
    DCM_t(3,1) = -sin(p(j));     
    DCM_t(3,2) = cos(p(j))*sin(r(j)); 
    DCM_t(3,3) = cos(p(j))*cos(r(j)); 
     
    N_offset(i) = DCM_t(1,1:3)*offset; 
     
    E_offset(i) = DCM_t(2,1:3)*offset; 
     
    D_offset(i) = DCM_t(3,1:3)*offset; 
 
    GPS_N_meas(i,1) = N_pos(j) + N_offset(i) + GPS_N_noise*randn; 
 
    GPS_E_meas(i,1) = E_pos(j) + E_offset(i) + GPS_E_noise*randn; 
     
    GPS_D_meas(i,1) = D_pos(j) + D_offset(i) + GPS_D_noise*randn; 
 
end 
 
% Rounding the GPS data 
GPS_N_meas = round(GPS_N_meas*100)/100; 
GPS_E_meas = round(GPS_E_meas*100)/100; 
GPS_D_meas = round(GPS_D_meas*100)/100; 
 
% Building the y_tilde vector 
for i=1:length(time_disc) 
 
    j = 3*i-2; 
    k = 3*i-1; 
    w = 3*i; 
 
    y_tilde(j,1) = GPS_N_meas(i,1); 
 
    y_tilde(k,1) = GPS_E_meas(i,1); 
     
    y_tilde(w,1) = GPS_D_meas(i,1); 
 
end 
 
GPS_data = [GPS_N_meas GPS_E_meas GPS_D_meas]; 
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IMU_data = [x_acc_meas' y_acc_meas' z_acc_meas' omega_p_meas' omega_q_meas' 
omega_r_meas']; 
 
save Initial_3D.mat 
 
run EKF_3D 
 
 
MatLab code that runs Runge-Kutta 4th order to produce the true motion for the 3-D case: 
 
% Author:  Craig Odom 
 
% Simulated truth code for 3-D case 
 
function f = true_motion_3D(t,x) 
 
global x_acc_eta y_acc_eta z_acc_eta omega_p_eta omega_q_eta omega_r_eta amp w_length 
 
% Initialzing the functions 
f = zeros(14,1); 
 
% Equations of motion 
f(1) = x(4); 
f(2) = x(5); 
f(3) = x(6); 
f(4) = -4*amp*sin(2*pi*t/w_length)*pi^2/w_length^2; 
f(5) = 0; 
f(6) = 0.5*cos(t/3) - 0.2*cos(t/5); 
f(7) = 0.01*sin(t/2) - 0.02*cos(t/3); 
f(8) = 0.02*sin(t) - 0.03*cos(t/2); 
f(9) = x_acc_eta*randn; 
f(10) = y_acc_eta*randn; 
f(11) = z_acc_eta*randn; 
f(12) = omega_p_eta*randn; 
f(13) = omega_q_eta*randn; 
f(14) = omega_r_eta*randn; 
 
 
MatLab code that runs the Kalman Filter algorithm for the 3-D case: 
 
% Author:  Craig Odom 
 
% Kalman Filter code that uses simulated measurements for 3-D case 
 
clc; 
clear; 
close all; 
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load Initial_3D.mat 
 
global x_acc_m y_acc_m z_acc_m omega_p_m omega_q_m omega_r_m g Q offset 
 
% Initial Estimation Error Covariance Matrix 
for i=1:21 
 
    if i<=6 
 
        P0(i,i) = 0.5; 
 
    elseif i==7||i==8||i==9 
 
        P0(i,i) = 0.05; 
 
    elseif i==10||i==11||i==12 
 
        P0(i,i) = 0.05; 
 
    elseif i==13||i==14||i==15 
 
        P0(i,i) = 0.005; 
 
    elseif i==16||i==17||i==18 
 
        P0(i,i) = 0.05; 
         
    else 
         
        P0(i,i) = 0.005; 
 
    end 
 
end 
 
% Process Noise Covariance Matrix 
x_acc_noise_mss = x_acc_noise*g; 
y_acc_noise_mss = y_acc_noise*g; 
z_acc_noise_mss = z_acc_noise*g; 
 
omega_p_noise_rs = omega_p_noise*pi/180; 
omega_q_noise_rs = omega_q_noise*pi/180; 
omega_r_noise_rs = omega_r_noise*pi/180; 
 
Q = [x_acc_noise_mss^2 0 0 0 0 0 
    0 y_acc_noise_mss^2 0 0 0 0 
    0 0 z_acc_noise_mss^2 0 0 0 
    0 0 0 omega_p_noise_rs^2 0 0 
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    0 0 0 0 omega_q_noise_rs^2 0 
    0 0 0 0 0 omega_r_noise_rs^2]; 
 
% Measurement Noise Covariance Matrix 
R = [GPS_N_noise^2 0 0 
    0 GPS_E_noise^2 0 
    0 0 GPS_D_noise^2]; 
 
% Initial State Estimation 
x_start = [0 0 0 25 5 0 0 0 0 0 0 0 0 0 0 ones(1,6)]; 
 
x_k_neg = x_start'; 
 
P_k_neg = P0; 
 
step = dt_disc/dt_cont; 
 
z = 1; 
 
iteration = 0; 
 
print = 0; 
 
% Extended Kalman Filter 
for i=1:length(time) 
 
    % step builds until a new GPS measurement is available 
    if step == dt_disc/dt_cont; 
 
        j = 3*z-2; 
        k = 3*z-1; 
        w = 3*z; 
 
        % Direction Cosine Matrix 
        DCM_ap(1,1) = cos(x_k_neg(8,1))*cos(x_k_neg(7,1)); 
        DCM_ap(1,2) = cos(x_k_neg(8,1))*sin(x_k_neg(7,1)); 
        DCM_ap(1,3) = -sin(x_k_neg(8,1)); 
        DCM_ap(2,1) = sin(x_k_neg(8,1))*sin(x_k_neg(9,1))*cos(x_k_neg(7,1)) - 
cos(x_k_neg(9,1))*sin(x_k_neg(7,1)); 
        DCM_ap(2,2) = sin(x_k_neg(8,1))*sin(x_k_neg(9,1))*sin(x_k_neg(7,1)) + 
cos(x_k_neg(9,1))*cos(x_k_neg(7,1)); 
        DCM_ap(2,3) = cos(x_k_neg(8,1))*sin(x_k_neg(9,1)); 
        DCM_ap(3,1) = sin(x_k_neg(8,1))*cos(x_k_neg(9,1))*cos(x_k_neg(7,1)) + 
sin(x_k_neg(9,1))*sin(x_k_neg(7,1)); 
        DCM_ap(3,2) = sin(x_k_neg(8,1))*cos(x_k_neg(9,1))*sin(x_k_neg(7,1)) - 
sin(x_k_neg(9,1))*cos(x_k_neg(7,1)); 
        DCM_ap(3,3) = cos(x_k_neg(8,1))*cos(x_k_neg(9,1)); 
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        DCM_t_ap = DCM_ap'; 
 
        h(1,1) = x_k_neg(1,1) + DCM_t_ap(1,1:3)*offset; 
        h(2,1) = x_k_neg(2,1) + DCM_t_ap(2,1:3)*offset; 
        h(3,1) = x_k_neg(3,1) + DCM_t_ap(3,1:3)*offset; 
 
        % Measurement Sensitivity Matrix 
        H17 = -cos(x_k_neg(8,1))*sin(x_k_neg(7,1))*x_offset+(-
sin(x_k_neg(8,1))*sin(x_k_neg(9,1))*sin(x_k_neg(7,1))-
cos(x_k_neg(9,1))*cos(x_k_neg(7,1)))*y_offset+(-
sin(x_k_neg(8,1))*cos(x_k_neg(9,1))*sin(x_k_neg(7,1))+sin(x_k_neg(9,1))*cos(x_k_neg(7,1)))
*z_offset; 
        H18 = -
sin(x_k_neg(8,1))*cos(x_k_neg(7,1))*x_offset+cos(x_k_neg(8,1))*sin(x_k_neg(9,1))*cos(x_k_
neg(7,1))*y_offset+cos(x_k_neg(8,1))*cos(x_k_neg(9,1))*cos(x_k_neg(7,1))*z_offset; 
        H19 = 
(sin(x_k_neg(8,1))*cos(x_k_neg(9,1))*cos(x_k_neg(7,1))+sin(x_k_neg(9,1))*sin(x_k_neg(7,1))
)*y_offset+(-
sin(x_k_neg(8,1))*sin(x_k_neg(9,1))*cos(x_k_neg(7,1))+cos(x_k_neg(9,1))*sin(x_k_neg(7,1)))
*z_offset; 
        H27 = 
cos(x_k_neg(8,1))*cos(x_k_neg(7,1))*x_offset+(sin(x_k_neg(8,1))*sin(x_k_neg(9,1))*cos(x_k_
neg(7,1))-
cos(x_k_neg(9,1))*sin(x_k_neg(7,1)))*y_offset+(sin(x_k_neg(8,1))*cos(x_k_neg(9,1))*cos(x_k
_neg(7,1))+sin(x_k_neg(9,1))*sin(x_k_neg(7,1)))*z_offset; 
        H28 = -
sin(x_k_neg(8,1))*sin(x_k_neg(7,1))*x_offset+cos(x_k_neg(8,1))*sin(x_k_neg(9,1))*sin(x_k_n
eg(7,1))*y_offset+cos(x_k_neg(8,1))*cos(x_k_neg(9,1))*sin(x_k_neg(7,1))*z_offset; 
        H29 = (sin(x_k_neg(8,1))*cos(x_k_neg(9,1))*sin(x_k_neg(7,1))-
sin(x_k_neg(9,1))*cos(x_k_neg(7,1)))*y_offset+(-
sin(x_k_neg(8,1))*sin(x_k_neg(9,1))*sin(x_k_neg(7,1))-
cos(x_k_neg(9,1))*cos(x_k_neg(7,1)))*z_offset; 
        H37 = 0; 
        H38 = -cos(x_k_neg(8,1))*x_offset-sin(x_k_neg(8,1))*sin(x_k_neg(9,1))*y_offset-
sin(x_k_neg(8,1))*cos(x_k_neg(9,1))*z_offset; 
        H39 = cos(x_k_neg(8,1))*cos(x_k_neg(9,1))*y_offset-
cos(x_k_neg(8,1))*sin(x_k_neg(9,1))*z_offset; 
 
        H = [1 0 0 0 0 0 H17 H18 H19 0 0 0 0 0 0 0 0 0 0 0 0 
            0 1 0 0 0 0 H27 H28 H29 0 0 0 0 0 0 0 0 0 0 0 0 
            0 0 1 0 0 0 H37 H38 H39 0 0 0 0 0 0 0 0 0 0 0 0]; 
 
        % Kalman Gain Matrix 
        K = P_k_neg*H'*inv(H*P_k_neg*H' + R); 
 
        Inn(:,i) = y_tilde(j:w,1) - h; 
 
        % Correction to State Vector 
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        x_k_pos = x_k_neg + K*(Inn(:,i)); 
 
        % Correction to P Matrix 
        P_k_pos = (eye(length(P0)) - K*H)*P_k_neg; 
 
        step = 0; 
 
        z = z + 1; 
 
    end 
 
    % Saving all State information 
    x_plot(:,i) = x_k_pos; 
 
    % Augmenting the IMU measurements from g's to m/s/s and deg/s to rad/s 
    x_acc_m = x_acc_meas(i)*g; 
 
    y_acc_m = y_acc_meas(i)*g; 
 
    z_acc_m = z_acc_meas(i)*g; 
 
    omega_p_m = omega_p_meas(i)*pi/180; 
 
    omega_q_m = omega_q_meas(i)*pi/180; 
 
    omega_r_m = omega_r_meas(i)*pi/180; 
     
    % Setting the first part of the initial condition vector for Runge 
    % Kutta 
    x0(1:length(P0),1) = x_k_pos; 
 
    % Converting elements of P matrix to an array 
    for d=1:length(P0) 
 
        j = length(P0)*d - (length(P0)-1); 
        k = length(P0)*d; 
 
        P_k_pos_col(j:k,1) = P_k_pos(d,1:length(P0)); 
 
    end 
 
    % Setting the last part of the initial condition vector for Runge Kutta 
    x0(length(P0)+1:length(P0)+length(P0)^2,1) = P_k_pos_col; 
 
    % Calling the ode4 (Runge Kutta 4th order) integration tool 
    x_est = ode4(@Prop_3D,[0 0.01],x0); 
 
    % Taking the last part of the RK solution 
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    P_est = x_est(length(x_est(:,1)),length(P0)+1:length(P0)+length(P0)^2); 
 
    % Converting the array P_est into the elements of P_k_neg 
    for d=1:length(P0) 
 
        j = length(P0)*d - (length(P0)-1); 
        k = length(P0)*d; 
        P_k_neg(d,1:length(P0)) = P_est(j:k); 
 
    end 
 
    % Converting the first part of the solution to x_k_neg 
    x_k_neg = x_est(length(x_est(:,1)),1:length(P0))'; 
     
    % x_k_pos/P_k_pos are the best estimates available 
    x_k_pos = x_k_neg; 
     
    P_k_pos = P_k_neg; 
 
    step = step + 1; 
 
    % Printing out the simulation time every second 
    if iteration == 100 
 
        print = print + 1; 
         
        Sim_time = print         
 
        iteration = 0; 
 
    end 
 
    iteration = iteration + 1; 
 
end 
 
% Solving for the percentage error of the SFT estimate 
for i=1:length(time) 
 
    x_acc_per_error(i) = (S_a_x - 1/x_plot(16,i))/S_a_x*100; 
    y_acc_per_error(i) = (S_a_y - 1/x_plot(17,i))/S_a_y*100; 
    z_acc_per_error(i) = (S_a_z - 1/x_plot(18,i))/S_a_z*100; 
 
    omega_p_per_error(i) = (S_g_p - 1/x_plot(19,i))/S_g_p*100; 
    omega_q_per_error(i) = (S_g_q - 1/x_plot(20,i))/S_g_q*100; 
    omega_r_per_error(i) = (S_g_r - 1/x_plot(21,i))/S_g_r*100; 
 
end 
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% Saving all the data 
save EKF_3D.mat 
 
% Printing all the figures 
figure (1) 
plot(time,x_plot(1,:) - N_pos') 
xlabel('Simulation Time [sec]') 
ylabel('North Position Estimation Error [m]') 
axis([0 300 -2 2]) 
 
figure (2) 
plot(time,x_plot(2,:) - E_pos') 
xlabel('Simulation Time [sec]') 
ylabel('East Position Estimation Error [m]') 
axis([0 300 -2 2]) 
 
figure (3) 
plot(time,x_plot(3,:) - D_pos') 
xlabel('Simulation Time [sec]') 
ylabel('Down Position Estimation Error [m]') 
axis([0 300 -2 2]) 
 
figure (4) 
plot(time,x_plot(4,:) - N_vel') 
xlabel('Simulation Time [sec]') 
ylabel('North Velocity Estimation Error [m/s]') 
 
figure (5) 
plot(time,x_plot(5,:) - E_vel') 
xlabel('Simulation Time [sec]') 
ylabel('East Velocity Estimation Error [m/s]') 
 
figure (6) 
plot(time,x_plot(6,:) - D_vel') 
xlabel('Simulation Time [sec]') 
ylabel('Down Velocity Estimation Error [m/s]') 
 
figure (7) 
plot(time,(yaw - x_plot(7,:))*180/pi) 
xlabel('Simulation Time [sec]') 
ylabel('Yaw Estimation Error [deg]') 
 
figure (8) 
plot(time,(pitch' - x_plot(8,:))*180/pi) 
xlabel('Simulation Time [sec]') 
ylabel('Pitch Estimation Error [deg]') 
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figure (9) 
plot(time,(roll' - x_plot(9,:))*180/pi) 
xlabel('Simulation Time [sec]') 
ylabel('Roll Estimation Error [deg]') 
 
figure (10) 
plot(time,(x_acc_bias_true - x_plot(10,:)'/9.807)*1000) 
xlabel('Simulation Time [sec]') 
ylabel('x-axis Accelerometer Bias Estimation Error [mg]') 
 
figure (11) 
plot(time,(y_acc_bias_true - x_plot(11,:)'/9.807)*1000) 
xlabel('Simulation Time [sec]') 
ylabel('y-axis Accelerometer Bias Estimation Error [mg]') 
 
figure (12) 
plot(time,(z_acc_bias_true - x_plot(12,:)'/9.807)*1000) 
xlabel('Simulation Time [sec]') 
ylabel('z-axis Accelerometer Bias Estimation Error [mg]') 
 
figure (13) 
plot(time,(omega_p_bias_true - x_plot(13,:)'*180/pi)) 
xlabel('Simulation Time [sec]') 
ylabel('x-axis ARS Bias Estimation Error [deg/s]') 
 
figure (14) 
plot(time,(omega_q_bias_true - x_plot(14,:)'*180/pi)) 
xlabel('Simulation Time [sec]') 
ylabel('y-axis ARS Bias Estimation Error [deg/s]') 
 
figure (15) 
plot(time,(omega_r_bias_true - x_plot(15,:)'*180/pi)) 
xlabel('Simulation Time [sec]') 
ylabel('z-axis ARS Bias Estimation Error [deg/s]') 
 
figure (16) 
plot(time,x_acc_per_error) 
xlabel('Simulation Time [sec]') 
ylabel('x-axis Accelerometer SFT Error [%]') 
 
figure (17) 
plot(time,y_acc_per_error) 
xlabel('Simulation Time [sec]') 
ylabel('y-axis Accelerometer SFT Error [%]') 
 
figure (18) 
plot(time,z_acc_per_error) 
xlabel('Simulation Time [sec]') 
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ylabel('z-axis Accelerometer SFT Error [%]') 
 
figure (19) 
plot(time,omega_p_per_error) 
xlabel('Simulation Time [sec]') 
ylabel('x-axis ARS SFT Error [%]') 
 
figure (20) 
plot(time,omega_q_per_error) 
xlabel('Simulation Time [sec]') 
ylabel('y-axis ARS SFT Error [%]') 
 
figure (21) 
plot(time,omega_r_per_error) 
xlabel('Simulation Time [sec]') 
ylabel('z-axis ARS SFT Error [%]') 
 
figure (22) 
plot(time,x_acc_bias_true*1000) 
xlabel('Simulation Time [sec]') 
ylabel('True x-axis Accelerometer Bias [mg]') 
 
figure (23) 
plot(time,y_acc_bias_true*1000) 
xlabel('Simulation Time [sec]') 
ylabel('True y-axis Accelerometer Bias [mg]') 
 
figure (24) 
plot(time,z_acc_bias_true*1000) 
xlabel('Simulation Time [sec]') 
ylabel('True z-axis Accelerometer Bias [mg]') 
 
figure (25) 
plot(time,omega_p_bias_true) 
xlabel('Simulation Time [sec]') 
ylabel('True x-axis ARS Bias [deg/s]') 
 
figure (26) 
plot(time,omega_q_bias_true) 
xlabel('Simulation Time [sec]') 
ylabel('True y-axis ARS Bias [deg/s]') 
 
figure (27) 
plot(time,omega_r_bias_true) 
xlabel('Simulation Time [sec]') 
ylabel('True z-axis ARS Bias [deg/s]') 
 
figure (28) 
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plot(time,D_pos) 
xlabel('Simulation Time [sec]') 
ylabel('True Down Position of AGV [m]') 
 
figure (29) 
plot(time,pitch*180/pi) 
xlabel('Simulation Time [sec]') 
ylabel('True Pitch of AGV [deg]') 
 
figure (30) 
plot(time,roll*180/pi) 
xlabel('Simulation Time [sec]') 
ylabel('True Roll of AGV [deg]') 
 
 
MatLab code that runs Runge-Kutta 4th order to produce the apriori estimates for the 3-D case 
(including the estimation error covariance matrix): 
 
% Author:  Craig Odom 
 
% Propagation code for apriori solution for 3-D case 
 
function f = Prop_3D(t,x) 
 
global x_acc_m y_acc_m z_acc_m omega_p_m omega_q_m omega_r_m g Q 
 
% Initialzing the functions 
f = zeros(462,1); 
 
cx7 = cos(x(7)); 
sx7 = sin(x(7)); 
tx7 = tan(x(7)); 
cx8 = cos(x(8)); 
sx8 = sin(x(8)); 
tx8 = tan(x(8)); 
cx9 = cos(x(9)); 
sx9 = sin(x(9)); 
tx9 = tan(x(9)); 
 
% Truth model 
w_p = x(19)*(omega_p_m - x(13)); 
w_q = x(20)*(omega_q_m - x(14)); 
w_r = x(21)*(omega_r_m - x(15)); 
 
f4x = cx7*cx8; 
f4y = sx9*sx8*cx7-cx9*sx7; 
f4z = cx9*sx8*cx7+sx9*sx7; 
f5x = sx7*cx8; 
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f5y = sx9*sx8*sx7+cx9*cx7; 
f5z = cx9*sx8*sx7-sx9*cx7; 
f6x = -sx8; 
f6y = sx9*cx8; 
f6z = cx9*cx8; 
 
a_x = x(16)*(x_acc_m - x(10)) - g*sx8; 
a_y = x(17)*(y_acc_m - x(11)) + g*cx8*sx9; 
a_z = x(18)*(z_acc_m - x(12)) + g*cx8*cx9; 
 
% Equations of motion 
f(1) = x(4); 
f(2) = x(5); 
f(3) = x(6); 
f(4) = f4x*a_x + f4y*a_y + f4z*a_z; 
f(5) = f5x*a_x + f5y*a_y + f5z*a_z; 
f(6) = f6x*a_x + f6y*a_y + f6z*a_z; 
f(7) = 1/cx8*(sx9*w_q+cx9*w_r); 
f(8) = cx9*w_q - sx9*w_r; 
f(9) = w_p + tx8*(sx9*w_q+cx9*w_r); 
f(10) = 0; 
f(11) = 0; 
f(12) = 0; 
f(13) = 0; 
f(14) = 0; 
f(15) = 0; 
f(16) = 0; 
f(17) = 0; 
f(18) = 0; 
f(19) = 0; 
f(20) = 0; 
f(21) = 0; 
 
% Process Noise Mapping Matrix 
G = [0 0 0 0 0 0 
    0 0 0 0 0 0 
    0 0 0 0 0 0 
    f4x*x(16) f4y*x(17) f4z*x(18) 0 0 0 
    f5x*x(16) f5y*x(17) f5z*x(18) 0 0 0 
    f6x*x(16) f6y*x(17) f6z*x(18) 0 0 0 
    0 0 0 0 1/cx8*sx9*x(20) 1/cx8*cx9*x(21) 
    0 0 0 0 cx9*x(20) -sx9*x(21) 
    0 0 0 x(19) tx8*sx9*x(20) tx8*cx9*x(21) 
    0 0 0 0 0 0 
    0 0 0 0 0 0 
    0 0 0 0 0 0 
    0 0 0 0 0 0 
    0 0 0 0 0 0 
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    0 0 0 0 0 0 
    0 0 0 0 0 0 
    0 0 0 0 0 0 
    0 0 0 0 0 0 
    0 0 0 0 0 0 
    0 0 0 0 0 0 
    0 0 0 0 0 0]; 
 
% Partial derivatives matrix 
F47 = -sx7*cx8*(x(16)*(x_acc_m-x(10))-g*sx8)+(-sx9*sx8*sx7-cx9*cx7)*(x(17)*(y_acc_m-
x(11))+g*cx8*sx9)+(-cx9*sx8*sx7+sx9*cx7)*(x(18)*(z_acc_m-x(12))+g*cx8*cx9); 
F48 = -cx7*sx8*(x(16)*(x_acc_m-x(10))-g*sx8)-cx7*cx8^2*g+sx9*cx8*cx7*(x(17)*(y_acc_m-
x(11))+g*cx8*sx9)-(sx9*sx8*cx7-cx9*sx7)*g*sx8*sx9+cx9*cx8*cx7*(x(18)*(z_acc_m-
x(12))+g*cx8*cx9)-(cx9*sx8*cx7+sx9*sx7)*g*sx8*cx9; 
F49 = (cx9*sx8*cx7+sx9*sx7)*(x(17)*(y_acc_m-x(11))+g*cx8*sx9)+(sx9*sx8*cx7-
cx9*sx7)*g*cx8*cx9+(-sx9*sx8*cx7+cx9*sx7)*(x(18)*(z_acc_m-x(12))+g*cx8*cx9)-
(cx9*sx8*cx7+sx9*sx7)*g*cx8*sx9; 
F410 = -cx7*cx8*x(16); 
F411 = -(sx9*sx8*cx7-cx9*sx7)*x(17); 
F412 = -(cx9*sx8*cx7+sx9*sx7)*x(18); 
F413 = 0; 
F414 = 0; 
F415 = 0; 
F416 = cx7*cx8*(x_acc_m-x(10)); 
F417 = (sx9*sx8*cx7-cx9*sx7)*(y_acc_m-x(11)); 
F418 = (cx9*sx8*cx7+sx9*sx7)*(z_acc_m-x(12)); 
F419 = 0; 
F420 = 0; 
F421 = 0; 
F57 = cx7*cx8*(x(16)*(x_acc_m-x(10))-g*sx8)+(sx9*sx8*cx7-cx9*sx7)*(x(17)*(y_acc_m-
x(11))+g*cx8*sx9)+(cx9*sx8*cx7+sx9*sx7)*(x(18)*(z_acc_m-x(12))+g*cx8*cx9); 
F58 = -sx7*sx8*(x(16)*(x_acc_m-x(10))-g*sx8)-sx7*cx8^2*g+sx9*cx8*sx7*(x(17)*(y_acc_m-
x(11))+g*cx8*sx9)-(sx9*sx8*sx7+cx9*cx7)*g*sx8*sx9+cx9*cx8*sx7*(x(18)*(z_acc_m-
x(12))+g*cx8*cx9)-(cx9*sx8*sx7-sx9*cx7)*g*sx8*cx9; 
F59 = (cx9*sx8*sx7-sx9*cx7)*(x(17)*(y_acc_m-
x(11))+g*cx8*sx9)+(sx9*sx8*sx7+cx9*cx7)*g*cx8*cx9+(-sx9*sx8*sx7-
cx9*cx7)*(x(18)*(z_acc_m-x(12))+g*cx8*cx9)-(cx9*sx8*sx7-sx9*cx7)*g*cx8*sx9; 
F510 = -sx7*cx8*x(16); 
F511 = -(sx9*sx8*sx7+cx9*cx7)*x(17); 
F512 = -(cx9*sx8*sx7-sx9*cx7)*x(18); 
F513 = 0; 
F514 = 0; 
F515 = 0; 
F516 = sx7*cx8*(x_acc_m-x(10)); 
F517 = (sx9*sx8*sx7+cx9*cx7)*(y_acc_m-x(11)); 
F518 = (cx9*sx8*sx7-sx9*cx7)*(z_acc_m-x(12)); 
F519 = 0; 
F520 = 0; 
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F521 = 0; 
F67 = 0; 
F68 = -cx8*(x(16)*(x_acc_m-x(10))-g*sx8)+sx8*g*cx8-sx9*sx8*(x(17)*(y_acc_m-
x(11))+g*cx8*sx9)-sx9^2*cx8*g*sx8-cx9*sx8*(x(18)*(z_acc_m-x(12))+g*cx8*cx9)-
cx9^2*cx8*g*sx8; 
F69 = cx9*cx8*(x(17)*(y_acc_m-x(11))+g*cx8*sx9)-sx9*cx8*(x(18)*(z_acc_m-
x(12))+g*cx8*cx9); 
F610 = sx8*x(16); 
F611 = -sx9*cx8*x(17); 
F612 = -cx9*cx8*x(18); 
F613 = 0; 
F614 = 0; 
F615 = 0; 
F616 = -sx8*(x_acc_m-x(10)); 
F617 = sx9*cx8*(y_acc_m-x(11)); 
F618 = cx9*cx8*(z_acc_m-x(12)); 
F619 = 0; 
F620 = 0; 
F621 = 0; 
F77 = 0; 
F78 = 1/cx8^2*(sx9*x(20)*(omega_q_m-x(14))+cx9*x(21)*(omega_r_m-x(15)))*sx8; 
F79 = 1/cx8*(cx9*x(20)*(omega_q_m-x(14))-sx9*x(21)*(omega_r_m-x(15))); 
F710 = 0; 
F711 = 0; 
F712 = 0; 
F713 = 0; 
F714 = -1/cx8*sx9*x(20); 
F715 = -1/cx8*cx9*x(21); 
F716 = 0; 
F717 = 0; 
F718 = 0; 
F719 = 0; 
F720 = 1/cx8*sx9*(omega_q_m-x(14)); 
F721 = 1/cx8*cx9*(omega_r_m-x(15)); 
F87 = 0; 
F88 = 0; 
F89 = -sx9*x(20)*(omega_q_m-x(14))-cx9*x(21)*(omega_r_m-x(15)); 
F810 = 0; 
F811 = 0; 
F812 = 0; 
F813 = 0; 
F814 = -cx9*x(20); 
F815 = sx9*x(21); 
F816 = 0; 
F817 = 0; 
F818 = 0; 
F819 = 0; 
F820 = cx9*(omega_q_m-x(14)); 
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F821 = -sx9*(omega_r_m-x(15)); 
F97 = 0; 
F98 = (1+tx8^2)*(sx9*x(20)*(omega_q_m-x(14))+cx9*x(21)*(omega_r_m-x(15))); 
F99 = tx8*(cx9*x(20)*(omega_q_m-x(14))-sx9*x(21)*(omega_r_m-x(15))); 
F910 = 0; 
F911 = 0; 
F912 = 0; 
F913 = -x(19); 
F914 = -tx8*sx9*x(20); 
F915 = -tx8*cx9*x(21); 
F916 = 0; 
F917 = 0; 
F918 = 0; 
F919 = omega_p_m-x(13); 
F920 = tx8*sx9*(omega_q_m-x(14)); 
F921 = tx8*cx9*(omega_r_m-x(15)); 
 
F = [0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
    0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
    0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
    0 0 0 0 0 0 F47 F48 F49 F410 F411 F412 F413 F414 F415 F416 F417 F418 F419 F420 F421 
    0 0 0 0 0 0 F57 F58 F59 F510 F511 F512 F513 F514 F515 F516 F517 F518 F519 F520 F521 
    0 0 0 0 0 0 F67 F68 F69 F610 F611 F612 F613 F614 F615 F616 F617 F618 F619 F620 F621 
    0 0 0 0 0 0 F77 F78 F79 F710 F711 F712 F713 F714 F715 F716 F717 F718 F719 F720 F721 
    0 0 0 0 0 0 F87 F88 F89 F810 F811 F812 F813 F814 F815 F816 F817 F818 F819 F820 F821 
    0 0 0 0 0 0 F97 F98 F99 F910 F911 F912 F913 F914 F915 F916 F917 F918 F919 F920 F921 
    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]; 
 
st = length(F) + 1; 
 
% Filling the P matrix with the states 
for i=1:length(F) 
 
    for j=1:length(F) 
 
        P(i,j) = x(st); 
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        st = st + 1; 
 
    end 
 
end 
 
% Variation of Ricatti equation 
P_dot = F*P + P*F' + G*Q*G'; 
 
st = length(F) + 1; 
 
% Filling the functions with the elements of P_dot 
for i=1:length(F) 
 
    for j=1:length(F) 
 
        f(st) = P_dot(i,j); 
 
        st = st + 1; 
 
    end 
 
end 
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APPENDIX B 
 
 
C++ code that includes the definitions of variables, initialization parameters, and function calls 
to the KF, Runge Kutta and IMU/GPS communication programs (the MAIN program): 
 
// Author:  Caleb Wells 
 
// Main program 
 
# include <cstdlib> 
# include <iostream> 
# include <iomanip> 
# include <cmath> 
#include <conio.h> 
#include "Matrix.h" 
#include "kalmanfilter.h" 
#include "rungeKutta.h" 
#include "MTGPS.h" 
#include "IMUSerial.h" 
#include "IPC.h" 
//#define _CRTDBG_MAP_ALLOC 
//#include <stdlib.h> 
//#include <crtdbg.h> 
 
using namespace std; 
 
#ifndef PI 
#define PI 3.1415926535 
#endif 
#ifndef IMU_Hz 
#define IMU_Hz 71.1 
#endif 
#define R_EARTH 6366564.864 
#define g 9.807 
 
// Defining all the elements of the Process Noise Covariance Matrix 
#define X_ACCEL_NOISE .01 * g 
#define Y_ACCEL_NOISE .01 * g 
#define Z_ACCEL_NOISE .01 * g 
#define OMEGA_P_NOISE  .5 * PI / 180 
#define OMEGA_Q_NOISE  .5 * PI / 180 
#define OMEGA_R_NOISE  1.0 * PI / 180 
 
// Beginning yaw angle of the IMU 
#define YAW_BEG -40 * PI / 180 
 
// Defining the initial offsets of the origin of the GPS antenna co-
ordinate system and the Earth co-ordinate system 
#define N_OFF X_OFF*cos(YAW_BEG) - Y_OFF*sin(YAW_BEG) 
#define E_OFF X_OFF*sin(YAW_BEG) + Y_OFF*cos(YAW_BEG) 
#define D_OFF Z_OFF 
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// Yaw offset from IMU to centerline of AGV 
#define YAW_OFF 0 * PI / 180 
 
// Number of points to average while sitting to define the origin of 
the ICS 
#define NUM_AVG 20   
 
extern Matrix* R_Mat; 
extern Matrix* identity; 
extern double state_est[21]; 
 
double x_accel_m; 
double y_accel_m; 
double z_accel_m; 
double omega_p_m; 
double omega_q_m; 
double omega_r_m; 
int fail=0; 
int first_iter =0; 
double state_est[21]; 
double array2[6]; 
double ORIGIN_LAT; 
double ORIGIN_LON; 
double ORIGIN_ALT; 
 
int GPSFLAG; 
 
/*FILES FOR LOGGING*/ 
FILE * kflog; 
FILE * imulog; 
FILE * rklog; 
 
 
Matrix* Q; 
Matrix* G; 
Matrix* P; 
Matrix* F; 
Matrix* P_dot; 
Matrix* P_est; 
 
//typedef enum {init, transmission, header, set_reference, 
clear_reference, binary, decimal} IMU_telegram; 
int main ( void ); 
 
void RK_KF (); 
 
void initialize(); 
 
void dump(void); 
DWORD WINAPI GPS_Flagger(LPVOID Param); 
void GPS_Stopper(); 
 
//*********************************************************************
********* 
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int main( void ) 
{ 
 double lat_sum = 0; 
 double lon_sum = 0; 
 double alt_sum = 0; 
 //atexit(dump); 
 //_CrtSetBreakAlloc(455855); 
 
 imulog = fopen("imu_log.xls","w"); 
 kflog = fopen("kf_log.xls","w"); 
 rklog = fopen("rk_log.txt","w"); 
 if(!imulog||!kflog||!rklog) 
 { 
  printf("Error Opening Files"); 
  return 0; 
 } 
 //initialize 
 initialize(); 
 GPSreading * GPSData = (GPSreading*)malloc(sizeof(GPSreading)); 
IMU_init();  //start the IMU 
//Wait until the IMU starts sending the header, then... 
wait_for_data(); 
//Wait 3 seconds 
Sleep(3000); 
//Send the first space bar "hit" 
IMU((IMU_telegram)0); 
//Wait a quarter of a second since back to back hits won't work 
Sleep(250); 
//Send another space bar "hit" 
IMU((IMU_telegram)0); 
 
//Wait for streaming data from the IMU 
wait_for_data(); 
//Read 25 lines, just to let it get going... 
for(int i = 0; i < 25; i++) 
 read_IMU_line(array2); 
//Then send the 'r' character to set it in reference mode. 
IMU((IMU_telegram)3); 
 
  
 
 //start threads  
while( startGPSSerial()==0) 
{ 
 printf("Error Starting Thread"); 
} 
 
 
 
 //KF 
 double * y_t; 
 y_t = (double*)malloc(sizeof(double)*3); 
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 //get first gps()  (GPS on separate thread 
 
 // Setting up the origin of the GPS antenna 
for(int i = 0; i<NUM_AVG;i++) 
{ 
 while(getGPS(&GPSData)==0) 
 { 
  if(i==0) 
   printf("w\n"); 
  Sleep(10); 
 } 
 lat_sum+=GPSData->lat; 
 lon_sum+=GPSData->lon; 
 alt_sum+=GPSData->alt; 
 
} 
 
 
 ORIGIN_LAT = lat_sum/NUM_AVG; 
 ORIGIN_LON = lon_sum/NUM_AVG; 
 ORIGIN_ALT = alt_sum/NUM_AVG; 
 
 y_t[0] = N_OFF; 
 y_t[1] = E_OFF; 
 y_t[2] = D_OFF; 
  
 kalmanFilter(y_t); 
 
 
//loop 
 while(1) 
 { 
  //BLOCK IMU (wait until you get an IMU) 
  read_IMU_line(array2);  //how big is the IMU array, what is 
the time thing 
  //RK  for XX ms (1/Hz) 
   
x_accel_m = array2[0]; 
y_accel_m = array2[1]; 
z_accel_m = array2[2]; 
omega_p_m = array2[3]; 
omega_q_m = array2[4]; 
omega_r_m = array2[5]; 
 
  // Modifying the incoming measurements from g's and deg/s 
to m/s/s and rad/s 
  x_accel_m *= g; 
  y_accel_m *= g; 
  z_accel_m *= g; 
  omega_p_m *= PI/180.; 
  omega_q_m *= PI/180.; 
  omega_r_m *= PI/180.; 
  if(imulog) 
  { 
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 fprintf(imulog,"%lf\t%lf\t%lf\t%lf\t%lf\t%lf\n",x_accel_m/g,y_acc
el_m/g,z_accel_m/g,omega_p_m*180/PI,omega_q_m*180/PI,omega_r_m*180/PI); 
  
 //printf("%lf\t%lf\t%lf\n",omega_p_m*180/PI,omega_q_m*180/PI,omeg
a_r_m*180/PI); 
  } 
  else 
  { 
   printf("ERROR\n"); 
  } 
  RK_KF();    
 
 
  //CHECK for GPS 
  //if gps  
  // run KF 
 
 
  if(getGPS(&GPSData)==1) 
  { 
   //set the values here 
   //printf("NEW GPS\n"); 
   y_t[0] = 2*R_EARTH*sin(((GPSData->lat*PI/180) - 
(ORIGIN_LAT * PI/180))/2) + N_OFF; 
   y_t[1] = 2*R_EARTH*sin(((GPSData->lon*PI/180) - 
(ORIGIN_LON * PI/180))/2) + E_OFF; 
   y_t[2] = ORIGIN_ALT - GPSData->alt + D_OFF; 
   if(GPSFLAG==0) 
    kalmanFilter(y_t); 
 
  
 fprintf(kflog,"%d\t%.9lf\t%.9lf\t%.9lf\t%.9lf\t%.9lf\t%.9lf\t%.9l
f\t%.9lf\t%.9lf\t%.9lf\t%.9lf\t%.9lf\t%.9lf\t%.9lf\t%.9lf\t%.9lf\t%.9lf
\t%.9lf\t%.9lf\t%.9lf\t%.9lf\t%.9lf\t%.9lf\t%.9lf\n",GPSFLAG,state_est[
0],state_est[1],state_est[2],state_est[3],state_est[4],state_est[5],sta
te_est[6]*180/PI,state_est[7]*180/PI,state_est[8]*180/PI,state_est[9]/g
,state_est[10]/g,state_est[11]/g,state_est[12]*180/PI,state_est[13]*180
/PI,state_est[14]*180/PI,state_est[15],state_est[16],state_est[17],stat
e_est[18],state_est[19],state_est[20],y_t[0],y_t[1],y_t[2],GPSData-
>numSat); 
  } 
//  printf("yaw = %lf\npitch = %lf\nroll = %lf\nN = %lf\nE = 
%lf\nD = 
%lf\n\n",state_est[6]*180/PI,state_est[7]*180/PI,state_est[8]*180/PI,st
ate_est[0],state_est[1],state_est[2]); 
  if(quit==1) 
   break;   
 
  char* cont_message = (char*)malloc(sizeof(char)*150); 
  sprintf(cont_message,"%lf,%lf,%lf,%lf,%lf",GPSData-
>lat,GPSData->lon,state_est[6]+YAW_OFF,state_est[7],state_est[8]);    
  sendMSG(cont_message,CLIENT); 
  free(cont_message); 
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 }  
 
} 
 
 
void RK_KF() 
{ 
# define NEQN 462 
 
  
 
 int flag; 
 
 double y[NEQN]; 
 
 
 flag = 1; 
 
 
 first_iter = 1; 
 
 int st = 0; 
 for(int i = 0;i<21;i++) 
 { 
  y[st] = state_est[i]; 
  st++; 
 } 
 for(int i=0;i<21;i++) 
  for(int j=0;j<21;j++) 
  { 
   y[st] = P_est->mat[i][j]; 
   st++; 
  }  
    
  rungeKutta(y,1./IMU_Hz,1./IMU_Hz,462); 
   
  SYSTEMTIME sys_time; 
  FILETIME new_time; 
  GetSystemTime(&sys_time); 
  SystemTimeToFileTime(&sys_time, &new_time); 
  ULARGE_INTEGER    *time = 
(ULARGE_INTEGER*)(&new_time); 
 
 
 fprintf(rklog,"%I64i\t%.9lf\t%.9lf\t%.9lf\t%.9lf\t%.9lf\t%.9lf\t%
.9lf\t%.9lf\t%.9lf\t%.9lf\t%.9lf\t%.9lf\t%.9lf\t%.9lf\t%.9lf\t%.9lf\t%.
9lf\t%.9lf\t%.9lf\t%.9lf\t%.9lf\n",time-
>QuadPart,y[0],y[1],y[2],y[3],y[4],y[5],y[6]*180/PI,y[7]*180/PI,y[8]*18
0/PI,y[9]/g,y[10]/g,y[11]/g,y[12]*180/PI,y[13]*180/PI,y[14]*180/PI,y[15
],y[16],y[17],y[18],y[19],y[20]); 
 
  for(st=0;st<21;st++) 
  { 
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   state_est[st] = y[st]; 
  } 
 
 
  for(int i=0;i<21;i++) 
   for(int j=0;j<21;j++) 
   { 
    P_est->mat[i][j] = y[st]; 
    st++; 
   }  
   return; 
# undef NEQN 
} 
//*********************************************************************
********* 
 
void initialize() 
{ 
 
 // Process Noise Covariance Matrix 
 double Q_data[36] = { 
   pow(X_ACCEL_NOISE,2),0,0,0,0,0, 
   0,pow(Y_ACCEL_NOISE,2),0,0,0,0, 
   0,0,pow(Z_ACCEL_NOISE,2),0,0,0, 
   0,0,0,pow(OMEGA_P_NOISE,2),0,0, 
   0,0,0,0,pow(OMEGA_Q_NOISE,2),0, 
   0,0,0,0,0,pow(OMEGA_R_NOISE,2)}; 
 
 
 // Initial Estimation Error Covariance Matrix 
 double P_est_data[441] = {   
   5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
   0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
   0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
   0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
   0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
   0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
   0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
   0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0, 
   0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0, 
   0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0, 
   0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0, 
   0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0, 
   0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0, 
   0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0, 
   0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0, 
   0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,.05,0,0,0,0,0, 
   0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,.05,0,0,0,0, 
   0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,.05,0,0,0, 
   0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,.05,0,0, 
   0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,.05,0, 
   0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,.05}; 
 
  // Identity Matrix 
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  double iden_data[441] = { 
   1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
   0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
   0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
   0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
   0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
   0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
   0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
   0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0, 
   0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0, 
   0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0, 
   0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0, 
   0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0, 
   0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0, 
   0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0, 
   0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0, 
   0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0, 
   0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0, 
   0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0, 
   0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0, 
   0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0, 
   0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}; 
 
  // Measurement Noise Covariance Matrix 
  double R_data[9] = { 
   .1,0,0, 
   0,.1,0, 
   0,0,.2}; 
 
  Q = createMat(6,6); 
  identity = createMat(21,21); 
  G = createMat(21,6); 
  R_Mat = createMat(3,3); 
  P = createMat(21,21); 
  F = createMat(21,21); 
  P_dot = createMat(21,21); 
  P_est = createMat(21,21); 
  fillMat(identity,iden_data); 
  fillMat(Q,Q_data); 
  fillMat(P_est,P_est_data); 
  fillMat(R_Mat,R_data); 
 
  // Initial Estimates 
  for(int i=0;i<15;i++) 
   state_est[i] = 0; 
  state_est[3] = 0; 
  state_est[4] = 0; 
  state_est[6] = YAW_BEG-YAW_OFF; 
  state_est[15] = 1; 
  state_est[16] = 1; 
  state_est[17] = 1; 
  state_est[18] = 1; 
  state_est[19] = 1; 
  state_est[20] = 1; 
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  GPSFLAG = 0; 
  GPS_Stopper(); 
  Sleep(2000); 
  printf("Setting Up Server\n"); 
  setupServer();   //setup the IPC Server 
  printf("Connection Established\n"); 
   
  Sleep(200); 
} 
 
//void dump(void) 
//{ 
// _CrtDumpMemoryLeaks(); 
//} 
 
void GPS_Stopper() 
{ 
 DWORD ThreadID; 
 HANDLE ThreadHandle; 
 int Param; 
 Param = 5; 
 newRead = 0; 
  
 //create the thread 
 ThreadHandle = CreateThread( 
  NULL,  //default security attributes 
  0,  //default stack size 
  GPS_Flagger, //thread Function 
  &Param, //parameter to thread function 
  0,  //default creation flags 
  &ThreadID); //returns the thread Identifier 
 
 
 return; 
} 
 
DWORD WINAPI GPS_Flagger(LPVOID Param) 
{ 
 char test; 
  
 while(1) 
 { 
  fflush(stdin); 
  scanf("%c",&test); 
  printf("\n"); 
  if(test == 'k' || test == 'K') 
  { 
 
   if(GPSFLAG == 1) 
   { 
    printf("GPS Resumed\n"); 
    GPSFLAG = 0; 
   } 
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   else 
   { 
    printf("GPS Blocked\n");    
    GPSFLAG = 1; 
   } 
  } 
  else 
  { 
   printf("Invalid Input\n"); 
  } 
 } 
return 0; 
} 
 
 
C++ code that includes the KF algorithm: 
 
// Author:  Caleb Wells 
 
// Kalman Filter algorithm code 
 
#include <iostream> 
#include <conio.h> 
#include "Matrix.h" 
 
using namespace std; 
 
// Defining the offsets from the IMU to the GPS antenna 
#define X_OFF -45.0/39.31 
#define Y_OFF 6.0/39.31 
#define Z_OFF -51.0/39.31 
 
extern Matrix* P_est; 
extern double state_est[21]; 
 
 
Matrix* R_Mat; 
Matrix* identity; 
//R_mat = fillMat(R_Mat,R_data); 
 
double trigMatKF[9];  // matrix to store trig conversions (for KF) 
 
//prototypes 
 
void kalmanFilter(double * y_Tilde) 
{ 
  
 double *h_data; 
 Matrix* H_Mat = createMat(3,21); 
 Matrix* h = createMat(3,1); 
 Matrix* K = createMat(21,3); 
 Matrix* y_T = createMat(3,1); 
 Matrix* DCM_AP = createMat(3,3); 
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 Matrix* state = createMat(21,1); 
 
 trigMatKF[0] = cos(state_est[6]); 
 trigMatKF[1] = sin(state_est[6]); 
 trigMatKF[2] = tan(state_est[6]); 
 trigMatKF[3] = cos(state_est[7]); 
 trigMatKF[4] = sin(state_est[7]); 
 trigMatKF[5] = tan(state_est[7]); 
 trigMatKF[6] = cos(state_est[8]); 
 trigMatKF[7] = sin(state_est[8]); 
 trigMatKF[8] = tan(state_est[8]);  
 
 // Defining the Direction Cosine Matrix from the ICS to BCS 
 double DCM_data[9] = {  
   trigMatKF[3]*trigMatKF[0],trigMatKF[3]*trigMatKF[1],-
trigMatKF[4], 
   trigMatKF[4]*trigMatKF[7]*trigMatKF[0]-
trigMatKF[6]*trigMatKF[1],trigMatKF[4]*trigMatKF[7]*trigMatKF[1]+trigMa
tKF[6]*trigMatKF[0],trigMatKF[3]*trigMatKF[7], 
  
 trigMatKF[4]*trigMatKF[6]*trigMatKF[0]+trigMatKF[7]*trigMatKF[1],
trigMatKF[4]*trigMatKF[6]*trigMatKF[1]-
trigMatKF[7]*trigMatKF[0],trigMatKF[3]*trigMatKF[6]}; 
 
 fillMat(DCM_AP,DCM_data); 
// print(DCM_AP); 
  
 Matrix* DCM_APt = trans(DCM_AP); 
// print(DCM_APt); 
  
 h_data = (double *)malloc(3*sizeof(double)); 
 h_data[0] = state_est[0] + DCM_APt->mat[0][0]*X_OFF + DCM_APt-
>mat[0][1]*Y_OFF + DCM_APt->mat[0][2]*Z_OFF; 
 h_data[1] = state_est[1] + DCM_APt->mat[1][0]*X_OFF + DCM_APt-
>mat[1][1]*Y_OFF + DCM_APt->mat[1][2]*Z_OFF; 
 h_data[2] = state_est[2] + DCM_APt->mat[2][0]*X_OFF + DCM_APt-
>mat[2][1]*Y_OFF + DCM_APt->mat[2][2]*Z_OFF; 
  
 double H06 = -trigMatKF[3]*trigMatKF[1]*X_OFF+(-
trigMatKF[4]*trigMatKF[7]*trigMatKF[1]-
trigMatKF[6]*trigMatKF[0])*Y_OFF+(-
trigMatKF[4]*trigMatKF[6]*trigMatKF[1]+trigMatKF[7]*trigMatKF[0])*Z_OFF
; 
 double H07 = -
trigMatKF[4]*trigMatKF[0]*X_OFF+trigMatKF[3]*trigMatKF[7]*trigMatKF[0]*
Y_OFF+trigMatKF[3]*trigMatKF[6]*trigMatKF[0]*Z_OFF; 
 double H08 = 
(trigMatKF[4]*trigMatKF[6]*trigMatKF[0]+trigMatKF[7]*trigMatKF[1])*Y_OF
F+(-
trigMatKF[4]*trigMatKF[7]*trigMatKF[0]+trigMatKF[6]*trigMatKF[1])*Z_OFF
; 
 double H16 = 
trigMatKF[3]*trigMatKF[0]*X_OFF+(trigMatKF[4]*trigMatKF[7]*trigMatKF[0]
-
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trigMatKF[6]*trigMatKF[1])*Y_OFF+(trigMatKF[4]*trigMatKF[6]*trigMatKF[0
]+trigMatKF[7]*trigMatKF[1])*Z_OFF; 
 double H17 = -
trigMatKF[4]*trigMatKF[1]*X_OFF+trigMatKF[3]*trigMatKF[7]*trigMatKF[1]*
Y_OFF+trigMatKF[3]*trigMatKF[6]*trigMatKF[1]*Z_OFF; 
 double H18 = (trigMatKF[4]*trigMatKF[6]*trigMatKF[1]-
trigMatKF[7]*trigMatKF[0])*Y_OFF+(-
trigMatKF[4]*trigMatKF[7]*trigMatKF[1]-
trigMatKF[6]*trigMatKF[0])*Z_OFF; 
 double H26 = 0; 
 double H27 = -trigMatKF[3]*X_OFF-trigMatKF[4]*trigMatKF[7]*Y_OFF-
trigMatKF[4]*trigMatKF[6]*Z_OFF; 
 double H28 = trigMatKF[3]*trigMatKF[6]*Y_OFF-
trigMatKF[3]*trigMatKF[7]*Z_OFF; 
 
 // Measurement Sensitivity Matrix 
 double H_Mat_data[63] = { 
   1,0,0,0,0,0,H06,H07,H08,0,0,0,0,0,0,0,0,0,0,0,0, 
   0,1,0,0,0,0,H16,H17,H18,0,0,0,0,0,0,0,0,0,0,0,0, 
   0,0,1,0,0,0,H26,H27,H28,0,0,0,0,0,0,0,0,0,0,0,0}; 
 
 fillMat(H_Mat,H_Mat_data); 
 fillMat(h,h_data); 
 fillMat(y_T,y_Tilde); 
// print(H_Mat); 
// print(h); 
// print(y_T); 
 
 
// print(identity); 
 
 
  
 fillMat(state,state_est); 
// print(state); 
 
 Matrix* H_trans = trans(H_Mat); 
 Matrix* temp1 = mul(P_est,H_trans); 
 Matrix* temp2 = mul(H_Mat,P_est); 
 Matrix* temp3 = mul(temp2,H_trans); 
 Matrix* temp4 = add(temp3,R_Mat); 
 Matrix* tempInv = inv(temp4); 
 deleteMat(&K);  //save the memory before it gets reallocated 
 K = mul(temp1,tempInv); 
 
 deleteMat(&H_trans); 
 deleteMat(&temp1); 
 deleteMat(&temp2); 
 deleteMat(&temp3); 
 deleteMat(&temp4); 
 deleteMat(&tempInv); 
  
 Matrix * suba = sub(y_T,h); 
 Matrix * multa = mul(K,suba); 
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 Matrix * tempa = add(state, multa); 
  
 deleteMat(&suba); 
 deleteMat(&multa); 
 
 deleteMat(&state);  //save the memory before it gets reallocated 
 state = tempa; 
 Matrix * mult = mul(K,H_Mat); 
 Matrix * subt = sub(identity,mult); 
 Matrix * tempa2 =  mul( subt, P_est); 
 deleteMat(&mult); 
 deleteMat(&subt); 
 
 deleteMat(&P_est);  //save the memory of P_est 
 P_est = tempa2; 
    
 for(int i = 0; i<21; i++) 
 { 
  state_est[i] = state->mat[i][0]; 
 } 
 
 
 deleteMat(&h); 
 deleteMat(&DCM_AP); 
 deleteMat(&DCM_APt); 
 deleteMat(&K); 
 deleteMat(&y_T); 
 deleteMat(&state); 
 deleteMat(&H_Mat); 
 if(h_data) 
 {  
  free(h_data); 
  h_data = NULL; 
 } 
} 
 
 
C++ code that runs Runge-Kutta 4th order to produce the apriori estimates (including the 
estimation error covariance matrix): 
 
// Author:  Unknown, but modified by Caleb Wells 
 
// Runge Kutta 4th order code 
 
/* Runge Kutta for a set of first order differential equations */ 
 
#include "stdAfx.h" 
#include "PreciseTimer.h" 
 
#include <iostream> 
#include <string> 
#include <algorithm> 



 133 

 
using namespace std; 
#include "Matrix.h" 
#include <math.h> 
 
using namespace std; 
 
extern Matrix* Q; 
extern Matrix* G; 
extern Matrix* P; 
extern Matrix* F; 
extern Matrix* P_dot; 
extern Matrix* P_est; 
 
extern double x_accel_m; 
extern double y_accel_m; 
extern double z_accel_m; 
extern double omega_p_m; 
extern double omega_q_m; 
extern double omega_r_m; 
 
#define N 462                     /* number of first order equations */ 
#ifndef PI 
//#define PI     4.0*atan(1.0) 
#define PI 3.1415926535 
#endif 
#ifndef IMU_Hz 
#define IMU_Hz 71.1 
#endif 
#define g 9.807 
 
double trigMat[9];  //matrix to store trig conversions 
FILE *output;                   /* internal filename */ 
void rungeKutta(double y[],double timestep,double maxTime,int NUMEQ);  
void runge4(double y[], double step); /* Runge-Kutta function */ 
 
void f(double y[]);          /* function for derivatives */ 
double yp[N]; 
 
void rungeKutta(double y[],double timestep,double maxTime,int NUMEQ) 
{ 
 double t; 
 int j; 
 for (j=1; j*timestep<=maxTime ;j++)                     /* time 
loop */ 
 { 
  t=j*timestep; 
  runge4(y, timestep); 
 
 } 
} 
 
void runge4(double y[], double step) 
{ 
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 double h=step/2.0,                      /* the midpoint */ 
  t1[N], t2[N], t3[N],            /* temporary storage arrays 
*/ 
  k1[N], k2[N], k3[N],k4[N];      /* for Runge-Kutta */ 
 int i; 
  
 f(y);  
 
 for (i=0;i<N;i++)  
  t1[i]=y[i]+0.5*(k1[i]=step*yp[i]); 
 
 // CPreciseTimer timer; 
 // timer.StartTimer(); 
 
 
 f(t1); 
 
 for (i=0;i<N;i++) 
  t2[i]=y[i]+0.5*(k2[i]=step*yp[i]); 
 
 f(t2); 
 
 for (i=0;i<N;i++)  
  t3[i]=y[i]+ (k3[i]=step*yp[i]); 
 
 f(t3); 
 
 for (i=0;i<N;i++)  
  k4[i]= step*yp[i]; 
 for (i=0;i<N;i++)  
  y[i]+=(k1[i]+2*k2[i]+2*k3[i]+k4[i])/6.0; 
 // timer.StopTimer(); 
 
 // __int64 i64Diff = timer.GetTime(); 
 // printf("Diff2 (PreciseTimer) = 
%lf\n",(double)i64Diff*.000001); 
 
} 
 
void  f(double y[]) 
{ 
 int st; 
 
 double 
f3x,f3y,f3z,f4x,f4y,f4z,f5x,f5y,f5z,a_x,a_y,a_z,w_p,w_q,w_r; 
 double 
F36,F37,F38,F39,F310,F311,F312,F313,F314,F315,F316,F317,F318,F319,F320; 
    double 
F46,F47,F48,F49,F410,F411,F412,F413,F414,F415,F416,F417,F418,F419,F420; 
 double 
F56,F57,F58,F59,F510,F511,F512,F513,F514,F515,F516,F517,F518,F519,F520; 
 double 
F66,F67,F68,F69,F610,F611,F612,F613,F614,F615,F616,F617,F618,F619,F620; 
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 double 
F76,F77,F78,F79,F710,F711,F712,F713,F714,F715,F716,F717,F718,F719,F720; 
 double 
F86,F87,F88,F89,F810,F811,F812,F813,F814,F815,F816,F817,F818,F819,F820; 
 
 // Truth model 
 w_p = y[18]*(omega_p_m - y[12]); 
 w_q = y[19]*(omega_q_m - y[13]); 
 w_r = y[20]*(omega_r_m - y[14]); 
 
 trigMat[0] = cos(y[6]); 
 trigMat[1] = sin(y[6]); 
 trigMat[2] = tan(y[6]); 
 trigMat[3] = cos(y[7]); 
 trigMat[4] = sin(y[7]); 
 trigMat[5] = tan(y[7]); 
 trigMat[6] = cos(y[8]); 
 trigMat[7] = sin(y[8]); 
 trigMat[8] = tan(y[8]); 
 
 f3x = trigMat[0]*trigMat[3]; 
 f3y = trigMat[7]*trigMat[4]*trigMat[0]-trigMat[6]*trigMat[1]; 
 f3z = trigMat[6]*trigMat[4]*trigMat[0]+trigMat[7]*trigMat[1]; 
 f4x = trigMat[1]*trigMat[3]; 
 f4y = trigMat[7]*trigMat[4]*trigMat[1]+trigMat[6]*trigMat[0]; 
 f4z = trigMat[6]*trigMat[4]*trigMat[1]-trigMat[7]*trigMat[0]; 
 f5x = -trigMat[4]; 
 f5y = trigMat[7]*trigMat[3]; 
 f5z = trigMat[6]*trigMat[3]; 
 
 a_x = y[15]*(x_accel_m - y[9]) - g*trigMat[4]; 
 a_y = y[16]*(y_accel_m - y[10]) + g*trigMat[3]*trigMat[7]; 
 a_z = y[17]*(z_accel_m - y[11]) + g*trigMat[3]*trigMat[6]; 
 
 // Equations of motion that are integrated by RK4 
 yp[0] = y[3]; 
 yp[1] = y[4]; 
 yp[2] = y[5]; 
 yp[3] = f3x*a_x + f3y*a_y + f3z*a_z; 
 yp[4] = f4x*a_x + f4y*a_y + f4z*a_z; 
 yp[5] = f5x*a_x + f5y*a_y + f5z*a_z; 
 yp[6] = 1/trigMat[3]*(trigMat[7]*w_q+trigMat[6]*w_r); 
 yp[7] = trigMat[6]*w_q - trigMat[7]*w_r; 
 yp[8] = w_p + trigMat[5]*(trigMat[7]*w_q+trigMat[6]*w_r); 
 yp[9] = 0; 
 yp[10] = 0; 
 yp[11] = 0; 
 yp[12] = 0; 
 yp[13] = 0; 
 yp[14] = 0; 
 yp[15] = 0; 
 yp[16] = 0; 
 yp[17] = 0; 
 yp[18] = 0; 
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 yp[19] = 0; 
 yp[20] = 0; 
 
 // Process Noise Mapping Matrix 
 double G_data[126] = { 
   0,0,0,0,0,0, 
   0,0,0,0,0,0, 
   0,0,0,0,0,0, 
   f3x*y[15],f3y*y[16],f3z*y[17],0,0,0, 
   f4x*y[15],f4y*y[16],f4z*y[17],0,0,0, 
   f5x*y[15],f5y*y[16],f5z*y[17],0,0,0, 
  
 0,0,0,0,1/trigMat[3]*trigMat[7]*y[19],1/trigMat[3]*trigMat[6]*y[2
0], 
   0,0,0,0,trigMat[6]*y[19],-trigMat[7]*y[20], 
  
 0,0,0,y[18],trigMat[5]*trigMat[7]*y[19],trigMat[5]*trigMat[6]*y[2
0], 
   0,0,0,0,0,0, 
   0,0,0,0,0,0, 
   0,0,0,0,0,0, 
   0,0,0,0,0,0, 
   0,0,0,0,0,0, 
   0,0,0,0,0,0, 
   0,0,0,0,0,0, 
   0,0,0,0,0,0, 
   0,0,0,0,0,0, 
   0,0,0,0,0,0, 
   0,0,0,0,0,0, 
   0,0,0,0,0,0}; 
 
 fillMat(G,G_data); 
 
 // Matrix of Partial Derivatives 
 F36 = -trigMat[1]*trigMat[3]*(y[15]*(x_accel_m-y[9])-
g*trigMat[4])+(-trigMat[7]*trigMat[4]*trigMat[1]-
trigMat[6]*trigMat[0])*(y[16]*(y_accel_m-
y[10])+g*trigMat[3]*trigMat[7])+(-
trigMat[6]*trigMat[4]*trigMat[1]+trigMat[7]*trigMat[0])*(y[17]*(z_accel
_m-y[11])+g*trigMat[3]*trigMat[6]); 
 F37 = -trigMat[0]*trigMat[4]*(y[15]*(x_accel_m-y[9])-
g*trigMat[4])-
trigMat[0]*pow(trigMat[3],2)*g+trigMat[7]*trigMat[3]*trigMat[0]*(y[16]*
(y_accel_m-y[10])+g*trigMat[3]*trigMat[7])-
(trigMat[7]*trigMat[4]*trigMat[0]-
trigMat[6]*trigMat[1])*g*trigMat[4]*trigMat[7]+trigMat[6]*trigMat[3]*tr
igMat[0]*(y[17]*(z_accel_m-y[11])+g*trigMat[3]*trigMat[6])-
(trigMat[6]*trigMat[4]*trigMat[0]+trigMat[7]*trigMat[1])*g*trigMat[4]*t
rigMat[6]; 
 F38 = 
(trigMat[6]*trigMat[4]*trigMat[0]+trigMat[7]*trigMat[1])*(y[16]*(y_acce
l_m-y[10])+g*trigMat[3]*trigMat[7])+(trigMat[7]*trigMat[4]*trigMat[0]-
trigMat[6]*trigMat[1])*g*trigMat[3]*trigMat[6]+(-
trigMat[7]*trigMat[4]*trigMat[0]+trigMat[6]*trigMat[1])*(y[17]*(z_accel
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_m-y[11])+g*trigMat[3]*trigMat[6])-
(trigMat[6]*trigMat[4]*trigMat[0]+trigMat[7]*trigMat[1])*g*trigMat[3]*t
rigMat[7]; 
 F39 = -trigMat[0]*trigMat[3]*y[15]; 
 F310 = -(trigMat[7]*trigMat[4]*trigMat[0]-
trigMat[6]*trigMat[1])*y[16]; 
 F311 = -
(trigMat[6]*trigMat[4]*trigMat[0]+trigMat[7]*trigMat[1])*y[17]; 
 F312 = 0; 
 F313 = 0; 
 F314 = 0; 
 F315 = trigMat[0]*trigMat[3]*(x_accel_m-y[9]); 
 F316 = (trigMat[7]*trigMat[4]*trigMat[0]-
trigMat[6]*trigMat[1])*(y_accel_m-y[10]); 
 F317 = 
(trigMat[6]*trigMat[4]*trigMat[0]+trigMat[7]*trigMat[1])*(z_accel_m-
y[11]); 
 F318 = 0; 
 F319 = 0; 
 F320 = 0; 
 F46 = trigMat[0]*trigMat[3]*(y[15]*(x_accel_m-y[9])-
g*trigMat[4])+(trigMat[7]*trigMat[4]*trigMat[0]-
trigMat[6]*trigMat[1])*(y[16]*(y_accel_m-
y[10])+g*trigMat[3]*trigMat[7])+(trigMat[6]*trigMat[4]*trigMat[0]+trigM
at[7]*trigMat[1])*(y[17]*(z_accel_m-y[11])+g*trigMat[3]*trigMat[6]); 
 F47 = -trigMat[1]*trigMat[4]*(y[15]*(x_accel_m-y[9])-
g*trigMat[4])-
trigMat[1]*pow(trigMat[3],2)*g+trigMat[7]*trigMat[3]*trigMat[1]*(y[16]*
(y_accel_m-y[10])+g*trigMat[3]*trigMat[7])-
(trigMat[7]*trigMat[4]*trigMat[1]+trigMat[6]*trigMat[0])*g*trigMat[4]*t
rigMat[7]+trigMat[6]*trigMat[3]*trigMat[1]*(y[17]*(z_accel_m-
y[11])+g*trigMat[3]*trigMat[6])-(trigMat[6]*trigMat[4]*trigMat[1]-
trigMat[7]*trigMat[0])*g*trigMat[4]*trigMat[6]; 
 F48 = (trigMat[6]*trigMat[4]*trigMat[1]-
trigMat[7]*trigMat[0])*(y[16]*(y_accel_m-
y[10])+g*trigMat[3]*trigMat[7])+(trigMat[7]*trigMat[4]*trigMat[1]+trigM
at[6]*trigMat[0])*g*trigMat[3]*trigMat[6]+(-
trigMat[7]*trigMat[4]*trigMat[1]-
trigMat[6]*trigMat[0])*(y[17]*(z_accel_m-
y[11])+g*trigMat[3]*trigMat[6])-(trigMat[6]*trigMat[4]*trigMat[1]-
trigMat[7]*trigMat[0])*g*trigMat[3]*trigMat[7]; 
 F49 = -trigMat[1]*trigMat[3]*y[15]; 
 F410 = -
(trigMat[7]*trigMat[4]*trigMat[1]+trigMat[6]*trigMat[0])*y[16]; 
 F411 = -(trigMat[6]*trigMat[4]*trigMat[1]-
trigMat[7]*trigMat[0])*y[17]; 
 F412 = 0; 
 F413 = 0; 
 F414 = 0; 
 F415 = trigMat[1]*trigMat[3]*(x_accel_m-y[9]); 
 F416 = 
(trigMat[7]*trigMat[4]*trigMat[1]+trigMat[6]*trigMat[0])*(y_accel_m-
y[10]); 
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 F417 = (trigMat[6]*trigMat[4]*trigMat[1]-
trigMat[7]*trigMat[0])*(z_accel_m-y[11]); 
 F418 = 0; 
 F419 = 0; 
 F420 = 0; 
 F56 = 0; 
 F57 = -trigMat[3]*(y[15]*(x_accel_m-y[9])-
g*trigMat[4])+trigMat[4]*g*trigMat[3]-
trigMat[7]*trigMat[4]*(y[16]*(y_accel_m-
y[10])+g*trigMat[3]*trigMat[7])-
pow(trigMat[7],2)*trigMat[3]*g*trigMat[4]-
trigMat[6]*trigMat[4]*(y[17]*(z_accel_m-
y[11])+g*trigMat[3]*trigMat[6])-
pow(trigMat[6],2)*trigMat[3]*g*trigMat[4]; 
 F58 = trigMat[6]*trigMat[3]*(y[16]*(y_accel_m-
y[10])+g*trigMat[3]*trigMat[7])-
trigMat[7]*trigMat[3]*(y[17]*(z_accel_m-
y[11])+g*trigMat[3]*trigMat[6]); 
 F59 = trigMat[4]*y[15]; 
 F510 = -trigMat[7]*trigMat[3]*y[16]; 
 F511 = -trigMat[6]*trigMat[3]*y[17]; 
 F512 = 0; 
 F513 = 0; 
 F514 = 0; 
 F515 = -trigMat[4]*(x_accel_m-y[9]); 
 F516 = trigMat[7]*trigMat[3]*(y_accel_m-y[10]); 
 F517 = trigMat[6]*trigMat[3]*(z_accel_m-y[11]); 
 F518 = 0; 
 F519 = 0; 
 F520 = 0; 
 F66 = 0; 
 F67 = 1/pow(trigMat[3],2)*(trigMat[7]*y[19]*(omega_q_m-
y[13])+trigMat[6]*y[20]*(omega_r_m-y[14]))*trigMat[4]; 
 F68 = 1/trigMat[3]*(trigMat[6]*y[19]*(omega_q_m-y[13])-
trigMat[7]*y[20]*(omega_r_m-y[14])); 
 F69 = 0; 
 F610 = 0; 
 F611 = 0; 
 F612 = 0; 
 F613 = -1/trigMat[3]*trigMat[7]*y[19]; 
 F614 = -1/trigMat[3]*trigMat[6]*y[20]; 
 F615 = 0; 
 F616 = 0; 
 F617 = 0; 
 F618 = 0; 
 F619 = 1/trigMat[3]*trigMat[7]*(omega_q_m-y[13]); 
 F620 = 1/trigMat[3]*trigMat[6]*(omega_r_m-y[14]); 
 F76 = 0; 
 F77 = 0; 
 F78 = -trigMat[7]*y[19]*(omega_q_m-y[13])-
trigMat[6]*y[20]*(omega_r_m-y[14]); 
 F79 = 0; 
 F710 = 0; 
 F711 = 0; 
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 F712 = 0; 
 F713 = -trigMat[6]*y[19]; 
 F714 = trigMat[7]*y[20]; 
 F715 = 0; 
 F716 = 0; 
 F717 = 0; 
 F718 = 0; 
 F719 = trigMat[6]*(omega_q_m-y[13]); 
 F720 = -trigMat[7]*(omega_r_m-y[14]); 
 F86 = 0; 
 F87 = (1+pow(trigMat[5],2))*(trigMat[7]*y[19]*(omega_q_m-
y[13])+trigMat[6]*y[20]*(omega_r_m-y[14])); 
 F88 = trigMat[5]*(trigMat[6]*y[19]*(omega_q_m-y[13])-
trigMat[7]*y[20]*(omega_r_m-y[14])); 
 F89 = 0; 
 F810 = 0;  
 F811 = 0; 
 F812 = -y[18]; 
 F813 = -trigMat[5]*trigMat[7]*y[19]; 
 F814 = -trigMat[5]*trigMat[6]*y[20]; 
 F815 = 0; 
 F816 = 0; 
 F817 = 0; 
 F818 = omega_p_m-y[12]; 
 F819 = trigMat[5]*trigMat[7]*(omega_q_m-y[13]); 
 F820 = trigMat[5]*trigMat[6]*(omega_r_m-y[14]); 
 
 double F_data[441] = { 
   0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
   0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
   0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
  
 0,0,0,0,0,0,F36,F37,F38,F39,F310,F311,F312,F313,F314,F315,F316,F3
17,F318,F319,F320, 
  
 0,0,0,0,0,0,F46,F47,F48,F49,F410,F411,F412,F413,F414,F415,F416,F4
17,F418,F419,F420, 
  
 0,0,0,0,0,0,F56,F57,F58,F59,F510,F511,F512,F513,F514,F515,F516,F5
17,F518,F519,F520, 
  
 0,0,0,0,0,0,F66,F67,F68,F69,F610,F611,F612,F613,F614,F615,F616,F6
17,F618,F619,F620, 
  
 0,0,0,0,0,0,F76,F77,F78,F79,F710,F711,F712,F713,F714,F715,F716,F7
17,F718,F719,F720, 
  
 0,0,0,0,0,0,F86,F87,F88,F89,F810,F811,F812,F813,F814,F815,F816,F8
17,F818,F819,F820, 
   0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
   0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
   0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
   0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
   0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
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   0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
   0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
   0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
   0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
   0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
   0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
   0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; 
 
 fillMat(F,F_data); 
 
 st = 21; 
 for(int i=0;i<21;i++) 
  for(int j=0;j<21;j++) 
  { 
   P->mat[i][j] = y[st]; 
   st++; 
  }  
 
 
 
  //  CPreciseTimer timer2; 
  //  timer2.StartTimer(); 
  //  cout << endl << endl; 
  
Matrix * F_Trans = trans(F); 
Matrix * temp1 = mul(F,P); 
Matrix * temp2 = mul(P,F_Trans); 
Matrix * temp3 = mul(G,Q); 
Matrix * temp4 = trans(G); 
Matrix * temp5 = mul(temp3,temp4); 
Matrix * add1 = add(temp1,temp2); 
 
deleteMat(&P_dot); 
P_dot = add( add1, temp5); 
 
deleteMat(&F_Trans); 
deleteMat(&add1); 
deleteMat(&temp1); 
deleteMat(&temp2); 
deleteMat(&temp3); 
deleteMat(&temp4); 
deleteMat(&temp5); 
  //  timer2.StopTimer(); 
  // printf("%d\n",(int)timer2.SupportsHighResCounter()); 
  //  printf("Mat Mult = 
%lf\n",(double)timer2.GetTime()*.000001); 
  st = 21; 
  for(int i = 0; i<21;i++) 
   for(int j = 0; j<21;j++) 
   { 
    yp[st] = P_dot->mat[i][j]; 
    st++; 
   } 
} 
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APPENDIX C 
 
 

 In order for the AGV to follow waypoints through a rich environment of obstacles, it 

must know the locations of those obstacles.  This will be referred to as the mapping of obstacles.  

The SICK LMS [6] is the only source of terrain information for the TEES AGV.  It pulses a laser 

at a rotating mirror to produce a 180° planar scan of the terrain.  If the beam reflects off an object 

(a hit) the return is received by the SICK.  The range is computed by measuring the time of flight 

of the pulsed beam.  An encoder on the mirror provides the angle at which the hit was received.  

This information, contained in a single SICK ‘scan’, would be considered a local map of 

obstacles, that is, local to the current SICK co-ordinate system.  However, for longer term use, 

i.e., in terms of minutes or so, it is necessary to store the locations of all recent as well as current 

obstacles, at least temporarily, which requires a ‘global’ map instead of a local map. 

 The global map is the collection of locations for all objects in the environment that have 

been sensed (recently) by the SICK and processed.  These locations are in the ICS.  This co-

ordinate system has a stationary origin and axes.  In order to map a SICK hit to the ICS, a 

detailed analysis must first be performed. 

 First, a more thorough understanding of the co-ordinate systems is required.  Refer to 

figure 69 that contains the three co-ordinate systems:  SICK, IMU and Inertial.  Figures 69 

through 73 were produced by Justin T. Bozalina in the Computer Science Department at Texas 

A&M University. 

 

 

 
Figure 69.  SICK, IMU and inertial co-ordinate systems on the AGV 
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1) Inertial Co-ordinate System – Also known as the Earth or Global Co-ordinate System.  

The axes and origin are as follows: 

 a.  N  -  positive pointing towards North Pole 

 b.  E  -  positive pointing 90° clockwise from North Pole 

 c.  D  -  positive pointing towards center of Earth 

 d.  Origin is designated by team 

 
2) IMU Co-ordinate System – The body-fixed co-ordinate system attached to the IMU, 

which is (assumed) rigidly mounted to vehicle.  Note that this co-ordinate system defines the 

orientation of the AGV because it is assumed that the AGV is a rigid body.  The axes and origin 

are the following: 

 a.  IMUx   -  positive from rear of vehicle to front of vehicle, orthogonal to track 

 b.  IMUy   - positive from driver’s side of vehicle to passenger’s side of vehicle, 

orthogonal to wheelbase 

 c.  IMUz   - positive from roof of vehicle to undercarriage of vehicle, orthogonal to other 

IMU body co-ordinate axes 

 d.  Origin is the center of the cluster of IMU sensors 

 
3) SICK Co-ordinate System – The body-fixed co-ordinate system attached to the SICK 

LMS.  The axes and origin are as follows: 

 a.  SICKx   - positive from flat rear mount of SICK to front of SICK, orthogonal to flat 

rear mount 

 b.  SICKy   - positive from left side of SICK to right side of SICK, looking from the rear 

of the SICK, parallel to IMUy  

 c.  SICKz   - positive from top of SICK to bottom of SICK, orthogonal to other SICK 

body co-ordinate axes 

 d.  Origin is center of mirror located inside SICK 

 
 Refer again to figure 69 to gain additional understanding of the three co-ordinate 

systems.  The next step is to provide the foundation for the order of rotations.  It is essential that 

the different programs on the AGV use the same order of rotations.  It was demonstrated earlier 

that the order of rotations for the AGV from ICS to BCS was yaw, pitch and then roll.  These are 
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the first three rotations.  The last rotation is the sweep of the SICK.  The SICK LMS will also be 

rotated about its y-axis to provide a 3-D sensing of the environment.  This movement will create 

the last rotation, the sweep, or the vertical angle, of the SICK.  To eliminate any ambiguities or 

confusion, the definitions of each of the rotations will be discussed.  Please refer to figures 70 

through 73 that graphically show each of the rotations. 

 
1) Yaw – Denoted as ψ , is the rotation about the D axis from the N axis to the projection 

of the IMUx  axis onto the N E−  plane 

2) Pitch – Denoted as θ , is the rotation about the E′  axis from the N ′ axis to the 

IMUx axis 

3) Roll – Denoted as φ , is the rotation about the N ′′ axis from the E′′ axis to the IMUy axis 

4) Sweep – Denoted as α , is the rotation about the IMUy axis from the IMUx  axis to the 

SICKx axis 

 

 

 
Figure 70.  Yaw angle rotation 
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Figure 71.  Pitch angle rotation 

 
 
 
 

 
Figure 72.  Roll angle rotation 
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Figure 73.  Sweep angle rotation 

 
 
 

 In order to continue with the mapping process, please refer to the nomenclature section 

regarding the following vector analysis.  Figure 74 displays the vectors used to find the correct 

location of the SICK hit in the ICS. 

 

 
 

 
Figure 74.  Vectors used to map the SICK hit to the ICS  
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 When using vector analysis, there is some accounting that is required.  One needs to 

follow a very systematic analysis and be consistent with notation in order that complete 

understanding of the material is achieved.  Vector analysis is not the unique path to the solution, 

but it is a more graphical analysis which should be easier to understand. 

For this mapping process, there are four steps: 

 
1) Find the vector, in Earth co-ordinates, that locates the origin of the IMU co-ordinate 

system with respect to the origin of the ICS 

 imu
earth earth

r� �
� �
	 


�
�������� ,i e er

�
 

2) Find the vector, in Earth co-ordinates, that locates the origin of the SICK co-ordinate 

system with respect to the origin of the IMU co-ordinate system 

 sick
imu earth

r� �
� �
	 


�
��������� ,s i er

�
 

3) Find the vector, in Earth co-ordinates, that locates the SICK hit with respect to the origin 

of the SICK co-ordinate system 

 hit
sick earth

r� �
� �
	 


�
��������� ,h s er

�
 

4) Finally, add the above three vectors to find the vector, in Earth co-ordinates, that locates 

the SICK hit with respect to the origin of the ICS 

 hit
earth earth

r� �
� �
	 


�
��������� , , , ,h e e i e e s i e h s er r r r= + +� � � �

 

 
The origin of the IMU co-ordinate system, in Earth co-ordinates, will be given by the 

KF.  Therefore, part one is concluded.  The origin of the SICK does not translate when a sweep 

occurs.  Therefore ,s i er
�

 is dependent on the yaw, pitch and roll of the vehicle, along with ,s i ir
�

.  

The rotation matrices below map forward (based on figures 70 through 73).  These would be 

directly applied if the desire is to map the vector components in an inertial co-ordinate system to 

components in a body-fixed co-ordinate system.  The objective here is the reverse or backward 

mapping.  This requires the transpose of the forward rotation matrices, as well as reversing the 

order in which they are multiplied.   
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Therefore, the forward rotation matrices for yaw, pitch and roll are the following: 

 

 

0
0

0 0 1

0

0 1 0
0

1 0 0
0
0

yaw

pitch

roll

c s

A s c

c s

A

s c

A c s

s c

ψ ψ
ψ ψ

θ θ

θ θ

φ φ
φ φ

� �
� �= −� �
� �� �

−� �
� �= � �
� �� �

� �
� �= � �
� �−� �

 (C.1) 

 
Where cψ  represents the cosine of ψ  and sψ  represents the sine ofψ .  The same is 

true for θ  and φ .   

Therefore, ,s i er
�

 is the following: 

 

 , ,
T T T

s i e yaw pitch roll s i ir A A A r=� �
 (C.2) 

The next task is to find ,h s er
�

.  The forward rotation matrix for sweep is the following, 

along with the range vector:�
 

 ,

0 sin
0 1 0 ,   cos

0 0
sweep h s s

c s m

A r m

s c

α α β
β

α α

−� � � �
� � � �= =� � � �
� � � �� � � �

�
 (C.3) 

 
Where: ,  m β  are the range and angle to the hit from the SICK in SICK co-ordinates, 

respectively (information provided by SICK) 

 
Therefore, ,h s er

�
 is the following: 

 

 , ,
T T T T

h s e yaw pitch roll sweep h s sr A A A A r=� �
 (C.4) 
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The final task is to combine the previous three vectors to obtain the final vector, ,h e er
�

.  

This yields the following: 

 

, , , ,h e e h s e s i e i e er r r r= + +� � � �
 

  
 

 
, , ,

, , ,

, , ,

sin
cos
0

h e N s i i i e N
T T T T

h e E yaw pitch roll sweep s i i i e E

h e D s i i i e D

r x rm

r A A A A m y r

r z r

δβ
β δ

δ

� �� � � � � �� �� �� � � � � �� �� �= + +� � � � � �� �� �
� � � � � �� �� �� �� � � � � �� �� � � � � �� �

 (C.5) 

 
 

Where:  ,s i ixδ  is the offset of the SICK from the IMU along the x-axis in IMU           

co-ordinates (same notation for y and z axes) 



 149 

APPENDIX D 
 
 
 There are multiple steps required to start the INS.  There are four items that need to be 

powered up:  the inverter, computer, GPS and IMU.  Start the vehicle and switch on the inverter 

(make sure that the GPS and IMU are not powered at this time).  After the inverter has started, 

turn on the computer and log onto one of the user names that has the C++ code for navigation. 

 The GPS requires a few steps in addition to being powered on.  Plug the GPS power 

cord into the 12V accessory port (the green light on the plug will indicate when it is powered 

on).  On the desktop, double-click the GPS_9600.hpt shortcut which will open com1.  Wait 10 

seconds before typing the following command:  

 
com com1 57600 

 
 This command tells the GPS to switch from 9600 baud to 57600 baud.  Every time the 

GPS is started, it reverts back to 9600 baud.  It is necessary to communicate at 57600 baud to 

achieve 20 Hz strings from the GPS receiver.  After typing the previous command in the 

HyperTerminal, close the window.  Return to the desktop and double-click the GPS_57600.hpt 

shortcut.  Type in the following command: 

 
log com1 gpggalong ontime .05 

 
 This command tells the GPS receiver that the user wishes to log the gpggalong string 

(which includes latitude, longitude, height above sea level and a flag that indicates whether 

differential correction is available).  The C++ code automatically connects to the GPS receiver 

after this point, but this step is required to verify that the GPS receiver is sending the gpggalong 

strings at 20 Hz.  Also, OmniSTAR requires a few minutes for the differential correction to 

converge (which is indicated on the strings) for which the vehicle must not move.  After the “W” 

on the gpggalong string, there will be a number indicating the accuracy of the solution.  A “0” 

indicates that no solution is available because not enough satellites are available.  A “1” indicates 

that the autonomous GPS solution is available (not corrected).  A “2” or a “5” indicates that the 

GPS signal includes the correction from OmniSTAR.  Once the GPS receiver has the corrected 

solution, close the window. 

 Drive the vehicle to the starting location which will be defined as the origin in the 

“main.cpp” C++ code.  The vehicle will have a yaw angle that must be initially estimated.  Open 
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the “RKF.sln” in Visual Studio.NET.  At the top of the “main.cpp” code, there is a variable 

called “YAW_BEG”.  Set the value of “YAW_BEG” as the initial estimate of the yaw angle of 

the AGV.  Verify that the GPS is streaming at 57600 baud and that the IMU is not on. 

 Start the “RKF.sln” by hitting CTRL-F5.  A command window will open waiting for 

further instruction.  Run the “Controller.sln” program.  Allow time for the connection to be 

established.  Once both solutions are running, turn on the IMU by switching from 3V to 12V.  

The INS will now begin to send state information.  The controller display will be visible when 

communication between all hardware is achieved.  Once the pitch and roll angles have stabilized 

begin the test run. 

 To block GPS, make sure that the first command window is on top and hit “k” and then 

enter.  “GPS blocked” will appear on the command window.  In order to reacquire GPS, hit “k” 

and enter again.  “GPS resumed” will now appear on the command window. 

 Once the test is concluded, close all command windows.  The logs for the IMU, KF and 

Runge Kutta will now be available for viewing.  The IMU log contains the accelerations and 

angular rates in units of g’s and °/s.  The KF log contains all 21 states/parameters at 20 Hz 

including a flag that indicates GPS blockage (“0” for GPS available, “1” for GPS blocked).  The 

Runge Kutta log contains the same information as the KF log (minus the flag) but at 71 Hz.  If 

multiple runs are desired, make sure to change the names of the logs, otherwise they will be 

written over by the next run. 

 When the AGV is returned to the flight lab, turn off all the hardware.  GPS needs to be 

unplugged otherwise it will drain the battery.  The IMU just needs to be switched from 12V to 

3V.  Once the computer is shut down, the inverter can be turned off.  Also, make sure to remove 

the batteries from the mouse. 
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APPENDIX E 
 
 

 The movie file included with this thesis is used to show the overall validity of the 

navigation solution for the Texas A&M AGV.  The AGV (grey object) and SICK (blue object) 

locations are shown in the video for clarity.  The AGV is traveling on the flat runway while 

logging the SICK returns and IMU measurements.  The SICK hits can be seen as white dots and 

the ground is a flat, green plane with 1 meter squares. 
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