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ABSTRACT 

The Role of Instructional Representations on Students’ Written Representations and 

Achievements. (August 2005)  

Ye Sun, B.Ed., Beijing Normal University; 

M.Ed., Beijing Normal University 

Chair of Advisory Committee:  Dr. Gerald Kulm 

 

This research is based on Middle School Mathematics Project (MSMP) funded 

by the Interagency Educational Research Initiative through a grant to the American 

Association for the Advancement of Science.  Both teacher’s instructional 

representations and students’ written representations were coded and analyzed to 

investigate the nature and structure of the representations in teaching fractions, decimals 

and percents in middle school classrooms in three school districts in Texas. The study 

further explored the relationship between both the quality and quantity of instructional 

representations and students’ written representations, and the relationship between 

students’ written representations and their achievements.  

This dissertation used a mixed approach utilizing both quantitative and 

qualitative methods. The data was collected in the first two years of a five-year study.  A 

total of 14 sixth grade mathematics teachers from three school districts in Texas were 

selected from the MSMP project. Before the actual videotaping procedure, a professional 

development focusing on multiple representations was held for the teachers. Both 
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pretests and posttests were used to examine the relationship between the structure of 

students’ written representations and their achievements.  

The results showed that the both the quantity and quality of teachers’ 

instructional representations varied a lot. Symbolic representations were the predominant 

representations in classroom teaching. Structures of instructional representations 

converge to content sub-constructs rather than format sub-constructs. Here sub-

constructs include part-whole, measure, quotient, multiplication by one and cross 

product. Instead, format sub-constructs include real world, manipulatives, pictures, 

spoken symbolic representations and written symbolic representations, however, 

connections between these sub-constructs were not statistically significant. Within the 

three content sub-constructs (part-whole, quotient, and multiplication by one) that 

revealed by students’ written representations, quotient and multiplication by one 

significantly predicated the students’ posttest scores. It was also found that, among the 

three quality criteria (accuracy, comprehensibility and connections) of instructional 

representations, the comprehensibility score significantly predicated students’ 

achievement in the posttests.  
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CHAPTER I 

INTRODUCTION 

Background 

The use of representations has received researchers’ attentions in the mathematic 

education community since the 1980s, with more and more agreement on the positive 

influence of representations in developing students’ conceptual understanding, 

mathematics reasoning, problem solving, and communication (Ainsworth, 1999; Ball, 

1988; Baxter & Glaser, 1998; Hiebert & Wearne, 1986; Kaput, 1989).  The National 

Council of Teachers of Mathematics (NCTM) has strongly advocated the critical role of 

representation in both mathematics instruction and learning (NCTM, 2000).  

There exists a large body of literature on the role of different forms of 

representations in facilitating students’ learning (Chandler & Sweller, 1992; Garrity, 

1998; Haas, 1998; Hinzman, 1997; Kalyuga, Chandler & Sweller, 1998; Leinenbach & 

Raymond, 1996; McClung, 1998; Post, 1981; Sharp, 1995). However, empirical results 

revealed inconsistency regarding whether one form of representation was better than 

another. For example, manipulatives was one of the most controversial forms of 

representations in public schools, and it was reported as both effective and ineffective in 

the literature. Some empirical studies stated that manipulatives improved students’ 

learning (Garrity, 1998; Haas, 1998; Leinenbach & Raymond, 1996; Post, 1981). In 

contrast, other studies claimed that there was no significant correlation between 

This thesis follows the style of Journal for Research in Mathematics Education. 
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manipulatives and students’ learning improvements (Hinzman, 1997; McClung, 1998; 

Sharp, 1995). Another example of a conflict in the literature was the debate on multiple 

representations, i.e., different forms of representations. Some studies indicated that less 

effective learning occurred because of increased cognitive load when using multiple 

representations (Chandler & Sweller, 1992; Kalyuga, Chandler, & Sweller, 1998). In 

contrast, some other studies showed that students who used multiple representations 

tended to have a better understanding (Kaput, 1989; Resnick & Omanson, 1987; 

Schoenfeld, 1986; Sfard, 1991). A third idea claimed that there was no single best 

representation and that the effectiveness depended on the properties of the content that 

was learned (Bibby & Payne, 1993). 

Multiple representations (e.g., tables, graphs, equations and symbolic 

representations) can facilitate students’ understanding, thus they are advocated by the 

National Council of Teachers of Mathematics (NCTM) as a tool for learning fractions 

(American Association for the Advancement of Science, 2000; NCTM, 2000; Wood, 

1999). Reasons to use multiple representations could be classified into the following 

three categories. The first one relates to the nature of the concept in reality. A concept 

usually consists of several representation aspects. Only one form of representation 

usually limits the meaning of a concept. Thus multiple representations will prevent 

superficial understanding of a certain concept, as Kaput (1992) stated, “and hence 

require multiple systems for their full expression, meaning that multiple, linked 

representations will grow in importance as an application of the new, dynamic, 

interactive media ”(p. 530). Another advantage of multiple representations is the 
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assumption that multiple forms of representation are more likely to reach the student 

body by appealing to various learning styles (Ainsworth, 1999). Finally, science research 

indicates that perception and cognition are processes that depend on and correlate with 

each other. Different portions of the brain are associated with comprehending a certain 

related representation, for example, symbolic or pictorial representations, and different 

knowledge is represented in different forms. Therefore, the use of multiple 

representations tends to capture the internal connections between the distributed forms of 

knowledge in a more comprehensive manner (Gazzaniga, 2000).    

Researchers have repeatedly reported that middle-grade students have difficulties 

in developing conceptual understanding of fractions, decimals and percents (Condon & 

Hilton, 1999; Goldin & Passantino, 1996; Lesh, Post, & Behr, 1987; Post, Cramer, Behr, 

Lesh, & Harel, 1993; Watanabe, Reynolds, & Lo, 1995).  Indeed, even students in junior 

college have difficulties dealing with fractions, which can be connected to their earlier 

experiences in elementary school study when they first learned fractions (Haas, 1998). 

Haas (1998) reported that the reason for the difficulties was that instruction on fractions 

was delivered neither appropriately nor adequately in order to build up the connections 

between manipulatives representation and symbolic representations.  Taber (2001) also 

indicated that addressing the connection among different forms of representations was 

important in order to develop the conceptual understanding of fractions. 

In contrast to whole numbers, there are not very many real world experiences for 

students to use fractions to solve problems. Thus the classroom is the major environment 

wherein students can learn fractions (Streefland, 1991). If students have received 



 4

inadequate instruction in the early stage of their learning, it is not surprising that they 

may find themselves behind as they advance to the middle schools, or even as adults. 

Students’ poor performance on fractions, decimals and percents reflects the instruction 

they received. 

Emphasizing the importance and effectiveness of representations in learning 

fractions is not enough. Teachers should have the corresponding mathematics knowledge 

and pedagogical knowledge to construct an environment allowing students to experience 

different representations to facilitate learning. However, what is the reality of using 

representations in teaching fractions, decimals and percents in middle school classrooms? 

What are the concepts that are most commonly taught? How do the teaching quality and 

quantity relate to students’ achievements? There is limited research on investigating how 

middle school teachers use representations in classroom practice, examining the impact 

of their teaching quality and quantity on students’ understanding and achievements.  

The Middle School Mathematics Project (MSMP) at Texas A&M University is 

part of a five-year longitudinal study funded by the Interagency Educational Research 

Initiative through a grant to the American Association for the Advancement of Science 

(Roseman, Kulm, & Manon, 2001). The main goal of the MSMP is to investigate the 

role of content-based professional development and textbooks in assisting teachers’ 

classroom instructional practices, and further investigate how teaching practices 

influence students’ achievements. Four professional development workshops were 

conducted in the first four years. Each year, three to five lessons per teacher were video-

taped, and corresponding students were administered a pretest and a posttest. This 
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dissertation used the data collected by the MSMP project by analyzing the teachers’ 

videotapes and students’ pretests and posttests to investigate the role of the quality and 

quantity of teachers’ instructional representations on students’ understanding and 

achievements in fractions, decimals and percents. During a pilot study, some teachers 

were found to have insufficient knowledge or skills, which might have led to their 

inability to use representations appropriately in classrooms. Teachers must be aware of 

the benefits and disadvantages of using different forms of representations, and their 

effectiveness of improving conceptual understanding. Armed with this knowledge, 

teachers can apply representations effectively in classroom instruction, thus better 

serving their students.  

Statement of the Problem 

Researchers in the field of cognitive psychology claimed that there were two 

categories of representations: external and internal, and that they were correlated with 

each other (Kaput, 1999; Goldin, 2003; Zelazo & Lourenco, 2003). Both internal and 

external representations were critical in developing children’s mathematics 

understanding (Jonassen, Cole, & Bamford, 1992; Kaput, 2001; Lenze & Dwyer, 1993; 

Miura, 2001). The visualization aspect of external representations could illustrate a 

concept profoundly by capturing different characteristics of the concept (Goldin, 2003).  

Internal representations also play an important role in learning (Hall, Bailey & Tillman, 

1997; Hiebert & Carpenter, 1992; Schwartz, 1993).  Hiebert and Carpenter (1992) 

contended that knowledge represented in an internal mental network tended to enhance 

mathematical conceptual understanding. Zhang (1997) stated that learning occurred 
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during the interaction between the external representations and internal representations. 

This dissertation aims to investigate the role of teachers’ instructional representations 

(external representations) on students’ external representations. Students’ external 

representations are correlated to their internal representations and thus indicated their 

level of understanding. According to Zelazo and Lourenco (2003), “It has long been 

assumed that children’s understanding and use of external representations, such as 

drawings and speech, potentially provide insight into the development of internal 

representations” (p. 55).   

The research literature suggests that students’ understandings of external 

symbolic representations of fractions, decimals and percents is one of the most difficult 

tasks facing middle school mathematic education (Condon & Hilton, 1999; Goldin & 

Passantino, 1996; Lesh, Post, & Behr, 1987; Post, Cramer, Behr, Lesh, & Harel, 1993; 

Watanabe, Reynolds, & Lo, 1995). Many middle school students have problems in 

translations between external symbolic representations, such as changing from fractions 

to decimals and from decimals to percents (Condon & Hilton, 1999; Markovits & 

Sowder, 1991; Thompson & Walker, 1996; Vance, 1992). They also have problems in 

translations between external symbolic representations and external pictorial 

representations and manipulatives representations, for example, find out the location of 

¼ on a number line (Vance, 1992), or using a hundredths grid to represent 0.4 presents a 

challenge (Hiebert & Wearne, 1986).  

Students’ learning depends on both the quality and quantity of teachers’ 

instruction (Aronson, Zimmerman, & Carlos, 1998; Black, 2002; Carpenter & Fennema, 
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1991; Simon, 1997; Smith, 2000; Walker, 1976). In terms of which is more important, 

some researchers argue for quality (Aronson, Zimmerman, & Carlos, 1998; Smith, 2000), 

while some argue for quantity (Black, 2002; Walker, 1976). The American Association 

of Advancement of Science (AAAS) claimed that good representations should be 

accurate, comprehensible and included a variety of representations, and should not allow 

students to develop misconceptions (AAAS, 2000). However, little research has been 

done to examine the quality of teachers’ instructional representations in terms of 

accuracy and comprehensibility. Black (2002) categorized teaching time into allocated 

time, engaged instructional time and academic learning time. There have been few 

empirical studies which investigated the structure of engaged instructional time in 

teaching and learning fractions. There was not many empirical studies reported the 

influence of both the quality and quantity of instructional representations on students’ 

written representations and the influence on student’s achievement. 

This study investigated both the quality and the quantity of instructional 

representations of fractions, decimals, and percents. The quality of representations was 

indicated by whether the instructional representations were accurate, comprehensible 

and connected. The quantity of instructional representations is investigated as to the 

extent to which the teachers used symbolic representations, manipulatives, pictures and 

real world experiences in their instruction. The influence of both quality and quantity of 

instructional representations on student’s written representations and the effect of 

different forms of written representations on students’ achievement on fractions, 

decimals and percents were explored. 
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Theoretical Framework 

There are two components in the theoretical framework. One aspect involved 

different forms of representation and the other addressed the sub-constructs of fractions. 

Discovery learning that aimed to provide experiences for students to explore and 

investigate knowledge was proposed by Bruner in 1960. During the learning process,  

understanding of a concept was developed based on their previous knowledge and 

understanding (Bruner, 1960). Later in 1966, Bruner also developed a three-stage model 

of representations; enactive, iconic and symbolic. Through discovery learning, students 

make connections between enactive representations, iconic representations, and 

symbolic representations. It was proposed that students could then establish a symbolic 

representation by reconceptualizing previous knowledge (Bruner, 1966).  Lesh (1979) 

elaborated upon Bruner’s (1966) three-stage model by proposing a five-stage model 

including two more categories: real world representations and spoken symbolic 

representations.   

The sub-constructs of rational numbers have been studied since the 1970s by 

Kieren, Freudenthal, Harel and Behr, and Lamon.  Kieren (1976) first proposed six sub-

constructs of the rational numbers: fractions, decimal fractions, equivalence classes of 

fractions, numbers of q
p

, multiplicative operators, and discrete relationship. Later in the 

1980s, a four sub-construct model emerged: measure relationship, part-whole 

relationship, discrete relationship (part of different wholes, improper fractions), and 

operation relationship (Freudenthal, 1983). Different from Freudenthal’s four sub-

construct model, Kieren (1988) used quotient and ratio to replace part-whole and 
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discrete relationship in Freudenthal’s model, which resulted in another four sub-

construct model: measure, quotient, ratio and multiplicative operator.  Harel and Behr 

(1990) discussed three sub-constructs: part-whole, quotient and operator. Most recently, 

Lamon (2001) claimed another five sub-construct model: part-whole, ratio and rates, 

operator, measure and quotient. Procedural knowledge of multiplicative operators such 

as multiplication by one and cross product were used to find equivalent fractions (AAAS, 

2002). In this dissertation, because of the specific content area covered in the sixth grade 

mathematics textbooks, the three sub-constructs (viz., part-whole, measure and quotient) 

as well as the procedural knowledge (e.g., multiplication by one and cross product) were 

coded and analyzed.  This study used Lesh’s model (1979) in terms of different forms of 

representations, i.e., real world, manipulatives, pictures, spoken symbolic representations 

and written symbolic representations.  

Research Questions 

This study focused on how instructional representations were used in classroom 

instruction and their further influence on students’ comprehension. The following 

questions were investigated in this study:  

1. What are the nature and quality of real world, manipulatives, pictures, spoken 

symbolic and written symbolic representations in teaching fractions, decimals 

and percents? Specifically, what is the nature of classroom interactions and 

instructional time in the use of representations, and how are the instructional 

representations aligned with the textbooks?    
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2. What are the structures of instructional representations and students’ written 

representations?  How do these structures reflect the format sub-constructs: real 

world, manipulatives, pictures, spoken symbolic and written symbolic 

representations? How do they reflect the content sub-constructs: measure, part-

whole, quotient, wonderful one, and cross product? 

3. What is the relationship between the structures of representations students use 

and their achievement? That is, how do students use representations that reflect 

measure, part-whole, quotient, multiplication by one and cross product and how 

is this reflected in their achievements on learning fractions, decimals, and 

percents? 

4. What is the relationship between the quality and quantity of instructional 

representations and student’s learning of fractions, decimals, and percents?  

Specifically, what is the relationship between the quality of teachers’ 

instructional representations, different forms of students’ written representations, 

and student achievements? 

Definitions of Key Terms 

The following operational definitions are defined as they are used in this study: 

Cross product is a procedure commonly used to confirm or find equivalent 

fractions. It involves finding the product of the first fraction’s numerator and the second 

fraction’s denominator, setting it equal to the product of the first fraction’s denominator 

and the second fraction’s numerator. 
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External representations refer to “Normative natural languages (e.g. “standard” 

English) include concrete manipulative materials or computer-based microworlds; and 

sociocultural structures, such as those of kinship, economic relationships, political 

hierarchies, or school systems” (Goldin, 2003, p. 277). 

Internal representation is “the knowledge and structure in memory, as 

propositions, productions, schemas, neural networks, or other forms.” (Zhang, 1997, p.  

180). 

Instructional representations are the external representations that teachers use 

when delivering mathematical knowledge in classroom settings.  

Manipulatives are concrete objects used to model corresponding mathematics 

ideas by providing hands-on experiences (Hynes, 1986). In this dissertation, the 

manipulatives include pattern blocks and fraction strips.  

Measure is a content sub-construct of fraction. Fractions can be interpreted as a 

unit to measure something, for example, length, or area.  

Multiplication by one (also referred to as Wonderful One) is a procedure 

commonly used to find equivalent fractions and to simplify fractions, multiplying or 

dividing by a fraction that has the same numerator and denominator. 

Part-whole is a content sub-construct of fraction used in teaching fractions, for 

example, if a whole is equally divided into four parts, and three parts of the whole 

represent a fraction of three fourths.   
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Quotient is a content sub-construct of fraction. Fraction can be explained as a 

form of a numerator (A) divided by a denominator (B), where both A and B are whole 

numbers and B could be any number but zero. 

Understanding “is a mental model comprises the representation that is currently 

active about a specific problem or concept. Students’ conceptual understanding is 

domain specific. It is dynamic rather than static. Reorganization is an important 

component of understanding” (Bickerton, 2000, p. 12). 

Whole means the concept of the unit “one” in teaching fractions.  

Limitations of the Study 

This study was limited to the experiences and practices of the volunteer teachers 

and students in selected samples in Texas. Therefore, the study may not be general to the 

whole nation except the area where the samples were selected. Another limitation is 

associated with the Structural Equation Modeling (Kline , 2005) analysis. The teacher 

sample size is small given the parameters’ number in current study. The student sample 

size matches the sample size requirements proposed by Bentler and Chou (1987). They 

suggested that every parameter estimate should have at least five cases’ estimation. 

However, larger sample size is always a preference in SEM analysis. 
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CHAPTER II 

REVIEW OF THE LITERATURE 
The literature review focuses on the following seven components. The first 

component dealt with research on conceptual understanding in teaching and learning of 

fractions, decimals and percents, for example, the sub-construct of the rational numbers 

and the possible misconceptions. The second aspect focused on the external 

representations and internal representations. The third component concentrated on role 

of different forms of representations in developing the conceptual understanding of 

fractions, decimals and percents. The fourth part addressed the relationship between 

different forms of representations and achievements. The fifth section emphasized on the 

role of the textbooks in facilitating learning fractions, decimals and percents. The sixth 

component discussed about the relationship between the quality and quantity of 

instruction and students’ achievements. Finally, the last part engaged in the theoretical 

foundations and rationale of the dissertation.  

Conceptual Understanding of Fractions, Decimals and Percents 

Either conceptual understanding or procedural understanding, or both occur 

during the learning process.  Research has indicated that the connection between 

conceptual understanding and procedural understanding is critical in knowledge 

acquisition (Hiebert, 1984; Hiebert & Lefevre, 1986; Owens & Menon, 1991). Thus both 

conceptual understanding and procedural understanding should be addressed 

appropriately in classroom instruction. Compared to experienced teachers, novice 
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teachers tend to concentrate on the procedural understanding (Borko, Eisenhart, Brown, 

Underhill, Jones, & Agard, 1992). 

The conceptual knowledge of rational numbers has been studied for almost three 

decades. Three different views on the sub-constructs are stated in the literature: six sub-

constructs, five sub-constructs and four sub-constructs.  Kieren (1976) first proposed the 

six sub-constructs’ theory that defined the rational number concepts into the following 

six parts: fractions, decimal fractions, equivalent fractions, quotient form as q
p

, 

multiplicative operators, and discrete relationships. The five sub-constructs theory was 

proposed by Lamon (2001), consisting of part-whole, ratio and rates, operator, measure, 

and quotient. Both Freudenthal (1983) and Kieren (1988) contended four sub-constructs 

of rational number concepts even though the content was different. Freudenthal (1983) 

contrived the four sub-constructs to be measure, part-whole, discrete relationship, and 

operation. Alternatively, Kieren (1988) considered the four sub-constructs to be measure, 

quotient, ratio, and multiplicative operators. In summation, three researchers, 

Freudenthal (1983), Kieren (1988) and Lamon (2001), included the measure sub-

construct. Two researchers, Lamon (2001) and Freudenthal (1983), included the part-

whole sub-construct. Kieren (1976, 1988) mentioned the quotient sub-construct. 

All of the researchers include the operators in the sub-constructs. In particular, 

Kieren (1976, 1988) contended that multiplicative operators exist. Both Freudenthal 

(1983) and Lamon (2001) proposed the operator relationship. Moreover, multiplicative 

operators for example, multiplication by one and cross product were used to find 

equivalent fractions (AAAS, 2002; Van de Walle, 2001). In this dissertation, because of 
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the specific content area covered in the sixth grade mathematics textbooks, the three sub-

constructs (viz., part-whole, measure and quotient) as well as the multiplicative 

relationship (e.g., multiplication by one and cross product) were coded and analyzed.  

These four sub-constructs are described individually in the following section. 

Part-whole relationship is a fundamental sub-construct, upon which the other 

concepts are developed (Post, Behr, & Lesh, 1982).  However, it is one of the most 

difficult concepts in learning fractions (Behr, Harel, Post, & Lesh, 1994; Behr & Post, 

1992; Hiebert & Hiebert, 1983). In order to develop the part-whole concept, different 

models, such as geometric regions including length, area, volume and set models, are 

used to introduce the partition (Behr & Post, 1992). The concept of equal partition is 

critical. Post and Cramer (1987) reported that students tend to think 
3
1  is bigger than 

2
1  

because the same whole was partitioned into more pieces in 
3
1  than 

2
1 . Only a few 

children are able to understand equal partitions (Lesh, Post, & Behr, 1987). The 

literature has reported that misunderstanding of the part-whole relationship and units will 

cause a sequence of problems in later conceptual development, such as understanding 

addition of fractions, ordering of fractions, and finding equivalent fractions (Behr, Harel, 

Post, & Lesh, 1994; Behr & Post, 1992; Post, Behr, & Lesh, 1982).  For example, 

students may not be able to realize that the whole should be equally partitioned, which 

may cause a further mistake that adds numerators and denominators together. Brase 
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(2002) and Post (1981) also reported that students believed a wrong algorithm that 

5
2

3
1

2
1

=+  due to the failure to recognize the part-whole relationship.   

The literature suggested that rational numbers can also be interpreted as a 

measure sub-construct (Freudenthal, 1983; Kieren, 1988; Lamon, 2001). It is reported 

that the measure sub-construct is more difficult than the part-whole sub-construct (Gay 

& Aichele, 1997; Ni, 2000). Unit of measure is a critical aspect (Harel & Behr, 1988; 

Steffe, Cobb & Von Glasersfeld, 1988). Post, Cramer, Behr, Lesh and Harel (1993) 

mentioned “the flexible concept of unit”, which referred to both continuous and discrete 

objects can be used in partition. Steffe, Cobb, and Von Glasersfeld (1988) advocated the 

critical relationship between units and conceptual understanding of number concepts. 

Lamon (2001) further suggested that the combination of part-whole and measure sub-

construct has great potential in developing conceptual understanding. The number line is  

as the most difficult yet important model in terms of the measure sub-construct (Behr & 

Post, 1992). It is reported that children easily get confused with the unit (Brown, 

Carpenter, Kouba, Lindquist, Silver, & Swafford, 1988). A number line with a length of 

other than one usually causes more confusion than number line with a length of one (Bay, 

2001; Ni, 2000).  

Additionally, a fraction b
a

can also be interpreted as a quotient according to 

Kieren (1976, 1988). However, students often do not recognize that the form indicates 

division (Behr & Post, 1992; Siegal & Smith, 1997). They usually regard the numerator 

as a number and the denominator as another number (Cramer, Behr, Post, & Lesh, 1997; 
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Pitkethly & Hunting, 1996). This may lead to common misconceptions, for example, 

“multiplication always makes larger”, and “division always makes smaller”, (Graeber, 

1993, p. 408). Not only students, but also middle school teachers tended to have similar 

misconceptions (Bell, Fischbein, & Greer, 1984; Fischbein, Deri, Sainatinelle, & Marino, 

1985 as cited in Lacampagne, Post, Harel, & Behr, 1988). Therefore, developing 

meanings for the numerator and denominator is important to learn later concepts such as 

adding and subtracting fractions relying on this understanding (NCTM, 2000). 

Sometimes language could complicate the confusion to develop the correct meaning of 

numerators and denominators. For example, “more” and “greater” are ambiguous 

according to Post and Cramer (1987), because “more” can be interpreted in two ways: a 

bigger numerator (more pieces of units) or a bigger denominator (more partitions). If the 

teacher does not address the difference, some students would think 
5
1  is smaller than 

6
1  

because 
6
1  has a bigger denominator than 

5
1 . The misunderstanding about numerator 

and denominator could be carried on to percent learning. Moss and Case (1999) pointed 

out that middle school students did not understand that the concept of percents was 

related to quotient. For example, when asked to find 65% of 160, some students obtain a 

wrong answer by subtracting 65 from 160. 

Cross product and multiplication by one are two procedure skills that are used to 

find equivalent fractions (AAAS, 2002; Van de Walle, 2001). There has not been very 

much research done in this specific area, however, teachers and textbooks used these 

concepts to teach equivalent fractions.  
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External Representations and Internal Representations 

“Representation” is a term used in mathematics education, and it is classified into 

two types: external and internal representations (Goldin, 2003; Zhang, 1997). Zhang 

(1997) defined external representation as “the knowledge and structure in the 

environment, as physical symbols, objects, or dimensions (e.g. written symbols, beans of 

abacuses, dimensions of a graph, etc.), and as external rules, constraints, or relations 

embedded in physical configurations (e.g. spatial relations of written digits, visual and 

spatial layouts of diagrams, physical constraints in abacuses, etc.)” (p. 180). Internal 

representations are “the knowledge and structure in memory, as propositions, 

productions, schemas, neural networks, or other forms.” (Zhang, 1997, p. 180). Both 

internal and external representations play important roles in facilitating mathematics 

learning. Internal representations and external representations can be transformed to each 

other. Internalization refers to the process that transforms the external representations 

into internal representations. The opposite process from external representations to 

internal representations is called externalization. Zhang (1997) also summarized that 

there are three different views about the relationship between the external and internal 

representations: (1) External representations are dominant; (2) internal representations 

are dominant; (3) they are interrelated. The first idea views the external representations 

as more important, because if no mental processes are required for perception and action, 

then there are no internal representations involved (Zhang, 1997). However, the second 

idea views internal representations as more important than external representations, 

because the information has to be translated into an internal model in order to be 
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understood (Newell, 1990 as cited by Zhang, 1997). The third idea views both the 

external representations and the internal representations as necessary aspects when 

solving a distributed cognitive task. It advocates that people store information as internal 

representations, and external representations could stimulate internal representations if 

cues are provided (Zhang, 1997). The mathematics education community tends to agree 

with the third view that both external and internal representations are dependent on each 

other, and both contribute to the conceptual understanding in mathematics knowledge 

acquisition (Goldin & Steingold, 2001; Hiebert & Carpenter, 1992; Voutsina & Jones, 

2001).   

According to the definition of the external representations, instructional 

representations are defined as a form of external representations in this dissertation. It 

refers to both the delivery of content knowledge and the interaction between the teachers 

and students in the class, e.g., classroom discourse between teachers and students. The 

ability of developing meaningful internal representations of a certain concept is a 

measure of conceptual understanding (Gobert & Clement, 1999). However, it is difficult 

to measure students’ internal representations (Goldin & Steingold, 2001). Therefore, 

external representations usually serve as an indicator of students’ internal representations. 

The Role of Different Forms of External Representations in Developing Conceptual 

Understanding of Fractions, Decimals and Percents 

There were different classifications of external representations in the literature. 

Bruner classified external representations into three types: enactive, iconic and symbolic 

representations (Bruner, 1966). Based on Bruner’s categorization, Lesh (1979) proposed 
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another model including the following five forms of representations: real world, pictures, 

manipulative, spoken symbols and written symbols.  A third classification was 

contended by Lesh, Hamilton, and Landau (1981) that physical aids, verbal, pictorial, 

and symbolic representations are five elements forming the representational system. 

However, physical aids belonged to the manpulatives representations, if they were static 

then they belonged to the pictorial representations, which were also included in Lesh 

(1979)’s model. Zhang (1997) proposed that external representations include diagrams, 

graphs and pictures. However, these three types all belonged to pictorial representations. 

In this dissertation, Lesh’s model (1979) was used to distinguish different forms of 

representations. 

Different forms of representations, such as real world, manipulatives, pictures, 

spoken symbols and written symbols, contributed differently to conceptual 

understanding. Applying real world representations could motivate learning and make 

learning meaningful (NCTM, 2000); it also served as an intuitive foundation on which 

later learning could be built (Kieren, 1992; Mack, 1990; Saenz-Ludlow, 1993, 1994). 

Pictorial representations could be used to convey meaning (Monk, 2003) or to simplify 

the information processing (Stenning & Oberlander, 1995), and served as a tool to 

inspire connections between different concepts (Chambers & Reisberg, 1985; 

Higginbotham-Wheat, 1991). Manipulatives were also reported as benefiting students’ 

learning by providing hands-on experiences to make symbolic representations more 

concrete (Cramer & Henry, 2002; Stix, 1997). Language was a critical factor in 

instructional representations. Miura (2001) pointed out some particular advantages 
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embedded in a certain language that facilitated conceptual understanding. For example, 

the part-whole relationship was reflected by Japanese language, which possibly 

generated connections between the symbolic representations and pictorial 

representations. Written symbolic representations were also reported to be one important 

factor (Bloomfield, 1933; Donald, 1991; Lampert, 2003).  Written symbolic 

representations stimulated reflective thinking (Lampert, 2003; Norman, 1993), which 

served as the bases of “logical, analytic, rational, and scientific” thoughts (Goody, 1977; 

Ong, 1982 as cited by Zhang, 1997, p. 183); therefore, it served not only as a result but 

also as a process of thinking.  

Moreover, different forms of external representations contributed differently in 

problem solving and decision processing by highlighting some attributes over the others 

(Kleinmuntz & Schkade, 1993; Zhang, 1997). Mathematics concept, for example,  

rational numbers, usually involves at least four sub-constructs. A single representation 

could not address all of these sub-constructs substantially, and therefore multiple 

representations were necessary. 

Among the representations that were most commonly used, area models (pie 

graphs, pattern blocks, and fraction strips), set and number lines were used to 

demonstrate the part-whole sub-construct. Instead, number lines and fraction strips were 

used to demonstrate the measure sub-construct. Pie graphs are criticized for their 

limitations of demonstrating fractions (Kerslake, 1986; Kieren, 1995; Mack, 1990; 

Nunes & Bryant, 1996; Ohlsson, 1988 as cited in Moss & Case, 1999). Number lines 

were reported as a most difficult form of representations (Ni, 2000; Vance, 1992).  
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Comparing manipulatives and pictorial representations, symbolic representations 

were reported as more difficult (Gay & Aichele, 1997). Orton, Post, Behr, Cramer, Harel, 

and Lesh (1995) reported three characteristics of students’ thinking in terms of 

representations. The first was the translation between different forms of representations, 

e.g., between real world, manipulatives, pictures, and symbolic representations. The 

second characteristic was to translate within the same form of representations. For 

example, four chips out of six chips is the same representation as two chips out of three 

chips. The third characteristic was to use the symbolic representations without relying on 

either the manipulatives or picture representations.  Post, Wachsmuth, Lesh, and Behr 

(1985) also proposed that in order to use symbolic representations without manipulatives 

and picture representations, students should be able to translate between manipulatives 

and symbolic (or picture and symbolic) representations easily. According to Lesh, Behr, 

and Post (1987), the translation from pictures to symbols is most difficult among the 

seven forms of representations they compared: “(a) symbols to written language, (b) 

written language to symbols, (c) pictures to pictures, (d) written language to pictures, (e) 

pictures to written language, (f) symbols to pictures, (g) pictures to symbols.”(p. 48) 

They further stated that “(a) Translations to pictures is easier than translations from 

pictures; (b) translations involving written language (e.g., three fourths) are easier than 

translations involving written symbols (e.g., 
4
3 ); and (c) the easiest translations are those 

that only require a student to ‘read’ a fraction or ratio in two different written forms” (p. 

48). Lesh, Post, and Behr (1987) also pointed out that spoken symbolic representations 
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can serve as a mediator to bridge the difficulty encountered by the translation from real 

world representations to symbolic representations. 

Most common misconceptions are related to the difficulty of translation between 

the manipulatives/picture representations and symbolic representations (Bay, 2001; 

Cramer, Behr, Post, & Lesh, 1997; Hiebert, 1985; Post, 1981; Wearne & Hiebert, 1986), 

e.g., the difficulty of realizing the equivalence between symbolic representation  
12
3

 and 

4
1  from a pie graph (Cramer, Behr, Post, & Lesh, 1997). For example, four percent of 

the seventh grade students in their study knew the symbolic representation of a shaded 

section (Hiebert, 1985) and they were not able to generate the picture representation 

given the symbolic representation, e.g., to locate 0.3 on a number line (Bay, 2001), relate 

certain fraction to a number line (Post, 1981), or use hundredth grid to represent 0.4 

(Wearne & Hiebert, 1986). The translation within the symbolic representations is also 

reported as problematic (Condon & Hilton, 1999; Hiebert, 1985; Thompson & Walker, 

1996; Vance, 1992; Wearne & Hiebert, 1986). Translations between decimals and 

fractions are not correctly done (Hiebert, 1985; Wearne & Hiebert, 1986). Post (1981) 

reported that only half of the 9-year old students can make connections between the 

spoken symbolic representations and written symbolic representations.  

According to the literature, there are several reasons for the above common 

misconceptions. The first one is that rational number is one of the most difficult topics in 

middle school mathematics (Millsaps & Reed, 1998). Another reason is that students do 

not realize the difference between rational number system and whole number system, 
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they still apply rules from whole number system to learn rational numbers (Ball, 1993; 

Hiebert & Hiebert, 1983; Pitkethly & Hunting, 1996; Streefland, 1991). The third reason 

is that teachers do not have enough mathematics content knowledge and pedagogical 

content knowledge to facilitate students’ conceptual understanding of rational numbers 

(Lacampagne, Post, Harel, & Behr, 1988; Titus, 1995). Moreover, if teachers focused on 

symbolic representations without developing conceptual understanding, it will generate 

difficulty in later learning. Because of a lack of the understanding of certain concepts, 

students tend to generate “buggy” algorithms, algorithms that work with whole numbers 

but do not always work with rational numbers (Hiebert, Carpenter, Fennema, Fuson, 

Wearne, Murray, Oliver, & Human, 1997). 

Relationship between Different Forms of Representation and Achievements 

Researchers agree that there were strong connections between students’ 

understanding and the representations they use (Diezmann & English, 2001; Kaput, 1987; 

Friedlander & Tabach, 2001; Lamon, 2001).  Post, Behr, and Lesh (1982) suggested that 

addressing the translations and connections between different representations as well as 

demonstrating the concepts from different perspectives contributed to conceptual 

developments. Some research contended the critical role of informal knowledge in 

developing fraction concepts, because the pre-experiences gained by students from real 

world experiences influence their later study (Kieren, 1992; Mack, 1990; Saenz-Ludlow, 

1993, 1994). Saenz-Ludlow (1994) further stated that fraction concepts can be developed 

without symbolic representations. Dienes (1967 as cited in Post, Behr, & Lesh, 1982) 

stated that a concept is better developed through multiple representations and multiple 
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sub-conceptual perspectives. However, some studies revealed that multiple 

representations could increase the cognitive load, which might be less effective 

(Chandler & Sweller, 1992; Kalyuga, Chandler, & Sweller, 1998). Bibby and Payne 

(1993) proposed a third idea that the effectiveness of representations depended on the 

content materials (Bibby & Payne, 1993). Thus the roles played by different 

representations in the conceptual developments of fractions, decimals and percents 

remained obscure and needed further investigation (Goldin, 2003).  

The Role of the Textbooks in Facilitating Learning Fractions, Decimals and 

Percents 

 Standard-based textbooks with high quality enhanced students’ achievement 

(Kulm & Capraro, 2004; Reys, Reys, Lapan, Holliday, & Wasman, 2003). Trafton, Reys, 

and Wasman (2001) proposed that being comprehensive, coherent, developing idea in 

depth, promoting sense making, engaging students, and motivating learning are six 

characteristics that standard-based curriculum (e.g. textbooks) features. Textbooks 

influence students’ learning both directly and indirectly through teachers’ providing 

mathematics content knowledge and teaching strategies (Kulm & Capraro, 2004; Reys et 

al., 2003). DeBoer, Morris, Roseman, Wilson, Capraro, Capraro, Kulm, Willson, and 

Manon (2004) proposed a linear relationship between the following four aspects: 

professional development together with the curriculum materials, teacher knowledge, 

skills and attitude, teaching behavior, and the students’ learning. A study conducted by 

Project 2061 examined the quality of 13 textbooks based on a total of 24 criteria 

classified into seven categories: identifying a sense of purpose, building on student ideas 
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about mathematics, engaging students in mathematics, developing mathematical ideas, 

promoting student thinking about mathematics, assessing student progress in 

mathematics, and enhancing the mathematics learning goal (AAAS, 2000). Three 

textbooks that were used in this dissertation ranked as high, medium and low according 

to AAAS (2000). These three textbooks included Connected Mathematics Projects 

(CMP) (Lappan, Fey, Fitzgerald, Friel, & Phillips, 1998), Middle School Math 

Thematics (Billstein, Lowery, Montoya, Williams, & Williamson, 1999) and 

Mathematics: Applications and connections (Collins, Howard, Dristas, McClain, Frey, 

Molina, Moore-Harris, Price, Ott, Smith, Pelfrey, & Wilson, 1999). Connected 

Mathematics was ranked as satisfactory with a score range from 2.0 to 3.0 on the 

corresponding criteria. Middle Grade Math Mathematics was ranked as partial 

satisfactory with a score ranged from 1.3 to 3.0 on the corresponding criteria, while 

Mathematics: Applications and Connections was graded as unsatisfactory with a score 

range from 0.3 to 2.6 on the corresponding criteria. Empirical findings by Kulm and 

Capraro (2004) reported that despite the variation of enacted curriculum delivered by the 

teachers, students’ achievements were related to the rankings of the textbooks rated by 

AAAS. Spielman and Lloyd (2004) indicated that reform-oriented curriculum “may help 

teachers shift their sense of efficacy from teaching as telling to more effective 

instructional practices (Smith, 1996)” (p. 40). 

Impact of Instructional Time and Teaching Quality on Students’ Achievement 
Teachers have been reported to be a critical factor influencing the students’ 

achievement (Carpenter & Fennema, 1991; DeBoer et al., 2004; Fennema & Franke, 
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1992; Wright, Horn, & Sanders, 1997). However, a large proportion of teachers were 

reported as not having enough mathematics content knowledge (Ball, 1988; Post, 

Cramer, Behr, Lesh, & Harel, 1993; Post et al., 1988) or pedagogical content knowledge 

to teach effectively (An, 2000). Simon (1997) claimed that the interactions between 

teachers and students are a factor of teaching for understanding. Teacher-centered 

instruction and student-centered instruction are two models of classroom interaction. 

Teacher-centered instruction sometimes is referred to as traditional while student-

centered instruction is referred to as constructivist. 

Black (2002) categorized teaching quantity into three different categories: 

allocated time, engaged instructional time, and academic learning time. Meanwhile, 

Project 2061 indicated that the accuracy, comprehensibility and variety of 

representations reflect whether the textbooks are supportive in developing mathematics 

ideas, more specifically, representing ideas effectively (AAAS, 2000). Moreover, 

connections between different representations have also been identified as a key issue in 

developing mathematics ideas (Post, Behr, & Lesh, 1982). Because it has been 

repeatedly reported that the criteria used to rate the textbooks could be used to grade the 

quality of instruction (DeBoer, et. al. ,2004; Kulm & Capraro, 2004; Sun & Kulm 2003), 

these criteria and indicators are used as a measure of the teaching quality in the 

dissertation.  

Three different opinions about the relationship between the quantity of 

instructional time and students’ achievements have been proposed in the literature. The 

first one claims that there is a positive relationship between the total time engaged in 



 28

instruction and students’ achievements (Black, 2002; Walker, 1976). However, some 

other researchers held a different opinion that quality played a more important role 

compared to the instructional time (Aronson, Zimmerman, & Carlos, 1998; Smith, 2000). 

NCTM also claimed the critical role of the quality by stating that “This is true for all 

students, including those with special educational needs. Many children with learning 

disabilities can learn when they receive high-quality, conceptually oriented instruction” 

(NCTM, 2000, p. 87). DeBoer et. al. (2004) proposed a third view that both teaching 

time and teaching quality contribute to students’ achievements. Thus in this study, both 

quality and quantity of instructional representations were investigated in order to 

investigate the relationships between the teacher instruction and students achievements. 

Theoretical Foundations and Rationale 

Both Bruner and Lesh contributed to representation research from different 

perspectives. Bruner proposed a theory of discovery learning in mathematics education 

in which activities were constructed for exploration and investigation (Bruner, 1960). He 

also developed a three-stage mode of representations: enactive, iconic and symbolic. 

Through discovering the matches between enactive real world and iconic representations, 

learners establish a symbolic representation by reorganizing previous knowledge in 

order to come to a better understanding (Bruner, 1966). 

Lesh (1979) proposed a five-stage model based on Bruner’s (1966) three-stage 

model by adding two more modes: spoken symbolic representations and real-world 

representations. In his model, manipulative representations corresponded to enactive 

representations; iconic representations were connected to pictorial representations; and 
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written symbolic representations corresponded to symbolic representations. Based on 

Lesh’s model, the Rational Number Project conducted a series of research studies on 

these different forms of representations (Behr, Post, Lesh, 1981; Cramer, 2003; Post, 

1988; Post, Behr, Lesh; 1982; Behr, Lesh, Post, & Silver, 1983). Lesh’s model of 

representations was adopted and is depicted in Figure 1. 

 

 

 

 

 

 

 

 

Figure 1. Lesh’s model of different forms of representations (Lesh, 1979). 

Table 1  
Measurement of Instructional Representations of Fractions, Decimals and Percents  
Types of  
representation 

Part-
whole  

Measure Quotient 
 

Wonderful  
one 

Cross 
Product 

Others 

Real world       
Manipulatives        
Pictures       
Spoken 
symbols 

      

Written 
symbols 

      

Pictures  

Spoken  
Symbols

Written 
Symbols 

Real World 

 

Manipulatives  
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The literature of rational numbers revealed the three sub-constructs: part-whole, 

measure, and quotient (Freudenthal, 1983; Kieren, 1976; 1988; Lamon, 2001). In 

addition, multiplication by one and cross product are procedural knowledge taught in the 

middle grade curriculum materials. Therefore, the measurement of instructional 

representations of fractions, decimals and percents was developed (See Table 1). 

 



 31

CHAPTER III 

METHODOLOGY 

This study was designed to investigate how instructional representations influence 

students’ written representations.  The data were collected from 14 sixth grade teachers 

in three different school districts in Texas, who participated in the MSMP project during 

the 2002-2003 school year.  Both qualitative and quantitative data were collected and 

analyzed. Videotapes of three to five lessons for each teacher were obtained. The 

teachers used three different textbooks: Connected Mathematics  (CMP) (Lappan, Fey, 

Fitzgerald, Friel, & Phillips, 1998), Middle School Math Thematics (Billstein, Lowery, 

Montoya, Williams, & Williamson, 1999) and Mathematics: Applications and 

Connections (Collins, Howard, Dristas, McClain, Frey, Molina, Moore-Harris, Price, Ott, 

Smith, Pelfrey, & Wilson, 1999). The rankings of the quality of instruction for the 

textbooks, including the use of representations, were rated as high, medium, and low 

according to an analysis by Project 2061 of the American Association for the 

Advancement of Science (AAAS, 2000). 

An analysis of teachers’ usage of real world, manipulatives, pictures, written 

symbolic and spoken symbolic representations of fractions in classrooms was conducted 

in order to examine the teachers’ classroom instruction and students’ pre and posttests. 

Within these representations, teachers’ use of strategies for representing the meaning of 

equivalent fractions and translations between fractions, decimals and percents were 

observed and coded. The participants, procedures, instrumentation, and data analysis are 

discussed in detail in this chapter. 
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Participants 

 The participants in this dissertation consist of 14 sixth grade teachers and their 

students. The teachers include four male and ten female employed at five different 

public schools who were participating in a larger study of the effects of professional 

developments on the teaching for understanding. For this study, purposeful sampling 

was applied to select teachers who had volunteered to be part of the project. Specifically, 

since the study focuses on the content of fractions, decimals and percents, the 14 sixth-

grade teachers who taught lessons on this content were selected. Table 2 presents a 

summary of  the demographic data of the teachers. Each teacher was assigned a number 

from one to fourteen based on their school districts.  

Table 2  
Teachers’ Demographic Data  
Years  Min Max Mean Std. Deviation 
T. E. 1 23 10.85 6.05 
C. T. E. 1 18 5.94 5.20 

Note:  T. E. = teaching experience 
           C.T.E. = teaching experience in the middle grades, 6 – 8. 

The student participants included one class from each of the 14 teachers.  They 

were White, Hispanic, African American and Asian, ranging from 12 to 14 years old.  

The academic backgrounds and ethnic distribution of each of 14 classes’ students were 

found to be similar to each other. Table 3 indicates the social economic background, 

ethnicity, and gender characteristics of the students.  
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Table 3 
Students’ Participants Demographic Data in the Analysis 
 Frequency Percent Valid percent

M 109 51.2 51.2Gender  
F 104 48.8 48.8
Asian or PI 6 2.8 3.9
A.A. 13 6.1 8.4
Hispanic 29 13.6 18.8

Ethnicity 

White 106 49.8 68.8
Free Meal 27 12.7 17.5
Reduced 
Meal 

5 2.3 3.2

Other Disad. 6 2.8 3.9

Economically 
Disadvantaged 

No Disad. 116 54.5 75.3
Title -I- Part N 154 72.3 100

Y 1 .5 .6Migrant 
N 153 71.8 99.4
Y 3 1.4 1.9Limited English 

Proficient N 151 70.9 98.1
Bilingual  N  154 72.3 100

Y 3 1.4 1.9English as 
Second Language N 151 70.9 98.1

Y  3 1.4 1.9Special Education  
N  151 70.9 98.1
Y  36 16.9 23.4Gifted & 

Talented N  118 55.4 76.6
Y 18 8.5 11.7At Risk  
N  136 63.8 88.3

Note:   PI=Pacific Islander 
AA=African American 
Title -1- Part = student does not currently participant in and has not previously  

participated in program at current campus 
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Instruments 
 There were four instruments used for data collection in this study. The pre and 

posttests were developed by AAAS to measure students’ performance on number skills 

and concepts. Based on Lesh’s (1979) model and rational number concepts the second 

instrument was developed to collect the amount of time each individual teacher spent on 

classroom instruction using a particular form and strategy of representations. The third 

instrument assessed the quality of teachers’ instruction in using representations. The 

fourth instrument was adapted from the second instrument to collect data from students’ 

posttests related to written representations.     

Number Test  

The number tests (pre and posttests) were developed by AAAS to assess sixth 

grade students’ knowledge and understanding of the learning goal: “Use, interpret, and 

compare numbers in several equivalent forms such as integers, fractions and decimals” 

(AAAS, 1993). The number test is designed to assess three dimensions of number 

constructs: multiple meanings and models of fraction, converting forms, and comparing 

and ordering. Both the pre and posttests consisted of the same 16 test items including 

nine multiple choices, six short constructed responses, and one extended response 

SOLO-type (structure of learning outcome) item composed of four parts (Wilson, 1990). 

For the current research on representations, only three items (items 14, 15 and 16e)1 

were coded and analyzed in order to study students’ uses of representations because the 

student could choose the form of representations they preferred in these three items. 

                                                 
1 There are totally five sub-questions (16a-e) for Question 16 and only 16e is relative to the current research. 
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Quantity Measurement of Instructional Representations 

A coding system for recording the teachers’ uses of representations in the 

classroom was developed based on Lesh’s model (1979) and the content sub-constructs 

of fraction concepts (Kieren, 1976; 1988; Lamon, 2001). The first dimension of the 

coding system adapted the content sub-constructs of fractions. In particular, it included 

part-whole, measure, quotient, multiplication by one, and cross product according to the 

content covered in the videotaped lessons. An additional column others  were added for 

the cases where the instructional representations were not related to any previous 

categories. The second dimension used Lesh’s (1979) five-stage model of 

representations, i.e., real world, manipulatives, pictures, spoken symbols and written 

symbols. An additional format mode “calculators” were added to complement the 

written symbolic representations because some teachers used calculators in classroom 

instruction. Table 4 presents the instrument in its final adapted form. 

Table 4 
Instrument for Engaged Instructional Time on Representations for Teacher 
Measurement 
Types of 
representation 

Part-
whole  

Measure Quotient
 

Wonderful 
One 

Cross  
Product 

Others

Real world       
Manipulatives       
Pictures       
Spoken symbols       
Written Symbols / 
Calculators 
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 Table 5 
Instrument for Coding Quality of Teachers’ Instruction on Representation 

Criterion Indicators 
No misconceptions 1. Accurately depicts the 

intended mathematics 
learning goal 

Point out the limitations of the representation 

       Meaningful to students 
       Includes real world experiences 

2. Comprehensible to 
students 

Hands-on activity 
Justify why it is being represented in a 
particular way 

3. Connections are made 
between the representation 
and what is being 
represented  Connections are made between a variety of 

representations  

 

This instrument was used to provide specific information about the amount of 

time each teacher spent on each content sub-construct and format sub-construct. More 

specifically, in each cell of the table, the amount of time spent on that content using a 

particular form of representation was recorded for each instance of use in the classroom. 

For example, if the teacher used real world experience to explain a part-whole 

relationship, the amount of time was recorded in the cell of (real world, part-whole), i.e., 

the cell belonging to the first line and first column. Similarly, if the teacher used a 

manipulative to explain fractions using the part-whole idea, the amount of time for that 

instance was recorded in the cell of (manipulative, part-whole). If the teacher talked 

while she/he was doing this, the amount of time was also recorded in the cell of (spoken 

symbols, part-whole). It was common for the teachers to talk and write symbols at the 

same time. In these cases, the time was recorded both for spoken symbols and written 

symbols. For example, if the teacher wrote on the board explaining quotients while 
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she/he was speaking, both of the cells of (spoken symbols, quotient) and (written 

symbols, quotient) were assigned the amount of time of this instance. If the teacher 

didn’t address anything corresponding to a cell at anytime during the class period, that 

cell was assigned a zero.  

Quality Measurement of Instructional Representations 

A coding system for rating the quality of instruction in using representations was 

adapted from AAAS’s criteria for evaluating instructional materials (AAAS, 2000). 

AAAS specifies the following three representation criteria: accuracy, comprehensibility 

and variety of representations. However, the quality of instruction is distinguished not 

only by the variety of the instructional representations, but also by the connections 

between different forms of representations. For this reason, the third criterion as 

“connection” rather than the “variety” specified by AAAS was introduced. Thus this 

instrument consists of three criteria: accuracy, comprehensibility and connection (See 

Table 5). 

Each criterion further consisted of several indicators. According to AAAS (2000), 

no misconceptions and pointing out the limitations of the representation are two 

indicators reflecting accuracy criterion. For comprehensibility, AAAS (2000) only stated 

that the comprehensible criterion depends on the students’ grade level and the content. 

Three indicators were proposed for the comprehensible criterion in this instrument: 

meaningful to students, including real world experiences, and hands-on activities. More 

specifically, to be meaningful to students, the instructional language should be close to 

the students’ level of understanding, using only necessary and developed mathematical 
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vocabularies (AAAS, 2000; Sun & Kulm, 2003). Real world experiences referred to the 

content were developed based on students’ prior knowledge in a real world context. 

When students were engaged in the hands-on activity through which mathematics ideas 

were developed, they were likely to understand the concepts better. For the connection 

criterion, because connections between different forms of representations were critical to 

developing conceptual understanding (AAAS, 2000) and variety of representations were 

not observable in a pilot study (Sun & Kulm, 2003), the connection criterion was used 

instead of the variety criterion.  And the following two indicators: justify why it is being 

represented in a particular way, and connections are made between a variety of 

representations were used as indicators of connection criterion. 

Teaching quality was then evaluated using this instrument. In particular, 

teachers’ instruction in each class was checked with each indicator. Each indicator was 

scored as Met (score 1) or Not Met (score 0) for the class. A teacher met a criterion 

requirement and thus received a score of 1 for that criterion if at least one of the 

indicators for the criterion was scored as 1. If all of the indicators of a criterion received 

a score of 0, the teacher did not meet the criterion requirement and received a 0 for that 

criterion. The three criterion scores were summed  as a quality score for the teacher in 

that lesson. Thus each teacher received a quality core ranging from 0 to 3 for each lesson 

she/he taught. 

Measurement of Students’ Written Representation  

The fourth instrument was adapted from the quantity measurement of instructional 

representations in order to code the representations students chose in their answers to the 
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three items (14, 15 and 16e) in the posttest. This instrument used the same content sub-

constructs as those used in the teacher instrument (the second instrument), i.e., part-

whole, quotient, measure, multiply by one, cross product and others. However, since 

minipulatives and spoken symbols were not available in the posttest, a paper and pencil 

test, the format sub-constructs of this instrument were limited to real world, picture and 

written symbols. Table 6 depicts this instrument. 

Table 6 
Instrument for Students’ Written Representations Measurement 

Types  Part 
Whole 

Measure Quotient Wonderful
One  

Cross  
Product  

Others  

Real World       
Picture       
Written Symbol       

 

Students’ posttests were first checked by scorers trained by AAAS according to a 

rubric developed by the MSMP project and each student received a total score of the 

posttest. The instrument shown in Table 6 was used to code different forms of the 

representations students used for questions 14, 15 and 16e in the posttest. The instrument 

was applied to each question for every student, based on the representations they used. 

For example, if a student drew a picture to answer question 14 using the idea of part-

whole, the cell of (picture, part-whole) is assigned a score of 1 for question 14. A cell 

was assigned a score of 0 if no corresponding representation form is used. In this study, 

since only three questions were considered, each student was coded with three copies of 

Table 6, one for each question. 
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Procedures 

 This study was a part of the Middle School Mathematics Project (MSMP) at 

Texas A&M University. Professional developments focusing on identifying the learning 

goal for the teacher participants were conducted in the summer of year 2001, followed 

by classroom visits and observations from fall 2001 to summer 2002 before actual 

videotaping in fall 2002. In summer 2002, a workshop was held for the teachers who 

were going to be videotaped in the fall in order to develop their understanding of the 

mathematics learning goal, “use, interpret, and compare numbers in several equivalent 

forms such as integers, fractions and decimals” (AAAS, 1993).  The content-based 

workshop focused on the following three aspects: relevant literature on multiple 

representations, prerequisite knowledge as well as common misconceptions related to 

the learning goal. Teachers experienced the learning process by working in group 

activities to use multiple representations to solve real world problems.  

In September 2002, the paper and pencil number test (pretest) was administered 

by each teacher during the regularly scheduled mathematics classes in all three 

participating school districts. During the school year, each teacher taught several lessons 

that addressed the target number benchmark on fractions, decimals, and percents.  Three 

to five lessons that focused most directly on the benchmark were videotaped for each 

teacher. In addition, copies of handouts, transparencies, and materials used in the class 

were collected. Major variations from the intended textbook lessons (e.g. sequences, 

gaps, additions, students work and materials used) were noted, and major contextual or 

management issues (e.g. schedule, interruptions and other difficulties) were described.  
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At the end of the spring semester 2002, a posttest was administered by teachers during 

regular class time. Students were told that the test did not affect their scores at school.  

Data Coding 

A total of 58 teachers’ videotapes on the topic of fractions, decimals and percents 

were coded and analyzed according to the instruments of how teachers use instructional 

representations in class (Table 4) as well as the quality of their teaching on such topics 

(Table 5). Students’ written representations in answering the three questions in the 

posttest were also coded based on Table 6. The instrument shown in Table 4 was used to 

collect data for the teachers’ engaged instructional time on representations. More 

specifically, whenever a teacher used a representation, the starting and ending time was 

coded with the corresponding content sub-construct and format sub-construct such as 

part-whole, quotient, multiplication by one, measure  , cross product , and others . The 

category of others  meant that if the engaged instructional time did not fall into any of 

the previous five sub-constructs, it belonged to the category of others . Since each school 

district has different time length for a lesson, the total time of a lesson was also recorded.  

For the students’ data, analysis of the responses to the three questions were scored and 

coded into different forms of representations (based on Table 6) in order to distinguish 

between different levels of understanding as well as different types of representations, 

e.g., symbolic, picture and real world representations.  

Two independent researchers watched and coded all fifty-eight videotapes as 

well as the 213 students’ posttests used in this study based on the criteria and the 

indicators. When there were disagreements, the researchers watched the videotape 
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together or read the posttest answers together, discussed it, and reached agreement on the 

same coding. Triangulation from observations, videotapes, and researcher notes ensure 

the dependability (Anfara, Brown, & Mangione, 2002), while a code-recode strategy was 

adopted to ensure the credibility (Lincoln & Guba, 1985). 

Data Analysis 

Both quantitative and qualitative analysis methods were used to analyze the 

video tapes and students’ written responses to the test items. The following statistical 

procedures were used to analyze the data: 

1. Descriptive statistics, such as frequencies, means and standard deviations, were used 

to summarize both the measure of teachers’ teaching quality and quantity. 

2. Factor analysis techniques were conducted using the teaching quantity data to 

investigate whether variables converge to the sub-constructs of rational number 

concepts in the study.  

3. Structural equation modeling techniques were applied to investigate the relationships 

among the teachers’ instructional representations and the relationships between 

students’ representations and their understanding of the concepts of fractions, 

decimals, and percents in this study. Both measurement models and path models 

were conducted. 

4. Two-way Analysis of Variances (ANOVA) was used to investigate the impact of 

differences between the forms of instructional representations and students’ written 

representations. 



 43

CHAPTER IV 

RESULTS 

This chapter presents the data analysis and addresses the research questions of 

the study. A mix of quantitative and qualitative analysis was applied to investigate the 

nature and quality of instructional representations, the types of classroom interactions, 

and the alignment with the textbooks. Structural equation modeling (SEM) was the 

primary method employed to investigate the structure of the instructional representations, 

the relationship between the structures of the instructional representations and students’ 

written representations, the relationship between the structures of representations 

students use and their achievements, and the relationships between the quality and 

quantity of the instructional representations and student’s achievements of fractions, 

decimals, and percents. The four research questions are addressed separately below.   

Research Question 1 

What are the nature and quality of real world, manipulatives, pictures, spoken 

symbolic and written symbolic representations in teaching fractions, decimals and 

percents? Specifically, what is the nature of classroom interactions and instructional time 

in the use of representations, and how are the instructional representations aligned with 

the textbooks?      

The qualitative analysis of the videotaped lessons produced three sets of data 

for each teacher: 1) whether or not the teacher addressed the mathematical learning goal 

including how her/his approach differed from the textbook approach, 2) the nature of the 

classroom interaction, with attention to teacher-centered (traditional) or student-centered 
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(constructive) interactions, and 3) a description of how the lessons developed students’ 

representations of fraction ideas, with attention to the use of different forms of 

representations.  

Addressing the Mathematics Learning Goals 

Teachers 1, 2, 3, 4 and 5 were from a suburban school district that had adopted 

Middle School Math Thematics (Billstein et al., 1999) as their textbook. Middle School 

Math Thematics was developed to address mathematics reform goals and was ranked as 

acceptable in its instructional quality by the AAAS analysis (AAAS, 2000). The 

textbook uses manipulatives (called pattern blocks) and technology in teaching fractions, 

decimals and percents. All of the teachers who used Middle School Math Thematics 

addressed the concept of equivalent fractions in their lessons. However, Teacher 1 and 

Teacher 5 differed from the approach suggested by the textbooks. Instead of using 

pattern blocks, teacher 1 asked the students to read the textbook while she taught them 

the concept of equivalent fractions. She asked factual questions such as “How many 

trapezoids are there in the first picture?” or “How many triangles does it take to replace 

the trapezoid?” or “How many triangles are in that new picture?” or “What if I want to 

replace the whole thing? I have got two more trapezoids there to replace. How many 

more triangles would I need?” or “So how many do I need altogether?”  

Teacher 1 did not explain in the lesson why the picture on the left in Figure 2 

represented
6
4 , and why the picture on the right represented

18
12 , nor how 

6
4 was 

equivalent to 
18
12  from the pattern blocks. Teacher 1 then jumped to the conclusion: “So 
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we start off with 4 out of 6, and then we move to the eighteenth, see that over the top of 

page 111. (writing on the board, 
18
?

6
4

= ) how could I do that? What can I multiply to do 

that? Three (answering her own question). We say those two fractions are equivalent. 

Because we multiply by the same number.”  

 

 

Figure 2. An example from Math Mathematics, illustrating that 
6
4  equals to 

18
12 . 

Teacher 5 did use the pattern blocks. However, she wanted the students to follow 

her while using the manipulatives and there was no time for students to think or 

investigate the problem. She asked “Each of the red ones was what part of the shape? 

How many red shapes were there all together?” “One sixths.” She answered herself 

quickly, then proceeded to say “How many triangles would you have to put on top of, or 

replace it? Three of them. How many little green shapes will be altogether on that 

second shape? You got six on the top, you would have six in the middle, and you will 

have six green on the bottom. Eighteen of them… so this would be how many of 
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altogether, yes, this would show you that how 
6
1 would be equal to

18
3 ”.  Though teacher 

5 mentioned that 
6
1  actually meant one trapezoid out of the six trapezoids, she did not 

explain clearly how
18
3  represented the triangles, nor did she explain why 

6
1 would equal 

to
18
3 . 

The lessons of teachers 2, 3 and 4 met the learning goal and were aligned with 

the textbook strategies. Teacher 2 asked the questions to guide students as they worked 

to build the figures with pattern blocks. For example, she asked “How many total 

trapezoids does it take to build the figure?” while students were building a hexagonal 

window with trapezoids. And then she asked, “How many trapezoids did we use to 

replace those triangles? Four out of how many trapezoids totally together? What would 

my fraction be? What if I turn them all into green triangles? How many trapezoids do we 

use to replace those triangles?” She also used higher order questions like “How did you 

come up with 18?” or “Do you have any different ideas?” or “Are those two equivalent? 

Are those two fractions equivalent”, and “How do I know then?” to facilitate the process 

of learning. 

Teacher 3 addressed the learning goal through demonstrating the whole process 

on the projector.  After students finished building the hexagonal window with pattern 

blocks, she said “How many trapezoids did it take you to make that window? When I 

took away one trapezoid, that one trapezoid would be equal to what? One sixth of the 
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window, right?” In order to build students’ understanding of where 
18
12   comes from, 

teacher 3 first asked, “How many triangles do you think it is going to take to replace 

what I just took away?” while she removed the top two trapezoids with six triangles. 

Then she removed the bottom two trapezoids with another six triangles, asking “If I want 

to remove two more, the two on the ends here, how many would that be? Which would 

give us a total of how many triangles?” It turned out to be 12. Then she asked, “How 

many triangles you think it would take to make the whole thing? What would my 

fraction be?” The third issue is why
6
4  equals 

18
12 . Teacher 3 asked, “How do we get to 

6
4 is equal to

18
12  numerically?”  

 

 

Figure 3. An example of student’s misconceptions. (Note: Four trapezoids equal to  

twelve triangles so one student thought the fraction was 12
4

). 
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Teacher 4 addressed the learning goal by correcting students’ misconceptions of 

fractions. She asked, “What fraction of the original window is replaced with the green 

triangles?” One student came up with a wrong answer four-twelfths (Figure 3). The 

teacher did not ignore the wrong answer, but continued to ask “How did you get four-

twelfths? But is this four-twelfths of this would change (pointing to the trapezoids), four 

of these pieces, will twelve of them make up the whole thing? That would mean four 

trapezoids out of twelve trapezoids,” she noted, “We have to use the same unit, so 

changing your unit will work, which one do you want to use, you can leave your 4 or 

you can leave your 12, it is up to you, which one do you want to use? Say with the 

trapezoids, four trapezoids changed out of …? Another way you can describe the 

fraction that has been changed.”  She also asked questions such as, “How come it is 

twelve eighteenths?” “Why is 
6
4  equal 

18
12 ? How do they make them equal?”  

Table 7 provides a summary about whether the lessons of these five teachers 

addressed the main learning goal and whether the lessons were aligned with the 

textbooks. 

Table 7 
Summary of Qualitative Analysis of Lessons of Teachers 1, 2, 3, 4 and 5 
Qualitative Measure of 
Instruction 

1 2 3 4 5 

1 Addressed the learning 
goal 

Yes  Yes  Yes  Yes  Yes 
 

2 Aligned with textbook 
approach 

No Yes  Yes  Yes  No 
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Both teachers 6 and 7 were from a rural school district that had adopted 

Mathematics: Applications and Connections (MAC) textbook (Collins et al., 1999), a 

commercially successful textbook that has been used by the district for several years. 

The textbook lesson started by describing the grip size of a tennis racket, and then 

introduced the concept of “mixed numbers”, followed by a hands-on activity of grid 

manipulatives representing five fourths.   

Both Teachers 6 and 7 addressed the learning goal, but with different methods.  

Teacher 6 did not use the approach the textbook suggested. She used manipulatives to 

introduce how to translate between mixed numbers and improper fractions. For example, 

she asked one student to come to the board to form a hexagon with seven triangles 

(Figure 4). She asked, “We have a problem here, we have one more. How many sixths 

do we have in here?” “Seven sixths, what fraction do we come up with?” “How can I 

change the improper fraction to one whole and one left over? Seven divided by six 

equals
6
11 , does this make sense to you?” Later on, she asked students to change 

3
23  into 

an improper fraction. One student said “use 3 multiply 3 and then add 2 (the teacher 

wrote 
3

11  on board).” The teacher picked out three hexagons and two rhombuses. She 

did the translations from symbolic representations to manipulatives by herself and said 

“Let us see if this is right…so if there are three on each one (hexagon), and we have two 

left over, I am not going to have enough blue (rhombuses) to go in these (hexagons), but 

if there are three in this one, how many are there that went in here? (pointing to the 

second hexagon) How many are there that went in here? (pointing to the third hexagon), 
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and we have two left over. Three plus three plus three is nine and plus that two is eleven. 

Eleven thirds, does that make sense?” Then a student disagreed, saying: “Multiply three 

and two first and then add three.” Teacher 6 did not clarify the student’s misconception 

but rather concluded, “I think you got confused with something else. Because that won’t 

work at all”. “I think you got confused on that one.” 

 

 

Figure 4. An example illustrating that 
6
7  equals 

6
11 . 

Teacher 7 mainly used spoken language to address the learning goals. He used the 

examples suggested by the textbooks. He drew three circles (representing three pies) on 

the board with one of them divided into five parts. He asked, “What is a mixed number? 

How do I come up with a mixed number? Ok, first thing I want to do is to look for my 

wholes, how many wholes do I have? I don’t have a whole third pie myself, do I?  I have 

a partial, I have a part of my third pie. How many parts of the third pie do I have?” He 

then asked, “Then what is that pie broken into? Fifths, so fifths would be there 

(denominator, wrote 2
5
2  on board), so I have two and two-fifths of a pie, right?” “Can it 

be expressed as an improper fraction? Excuse me… as a mixed number … how?” 
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During the whole questioning process, there was not very much interaction going on 

among the students, as he talked through the concept of mixed numbers. 

Table 8 provides a summary of whether the lessons of these two teachers addressed 

the main learning goal and whether their instructions were aligned with the textbooks. 

Table 8 
Summary of Qualitative Analysis of Lessons of Teachers 6 and 7 
Qualitative Measure of Instruction 6 7 
1 Addressed the learning goal  Yes Yes 

2 Aligned with textbook 
approach 

No Yes 

 

Seven teachers used the CMP textbook. The lesson addressed the ideas “to use 

the ‘out of 100’ interpretation of fractions and decimals to develop an understanding of 

percent” and “investigating the relationships among fractions, decimals, and percents 

and to move flexibly among representations (Lappan, Fey, Fitzgerald, Friel, & Phillips, 

1998, p. 66i). 

All of these seven teachers addressed the mathematics learning goal. They varied 

somewhat in their approaches by asking questions of the students, by direct presentation 

or by a combination of these approaches. Teachers 8, 11, and 12 used direct instruction 

during a whole class session. Teacher 8 asked the question, “What does percent mean?” 

A student answered “47 percent, because percent means out of one hundred.”  She then 

asked, “Do you know what is fifty three hundredths mean? Fifty three out of a hundred.”  

Teacher 9 asked higher order questions aimed at understanding the meaning of the 
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percent, like “We are told that 2000 dollars on and up, we have 18% of the people, 18% 

meaning what? ” However, instead of letting the students answer the questions, she 

answered them herself: “No, no, no, eighteen percent meaning what? Eighteen out of 

what”? “Now what we have learned about, is that percent what?” Teacher 10 asked and 

answered the questions herself, “Fifty four, remember, what does this mean? Fifty-four 

what? What does fifty-four mean? Fifty-four out of a hundred.”  Teacher 11 used open 

questions such as, “Does any one know what this ‘out of a hundred’ stuff is about?” or 

“Then what do we know about that 78 percent then?” Teacher 12 employed a series of 

questions through the whole class, for example, “The first thing I want you to know is 

what does percent mean?” and “That is absolutely right, out of one hundred. So 78 

percent is same as 78 out of one hundred, do you agree with that?” “(56 percent) means 

that 56 out of a hundred.” After a few exercises, she elaborated more on the concept of 

percent in a real world situation, “You told me that you come up with some great 

examples… we are talking about how a juice provides 125% of the daily recommended 

allowance, what do you think that means? It is greater than the actual percent that you 

are supposed to have, do you agree? It mixed the actual percent that you suppose to have 

and then exceeded by what percent?” Teacher 13 started with a statement “I want you to 

think about out of one hundred, there is a specific word we are using that will be fit into 

what we are talking about. You know what I am thinking about, percent. Percent can be 

a substitute to mean out of a hundred. Turn to your neighbor partner and tell them what 

percent means.” “Out of one hundred. Ok, very nice.” Later on, he revisited the concept 

again, “What do we know a percent to be?” Teacher 14 combined the symbolic 
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representation of the percent sign (%) with something meaningful, “The percent sign 

% … it helps you to remember that it means out of one hundred”. And later in the class 

she asked students “What does percent look like? 78 percent because it is out of one 

hundredth.”  

These seven teachers can be categorized into three levels in terms of addressing 

the idea of investigating the “relationship among fractions, decimals and percents and to 

move flexibly among representations”(Lappan et al., 1998, p66i). The first level 

included teacher 9 who did not ask the students to investigate the relationships between 

the different representations. Teachers 8, 10, 12, 13, 14 belonged to the second level. 

They mentioned the idea, but did not elaborate on it. Teacher 8 said “Isn’t that (fractions, 

decimals, and percents) said the same way, it is, isn’t it?” Teacher 10 pointed out that 

“They are all the same numbers.” Teacher 12 said, “Do you agree that there is a 

connection between decimals and percents? Where there were connections between 

decimals and percents, there must also be connections between…factions and percents.” 

Teacher 13 also mentioned: “now you have graph (percent), fraction and decimal, three 

different ways of showing me the same thing.” Teacher 14 said that, “Two ways you 

have already studied are with decimals and with hundredths grids.  Another useful way 

to express a fraction with a denominator of 100 is to use a special symbol: the percent 

symbol. ” Teacher 11 belonged to the third level, who built up students’ understanding 

through investigation. She asked the students to investigate the relationship among 

fractions, decimals and percents by asking probing questions like: “Tell me what they 

are talking about over here. They showed us the grid, they are talking about all these 
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different ways we have already discussed. What are these different ways? What do we 

know about that?” “What do we know about these three different representations? Ok, 

awesome, we have the fraction, 56 hundredths, the decimal 56 hundredths and the 

percent 56 percent. What do we know about all three of these things? What could I write 

over here? ” After a student simplified 100
56

into 25
14 , the teacher asked the question again, 

“Fifty six one hundredths and fourteen twenty fifths, what do we know about it? What 

do we now know about these two fractions? So if it is equal to fourteen twenty fifths, 

and what do we know about all these other stuff over here?” (pointing to fraction, 

decimal and percent form of 100
56

 ) . She went deeper by pointing out that sometimes 

even fractions that do not look equal to each other could actually be equal to each other 

by asking “Now does this ( 25
14 ) look like equal to this ( 100

56
)? But are they equal?”  

The procedures of moving from one representation to the other were addressed 

by all of these seven teachers who used CMP as textbooks. However, there were 

variations in their approaches. Teachers 8, 9 and 13 all mentioned some general 

strategies. Teacher 8 emphasized phonological understanding. He asked the students to 

read correctly the fraction when translating between fractions and decimals. For example, 

he said “write that fraction as a decimal and percent… this is the fraction, read it, read it 

correctly, now write that as a decimal, what does fifty three hundredths look like as a 

decimal?”  Teacher 9 relied more on memorization. She said “Come on, talk to me. 

When we have a percent sign, what do we do? We move into the what? Into the left, and 

we take out what? Our percent sign, let us move to the left and take out our percent 
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sign.” Teacher 13 discussed more thoroughly the general strategies of translating among 

fractions, decimals and percents. He drew a triangle on the board with fractions, 

decimals and percents as three vertexes. On each of the three edges, he asked the 

students to write some words describing the strategies of converting between the two 

vertexes as shown in Figure 5. 

 

 

 

 

 

Figure 5. Representation of converting between fractions, decimals and percents. 

Teacher 10 used an exercise of translating among the fraction 100
46

, the decimal 

0.46 and the percent 46%. She asked students to “put out the number of male cats of the 

fraction, decimal and percents” on the board. After students finished writing their 

answers on the board, the teacher said: “Ok, here are our male cats, they are 46 out of a 

hundred (as a fraction), 46 hundredths (as a decimal) and 46 percent. ” Teacher 11 used 

exercises of translating among the fraction 100
56

, the decimal 0.56 and the percent 56%. 

However, the teacher did not address the transformation among these three different 

representations as much as the relationship between them. Teacher 12 asked students to 

translate 25% into a fraction and then into a decimal, “(25%) in a fraction”, “One fourth, 

Fraction

DecimalPercents  

Cowboy rule 
Place value 

Common 
denominator  
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very good. And into a decimal? How do you say that? 25 hundredths, excellent! ” In the 

activity of Raining Cats, she said “Look at his age, (.25 means) 25 months old? 25 years 

old? This is his age in years. Oh, JJ says that the cat is 25 hundredths years old.”  When 

students came up with the right answer, she explored deeper into students’ understanding 

by asking probing questions like, “(.25 years) which means that he is 3 month old, JJ, 

how do you come up with that?” “Where did you get the four from? (.25 is 4
1 ).” Teacher 

14 focused on the procedures of translating between representations. She asked students 

to change 
100
54  to a decimal, and to a percent. For example, she asked, “Did everybody 

get 56%? Which is point five six, which is 56 over one hundred.” She also discussed 

about how to change 8 months to 
3
2 of a year. She used a number line, and she further 

changed 
3
2 of a year into .66 of a year using division. 

Table 9 summarized about whether the lessons of these seven teachers addressed 

the main learning goal and whether they were aligned with the textbooks. 

Table 9 
Summary of Qualitative Analysis of Lessons of Teachers 8, 9, 10, 11, 12, 13 and 14 
Qualitative Measures of 
Instruction  

8 9 10 11 12 13 14 

1 Addressed the learning 
goal 

Y Y Y Y Y Y Y 

2 Aligned with the textbook 
approach 

Y N Y Y Y Y Y 
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Classroom Interactions 

Teacher-student interactions can be clustered into two categories: teacher-

centered interaction with few student interactions, and constructive interaction with 

opportunities for student work and interactions. Teachers 1, 5, 6, 7 and 9 belonged to the 

first category, while teachers 2, 3, 4, 8, 10, 11, 12, 13 and 14 belonged to the second one. 

Teachers belonging to the first category usually did not have student activities in 

class. If a student activity existed, the time was short, and students were not highly 

involved in the activity. These teachers asked mainly factual questions. When potentially, 

higher order questions were asked, students were not given a chance to answer. Instead, 

the teachers answered the question themselves. These teachers focused on the rules and 

facts, rather than on a learning environment for students to experience the mathematics. 

There was an emphasis on “correctness”, that is, answers which match what the teacher 

thinks, anything that was not correct was either ignored or negated. 

 There were no activities in teacher 1’s class even though the textbook suggested 

using manipulatives to teach equivalent fractions. The majority of questions teacher 1 

asked in the class were factual. For example, she asked, “ 9
4 equals something over the18 

( 9
4

= 18
?

)? Right, 9 times 2, so what do I do on the top? Times 2, so what would it be?” 

The only higher order question she asked in lesson two was “Does anybody know how 

to find out what goes above 18? (converts 
9
4  to 

18
? ).”  When no students answered the 

question, she answered it herself instead of asking guiding questions. When students 

answered the question wrong, she either ignored it or asked the question again. For 
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example, “How many triangles are in that new picture?” Some students said six, some 

students said three and some said twelve. She agreed with twelve, saying “ See, six on 

the top and six on the bottom.” 

Teacher 5 used about three minutes for an activity the textbook suggested. She 

handed out the manipulatives to the students; however, she gave orders to students rather 

than letting them explore the mathematics. For example, she walked past a student, 

saying “Make that one on the left first please… now replace the top red with those 6 

greens, you can either put it on top or move it and take their place.” Most of her 

questions were also factual questions. For example “Each one of the red ones was what 

part of the triangle?” or “How many red shapes were there all together?” She asked one 

higher order question “How did you figure out
18
3 ?” There was little or no waiting time 

for the students to answer any of the questions before she answered them herself.  

Teacher 6 did use manipulatives and had some activities in class which deviated 

from the textbook suggestions. However, not every student had the opportunity to work 

with the manipulatives. Only those who were asked to go to the board were able to use 

the materials. The questions she asked were factual. For example, “How many (triangles) 

does it take him to make (the hexagon)? How many sixths do we have over here? Does it 

make sense to you?”  Some higher order questions were asked such as “How are we 

going to figure how many square feet that are going to melt?” or “How can I change 

improper fraction to one whole and one left over?” After students said “divide,” she 

failed to ask students to justify their answers. Teacher 6 did not investigate students’ 

misconceptions. She emphasized on the “right answer.” For example, one student got 
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confused in changing a mixed number 3
3
2  to an improper fraction; he got 

3
9  by using 3 

times 2 then adding 3, which is totally wrong. Instead of explaining why it would not 

work, she just said, “That won’t work; I thought you got confused somewhere else.”  

Teacher 7 followed the textbook approach. He used no manipulatives or student 

activities in class. The questions were all factual. For example, “What is a mixed 

number?” or “How many wholes do I have?” and “I do not have a whole third pie myself, 

do I?” or “Then what is that third pie broke into?” 

Even though teacher 9 used many of the activities suggested by the textbook, her 

teaching emphasized memorizing the procedures. For example, when students were 

asked to convert percents to decimals, she said, “When we have a percent sign, what do 

we do? We move to the what? To the left, and we talk about what? Our percent sign. Let 

us move to the left and take our percent sign”. She asked many factual questions and 

sometimes she answered them herself. For example, “18% meaning what? 18% meaning 

what? 18 out of what?  When we simplify, what do we take? Find out what? And we 

could go back to our divisibility rules and do what? We find the greatest common factor! 

And we do what? Reduce by it, what is the greatest common factor in this?  So another 

way of writing 18% in fractional form would be what? Nine fiftieths, ok? What would 

our chart look like for nine fifties?” Even though she asked some higher order questions, 

she ignored student answers. For example she asked, “Why do you think the grid would 

end up completely shaded?” Some students answered, but she did not make any 

comments and switched to talking about another question, “Ok, all right, let us look at 
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the chart over here, we are told that 2000 dollars on and up, we have 18% of the people, 

18% meaning what? 18% meaning what?”  

Constructivist teachers often used activities in which students were directly 

involved. They asked factual questions as well as guiding and probing questions and 

allowed waiting time for students to think and respond to these questions. When students 

came up with wrong answers, the teachers followed up to investigate the misconceptions. 

Students experienced mathematics through a constructive learning environment where 

understanding how students came up with the conclusion was the main focus in the class. 

Teachers 2, 3, 4, 8, 10, 11, 12, 13, 14 tended to be more constructive.  

Teacher 2 followed the textbook suggestions to let students investigate the 

concept of equivalent fractions by building the figure in the textbook with the pattern 

blocks.  Her strategy of teaching was to let the students play first, and then she guided 

students’ learning through probing questions. For example she asked, “How do you 

come up with 18?” and “Do you have any different ideas?” or “Are they equivalent? 

How do we know that? ” followed by a discussion of the textbook problem which 

emphasized both the manipulatives representations and symbolic representations.  

Teacher 3 followed the textbook suggestions too. Her teaching style was to let 

the students use pattern blocks first, then asked some probing questions to challenge 

students. For example, “But how do we get there? How do we get there numerically?” 

She emphasized on both the manipulatives representations and symbolic representations.  

Teacher 4 also used the activity the textbook suggested, making figures with 

different pattern blocks. Her teaching style was to guide students’ understanding through 
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probing the misconceptions they indicated in the class. For example, one student thought 

that 
12
4  of the original window was changed because four trapezoids were equal to 

twelve triangles, which was incorrect.  She used probing questions like “How did you 

get four twelfths? Will twelve of them make up the whole thing? (
12
4 ) means four 

trapezoids out of twelve trapezoids, we have to use the same unit, so change your unit it 

will work, you can leave your four or leave your twelve, it is up to you, which one do 

you want to use? Say with the trapezoids, four trapezoids changed out of …” and “got to 

be equal pieces too.” or “You have to say trapezoids are changed out of trapezoids and 

triangles are changed out of triangles. You have to keep the same unit, you cannot flop 

around.”  She constructed a learning environment by asking factual questions as well as 

probing questions to guide students learning. For example she asked, “What fraction of 

that window was changed? Another way you can describe the fraction that has been 

changed?” or “How come it is twelve eighteenths?” and she also asked, “So what do we 

know about the trapezoids?...How many triangles changed?” “Why 
6
4 = 

3*6
3*4 =

18
12  ? 

They are equal the same, how do they make them equal?” and “We are thinking about 

the magic power of one. Think of any number in your head, multiple by one, multiply by 

one again, what did you find?” or “Can anyone tell me any fraction dressed up like one? 

It is not a number one, it is a fraction dressed up like one… when we used that fraction 

(
3
3 ), it makes 

6
4  equal to

18
12 .” Teacher 4 used both manipulatives and symbolic 

representations. 
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Teachers 8, 10, 11, 12, 13, and 14 all followed the Connected Mathematics  

textbook, which suggested a variety of activities and real world examples for teaching 

fractions. They each asked many probing questions in class. However, they varied in the 

process of teaching and their focuses were also different. Teachers 8, 11, and 13 all 

focused on conceptual understanding but through different approaches. 

Teacher 8 emphasized the phonological connections between different 

representations. For example, he asked questions like “Oh, what is that the percent of? 

53 percent because? What does percent mean?” and “What does 100% mean? 100 out of 

100, that means?” He also asked, “Do you know what does fifty three hundredths mean? 

How do I write it as a decimal?”, and “This is a fraction, read it, read it correctly; now 

write that as a decimal, what does fifty three hundredth look like a decimal?”  Teacher 

11 used a series of guiding and probing questions to get the whole class involved in the 

process of developing the conceptual understanding of relationships among different 

representations. For instance, she asked “What do we know about all of these things? 

Why they are equal? Why is she doing that? Can anybody explain that to me why she 

did that? What are these different ways?” she also asked, “What do we know about that? 

What do we know about these three different representations?” and “What about the grid 

filled in? How does that have 78?”  Teacher 13 developed students’ conceptual 

understanding through a picture of triangular relationships among different 

representations generally. He asked, “If I want to change a fraction into decimal, how am 

I going to do that? What is going to happen if I want to change decimal back to 
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fraction?” “Based on what you have already known, what do you think should be put in 

the blank from fraction to percent?”  

Teachers 8, 10, 12, 13, and 14 focused on the strategies that students used to 

work out the problem. Teacher 8 asked “What is the first step? Why does that give me 

how many are not kittens? What do you notice about the combinations of cats and 

kittens?” she stated, “I want you to express your reasoning. I do not want just the 

numbers. What do you mean by that? That is what we are doing on the board, we wrote 

down the number and I said how you got that.” Teacher 10 asked, “Did you need a key 

for this? Why not? What was your observation? And how did you find it? From what? 

What did you know about the combined percentage? 54 and 46 are one hundred percent, 

why? There is one danger, what is the danger if you did it that way rather than 

counting?” Teacher 12 asked, “What do you think that means? What do you notice? 

Where did you get the four from?” and “How did you come up with that?” Teacher 12 

also asked, “Tell me what you could do if you know how many females there are.” 

“Why do you do that? They add up to 100, why is that?” Teacher 12 also elaborated a 

little bit more, “Ok, why you think it is easy to move from fraction to decimal to percent 

with this example? What do you think? Will it be easier if we deal with 150 cats? What 

about 50? Could you still figure out?”  Teacher 13 asked, “Do you know any specific 

things about those two fractions? You add the numerators together, you get 100. Why?” 

Teacher 14 asked, “What did you use? Where did you get 54 from? What do you think 

of these?”  
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Both teachers 13 and teacher 14 pointed out the advantages of some 

representations over the others. For example, teacher 13 asked, “So what do you think 

we can do with the database? How could we use that chart? Is it easier to read the 

database to find which one is female and male? Or is it easier to look at your graph? 

Why? Why it is easier to look at the graph?” Teacher 14 asked “What is beneficial about 

making a chart and not making a chart?” 

Quantity of Instructional Representations 

Five forms of representations were found in teachers’ instruction from the 

videotapes. There were 1) real world representations, 2) manipulatives representations, 3) 

pictorial representations, 4) spoken symbolic representations, and 5) written symbolic 

representations that included calculators. Tables 10 and 11 present summaries of the 

percentage of time each teacher engaged in different forms of representations. 

Table 10 
Percentage of Time on Different Forms of Representations 

Teacher Forms of 
represent
-ations 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Real 
World 

0.0  0.1  0.0  2.9 1.4 2.0 0.0 0.9 3.0 5.6 3.1  8.2  5.8 2.2 

Manupu- 
latives 

5.9  16.9  19.2  10.4 13.7 1.8 0.0 8.1 6.3 0.1 16.6  18.7  7.4 13.6 

Picture 13.2  17.1  8.1  3.9 10.9 15.8 16.1 9.1 0.3 17.5 9.5  7.4  23.9 8.8 
Spoken 
Symbolic 30.9 39.5 39.6 32.1 33.3 46.1 44.3 39.2 64.7 38.6 41.7 28.5 35.1 56.0
Written 
Symbolic 33.2 23.3 32.3 38.7 21.8 31.6 31.9 23.0 57.0 25.5 19.4 14.2 16.8 43.6
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Table 11 
Descriptive Statistics of Instructional Representations 
Forms of 
representations  

N Minimum Maximum Mean Std. 
Deviation

Real World 14 0.0 8.2 2.5 2.5
Manipulatives 14 0.0 19.2 9.9 6.7
Picture 14 .30 23.9 11.5 6.2
Spoken Symbols 14 28.5 64.7 40.7 9.9
Written Symbols 14 14.2 57.0 29.5 11.5

 

The mean percentage of time the teachers spent on real world representations 

was 2.5% with a minimum of 0%, a maximum of 8.2%, and a standard deviation of 

1.8%. Five teachers, 1, 2, 3, 7 and 8 used less than 1% of time on real world 

representations. The other nine teachers spent only 1% up to 9% of their class time using 

real world representations.  

The mean percentage of time spent on manipulative representations was 9.9% 

with a minimum of 0%, a maximum of 19.2%, and a standard deviation of 6.7%. Seven 

teachers, 1, 6, 7, 8, 9, 10, and13, spent less than 9.9% time on manipulatives 

representations. Four teachers, teacher 2, teacher 3, teacher 11, and teacher 12 spent 

more than 15% of their instructional time on real world representations. 

The mean percentage of time spent on picture representations was 11.5% with 

the minimum of 0.3% , a maximum of 64.7%, and a standard deviation of 6.2%.  Five 

teachers, teacher 2, 6, 7, 10, and 13 spent more than 15% of the instructional time on 

picture representations while the other nine teachers, teacher 1, 3, 4, 5,  8, 9, 11, 12 and 

14 spent less than 15% of the time on spoken symbols. 
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The mean percentage of time spent on spoken symbolic representations was 

40.69% with the minimum of 28.5%, a maximum of 64.7% , and a standard deviation of 

9.87%.  Two teachers, teacher 9 and teacher 14 spent more than 50% of the instructional 

time on spoken symbolic representations while the other 12 teachers, teacher 1, 2, 3, 4, 5, 

6, 7, 8, 10, 11, and 13 spent less than 45% of the time on spoken symbols. 

The mean percentage of time spent on written symbolic representations was 

29.45%, with a minimum of 14.2% , a maximum of 57.0% , and a standard deviation of 

11.5%. Two teachers, teacher 1 and teacher 4, tended to use more time on written 

symbolic representations than spoken symbolic representations, while the other teachers, 

teacher 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, and 14 tended to spend more time on spoken 

symbolic representations. 

Teachers 1, 3 and 7 did not use real world representations, while the other eleven 

teachers 2, 4, 5, 6, 8, 9,10,11,12,13 and 14 all  used five forms of representations. 

Teacher 1 spent 5.9% of time on manipulative representations, 13.2 on picture 

representations, 30.9% on spoken symbolic representations, and 33.2% on written 

symbolic representations. Teacher 2 spent 0.1% on real world representations, 16.9% on 

manipulative representations, 17.1% on picture representations, 39.5% on spoken 

symbolic representations and 23.3% on written symbolic representations. Teacher 3 did 

not use real world representations, she spent 16.9% time on manipulative representations,  

17.1% on picture representations, 39.6% on spoken symbolic representations and 32.3% 

on written symbolic representations. Teacher 4 spent 2.9% on real world representations, 

19.2% on manipulatives representations, 8.1% on picture representations, 32.1% on 
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spoken symbolic representations and 38.7% on written symbolic representations. 

Teacher 5 spent 1.4 % on real world representations, 13.7% on manipulatives 

representations, 10.9% on picture representations, 33.3% on spoken symbolic 

representations, and 21.8% on written symbolic representations. Teacher 6 spent 2.0% 

on enactive representations, 1.8% on manipulatives representations, 15.8% on picture 

representations, 46.1% on spoken symbolic representations and .31.6% on written 

symbolic representations. Teacher 7 did not use real world representations, however, he 

spent 16.1% on picture representations, 44.3% on spoken symbolic representations and 

31.9% on written symbolic representations. Teacher 8 spent 0.9% on real world 

representations, 8.1% on manipulatives representations, 9.1% on picture representations, 

39.2% on spoken symbolic representations and 23% on written symbolic representations. 

Teacher 9 spent 3.0% on real world representations, 6.3% on manipulatives 

representations, 0.3% on picture representations, 64.7% on spoken symbolic 

representations and 57.0% on written symbolic representations. Teacher 10 spent 5.6% 

on real world representations, 0.1% on manipulatives representations, 17.5% on picture 

representations, 38.6% on spoken symbolic representations and 25.5% on written 

symbolic representations. Teacher 11 spent 3.1% on real world representations, 16.6% 

on manipulative representations, 9.5% on picture representations, 41.7% on spoken 

symbolic representations and 19.4% on written symbolic representations. Teacher 12 

spent 8.2% on real world representations, 18.7% on manipulatives representations, 7.4% 

on picture representations, 28.5% on spoken symbolic representations and 14.2% on 

written symbolic representations. Teacher 13 spent 5.8% on real world representations, 
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7.4% on manipulatives representations, 23.9% on picture representations, 35.1% on 

spoken symbolic representations and 16.8% on written symbolic representations. 

Teacher 14 spent 2.2% on real world representations, 13.6% on manipulatives 

representations, 8.8% on picture representations, 56.0% on spoken symbolic 

representations and 43.6% on written symbolic representations.  

Case Example of Quality of Teacher Representation 

 The quality of teachers’ instruction regarding representations was assessed using 

three criteria; accuracy, comprehensibility and connections adapted from the AAAS 

textbook study (AAAS, 2000). Each teacher received a score of 1 (met) or 0 (not met) on 

accuracy, comprehensibility and connection for each lesson. Each of the three criteria 

was scored based on the presence or absence in the lesson using the indicators described 

in Table 122. 

Table 12 
Criteria and Indicators of Instructional Quality 

Criterion Indicators 
No misconceptions 1. Accurately depicts the 

intended mathematics 
learning goal 

Point out the limitations of the representations 

       Meaningful to students 
       Includes real world experiences 

2. Comprehensible to 
students 

Hands-on activity 
Justify why it is being represented in a 
particular way 

3. Connections are made 
between the 
representations and what 
is being represented  Connections are made between a variety of 

representations  

 

                                                 
2 Table 12 is exactly the same as Table 5. It is presented here again for ease of reading. 
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 The following illustration provides an example of how the indicators were applied 

in scoring the Instructional Quality criteria. Assume that a teacher used a pie graph to 

illustrate that 
4
3  equals  

12
9  by first dividing a pie into 4 parts, and then dividing each 

quarter of a pie into 3 parts to get 12 parts (see Figure 6). If she did not explain that it 

should be 12 equal parts and the pie was not divided evenly in the drawing, this 

representation may result in a student’s misconception of part-whole, and consequently, 

the teacher received a zero on the misconception indicator. If the teacher mentioned the 

limitations of the pie representation, she/he received a score of 1; if limitations were not 

mentioned, it was scored zero.  Because the pie is not divided equally, it is graded as 

zero for accuracy criterion.   

 

 

Figure 6. A pie chart diagram for fractions. 

 In order to be comprehensible and meaningful to students, the instructional 

language must be close to the students’ level of understanding, using only necessary and 

developed mathematical vocabularies. For example, when using a hexagon as a 
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representation to introduce how to convert 
6
7 to 1

6
1 , only after the students have already 

gained some direct experiences based on hands-on activities, the term “mixed number” 

was introduced. Real world experiences should be within students’ realm of prior 

knowledge. For instance, one teacher told the class, “It is cold in the Dallas area and 

people want to melt the ice. A four ounce bag of salt could melt nine square feet of ice. 

Suppose there is only one ounce of salt left in the bag. How many square feet of ice 

could be melted?” This is counted as a real world situation where students could apply 

their fraction knowledge. Concrete hands-on activities means students were doing an 

activity, often with the use of a manipulative to support their learning. For example, 

students were asked to create a fraction strip of 
5
1 .  If the teacher addressed any one of 

the three indicators, she/he was considered as meeting the requirement of 

comprehensibility.  

  

 

 
Figure 7.  A hundreds grid representing 78%. 
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The connection criterion had two indicators. If the teacher addressed why an 

idea was being represented in a particular way, she/he received credits for this indicator. 

For example, when the teacher was trying to describe that the proportion of the shaded 

area of the picture in Figure 7 was 78%, she/he should have emphasized that 78 out of 

100 squares were shaded, so it was 78%. The second indicator was “Connections are 

made between varieties of representations.” In demonstrating how 
6
4  equals 

18
12  by 

using trapezoids and triangles, the teacher could point out that by looking at a picture in 

terms of 6 trapezoids (See Figure 7), one will think the shaded area is 
6
4 , however, one 

will get 
18
12  if he/she looks at it in terms of triangles.  

Quality of Instructional Representation 

The quality score for each of the criteria was computed by averaging the scores 

across the lessons that were videotaped. The total of the three criteria averages provided 

an overall instructional quality score for representations.  The teachers’ individual scores 

for each criterion and the overall scores are listed in Table 13. 

The mean for all teachers’ accuracy was .84 with a minimum of .67 and a 

maximum of 1.00. Six teachers scored higher than the mean. Teachers 1, 2, 4, 6, 11, and 

13 scored 1.00. Eight teachers, teachers 3, 5, 7, 8, 9, 10, 12 and 14 scored lower than the 

mean. Teachers 1, 2, 4, 6, 11, and 13 all used the instructional representations correctly. 

Both teacher 13 and teacher 14 mentioned the advantages of some representations over 

other representations. 
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Table 13 
Instructional Quality of Representation Scores for Teachers  

Teacher Accuracy Comprehensibility Connection Total 
T1 1.00 .00 .00 1.00 
T2 1.00 1.00 .66 2.66 
T3 .80 .40 .20 1.40 
T4 1.00 1.00 .80 2.80 
T5 .67 .33 .00 1.00 
T6 1.00 .33 .00 1.33 
T7 .67 .00 .00 0.67 
T8 .80 1.00 .80 2.60 
T9 .67 .33 .00 1.00 

T10 .67 .67 .33 1.67 
T11 1.00 1.00 1.00 3.00 
T12 .80 1.00 .80 2.60 
T13 1.00 1.00 1.00 3.00 
T14 .80 .50 .20 1.50 

Means .84 .61 .41 1.87 
 

 The mean of comprehensibility was 0.61 with a minimum of .00 and a maximum 

of 1.00. Seven teachers scored higher than the mean, among which six teachers, teacher 

2, 4, 8, 11, 12, and 13 scored 1.00, and the other teacher, teacher 10 scored .67. Seven 

teachers, teacher 1, 3, 5, 6, 7, 9 and 14 scored lower than the mean. 

 The mean of connections was .41 with a minimum of 0, and a maximum of 1.00. 

Six teachers, teacher 2, 4, 8, 11, 12, and 13 scored higher than the mean. However, only 

two teachers, teacher 11 and 13 scored 1.  Eight teachers, teacher 1, 3, 5, 6, 7, 9, 10 and 

14 scored lower than the mean.  
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Summary of Results for Research Question 1 

 Both qualitative and quantitative analysis methods were used to investigate the 

quality and quantity of the teachers’ instructional representations. Various levels of 

teacher performance were found based on three themes: textbook alignments, classroom 

interactions, and quality and quantity of teachers’ instructional representations. Teachers 

who followed the teaching approaches suggested by CMP (Bits and Pieces unit) and 

Middle School Math Thematics were found to have interactive classrooms, while 

teachers who either followed or varied from MAC tended to have teacher-centered 

classrooms. Furthermore, teachers’ instructional representations varied in terms of the 

time they engaged in delivering the content as well as the quality of representations. 

Symbolic representations tended to be the predominant representations in the classrooms 

that were analyzed. Quantity of instructional representations (for example, the time each 

teacher engaged in using the real world, manipulatives, pictures, spoken symbolic and 

written symbolic representations) varied as much as the quality of the representations 

(i.e., accuracy, comprehensibility and connections). These results are presented in Tables 

14 and 15, and Figures 8 and 9. 

Table 14 
Summary Table of Teachers Textbook Alignments and Learning Goals 

Qualitative Measure of 
Instruction 

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Address learning goal Y Y Y Y Y Y Y Y Y Y Y Y Y Y

Aligned with textbooks N Y Y Y N N Y Y N Y Y Y Y Y
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Table 15  
Summary of Classroom Interactions and Alignment with the Textbook 

Yes No  Aligned 
with 

textbooks 
Math-
Thematics MAC CMP Math-

Thematics MAC CMP 

Yes 2,3,4    7 
8, 10, 
11, 12, 
13, 14 

  

C
onstructive  

   C
lassroom

 No   1, 5 6 9 

 

 

Figure 8. Teaching quantity results (percentage of time). 
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Figure 9. Teaching quality results. 

Research Question 2 

What are the structures of instructional representations and students’ written 

representations?  How do these structures reflect the format sub-constructs: real world, 

manipulatives, pictures, spoken symbolic and written symbolic representations? How do 

they reflect the content sub-constructs: measure, part-whole, quotient, wonderful one, 

and cross product? 

 The structural equation modeling (SEM) technique was used to answer research 

questions two through four. Because statistical techniques such as factor analysis, 

measurement theory, path analysis, multiple regression, and general linear modeling of 

relations are all included in SEM analysis, it is regarded as one of the most up-to-date 

and advanced statistical techniques (Kline, 2005). SEM is usually preferred rather than 

the traditional techniques because of its capability to approximate the measurement error  



 76

Table 16 
Definitions of Instructional Representation Variables 
Variable Name Description 

RWM  Real World Manipulatives 
RWQ  Real World Quotient 
MPW  Manipulatives Part-whole 
MM  Manipulatives Measure 
MQ  Manipulatives Quotient 
PPW  Picture Part-whole 
PQ  Picture Quotient 
PM  Picture Manipulatives 
PWO  Picture Wonderful One 
SSPW  Spoken Symbol Part-whole 
SSM  Spoken Symbol Measure 
SSQ  Spoken Symbol Quotient 
SSWO  Spoken Symbol Wonderful One 
SSCP  Spoken Symbol Cross Product 
WSPW  Written Symbol Part-whole 
WSM Written Symbol Measure 
WSQ  Written Symbol Quotient 
WSWO Written Symbol Wonderful One 
WSCP Written Symbol Cross Product 

   SCQ  Symbolic Calculator Quotient 
 

thus generating more precise estimates (Kline, 2005). Measurement models and path 

models are two major steps typically involved in conducting a SEM analysis. The 

measurement models aim at investigating whether the proposed theoretical model fits the 

data by engaging confirmative factor analysis (CFA). Then path models are developed to 

investigate the causal relationships (Kline, 2005). Therefore, a measurement model of 

teacher’s instructional representations and a measurement model of students’ written 
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representations were developed in this study. A set of variables that describes both the 

sub-constructs and forms of instructional representations was defined in order to develop 

the theoretical model. Table 16 presents the variable names and their brief descriptions.  

 

 

Figure 10. Initial theoretical measurement model. 
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The proposed theoretical measurement model for the relationship among the real 

world, manipulatives, pictorial, spoken symbolic and written symbolic representations 

used by the teachers is shown in Figure 10.  

The circles in Figure 10 illustrated the endogenous (latent) variables and the 

rectangles illustrated the exogenous (observed) variables. A two-headed arrow 

connecting the endogenous variables showed that connections are assumed to exist 

between each variable. A one-headed arrow directed from the endogenous variable to the 

exogenous variable illustrated that the endogenous variable is predicted by the 

exogenous variable. The endogenous variables, the exogenous variables, the errors and 

the arrows comprise a measurement model. If the initial measurement model is rejected, 

the model is revised by reorganizing, deleting or adding the variables based on 

modification indexes in order to achieve a better fit. Several issues regarding background 

knowledge and limitations of the SEM should be mentioned before the results of SEM 

analysis for this study are discussed. 

1. The issue of small sample sizes. The literature suggested that SEM applied in any 

sample size less than 250 may cause problems (Hu & Bentler, 1999). Kline (2005) 

stated that a sample size less than 100 is considered as small, between 100 and 200 is 

considered as medium, and greater than 200 is considered as large. In this study, only 

58 videotapes were coded and analyzed in the teacher measurement model and 213 

students’ pretests and posttest data set were analyzed. In this case, the students’ 

measurement is based on a large data set according to Kline (2005), however, the 

teachers’ measurement model requires improvement in terms of sample size.  
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2. The issue of multicollinearity, which is an assumption of the SEM analysis that 

extremely high correlations should not exist between observable variables (Kline, 

2005). However, the spoken symbolic representations and the written symbolic 

representations are highly correlated in this study, for the simple reason that teachers 

tended to use verbal communication while they were writing on the board. 

Two programs, AMOS (Arbuckle & Wothke, 1999) and M-plus (Muthen & 

Muthen, 2004) were employed. Lagrange Multipliers were evaluated by revealing that 

adding certain paths will reduce corresponding amount of chi-square, thus improving the 

total model fit. Four consecutive proposed models were constructed in order to 

determine the model with the best fit.  The chi-square statistics, Normed Fit Index (NFI), 

Comparative Fit Index (CFI), and Root Mean Square Error of Approximation (RMSEA) 

were reviewed for the following models. 

Table 17 
Fit Indices for the Initial Model 

CI Model χ 2  Df CFI NFI RMSEA Lo 90% Hi 90%
Initial 
model N/A N/A N/A N/A N/A N/A N/A 

Note: N=58 

In Figure 10 it can be seen that real world, manipulatives, pictures, spoken 

symbolic representation, and written symbolic representations were measured by two, 

three, four, five and six variables, respectively. The proposed model terminated at the 

49th iteration, yielding a negative error variance with a value of -74.98, therefore, no fit 

indexes were reported because of the limit of the iteration were reached as indicated by 
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Table 17. The model could not be improved to generate any estimates, so that the five 

latent variables (real world, manipulatives, pictures, spoken symbolic representations, 

and written symbolic representations) were not able to be verified in current study.   

Table 18 
Pattern Coefficient Matrix from Promax with Kaiser Normalization Rotation  

Factor  
1 2 3 4 5 6

RWM 0.05  0.15 0.81 -0.02 -0.16  0.01 
RWQ -0.17  -0.13 0.55 0.01 0.24  0.05 
MPW -0.03  0.52 0.09 0.02 -0.13  0.02 

MM 0.95  0.05 0.01 0.01 0.06  0.04 
MQ 0.05  0.12 -0.07 -0.20 0.44  0.05 

PPW -0.26  0.48 -0.05 0.27 -0.13  -0.07 
PQ -0.04  0.01 0.98 -0.01 0.06  0.07 
PM 0.22  -0.01 0.48 -0.01 -0.34  -0.21 

PWO 0.06  0.15 0.03 -0.17 0.11  0.68 
SSPW 0.06  0.93 0.01 0.07 0.05  0.01 

SSM 0.98  -0.05 -0.03 0.04 -0.02  -0.03 
SSQ 0.01  -0.07 0.11 -0.09 0.92  -0.01 

SSWO 0.00  -0.07 0.03 0.14 -0.08  0.88 
SSCP 0.05  -0.03 -0.02 0.95 -0.08  0.05 

WSPW 0.04  0.90 0.00 -0.12 0.19  0.03 
WSM 1.00  -0.03 -0.04 0.04 0.06  0.03 
WSQ 0.03  -0.01 0.07 0.40 0.75  -0.12 

WSWO -0.01  -0.04 0.02 0.09 -0.07  0.82 
WSCP 0.04  0.08 -0.01 0.94 -0.03  -0.01 

SCQ 0.05  0.03 -0.09 -0.05 0.42  -0.01 
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A factor analysis was conducted to investigate any other potential relationships 

between these variables. Principle component analysis was used as an extraction method 

and Promax with Kaiser Normalization was used as a rotation method.  The pattern 

coefficient matrix is summarized in Table 18.  Instead of factors like real world, 

manipulatives, pictures, spoken symbolic representation, and written symbolic 

representations, the empirical data in this study is shown according to mathematics 

content factors such as part-whole, measure, quotient, wonderful one and cross product. 

All three variables in factor one showed the sub-concepts of measurement in 

understanding fractions.  Manipulative Measurement (MM), Spoken Symbols 

Measurement (SSM) and Written Symbols Measurement (WSM) loaded .954, .982 and 

1.000 on the factor, respectively. Since all these three variables are connected to the 

concept of measurement, the first factor is called the Measurement factor.  

  All four variables in factor two indicate the sub-concepts of part-whole in 

understanding of fractions. Manipulative Part-Whole (MPW), Picture Part-Whole (PPW), 

Spoken Symbols Part-Whole (SSPW), Written Symbols Part-Whole (WSPW) 

loaded .523, .475, .932 and .901 on factor two, respectively. Since all these four 

variables are connected to the concept of Part-Whole, the second factor is called the 

Part-whole factor. 

 Both variables in factor three contribute to the procedural knowledge of cross 

product. Spoken Symbols Cross Product (SSCP) loaded .946 and Written Symbols Cross 

Product (WSCP) loaded .944 on this factor. Since both of these two variables are 

connected to procedure of cross product, the third factor is called Cross Product factor. 
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  All four variables on factor four are connected to the concept of quotient. 

Manipulative Quotient (MQ), Spoken Symbols Quotient (SSQ), Written Symbols 

Quotient (WSQ), and Symbols Calculator Quotient (SCQ) loaded .453, .921, .749 

and .421 on the fourth factor, respectively. Since these fourth factors are connected to 

the concept of quotient, the fourth factor is called the Quotient factor.  

 All three variables loaded on factor five address the procedural knowledge of 

wonderful one. Picture Wonderful One (PWO), Spoken Symbols Wonderful One 

(SSWO) and Written Symbols Wonderful One (WSWO) loaded .682, .878 and .822 on 

the fifth factor, respectively. Since the fifth factor is connected to the procedure 

knowledge of wonderful one, it is called the Wonderful One factor. 

Revised Model 1 

 

Figure 11. Measurement model of engaged instructional time. 
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Figure 11 shows the revised theoretical model 1 based on the results from the 

exploratory factor analysis. Fit indices for the revised models 1 to 4 listed in Table 19 

evaluate how the model reproduced the data.  The CFA results indicated the endogenous 

variables of part-whole, quotient, wonderful one, measurement, and cross product 

matched the data. These fit indices are listed in Table 19. 

Table 19 
Fit Indices for Teacher Measurement Model  

CI 
Model χ 2  Df CFI NFI RMSEA

Lo90% Hi 90% 
Initial 
model N/A N/A N/A N/A N/A N/A N/A 

Model 1 164.1 98 .89 .76 .11 .08 .13 
Model 2 117.2 97 .97 .83 .06 .00 .10 
Model 3 87.4 96 1.00 .87 .00 .00 .06 
Model 4 65.8 96 1.00 .91 .00 .00 .00 

Note: N=58 

The chi-square for the revised model 1 was 164.1 with 98 degrees of freedom, 

which gave a ratio of 1.67. This ratio is less than 3 and is acceptable (Kline, 2005). The 

Comparative Fit Index (CFI) was .89, which is close to the cut off criterion of .90. Thus 

it suggested that the proposed model closely matches the data. The Normed Fit Index 

(NFI) was .76. It suggested how close the model reproduced the data. Since Hu and 

Bentler (1999) recommended that the cut off criterion for NFI is .90, this NFI index did 

not represent a good fit. The Root Mean Square Error of Approximation (RMSEA) 

was .11, which is reasonable to be below .05 (Hu & Bentler, 1999). This fit index did not 



 84

show a reasonable estimate of the data. Furthermore, the RMSEA does not depend on 

the sample size, so .11 indicated a bad fit of the data.  

The error variance of the observed variable “spoken symbols quotient” correlated 

with the latent variable cross product , which reflected part of the quotient concept that 

solving 
2
1  = 

6
? , is to first compute the product of 1 times 6, and then to divide 2 to get 3. 

So the exogenous variable “spoken symbols quotient” and endogenous variable cross 

product actually correlated with each other. Therefore, a path between the error terms of 

“spoken symbols quotient” and cross product was added in the revised Model 2 which is 

shown in Figure 12. 

Revised Model 2 

 

Figure 12. Revised measurement model 2 of engaged instructional time. 
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The chi-square for the revised Model 2 was reduced by 46.9 (164.1-117.2) with 

97 degrees of freedom, giving a ratio of 1.21, which is acceptable (Kline, 2005). The 

Comparative Fit Index (CFI) was .97, meeting the cut off criterion of .90. Thus it 

suggested that the proposed model closely matched the data. The Normed Fit Index (NFI) 

was .83, which demonstrated that to what extent the model reproduced the data. 

Because .83 is much less than .95, this NFI is not an acceptable fit (Hu & Bentler, 1999). 

The Root Mean Square Error of Approximation (RMSEA) was .06 and barely met the 

cut off criterion of .05 suggested by Hu and Bentler (1999), and it showed a reasonable 

estimate of the data.  

The error variances of the exogenous variable “manipulatives quotient” 

correlated with the variances of exogenous variable “written symbol quotient”. It 

matched the literature that the written symbols were correlated with manupulatives in 

terms of quotient because the verbal communication of quotient went along the 

manipulatives in CMP textbook, so a path from e14 to e16 was added as suggested by 

modification indexes. Revised Model 3 is shown with this modification in Figure 13. 

Revised Model 3 

The chi-square for the revised model 3 was reduced by 29.8 from model 2 

(117.2-87.4) with 96 degrees of freedom, giving an acceptable ratio of 0.91 (Kline, 

2005). The Normed Fit Index (NFI) was .87, and it did not meet the .90 cut off criterion. 

So it does not reflect a good estimate of the proposed model with the independent model 

where no variables were correlated with each other. The Comparative Fit Index (CFI) 

was 1.00, and it met the .90 cut off criterion. Thus it suggested that the proposed model 
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closely matched the data. The Root Mean Square Error of Approximation (RMSEA) 

was .00 and it met the cut off criterion of .05, which showed that the data was reasonably 

reproduced. 

 

 

Figure 13. Revised measurement model 3 of engaged instructional time 

The error variances of the exogenous variable “written symbols measure” and the 

error variance of exogenous viable “manipulatives part-whole” correlated to each other, 

because one of the textbooks asked students to use “fraction strips” to measure the funds 

raising represented by a thermometer (Lappan et al., 1998, p. 19). So a path from e3 to 

e4 was added as suggested by the modification indexes and was constrained at a 

negative value to obtain revised model 4 for the simple reason that given a certain 
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amount of time, if teachers spend more time using manipulatives to demonstrate part-

whole sub-construct, then the time spent on the “written symbolic measure” is 

automatically shortened. Another reason to constrain the path between e3 and e4 is to 

improve the estimates of the parameters, otherwise it would be biased. And the model is 

shown in Figure 14.  

Revised Model 4 

 

Figure 14. Revised measurement model 4 of engaged instructional time. 

 The chi-square for the revised Model 4 was reduced by 21.6 from model 3 (87.4-

65.8) with 96 degrees of freedom, resulting a ratio of 0.69. This ratio indicates that this 
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is an acceptable measurement model (Kline, 2005). The Normed Fit Index (NFI) was .91 

comparing with a measure where a perfect fit is 1. The NFI indicated the variation 

between the proposed model and the independent model where no variables are 

correlated to each other. A measure of .91met the .90 cut off criterion and it showed that 

proposed model is likely to be stable. The Comparative Fit Index (CFI) was 1.00 and it 

met the .90 cut off criterion. Basically in order to conclude that the proposed model 

closely matches the data, CFI should be bigger than .90. So this CFI index represented a 

fairly good fit. The Root Mean Square Error of Approximation (RMSEA) was .00 and is 

less than the normally agreed .05 cut-off criterion, illustrating that the proposed model 

yield a fairly good estimation of the data.  

The regression estimates for Model 4 are shown in the Table 20. The bolded 

numbers mean that the loadings are statistically significant. According to Anderson and 

Gerbing (1988) convergent validity was achieved based on the statistical significance 

revealed by the critical ratio. 

It appears that the latent variable of part-whole was mainly predicted by SSPW 

(spoken symbols) and WSPW (written symbols). The regression weight is 1.00 and .80 

respectively. The latent variable of measurement was mainly predicted by manipulatives 

representation, spoken symbols and written symbols. The regression weights 

are .90, .98, .99 respectively. The latent variable quotient was predicted by spoken 

symbols and written symbols. The regression weights are .78 and 1.00 respectively.  The 

latent variable multiplication by one was mainly predicted by spoken symbols and 

written symbols. The regression weight is 1.00 and .71, respectively. The latent 
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Table 20 
Regression Estimates for Model 4 of Teacher Instructional Representations  

PATH Stand. Estimate Estimates Stand. Error Critical Ratio 
IMPW  ← PW 0.49 0.62 0.12 5.26 

IPPW←PW 0.47 0.40 0.10 4.03 
SSSPW ← PW 1.00 1.00   
SWSPW← PW 0.80 0.69 0.07 10.09 

I MM ← MS 0.90 0.33 0.02 15.03 
SSSM ← MS 0.98 1.12 0.04 30.31 

SWSM  ← MS 0.99 1.00   
I M Q ← Q 0.36 0.03 0.01 2.91 

SWSQ ← Q 0.78 0.84 0.09 9.40 
SSSQ ← Q 1.00 1.00   

SCQ ← Q 0.25 0.03 0.02 1.95 
IPWO ← WO 0.40 21.70 6.83 3.18 

SSSWO ←WO 1.00 335.61 31.43 10.68 
SWSWO←WO 0.71 318.89 51.33 6.21 

SSSCP←CP 0.86 1.13 0.09 12.72 
SWSCP ← CP 1.00 1.00   

PW ↔ MS 0.05 5743.49 16629.76 0.35 
Q ↔ WO -0.18 -39.03 27.96 -1.40 
Q ↔ CP -0.09 -650.33 921.74 -0.71 

PW ↔ Q -0.11 -8638.99 10475.09 -0.83 
MS ↔ WO -0.13 -42.21 44.47 -0.95 
WO ↔ CP 0.21 6.81 2.42 2.81 
PW ↔ CP 0.03 366.93 905.37 0.41 
MS ↔CP -0.01 -55.08 822.18 -0.07 

PW ↔ WO -0.06 -20.23 48.88 -0.41 
MS ↔ Q -0.09 -6666.64 9545.42 -0.70 

 

variable cross product was predicted by spoken symbols and written symbols. The 

regression weights are .86 and 1.00, respectively. Therefore, the symbolic 
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representations were the best predictors of classroom instructions. In order to determine 

the relationships between each of the latent variables, a correlation between each of the 

variables was also examined and listed in Table 20. 

 The only significant relationship between any of the latent variables was between 

wonderful one and cross product.  The estimate of the correlation between these two 

variables is 6.81, which is significant at the .01 level. This result indicated that teachers 

only make connections between wonderful one and cross product in terms of engaged 

instructional representations, but not with any other latent constructs. 

Measurement Model of Students’ Written Representations 

Table 21 
Definitions of Written Representation Variables 
Variable Name Description 

U5  Picture Part-whole (question14) 
U6  Written Symbol Part-whole (question14) 
U7  Written Symbol Quotient (question 15) 
U8  Written Symbol Multiplication by One (question 15)  
U11 Written Symbol Quotient (question 16e) 
U12 Written Symbol Multiplication by One (question 16e) 

 

Students’ posttests were analyzed to identify the types of representations they 

used. Because of the void of two latent constructs of measurement and cross product, a 

three-latent-construct measurement model of students’ representations was developed. 

Table 21 shows the observed variables and their brief definition that were used to 

describe students’ written representations. The types of representations used in the 
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students’ measurement models contained three open ended questions in the posttests. 

Question 15 asked students to explain why 8.0
5
4

= . Both U7 and U8 are answers to 

question 15, which indicated a correlation between these two exogenous variables. 

The overall fit indices are a measure that reflects how well the model reproduced 

the data. Two measurement models were compared and the fit indexes were reported in 

Table 22. The results generated by CFA indicated that part-whole, quotient and 

wonderful one existed in students’ written representations. 

Table 22 
Fit Indices of Students’ Written Representations on Posttests 

CI 
Model χ 2  Df CFI NFI RMSEA

Lo 90% Hi 90% 
Model 1 14.39 6 .95 .88 .08 .03 .14 
Model 2 3.48 5 1.00 1.03 .00 .00 .08 

 

Model 1 

The chi-square is 14.39 with 5 degrees of freedom, and the ratio is 2.40 (less than 

3), and this is an acceptable measurement model according to Kline (2005). The 

Comparative Fit Index (CFI) was .95 and met the cut-off criterion of .90. This indicated 

the proposed model closely matched the data. So this CFI index represented a good fit. 

The Tucker-Lewis index (TLI) was .88. It illustrated how close the model reproduced the 

covariance matrix and it penalized for model complexity. Hu and Bentler (1999) 

recommended that the cut off criterion for TLI is .95. So the TLI index represented a 

poor fit. The Root Mean Square Error of Approximation (RMSEA) was .08 and it is 
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greater than the cut-off criterion of .05. This index of .08 with 90 percent of confidence 

interval range from .03 to .14 indicating a bad fit of the data.  

The error variances of observable variable U7 (written symbols quotient) and U8 

(written symbols wonderful one) are correlated with each other, because high 

correlations between observable variables U7 and U8 could lead to correlations between 

the error terms, a path between U7 and U8 was added as suggested by modification 

indexes to obtain Model 2, otherwise, the estimates of the parameters would be biased. 

Model 2 

In Model 2, the chi-square went down by10.91 (14.39-3.48), and 5 degrees of 

freedom were left. The ratio of the chi-square and degrees of freedom is 2.18 (less than 3) 

indicated that this is an acceptable measurement model (Kline, 2005). The Comparative 

Fit Index (CFI) was 1.00 and met the cut-off criterion of .90, thus the proposed model 

closely matched the data. So the CFI index represented a perfect fit. The Tucker-Lewis 

index (TLI) was 1.03 and it illustrated how close the model reproduced the covariance 

matrix and it penalized for model complexity. Since Hu and Bentler (1999) 

recommended that the cut off criterion for TLI is .95, this TLI index represented an 

acceptable fit. The Root Mean Square Error of Approximation (RMSEA) was .00 and is 

less than .05 cut off criterion. This index of .00 with 90 percent confidence interval 

ranged from .00 to .08 indicating a reasonable fit of the data.  

CFA model of students’ written representations as shown in Figure 15 indicated 

that the latent variables of part-whole, quotient, and wonderful one existed in students’ 

posttests. Factor one is the part-whole factor, predicted by written symbolic 
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representation and picture representation of question 14 on students’ posttests. Factor 

two is the quotient factor, represented by written symbols in question 15 and question 16 

of the posttests. Factor three is the wonderful one, which is a latent factor represented by 

written symbols in both question 15 and 16 of posttests. 

 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 15. Measurement model of students’ representations with three latent constructs 

The regression estimates are shown in Table 23. The bolded numbers mean that 

the loadings are statistically significant. According to Anderson and Gerbing (1988) 

convergent validity was achieved based on the statistical significance revealed by the 

critical ratio.  

The latent variable of part-whole was mainly predicted by SSPW and PPW, 

written symbols and pictures. The regression weights are 1.00 and .94, respectively. The 

latent variable quotient was predicted by written symbols of question 15 and question  
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Table 23 
Regression Estimates for Students’ Written Representations 

Path Standard Estimates Standard Error Critical Ratio 
u5 ← PW 1.00 .00 .00 
u6← PW .94 .16 5.78 
u7 ← Q 1.00 .00 .00 
u11 ← Q .86 .51 1.68 
u12 ← WO 1.00 .00 .00 
u8 ← WO .79 .34 2.32 
PW ↔ Q .13 .06 2.23 
WO ↔ Q .02 .03 .74 
PW ↔ WO .23 .06 3.68 

Note: N=213 

16 respectively. The regression weights are 1.00 and 0.86 respectively.  The latent 

variable wonderful one is mainly predicted by written symbols of answers of question 15 

and 16, and the regression weights are 1.00 and .79, respectively. Therefore, the written 

symbolic representations and the picture representations are mainly used by the students 

among the three latent variables in posttests. 

A statistically significant relationship was found between the latent variable part-

whole and quotient. The correlation coefficient is .13 (p<.05). A statistically significant 

relationship between latent variables part-whole and wonderful one was also found, with 

a correlation coefficient of .23 (p<.01).  It indicated that students who used written 

symbols to represent the construct of part-whole also tended to use written symbols to 

represent the construct quotient , whereas students who represented the construct part-

whole symbolically also tended to represent the construct of wonderful one symbolically. 

No statistically significant correlation was found between quotient and wonderful one. 
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Research Question 3 

What is the relationship between the structures of representations students use 

and their achievement? That is, how do students use representations that reflect measure, 

part-whole, quotient, multiplication by one and cross product and how is this reflected in 

their achievements on learning fractions, decimals, and percents? 

Structural equation modeling with continuous factor indicators was used to 

investigate the relationship between the types of representation students used and their 

achievements on fraction, decimal and percents. Two models were developed. The fit 

indices reflect whether the model interpreted the data, how well the model fits the data, 

and the results are reported in Table 24.  

Table 24 
Fit Indices of Student’s Written Representations and Achievements 

CI 
Model χ 2  Df CFI NFI RMSEA

Lo 90% Hi 90% 
Model 1 39.39 10 0.92 0.83 0.12 .08 .16 
Model 2 8.51 9 1.00 1.00 .00 .00 .07 

 

Model 1 

The chi-square was 39.39 with 10 degrees of freedom yielding a ratio of 3.94, 

however, it failed to meet the criterion of less than 3 (Kline, 2005). The Comparative Fit 

Index (CFI) was .92 and met the cut-off criterion of .90 suggested by Hu and Bentler 

(1999), so the proposed model closely matches the data. The Tucker-Lewis index (TLI) 

was .83. It penalized for model complexity. Hu and Bentler (1999) recommended that 
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the cut off criterion for TLI is .95. So the TLI index represented a poor fit. The Root 

Mean Square Error of Approximation (RMSEA) was .12 and was much larger than the 

cut-off criterion of .05, which indicated a poor fit of the data.  

Based on similar reasons provided for students’ measurement model, a path 

between error variances of U7 (written symbols quotient) and U8 (written symbols 

multiplication by one) was added in order to improve the parameter estimates. Thus a 

revised model two was developed, which is included as Figure 16. 

Revised Model 2 

 

 

 

 

 

 

 

 

 

Figure 16. Revised model 2 of student representations and achievements. 

Chi-square was reduced by 30.88 (39.39-8.51) for 9 degrees of freedom, 

generating a ratio of 0.48 which is an acceptable SEM model (Kline, 2005). The 

Comparative Fit Index (CFI) was 1.00. Generally if CFI is greater than .90, then the 

proposed model closely matches the data. So the CFI index represented a perfect fit. The 
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Tucker-Lewis index (TLI) was 1.00 and met the .95 cut-off criterion recommended by 

Hu and Bentler (1999). So the TLI index represented a perfect fit.   The Root Mean 

Square Error of Approximation (RMSEA) was .00 and met the .05 cut-off criterion. It is 

independent of sample size, this index of .00 indicated a good fit of the data. Model 2 is 

shown in Figure 16. 

Table 25 
Regression Estimates for Students’ Representations and Achievements 

Path Standard Estimate Standard Error Critical Ratio 
posttest ←  PW 1.32* .66 2.01* 
posttest ← Q 11.13** 3.12 3.57** 
posttest← WO 11.95**  2.37 5.05** 
PW↔Q .06 .03 1.85 
PW ↔ WO .24** .06 3.82** 
Q↔WO .01 .02 .57 

Note: N=213 

The SEM results as shown in Table 25 indicated that all three latent variables: 

part-whole, quotient , and wonderful one significantly predicted the students’ posttest 

scores.  It also showed that the estimated standard regression weights of latent variables 

of part-whole, quotient and multiplication by one were 1.32 (p<.05), 11.13(p<.01), and 

11.95 (p<.01) respectively. It meant that an increase of one standard score on part-whole 

resulted in an increase of 1.32 standard score on students’ posttests. An increase of one 

standard score on quotient resulted in an increase of 11.13 score on students’ posttests. 

An increase of one standard score on wonderful one resulted in an increase of 11.95 
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score on students’ post tests. Factor wonderful one contributed most to students’ posttest 

scores among the three factors in magnitude, and part-whole contributed least.  

As shown in Table 25, the correlations between the latent variables in the model 

varied from the students’ measurement model. Correlation between the part-whole and 

the quotient is only marginally significant (C.R. =1.85).  Correlation between the part-

whole and wonderful one was still significant at the .01 level and it matched the 

measurement model of the students’ written representations.  

Research Question 4 

What is the relationship between the quality and quantity of instructional 

representations and student’s learning of fractions, decimals, and percents?  Specifically, 

what is the relationship between the quality of teachers’ instructional representations, 

different forms of students’ written representations, and student achievements? 

 

 

 

 

 

 

 

 

Figure 17. A two-level regression model. 
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There were two different measurements of teachers’ instructional representation. 

One was the quality of teachers’ instructional representation, and the other is the 

quantity of teachers’ instructional representation. Research indicated that teaching 

quality is the key factor that influenced students’ performance (Aronson, Zimmerman, & 

Carlos, 1998).  So the relationship between the quality of instructional representations 

and students’ achievement was analyzed by using a two level regression analysis as 

indicated by Figure 17. However, the total quality scores were not used because the 

model failed to converge. Neither did the accuracy nor the connection score work. 

Therefore, only comprehensibility scores were used in this two-level regression model. 

Akaike Information Criterion (AIC) indicated the variation of the covariance 

matrix between the proposed model and the data. It penalized model complexity. The 

closer the AIC is to zero, the better the fit of the model. This model’s AIC is 1957.41, 

However, since this is the simplest model given the variables, the comparison between 

alternative models cannot be conducted. Bayesian Information Criterion (BIC) used the 

log of a Bayes factor, and it considered both sample sizes and model complexity. The 

BIC in this model is 1377.47, and the Adjusted BIC is 1987.67.  

Results indicated that the random slopes on students’ scores of posttests on 

pretests were not statistically significant within classrooms. Neither was the random 

slope on the comprehension score of instructional representation. However, at the 

classroom level the regression weight of students’ posttests scores on the comprehension 

scores of instructional representation is 7.66 (p<.01), which meant that the higher score 

of the comprehension of instructional representation, the higher the students’ posttest 
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scores tended to be. An increase of one standard score of the comprehension on 

instructional representation resulted in the increase of 7.66 standard scores of the 

students’ posttests.  

 The second question of interest is the relationship between the latent constructs 

of instructional representation and students’ posttest scores. A two-level measurement 

model of teachers’ instructional representations on students’ cogitative representations 

failed to converge. This is illustrated in figure 18. 

 

 

Figure 18. A two-level model of teacher and students’ representations. 
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A factor analysis was run to generate an instructional quantity factor score on all 

of the 16 observed variables. A two level regression model described in Figure 19 was 

proposed to investigate the relationship between the teachers’ teaching quantity and 

students’ achievement, considering the effect of students’ pretests on their posttests. 

However, the model was not acceptable because of a negative residual variance on 

students’ posttests’ scores. 

 

 

Figure 19. A two-level model of the effect of teaching quantity on students’ pretests and 
posttests. 
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Next, a two-way Analysis of Variances (ANOVA) was applied three times in 

order to investigate the relationship between the quantity of instructional representations, 

written representations used by the students and the students’ specific achievements on 

item 14, 15 and 16e. Teachers were categorized into two groups: one including three 

teachers who did not use real world representations at all when teaching fractions, 

decimals and percents; the other including eleven teachers who used real world 

representations. Also students’ open ended questions were categorized into different 

ways according to what kind of constructs (part-whole, quotient, and wonderful one) 

they preferred to use in terms of answering the short constructed questions 14, 15 and 

16e.  

Several issues should be addressed before the results of the two-way ANOVA 

are presented. One of the assumptions of ANOVA is the homogeneity of variances. 

Levene’s tests for all three ANOVA tests in this study are all significant. However, 

violation of homogeneity of variances of ANOVA as the dependent variable generated a 

conservative α, because the variances and sample sizes are paired as Glass and Hopkins 

(1996) suggested.  

Question 14 

A statistically significant main effect of teacher category (F= 4.97, p<.05) as well 

as the main effect of different representation types students used (F=42.08, p<.01) were 

found in question 14 as indicated by Table 26. Students who received all five types of 

representations significantly differ from those who did not use all five types of 

representations. The Eta-square is .02 which meant the teacher difference explained 2% 
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of the total variances. Another main effect is the students’ representations. Students who 

used written symbol representations of part-whole differed significantly from those 

students who did not receive the representations of part-whole, where the Eta-square 

is .17 which meant the students’ difference in representations explained 17% of the total 

variances. 

Table 26 
Tests of between-Subjects Effects on Dependent Variable: S14Post  

Source 

Type III 
Sum of 
Squares Df 

Mean 
Square F P 

Eta 
Square 

Observed 
Power 

Corrected Model 97.15 32.38 26.51 .00 .28 1.00 
Intercept 70.53 70.53 57.74 .00 .22 1.00 

TEACHCAT 6.07 6.07 4.97 .03 .02 .60 
Q14 51.40 51.40 42.08 .00 .17 1.00 

TEACHCAT * 
Q14 

1.52 1.52 1.25 .27 .01 .20 

Error 255.29 9 1.22     
Total 1161.00       

Corrected Total 352.43 2      
Note: a  Computed using alpha = .05 

b  R Squared = .276 (Adjusted R Squared = .265) 

Question 15  

 A statistically significant main effect of teachers’ category (F=17.13, p<.01) as 

well as the students’ difference in the written representations (F=19.29, p<.01) was 

found in posttest question 15 as indicated by Table 27. Students who received all five 

types of representations (real world representations, manipulative representations, 

picture representations, spoken symbolic representations, written symbolic  
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Table 27 
Tests of between-Subjects Effects on Dependent Variable: S15Post 

Source 

Type III 
Sum of 
Squares Df 

Mean 
Square F P 

Eta 
Square 

Observed 
Power 

Corrected Model 54.03 7 7.72 20.09 0.00 0.41 1.00 
Intercept 59.01 1 59.01 153.62 0.00 0.43 1.00 

TEACHCAT 6.58 1 6.58 17.13 0.00 0.08 0.99 
Q15 22.23 3 7.41 19.29 0.00 0.22 1.00 

TEACHCAT * 
Q15 0.54 3 0.18 0.47 0.70 0.01 0.14 

Error 78.74 205 0.38     
Total 332 213      

Corrected Total 132.77 212      
Note: a  Computed using alpha = .05 

b  R Squared = .407 (Adjusted R Squared = .387) 

representations) significantly differed from those who did not receive all five forms of 

representations. The Eta-square was .08, which meant the teacher difference explained 

8% of the total variances. Another main effect is the students’ representations. Students 

who used written symbol representation of nothing, part-whole, wonderful one and 

quotient significantly differ from each other, and the Eta-square was .22 which meant the 

students’ difference in representations explained 22% of the total variances. A post hoc 

test (“Scheffe” ) was run in order to investigate the further differences. Table 28 showed 

that students who represented nothing were not significantly different from students who 

used symbolic representations of part-whole (p=.56). However, they were significantly 

different from the students who used quotient(p<.01), also significantly differs from 

students who used wonderful one (p<.01). Students who represented part-whole is not 

significant different from the students who represented (p=.08) and wonderful one 
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(p=.23). Students who represented quotient were not significantly different from the 

students who represented wonderful one (p=.69). 

Table 28 
Multiple Comparisons on Dependent Variable: S15Post Scheffe  

95% Confidence Interval
 

(I) Q15 
 

(J) Q15 

Mean 
Difference 

(I-J) Std. Error P 
Lower 
Bound 

Upper 
Bound 

0.00  1.00  -0.35  0.24  0.56 -1.03  0.34  
 2.00  -1.02  0.12  0.00 -1.37  -0.67  
  3.00  -0.86  0.10  0.00 -1.13  -0.59  

1.00  0.00  0.35  0.24  0.56 -0.34  1.03  
 2.00  -0.67  0.26  0.08 -1.40  0.05  
 3.00  -0.51  0.25  0.23 -1.21  0.18  

2.00  0.00  1.02  0.12  0.00 0.67  1.37  
 1.00  0.67  0.26  0.08 -0.05  1.40  
 3.00  0.16  0.13  0.69 -0.21  0.52  

3.00  0.00  0.86  0.10  0.00 0.59  1.13  
 1.00  0.51  0.25  0.23 -0.18  1.21  
  2.00  -0.16  0.13  0.69 -0.52  0.21  

Note: Based on observed means. 
*  The mean difference is significant at the .05 level. 

Question 16e 

Statistically significant main effects for both teachers’ difference (F=6.69, p<.05) 

and the students’ types of representations (F=14.60, p<.01) were found in question 16e 

(Table 29). And a statistically significant interaction was also found between the 

teachers’ categories and the students’ types of representations (F= 4.12, p<.01) as 

indicated by Table 29.  The partial Eta-square was .057, which meant the interaction 

explained 5.7% of the total variances. Students who received all five types of 
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representations in class (real world, manipulatives, pictures, spoken symbolic 

representation, and written symbolic representations) significantly differed from those 

who did not receive all five types of representations during instruction. The Eta-square 

was .03, which meant the teacher difference explained 3% of the total variances. 

Another main effect was the students’ representations. Statistical significance was found 

among students who used written symbol representations of nothing, part-whole, 

wonderful one and quotient with an Eta-square of .18, which meant the students’ 

difference in representations, explained 18% of the total variances. However, since a 

significant interaction was found, judgment was suspended regarding the simple main 

effect associated with the significant interaction. 

Table 29 
Tests of between-Subjects Effects on Dependent Variable: S16EPost 

Source 

Type III 
Sum of 
Squares df 

Mean 
Square F P 

Eta 
Square 

Observed 
Power 

Corrected Model 56.66  7 8.09 12.67 0.00  0.30  1.00  

Intercept 45.62  1 45.62 71.38 0.00  0.26  1.00  

TEACHCAT 4.27  1 4.27 6.69  0.01  0.03  0.73  

Q16E 27.98  3 9.33 14.60 0.00  0.18  1.00  
TEACHCAT * 

Q16E 
7.89  3 2.63 4.12  0.01  0.06  0.84  

Error 131.00  205 0.64     

Total 281.00  213      
Corrected Total 187.66  212      

Note: a  Computed using alpha = .05 
b  R Squared = .302 (Adjusted R Squared = .278) 
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CHAPTER V 

DISCUSSION AND CONCLUSIONS 

This study investigated the structures of teachers’ instructional representations, 

students’ written representations, and the relationship between the instructional 

representations and students’ written representations. First, this study examined 

instructional representations involved alignment with the textbook and classroom 

interactions using a qualitative method, followed by the descriptive statistics of the 

quantity and quality of instructional representations. Second, it investigated the 

structures of instructional representations as well as the structures of written 

representations. Thirdly, the relationship between students’ written representations and 

their achievement was investigated. Last, the relationship between instructional 

representations and students’ achievements was examined. The participants included 

fourteen sixth grade mathematics teachers as well as 213 sixth grade students. 

This chapter discusses the major findings in the results, which addressed the four 

research questions.  

Quantity and Quality of Instructional Representations 

The results of the study showed that teachers varied in their use of instructional 

representations. A mixed method has been used to analyze research question one. All of 

the 14 teachers addressed the mathematics learning goal: “use, interpret, and compare 

numbers in several equivalent forms such as integers, fractions and decimal” (AAAS 

number atlas, 2002). The possible reason could be that the professional development 

workshop that they attended in summer 2001 was mainly aimed at asking teachers to 
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identify the learning goal themselves. However, four teachers, teachers 1, 5, 6, and 9 did 

not follow the textbooks’ suggestions to teach the learning goal. This might due to 

several factors, one is that teachers might have already developed their own teaching 

strategies so that they are not limited to the textbooks’ approach. Another possible 

reason is that they were not familiar with the textbooks’ approach so that they relied on 

their previous teaching experiences.  

Two types of classroom interactions were also found in the study, teacher-

centered and constructive classrooms. Constructivist classrooms featured less direct 

instruction, aimed at creating an environment to help students to learn independently. 

Teachers acted as facilitators to monitor the student’s learning and thinking in groups 

using hands-on activity. In contrast, teacher-centered classrooms featured more direct 

instruction, did not emphasize the students’ motivation and interests, and students’ 

ability to remember the content was more important than the ability to think. Teachers in 

teacher-centered classroom acted as leaders of students’ learning process, thus the group 

activities and group learning are restricted (Chall, 2000). The findings of this study are 

able to identify these features proposed by Chall (2000) through investigating the 

classroom interactions, especially the questions the teacher posed during instruction. 

Teacher-centered classrooms usually had no activities, or very short activities. More 

emphasis was placed on factual questions than probing questions in order to ensure that 

students remembered the mathematics content. Teacher-centered classrooms revealed 

that memorizing the mathematics was more important than thinking, which is similar 

with the findings by Chall (2000).  Among five out of fourteen teachers who belong to 
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the teacher-centered approach, three of them spent a short amount of time on hands-on 

activities, and four of them posed higher order questions somehow aimed at promoting 

student’s thinking.  Because there was not enough time for students to work on activities 

and answer the higher order questions, they were categorized as teacher centered. 

However, the phenomenon that they included some student-centered approach indicated 

that these traditional teachers were influenced by the student-centered learning theory 

somehow and were incorporating some of those approaches, which is similar as Chall’s 

findings(2000). 

Tyson and Woodward (1989) and Woodward and Elliot (1990) found that 75% 

to 95% of instruction came from the textbooks. Hudson, McMahon, and Overstreet 

(2002) reported in their study that 36% of the instructional time was spent on whole 

class lecture and discussion, 11% of instructional time was spent on hands-on activity or 

manipulatives. This study revealed that 9.9% time was spent by using manipulatives 

representations, which is a little bit lower than the Hudson et al. report. This might be 

because some traditional teachers did not use manipulatives.  

 Textbooks seemed to be a major factor that influenced instructional 

representations. Those teachers who followed the textbooks Middle School Math 

Thematics and Connected Mathematics  (Bits and Pieces unit) suggestions were actually 

constructivist classrooms, while those teachers who did not follow the textbooks’ 

suggestions were teacher-centered. However, both teachers who used the textbook, 

Mathematics: Applications and Connections were teacher-centered classrooms. This is 

congruent with the textbooks analysis that was done by AAAS that Connected 
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Mathematics and Middle School Math Thematics ranked higher than Mathematics: 

Applications and Connections (AAAS, 2000). Generating more constructive teacher-

student interactions requires the support from a highly ranked textbook. Textbooks also 

contributed to the quantity of instructional representations; teachers who used CMP 

tended to have more real world representations than the rest of the teachers if they 

followed the textbook’s suggestions. This is congruent with other research suggesting 

that highly ranked textbooks influenced the teachers’ content knowledge and 

instructional knowledge (Kulm & Capraro, 2004; Reys et al., 2003). For those teachers 

who have already used a highly ranked textbook, creating closer alignment with the 

textbooks approaches should be addressed in order to conduct a more constructive 

learning environment for the students.  

It was found that teachers do not vary a lot in the accuracy criteria. Except for a 

few teachers, most teachers used instructional representations correctly to address the 

learning goal. Comprehensibility scores and connections varied considerably. Only six 

teachers out of total fourteen teachers fully addressed the comprehensibility criterion. 

The comprehensibility score is also related to the textbooks ranking, which also 

supported Trafton’s (et al., 2001) findings that standard-based textbooks developed ideas 

completely and deeply. Moreover, only two teachers fully addressed the connections 

criterion through all lessons that were videotaped, which may explain the phenomenon 

that middle school students’ have difficulty in translating between different forms of 

representations that is repeated reported by the research (Bay, 2001; Cramer et al., 1997; 

Hiebert, 1985; Post, 1981; Post et al., 1985; Wearne & Hiebert, 1986). 
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Structures of Instructional Representations and Students’ Written Representations 

   The results showed five sub-constructs, part-whole, measure, quotient, 

wonderful one and cross product in the teachers’ instructional representations. This 

study was able to empirically identify three sub-constructs (part-whole, measure, and 

quotient) proposed in the literature (Behr, Lesh, Post, & Silver, 1983; Freudenthal, 1983; 

Kieren 1976, 1988; Lamon, 2001) and two other sub-constructs, multiplication by one 

and cross product (AAAS, 2002) in teachers’ instructional representations. However, the 

students’ work showed that only three sub-constructs reflected in their representations, 

part-whole, quotient and multiplication by one. An interesting phenomenon is that both 

instructional representations and students’ written representations converge on the 

mathematics sub-constructs of fractions, rather than the representational forms proposed 

as real world, manipulatives, pictures`, spoken symbolic representations and written 

symbolic representations (Lesh, 1979), even though the sample sizes are small. A 

possible reason could be that in public schools, many teachers emphasize merely 

teaching the mathematics learning goal rather than developing students’ understanding 

by using different forms of representations. This may be done in part to the pressures 

generated by the standards-based assessments.  

Even though teachers in this study used measure   sub-construct in their 

instructional representations, no students used it in their written representations, this may 

be because the measure sub-constructs are used most often with manipulatives, for 

example, fraction strips. In a paper and pencil test, students would not have access to 

such kind of manipulatives and it is plausible that they would therefore not choose this 
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form of representations on the exam’s open-ended questions. Another possible reason 

could be that measure is a more difficult construct to use in terms of answering questions 

relating to how to convert fractions into decimals and then percents.  

 It is not uncommon for symbolic representations to dominate classroom 

instructions. Except for the measurement construct, the other four constructs, (part-

whole, quotient, multiplication by one and cross product) were all strongly predicted by 

two symbolic representations; spoken symbols and written symbols. Regardless of the 

research suggestion that teachers use real world examples and hands-on activities, 

spoken symbols (mainly English language) are the most common way to convey 

knowledge in current public schools because of the critical power of language. Part of 

the reasons might be, as pointed out by Lesh, Post and Behr (1987), that in order to 

establish a link between different forms of representations, language (spoken symbolic 

representations) functioned as reconciliation. Moreover some other types, such as real 

world representations, were not used at all by some teachers. Significant connections 

were not found between the latent constructs except multiplication by one and cross 

product within the five sub-constructs. One possible reason could be that the teachers 

had considerable pressure to conform their practices in an effort to help students earn 

high scores in state-mandated exams, so getting the content delivered to the students 

already takes a significant portion of available time so that not enough time is left to 

make connections. In addition, another possible reason could be that teachers do not 

have enough pedagogical content knowledge to generate connections between the sub-

constructs. 
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 The results from students’ written representations on posttests showed significant 

correlations between the latent constructs of part-whole and quotient, part-whole and 

multiplication by one. The discrepancy revealed that even though there were no 

correlations between the teachers’ engaged instructional time in delivering the four sub-

constructs of fractions, the connections between these sub-constructs were so strong that 

they were reflected in the students’ written representations. This result empirically 

verified that the part-whole relationship is a critical concept, as proposed in the literature 

(e.g., Behr et al., 1983; Post, Behr, & Lesh, 1982).  

Relationship between the Forms of Representations Students Use and Their 

Achievements 

The results of this study suggested that all three latent variables -- part-whole, 

quotient and multiplication by one -- significantly predicted the students’ posttest scores. 

It also demonstrated that students’ written representations on these three sub-constructs 

significantly predicted students’ achievement on the posttests. Significant correlations 

were also found between part-whole and multiplication by one. This study provided 

empirical data to support the research findings reported by Lesh, Post and Behr (1987) 

that translations between different forms of representations are critical in developing 

students’ understanding. part-whole was the basic sub-construct in developing the ideas 

of fractions (Post, Behr, & Lesh, 1982). This study was not able to generate a similar 

representation model as that referred by Lesh, Post and Behr (1987) using SEM 

techniques. However, further deconstruction of the mathematics sub-constructs revealed 
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that three major sub-constructs of part-whole, quotient , and multiplication by one, and 

all three factors significantly predicted students’ achievements.  

Relationship between Instructional Representations and Students’ Achievements 

Research in the literature indicated that teachers and teaching were the major 

factors related to students’ mathematical achievements (Mullis et al., 2000; Stigler & 

Hiebert, 1999; TIMSS, 1999). Teaching quality and quantity were the two major foci.  

This study supported the idea that effective teaching required teaching for 

understanding by investigating the instructional quality: accuracy, comprehensibility and 

connections. However, only comprehensibility was identified as the predictor of 

students’ performance. A two level regression analysis aimed at investigating the 

relationship between the quality of instructional representations and students’ 

achievements indicated that the teachers’ instructional quality, mainly the 

comprehensibility of representations, significantly predicted students’ posttest scores. 

The SEM model revealed a significant path coefficient value between the two variables, 

which was congruent with the suggestions proposed by Aronson, Zimmerman, and 

Carlos (1998) that quality of teaching is the key factor influencing students’ performance.   

An interesting finding was that students’ pretest scores were not correlated with 

their posttest scores. This may due to the fact that students did not know very much 

about the concept of “fractions” at the beginning year of sixth grade. Another possible 

reason is that because of the teachers’ focus on the low level cognitive processes which 

“engages students with mathematical ideas in a superficial rather than deep way” (Silver, 
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1998), it is not uncommon for students to have already forgotten the knowledge about 

fractions learned in the early sixth grade.   

Though the literature reported a positive relationship between the instructional 

quantity (mainly engaged instructional time), and students’ mathematics performance 

(Fisher, 1977; Grouws & Cebulla, 2000; McKnight, Crosswhite, Dossey, Kifer, Swaffor, 

Travers & Cooney, 1987; Mirel, 1994; Purvis & Levine, 1975; Suarez et al., 1991), this 

positive relationship was not be able to be identified because a two-level regression 

model failed to converge. The sample size may not have been large enough to 

investigate such a relationship. Thus three two-way ANOVA models were constructed to 

investigate whether students’ achievement differed in terms of different representations 

they preferred and the teachers’ representations that were used in class. Results revealed 

that students who received all five types of representations (real world, manipulatives, 

pictures, spoken symbolic and written symbolic representations) significantly differed 

from those who did not receive all five types of representations. Thus, this study 

provided empirical evidence that those students who received instruction using multiple 

representations differed greatly from those who did not, implying that there was a 

possibility that multiple representations could improve students’ learning (Garrity, 1998; 

Haas, 1998; Leinenbach & Raymond, 1996; Post, 1981; Post, Behr, & Lesh, 1982). The 

study also revealed that students varied in choosing particular forms of representations in 

the open-ended questions on number posttests. The three questions (14, 15 and 16e) 

aimed at evaluating students’ understanding of fraction ideas, with each question 

focusing on a specific perspective. For example, question 14 focused on the idea of part-
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whole whereas question 15 and 16e focused on quotient and multiplication by one. Thus 

students’ achievements (i.e., their scores) varied, depending on the particular form of 

representation they chose. The study revealed that students who used the appropriate 

form of representation (the one intended by the question) achieved higher scores than 

those who did not.  

Implications for Future Research 

The current standards-based curriculum called for “teaching for understanding” 

rather than “teaching to the test”. How can classroom practices address understanding? 

This study looked into both the quantity and quality of instructional representations, the 

students’ written representations, and the relationship between instructional 

representations and students’ achievements. First, the results provided qualitative 

analysis of the nature and quality of representations in teaching fractions, decimals and 

percents by looking into the classroom interactions, the variations across teachers and 

the alignment with textbooks. It was found that teachers who followed high quality 

textbooks tend to have constructivist classrooms. Those teachers who did not follow the 

high quality textbooks tended to be more teacher-centered in terms of classroom 

interactions.  The results from this study bridged the gap between the theory and 

practices with rich empirical evidence. It provided quantitative data on how instructional 

representations converge with five sub-constructs of fractions mentioned in the literature 

rather than Lesh’s (1979) five representational model, and how different forms of 

students’ written representations contribute to students’ achievements. This study also 

provided empirical evidence that the comprehensibility of the instructional 
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representations significantly correlated to the students’ posttest scores, which adds to the 

literature arguing that improving teachers’ teaching quality rather than extending 

instructional time positively contributes to student’s achievement (Aronson, Zimmerman, 

& Carlos, 1998; Smith, 2000). Teachers could also build effective teaching strategies by 

scaffolding sub-constructs of part-whole, quotient and multiplication by one because 

these three factors significantly predicted students’ posttest scores.   

Implications and recommendations for future research could be mainly 

categorized into the following three aspects; classroom practices, curriculum developers 

and teacher education and professional development programs. The model conducted in 

this dissertation could be used to investigate the teaching of other mathematics concepts 

or even in other disciplines, for example, science education or social studies. How do 

those teachers address different learning goals and how are these concepts developed via 

instructional representations? For classroom practice, given the reality of the quantity 

and quality of instructional representations, alignment with high quality textbook 

materials are important in empowering teachers in conducting constructivist classroom. 

Compared to real world, manipulatives, and picture representations, a large proportion of 

instructional representations were symbolic representations, which reveal the 

predominant role of symbolic representations in fractions teaching practices. Teachers’ 

lack of addressing the connections between different representations should also be 

noted.  

Given the power of representations of part-whole, quotient and wonderful one, an 

emphasis on these sub-constructs is critical for developing middle school student’s 
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conceptual understanding of fractions, decimals and percents. With the support of high 

quality teaching, mainly comprehensible instructional representations, students are able 

to have higher achievement scores. Curriculum designers and textbook developers could 

improve the curriculum and textbooks by providing more activities that emphasize 

different sub-constructs of fractions, especially the sub-constructs of part-whole, 

quotient and multiplication by one as well as some of the activities which address the 

connections between these different sub-constructs. For teacher education programs and 

professional developments, more emphasis on how to address the connections between 

the different representations and improve teaching comprehensibility should be 

addressed. 

Recommendations for Future Research 

Based on the results of this study, the following suggestions are recommended: 

• The  relationship between the instructional time and student’s achievement was 

not able to be verified in this study. A possible reason could be the limitation of 

the small sample size. Future research should explore the effects of time spent on 

instructional representations on the students’ understanding and achievements 

using a larger sample. 

• Similar research should be done to investigate the external validity of the model. 

In particular, how teachers address different sub-constructs using instructional 

representations, how students’ representations varied from the instructional 

representations, and how the quality (especially comprehensibility) of 

instructional representations influence students’ achievement should be explored.  
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•  The effectiveness of instructional representations may be different in different 

ages and with a diverse students’ background preferring various learning styles, 

thus both the developmental stages and learning styles need to be investigated in 

future studies. 
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