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ABSTRACT

Mechanics of Prestressed and Inhomogeneous Bodies. (August 2005)

Saravanan Umakanthan, B.Tech, Indian Institute of Technology-Madras;

M.S., Texas A&M University

Co–Chairs of Advisory Committee: Dr. K. R. Rajagopal
Dr. J. D. Humphrey

In finite elasticity, while developing representation for stress, it is customary to re-

quire the reference configuration to be stress free. This study relaxes this requirement

and develops representations for stress from a stressed reference configuration. Using

the fact that the value of Cauchy stress in the current configuration is independent of

the choice of the reference configuration, even though the formula used to compute

it depends on the choice of the reference configuration, the sought representation is

obtained. It is then assumed that there exists a piecewise smooth mapping between

a configuration with prestresses and a configuration that is stress free, and the rep-

resentation obtained above is used to study the mechanical response of prestressed

bodies. The prestress fields are obtained by directly integrating the balance of linear

momentum along with the traction free boundary condition. Then, different classes

of boundary value problems for the type of inhomogeneous and prestressed bodies of

interest are formulated and studied. For the cases studied, it is found that even the

global measures like axial-load required to engender a given stretch ratio for a pre-

stressed body vary from the homogeneous stress free bodies, though not significantly.

The local measures - stress and deformation - in a prestressed body differ considerably

from their homogeneous stress free counterparts. The above gained knowledge is ap-

plied to understand the mechanics of circumflex arteries obtained from normotensive
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and hypertensive micro-mini pigs. It is found that the deformation of these arteries

when subjected to inflation and axial extension is not of the form r = r(R), θ =

Θ, z = λZ. Comparison is also made between the response of an artery at various

levels of smooth muscle activation and stretch ratio, λ, as well as normotensive and

hypertensive specimens, using statistical methods.
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CHAPTER I

INTRODUCTION

Let us begin by defining what we mean by a body being inhomogeneous. Merriam

Webster dictionary defines inhomogeneous as “the condition of not being homoge-

neous” and as “a part that is not homogeneous with the larger uniform mass in

which it occurs”. It also defines homogeneous as being “of the same or a similar

kind or nature” and as possessing “uniform structure or composition throughout”.

Thus, if the abstract body is considered to be made up of material points and if these

material points are not of the same kind or nature then the abstract body is said to

be inhomogeneous. We call a body that is inhomogeneous to be an inhomogeneous

body and a homogeneous body, otherwise. Now, we have to define what we mean

by the material points being of the same kind or nature. Towards this, the one to

one onto mapping of these material points that constitute the abstract body, B, to

the points in the Euclidean space, E , is called a placer. Two material points - P1, P2

∈ B - are said to be materially uniform, if there exist two placers, κ1 and κ2 such

that there exist neighborhoods NX1 of X1 = κ1(P1) and NX2 of X2 = κ2(P2) which

are indistinguishable with respect to their thermomechanical response, when atten-

tion is restricted to thermomechanical processes; since here we do not consider the

body’s electro-magnetic or other responses. If the two material points are materially

uniform with respect to the same placer then they are considered to be of the same

type or kind. Alternatively, material points are not of the same kind if there exist no

common placer in which they are in the same state and from which they have same

constitutive relations.

The journal model is Mathematics and Mechanics of Solids.



2

Next, let us define what we mean by a prestressed body. The Merriam Webster

dictionary defines prestress as, “the stresses introduced in prestressing”, “the process

of prestressing”, “the condition of being prestressed” when it is used as a noun and

as “to introduce internal stresses into a body to counteract the stresses that will

result from applied load” when it is used as a transitive verb. Thus, from the above

we garner that prestressed body is a body with internal stresses to counteract the

stresses that will result from applied load. However, in this study, we call a body

with internal stresses a prestressed body; the prestress can counteract or synergize

with the applied load. Internal stresses are stresses within the body that is free of

traction on the boundary. Here internal is used in the sense of something existing

only inside the surface or boundary. It is pertinent to point out that, in many cases

and in this study as well, one has to neglect the gravity and atmospheric pressure for

the body to be free of traction on the boundary. Since, a body is subjected to some

manufacturing process, at the end of which on the removal of the traction on the

boundary, the body develops internal stresses, it is also called residual stress. Here

residual refers to the state after the manufacturing process and is used to emphasize

that the internal stresses are an internal aftereffect that influences later behavior.

While this study recognizes the presence of internal stresses, it does not concern

how they were introduced nor does allow the internal stresses to evolve during the

processes studied here. Hence, it is appropriate to use the term prestresses instead of

residual stress. It is pertinent to point out that in biological bodies, studied here in

some detail, the chemical process that causes the development of internal stresses is

not known, at this point in time.

Now, let us consider a couple of examples of prestressed and inhomogeneous bod-

ies. Consider two homogeneous bodies, an annular right circular cylinder and a solid

right circular cylinder, made of the same material, such that the inner radius of the
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annular cylinder is slightly smaller than the solid cylinder at the room temperature.

Then, let us cool the solid cylinder so that it just fits into the annular cylinder. This

compound body is called a shrink fit shaft. Now, when the shrink fit shaft returns

to the room temperature, the solid cylinder is in a state of radial compression and

the annular cylinder is in a state of radial tension. Thus, the compound body de-

velops internal stresses and is therefore a prestressed body. Also, while shrink fit

shaft is materially uniform, it is inhomogeneous since there exist no placer for the

compound body, in Euclidean space in which all the material points are in the same

state. The next example is an everted cylindrical shell. This is a section of an annu-

lar right circular homogeneous cylinder, turned inside out. Theoretical calculations

[1] and experimental observations [2] show that the everted homogeneous cylindrical

shell is prestressed. Thus, certain prestressed bodies are homogeneous and others

inhomogeneous.

A. Origin of prestresses

Most prestresses are believed to arise from misfits between different regions of the

body1. In components that are engineered, misfits can arise, at least, in four different

ways. One, through the interaction between misfitting parts within the assembly, as

in shrink fit shaft, prestressed concrete. Two, by chemical process such as nitriding

where nitrates form on the surface of the steel along with an associated volume in-

crease, resulting in the development of compressive stresses on the surface and tensile

stresses in the interior. The process of depositing thin films and coatings also re-

sults in the development of prestresses. While chemical vapor deposition gives rise to

compressive or tensile coating stresses depending on the conditions, plasma deposition

1This section is adapted from Withers and Bhadeshia [3]
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always gives rise to tensile deposit stresses. Thus, the third way of introducing misfits

is through thermal processes. For example, rapid cooling of glass introduces compres-

sive stresses near the surface and tensile stresses in the interior and such a glass is

called thermally toughened glass. Welding results in large thermal stress gradients

in the vicinity of welded joints due to localized heating and subsequent cooling of

the weld zone. The fourth way of introducing misfits is through plastic deformations.

Bending of the bar beyond the elastic limit, introduces internal stresses which vary

over the thickness of the bar. Industrial examples include autofrettaging of cylinders

and gun barrels, forging, extruding, drawing, shot-peening, over speeding of rotating

discs, prestressing of springs and overloading to reduce weld stresses in pressure ves-

sels. Finally, changes in crystal structure of a body undergoing a phase change gives

raise to transformation strains that contribute to the development of prestresses.

Furthermore, in natural or artificial multiphase materials, prestresses arise due

to differences in the material properties like thermal expansivity or Young’s modulus.

For example, internal stresses arise during the fabrication of the composites because

the composite use temperature is rarely the fabrication temperature and the different

constituents seldom have the same coefficient of thermal expansion. Biological bodies,

a natural multiphase material, are also known to be prestressed ([4],[5]). In this case,

incompatible growth is considered to be responsible for the development of the internal

stresses ([6],[7]).

Prestresses also arise when a body is held in equilibrium under the mutual gravi-

tation of its parts [8]. The rationale for neglecting them, on numerous occasions, while

studying the mechanical response of traditional engineering bodies is the assumption

that the magnitude of these stresses is negligible. However, earth is an example of

a body which must be considered as being prestressed, as the internal stresses that

arise due to mutual gravitation of its parts are not negligible [8].
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B. Uses and problems of prestresses

Above we have briefly reviewed the processes which result in the development of

the prestresses. While compressive prestresses are beneficial tensile prestresses pose

problems. However, since prestresses are self equilibrating, when body forces and

atmospheric pressure are neglected, both compressive and tensile prestresses would

be present in the same body. This necessitates intelligent use of the prestresses. Pre-

stressed concrete and thermally toughened glass are examples where the compressive

prestresses are used beneficially. In the thermally toughened glass, the compressive

stresses near the surface causes the surface flaws to experience in-plane compression

delaying their propagation. However, when the flaws reach the interior, which ini-

tially is relatively free of flaws, they propagate rapidly and catastrophically to give the

characteristic shattered ‘mosaic’ pattern [9]. Since, free surfaces are often a preferred

site for the initiation of a fatigue crack, compressive stresses near the surface increases

the fatigue life [9]. Thus, processes like peening, autofrettage, cold hole expansion,

case hardening increases fatigue life. On the other hand, the prestresses that develop

during the fabrication of composites can cause cracks to develop in the material even

before it enters the service and hence a reduction in the fatigue life [10]. In any case,

the largest gain in fatigue life, due to the presence of prestresses, are experienced in

low amplitude high cycle fatigue, the least in large strain controlled low cycle fatigue

[9]. According to Krawietz et. al. [11], in thin film technology prestresses are a

key tool to adjust the functionality of the devices. For example, band bending by

prestresses is used to tailor the excitation spectrum of semiconductor dots or stripes

in optoelectronic materials. On the other hand, prestresses are also known to cause

delamination and cracking which degrade the stability of microelectronic devices [12].

In biological bodies, like blood vessels the prestresses are believed to reduce the stress
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gradient [5].

As the design of engineering components becomes less conservative there is in-

creasing interest in how prestresses affects the mechanical response [3]. This is be-

cause in many cases where unexpected failure occurred, this was due to the presence

of prestresses which have combined with the service stresses to considerably shorten

the component life [9]. Since, in practice it is not likely that any manufactured

component would be entirely free from prestresses introduced during processing [3],

considerable effort is currently being devoted to the development of a basic frame-

work within which prestresses can be incorporated into the design of components [9].

Moreover, prestresses are conjectured ([6],[7],[13]) to play a key role in the growth

and remodelling of biological bodies. These technological relevance has motivated the

present study.

C. Measurement of prestresses

Before looking at the frameworks available to model prestressed bodies and their

drawbacks, we would like to explore, how we know that prestresses exist in a given

configuration which is free of traction on the boundary? Given that stresses are not

directly amenable to experimental measurement, the above is a relevant question.

The tendency of the light to propagate with different speeds along different di-

rections in a transparent birefringent body subjected to mechanical stress is called

photoelastic effect. This gives rise to interference fringe patterns when a birefrin-

gent body is viewed in monochromatic light between crossed polars. The interaction

of stresses with electromagnetic fields has been investigated to some extent, see for

example Smith and Rivlin [14], Boulanger and Hayes [15], Ieşan [16]. Thus, this

provides an unequivocal evidence to the presence of prestresses albeit in birefringent
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bodies.

The speed of propagation of ultrasonic waves is found to depend on the stresses

along its direction of propagation. Thus, we infer the prestresses by observing the

changes in the speed of propagation of ultrasonic waves (see [17] for details). This

too provides an unequivocal evidence of the presence of prestresses.

One of the popular ways of inferring prestresses is by observing the changes in

the spacing of the crystallographic planes between a stress free body and a prestressed

body, as inferred from diffraction experiments. Briefly, here the surface of the body

is irradiated with a monochromatic beam of X-rays which is constructively scattered

when it meets lattice planes spaced and oriented to fulfill Bragg’s law, resulting in

diffraction peaks. By observing, the shift in these diffraction peaks we infer the

changes in the lattice spacing and hence the strain and the stress. For more details

on this procedure refer to Lu [17]. Here one could use electron beams or neutron

beams instead of the X-rays to infer the changes in the lattice spacing and hence the

prestresses. However, using this method only prestresses close to the surface can be

determined and one requires a good estimate of the spacing of the crystallographic

planes in a stress free body, which is difficult to obtain.

Other techniques like magnetic methods (see [17],[9]), piezospectroscopic effects

[9] are also used to infer the prestresses. In the techniques considered so far the

internal stresses are deduced by nondestructive testing procedures. These stresses

are also obtained from destructive testing procedures like hole drilling and ring core

methods, layer removal method, sectioning methods. In these methods additional

traction free surfaces are introduced and the subsequent deformation of the body

measured, from which the prestresses in the intact body is computed (see [17] for

details). However, it should be emphasized that introduction of additional traction

free surfaces is a dissipative process, which itself will alter the prestress fields.
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Let us consider sectioning methods used popularly in the study of the mechanics

of blood vessels in some detail. Here a radial cut is introduced in a segment of the

blood vessel that is free of boundary traction and the “opening angle” used as a single

measure of the resulting deformation (see Chuong and Fung [18]). In most cases, a

single radial cut is assumed to relieve the internal stresses and the resulting config-

uration is considered to be stress free. However, Vossoughi et. al. [19] showed that

if one cuts the arterial ring into outer and inner rings, the opening angle associated

with each radially cut part will be different, suggesting that one radial cut may not

be sufficient to relieve all the internal stresses. Greenwald et al. [20] confirmed the

above observation. As rightly pointed out by Humphrey [5], since prestresses are self

equilibrating, removing portions of a body requires the prestresses in the remaining

body to change and hence the differences in the opening angle. Therefore, as sug-

gested by Humphrey [5], prestresses ought to be considered within the context of

a boundary value problem rather than basing them on empirical observations from

destructive testing techniques. This study aims to develop a framework in which the

prestresses could be considered within the context of a boundary value problem.

D. Modelling of prestressed bodies

Given the technological relevance and the wide variety of scenarios in which prestresses

arise significant effort has been devoted to model them. In fact, according to Love [8],

the first model that accounts for prestresses was developed by Cauchy. Even though

his derivation was not based on the hypothesis of continuum, it was for infinitesimal

strain superposed on finite deformation. Numerous alternative derivations of the

same equations within the framework of continuum mechanics are available (see for

example Green et. al. [21], Truesdell and Noll [22], Biot [23], Ieşan [16]). However,
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here our aim is to obtain general constitutive representations for finite deformation

from a stressed reference configuration. This problem has been studied by Johnson

and Hoger [24] and Hoger [25]. To obtain the sought representation, they seek to

invert the constitutive relation between the stress and left Cauchy Green stretch

tensor, from a stress free reference configuration. Apart from the inherent difficulties

in inverting a non-linear relation, inversion would not be possible, in general, when

the algebraic multiplicity of the eigen values of the left Cauchy Green stretch tensor

is two or three. This is because in those cases the relationship between the stress and

left Cauchy Green stretch tensor is not one to one (shown in appendix A). Further,

as they point out, they require all the components of the prestresses and material

properties to be smooth functions which is not the case for many prestressed bodies

like shrink fit shaft. Also, they a priori require the constitutive relation for stress

from stress free configuration, which may not be available in some cases of interest.

The representation for stress from stressed reference configuration, developed here,

does not suffer from the above limitations.

A related issue of developing representations from stressed reference configura-

tions is the symmetry of the body in the stressed reference configuration and its

influence on the resulting representations. Wineman et. al. [26] show that the sym-

metry group of an uniaxially or equibiaxially stretched body that is isotropic in the

stress free state, contains unimodular but nonorthogonal elements for the deformed

configuration. Thus, uniaxially or equibiaxially stretched body in this stressed con-

figuration is not just transversely isotropic; the symmetry group just contains trans-

versely isotropic group as its subgroup. As they point out, this, suggest an inherent

distinction between a body that is transversely isotropic in the stress free state and

one that is uniaxially or equibiaxially stretched. Therefore, the representations for

the constitutive functions for a transversely isotropic body in the stress free state



10

would be different from a uniaxially or equibiaxially stretched body that is isotropic

in the stress free state. The representations that we obtain here does reflect these

differences.

Many practical models for prestressed bodies, within the context of linearized

elasticity, appeal to the superposition principle. They simply get an estimate of the

prestresses and superpose them on the stresses developed due to the service loads on

the body to get the total stress in the body. Estimate of the prestresses is obtained

experimentally or by modelling the process that causes the development of the misfits

and hence the prestresses (see Dennis et. al. [27] and the references there in). The

success of these approaches strongly owe to the fact that the gradient of displacement

is small both in the processes that induce prestresses and in the processes studied

from the prestressed state. Here we investigate the status of these models by lin-

earizing the representation obtained for finite deformations from a stressed reference

configuration. Even though the linearized equation does not capture the change in

the material symmetry between a unstressed reference configuration and stressed ref-

erence configuration, it is robust, within the limits of its applicability, albeit in some

cases for which the value of the shear modulus can change with the magnitude of

prestresses in the reference configuration.

E. Mechanics of blood vessels

As an application of the theoretical framework developed to study prestressed body,

we try to understand the mechanical response of circumflex artery from micro-mini

pigs which is believed to be inhomogeneous and prestressed. With cardiovascular dis-

eases being the leading cause for mortality in the developed countries (American Heart

Association) understanding the mechanical response of the vasculature will provide
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insight to prevention or mitigation of the disease. The response of arteries to mechan-

ical stress plays a key role in formation, development and rupture of an aneurysm

and in modelling the rupture of aorta in automobile accidents [28]. It is believed that

mechanical factors may be important in triggering the onset of atherosclerosis [29].

Also, mechanical stress is one of the important factors modulating the prognosis of

cardiovascular diseases like hypertension ([4],[30]) and in improving the mechanical

properties of engineered vascular constructs [31]. Moreover, several clinical treatments

like percutaneous transluminal angioplasty can only be studied in detail if a reliable

constitutive model of the arterial wall is available [29]. This study is a step towards

obtaining a reliable constitutive model for the blood vessels within the framework of

continuum mechanics.

The general characteristics of the response of healthy “passive”2 arterial segments

is known. They exhibit hysteresis under cyclic loading, stress relax under constant

extensions, creep under constant loads and are relatively insensitive to strain rate,

therefore, their response is viscoelastic [5]. Increased axial extension tend to circum-

ferentially “stiffen” cyclically pressurized vessels while axial force length behavior is

less sensitive to changes in constant diameter indicating a complex coupling between

the axial and circumferential directions [5]. Further, the axial load required to main-

tain a constant length during increased inflation (1) increases when the length at

which the artery is held constant is greater than the in vivo length (2) decreases

when the length at which the artery is held constant is less than the in vivo length

(3) remains nearly a constant when the length at which the artery is held constant

is near the in vivo value [5]. Moreover, the temperature of the arteries increases un-

2The passive state is defined differently by different authors see Humphrey [5] for
a discussion on this issue. Here, it is defined as the state of the blood vessel in which
it is isolated from natural hormonal and neural stimuli and its smooth muscle cells
are relaxed; not necessarily fully relaxed.
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der tension and decreases under compression [32] as does rubber and in contrast to

metals.

Next, let us consider the response of healthy blood vessels in “active”3 state.

As commented by Humphrey [5], because muscle contraction is length-dependent,

physiologically meaningful data are those obtained by pressure4-diameter and axial

force-length tests on intact cylindrical segments. 1D tests on arterial rings or helical

strips, relieves or modifies the prestresses in the arteries there by altering the state

of the smooth muscle cells and hence their response. As a result of activation, the

diameter of the blood vessel decreases when the radial component of the normal stress

at the boundary is held constant along with the length of the vessel. The pressure-

outer diameter response shows that the blood vessel in active state requires greater

pressure to engender the same outer diameter than in passive state (See Cox ([33],[34],

[35]), Zulliger et. al. [36], Fridez et. al. ([37],[38],[39]). It is also known that in vitro

the tone of the vascular smooth muscle depends on the concentration of the agonist,

temperature and the mechanical state of the blood vessel [5]. Zulliger et. al. [36]

show that increasing the axial stretch of the vessel causes the smooth muscle cells to

contract even though the cells are oriented circumferentially. Moreover, the “opening

angle” increased with the activation of smooth muscle cells when care is taken to

control the temperature, in rat aorta and carotid arteries ([40], [41]). Also, Zeller

and Skalak [42] report that the “opening angle” of rat saphenous artery increased

with relaxation of the smooth muscle cell. These variations in the “opening angle”

suggests a change in the prestresses when the smooth muscle tone is altered.

3The state of the blood vessel in which its smooth muscle cells are in (maximally)
contracted state.

4Henceforth, by pressure we mean the radial component of the normal stress at
the inner surface of the blood vessel.
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Having delineated general characteristics of the response of a blood vessel of

interest, we next turn our attention to the theoretical framework available for their

quantification. Since arteries exhibit a nearly repeatable response to cyclic loading

once they have been preconditioned their behavior is regarded as pseudoelastic. In

these models, different constitutive relations are used to describe the loading and

unloading portions of the plot of the radial component of the normal stress at the

inner surface required to engender a given outer diameter versus outer diameter.

Popular models are presented in Humphrey [5], they are critically reviewed in [29]

and in the review articles [43], [44]. In some cases, the blood vessel is viewed as a

biphasic material, a fluid saturated porous medium. This approach is useful to study

the transport phenomena across the wall of the blood vessel [43]. Holzapfel et. al

[45] has developed a model for blood vessels as viscoelastic solid. However, a major

lacuna in these models is their inability to capture the changes in mechanical response

of the blood vessels with various levels of smooth muscle cell activation. This issue

has been addressed by Rachev and Hayashi [46] and more recently by Zulliger et. al.

[47]. However, these models are 1D and hence 3D mathematical models are needed.

The present study develops a general framework from which models for blood vessels

incorporating prestresses, inhomogeneity and smooth muscle tone can be obtained.

While developing models with the postulates of field theories one is confronted

by the question, based on what observations should a given body be modelled as

inhomogeneous? This is a pertinent question especially since all bodies are inhomo-

geneous at some scale. This study outlines a procedure to verify if a given body is

inhomogeneous and prestressed by observing its motion due to applied mechanical

loads. This procedure also, in many cases, help identify the nature of inhomogeneity

i.e., if a given body is radially inhomogeneous or radially and circumferentially inho-

mogeneous and so on. As an application of this procedure we investigate the motion
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of the circumflex artery subjected to inflation at constant length and axial extension

at constant pressure. We find that the motion of the circumflex artery is not given

by r = r(R), θ = Θ, z = λZ5 to the applied mechanical loads and hence it could

belong to a special class of compressible bodies or be radially and circumferentially

inhomogeneous and/or its prestresses vary radially and circumferentially or it could

not be idealized as an annular right circular cylinder. In any case, all the existing

models, even those that account for the inhomogeneity ([29],[31],[45],[48],[49],[50],

[51]) is still inadequate to describe the motion of the circumflex artery. However, at

this moment we could not propose constitutive relation that adequately describes the

circumflex artery because of the limitation in our experimental setup in inferring a

motion different from the above assumed form.

1. Changes in blood vessels due to experimental hypertension

General characteristics of the mechanical response of healthy blood vessels was out-

lined above. Now, we study the changes in the blood vessels due to experimental

hypertension. It seems that the response to the experimental hypertension depends

on the animal model [5]. For example, the response to Goldblatt models are char-

acterized by two phases of development while aortic coarctation models have three

phases of development despite tapping into the same system, i.e., autoregulation of

renin. On the other hand spontaneously hypertensive rats do not have any distinct

phases of development. We record the salient changes in the blood vessels as reported

in the literature (Olivetti et. al. [52], Owens and Reidy [53], Liu and Fung [54], Fung

and Liu [13], Fridez et. al. ([37], [38], [39])) for aortic coarctation model, since this

5Here λ is a constant and (R, Θ, Z) are coordinates of a typical material point in
the reference configuration in cylindrical polar coordinates and (r, θ, z) coordinates of
a typical material point in the current configuration in cylindrical polar coordinates.
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is the model we use.

Elevated blood pressure is associated with geometrical, structural and functional

changes in the blood vessels [5]. First let us consider the geometrical changes. The

internal radius and the thickness of the arteries increases with age of the animal.

In response to elevated blood pressure the wall thickness of the arteries increases,

over and above that due to increase in age. It is conjectured that the increase in

wall thickness is to help restore the wall stresses to their haemostatic values. On

the other hand the inner radius of the arteries from hypertensive rats is slightly less

than that of the age matched controls. The “opening angle” increases initially and

then asymptotically reaches a steady state value. Similarly, the in vivo stretch ratio,

defined as the axial length of the artery in vivo to the axial length of the artery at zero

axial load increases during the 8 days post induction of hypertension in rats. Data

for longer duration of hypertension is unavailable. This suggest an alteration in the

prestress fields during the remodelling of arteries due to experimentally introduced

hypertension.

Next, let us consider the structural changes in the arteries due to hypertension

when it is induced by aortic coarctation. Consistent with the commonly held percep-

tion that hypertension is a disease of the media, most changes due to hypertension are

found to occur in media. While the thickness of the elastic lamellar units increases,

the number of units remains unchanged. The lamellar units thicken due to increases

in the amount of collagen, elastin and hypertrophy or/and hyperplasia of the smooth

muscle cells. Fridez et. al. [39] observed that the collagen content increases rapidly

in the acute phase and then levels down, during which phase the vascular smooth

muscle content raises. They also found that the vascular smooth muscle cells initially

undergo apoptosis followed by hyperplasia as well as hypertrophy. In the long term,

the elastin content increases sightly. They also report that the innermost lamellar
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units thicken first followed by outer layers.

Finally, let us consider the mechanical response of hypertensive and normotensive

arteries subjected to inflation at constant length. Here one finds reports that the

arterial stiffness increases, decreases or remains the same with hypertension. As

Humphrey [5] points out, many of the conflicting observations are simply due to

the use of different definitions of the stiffness, including material versus structural

stiffness. Thus, since the thickness of the arteries changes due to hypertension, the

radial component of the normal stresses at the inner surface of the artery required

to realize a given outer diameter changes, even if the newly deposited material is of

the same type as the old. However, now due to the altered geometry of the artery,

the prestress field will be different, a fact corroborated by experiments ([13],[37],[54]).

A similar problem arises while comparing the radial component of the normal stress

required at the inner surface of the artery to engender a given outer diameter, for

various smooth muscle tone, because in this case the inner and outer radius of the

blood vessel changes with the vascular smooth muscle tone. This change in the

geometry of the blood vessel is a result of a change in the prestress field. Hence, there

is a pressing need for the development of a theoretical framework to interpret the

mechanical response of these arteries. Here we present such a framework and highlight

the difficulties in interpreting the pressure-outer diameter data, for it is insufficient

to characterize the mechanical response of the arteries which are inhomogeneous and

prestressed.

The arrangement of this thesis is as follows. In the next chapter we introduce

the notation to be used and record the standard balance laws and general restrictions

on the constitutive relations. A general representation for stress from stress free

reference configuration, satisfying the appropriate restrictions, is derived and issues

related to the material symmetry are also discussed. In chapter III representations
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for stress and Helmoltz potential from a stressed configuration is obtained. Then, we

linearize the obtained representation to examine the status of the models developed

within the framework of linearized elasticity. The chapter concludes with developing

representations for prestress fields in three different geometries of the body. Chapter

IV concerns with the general formulation of the boundary value problems and its

solution. The techniques developed is illustrated by the studying in detail inflation of

a spherical shell and outlining the procedure for many other classes of deformation.

In chapter V we study inflation, extension and torsion of right circular cylinder using

the same techniques developed in the previous chapter. In the next chapter, we

concern ourselves with understanding the mechanics of the circumflex arteries, as

an application of the above theoretical developments. The thesis concludes with a

summary of the results obtained and directions for future developments.
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CHAPTER II

PRELIMINARIES

In this chapter, the notation and terminology that is used in this thesis is introduced.

Then, the balance laws as applicable to a thermo-mechanical process is recorded.

Next, the restrictions on the constitutive relations due to invariance with respect to

the choice of basis vectors and material symmetry is recorded along with the 2nd law

of thermodynamics. This is followed by the derivation of a representation for stress

from a stress free reference configuration for an isotropic body undergoing elastic

deformation. Then, a few constitutive relations for stress, popular in the literature,

is recorded for later reference. Finally, we discuss certain issues with determining the

material symmetry.

A. Notation

According to Truesdell and Noll [22], a body, B is a three dimensional differential

manifold, the elements of which are called material particles (or material points)

P . This manifold may be referred to a system of coordinates which establishes a

one-to-one correspondence between particles and triples (A1, A2, A3) of real numbers:

P = P̂ (A1, A2, A3), Ai = Âi(P ), i = 1, 2, 3. (2.1)

In general, no particular geometric structure is imputed to a body.

A one-to-one mapping χ̂ : B × I → E written as

x = χ̂(P, t), (2.2)
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is called a motion of the body1. Here I ∈ (−∞, to) for some to, E denotes the three

dimensional Euclidean space, t is the time and x is a place in the Euclidean space.

The value of χ̂ is the place x that the particle P occupies at time t. We shall consider

only motions that are smooth in the sense that χ̂ is differentiable with respect to P

and t as many times as needed.

Often it is convenient to select one particular configuration2 and refer everything

concerning the body to that configuration and call it the reference configuration. Let

κ be a mapping of the abstract body B onto three dimensional Euclidean space, called

the placement. Then the mapping

Y = κ(P ), (2.3)

gives the place Y occupied by the particle P in the configuration χ(B, t). Since, we

assume the mapping to be bijective,

P = κ−1(Y). (2.4)

Hence the motion (2.2) may be written as

x = χ̂(κ−1(Y), t) ≡ χ̂κ(Y, t). (2.5)

Thus, the motion is a sequence of mappings of the reference configuration κ(B) onto

the actual configuration and is visualized as mappings parts of space onto parts of

space.

Introduction of the reference configuration just allows us to use the apparatus of

1As in the case of elastic response of bodies, when the dependence of χ̂ on time
need not be emphasized we call χ̂, deformation field.

2A smooth homeomorphism of the body, B onto a region of three-dimensional
Euclidean space is called the configuration of the body.
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Euclidean geometry. The choice of reference configuration, like the choice of coordi-

nate system, is arbitrary. In particular, it need not even be a configuration occupied

by the body in the course of its motion. For each different choice of reference con-

figuration, there results a different function of χ̂κ. Thus one motion of the body is

represented by infinitely many different motions of parts of space, one for each choice

of κ. For some choice of κ, we may get a particularly simple description, just as in

geometry one choice of coordinates lead to a simple equation for a particular figure,

but the reference configuration itself has nothing to do with such motions as it may be

used to describe, just as coordinate system has nothing to do with geometric figures

themselves. Reference configurations are introduced just to allow the use of mathe-

matical apparatus familiar in other contexts. Emphasizing again that the choice of

reference configuration κ(B) is ours, any physically significant result must be inde-

pendent of the choice of the reference configuration. Note that the above discussion

on reference configuration is adapted from Truesdell and Rajagopal [55].

Here we study the motion of the body with respect to two different configura-

tions as reference. The first configuration that we use as reference is a configuration

occupied by the body at some time to. This configuration need not be stress free3

or even free of traction on the boundary. However, this is the configuration that is

realizable, to say, an experimentalist. Let κo denote this mapping of the abstract

body on to the Euclidean space, i.e.,

P = κo(P ), (2.6)

3A body in a particular configuration, κp is said to be stress free if

T(x) = 0, ∀ x ∈ κp.

and traction free if
t(n)(x) = Tn = 0, ∀ x ∈ ∂κp,

where n is outward unit normal field on ∂κp and T is the Cauchy stress.
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Hence, from (2.5)

x = χ̂(κ−1
o (P), t) ≡ χ̃(P, t). (2.7)

The second configuration that we use as reference is a stress free configuration.

This need not be a configuration actually occupied by the body during the process

under study. Let κsf denote this mapping of the abstract body on to the Euclidean

space, i.e.,

X = κsf (P ), (2.8)

Hence, from (2.5)

x = χ̂(κ−1
sf (X), t) ≡ χ(X, t). (2.9)

Then, we define the gradient of motion

Ft = ∇(χ) (=
∂χ

∂X
), Ht = ∇̃(χ̃) (=

∂χ̃

∂P
). (2.10)

The assumption that the body not penetrate itself is expressed by the requirement

that χ (and χ̃) be one to one. Further, det(Ft) 6= 0 since it represents the volume

after deformation per unit volume in the reference configuration. Consequently, a

motion with det(Ft) ≤ 0 cannot be reached by a continuous process starting from the

reference configuration in which Ft is identity and hence det(Ft) = 1. Hence, Ft ∈

Lin+ i.e., the set of all tensors such that det(Ft) > 0. For the same reasons, Ht ∈

Lin+

If the stress free configuration is realizable then

P = χ(X, to), X = χ̃(P, tsf ). (2.11)

Here we assume that the motion field χ(X, to) is smooth and bijective. We note that

if the configuration κo is prestressed, with prestresses arising from misfit of subparts

of the body, the smoothness requirement does not hold for the entire body. They
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hold at most to subparts of a given body. Thus, when the reference configuration

has prestresses we can not assume the existence of a stress free configuration for the

entire body, they exist only for the subparts of the body.

Now,

Fo = ∇(χ(X, to)), Hsf = ∇̃(χ̃(P, tsf )). (2.12)

Also, it follows that Fo = H−1
sf and

Ft = HtFo. (2.13)

Next, we record the expressions for the left and right Cauchy-Green stretch

tensors

B = FtF
t
t, C = Ft

tFt, (2.14)

B̃ = HtH
t
t, C̃ = Ht

tHt, (2.15)

with respect to the stress free reference configuration and stressed reference config-

uration respectively. While C carries the information on the change in the length

and angles of line segments in the stress free reference configuration, C̃ carries the

same information for segments in the stressed reference configuration. In addition,

we define

Bo = FoF
t
o, Co = Ft

oFo. (2.16)

According to the polar decomposition theorem, the gradient of motion can be

uniquely decomposed as

Ft = RU = VR, Ht = R̃Ũ = ṼR̃, (2.17)

where U, V, Ũ, Ṽ are positive definite symmetric tensors and R, R̃ are rotations.

See Gurtin [56] for proof.
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Given a second order tensor, say A, the determinant of (A − λ1) admits a

representation

det(A − λ1) = −λ3 + I1λ
2 − I2λ + I3 (2.18)

for every λ ∈ R, set of real numbers, where

I1 = trA, I2 =
1

2
[(trA)2 − trA2], I3 = detA, (2.19)

called the principal invariants of A. When A is positive definite, it is convenient to

use the following set of invariants

J1 = 1 · A, J2 =
I2

I3

= 1 · A−1, J3 = I
1/2
3 . (2.20)

Here (J1, J2, J3), denotes the invariants of B and (J̃1, J̃2, J̃3) the invariants of C̃. It

is pertinent to note that the value of invariants of left stretch tensor is same as that

of the right stretch tensor.

Finally, it follows from Cayley-Hamilton theorem4 that every tensor A satisfies

its own characteristic equation, i.e.

A3 − I1A
2 + I2A − I31 = 0. (2.21)

Here it is postulated that the state of the body is determined by

1. density (ρ) 2. stress (T)

3. internal energy per unit mass (ε) 4. entropy per unit mass (η)

5. temperature (ϑ)

and that, for our purposes, i.e., thermo-mechanical response, the value of these

state variables depend only on the gradient of motion (Ht), temperature (ϑ) and the

value of these state variables themselves in the reference configuration. We specify, the

4See Halmos [57] section 58 for proof
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equation of state which establishes the above relation, after recording the conservation

laws.

B. Balance laws

In general, while equation of state is for the specific material that the body is made up

of, balance laws hold for all materials. However, the form of the balance laws depends

on the process being studied as does the equation of state. For concreteness, in what

follows, use shall be made of the stressed reference configuration, understanding the

same equations are valid for stress free reference configuration on making the obvious

changes.

1. Balance of mass

For our purposes here, this law states that the rate of change of mass is zero. Math-

ematically, this law can be expressed as

d

dt

∫

κt

ρdv = 0. (2.22)

If the above equation holds for any arbitrary bounded regular5 subsets of κt then6

dρ

dt
+ ρdiv(v) = 0, (2.23)

∂ρ

∂t
+ div(ρv) = 0, (2.24)

ρ =
ρo

J̃3

, (2.25)

5See Kellogg [58] for definition of a regular region.
6Here, d(·)

dt
denotes derivative w.r.t. t holding P a constant and ∂(·)

∂t
denotes deriva-

tive w.r.t. t holding x a constant. Hence, dρ
dt

= ∂ρ
∂t

+ v · grad(ρ)
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where ρo denotes the density in the reference configuration, J̃3 = det(Ht), v = dχ̃

dt
and

div(v) = tr(grad(v))7. Here we have assumed that there is no diffusion of mass8 or

transformation of mass into energy or vice versa and hence (2.25) is also the equation

of state for density.

2. Balance of linear momentum

This law states that the rate of change of momentum is equal to the applied force in

both direction and magnitude. Mathematically,

d

dt

∫

κt

ρ
dχ̃

dt
dv =

∫

∂κt

Tnda +

∫

κt

ρbdv, (2.26)

where b is the body force per unit mass, n is the outward unit normal field on ∂κt.

If the above holds for arbitrary bounded regular subsets of κt and using (2.23) and

divergence theorem we obtain

ρ
d2χ̃

dt2
= div(T) + ρb, (2.27)

when T is a smooth field over κt.

Equation (2.26) could equally be expressed as

d

dt

∫

κo

J̃3ρ
dχ̃

dt
dV =

∫

∂κo

S̃NdA +

∫

κo

J̃3ρbdV, (2.28)

where S̃ = J̃3TH−t
t and N is the outward unit normal field on ∂κo. Using same

7Here, we use G̃rad(·) for gradient w.r.t. P, Grad(·) for gradient w.r.t X and
grad(·) for gradient w.r.t. x

8It is well known [59] that the above form of the balance of mass does not hold
for chemically reacting inhomogeneous bodies. In theories of chemical reaction, the
balance of mass holds only for sufficiently large bodies, among the parts of which the
mass is generally exchanged i.e. there is diffusion of mass.
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arguments as before

J̃3ρ
d2χ̃

dt2
= D̃iv(S̃) + J̃3ρb, (2.29)

where D̃iv(S̃) · a = tr(G̃rad(S̃ta)), for every vector a.

3. Balance of energy

This law asserts that energy can neither be created nor destroyed but transformed

from one form to another. Mathematically this translates as

d

dt

∫

κt

ρ

2

dχ

dt
· dχ

dt
dv +

d

dt

∫

κt

ρεdv

=

∫

∂κt

n ·
[
Tt dχ

dt
− q

]
da +

∫

κt

ρ

[
b · dχ

dt
+ g

]
dv, (2.30)

Assuming the above equation holds for arbitrary bounded regular subsets of κt and

using (2.23) and (2.27) and divergence theorem we obtain

ρ
dε

dt
= T · L − div(q) + ρg, (2.31)

where, L = grad(v), q is the heat flux and g is volumetric heating. We assume that

the heat flux, q is a smooth field over κt.

Equation (2.30) could equally be expressed as

d

dt

∫

κo

J̃3
ρ

2

dχ

dt
· dχ

dt
dV +

d

dt

∫

κo

J̃3ρεdV

=

∫

∂κo

N ·
[
S̃t dχ

dt
− J̃3H

−1
t q

]
dA +

∫

κo

J̃3ρ

[
b · dχ

dt
+ g

]
dV, (2.32)

which using arguments as before and S̃ · G̃rad(v) = J̃3T · L yields

J̃3ρ
dε

dt
= J̃3T · L − Div(J̃3H

−1
t q) + J̃3ρg. (2.33)
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4. Balance of angular momentum

According to this law, the rate of change of angular momentum must equal the applied

torque in both magnitude and direction. Mathematically, taking momentum about

the origin, this transforms as

d

dt

∫

κt

x ∧ ρ
dχ

dt
dv =

∫

∂κt

x ∧ Tnda +

∫

κt

ρx ∧ bdv, (2.34)

which yields

tr(TAa) = 0, (2.35)

for any skew-symmetric tensor, Aa, on assuming that (2.34) holds for arbitrary

bounded regular subsets of κt and using (2.23), (2.27) and the identities

∫

∂κt

x ∧ Tnda =

∫

κt

div(XxT)dv, (2.36)

div(XxT) · a = a · (x ∧ div(T)) + T · Aa, (2.37)

where, Xx is the skew symmetric tensor with x as its axial vector, a is a constant

but arbitrary vector and Aa is the skew symmetric tensor with a as its axial vector.

It then follows from (2.35) that T is a symmetric tensor.

C. General restrictions on constitutive relations

In this section, the restrictions on constitutive relation for state variables due to

2nd law of thermodynamics, coordinate frame indifference and material symmetry is

discussed. Of course, there are other restrictions on the constitutive relations but

they would not be considered at this point, especially because they are not universal

as those considered here.
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1. 2nd law of thermodynamics

This law states that the rate of entropy production is nonnegative. Mathematically,

this requires

d

dt

∫

κt

ρηdv ≥
∫

κt

ρ
g

ϑ
dv −

∫

∂κt

q

ϑ
· nda, (2.38)

which yields

ρϑ
dη

dt
− 1

ϑ
q · grad(ϑ) ≥ ρ

dε

dt
− T · L, (2.39)

on assuming that (2.38) holds for arbitrary regular subsets of κt and using (2.23) and

(2.31)

For ease in computation we introduce, free energy (or Helmoltz potential) per

unit volume in the current configuration defined as9

ψ = ρ(ε − ηϑ), (2.40)

Substituting the above in (2.39) and using (2.23) we obtain

1

ϑ
q · grad(ϑ) +

dψ

dt
+ ρη

dϑ

dt
+ (ψ1 − T) · D ≤ 0. (2.41)

2. Coordinate frame indifference

Certain mathematical quantities (or state variables), like density, internal energy,

entropy, Helmoltz potential describes the state of the body. Since these quantities

represent the state of the body we require that the value of these scalars10 be inde-

9The reason for defining free energy per unit volume instead of per unit mass will
become evident in the next chapter.

10The value of the components of a tensor of order greater than zero do depend
on the coordinate basis. Given a tensor T, the representations that can be obtained
for this; by changing coordinate basis could be imagined to form one or more closed
curves or surfaces in the n-dimensional space of components of T, called orbit. Then,
two representations are different only if their orbits do not coincide.
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pendent of the choice of basis11 required to represent the components of a tensor. In

other words, for a given observer the value of the scalar quantities that describe the

state of the body cannot change unless there is a causative process in (or on or from)

the body. Hence, the value of the Helmoltz potential of a particle P ∈ B should not

depend on the particular choice of basis used to represent the components of a tensor

and moreover the formula used to compute Helmoltz potential should also not depend

on the choice of basis used to represent the components of a tensor. This is based on

the requirement that the value of material parameters, say shear modulus, has to be

independent of the choice of the basis used to represent the components of a tensor.

Let Q ∈ O, the set of orthogonal transformations. Then, for a change of basis

in the current configuration such that e∗
l = Qel

ψ = ψsf (Ft, ϑ) = ψsf (QFt, ϑ), (2.42)

T = f(Ft, ϑ) = Qf(QFt, ϑ)Qt, (2.43)

∀ Q ∈ O and ∀ (Ft, ϑ) ∈ Dsf ⊆ Lin+ × R+, where Dsf denotes the domain of ψsf

and R+ the set of non-negative reals and

ψ = ψo(Ht,T
o, ϑ) = ψo(QHt,T

o, ϑ), (2.44)

T = h(Ht,T
o, ϑ) = Qh(QHt,T

o, ϑ)Qt, (2.45)

∀ Q ∈ O and ∀ (Ht,T
o, ϑ) ∈ Do ⊆ (Lin+×Lin×R+), where Do denotes the domain

of ψo and To the stress field in the reference configuration.

11For those who regard (2.9) (or (2.7)) as coordinate transformation, this will cause
confusion. In other words, (2.9) (or (2.7)) is a point transformation while here we are
interested in coordinate transformations. Here coordinate (or basis) transformations
are only relations between different possible mathematical descriptions of the same
state of the body.



30

Similarly, for a change of basis in the stress free reference configuration we require

ψ = ψsf (Ft, ϑ) = ψsf (FtQ
t, ϑ), (2.46)

T = f(Ft, ϑ) = f(FtQ
t, ϑ), (2.47)

∀ Q ∈ O and ∀ (Ft, ϑ) ∈ Dsf and for a change of basis in the stressed reference

configuration we require

ψ = ψo(Ht,T
o, ϑ) = ψo(HtQ

t,QToQt, ϑ), (2.48)

T = h(Ht,T
o, ϑ) = h(HtQ

t,QToQt, ϑ), (2.49)

∀ Q ∈ O and ∀ (Ht,T
o, ϑ) ∈ Do.

3. Material symmetry

Let us begin by examining the restriction that the material symmetry seeks to place

on the mathematical description of the mechanical response of the body within the

framework of continuum mechanics. Consider an observer who has chosen a coordi-

nate system and has mathematically represented the (stressed or stress free) reference

configuration of the body i.e., identify the region of Euclidean space that this body

occupies and has found the spatial variation of the state variables. Now, say without

the knowledge of the observer, this reference configuration of the body is deformed

(or rotated). The question is will this deformation (or rotation) be recognized by

the observer? Theoretically, if the observer cannot identify the deformation, then

the functional form of the Helmoltz potential at each given Euclidean point should

be same for this deformed and initial reference configuration. Here it is pertinent to

point out that since the initial and deformed configuration are indistinguishable, the

state of the different material points that occupy the Euclidean point, has to be same.
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In other words, this restriction arises due to equivalence of a set of point transforma-

tions in the reference configuration, as opposed to coordinate transformations in the

previous case. Thus, the set of equivalent point transformations depends on the state

of the body.

Let Gsf ⊆ H, the unimodular group, i.e., the set of linear transformations with

determinant equal to one, represent the set of all deformations of the stress free

reference configuration that are indistinguishable. Then, we require

ψ = ψsf (Ft, ϑ) = ψsf (FtG
t
sf , ϑ), (2.50)

T = f(Ft, ϑ) = f(FtG
t
sf , ϑ), (2.51)

∀ Gsf ∈ Gsf and ∀ (Ft, ϑ) ∈ Dsf , or

ψ = ψo(Ht,T
o, ϑ) = ψo(HtG

t
o,T

o, ϑ), (2.52)

T = h(Ht,T
o, ϑ) = h(HtG

t
o,T

o, ϑ), (2.53)

∀ Go ∈ Go ⊆ H, the set of all deformations of the stressed reference configuration

that are indistinguishable and ∀ (Ht,T
o, ϑ) ∈ Do at a given Euclidean point.

It is worthwhile to make a few observations. First, the importance of the above

conditions being evaluated at a given Euclidean point cannot be overemphasized, es-

pecially since the stress field, To, in the reference configuration would be non-uniform,

in general. Secondly, since the value of the state variables of the material point oc-

cupying this Euclidean point, in the initial and deformed reference configurations is

same and the basis used to represent the stress is unaltered, the matrix components

of the stress, To will not change.

The rotation of the body is mathematically different from a change of basis.

Towards, this let us examine why J4 = M · CM satisfies the requirement (2.46) and



32

the condition (2.50). Let

Gsf = {G ∈ Gsf |GM = M&G ∈ O+}, (2.54)

where M is a given vector, at times called fiber direction. Due to a change of basis

in the stress free reference configuration

(QM) · (QCQt)(QM) = M · CM, (2.55)

∀ Q ∈ O. On the other hand due to rotation of the body

M · GCGtM = (GtM) · C(GtM) = M · CM, (2.56)

for all G ∈ Gsf . The second equality follows immediately from observing that if G ∈

Gsf then Gt ∈ Gsf . Now say, Gsf = O+ then M · CM does not satisfy (2.50).

Using arguments similar to those made above, one can seek the set of equivalent

point transformations for the current configuration, i.e., one can deform the current

configuration and seek the set of deformations that are not identifiable and let this

set be denoted by Gt. Now

ψ = ψsf (Ft, ϑ) = ψsf (GtFt, ϑ), (2.57)

T = f(Ft, ϑ) = f(GtFt, ϑ), (2.58)

∀ Gt ∈ Gt and ∀ (Ft, ϑ) ∈ Dsf , or equivalently

ψ = ψo(Ht,T
o, ϑ) = ψo(GtHt,T

o, ϑ), (2.59)

T = h(Ht,T
o, ϑ) = h(GtHt,T

o, ϑ), (2.60)

∀ Gt ∈ Gt and ∀ (Ht,T
o, ϑ) ∈ Do at a given Euclidean point.

It is clear from the above that the material symmetry of the body depends on
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the configuration it is in. Given the material symmetry group12 of the body in a

(reference) configuration Noll’s rule [61] expresses the symmetry group in another

configuration, in terms of the gradient of motion relating the two configurations and

the symmetry group of the first (reference) configuration. Towards obtaining this

rule, note that

T = f(Ft, ϑ) = f(HtFo, ϑ) = h(Ht, ϑ), (2.61)

using (2.13). On application of (2.51) and (2.61) we obtain

h(Ht, ϑ) = f(FGsf , ϑ) = f(HtFoGsfF
−1
o Fo, ϑ) = h(HtFoGsfF

−1
o , ϑ). (2.62)

This shows that if Gsf ∈ Gsf then FoGsfF
−1
o ∈ Go. Thus

Go = FoGsfF
−1
o . (2.63)

The above is known as Noll’s rule. It is worthwhile to note that even if Gsf ⊆ O+,

Go ⊆ H. In fact, it has been shown by Winemann et. al. [26] that Go contains

non-orthogonal but unimodular elements when Fo = λ1 + λ3e⊗ e, where e is a unit

vector, say, along whose direction the body is stretched.

Other rules, similar to the Noll’s rule, obtained in Coleman and Noll [62], Hoger

[63] are based on the assumption that Go ⊆ O+ ⊂ H. Here we record the rule due to

Hoger [63], because of its utility later. Combining (2.45) and (2.53) we obtain

h(Ht,T
o, ϑ) = Qh(QHtQ

t,To, ϑ)Qt, (2.64)

∀ Q ∈ GQ
o ⊆ Go, where GQ

o is the set of all proper orthogonal elements in Go. Evaluating

12It can be shown that the set of equivalent point transformations form a group see
Ogden [60] section 4.2.3 for details
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(2.64) at Ht = 1 and ϑ = ϑo and noting that h(1,To, ϑo) = To, we obtain

ToQ = QTo. (2.65)

Thus, the above equation is only a necessary condition.

D. Representations from stress free reference configuration for isotropic bodies

This section focuses on developing representations for stress and Helmoltz potential

from stress free reference configuration satisfying the above restrictions.

1. Representation for stress

Substituting (2.17a) in (2.47)

T = f(Ft, ϑ) = f(FtQ
t, ϑ) = f(VRQt, ϑ). (2.66)

Since, the above holds for all Q ∈ O, choosing Q = R

T = f(V, ϑ) = f(B, ϑ). (2.67)

The last equality arises because B = V2 and square-root theorem13 ensures the exis-

tence of an unique V such that V =
√

B. Substituting (2.67) in (2.43)

T = f(B, ϑ) = Qf(QBQt, ϑ)Qt (2.68)

∀ Q ∈ O.

Theorem 2.1: A symmetric second order tensor valued function f defined over

the space of symmetric second order tensors and non-negative reals, satisfies (2.68) if

13See Gurtin [56] section 2 for proof
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and only if it has a representation

T = f(B, ϑ) = α01 + α1B + α2B
2 (2.69)

where α0, α1, α2 are functions of principal invariants of B and ϑ i.e.,

αi = α̂i(I1, I2, I3, ϑ) (2.70)

Proof: 14 Before proving the above theorem we prove the following theorem:

Theorem 2.2: Let α be a scalar function defined over the space of symmetric

positive definite second order tensors. Then α(QBQt) = α(B) ∀ Q ∈ O if and only

if there exist a function α, defined on R+×R+×R+, such that α(B) = α(λ1, λ2, λ3),

where α(λ1, λ2, λ3) is insensitive to permutations of λi and λ1, λ2, λ3 are the eigen

values of B. Hence, α(B) = α̂(I1, I2, I3).

Proof: 15 Writing B in the spectral form

B = λ1b1 ⊗ b1 + λ2b2 ⊗ b2 + λ3b3 ⊗ b3, (2.71)

where bi’s are the orthonormal eigen vectors of B and hence

QBQt = λ1Qb1 ⊗ Qb1 + λ2Qb2 ⊗ Qb2 + λ3Qb3 ⊗ Qb3. (2.72)

Since, α(QBQt) = α(B) ∀ Q ∈ O, α(B) must be independent of the orientation of

the eigen directions of B and must depend on B only through its eigen values, λ1,

λ2, λ3.

Next, choose Q to be a rotation of π/2 about b3 so that Qb1 = b2, Qb2 = −b1

14Adapted from Serrin [64] and Ogden [60]. The original proof is due to Rivlin and
Ericksen [65]

15Adapted from Ogden [60]
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and Qb3 = b3. Hence,

α(B) = α(λ2b1 ⊗ b1 + λ1b2 ⊗ b2 + λ3b3 ⊗ b3) (2.73)

from which we deduce that α(λ1, λ2, λ3) = α(λ2, λ1, λ3). In similar fashion it can be

shown that α is insensitive to other permutations of λi’s.

Finally, recalling that the eigen values are the solutions of the characteristic

equation

λ3 − I1λ
2 + I2λ − I3 = 0, (2.74)

in principal, λi’s can be expressed uniquely in terms of the principal invariants and

hence α(B) = α̂(I1, I2, I3).

The converse of the theorem 2.2 is proved easily from the property of trace and

determinants. Hence, we have proved theorem 2.2.

Theorem 2.3: If f satisfies (2.68) then the eigen values of f(B, ϑ) are functions

of the principal invariants of B and ϑ.

Proof: Let γ(B, ϑ) be the eigen value of f(B, ϑ). Then,

det[f(B, ϑ) − γ(B, ϑ)1] = 0. (2.75)

The corresponding eigen value of f(QBQt, ϑ) is γ(QBQt, ϑ) and hence

det[f(QBQt, ϑ) − γ(QBQt, ϑ)1] = 0. (2.76)

This can be written as

det[Q{f(B, ϑ) − γ(QBQt, ϑ)1}Qt] = 0, (2.77)

by using (2.68) and the relation QQt = 1. Using the property of determinants the
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above equation reduces to

det[f(B, ϑ) − γ(QBQt, ϑ)1] = 0, (2.78)

which has to hold for all Q ∈ O. Comparing (2.75) and (2.78)

γ(QBQt, ϑ) = γ(B, ϑ), (2.79)

for all Q ∈ O, which by theorem 2.2 implies that γ(B, ϑ) = α̂(I1, I2, I3, ϑ)

Theorem 2.4: If T = f(B, ϑ) satisfies (2.68) then f(B, ϑ) is coaxial with B.

Proof: Consider an eigen vector b1 of B and define an orthogonal transformation

Q by

Qb1 = −b1, Qbj = bj if b1 · bj = 0, (2.80)

i.e. Q is a reflection on the plane normal to b1. Now, QBQt = B and hence, by

(2.68), QT = TQ. We therefore have

Q(Tb1) = T(Qb1) = −Tb1, (2.81)

and we see that Q transforms the vector Tb1 into its opposite. Since, the only vectors

transformed by the reflection Q into their opposites are the multiples of b1, it follows

that b1 is an eigen vector of T. Similarly, it can be shown that every eigen vector of

B is also an eigen vector of T. Hence, f(B, ϑ) is coaxial with B.

Now we prove theorem 2.1.

Clearly, if (2.69) along with (2.70) holds then (2.68) is satisfied and hence we

have to prove only the converse.

It follows from theorem 2.3 and theorem 2.4 that f(B) is coaxial with B and its

eigen values are functions of the principal invariants of B and ϑ. Let λ1,λ2,λ3 and
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f1,f2,f3 be the eigen values of B and f(B) respectively and consider the equations

α0 + α1λi + α2λ
2
i = fi, (i = 1, 2, 3) (2.82)

for the three unknowns α0, α1, α2. Assuming the λi and fi are given and that λi’s

are distinct it follows that αi’s are determined uniquely in terms of λi and fi which

are themselves determined uniquely by the principal invariants of B and ϑ. Thus,

since B is coaxial with f(B) and αi are functions of the principal invariants of B and

ϑ; equation (2.69) follows from (2.82) provided the eigen values of B are distinct, of

course. When the eigen values of B are not distinct α2 or α1 and α2 could be chosen

arbitrarily, depending on whether the algebraic multiplicity of the eigen values is 2

or 3 respectively. However, this choice may cause some αi to become discontinuous

even when f(B) remains continuous, Truesdell and Noll [22] and Serrin [64] provide

example of such cases.

Finally, from (2.21) we obtain

B2 = I1B − I21 + I3B
−1. (2.83)

Then, observing that the principal invariants of the positive definite, B, are related

bijectively to the invariants J1, J2 and J3, as defined in (2.20), we note that

αi = α̂i(I1, I2, I3, ϑ) = αi(J1, J2, J3, ϑ) (2.84)

for i = (0, 1, 2). Substituting (2.83) and (2.84) in (2.69) we obtain

T = α01 + α1B + α2B
−1. (2.85)

Henceforth, the above equation would be considered as the most general representa-

tion for stress from stress-free reference configuration.
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a. Restrictions on the constitutive representation

Note that the above representation for stress was obtained only by enforcing the

restrictions due to the coordinate frame invariance. Now, we examine their status

with respect to the restrictions arising due to material symmetry. The condition

(2.51) requires

T = f(FtF
t
t, ϑ) = f(FtG

t
sfGsfF

t
t, ϑ), (2.86)

∀ Gsf ∈ Gsf and ∀ (Ft, ϑ) ∈ Dsf . Thus, if and only if Gsf ⊆ O+ the above holds.

Since, it is irrelevant whether Gsf ⊂ O+ or Gsf = O+, a stress free configuration is

isotropic.

Next, we use the condition (2.58), which for the present case evaluates to requir-

ing

T = f(FtF
t
t, ϑ) = f(GtFtF

t
tG

t
t, ϑ), (2.87)

∀ (Ft, ϑ) ∈ Dsf . From this we infer the elements in Gt. If we assume that Gt ⊆ O then

TGt = GtT, obtained from (2.85). Thus, members of the set Gt has to commute with

T. It follows from theorem 3 page 157 in Halmos [57] that only those transformations

that leave the characteristic spaces of T unchanged can be members of the set Gt.

Note the similarity of this restriction with (2.65).

Finally since, T = 0 when Ft = 1 and ϑ = ϑo

α0(3, 3, 1, ϑo) + α1(3, 3, 1, ϑo) + α2(3, 3, 1, ϑo) = 0. (2.88)

2. Representation for Helmoltz potential

Substituting (2.17a) in (2.46) we obtain

ψ = ψsf (Ft, ϑ) = ψsf (FtQ
t, ϑ) = ψsf (VRQt, ϑ). (2.89)



40

Since the above has to hold for all Q ∈ O, choosing Q = R

ψ = ψsf (V, ϑ) = ψ̂sf (B, ϑ). (2.90)

Substituting the above in (2.42) we obtain

ψ = ψ̂sf (B, ϑ) = ψ̂sf (QBQt, ϑ). (2.91)

Then, it follows from theorem 2.2 that for the above to hold

ψ = ψ̂sf (B, ϑ) = ψ̌sf (I1, I2, I3, ϑ). (2.92)

Since the principal invariants of B are related bijectively to the invariants J1, J2 and

J3

ψ = ψsf (J1, J2, J3, ϑ). (2.93)

E. Constitutive relations for stress

In this section, some constitutive relations for stress from a stress free reference con-

figuration popular in the literature is recorded. As already mentioned, in this thesis

only unconstrained materials are studied.

1. Blatz-Ko constitutive relation

The first constitutive relation that we record was proposed by Blatz and Ko [66] to

model polyurethane and foam rubber. A general form of this constitutive relation is

T =
µ1

J3

[
µm(J3)1 + µ2B − (1 − µ2)B

−1
]
, (2.94)

where,

µm = J2µ3

3 − µ2

[
J2µ3

3 + J−2µ3

3

]
,
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µ1,µ2 and µ3 are material parameters such that µ1 > 0, 0 ≤ µ2 ≤ 1, µ3 > 0 and in

general depends on X, in which case the body is inhomogeneous. Of special interest

are the two special forms of the above relation, obtained when µ2 = 1 and µ2 = 0

used to model polyurethane and foam rubber respectively. Then, when µ2 = 1

T =
µ1

J3

[
B − J−2µ3

3 1
]
, (2.95)

and when µ2 = 0

T =
µ1

J3

[
J2µ3

3 1 − B−1
]
. (2.96)

2. Exponential constitutive relation

Fung [67] observed that the stress stretch response of soft tissues could be exponential.

Based on this observation and heuristic considerations we study a constitutive relation

of the form

T = µ1µ2 exp(Q)

[
2B +

(
J1 −

5

J2
3

)
1

]
, (2.97)

where Q = µ2[J1J3 + 5
J3

− 8] and µ1, µ2 are material parameters such that µ1 > 0

and µ2 > 0. Note that T = 0 when Ft = 1. We shall assume, the above constitutive

relation to model soft tissues, as a first approximation. We shall at times call a

material whose constitutive relation is given by (2.97) as biological material.

F. Issues relating to material symmetry

Finally, we address the issue of when the initial and the rotated reference configura-

tions are distinguishable? In engineering mechanics, the members of the symmetry

group of a solid are those rotations that does not change the mechanical response.

However, we find this unsatisfactory.

Towards this, we find that the uniaxial stress versus stretch response could change
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with the direction even for isotropic bodies. It is well known that for Neumann bound-

ary value problems the solution is not unique (see for example Truesdell and Noll [22],

Beatty [68]). The boundary value problems corresponding to most of the experiments

performed for characterizing the body, namely uniaxial, biaxial, torsion experiments,

are purely Neumann boundary value problems16, especially when the deformation is

completely specified but for some parameters in them. Thus, the assumed form of

the displacement need not be the only solution, within the context of finite elastic-

ity. Here, we construct a deformation for uniaxial extension that is admissible for a

constitutive relation describing the mechanical response of a homogeneous, isotropic,

body from a stress free configuration, such that the uniaxial stress (Txx) versus stretch

(λsx) response in x - direction is different from the uniaxial stress (Tyy) versus stretch

(λsy) response in y - direction. Clearly, we are studying the mechanical response of

a homogeneous, isotropic bodies which according to the prevailing conjecture should

not show directional dependence.

Consider a deformation of the form

x = λ1X + κ1Y, y = −κ1
λ2

λ1

X + λ2Y, z = λ3Z. (2.98)

where (X,Y, Z) and (x, y, z) represents the coordinates of a typical material point

before and after deformation in cartesian coordinates. Here λ1, λ2, λ3 and κ1 are

constants. The matrix representation of the gradient of deformation in Cartesian

coordinates is

Ft =




λ1 κ1 0

−λ2

λ1
κ1 λ2 0

0 0 λ3




, (2.99)

16The boundary value problem should not be confused with the stress or displace-
ment controlled experiment.
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and that of the left Cauchy-Green stretch tensor is

B =




λ2
1 + κ2

1 0 0

0 (λ2

λ1
)2(λ2

1 + κ2
1) 0

0 0 λ2
3




, (2.100)

and its inverse has a matrix representation

B−1 =




1
λ2
1+κ2

1
0 0

0 (λ1

λ2
)2 1

(λ2
1+κ2

1)
0

0 0 1
λ2
3




. (2.101)

Hence, the invariants

J1 = (λ2
1 + κ2

1)(1 + (
λ2

λ1

)2) + λ2
3, (2.102)

J2 =
1

λ2
1 + κ2

1

(1 + (
λ1

λ2

)2) +
1

λ2
3

, (2.103)

J3 =
λ2λ3

λ1

(λ2
1 + κ2

1). (2.104)

Thus, λ3λ2/λ1 > 0. In the absence of body forces, it could be trivially verified that

the balance of linear momentum is satisfied for a homogeneous body.

Let us consider biaxial stretching (i.e. Txx = T1, Tyy = T2 and all other matrix

components of the stress are zero) of a body whose mechanical response is governed by,

for example, a special form of Blatz-Ko constitutive relation (2.95) and we identify the

material parameter µ1, with the characteristic stress to non-dimensionalize stress. It

is pertinent to note that Horgan [69] found this special form of the Blatz-Ko potential

to be globally elliptic.

Now, the parameters λ1, λ2, λ3 and κ1 have to be evaluated from the boundary
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conditions

T1 =
λ1

λ2λ3

− (
λ2λ3

λ1

(λ2
1 + κ2

1))
−(2µ3+1), (2.105)

T2 =
λ2

λ1λ3

− (
λ2λ3

λ1

(λ2
1 + κ2

1))
−(2µ3+1), (2.106)

T3 = 0 =
λ3λ1

λ2(λ2
1 + κ2

1)
− (

λ2λ3

λ1

(λ2
1 + κ2

1))
−(2µ3+1). (2.107)

Equation (2.107) can be solved to obtain λ3 as

λ3 = (
λ1

λ2(λ2
1 + κ2

1)
)

µ3
(µ3+1) (2.108)

Now, equations (2.105) and (2.106) have to be solved for λ1, λ2 and κ1. We im-

mediately find that there are more unknowns than available equations. So, let us

assume17

κ2
1 = K(λ2

1 + λ2
2 − 2), K = 0.5 (2.109)

such that κ1 = 0 when Ft = 1, since the reference configuration is stress free. Sub-

stituting (2.109) in (2.105) and (2.106) we obtain two non-linear equations in λ1 and

λ2.

First let us consider the uniaxial stretching in the x - direction. Now, T2 = 0.

For a given value of λ1, we numerically solve the non-linear equation (2.106) to obtain

λ2 using bisection algorithm. The initiation of the algorithm ensures the existence of

at least one solution18. Having obtained the value of λ2 we use (2.105) to compute

the non-dimensional stress T1 required to maintain the given stretch ratio of λ1. For

17We note that only for certain functional forms of κ1 the equations (2.105) and
(2.106) has a real valued solution and it depends on the specific form of the consti-
tutive relation used.

18Since, T2(λ2) is a continuous function in λ2 and initiation of the bisection algo-
rithm requires two initial guesses - λg1

2 , λg2
2 - such that T2(λ

g1
2 )T2(λ

g2
2 ) < 0, initiation

of the bisection algorithm ensures the existence of a solution such that T2(λ2) = 0 in
the interval [λg1

2 ,λg2
2 ]
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Fig. 1. Stress vs. stretch plot for uniaxial extension along x and y direction.

the assumed form of homogeneous deformation (2.98) the stretch ratio along the x-

direction is computed to be, λsx =
√

λ2
1 + (λ2

λ1
κ1)2. Figure 1 captures this variation.

Similarly, we consider the uniaxial stretching in the y - direction. Now, T1 = 0.

For a given value of λ2 we numerically solve the non-linear equation (2.105) to obtain

λ1 using bisection algorithm. Using this value of λ1 and the assumed value of λ2 we

can determine the non-dimensional stress T2 required to maintain a stretch ratio, λ2,

from (2.106). For this case we compute the stretch along the y - direction as, λsy =
√

λ2
2 + κ2

1. Figure 1 captures this variation also. It is clear from the figure that the

response in the two directions are different. Equivalently, a 90o rotation of the body

about z - direction changes the stress required to engender identical stretches. Here it

is pertinent to note that the non-linear equations were solved to an accuracy of 10−10.

Figure 2a plots the same stresses as a function of the independent variable λ1 and
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λ2 respectively. Figure 2b plots the change in the angle between two line segments

in the current and the reference configuration. If the line segments in the reference

configuration are assumed to be oriented along the EX and EY then the change in

angle is given by

θc − θr = cos−1(
(λ2

1 − λ2
2)κ1

λ1

√
λ2

1 + (λ2

λ1
κ1)2

√
λ2

2 + κ2
1

) − 90. (2.110)

Thus, the two candidate deformations for a given Neumann boundary value problem

do not differ by just a rigid body deformation.

It is well known that transversely isotropic bodies shear when the uniaxial stretch-

ing direction doesn’t coincide with the fiber direction. However, for these transversely

isotropic bodies the principal direction of the stress and the left stretch tensor will

be different. In contrast, for deformation (2.98) the body shears and the principal

directions of the stress and the left stretch tensor are the same. It should be recog-

nized that this requirement of the principal directions being same for isotropic bodies

suggest only that B11 = ( ∂x
∂X

)2 + ( ∂x
∂Y

)2 + ( ∂x
∂Z

)2 = Λ2
1 and not that ( ∂x

∂X
)2 = Λ2

1.

Of course, other components of B should also have suitable values. Thus, in fact

the most general homogeneous deformation possible for uniaxial, biaxial or triaxial

stretching of an isotropic body is

x = λ1X + κ1Y + κ2Z, y = κ3X + λ2Y + κ4Z, z = κ5X + κ6Y + λ3Z, (2.111)

where λi’s and κi’s are constants that have to satisfy certain conditions.

Of course, if it is experimentally observed that the body does not or cannot shear

then κi = 0 and the mechanical response will not exhibit directional dependence. Also,

here it is not claimed that the directional dependence of the mechanical response

of any body is fully captured by the deformation of the proposed form. But, the
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vs. λi plot for uniaxial extension along x and y direction.



48

purpose of the above is to show that even a body that is indistinguishable to any

rotation otherwise, can mechanically respond differently. Another purpose here is

to provide concrete and simple example to show that purely Neumann boundary

condition results in non-unique solutions. The above boundary value problem is

not an exception but similar solutions are obtained for inflation, extension, twisting

and shearing of annular right circular homogeneous incompressible isotropic cylinders

in Saravanan [70]. Moreover, Saravanan and Rajagopal ([71],[72]) show that the

mechanical response of inhomogeneous bodies from stress free reference configuration

varies with the direction of loading. Consequently, we advocate caution in the use of

mechanical test in determining the symmetry group of a given body, experimentally.
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CHAPTER III

REPRESENTATIONS FROM STRESSED REFERENCE CONFIGURATION

As seen in the previous chapter, stress free configurations of bodies have enjoyed

a very special status in the development of representations for stress in solids, for

the simplification that it presumably affords. From philosophical point of view, all

that one requires is some configuration to enable description of the body. Hence,

it is mathematically reasonable to require the reference configuration to be stress

free. However, such representations serve little purpose to an experimentalist, since

such configurations, in many cases, are physically unattainable and hence the need

to develop representation for stress from a configuration that is not stress free. It

is this issue that we focus in this chapter. In subsequent chapters we show that

mathematical analysis using this representation is no more difficult than analysis

using representation from stress free reference configuration.

Certain variables, like density, internal energy, entropy, stress determine the state

of the body and are called state variables. Hence, the value of these state variables1

cannot change due to different equivalent mathematical representations of the same

state. To elaborate, changes in the coordinate system or the reference configuration

cannot change the value of the density or internal energy at a material point in a given

state of the body. To solve problems of interest one has to choose the coordinate basis

and the reference configuration, which determines the domain of the function that

mathematically depicts these state variables. While the domain of these function de-

pends on the particular choice of the coordinate basis and the reference configuration,

1The value of the components of a tensor of order greater than zero do depend
on the coordinate basis. Then, as remarked in chapter II, two representations are
different only if their orbits do not coincide.
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their co-domain doesn’t. Just like one requires to choose a coordinate system to al-

gebraically represent a curve in space, the reference configuration facilitates algebraic

representation of the stress. This is the concept used for obtaining a representation

to capture the thermo-mechanical response from a reference configuration that is not

stress free, in the following sections.

We begin by assuming that the stressed configuration which is to be used as

reference is obtained through a smooth bijective mapping from a stress free configu-

ration. Using the concept outlined above we develop a representation for stress from

the stressed configuration in terms of the stress, To in the stressed configuration and

the gradient of motion from this configuration Ht. Then, it is easy to see that the

same derivation holds for piecewise smooth bijective mapping between the stressed

and stress free configuration. Thus, the representation obtained here could be used

to study prestressed body provided the prestresses could be relieved, theoretically, by

finite number of cuts.

A. Representation for stress

In this section, we obtain a representation for stress from a stressed reference config-

uration. As described above the sought representation for h(Ht,T
o, ϑ), is obtained

by observing that

T = f(B, ϑ) = f(HtBoH
t
t, ϑ) = h(Ht,T

o, ϑ), (3.1)

where f(B, ϑ) is the representation for stress from a stress free reference configuration

obtained in the previous chapter and we have made use of the equations (2.13) and

(2.16) to obtain the above equation. Now, to obtain h we have to express Bo in terms

of To.
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Towards this, from (2.21) we obtain

B2 = I1B − I21 + I3B
−1, (3.2)

B−2 =
1

I3

[B − I11 + I2B
−1], (3.3)

where Ii are the principal invariants of B. Using the above equations and the general

expression for stress from stress free reference configuration, (2.85) a straightforward

computation yields

T2 = β01 + β1B + β2B
−1, (3.4)

where

β0 = α2
0 + 2α1α2 − J2J

2
3α2

1 −
J1

J2
3

α2
2,

β1 = 2α1α0 + α2
1J1 +

1

J2
3

α2
2,

β2 = 2α2α0 + α2
1J

2
3 + J2α

2
2.

Thus, βi = βi(J1, J2, J3, ϑ), are scalar valued functions of the invariants of B and

temperature. Solving for B and B−1 in equations (2.85) and (3.4) we obtain

B =
1

∆
[(β0α2 − α0β2)1 + β2T − α2T

2], (3.5)

B−1 =
1

∆
[(α0β1 − β0α1)1 − β1T + α1T

2], (3.6)

when ∆ = (α1β2 − α2β1) 6= 02.

Now, as defined in chapter II, let χ(X, to) denote the motion field from the stress-

free reference configuration to a stressed configuration which we plan to use as the

reference and moreover let To denote the stress field in the stressed configuration.

2We later show that this condition has to be satisfied by any admissible constitutive
relation provided the body is not under state of stress corresponding to hydrostatic
pressure.
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Then, using the above equations the left Cauchy-Green stretch tensor and its inverse

at a material point in the stressed reference configuration could be written as

Bo = δ01 + δ1T
o + δ2(T

o)2, (3.7)

B−1
o = κ01 + κ1T

o + κ2(T
o)2, (3.8)

where

δ0 =
1

∆

[
− Jr

1

Jr2
3

a3
2 + (2a1 − Jr

2a0) a2
2 −

(
Jr

2J
r2
3 a2

1 + a2
0

)
a2 − Jr2

3 a2
1a0

]
, (3.9)

δ1 =
1

∆

[
2a2a0 + Jr2

3 a2
1 + Jr

2a
2
2

]
, δ2 = −a2

∆
, (3.10)

κ0 =
1

∆

[
Jr

2J
r2
3 a3

1 + (Jr
1a0 − 2a2) a2

1 +

(
a2

0 +
Jr

1

Jr2
3

a2
2

)
a1 +

1

Jr2
3

a0a
2
2

]
, (3.11)

κ1 = − 1

∆

[
2a1a0 + Jr

1a
2
1 +

a2
2

Jr2
3

]
, κ2 =

a1

∆
, (3.12)

∆ = Jr2
3 a3

1 − Jr
1a2a

2
1 + Jr

2a
2
2a1 −

1

Jr2
3

a3
2, (3.13)

and ai = αi(J
r
1 , J

r
2 , J

r
3 , ϑ) where Jr

1 , Jr
2 and Jr

3 are invariants of Bo. Now it is pertinent

to observe that if To = 0, ϑ = ϑo, Jr
1 = 3, Jr

2 = 3 and Jr
3 = 1, then it follows from

(2.88) that a0 + a1 + a2 = 0 and hence δ0 = κ0 = 1, as it should be.

Here, it is important to recognize that the parameters Jr
i , i = {1, 2, 3}, depend

only on To and therefore are constants at a given material point and a stressed

configuration. Hence, they are treated as parameters in the constitutive equation

and are determined from the restrictions that these parameters have to satisfy, as

illustrated shortly.

Next, substituting equations (3.7) and (3.8) in

J1 = 1 · B = tr(HtFoF
t
oH

t
t) = C̃ · Bo, (3.14)

J2 = 1 · B−1 = tr(H−t
t F−t

o F−1
o H−1

t ) = C̃−1 · B−1
o , (3.15)
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we obtain

J1 = J̃m1(LJ̃) = δ0J̃1 + δ1J̃4 + δ2J̃5, (3.16)

J2 = J̃m2(LJ̃) = κ0J̃2 + κ1J̃6 + κ2J̃7, (3.17)

J3 = J̃m3(LJ̃) = J̃3J
r
3 , (3.18)

where, LJ̃ = {J̃1, J̃2, J̃3, J̃4, J̃5, J̃6, J̃7},

J̃1 = C̃ · 1, J̃2 = C̃−1 · 1, J̃3 = det(Ht) (3.19)

J̃4 = C̃ · To, J̃6 = C̃−1 · To, (3.20)

J̃5 = C̃ · (To)2, J̃7 = C̃−1 · (To)2. (3.21)

Hence,

T = h(Ht,T
o, ϑ) = α01 + α1Ht

[
δ01 + δ1T

o + δ2(T
o)2

]
Ht

t

+α2H
−t
t

[
κ01 + κ1T

o + κ2(T
o)2

]
H−1

t , (3.22)

when ∆ 6= 0 and where αi = αi(J̃m1, J̃m2, J̃m3, ϑ).

Finally we consider the case, when ∆ = 0. Then, a straightforward computation

from equations (2.85) and (3.4) shows that

β2T − α2T
2 = [α0β2 − α2β0]1. (3.23)

It then follows that for the above equation to hold all the three eigen values of T

should be equal and is given by

p =





1
2α2

[
β2 ±

√
β2

2 − 4α2(α0β2 − α2β0)
]

, when α2 6= 0,

α0 , when α2 = 0,
. (3.24)

We note that since ∆ is a function of the invariants of B it cannot be zero when all



54

the eigen values of B are distinct. Hence, the algebraic multiplicity of the eigen values

of B must be two or three when ∆ = 0. In appendix-A we show that, in general,

both solutions, i.e. B = λ1 and B = λ1 + λ3e ⊗ e are possible for many consti-

tutive relations. Since, it is physically unrealistic for a body to shorten or lengthen

along a single direction on application of a hydrostatic pressure, we propose to place

restriction on the constitutive relations so that these solutions are not possible. (We

elaborate on these restrictions shortly.)

Therefore, as before assuming that χ(X, to) exist, when ∆ = 0, To = po1 and

Bo = δ31, B−1
o =

1

δ3

1. (3.25)

where

po =





1
2a2

[
b2 ±

√
(a2

1J
r2
3 − a2

2J
r
2 )

2
+ 4a3

2

(
2a1 − Jr

1

Jr2
3

a2

)]
, when a2 6= 0,

a0 , when a2 = 0,

. (3.26)

b2 = 2a2a0 + a2
1J

r2
3 + Jr

2a
2
2, Jr

1 = 3δ3, Jr
2 = 3/δ3, Jr

3 = δ
3/2
3 . Substituting (3.25) in

(3.14) and (3.15)

J̃m1 = δ3J̃1, J̃m2 =
1

δ3

J̃2, J̃m3 = Jr
3 J̃3, (3.27)

and hence

T = h(Ht,T
o, ϑ) = α01 + α1δ3B̃ + α2

1

δ3

B̃−1, (3.28)

when ∆ = 0 where αi = αi(J̃m1, J̃m2, J̃m3, ϑ) and we observe that δ3 depends only on

To, which is established next.
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B. Restrictions on constitutive representation

We obtain Jr
i from the requirement that BoB

−1
o = 1 and the requirement that T =

To when Ht = 1 and ϑ = ϑo.

Taking the product of equations (3.7) and (3.8) and using Cayley-Hamilton the-

orem we obtain

0 = γ11 + γ2T
o + γ3(T

o)2 (3.29)

where

γ1 = δ0κ0 + K3[κ1δ2 + δ1κ2 + δ2κ2K1] − 1, (3.30)

γ2 = δ1κ0 + κ1δ0 + δ2κ2K3 − K2[κ1δ2 + δ1κ2 + δ2κ2K1], (3.31)

γ3 = δ2κ0 + δ1κ1 + δ0κ2 − δ2κ2K2 + K1[κ1δ2 + δ1κ2 + δ2κ2K1], (3.32)

Ki’s are the principal invariants of To. A sufficient condition that ensures (3.29) is:

γ1 = 0, γ2 = 0, γ3 = 0. (3.33)

We note that the above is a necessary condition when the eigen values of To are

distinct.

Then, the requirement that T = To when Ht = 1 and ϑ = ϑo could be cast as

requiring

[c0 + c1δ0 + c2κ0]1 + [c1δ1 + c2κ1 − 1]To + [c1δ2 + c2κ2](T
o)2 = 0, (3.34)

where, ci = αi(J
r
m1, J

r
m2, J

r
m3, ϑo) and

Jr
m1 = 3δ0 + tr(To)δ1 + tr((To)2)δ2, (3.35)

Jr
m2 = 3κ0 + tr(To)κ1 + tr((To)2)κ2, (3.36)

Jr
m3 = Jr

3 . (3.37)
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As before, a sufficient condition that ensures (3.34) is

c0 + c1δ0 + c2κ0 = 0, c1δ1 + c2κ1 = 1, c1δ2 + c2κ2 = 0. (3.38)

The equations (3.33) and (3.38) are solved for the unknowns Jr
1 , Jr

2 , Jr
3 . This is

illustrated in section-E.

For the case when ∆ = 0

c0 + c1δ3 +
c2

δ3

= po, (3.39)

where ci = αi(3δ3,
3
δ3

, δ
3/2
3 , ϑo), is solved for the only unknown, δ3.

It remains to be shown that the above system of equations has a solution. This

can be shown only when αi’s are specified.

Finally, when ∆ = 0, since the algebraic multiplicity of the eigen values of To

was three, we required the algebraic multiplicity of the eigen values of Bo to be

three as well. However, as noted in the appendix-A there exist solutions for which

the algebraic multiplicity of the eigen values of Bo is two. Since, such solutions are

physically unrealistic we require

∆ = Jr2
3 a3

1 − Jr
1a2a

2
1 + Jr

2a
2
2a1 −

1

Jr2
3

a3
2 6= 0, when (Jr

1 , J
r
2 , J

r
3 ) ∈ (S − P), (3.40)

where

S = {(Jr
1 , J

r
2 , J

r
3 )|0 < Jr

1 < ∞, 0 < Jr
2 < ∞, 0 < Jr

3 < ∞}

P =

{
(3Λ2,

3

Λ2
, Λ3)|0 < Λ < ∞

}
. (3.41)

Many a times, when a1 6= 0, we find it useful to express the condition (3.40) as

Jr2
3 6= Jr

1

a2

a1

− Jr
2

(
a2

a1

)2

+
1

Jr2
3

(
a2

a1

)3

. (3.42)
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Immediately we infer that if a2

a1
< 0, the restriction (3.40) holds. Thus, the E-

inequalities (refer Truesdell and Noll [22] section 51) ensures ∆ 6= 0.

For the eigen value, po to be real we require β2
2 − 4α2[α0β2 − α2β0] ≥ 0, i.e.,

(
a2

1(J
r
3 )2 − a2

2J
r
2

)2
+4a3

2

(
2a1 −

Jr
1

(Jr
3 )2

a2

)
≥ 0, when (Jr

1 , J
r
2 , J

r
3 ) ∈ P (3.43)

Factorizing (3.43), when a1 6= 0, we obtain

(
Λ4 − a2

a1

)3 (
Λ4 +

3a2

a1

)
≥ 0. (3.44)

Immediately we infer that

−1

3
≤ a2

a1Λ4
≤ 1 (3.45)

when (Jr
1 , J

r
2 , J

r
3 ) ∈ P.

a. Restrictions due to material symmetry

The above expression for stress from stressed reference configuration was obtained

only enforcing coordinate frame invariance. Hence, let us now explore the restriction

due to material symmetry. For the restriction (2.53) to hold we require

To = GoT
oGt

o. (3.46)

In the following we shall assume that Go ⊆ O3, as before. Now, ToGo = GoT
o. Thus,

the representation of To should be such that it commutes with all the members of the

3We note that this assumption yields just a necessary condition for there exist
non-orthogonal but unimodular Go for which (3.46) holds. For example, when To =
diag[T1, T1, T2] with T2 6= 0 then a class of such Go is

Go =

(
1 0 0
0 cos(θ) −ω sin(θ)
0 sin(θ)/ω cos(θ)

)
, (3.47)

where ω2 = T1/T2 and 0 ≤ θ ≤ 2π, a constant.
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set Go. Unlike, the case for stress free configuration, now it matters whether Go ⊆ O

or Go = O and hence a stressed configuration is anisotropic. Note that the restriction

(3.46) is same as (2.65) and would be used in section G to determine the material

symmetry of the prestressed body.

The requirement (2.60) when Gt ⊆ O reduces to requiring TGt = GtT, as in the

case when a stress free configuration is used as a reference.

C. Representation for Helmoltz potential from a stressed reference configuration

As discussed in the introduction, the representations are derived from the observation

that the value of the Helmoltz potential at a material point in the body, at a particular

state doesn’t depend on the specific configuration used as reference, even though the

formula used to compute them does. This reduces the problem to a simple calculus

problem in composite functions. To elaborate, say we know the representation of the

function, ψsf = ψ̂(J1, J2, J3, ϑ) per unit volume in the current configuration. However,

we are interested in finding the function ψo = ψ̂(LJ̃ , ϑ) such that

∫

V (κsf (B))

ψsf (J1, J2, J3, ϑ)J3dV =

∫

V (κo(B))

ψo(LJ̃ , ϑ)J̃3dV, (3.48)

where V (κsf (B)) denote the volume of the configuration κsf and V (κo(B)) the volume

of the configuration κo. Now, by virtue of having obtained functions J̃m1, J̃m2 and

J̃m3 such that

J1 = J̃m1, J2 = J̃m2, J3 = J̃m3

(see equations (3.16) to (3.18)) equation (3.48) becomes

∫

V (κo(B))

[ψsf (J̃m1, J̃m2, J̃m3, ϑ) − ψo(LJ̃ , ϑ)]J̃3dV = 0. (3.49)
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For the above equation to hold for any arbitrary subparts of the body in the config-

uration κo

ψo(LJ̃ , ϑ) = ψsf (J̃m1, J̃m2, J̃m3, ϑ), (3.50)

at all material points in B. Hence, we could write

ψ = ψ(Ht,T
o, ϑ) = ψ̂(J̃m1, J̃m2, J̃m3, ϑ), (3.51)

and consider the above equation as the most general representation for Helmoltz

potential satisfying coordinate frame indifference.

D. A thermodynamical framework for elastic response when the reference configu-

ration is stressed

In this section, we establish the connection between the Helmoltz potential and the

stress using the framework of thermodynamics. Towards this we compute dψ
dt

as4

dψ

dt
=

∂ψ̂

∂J̃m1

dJ̃m1

dt
+

∂ψ̂

∂J̃m2

dJ̃m2

dt
+

∂ψ̂

∂J̃m3

dJ̃m3

dt
+

∂ψ̂

∂ϑ

dϑ

dt

= N · D + [A + M] · dTo

dt
+

[
G +

∂ψ̂

∂ϑ

]
dϑ

dt
, (3.52)

where

N = J̃m3
∂ψ̂

∂J̃m3

1 + 2
∂ψ̂

∂J̃m1

Ht

[
δ01 + δ1T

o + δ2(T
o)2

]
Ht

t

−2
∂ψ̂

∂J̃m2

H−t
t

[
κ01 + κ1T

o + κ2(T
o)2

]
H−1

t , (3.53)

A =
∂ψ̂

∂J̃m1

[δ1C + 2δ2CTo] +
∂ψ̂

∂J̃m2

[
κ1C

−1 + 2κ2C
−1To

]
, (3.54)

4Note that dψ̂
dϑ

= G + ∂ψ̂
∂ϑ
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M =
∂ψ̂

∂J̃m1

[
∂δ0

∂To
J̃1 +

∂δ1

∂To
J̃4 +

∂δ2

∂To
J̃5

]
+

∂ψ̂

∂J̃m2

[
∂κ0

∂To
J̃2

+
∂κ1

∂To
J̃6 +

∂κ2

∂To
J̃7

]
+

∂ψ̂

∂J̃m3

J̃3
∂Jr

3

∂To
, (3.55)

G =
∂ψ̂

∂J̃m1

[
∂δ0

∂ϑ
J̃1 +

∂δ1

∂ϑ
J̃4 +

∂δ2

∂ϑ
J̃5

]
+

∂ψ̂

∂J̃m2

[
∂κ0

∂ϑ
J̃2 +

∂κ1

∂ϑ
J̃6 +

∂κ2

∂ϑ
J̃7

]

+
∂ψ̂

∂J̃m3

J̃3
∂Jr

3

∂ϑ
, (3.56)

Substituting (3.52) in (2.41), the 2nd law of thermodynamics, we obtain

1

ϑ
q · grad(ϑ) + [A + M] · dTo

dt
+

[
G +

∂ψ̂

∂ϑ
+ ρη

]
dϑ

dt

+ [ψ1 + N − T] · D ≤ 0. (3.57)

Hence, we require that

η = −1

ρ

[
G +

∂ψ̂

∂ϑ

]
, (3.58)

T = ψ1 + N, (3.59)

Therefore

α0(J̃m1, J̃m2, J̃m3, ϑ) = ψ + J̃m3
∂ψ̂

∂J̃m3

, α1(J̃m1, J̃m2, J̃m3, ϑ) = 2
∂ψ̂

∂J̃m1

,

α2(J̃m1, J̃m2, J̃m3, ϑ) = −2
∂ψ̂

∂J̃m2

, (3.60)

Substituting (3.59), (3.58), (3.52), (3.51), (2.40) and (2.23) in (2.31), the balance

of energy equation we obtain

[A + M] · dTo

dt
+ ρϑ

dη

dt
= ρg − div(q), (3.61)
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where

ρ
dη

dt
= −

[(
G +

∂ψ

∂ϑ

)
1 + GN

]
· D − ∂G

∂To
· dTo

dt
− ∂G

∂ϑ

dϑ

dt
− d

dt

(
∂ψ

∂ϑ

)
. (3.62)

where, GN = 2Ht
∂G
∂C

Ht
t.

While we could in principle obtain the evolution of density from (2.25), the stress

from (3.59), the entropy from (3.58), internal energy from the constitutive prescription

of Helmoltz potential, the motion from (2.27) and temperature from (3.61), there is no

equation to predict the evolution of To. Hence, we require additional principles like

maximum rate of entropy production to govern its evolution. Here we shall assume

that dTo

dt
= 0 and call such a process elastic.

E. Illustrative example

In this section, we specialize the general constitutive representations for stress from

stressed reference configurations obtained above, for two classes of constitutive rela-

tions introduced in section E of chapter II.

1. Blatz-Ko constitutive relation from a stressed reference configuration

First, we consider the constitutive relation introduced by Blatz and Ko [66] for homo-

geneous bodies from a stress free configuration. Here we modify this relation, relaxing

the requirement that the reference configuration be stress free. Towards this, we begin

by noting that for this case

α0 =
µmµ1

J̃m3

, α1 =
µ1µ2

J̃m3

, α2 =
µ1[µ2 − 1]

J̃m3

, (3.63)
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where µm = J̃2µ3

m3 − µ2[J̃
2µ3

m3 + J̃−2µ3

m3 ], µ1, µ2 and µ3 are material parameters and

depends at most on P. Substituting the above in equations (3.9) through (3.13)

δ0 =
µ3

1

∆

[
− Jr

1

Jr5
3

(µ2 − 1)3 +
1

Jr3
3

(2µ2 − Jr
2µ

r
m)(µ2 − 1)2

− 1

Jr
3

(
Jr

2µ
2
2 +

(
µr

m

Jr
3

)2
)

(µ2 − 1) − µ2
2

µr
m

Jr
3

]
, (3.64)

δ1 =
µ2

1

∆

[
2

Jr2
3

µr
m(µ2 − 1) + µ2

2 +
Jr

2

Jr2
3

(µ2 − 1)2

]
, (3.65)

δ2 = −µ1(µ2 − 1)

Jr
3∆

, κ2 =
µ1µ2

Jr
3∆

, (3.66)

κ1 = − µ2
1

Jr2
3 ∆

[
2µ2µ

r
m + Jr

1µ
2
2 +

(µ2 − 1)2

Jr2
3

]
, (3.67)

κ0 =
µ3

1

∆

[
Jr

2

Jr
3

µ3
2 + [Jr

1µ
r
m − 2(µ2 − 1)]

µ2
2

Jr3
3

+

(
µr2

m +
Jr

1

Jr2
3

(µ2 − 1)2

)
µ2

Jr3
3

+
µr

m

Jr5
3

(µ2 − 1)2

]
, (3.68)

∆ = µ3
1

[
µ3

2

Jr
3

− Jr
1

Jr3
3

(µ2 − 1)µ2
2 +

Jr
2

Jr3
3

(µ2 − 1)2µ2 −
1

Jr5
3

(µ2 − 1)3

]
, (3.69)

where µr
m = (Jr

3 )2µ3 − µ2[(J
r
3 )2µ3 + (Jr

3 )−2µ3 ] and hence

T =
µ1

J̃m3

{
µm1 + µ2Ht

[
δ01 + δ1T

o + δ2T
o2

]
Ht

t

+(µ2 − 1)H−t
t

[
κ01 + κ1T

o + κ2T
o2

]
H−1

t

}
, (3.70)

obtained from (3.22) assuming ∆ 6= 0. In fact, it can be easily shown that ∆ 6= 0,

when 0 ≤ µ2 ≤ 1, the region of interest.

Next, the requirement that T = To when Ht = 1 and ϑ = ϑo, requires

Jr
1µ1µ2(J

r
3 − 1)(µ2 − 1)3

Jr
3 (µ3

2[J
r4
3 + (Jr

2 − Jr
1 )Jr2

3 ] + µ2
2[J

r
1 − 2Jr

2 ]Jr2
3 + µ2Jr

2J
r2
3 + (1 − µ2)3)

= 0. (3.71)

Hence, µ2 = 0 or µ2 = 1 or Jr
3 = 1 to satisfy the above equation. The requirement
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(3.33) results in a set of three nonlinear equations which has to be solved numerically.

Since, here we do not study in any detail the general Blatz-Ko model no details of

the same is presented.

Then, when µ2 = 1, we obtain a special form of the Blatz-Ko constitutive relation

used to study the response of polyurethane. For this case

α0 = − µ1

J
[2µ3+1]
m3

, α1 =
µ1

Jm3

, α2 = 0. (3.72)

Now, we compute

δ0 =
1

(Jr
3 )2µ3

, δ1 =
Jr

3

µ1

, δ2 = 0,

κ0 = Jr
2 − Jr

1

(Jr
3 )2(µ3+1)

+
1

(Jr
3 )2(2µ3+1)

, κ1 =
1

µ1

[
2

(Jr
3 )(2µ3+1)

− Jr
1

Jr
3

]
, κ2 =

1

µ2
1

,

from the results presented in equations (3.64) to (3.69). Then, the stress is given by

T = − µ1

J̃
[2µ3+1]
m3

1 +
1

J̃m3

Ht

[
µ1

(Jr
3 )2µ3

1 + Jr
3T

o

]
Ht

t. (3.73)

In this case, the requirement that T = To when Ht = 1 and ϑ = ϑo, places no

restriction. The condition (3.33) requires

Jr
1 =

2

(Jr
3 )2µ3

+ (Jr
3 )4µ3+2 − (Jr

3 )2(µ3+1)

µ2
1

[
K3

µ1

(Jr
3 )2µ3+1 + K2

]
,

Jr
2 =

Jr
1

(Jr
3 )2(µ3+1)

− 1

(Jr
3 )2(2µ3+1)

+
1

(Jr
3 )2µ3

[
1 − K3J

r
3

µ3
1

]
,

0 = (Jr
3 )−2µ3 + Jr

3

K1

µ1

+
(Jr

3 )2(µ3+1)

µ2
1

[
K3

µ1

(Jr
3 )2µ3+1 + K2

]
− (Jr

3 )2(2µ3+1).(3.74)

First, the equation (3.74c) is solved for Jr
3 using bisection algorithm and then substi-

tuted in (3.74a) and (3.74b) to obtain Jr
1 and Jr

2 respectively. Thus, in this case, To

and material parameters µ1 and µ3 have to be specified.

Next, we study the case, when µ2 = 0, a special form of the Blatz-Ko relation
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used to study the response of foam rubber. For this case

α0 = µ1J
[2µ3+1]
m3 , α1 = 0 α2 = − µ1

Jm3

. (3.75)

Equations (3.64) to (3.69) simplifies to

δ0 = Jr
1J

r
3 − Jr

2 (Jr
3 )2(µ3+1) + (Jr

3 )2(2µ3+1), δ1 =
Jr

2J
r3
3 − 2(Jr

3 )(2µ3+3)

µ1

, δ2 =
Jr4

3

µ2
1

,

κ0 = (Jr
3 )2µ3 , κ1 = −Jr

3

µ1

, κ2 = 0,

for this case and hence, the stress is given by

T = µ1J̃
[2µ3−1]
m3 1 − 1

J̃m3

H−t
t

[
µ1(J

r
3 )2µ31 − Jr

3T
o
]
H−1

t . (3.76)

As before, while the requirement that T = To when Ht = 1 and ϑ = ϑo, places no

restriction, (3.33) results in

Jr
2 = 3(Jr

3 )2µ3 − Jr
3

K1

µ1

,

Jr
1 = Jr

2 (Jr
3 )2µ3+1 − (Jr

3 )4µ3+1 + (Jr
3 )−(2µ3+1) +

K3

µ3
1

(Jr
3 )−(2(µ3+2)),

0 =

[
K1

µ1

− (Jr
3 )2µ3−1

]
(Jr

3 )2(µ3+2) +

[
1 +

K3

µ3
1

Jr5
3

]
(Jr

3 )1−2µ3 − K2

µ2
1

Jr5
3 . (3.77)

First, we solve the nonlinear equation (3.77c) for Jr
3 and substitute it (3.77a) and

(3.77b) to obtain Jr
2 and Jr

1 respectively. Thus, for this case too, To and material

parameters µ1 and µ3 have to be specified.

2. Exponential constitutive relation from a stressed reference configuration

From (2.97) we obtain

α0 = µ1µ2 exp(Q)

[
J̃m1 −

5

J̃2
m3

]
, α1 = 2µ1µ2 exp(Q), α2 = 0, (3.78)
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where Q = µ2

[
J̃m1J̃m3 + 5

J̃m3
− 8

]
, while the material parameter µ2 is a positive

constant, the parameter µ1 is a function of P but µ1(P) > 0. Then, from equations

(3.9) through (3.13) we compute

δ0 = −Jr
1

2
+

5

2(Jr
3 )2

, δ1 =
exp(−Qr)

2µ1µ2

, δ2 = 0,

κ0 = Jr
2 +

Jr
1

2(Jr
3 )2

[
Jr

1 − 5

(Jr
3 )2

]
+

1

4(Jr
3 )2

[
Jr

1 − 5

(Jr
3 )2

]2

,

κ1 = − exp(−Qr)

2(Jr
3 )2µ1µ2

[
2Jr

1 − 5

(Jr
3 )2

]
, κ2 =

exp(−2Qr)

4µ2
1µ

2
2(J

r
3 )2

, (3.79)

where Qr = µ2

[
Jr

1J
r
3 + 5

Jr
3
− 8

]
. The stress is now given by

T = µ1µ2 exp(Q)

{(
J̃m1 −

5

J̃2
m3

)
1 + 2Ht [δ01 + δ1T

o]Ht
t

}
. (3.80)

where

J̃m1 = δ0J̃1 + δ1J̃4, J̃m3 = Jr
3 J̃3. (3.81)

The requirement T = To when Ht = 1 and ϑ = ϑo, translates into requiring 3δ0 +

δ1tr(T
o) = Jr

1 which yields

Jr
1 =

3

(Jr
3 )2

+ exp(−Qr)
tr(To)

5µ1µ2

. (3.82)

On substituting (3.79) into (3.33), we obtain

Jr
2 =

2Jr2
3

5 − Jr
1J

r2
3

[
1 − K3 exp(−3Qr)

8µ3
1µ

3
2J

r2
3

]
+

Jr
1

2Jr2
3

[
5

Jr2
3

− Jr
1

]
− 1

4Jr2
3

[
Jr

1 − 5

Jr2
3

]2

,

0 = 2Jr
1 − 5

Jr2
3

+
K3J

r4
3 exp(−3Qr)

2µ3
1µ

3
2(5 − Jr

1J
r2
3 )2

+
K2J

r2
3 exp(−2Qr)

2µ2
1µ

2
2(5 − Jr

1J
r2
3 )

− 4Jr6
3

(5 − Jr
1J

r2
3 )2

,

0 = K3
exp(−3Qr)

8µ3
1µ

3
2

+ K2
exp(−2Qr)

4µ2
1µ

2
2

δ0 + K1
exp(−Qr)

2µ1µ2

δ2
0 + δ3

0 − Jr2
3 , (3.83)

The nonlinear equations (3.83b) and (3.83c) are solved simultaneously by Newton’s

method for Jr
1 and Jr

3 in the neighborhood of (3, 1) respectively. Then, equation
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(3.83a) is used to compute Jr
2 . The so determined value of Jr

i satisfies (3.82), when

verified numerically. Thus, in this case material parameters µ1 and µ2 needs to be

specified apart from To.

F. Representation for infinitesimal deformation from a stressed reference configura-

tion

In many instances like in the study of the response of metals, finding approximate

solutions to boundary value problems, stability of solutions, one is interested in small

deformations from a stressed reference configuration. In this section, we develop

representations for the same. Usually (see Truesdell and Noll [22], Ieşan [16]), Taylor

series expansion of the stress about the stressed reference configuration, is used to

obtain this representation. Here we shall linearize (3.22) to obtain the representation

for infinitesimal deformation from a stressed reference configuration.

We begin with the following definitions:

K = Ft − 1, K̃ = Ht − 1, (3.84)

E = K + Kt, Ẽ = K̃ + K̃t, (3.85)

ε = tr(KKt), ε̃ = tr(K̃K̃t), (3.86)

where K denotes gradient of displacement from a stress-free configuration and K̃

gradient of displacement from a non stress-free configuration.

For a given coordinate basis in the current and the reference configuration, when

ε ¿ 1, ε̃ ¿ 1, (3.87)
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we compute

(B)ij = δij + (E)ij + o(ε), (B̃)ij = δij + (Ẽ)ij + o(ε̃), (3.88)

(B−1)ij = δij − (E)ij + o(ε), (B̃−1)ij = δij − (Ẽ)ij + o(ε̃), (3.89)

J1 = 3 + tr(E) + o(ε), J̃1 = 3 + tr(Ẽ) + o(ε̃), (3.90)

J2 = 3 − tr(E) + o(ε), J̃2 = 3 − tr(Ẽ) + o(ε̃), (3.91)

J3 = 1 + 1
2
tr(E) + o(ε), J̃3 = 1 +

1

2
tr(Ẽ) + o(ε̃), (3.92)

where δij denotes kronecher delta.

It then immediately follows that

(T )ij = αl
0(tr(E))δij + αl

1(tr(E))(E)ij + o(ε), (3.93)

where

αl
0(tr(E)) = α0 + α1 + α2, (3.94)

αl
1(tr(E)) = α1 − α2, (3.95)

when stress free reference configuration is used and Ji’s are given by (3.90) - (3.92).

It is worth while to note that, αl
i’s can be non-linear functions of tr(E). Further, even

though αl
i’s are function of all three invariants, they are functions of only tr(E) be-

cause, the invariants are computed using (3.90) through (3.92). Thus, the error in the

computed stress is due to the error in the estimated value of the matrix components

(B)ij and not in the constitutive relation for T.

When αl
0(tr(E)) = tr(E)λ and αl

1(tr(E)) = µ, where λ and µ are the popular

lamè constants, (3.93) reduces to

(T )ij = tr(E)λδij + µ(E)ij. (3.96)
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Thus, when

α1 − α2 = µ, (3.97)

α0 + α1 + α2 = λf(J1, J2, J3), (3.98)

where f(J1, J2, J3) is some function such that f(J1, J2, J3) = tr(E) when Ji’s are given

by equations (3.90) through (3.92), is admissible.

If we use a stressed reference configuration, the linearized representation for the

Cauchy stress is given by

(T )ij = γl
0δij + γl

1(Ẽ)ij + γl
2(T

o)ij + γl
3(T

o)ia(T
o)aj + γl

4[(K̃)ia(T
o)aj

+(T o)ia(K̃)ja] + γl
5[(K̃)ia(T

o)ab(T
o)bj + (T o)ia(T

o)ab(K̃)jb]

+γl
6[(K̃)ai(T

o)aj + (T o)ia(K̃)aj] + γl
7[(K̃)ai(T

o)ab(T
o)bj

+(T o)ia(T
o)ab(K̃)bj] + o(ε̃), (3.99)

where

γl
0(tr(Ẽ),To) = α0 + δ0α1 + κ0α2, (3.100)

γl
1(tr(Ẽ),To) = δ0α1 − κ0α2, (3.101)

γl
2(tr(Ẽ),To) = δ1α1 + κ1α2, (3.102)

γl
3(tr(Ẽ),To) = δ2α1 + κ2α2, (3.103)

γl
4(tr(Ẽ),To) = δ1α1, γl

5(tr(Ẽ),To) = δ2α1, (3.104)

γl
6(tr(Ẽ),To) = −κ1α2, γl

7(tr(Ẽ),To) = −κ2α2, (3.105)
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and

Jm1 = δ0[3 + tr(Ẽ)] + δ1[Ẽ · To + tr(To)] + δ2[Ẽ · (To)2 + tr((To)2)],

Jm2 = κ0[3 − tr(Ẽ)] + κ1[tr(T
o) − Ẽ · To] + κ2[tr((T

o)2) − Ẽ · (To)2],

Jm3 = Jr
3 [1 +

1

2
tr(Ẽ)], (3.106)

and J̃i is given by equations (3.90) through (3.92) and we computed H−1
t as (H−1

t )ij

= δij − (K̃)ij + o(ε̃). It is evident from equations (3.100) through (3.105) that the

value of γl
i depends on the stress in the reference configuration, To. Hence, even

within the context of linearized representations, the incremental stress depends on

the state of stress in the reference configuration, a well known result see for example,

Truesdell and Noll [22], Biot [23].

Next, we assume that the magnitude of the stress in the stressed reference con-

figuration is small, so that we could assume that the deformation from the stress-free

reference configuration to stressed configuration is infinitesimal and use the popular

constitutive specification for Cauchy stress, (3.96) from stress-free reference configu-

ration. This permits analytical study of the error in the estimated stresses from the

stressed configuration when this dependence on the stress in the reference configura-

tion is not considered.

We next record the expressions required to compute δi’s, κi’s. Let Ko = Fo −

1, Eo = Ko + Kt
o, then

x = tr(Eo) =
1

3λ + µ
tr(To), (3.107)

obtained from taking trace of (3.96) and rearranging. Noting,

Jr
1 = 3 + x, Jr

2 = 3 − x, (Jr
3 )2 = 1 + x. (3.108)
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we compute

1

(Jr
3 )2

= 1 − x,
Jr

1

(Jr
3 )2

= 3 − 2x. (3.109)

Now, we assume

a0(x) = xλ − µ − 2a2(x), a1(x) = µ + a2(x). (3.110)

where a2(x) is still an arbitrary function of x. We observe that equation (3.110) is

consistent with requirements (3.97) and (3.98).

Now, we compute linear approximation of δi’s and κi’s by substituting the above

equations in equations (3.9) through (3.13) as

∆ = µ3 + xµ2(2a2 + µ),

δ0 =
1

∆
{µ3 + xµ2(2a2 + µ − λ) − λx2[a2(λ + 2µ) + µ2]},

δ1 =
1

∆
{µ2 + x[2a2(λ + µ) + µ2]},

δ2 = −a2

∆
,

κ0 =
1

∆
{µ3 + xµ2(λ + µ + 2a2) + x2λ[a2(λ + 2µ) + µ(λ + µ)]},

κ1 = − 1

∆
{µ2 + x[2a2(λ + µ) + µ(µ + 2λ)]},

κ2 =
µ + a2

∆
. (3.111)

Here we note that to approximate d1x + d2x
2 as d1x, when x ¿ 1 requires a priori

estimate of di’s.

We find it helpful to define t = tr(Ẽ), α2(t) = α2(t + x) and note that tr(E) =

t + x. Now,

α1 = µ + α2(t), α2 = α2(t), α0 = (t + x)λ − µ − 2α2(t), (3.112)

and observe that the above equations is consistent with the requirement (3.97) and
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(3.98) and assumption (3.110).

Using the above equations now we compute γi’s given by equations (3.100) to

(3.105) as

γl
0 = tλ + (

λ

µ
)2 x2

[1 + x(1 + 2a2/µ)]
(α2 − a2), (3.113)

γl
1 = µ − xλ

1 + x(1 + 2a2/µ)

∗
{

(1 +
2α2

µ
) + x[(2 +

λ

µ
)(

α2 + a2

µ
+

2α2a2

µ2
) + 1]

}
, (3.114)

γl
2 = 1 +

2xλ

[1 + x(1 + 2a2/µ)]

a2 − α2

µ2
, (3.115)

γl
3 =

1

1 + x(1 + 2a2/µ)

a2 − α2

µ2
, (3.116)

γl
4 =

µ + α2

µ
[1 +

2xa2λ

µ2[1 + x(1 + 2a2/µ)]
], (3.117)

γl
5 = − (µ + α2)a2

µ3[1 + x(1 + 2a2/µ)]
, (3.118)

γl
6 =

α2

µ
[1 +

2xλ(a2 + µ)

µ2[1 + x(1 + 2a2/µ)]
], (3.119)

γl
7 = − (µ + a2)α2

µ3[1 + x(1 + 2a2/µ)]
. (3.120)

It could be observed from the above equations that if α2 is a function of t then all

γi’s are function of t. However, here we study only the case when α2 is a constant.

It then follows that α2 is also a constant. Hence, we define

α2 = α2 = a2 = κ, (3.121)

a constant that could take any value.

Straight forward computation yields

λ

µ
=

ν

1 − 2ν
, (3.122)

where ν is the poisson’s ratio. For this special case the linearized representation of
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Cauchy stress from a stressed reference configuration is given by

T − To = tλ1 + (µ − µe)Ẽ + γs
4[K̃To + ToK̃t] + γs

5[K̃(To)2 + (To)2K̃t]

+ γs
6[K̃

tTo + ToK̃] + γs
7[K̃

t(To)2 + (To)2K̃], (3.123)

where

µe =
xλ

1 + x(1 + 2κ/µ)

{
(1 +

2κ

µ
) + x[(2 +

λ

µ
)(

2κ

µ
+

2κ2

µ2
) + 1]

}
, (3.124)

γs
4 =

µ + κ

µ
[1 +

2xκλ

µ2[1 + x(1 + 2κ/µ)]
], (3.125)

γs
5 = − (µ + κ)κ

µ3[1 + x(1 + 2κ/µ)]
, (3.126)

γs
6 =

κ

µ
[1 +

2xλ(κ + µ)

µ2[1 + x(1 + 2κ/µ)]
], (3.127)

γs
7 = − (µ + κ)κ

µ3[1 + x(1 + 2κ/µ)]
. (3.128)

obtained by substituting equation (3.121) in equations (3.113) through (3.120).

Figure 3 plots µe/µ as a function of tr(To/µ) fixing the values of κ/µ and ν. Here

we have used the equations (3.107) to compute x in terms of tr(To). It immediately

transpires from (3.124) that when κ/µ > κo(x, ν) 5, µe > 0 and vice versa. Further,

the value of µe depends on the magnitude of κ/µ.

When | 2xκ/µ | ¿ 1, | 2xλκ/µ2 | ¿ 1 and | 2x(κ/µ + 1)λ/µ | ¿ 1 we obtain

γs
4 = 1 +

κ

µ
, γs

6 =
κ

µ
, γs

5 = γs
7 = − κ

µ2
(1 +

κ

µ
). (3.129)

Noting that, the value of the matrix components of To/µ would be of the order 10−3,

therefore if κ/µ ¿ 1000, then we could neglect the terms like KTo, to obtain

T − To = λ1tr(E) + (µ − µe)Ẽ. (3.130)

5Analytical determination of this parameter is not required for the discussion below
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Fig. 3. µe/µ vs. tr(To)/µ when (a) κ/µ = −50 for various values of ν (b) ν = 0.35

for various values of κ/µ.
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G. Representation for prestresses

In this section, we concern ourself with developing representations for the prestress

fields. The purpose of this section is to explore the restrictions and minimum as-

sumptions that could help theoretically determine the prestress field. Later, these

competing assumptions can be verified through specific experiments to obtain the

prestress field in a given body. We also examine the possibility of representing the

prestresses using Fourier series.

The prestress fields has to satisfy balance of linear momentum under static con-

ditions, i.e.,

Div(To) + ρob = 0, (3.131)

along with the traction free boundary condition

(To)tn = 0, (3.132)

where, n is the unit normal on the surface of the body. One of the issues here is

whether the body forces can be neglected. Though, it is customary to neglect the

body forces, the appropriateness of this requires detailed study. Even though we

neglect the body forces, we note that inclusion of them in the procedure outlined

below only complicates the algebraic manipulations.

If body forces were to be considered, then it immediately follows that uniform

prestress fields is not possible, since the balance of linear momentum (3.131) cannot be

satisfied. When b = 0, Hoger [73] showed that the prestress field cannot be uniform.

Briefly, in the absence of body forces and traction on the boundary of the body, the

volume average of the stresses computed using the mean stress theorem (see Gurtin

[74]), is zero. Hence, the cartesian components of the stress should take both positive

and negative values in the body. Thus, the prestress field has to be non-uniform.
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Now, there are two approaches to specify the prestress field. One of them is

to assume that all the points in the body have the same material symmetry and

specify the symmetry. Then, the prestress field has to satisfy (3.46), (3.131) and

(3.132). However, the requirement that the entire body have the same symmetry

is restrictive. See Hoger [63] for details of this approach. Another approach, is to

assume that the prestress is a function of the subset of the coordinates, (P,Q,R) and

to integrate the reduced balance of linear momentum equations. The reduction made

possible due to traction free boundary condition. A variant of this approach was

followed by Hoger [73]. Using this approach one can obtain prestress fields such that

the entire body has the same symmetry or different symmetries. These methods of

prescription of the prestresses is possible because it is not necessary for the prestresses

to satisfy the compatibility conditions, since prestresses arise mostly due to misfit of

subparts of the body. However, there would arise some restrictions, since we require

the prestresses to be relieved by finite number of cuts. We are unable to quantify

these restrictions and hence assume that the prescribed prestress fields satisfies these

restriction.

It is well known (see Hoger [73]) that the prestress distribution depends on the

geometry of the body. Hence, we outline the procedure for obtaining the prestress

distribution in three different geometries.

1. Prestress fields in rectangular slabs

First, we consider a body, B that is a rectangular slab, defined as

B = {(P,Q,R)|P1 ≤ P ≤ P2, Q1 ≤ Q ≤ Q2, R1 ≤ R ≤ R2}, (3.133)

where (P,Q,R) denote the coordinates of a typical point in Cartesian coordinates.

Here Pi’s, Qi’s and Ri’s are constants and (Ep, Eq, Er) cartesian coordinate basis.
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We begin by exploring the case when T̂o := To(P ). First, we obtain the restric-

tions due to traction free boundary condition (3.132). For surfaces, Q = Q1 and Q

= Q2 to be traction free, To(P )Eq = 0. Consequently

(T o(P ))pq = (T o(P ))qq = (T o(P ))qr = 0. (3.134)

Similarly, for surfaces R = R1 and R = R2 to be traction free, the condition To(P )Er

= 0 requires

(T o(P ))pr = (T o(P ))qr = (T o(P ))rr = 0. (3.135)

Finally, for surfaces P = P1 and P = P2 to be traction free, T(Pi)Ep = 0 for i =

{1, 2}. Hence

(T o(Pi))pp = (T o(Pi))pq = (T o(Pi))pr = 0, (3.136)

for i = {1, 2}. Using (3.134) and (3.135), the balance of linear momentum (3.131)

in the absence of body forces requires (T o(P ))pp = constant. Then, the boundary

condition (3.136) implies that (T o(P ))pp = 0. Thus, the rectangular slab cannot

support prestress fields of the form T̂o := To(P ).

Next, we consider the case when, T̂o := To(P,Q). For this case, the traction free

condition (3.132) requires

(T o(P,Q))qr = (T o(P,Q))pr = (T o(P,Q))rr = 0, (3.137)

(T o(Pi, Q))pp = (T o(Pi, Q))pq = (T o(P,Qi))qq = (T o(P,Qi))pq = 0, (3.138)

for i = {1, 2}. Using (3.137), the balance of linear momentum (3.131) reduces to

∂(T o)pp

∂P
+

∂(T o)pq

∂Q
= 0, (3.139)

∂(T o)pq

∂P
+

∂(T o)qq

∂Q
= 0. (3.140)
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Integrating the above equations, we obtain

(T o)pp = −
∫ P

P1

∂(T o)pq

∂Q
dP, (3.141)

(T o)qq = −
∫ Q

Q1

∂(T o)pq

∂P
dQ. (3.142)

Then, for the boundary condition (3.138) to hold

(T o)pq(Pi, Q) = (T o)pq(P,Qi) = 0, (3.143)
∫ P2

P1

∂(T o)pq

∂Q
dP =

∫ Q2

Q1

∂(T o)pq

∂P
dQ = 0, (3.144)

for i = {1, 2}. A class of function for (T o)pq that satisfies the requirements (3.143)

and (3.144) is

(T o)pq = ε1 sin(2πkp
P − P1

P2 − P1

) sin(2πkq
Q − Q1

Q2 − Q1

), (3.145)

where kp and kq are arbitrary integers and ε1 is a constant. Since, divergence is a

linear operator any linear combination of these functions too is admissible, making a

Fourier series representation for prestresses possible. Thus, a traction free rectangular

slab doesn’t ensure stress free condition.

Let us explore the above prestress field. When (T o)pq is given by (3.145) the

normal stress components are given by

(T o)pp = ε1
kq(P2 − P1)

kp(Q2 − Q1)
[cos(2πkp

P − P1

P2 − P1

) − 1] cos(2πkq
Q − Q1

Q2 − Q1

), (3.146)

(T o)qq = ε1
kp(Q2 − Q1)

kq(P2 − P1)
cos(2πkp

P − P1

P2 − P1

)[cos(2πkq
Q − Q1

Q2 − Q1

) − 1], (3.147)

obtained from (3.141) and (3.142) respectively. It follows that the three eigen values of

To are {0, 0.5[(T o)pp + (T o)qq] ± 0.5
√

[(T o)pp + (T o)qq]2 + 4(T o)2
pq}. Noting that the

matrix components of the stress (T o)pp, (T o)qq, (T o)pq cannot be identically zero at a

material point, we immediately conclude that the three eigen values of To are distinct.
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It then, immediately follows from the work of Coleman and Noll [62] and (3.46) that

the appropriate symmetry group, (which is a subset of the proper orthogonal group,)

for this case is monoclinic. Thus, this procedure permits prestress fields such that

the entire body has a particular symmetry.

Following on similar lines if T̂o := To(P,Q,R) then we obtain

(T o)pp = −
∫ P

P1

(
∂(T o)pq

∂Q
+

∂(T o)pr

∂R
)dP,

(T o)qq = −
∫ Q

Q1

(
∂(T o)pq

∂P
+

∂(T o)qr

∂R
)dQ,

(T o)rr = −
∫ R

R1

(
∂(T o)pr

∂P
+

∂(T o)qr

∂Q
)dR,

from integrating the balance of linear momentum (3.131). Further, to ensure traction

free conditions (3.132) the functions (T o)pq,(T
o)pr and (T o)qr should be such that

∫ P2

P1

(
∂(T o)pq

∂Q
+

∂(T o)pr

∂R
)dP = 0,

∫ Q2

Q1

(
∂(T o)pq

∂P
+

∂(T o)qr

∂R
)dQ = 0,

∫ R2

R1

(
∂(T o)pr

∂P
+

∂(T o)qr

∂Q
)dR = 0,

(T o(Pi, Q,R))pq = (T o(P,Qi, R))pq = 0,

(T o(Pi, Q,R))pr = (T o(P,Q,Ri))pr = 0,

(T o(P,Qi, R))qr = (T o(P,Q,Ri))qr = 0,
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for i = (1, 2). A class of functions that satisfy the above requirements is

(T o)pq = ε1 sin(2πk1
p

P − P1

P2 − P1

) sin(2πk1
q

Q − Q1

Q2 − Q1

) sin(2πk1
r

R − R1

R2 − R1

),

(T o)pr = ε2 sin(2πk2
p

P − P1

P2 − P1

) sin(2πk2
q

Q − Q1

Q2 − Q1

) sin(2πk2
r

R − R1

R2 − R1

),

(T o)qr = ε3 sin(2πk3
p

P − P1

P2 − P1

) sin(2πk3
q

Q − Q1

Q2 − Q1

) sin(2πk3
r

R − R1

R2 − R1

),

as above ki
j are arbitrary integers and εi’s are constant.

2. Prestress fields in right circular annular cylinders

Next, we consider a body, B that is the annular region between the two coaxial right

circular cylinders:

B = {(R, Θ, Z)|Ri ≤ R ≤ Ro, 0 ≤ Θ ≤ 2π, Zb ≤ Z ≤ Ze}. (3.148)

where (R, Θ, Z) are coordinates of a typical point in cylindrical polar coordinates and

Ri, Ro, Zb and Ze are constants.

We begin by examining prestress fields of the form T̂o := To(R). Following

arguments similar to that described above, if surfaces defined by R = Ri, R = Ro, Z

= Zb, Z = Ze are traction free, then

(T o(R))ZZ = (T o(R))RZ = (T o(R))ZΘ = 0, (3.149)

(T o(Ri))RR = (T o(Ro))RR = (T o(Ri))RΘ = (T o(Ro))RΘ = 0. (3.150)

Using (3.149), the balance of linear momentum (3.131) reduces to

d(T o)RR

dR
+

((T o)RR − (T o)ΘΘ)

R
= 0, (3.151)

d(T o)RΘ

dR
+

2(T o)RΘ

R
= 0. (3.152)
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These equations can easily be integrated to obtain

(T o)RΘ =
k

R2
, (3.153)

(T o)RR =
1

R

∫ R

Ri

(T o)ΘΘdR, (3.154)

where k is a constant. Then, the boundary condition (3.150) requires that

(T o)RΘ = 0, (3.155)
∫ Ro

Ri

(T o)ΘΘdR = 0. (3.156)

Thus, any variation of (T o)ΘΘ with zero mean suffices. For example,

(T o)ΘΘ =





ε1[1 − 2 ∗ ∑k−1
n=0(−1)nH(R − n

k
)], k is even,

ε1[1 − 2k
(k+1)

∑k−1
n=0(−1)nH(R − n

k
)], k is odd,

PWC Variation

(T o)ΘΘ = ε1(1 − 2R), Linear Variation

(T o)ΘΘ = ε1 sin(2kπR), Sinusoidal Variation

(T o)ΘΘ = ε1 cos(2kπR), Cosine Variation (3.157)

where R = R−Ri

Ro−Ri
, Rp = Ri

(Ro−Ri)
, ε1 is a constant and k is an integer. Then, we

compute TRR from (3.154) as

(T o)RR =





ε1[
1
2k

((−1)m(2m + 1) − 1) − (−1)mR] 1
(R+Rp)

, k is even,

ε1{R − k
(k+1)

[(1 + (−1)m)R

− 1
2k

((−1)m(2m + 1) − 1)]} 1
(R+Rp)

, k is odd,

,
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for PWC variation, where m = floor(k ∗ R)6.

(T o)RR = ε1(1 − R)R
1

(R + Rp)
, Linear Variation

(T o)RR =
ε1

2kπ
[1 − cos(2kπR)]

1

(R + Rp)
, Sinusoidal Variation

(T o)RR =
ε1

2kπ
sin(2kπR)

1

(R + Rp)
, Cosine Variation

Finally, we shall examine issues regarding material symmetry. The three eigen

values for this state of stress are 0, (T o)RR, (T o)ΘΘ. The condition (3.156) implies

that there exist at least one material point in the body where (T o)ΘΘ = 0 and at

this location (T o)RR cannot be zero. Thus, there exist regions in the body where the

three eigen values of To are independent and regions where only two eigen values

of To are independent. It then follows from (3.46) and the representations given in

Coleman and Noll [62] that regions that have three independent eigen values of To

have rhombic symmetry while regions that have two independent eigen values of To

are transversely isotropic. Thus, stress field of the form T̂o = To(R) result in different

regions of the body possessing different symmetries.

Next, we consider prestresses of the form T̂o := To(R,Z). Since, the reference

configuration is free of traction on the boundary

T o
RR(Ri, Z) = T o

RR(Ro, Z) = T o
RΘ(Ri, Z) = T o

RΘ(Ro, Z) = 0,

T o
RZ(Ri, Z) = T o

RZ(Ro, Z) = T o
RZ(R,Zb) = T o

RZ(R,Ze) = 0,

T o
ZZ(R,Zb) = T o

ZZ(R,Ze) = T o
ZΘ(R,Zb) = T o

ZΘ(R,Ze) = 0, (3.158)

Apart from satisfying these conditions, the stress field To has to satisfy the balance

6‘floor(x)’ rounds x to the nearest integer towards −∞.
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of linear momentum

∂T o
RR

∂R
+

∂T o
RZ

∂Z
+

T o
RR − T o

ΘΘ

R
= 0,

∂T o
RΘ

∂R
+

∂T o
ΘZ

∂Z
+

2T o
RΘ

R
= 0,

∂T o
RZ

∂R
+

∂T o
ZZ

∂Z
+

T o
RZ

R
= 0, (3.159)

in the absence of body forces. Integrating the above equations we obtain

T o
RR =

1

R

∫ R

Ri

[
T o

ΘΘ − R
∂T o

RZ

∂Z

]
dR,

T o
ΘZ = − 1

R2

∫ Z

Zb

∂(T o
RΘR2)

∂R
dZ,

T o
ZZ = − 1

R

∫ Z

Zb

∂(RT o
RZ)

∂R
dZ. (3.160)

The boundary conditions (3.158) now require

0 =
1

Ro

∫ Ro

Ri

[
TΘΘ − R

∂TRZ

∂Z

]
dR,

0 = − 1

R2

∫ Ze

Zb

∂(TRΘR2)

∂R
dZ,

0 = − 1

R

∫ Ze

Zb

∂(RTRZ)

∂R
dZ,

Thus, we specify T o
ΘΘ, T o

RZ and T o
RΘ such that the above conditions and (3.158)b are

met and use equations (3.160) to obtain T o
RR, T o

ΘZ and T o
ZZ . A set of specification

meeting these requirements are

T o
RZ = ε1 sin(2πK1R) sin(2πL1Z),

T o
RΘ = ε2 sin(2πK2R) sin(2πL2Z),

T o
ΘΘ = ε3 sin(2πK3R) sin(2πL3Z) − ε1

L1(Ro − Ri)

K1(Ze − Zb)
cos(2πL1Z), (3.161)

where R = (R−Ri)/(Ro −Ri) and Z = (Z −Zb)/(Ze −Zb) and K1, K2, K3, L1, L2
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and L3 are integers and ε1, ε2 and ε3 are constants. Substituting these in (3.160) we

obtain

T o
RR =

ε3

2πK3

Ro − Ri

R

[
1 − cos(2πK3R)

]
sin(2πL3Z)

−ε1
L1(Ro − Ri)

K1(Ze − Zb)

{
1 − cos(2πK1R) − Ro − Ri

2πK1R
sin(2πK1R)

}
cos(2πL1Z),

T o
ΘZ = −ε2

Ze − Zb

2πL2

[
1 − cos(2πL2Z)

] [
2

R
sin(2πK2R) +

2πK2

Ro − Ri

cos(2πK2R)

]
,

T o
ZZ = −ε1

Ze − Zb

2πL1

[
1 − cos(2πL1Z)

] [
1

R
sin(2πK1R) +

2πK1

Ro − Ri

cos(2πK1R)

]
.

(3.162)

Thus, for this case too the components of the prestress field that are specified can be

represented as a fourier series.

3. Prestress fields in spherical shells

Finally, we consider a body, B that is the region between the two concentric spheres:

B = {(R, Θ, Φ)|Ri ≤ R ≤ Ro, 0 ≤ Θ ≤ 2π, 0 ≤ Φ ≤ π}. (3.163)

where (R, Θ, Φ) are coordinates of a typical point in spherical coordinates and Ri, Ro

are constants.

We examine if the prestress fields of the form T̂o := To(R) are possible. Following

arguments similar to that proposed above, if surfaces defined by R = Ri, R = Ro,

are traction free, then

(T o(Ri))RR = (T o(Ro))RR = (T o(Ri))RΘ = (T o(Ro))RΘ = 0,

(T o(Ri))RΦ = (T o(Ro))RΦ = 0. (3.164)
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Now, the balance of linear momentum (3.131) reduces to

d(T o)RR

dR
+

1

R
[2(T o)RR − (T o)ΘΘ − (T o)ΦΦ + (T o)RΘ cot(Φ)] = 0, (3.165)

d(T o)RΘ

dR
+

1

R
[3(T o)RΘ + ((T o)ΘΘ − (T o)ΦΦ) cot(Θ)] = 0, (3.166)

d(T o)RΦ

dR
+

1

R
[3(T o)RΦ + 2(T o)ΘΦ cot(Θ)] = 0. (3.167)

Since, T̂o := To(R) it is required that

(T o)RΘ = 0, (T o)ΘΦ = 0, (T o)ΘΘ = (T o)ΦΦ, (3.168)

so that the balance of linear momentum (3.165) through (3.167) could be satisfied.

Substituting (3.168) in equations (3.165) through (3.167) and integrating we obtain

(T o)RR =
2

R2

∫ R

Ri

R(T o)ΘΘdR, (T o)RΦ = tiRΦ

R3
i

R3
, (3.169)

where tiRΦ = (T o)RΦ(Ri). It follows from (3.164b) that tiRΦ = 0 and hence (T o)RΦ =

0. Also, it follows from (3.164a) that

∫ Ro

Ri

R(T o)ΘΘdR = 0. (3.170)

Thus, on prescribing (T o)ΘΘ satisfying (3.170) the entire prestress field is determined.

For example

(T o)ΘΘ = (T o)ΦΦ = ε1 cos(2kπR), cosine variation, (3.171)

(T o)ΘΘ = (T o)ΦΦ = ε1

[
R − 2(R2

o + R2
i + RoRi)

3(Ro + Ri)

]
, Linear Variation(3.172)

satisfies the above requirement and hence from (3.169a)

(T o)RR = ε1

[
Ro − Ri

kπR
sin(2kπR) +

1

2

(
Ro − Ri

kπR

)2 (
cos(2kπR) − 1

)
]

, cosine variation,

(T o)RR = ε1
2

3

[
R − R3

i

R2
−

(
1 − R2

i

R2

)
R2

o + R2
i + RoRi

Ro + Ri

]
, Linear Variation
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We again observe that since divergence is a linear operator, a linear combination of

the solution (3.171) of the form

(T o)ΘΘ =
n∑

i=1

εi cos(2kiπR), (3.173)

is also admissible. Thus, prestresses can be represented using Fourier series.

Finally, we end this section with an examination of the material symmetry of a

prestressed spherical shell when the prestresses vary only along the radial direction.

For this case the principal stresses are (T o)RR, (T o)ΘΘ, (T o)ΦΦ. From (3.168), (T o)ΘΘ

= (T o)ΦΦ. Since, in this case at most only two of the three principal stresses are

independent, it follows from (3.46) and the representations given in Coleman and

Noll [62] that the spherical shell with radially varying prestresses is predominantly

transversely isotropic but in regions where (T o)ΘΘ = (T o)RR, it is isotropic.
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CHAPTER IV

FORMULATION AND SOLUTION OF BOUNDARY VALUE PROBLEMS

In this chapter, we develop techniques to solve the governing equations that arise from

the study of compressible, prestressed and inhomogeneous bodies. Towards this, we

first generalize, (2.27) the balance of linear momentum, to the case for which T is only

piecewise continuous. Then, we shall record a general form of the governing equation

arising from the study of the static deformation of compressible, prestressed, inho-

mogeneous bodies and present a possible scheme for solving the governing equation.

Then, we simplify the governing equation by assuming specific forms of deformation

and representations for stress, recorded in the previous chapter. This serves as exam-

ples, illustrating the working and efficacy of the developed scheme. Since, from now

on we consider only isothermal response of the body, we shall not specify explicitly

the dependence of the constitutive relations on the temperature.

A. Formulation of the boundary value problem

Many a times, the prestresses, To and/or material moduli1 are only piecewise contin-

uous over the body resulting in the stress, T to be only piecewise continuous in κt.

To facilitate the study of these bodies, (2.27) has to be generalized. Towards this, let

material points in Bs ⊆ B, be bijectively mapped to a regular region of the Euclidean

space (see Kellogg [58]) in which To and material moduli are differentiable functions.

The balance of linear momentum requires

∫

∂κs
t

Tnda +

∫

κs
t

ρbdv =

∫

κs
t

ρ
d2χ̃

dt2
dv, (4.1)

1For example the shear modulus.
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where κs
t is the region occupied by the material points Bs in the current configuration

and ∂κs
t its boundary, n is the outward unit normal field to ∂κs

t . Using arguments as

outlined in chapter II from (4.1) we obtain

div(T) + ρb = ρ
d2χ̃

dt2
, ∀ x ∈ κs

t . (4.2)

Equivalently (4.1) could be expressed as

∫

∂κs
o

TH−t
t NJ̃3dA +

∫

κs
o

ρobdV =

∫

κs
o

ρo
d2χ̃

dt2
dV, (4.3)

where, κs
o is the region occupied by the material points Bs in the reference configura-

tion and ∂κs
o its boundary, N is the outward unit normal field to ∂κs

o, ρo = ρJ̃3 is the

density in the stressed reference configuration. Using standard arguments we obtain

D̃iv(S̃) + ρob = 0, ∀ P ∈ κs
o, (4.4)

where we have assumed that d2
χ̃

dt2
= 0, since this is the case studied here. We note

that while (4.3) has to hold even when κo is not a regular region, (4.4) holds only

when κo is a regular region. In particular, κo has to be a bounded closed region and

hence (4.4) need not hold for unbounded domains. Thus, none of the techniques or

results herein hold for unbounded domains.

For definitiveness we begin by assuming ∂κs
o ∩ ∂κo = ∅. Newton’s law of action

and reaction requires

[T(x−) − T(x+)]n(x) = 0, ∀ x ∈ ∂κs
t , (4.5)

where T(x−) is the cauchy stress at x determined by approaching it through points

contained in κs
t and T(x+) is the cauchy stress at x determined by approaching

it through points contained in κt − κs
t . This allows the components of T to be
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discontinuous at x. However, if T were to be computed using (3.22) then

χ̃(P−) = χ̃(P+) ∀ P ∈ ∂κs
o. (4.6)

Since χ̃ is a bijective mapping, the material points that occupied the surface ∂κs
o

would occupy the surface ∂κs
t and hence one can specify fields as a function of x

or equivalently as a function of P. Though from a physical standpoint the state

variables, like stress, can only be function of x, the bijective mapping, χ̃ allows us to

mathematically view them as functions of P for some benefits that this affords.

Now, on the part of the interface, ∂κs
o, that is the boundary of the body, T(x+)n

and χ̃(P+) are specified, instead of being computed from equation (4.5) and (4.6)

respectively. And hence, the boundary conditions ought to be

χ̃(P−) = xb, ∀ P ∈ ∂κo,

T(χ̃(P−))n(χ̃(P−)) = tb
n
, ∀ P ∈ ∂κo. (4.7)

When the deformation is inhomogeneous and/or the body is inhomogeneous the trac-

tion is many a times non-uniform. Consequently, rarely can one prescribe (4.7)b in

such detail, as required. In experiments or in structural analysis, the quantity that is

often estimated or computed is the integrated traction

Lj =

∫

∂Pj

J̃3TH−t
t N dA, (4.8)

where, N is the normal to the boundary of the body in the reference configuration

and ∂Pj ⊆ ∂κo is a regular surface (see Kellogg [58]) such that ∪n
j=1∂Pj = ∂κo. The

other global quantity that is of interest is the integrated moment

Mj =

∫

∂Pj

J̃3x ∧ TH−t
t N dA − ro ∧ L∂P . (4.9)
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Here we have computed the moment about an arbitrary point, identified by its posi-

tion vector ro represented using the coordinate system in the current configuration.

The integrated traction and moment has and can be defined only in the current

configuration. However, to facilitate the mathematical computation of the integrated

traction or momentum when the coordinates of the material point in the reference

configuration are used as independent variables, advantage is taken of the bijective

mapping χ̃(P) to obtain the above expressions. Further, equations (4.8) and (4.9)

only approximate the requirement (4.7b).

Thus, we have to solve (4.4) subject to the boundary condition (4.7). However,

many a times it may not be possible to prescribe boundary condition (4.7b) in such

detail. In these cases we solve (4.4) subject to boundary conditions (4.7a), (4.8) and

(4.9).

The requirement (4.7) differs from the classical requirement in that both the trac-

tion and the deformation have to be specified for the entire boundary of the body.

Next, we shall show that mathematically all that is required is the coordinates of

some material point in the current configuration and the value of the gradient of the

deformation for the same material point, i.e., value of χ̃ and Ht at a material point,

given the constitutive relations and the form of the deformation (see for example

(4.30)). Thus, if the constitutive relation (including any of the material parameters)

and form of the deformation is known or from a purely mathematical standpoint

it may suffice to prescribe either the deformation or the traction on the boundary

or both the traction and deformation on part of the boundary. In practice, an ex-

perimentalist doesn’t know the constitutive relation (assuming that the form of the

deformation has been inferred from the experiment) and a structural analyst doesn’t

know the form of the deformation (assuming that the constitutive prescriptions have

been made) hence requiring both the traction and the deformation to be specified for
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the entire boundary. On the other hand for stimulations, like in the present study,

where assumptions are made regarding both the required constitutive relations and

form of the deformation, it suffices to prescribe boundary conditions just sufficient to

infer the unknown components of χ̃ and Ht at a material point. Then, the traction

and/or the deformation on the rest of the boundary, for which they were not specified,

is studied and compared for various choices of the constitutive relations and/or forms

of the deformation.

B. General solution to the boundary value problem

Substituting (3.22) in (4.4) and grouping we obtain2

a1
ijk(xa,b, xc, Pd)

∂2xi

∂Pj∂Pk

= a1(xa,b, xc, Pd),

a2
ijk(xa,b, xc, Pd)

∂2xi

∂Pj∂Pk

= a2(xa,b, xc, Pd),

a3
ijk(xa,b, xc, Pd)

∂2xi

∂Pj∂Pk

= a3(xa,b, xc, Pd), (4.10)

∀ P ∈ κs
o and where, i, j, k ∈ {1, 2, 3}, j ≤ k3 and sum over repeated index, xa,b =

∂xa

∂Pb
, xc the coordinates of a typical material point in the current configuration, Pd

the coordinates of a typical material point in the reference configuration. Now, in

principal we can solve the above equations for ∂2xi

∂Pj∂Pk
and obtain

∂2xi

∂Pj∂Pk

= gijk(xa,b, xc, Pd). (4.11)

2Here ad
ijk’s depends on many other variables, but we highlight only those that are

relevant for this study.
3Here we assume differentiability of ∂2xi

∂Pj∂Pk
.
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It follows from elementary theorems in linear algebra that, there exist many gijk’s for

a given ad
ijk. However, only a subset of them would satisfy the requirements

Dgi11

DP2

=
Dgi12

DP1

,
Dgi22

DP1

=
Dgi12

DP2

,
Dgi33

DP1

=
Dgi13

DP3

Dgi11

DP3

=
Dgi13

DP1

,
Dgi22

DP3

=
Dgi23

DP2

,
Dgi33

DP2

=
Dgi23

DP3

, (4.12)

so that the higher order partial derivatives of xi are differentiable. Further, partial

derivatives of any order of gijk with respect to Pd should exist. Note that here to

compute D(·)
DP1

only P2 and P3 are held constant. Hence

Dgijk

DPd

=
∂gijk

∂Pd

+
∂gijk

∂xc

xc,d +
∂gijk

∂xa,b

gabd, (4.13)

sum over repeated index.

We can never obtain the functions gijk without an assumption on the form of

χ̃, because equations (4.10)a through (4.10)c, linear in gijk’s has infinity of possible

solutions. Hence, we assume the deformation to be of certain form, as in semi-inverse

methods, so that the equations (4.10)a through (4.10)c yield an unique solution for

the unknown gijk. Then, we ensure that the assumed form of the deformation is

consistent with the specified boundary condition and the requirement (4.12). This

would become clearer as we elaborate further.

For illustration, now let us assume κs
o = κo. Let (P g

1 , P g
2 , P g

3 ), denote the coor-

dinates of a point on the boundary. From the boundary condition (4.7a) we know

(xg
1, x

g
2, x

g
3). Then, the traction boundary condition (4.7b)4 is used to obtain xg

a,b.

Since, we have to find the nine unknowns xg
a,b by solving three, probably non-linear,

equations obtained from the traction boundary condition, it is quite probable that

4Equivalently when (4.7b) has to be approximated by (4.8) and (4.9) then all the
components of xg

a,b has to be assumed.
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we might need to assume the value of some. The assumed value should result in the

boundary condition at all the remaining material points being satisfied. This too

would become more evident as we proceed.

Now, we can compute x1 at P1 whose coordinates are (P g
1 +h1, P

g
2 +h2, P

g
3 +h3)

from

x1
c(P

g
1 + h1, P

g
2 + h2, P

g
3 + h3) = xg

c(P
g
1 , P g

2 , P g
3 )

+
m∑

n=1

1

n!

[
h1

D

DP1

+ h2
D

DP2

+ h3
D

DP3

]n

(xc)|(P1,P2,P3)=(P g
1 ,P g

2 ,P g
3 ) + em (4.14)

where

em =
1

(m + 1)!

[
h1

D

DP1

+ h2
D

DP2

+ h3
D

DP3

]m+1

(xc)|(P1,P2,P3)=(P g
1 +f1h1,P g

2 +f2h2,P g
3 +f3h3),

(4.15)

with 0 < fi < 1. Similarly, we compute Dxc

DPd
from

Dxc

DPd

|(P1,P2,P3)=(P g
1 +h1,P g

2 +h2,P g
3 +h3)

=
m∑

n=1

1

(n − 1)!

[
h1

D

DP1

+ h2
D

DP2

+ h3
D

DP3

]n−1
Dxc

DPd

|(P1,P2,P3)=(P g
1 ,P g

2 ,P g
3 ) + ed

m(4.16)

where

ed
m =

1

m!

[
h1

D

DP1

+ h2
D

DP2

+ h3
D

DP3

]m
Dxc

DPd

|(P1,P2,P3)=(P g
1 +f∗

1 h1,P g
2 +f∗

2 h2,P g
3 +f∗

3 h3),

(4.17)

with 0 < f∗
i < 1. Since, we know the function gijk (= D2xi

DPjDPk
) we can compute the

higher order partial derivatives, with care being exercised for these partial derivatives

only the appropriate Pi’s are to be held constant.

For the above series to converge we require

lim
m→∞

em → 0. (4.18)
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This in turn requires Dnxi

Dm1P1Dm2P2Dm3P3
to exist ∀ P ∈ κs

o, where m3 = n− (m1 + m2)

and Dnxi

Dm1P1Dm2P2Dm3P3
|
P=P

−

b
to exist and be bounded ∀ Pb ∈ ∂κs

o for any given integer

value of n, m1 and m2, such that m1 + m2 ≤ n. Here Dnxi

Dm1P1Dm2P2Dm3P3
|
P=P

−

b
denotes

the partial derivative computed at Pb by approaching Pb from points within κs
o. Thus,

the partial derivative need not exist at Pb. This translates into requiring gijk ∈ C∞(ω)

where ω = {(Pi, xi, xa,b)|P 1
i ≤ Pi ≤ P 2

i , x1
i ≤ xi ≤ x2

i , x
min
ab ≤ xa,b ≤ xmax

ab }, is a 15

dimensional space.

We define5

ε(d1, d2, . . . , d12) =

∫

∂κo

‖χ̃((Pf )−) − xb‖2dA

+

∫

∂κo

‖T(χ̃((Pf )−))n(χ̃((Pf )−)) − tb
n
‖2dA, (4.19)

where d1 through d9 represent the nine unknowns, xg
a,b and d10 through d12 represent

the three unknowns xg
c , χ̃((Pf )−) and T(χ̃((Pf )−))n(χ̃((Pf )−)) is the value of χ̃

and traction at Pf when approached from points in κo, for the assumed values of di.

While the value of some of the ds
i ’s would be known a priori, the value of the others

would have to be obtained such that ε(ds
1, d

s
2, . . . , d

s
12) = 0. We find it easier and

efficient to devise numerical schemes for specific instances instead of a general scheme

to obtain the unknown ds
i . Many such schemes take advantage of the observation

5Modified as

ε(d1, d2, . . . , d12) =

∫

∂κo

‖χ̃((Pf )−) − xb‖2dA

+
n∑

i=1

‖
∫

∂Pi

J̃3T((Pf )−)H−t
t NdA − Li‖2

+
n∑

i=1

‖
∫

∂Pi

J̃3x ∧ T((Pf )−)H−t
t NdA − Mi‖2,

when the boundary condition (4.7)b is approximated by (4.8) and (4.9) and Li is
integrated traction and Mi is integrated moment.
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that ε = 0 is the minimum.

If we could not find ds
i ’s such that ε = 0, then the assumed form of the deformation

or the constitutive relation or both is not appropriate for the prescribed boundary

condition. In particular, for a given constitutive relation this does not mean that

there exist no solution for the boundary value problem. We could only conclude that

the solution for the boundary value problem does not exist in the assumed form for

the deformation. If the form of the deformation and constitutive relation is known

to be appropriate then the prescribed boundary conditions is not consistent. In some

cases, as in inflation of a spherical shell or annular right circular cylinder, for a given

form of deformation and constitutive relation the magnitude of the boundary traction

cannot exceed a particular value (see Beatty [68] Chung et. al. [75]).

Extension of the above scheme when κs
o ⊂ κo though straightforward is tedious,

in that we would have functions of the form (4.19) for each of the interfaces apart

from the boundary of the body. Next, we illustrate how this can be handled in a

simple problem.

1. Solution to a special case

For many forms of the deformation studied here, the balance of linear momentum,

(4.10) reduces to an equation of the form

d2r

dR2
= f(R, r, d), (4.20)

with the requirement

r(Ro) = ro, h(Ro, r(Ro), d(Ro)) = (Trr)o, (4.21)
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where, d = dr
dR

and Ri ≤ R ≤ Ro. We shall first solve (4.21b) to obtain d(Ro) = do.

Now the solution to (4.20) is given by Taylor’s series

r(R) = ro +
(R − Ro)

1!
do +

(R − Ro)
2

2!
f(Ro, ro, d

o) +
(R − Ro)

3

3!

d3r

dR3
|R=Ro

+ · · · + (R − Ro)
m

m!

dmr

dRm
|R=Ro

+em, (4.22)

where6

d3r

dR3
:= f1(R, r, d) =

∂f

dR
+ d

∂f

∂r
+ f

∂f

∂d
,

d4r

dR4
:= f2(R, r, d) =

∂2f

∂R2
+ 2

[
d

∂2f

∂r∂R
+ f

∂2f

∂R∂d
+ fd

∂2f

∂r∂d

]

+d2∂2f

∂r2
+ f 2∂2f

∂d2
+ f

[
∂f

∂d

]2

+ d
∂f

∂r

∂f

∂d
+

∂f

∂d

∂f

∂R
+ f

∂f

∂r
,

dm+3r

dRm+3
:= fm+1(R, r, d) =

∂fm

∂R
+ d

∂fm

∂r
+ f

∂fn

∂d
,

em =
(R − Ro)

m+1

(m + 1)!

dm+1r

dRm+1
|R=ξ, (4.23)

Ri < ξ < Ro. For the above series to converge we require

lim
m→∞

em → 0. (4.24)

If dnr
dRn is differentiable in the interval Ri < R < Ro then (4.24) holds. Thus, if f(R, r, d)

∈ C∞(ω) where ω = {(R, r, d)|Ri ≤ R ≤ Ro, ri ≤ r ≤ ro, d
min ≤ d ≤ dmax}7 then we

can find r(R) and/or derivatives of any order. Thus, the governing equation (4.20)

with its requirement, (4.21) has a unique solution if

• The equation (4.21b) has an unique solution for the unknown do

6We follow the standard notation that d(·)
dR

denotes the total derivative with respect

to R and ∂(·)
∂R

denotes the partial derivative with respect to R.
7For cases in which we cannot obtain a priori sharper estimates for ri, dmin and

dmax, ω = {(R, r, d)|Ri ≤ R ≤ Ro, 0 < r ≤ ro, 0 < d < ∞}.
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• f(R, r, d) ∈ C∞(ω).

While the above scheme is implementable in matlab or maple it is still computa-

tionally costly. Hence, for the stimulations here we resort to numerical computation.

For this we convert the second order ODE, (4.20) to a system of two first order ODEs

by a simple change of variables

u = r, v = r,R. (4.25)

Then, the differential equations relating these functions are

u,R = v, v,R = f(R, u, v), (4.26)

with the condition

u(Ro) = ro, v(Ro) = do. (4.27)

This system of first order ODE’s is integrated using ODE45 in matlab.

a. Solution scheme for piecewise constant variation

In this case, the material functions and To is piecewise continuous and hence the

governing equation (4.20) has to be solved in each sub-domain in which the parameter

varies continuously. At the interface, conditions (4.5) and (4.6) has to be satisfied.

Here, in other words, we require that there be no de-bonding at the interface.

Now, if R1, R2, . . ., Rn denote the locations8 where the material parameter

is discontinuous then we begin by solving the governing equation (4.20) with the

boundary conditions (4.21) over the domain R1 < R ≤ Ro (instead of over the domain

Ri ≤ R ≤ Ro). Now the value of r(R+
1 ) = r+

1 and dr
dR

|R=R+
1

= d+
1 is known. Then, the

8R = Rj, a constant, denotes a surface across which the material parameter is
discontinuous and R1 > R2 > Rn.
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value of dr
dR

|R=R−

1
= d−

1 is obtained by solving9

y1(R
−

1 , r−1 , d−

1 ) = y1(R
+
1 , r+

1 , d+
1 ), (4.28)

where the only unknown is d−

1 , since r−1 = r+
1 . Now, we solve the governing equation

(4.20) for the condition r(R−

1 ) = r−1 and dr
dR

|R=R−

1
= d−

1 over the domain R2 < R <

R1. This process is continued till the other boundary of the body (i.e. R = Ri) is

reached. Thus, now the governing equation (4.20) with its requirement (4.21) has an

unique solution if

• The equation (4.21b) has an unique solution for the unknown do

• The equation yj(R
−

j , r−j , d−

j ) = yj(R
+
j , r+

j , d+
j ), has an unique solution for the

unknown d−

j for each j

• f(R, r, d) ∈ C∞(ωj) where ωj = {(R, r, d)|Rj < R < Rj+1, rj < r < rj+1, d
min
j <

d < dmax
j }10 for each j

As before, here the governing equations for each subpart of the body is solved

numerically.

C. Illustrative examples

In this section, we formulate different classes of boundary value problems along the

lines outlined above. While the solution procedure for these class of deformations is

independent of the specific constitutive relation, except that it has to satisfy certain

restrictions, the actual solution depends on the specific form of the same. Given the

9For the assumed form of deformation and hence the stress, the requirement (4.5)
reduces to a scalar equation

10As before, if sharper estimates for ri, dmin
j and dmax

j are not available ωj =
{(R, r, d)|Rj < R < Rj+1, 0 < r < rj+1, 0 < d < ∞}
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work of Ericksen [76] that only homogeneous deformation is possible in all homoge-

neous compressible bodies, this is at the least surprising.

1. Inflation of a spherical shell

In this subsection we focus on a body, B that is the annular region between two

concentric spheres

B = {(R, Θ, Φ)|Ri ≤ R ≤ Ro, 0 ≤ Θ ≤ 2π, 0 ≤ Φ ≤ π}. (4.29)

and seek a semi-inverse solution of the form

r = f(R), θ = Θ, φ = Φ, (4.30)

for the deformation in spherical polar coordinates with (R, Θ, Φ) denoting the coordi-

nates of a typical material point in the reference configuration and (r, θ, φ) denoting

the coordinates of a typical material point in the current configuration. This defor-

mation carries the region between two concentric spheres into a region between two

other concentric spheres.

For the assumed deformation, (4.30) the matrix components of deformation gra-

dient and left Cauchy-Green stretch tensor in spherical coordinates are given by

Ht =




r,R 0 0

0 r
R

0

0 0 r
R




, B̃ =




r2
,R 0 0

0
(

r
R

)2
0

0 0
(

r
R

)2




, (4.31)

where, (·),R = d(·)
dR

, a frequently adopted notation to denote differentiation.

Then, the invariants can be written as

J̃1 = r2
,R + 2

( r

R

)2

, J̃2 = r−2
,R + 2

(
R

r

)2

, J̃3 = r,R

( r

R

)2

, (4.32)
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For the assumed deformation, (4.30) all other gijk except g111 (i.e., r,RR) is zero.

Hence, the requirements (4.12) can be met if and only if αi = αi(Ht,T
o(R), R). The

prestress fields satisfying this requirement were obtained in section (G.3) of chapter

III. The matrix components of this prestresses is

To =




T o
RR(R) 0 0

0 T o
ΘΘ(R) 0

0 0 T o
ΦΦ(R)




, (4.33)

in spherical coordinate basis with T o
ΘΘ(R) = T o

ΦΦ(R). It then follows from equations

(3.20) and (3.21) that

J̃4 = r2
,RT o

RR + 2T o
ΘΘ

( r

R

)2

, J̃5 = r2
,R(T o

RR)2 + 2(T o
ΘΘ)2

( r

R

)2

,

J̃6 = r−2
,R T o

RR + 2T o
ΘΘ

(
R

r

)2

, J̃7 = r−2
,R (T o

RR)2 + 2(T o
ΘΘ)2

(
R

r

)2

, (4.34)

Now, equations (3.16) through (3.18) yields

J̃m1 = r2
,Rm1 + 2

( r

R

)2

m2, J̃m2 = r−2
,R m3 + 2

(
R

r

)2

m4, J̃m3 = Jr
3r,R

( r

R

)2

,

(4.35)

where

m1 = δ0 + δ1T
o
RR + δ2T

o2
RR, m2 = δ0 + δ1T

o
ΘΘ + δ2T

o2
ΘΘ,

m3 = κ0 + κ1T
o
RR + κ2T

o2
RR, m4 = κ0 + κ1T

o
ΘΘ + κ2T

o2
ΘΘ. (4.36)

The components of stress in spherical coordinate basis for the special boundary value
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problem being studied is





Trr

Tθθ

Tφφ

Trθ

Trφ

Tθφ





=





α0 + α1m1r
2
,R + α2m3r

−2
,R

α0 + α1m2(
r
R
)2 + α2m4(

R
r
)2

α0 + α1m2(
r
R
)2 + α2m4(

R
r
)2

0

0

0





. (4.37)

The balance of linear momentum, (4.2) in the absence of body forces and static

loading, for the present case, reduces to

dTrr

dr
+

2

r
[Trr − Tθθ] = 0. (4.38)

Recognizing that this equation would reduce to the form

f1r,RR + f2 = 0, (4.39)

we seek to find f1 and f2. Towards this we compute

J̃m1,R = 2r,Rr,RRm1 + g1, (4.40)

J̃m2,R = − 2

r3
,R

r,RRm3 + g2, (4.41)

J̃m3,R = Jr
3r,RR

( r

R

)2

+ g3, (4.42)

where

g1 = 4
r

R2

[
r,R − r

R

]
m2 + r2

,Rm1,R + 2
( r

R

)2

m2,R,

g2 = 4
R

r2

[
1 − R

r
r,R

]
m4 + r−2

,R m3,R + 2

(
R

r

)2

m4,R,

g3 = 2Jr
3

r

R

(r,R

R
− r

R2

)
r,R + Jr

3,Rr,R

( r

R

)2

,
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m1,R = δ0,R + δ1,RT o
RR + δ1T

o
RR,R + δ2,RT o2

RR + 2δ2T
o
RRT o

RR,R,

m2,R = δ0,R + δ1,RT o
ΘΘ + δ1T

o
ΘΘ,R + δ2,RT o2

ΘΘ + 2δ2T
o
ΘΘT o

ΘΘ,R,

m3,R = κ0,R + κ1,RT o
RR + κ1T

o
RR,R + κ2,RT o2

RR + 2κ2T
o
RRT o

RR,R,

m4,R = κ0,R + κ1,RT o
ΘΘ + κ1T

o
ΘΘ,R + κ2,RT o2

ΘΘ + 2κ2T
o
ΘΘT o

ΘΘ,R,

Noting

dTrr

dR
=

∂α0

∂R
+

∂α0

∂J̃m1

J̃m1,R +
∂α0

∂J̃m2

J̃m2,R +
∂α0

∂J̃m3

J̃m3,R

+

[
∂α1

∂R
+

∂α1

∂J̃m1

J̃m1,R +
∂α1

∂J̃m2

J̃m2,R +
∂α1

∂J̃m3

J̃m3,R

]
m1r

2
,R

+

[
∂α2

∂R
+

∂α2

∂J̃m1

J̃m1,R +
∂α2

∂J̃m2

J̃m2,R +
∂α2

∂J̃m3

J̃m3,R

]
m3

r2
,R

+α1r
2
,Rm1,R +

α2

r2
,R

m3,R + 2[α1m1r,R − α2

r3
,R

m3]r,RR. (4.43)

We find

f1 =

[
∂α0

∂J̃m1

+
∂α1

∂J̃m1

m1r
2
,R +

∂α2

∂J̃m1

m3

r2
,R

]
2r,Rm1

−
[

∂α0

∂J̃m2

+
∂α1

∂J̃m2

m1r
2
,R +

∂α2

∂J̃m2

m3

r2
,R

]
2

r3
,R

m3

+

[
∂α0

∂J̃m3

+
∂α1

∂J̃m3

m1r
2
,R +

∂α2

∂J̃m3

m3

r2
,R

]
Jr

3

( r

R

)2

+ 2[α1m1r,R − α2

r3
,R

m3],

f2 =

[
∂α0

∂R
+

∂α1

∂R
m1r

2
,R +

∂α2

∂R

m3

r2
,R

]
+

[
∂α0

∂J̃m1

+
∂α1

∂J̃m1

m1r
2
,R +

∂α2

∂J̃m1

m3

r2
,R

]
g1

+

[
∂α0

∂J̃m2

+
∂α1

∂J̃m2

m1r
2
,R +

∂α2

∂J̃m2

m3

r2
,R

]
g2

+

[
∂α0

∂J̃m3

+
∂α1

∂J̃m3

m1r
2
,R +

∂α2

∂J̃m3

m3

r2
,R

]
g3 + α1r

2
,Rm1,R +

α2

r2
,R

m3,R

+2
r,R

r

{
α1

[
m1r

2
,R − m2

( r

R

)2
]

+ α2

[
m3

r2
,R

− m4

(
R

r

)2
]}

. (4.44)
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We envisage solving (4.39) for the mixed boundary condition11

r(Ro) = ro, Trr(ro) = 0, (4.45)

by the method outlined in the last section. For the Taylor series to converge we require

f2/f1 ∈ C∞(ω) where ω = {(R, r, d)|Ri ≤ R ≤ Ro, 0 < r ≤ ro, 0 < d < ∞}, where

d = r,R as before. We find that if αi ∈ C∞(ωa) where ωa = {(J̃m1, J̃m2, J̃m3, R)|0 <

J̃m1 < ∞, 0 < J̃m2 < ∞, 0 < J̃m3 < ∞, Ri ≤ R ≤ Ro} and if f1 6= 0 when

(R, r, d) ∈ ω, then f2/f1 ∈ C∞(ω). Of course, if αi is only piecewise continuous

then f2/f1 ∈ C∞(ωs
j ) where ωs

j = {(R, r, d)|Rj ≤ R ≤ Rj+1, 0 < r ≤ ro, 0 <

d < ∞}, for j = {i, 1, 2, . . . , n, o}, sub-domains in which αi ∈ C∞(ωj
a) where ωj

a

= {(J̃m1, J̃m2, J̃m3, R)|0 < J̃m1 < ∞, 0 < J̃m2 < ∞, 0 < J̃m3 < ∞, Rj ≤ R ≤ Rj+1}

. For this case, in addition to the above, there should exist a real valued solution to

the interface condition, (4.28) for the deformation (4.30) to be realizable in a given

body.

a. Blatz-Ko constitutive relation

Next, we study the inflation of a sphere made up of Blatz-Ko material. The Blatz-Ko

constitutive relation from a stressed reference configuration was obtained in chapter

III section-E. Here we focus on a special form of the Blatz-Ko constitutive relation

11Here we take a mathematical viewpoint and present only boundary conditions
that are essential to solve the governing equation. We shall assume that on the rest
of the boundary the computed traction and deformation is realized. In fact, here we
compare the boundary traction and deformation realized at the inner surface of the
sphere, resulting from various constitutive prescriptions of prestress fields as indicated
in section A.
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(3.73), originally introduced to study polyurethane. For this constitutive relation

f1 = µ1

[
m1

(
R

r

)2

+ Jr
3

( r

R

)2 2µ3 + 1

J̃
2(µ3+1)
m3

]
,

f2 = µ1,R

[
m1r

2
,R

J̃m3

− 1

J̃2µ3+1
m3

]
+ µ1

[
2µ3 + 1

J̃
2(µ3+1)
m3

−
m1r

2
,R

J̃2
m3

]
g3

+

{
r2
,Rm1,R + 2

r,R

r

[
m1r

2
,R − m2

( r

R

)2
]}

µ1

J̃m3

(4.46)

where now,

m1 =
1

(Jr
3 )2µ3

+
Jr

3

µ1

T o
RR, m2 =

1

(Jr
3 )2µ3

+
Jr

3

µ1

T o
ΘΘ,

m1,R =

[
T o

RR

µ1

− 2µ3

(Jr
3 )2µ3+1

]
Jr

3,R +
Jr

3

µ1

T o
RR,R − Jr

3T
o
RR

µ1,R

µ2
1

, Jr
3,R =

l1
l2

,

l1 = Jr
3

[
K1,R

µ1

− K1

µ2
1

µ1,R

]
+ (Jr

3 )2µ3+1

[(
K3,R

µ3
1

− 3K3

µ4
1

µ1,R

)
(Jr

3 )2(µ3+1)

+

(
K2,R

µ2
1

− 2K2

µ3
1

µ1,R

)
Jr

3

]
,

l2 = 2(2µ3 + 1)(Jr
3 )4µ3+1 − (2µ3 + 1)(Jr

3 )2µ3

[
K3

µ3
1

(Jr
3 )2(µ3+1) + Jr

3

K2

µ2
1

]

−(Jr
3 )2µ3+1

[
2
K3

µ3
1

(µ3 + 1)(Jr
3 )2µ3+1 +

K2

µ2
1

]
+ 2µ3(J

r
3 )−(2µ3+1) − K1

µ1

,

K1 = T o
RR + 2T o

ΘΘ, K2 = T o2
ΘΘ + 2T o

RRT o
ΘΘ, K3 = T o

RRT o2
ΘΘ,

K1,R = T o
RR,R + 2T o

ΘΘ,R, K2,R = 2T o
ΘΘT o

ΘΘ,R + 2[T o
RR,RT o

ΘΘ + T o
RRT o

ΘΘ,R],

K3,R = T o
RR,RT o2

ΘΘ + 2T o
RRT o

ΘΘT o
ΘΘ,R (4.47)

and we have assumed that µ3 is a constant. Solving the boundary condition (4.45b)

for do we obtain

do =

(
Ro

ro

) 2µ3
µ3+1

. (4.48)

It can be immediately seen that if µ1 ∈ C∞(ωR) and T o
ΘΘ ∈ C∞(ωR), where ωR =

{R|Ri ≤ R ≤ Ro} then f2/f1 ∈ C∞(ω), provided f1 6= 0 which in turn requires
T o

RR

µ1
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6= Tcr, a value which can be determined only numerically. Thus, the constitutive

prescription of T o
ΘΘ

12 should ensure that f1 6= 0 so that f2/f1 ∈ C∞(ω).

If the variation of µ1 and/or To is only piecewise continuous, then at the interface

(surface defined by R = constant across which µ1 and/or To is discontinuous) we

require Trr(r
−

j ) = Trr(r
+
j ) which translates to finding (d−

j )∗ > 0 such that

y((d−

j )∗) = 0, (4.49)

where

y(d−

j ) = µ1(R
−

j )



d−

j

m1(R
−

j )

Jr
3 (R−

j )

(
R−

j

r−j

)2

−


 1

d−

j Jr
3 (R−

j )

(
R−

j

r−j

)2



2µ3+1


−µ1(R
+
j )



d+

j

m1(R
+
j )

Jr
3 (R+

j )

(
R+

j

r+
j

)2

−


 1

d+
j Jr

3 (R+
j )

(
R+

j

r+
j

)2



2µ3+1
(4.50)

In general, it is not possible to solve (4.49) analytically and hence we seek numerical

solution using the bisection algorithm. Since, (4.50) is a continuous function in d−

j

and since when µ3 > −0.5,

lim
d−j →0

y(d−

j ) → −∞, and lim
d−j →∞

y(d−

j ) → ∞, (4.51)

there exist (d−

j )∗ ∈ (0,∞) such that y((d−

j )∗) = 0. Further, since (4.50) is monotonic

in d−

j for d−

j > 0, m1(R
−

j ) > 0 and µ3 > −0.5, (4.49) has an unique real valued

solution, (d−

j )∗. Thus, the constitutive prescriptions of µ3 and T o
ΘΘ should ensure m1

> 0 and µ3 > −0.5 so that f1 6= 0 and hence f2/f1 ∈ C∞(ωs
j ) and (4.49) has an

unique solution. Therefore, there exist an unique deformation of the form (4.30) for

the class of Blatz Ko constitutive relation studied here when Ri > 0, for the assumed

variations of µ1 and T o
ΘΘ.

12T o
RR is derived from T o

ΘΘ see section (G.3) of chapter III for details
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Fig. 4. Plot of prestresses (a) T o
ΘΘ/(µ1)m (b) T o

RR/(µ1)m vs. R/Ro in a spherical shell

with Ro = 1 and Ri = 0.5.
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Fig. 5. Plot of stresses (a) T o
θθ/(µ1)m (b) T o

rr/(µ1)m in a spherical shell with Ro = 1 and

Ri = 0.5 made of Blatz Ko material for various prestress distributions shown

in figure 4 when ro = 1.2Ro, µ3 = 6.25 and µ1 = 1.
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Fig. 6. Plot of (a) r (b) r,R vs. R/Ro in a spherical shell with Ro = 1 and Ri = 0.5

made of Blatz Ko material for various prestress distributions shown in figure 4

when ro = 1.2Ro, µ3 = 6.25 and µ1 = 1.
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Fig. 7. Plot of (a) −Trr(ri)/(µ1)m (b) ri vs. ro/Ro of a spherical shell with Ro = 1 and

Ri = 0.5 made of Blatz Ko material for various prestress distributions shown

in figure 4 when µ3 = 6.25 and µ1 = 1.
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Figure 4 plots the prestress distributions studied here. ‘cs-1’ corresponds to the

case

T o
ΘΘ = ε1

[
cos(2πR) + cos(4πR) + cos(6πR) + cos(8πR)

]
, (4.52)

with ε1 = 0.1 which is the cosine variation recorded in section (G.3) of chapter III. ‘cs-

2’ and ‘cs-3’ corresponds to the linear variation with ε1 = 1 and ε1 = −1 respectively.

For ‘cs-4’ too, T o
ΘΘ is given by (4.52) but now ε1 = −0.1.

Figure 5 plots the stresses and figure 6 plots r(R) and r,R when the spherical

shell with Ro = 1 and Ri = 0.5 is inflated so that ro = 1.2Ro. Here it is assumed that

µ1 is constant over the body, hence (µ1)m = µ1. It transpires from figure 5a that the

stresses in prestressed body can vary by as much as 1.3 times that in the stress free

body.

Figure 7 plots Trr(ri) and ri vs. ro for the same cases considered above. It

transpires that the radial component of the normal stress required at the inner sur-

face to engender a given inflation differs insignificantly (less than 3 percent) in the

prestressed body as opposed to the stress free body, for the cases considered.

b. Exponential constitutive relation

Next, we consider the inflation of a sphere made up of a material whose constitutive

relation for stress is given by (3.80). For this constitutive relation

f1 = 2m1r,R [α01 + α11] + Jr
3

( r

R

)2

[α03 + α13] + 4m1r,R

f2 =
µ1,R

µ1

[
J̃m1 −

5

J̃2
m3

+ 2m1r
2
,R

]
+ [α01 + α11] g1 + [α03 + α13] g3

+2r2
,Rm1,R +

4r,R

r

[
m1r

2
,R − m2

( r

R

)2
]

,
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where,

α01 = 1 + µ2J̃m3

[
J̃m1 −

5

J̃2
m3

]
, α03 =

10

J̃3
m3

+ µ2

[
J̃m1 −

5

J̃2
m3

]2

,

α11 = 2µ2J̃m3m1r
2
,R, α13 = 2µ2

[
J̃m1 −

5

J̃2
m3

]
m1r

2
,R,

m1 = δ0 + δ1T
o
RR, m2 = δ0 + δ1T

o
ΘΘ

δ0 = −Jr
1

2
+

5

2(Jr
3 )2

, δ1 =
exp(−Qr)

2µ1µ2

,

m1,R = δ0,R + δ1,RT o
RR + δ1T

o
RR,R, m2,R = δ0,R + δ1,RT o

ΘΘ + δ1T
o
ΘΘ,R,

δ0,R = −
Jr

1,R

2
− 5

(Jr
3 )3

Jr
3,R, δ1,R = −exp(−Qr)

2µ1µ2

[
µ1,R

µ1

+ Qr
,R

]

Qr = µ2

[
Jr

1J
r
3 +

5

Jr
3

− 8

]
, Qr

,R = µ2

[
Jr

1,RJr
3 +

(
Jr

1 − 5

(Jr
3 )2

)
Jr

3,R

]
,

Jr
1,R =

n3l2 − n2l3
n2l1 − n1l2

, Jr
3,R =

n1l3 − n3l1
n2l1 − n1l2

,

l1 = 2 +

[
K3 exp(−Qr)Jr2

3

µ3
1µ

3
2(5 − Jr

1J
r2
3 )

+
K2

2µ2
1µ

2
2

]
exp(−2Qr)Jr4

3

(5 − Jr
1J

r2
3 )2

− 8Jr8
3

(5 − Jr
1J

r2
3 )3

−
[
3K3J

r2
3 exp(−Qr)

2µ1µ2(5 − Jr
1J

r2
3 )

+ K2

]
exp(−2Qr)Jr3

3

µ2
1µ2(5 − Jr

1J
r2
3 )

,

l2 =
10

Jr3
3

− 8Jr5
3

(5 − Jr
1J

r2
3 )2

[
3 +

2Jr
1J

r2
3

5 − Jr
1J

r2
3

]

+
K3J

r3
3 exp(−3Qr)

2µ3
1µ

3
2(5 − Jr

1J
r2
3 )2

[
4 +

4Jr
1J

r2
3

5 − Jr
1J

r2
3

− 3

(
Jr

1 − 5

Jr2
3

)
µ2J

r
3

]

+
K2J

r
3 exp(−2Qr)

µ2
1µ

2
2(5 − Jr

1J
r2
3 )

[
1 +

Jr
1J

r2
3

5 − Jr
1J

r2
3

−
(

Jr
1 − 5

Jr2
3

)
µ2J

r
3

]
,

l3 =
Jr4

3 exp(−3Qr)

2µ3
1µ

3
2(5 − Jr

1J
r2
3 )2

[
K3,R − 3K3

µ1

µ1,R

]
+

Jr2
3 exp(−2Qr)

2µ2
1µ

2
2(5 − Jr

1J
r2
3 )

[
K2,R − 2K2

µ1

µ1,R

]
,

n1 = −
[
3K3 exp(−3Qr)

8µ3
1µ

3
2

+
2K2 exp(−2Qr)

4µ2
1µ

2
2

δ0 +
K1 exp(−Qr)

2µ1µ2

δ2
0

]
µ2J

r
3

−
[
K2 exp(−2Qr)

4µ2
1µ

2
2

+
K1 exp(−Qr)

µ1µ2

δ0 + 3δ2
0

]
1

2
,
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n2 = −
[
3K3 exp(−3Qr)

8µ3
1µ

3
2

+
2K2 exp(−2Qr)

4µ2
1µ

2
2

δ0 +
K1 exp(−Qr)

2µ1µ2

δ2
0

]
µ2

(
Jr

1 − 5

Jr2
3

)

−
[
K2 exp(−2Qr)

4µ2
1µ

2
2

+
K1 exp(−Qr)

µ1µ2

δ0 + 3δ2
0

]
5

Jr3
3

− 2Jr
3 ,

n3 =
exp(−3Qr)

8µ3
1µ

3
2

[
K3,R − 3K3

µ1

µ1,R

]
+

exp(−2Qr)

4µ2
1µ

2
2

[
K2,R − 2K2

µ1

µ1,R

]
δ0

+
exp(−Qr)

2µ1µ2

[
K1,R − K1

µ1

µ1,R

]
δ2
0,

K1 = T o
RR + 2T o

ΘΘ, K2 = T o2
ΘΘ + 2T o

RRT o
ΘΘ, K3 = T o

RRT o2
ΘΘ,

K1,R = T o
RR,R + 2T o

ΘΘ,R, K2,R = 2T o
ΘΘT o

ΘΘ,R + 2[T o
RR,RT o

ΘΘ + T o
RRT o

ΘΘ,R],

K3,R = T o
RR,RT o2

ΘΘ + 2T o
RRT o

ΘΘT o
ΘΘ,R,

The boundary condition (4.45b) requires to find do > 0 such that y(do) = 0,

where

y(d) = 3mo
1d

4 + 2mo
2

(
ro

Ro

)2

d2 − 5

(Jro
3 )2

(
Ro

ro

)4

, (4.53)

mo
1 = m1(Ro), mo

2 = m2(Ro) and Jro
3 = Jr

3 (Ro). Solving (4.53) we obtain

(do)2 = −1

3
mo

2

( r

R

)2

+
1

3

√

(mo
2)

2
( r

R

)4

+
15mo

1

(Jro
3 )2

(
R

r

)4

. (4.54)

For a real solution, do, to exist we require mo
1 > 0, which has to be ensured by

constitutive prescriptions of T o
ΘΘ, µ1 and µ2.

As before, if µ1 ∈ C∞(ωR) and T o
ΘΘ ∈ C∞(ωR), where ωR = {R|Ri ≤ R ≤ Ro}

then f2/f1 ∈ C∞(ω), provided f1 6= 0. Thus, the constitutive prescription of T o
ΘΘ, µ1

and µ2 should ensure that f1 6= 0 so that f2/f1 ∈ C∞(ω).

Here it is assumed that µ1 is constant over the body and the prestress fields are

as shown in figure 8. The various prestress field studied here correspond to those

discussed above for the Blatz-Ko material but know, ε1 = 0.05 for ‘cs-1’ and ε1 =

−0.05 for ‘cs-4’ and the value of ε1 for other cases are same as before. Figure 9 plots

the stresses, Trr and Tθθ and figure 10 plots r(R) and r,R when the spherical shell
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Fig. 8. Plot of prestresses (a) T o
ΘΘ/(µ1)m (b) T o

RR/(µ1)m vs. R/Ro in a spherical shell

with Ro = 1 and Ri = 0.5.



113

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

R/R
o

T θθ
/(µ

1) m

cs−1
cs−2
homog
cs−3
cs−4

(a) 

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

R/R
o

T rr
/(µ

1) m

cs−1
cs−2
homog
cs−3
cs−4

(b) 

Fig. 9. Plot of stresses (a) Tθθ/(µ1)m (b) Trr/(µ1)m in a spherical shell with Ro = 1 and

Ri = 0.9 made of biological material for various prestress distributions shown

in figure 8 when ro = 1.2Ro, µ2 = 0.1 and µ1 = 1.
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Fig. 10. Plot of (a) r (b) r,R vs. R/Ro in a spherical shell with Ro = 1 and Ri = 0.9

made of biological material for various prestress distributions shown in figure

8 when ro = 1.2Ro, µ2 = 0.1 and µ1 = 1.
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Fig. 11. Plot of (a) −Trr(ri)/(µ1)m (b) ri vs. ro/Ro of a spherical shell with Ro = 1

and Ri = 0.9 made of biological material for various prestress distributions

shown in figure 8 when ro = 1.2Ro, µ2 = 0.1 and µ1 = 1.
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with Ro = 1 and Ri = 0.9 is inflated so that ro = 1.2Ro. From figure 9a we infer

that the stresses in prestressed body can be as much as 10 times less than that in the

stress free body, in some cases and can be as much as 2.5 times more in other cases.

Figure 11 plots Trr(ri) and ri vs. ro for the same cases considered above. It

transpires that the radial component of the normal stress required at the inner surface

to engender a given inflation does not differ significantly in the prestressed body from

that in the stress free body.

2. Extension and shearing of rectangular blocks

In this subsection we focus on a body, B that is a rectangular region defined as

B = {(P,Q,R)|P1 ≤ P ≤ P2, Q1 ≤ Q ≤ Q2, R1 ≤ R ≤ R2}, (4.55)

where P1, P2, Q1, Q2, R1 and R2 are constants and seek semi-inverse solution of the

form

x = λ1P + κ1Q + f(R), y = κ2P + λ2Q + g(R), z = κ3P + κ4Q + h(R), (4.56)

for the deformation in cartesian coordinates with (P,Q,R) denoting the coordinates

of a typical point in the reference configuration and (x, y, z) denoting the coordinates

of a typical point in the current configuration. In (4.56), λi’s and κi’s are constant.

While the functions f(R) and g(R) represent non-uniform shear along the x− z and

y− z planes and the constants κi’s represent uniform shear in their respective planes.

Similarly, the constants λ1 and λ2 represent uniform extension (or shortening) along

ex and ey, h(R) represents non-uniform extension (or shortening) along ez.

In the cartesian coordinate basis the matrix components of gradient of deforma-
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tion is

Ht =




λ1 κ1 f,R

κ2 λ2 g,R

κ3 κ4 h,R




, (4.57)

where, as before (·),R = d(·)
dR

.

For the assumed form of the deformation (4.56), it immediately follows that

except, gi33 (i = {1, 2, 3}), all other gijk are zero. Then, if gi33 were to satisfy the

requirement (4.12), then gi33 should be a function of only R. This is satisfied iff

the stress in the reference configuration and the material parameters depend only

on R, i.e., αi := αi(Ht,T
o(R), R). From the results in section G in chapter III, it

follows that if the reference configuration is traction free then it is stress free. In other

words, if a traction free reference configuration is used, deformation of the form (4.56)

is possible only if all the material points in the body are stress free and the material

parameters are at most a function of R. Thus, if a body can sustain deformation

of the form (4.56) it yields information regarding its inhomogeneity and prestress

distribution even if the exact representation of functions f(R), g(R), h(R) remain

unknown.

A straight forward computation shows that the balance of linear momentum (4.4)

reduces to

a1
133f,RR + a1

233g,RR + a1
333h,RR = a1,

a2
133f,RR + a2

233g,RR + a2
333h,RR = a2,

a3
133f,RR + a3

233g,RR + a3
333h,RR = a3, (4.58)

when the deformation is of the form (4.56). Here ad
ijk’s are functions of R, f,R, g,R,

h,R. It is possible that for certain other forms of constitutive relation this linear

system of equations results in infinity of solutions. For these constitutive relations
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one (or two) of the three functions can be prescribed, provided it is consistent with

the boundary condition, yet to be specified. If required, by using standard techniques

in linear algebra, we can obtain the restrictions on the constitutive relation so that

the linear system of equations (4.58) has an unique solution.

It could also be seen that if the body is homogeneous and the reference configu-

ration is stress free, then ad = 0 (d = {1, 2, 3}) if b = 0. Hence, for a homogeneous

body with a stress free reference configuration and a constitutive relation such that

the linear system of equations (4.58) results in an unique solution, the only possible

deformation of the form (4.56) is homogeneous deformation, i.e. the only f(R), g(R),

h(R) ∈ C∞([R1, R2]) is f(R) = κ5R, g(R) = κ6R, h(R) = λ3R where κ5, κ6 and λ3

are constants.

The deformation field over the entire body could be computed on specifying, {

λ1, λ2, κ1, κ2, κ3, κ4, f(R1), g(R1), h(R1), f,R(R1), g,R(R1), h,R(R1) } using the

technique outlined in section B. Now, one can adopt one of the two stand points. We

can specify all the 12 constants and study the traction that has to be applied and

the corresponding realizable boundary deformation of the rectangular block. If such

a stand point were to be adopted then deformation of the form (4.56) is realizable for

any constitutive relation of the form αi := αi(Ht,T
o(R), R) which yields a solution

to the governing equation (4.58) and αi ∈ C∞(ωa).

The actual boundary condition that would be prescribed are the integrated trac-

tion

L1 =

∫ R2

R1

∫ Q2

Q1

J3TH−t
t E1dQdR (4.59)

L2 =

∫ R2

R1

∫ P2

P1

J3TH−t
t E2dPdR (4.60)

L3 =

∫ P2

P1

∫ Q2

Q1

J3TH−t
t E3dQdP, (4.61)
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the moments

M1 =

∫ R2

R1

∫ Q2

Q1

J3x ∧ TH−t
t E1dQdR (4.62)

M2 =

∫ R2

R1

∫ P2

P1

J3x ∧ TH−t
t E2dPdR (4.63)

M3 =

∫ P2

P1

∫ Q2

Q1

J3x ∧ TH−t
t E3dQdP, (4.64)

and the deformation of the boundary which yields the deformation components {

λ1, λ2, κ1, κ2, κ3, κ4, f(R1), g(R1), h(R1) }. Note that since, L3 and M3 are

function of R, L1
3 and M1

3, the integrated traction and moment at R1 and L2
3 and

M2
3, the integrated traction and moment at R2 have to be specified. However, since

the integrated traction and moment should also satisfy global equilibrium conditions,

L1
3 = L2

3, M1
3 = M2

3. In the above, Ei denotes the cartesian coordinate basis vectors

in the reference configuration. Thus, the prescribed boundary conditions results in 15

equations with 12 unknowns. Hence, the boundary conditions should be consistent

among themselves.

It might happen that these boundary conditions are not met, even when they are

known to be consistent. Then, it only means that the solution to the boundary value

problem sought is not of the assumed form. Also, there might exist other solutions

to the boundary value problem for which the deformation is not of the assumed form

(4.56).

a. Biaxial extension and shearing of inhomogeneous rectangular blocks

In this subsection, we present another form of deformation that certain classes of

inhomogeneous rectangular blocks could exhibit. Using the same coordinate system
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and body as defined before, now we study the deformation of the form

x = λ1P + f(Q,R), y = κ1P + λ2Q + κ2R, z = κ3P + κ4Q + λ3R, (4.65)

where, λi’s and κi’s are constants. For the assumed form of the deformation (4.65)

g2jk = g3jk = 0 and g111 = 0. Now, if g122, g123 and g133 were to satisfy the requirement

(4.12) then

∂g122

∂P
=

∂g133

∂P
= 0, (4.66)

∂g122

∂R
=

∂g123

∂Q
,

∂g133

∂Q
=

∂g123

∂R
. (4.67)

Requiring the stress in the reference configuration and the material parameters to

depend only on Q and R, i.e., αi = αi(Ht,T
o(Q,R), Q,R) ensures (4.66). Now, the

balance of linear momentum (4.4) reduces to

a1
122f,QQ + a1

123f,QR + a1
133f,RR = a1,

a2
122f,QQ + a2

123f,QR + a2
133f,RR = a2,

a3
122f,QQ + a3

123f,QR + a3
133f,RR = a3, (4.68)

using the same notation adopted before. Now, ad
ijk’s depend on Q, R, f,Q, f,R.

Equation (4.68) could be solved to obtain g122, g123 and g133. Then, we could deduce

the restriction that the constitutive relation has to satisfy so that equation (4.67)

holds. This is delegated to a future work. However, we note that if the body is

homogeneous and To = 0 so that αi = αi(Ht) and the system of equations (4.68) has

an unique solution then f(Q,R) = κ5Q + κ6R.

Now, if the 10 parameters {λ1, λ2, λ3, κ1, κ2, κ3, κ4, f(Q1, R1), f,Q(Q1, R1),

f,R(Q1, R1)} are specified then the deformation over the entire body could be de-

termined using the technique outlined in section (B). Instead one could specify the
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boundary conditions which as before are the integrated traction and moment given

in equations (4.59) through (4.64) and the deformation of the boundary. From the

deformation of the boundary we could determine the deformation components {λ1,

λ2, λ3, κ1, κ2, κ3, κ4, f(Q1, R1), f(Q2, R2) }. Now, L2 and M2 is a function of Q and

L3 and M3 is a function of R. Therefore, now L1
2 and M1

2 the integrated traction and

moment at Q1 and L2
2 and M2

2 the traction and moment at Q2 would be specified.

Similarly, now L1
3 and M1

3 the traction and moment at R1 and L2
3 and M2

3 the traction

and moment at R2 would be specified.

One can similarly study deformations

x = f(P,Q) + κ1R, y = κ2P + λ2Q + κ3R, z = κ4P + κ5Q + λ3R,

x = f(P,R) + κ1Q, y = κ2P + λ2Q + κ3R, z = κ4P + κ5Q + λ3R,

x = λ1P + κ1Q + κ2R, y = f(P,Q) + κ3R, z = κ4P + κ5Q + λ3R,

x = λ1P + κ1Q + κ2R, y = f(P,R) + λ2Q, z = κ3P + κ4Q + λ3R,

x = λ1P + κ1Q + κ2R, y = f(Q,R) + κ3P, z = κ4P + κ5Q + λ3R,

x = λ1P + κ1Q + κ2R, y = κ3P + λ2Q + κ4R, z = f(P,Q) + λ3R,

x = λ1P + κ1Q + κ2R, y = κ3P + λ2Q + κ4R, z = f(P,R) + κ5Q,

x = λ1P + κ1Q + κ2R, y = κ3P + λ2Q + κ4R, z = f(Q,R) + κ5P,

3. Inflation, extension, twisting and shearing of annular right circular cylinder

Here we use cylindrical polar coordinate system in both the reference and current

configuration. Let (R, Θ, Z) and (r, θ, z) denote the coordinates of a typical material

point before and after deformation. Let the body in the reference configuration occupy

the region enclosed between two coaxial right circular cylinders defined by

B = {(R, Θ, Z)|Ri ≤ R ≤ Ro, 0 ≤ Θ ≤ 2π, Zb ≤ Z ≤ Ze}. (4.69)
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We study the deformation of the form

r = r(R), θ = φ(R) + βΘ + ΩZ, z = w(R) + κΘ + λZ, (4.70)

where Ω, κ, λ are constants. The function r(R) describes the inflation or deflation

of the annular region, φ(R) denotes the circumferential shear of the annular region

while w(R) denotes the transverse shear. The constant Ω denotes the angle of twist

per unit length, κ the azimuthal shear, λ the axial extension and β is related to the

angular displacements undergone by radial filaments.

For the assumed form of the deformation all other gijk’s except gi11 is zero. Now,

if gi11 were to satisfy the requirements (4.12), then gi11 can depend only on R. Iff the

stress in the reference configuration and the material parameters depend on R alone,

i.e., αi = αi(Ht,T
o(R), R), this requirement would be met.

When the deformation is given by (4.70), the balance of linear momentum (4.4)

reduces to

a1
111r,RR + a1

211φ,RR + a1
311w,RR = a1,

a2
111r,RR + a2

211φ,RR + a2
311w,RR = a2,

a3
111r,RR + a3

211φ,RR + a3
311w,RR = a3. (4.71)

Here ad
i11 depends on R, r, r,R, φ,R, w,R.

Thus, if the 10 parameters { Ω, κ, λ, β, r(Ri), φ(Ri), w(Ri), r,R(Ri), φ,R(Ri),

w,R(Ri)} are known then the deformation field over the entire body can be computed

using the technique outlined in section (B).

Now, the boundary traction that would be specified are the axial load,

L = 2π

∫ ro

ri

Tzzrdr, (4.72)
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pressure, Pi = −Trr(ri), Po = −Trr(ro), longitudinal shear stress Trz(ri), Trz(ro)

circumferential shear stress Trθ(ri), Trθ(ro) and the torque,

T = 2π

∫ ro

ri

Tzθr
2dr, (4.73)

Then, from the prescribed boundary deformation we obtain the deformation compo-

nents { Ω, κ, λ, β, r(Ri), φ(Ri), w(Ri) }. Thus, there are 15 equations to determine

10 unknowns.

We study a subclass of the above deformation, namely, inflation, extension and

twisting of right circular annular cylinders in some detail in the next chapter.

4. Circumferentially varying deformation

Next, we study the feasibility of the deformation of the form

r = ΛrR, θ = φ(R,Z) + Θ, z = λzZ. (4.74)

in right circular annular cylinders defined in (4.69). In this subsection we shall begin

by assuming that the reference configuration is stress free and homogeneous. Now,

the matrix components of the gradient of deformation represented using cylindrical

polar coordinate basis is

Ft =




Λr 0 0

ΛrRφ,R Λr ΛrRφ,Z

0 0 λz




(4.75)
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It then immediately follows that

F−1
t =




1
Λr

0 0

−Rφ,R

Λr

1
Λr

−Rφ,Z

λz

0 0 1
λz




,

C =




Λ2
r + (ΛrRφ,R)2 Λ2

rRφ,R Λ2
rR

2φ,Rφ,Z

Λ2
rRφ,R Λ2

r Λ2
rRφ,Z

Λ2
rR

2φ,Rφ,Z Λ2
rRφ,Z (ΛrRφ,Z)2 + λ2

z




, (4.76)

C−1 =




1
Λ2

r
−Rφ,R

Λ2
r

0

−Rφ,R

Λ2
r

1
Λ2

r
+ R2

[(
φ,R

Λr

)2

+
(

φ,Z

λz

)2
]

−φ,Z
R
λ2

z

0 −φ,Z
R
λ2

z

1
λ2

z




, (4.77)

B =




Λ2
r Λ2

rRφ,R 0

Λ2
rRφ,R Λ2

r

{
1 + R2

[
φ2

,R + φ2
,Z

]}
RλzΛrφ,Z

0 RλzΛrφ,Z λ2
z




, (4.78)

B−1 =




1
Λ2

r
[1 + (Rφ,R)2] −Rφ,R

Λ2
r

R2

λzΛR
φ,Rφ,Z

−Rφ,R

Λ2
r

1
Λ2

r
− R

λzΛr
φ,Z

R2

λzΛr
φ,Rφ,Z − R

λzΛr
φ,Z

1+(Rφ,Z)2

λ2
z




. (4.79)

N =




[1 + (Rφ,R)2] 1
Λ3

r
−

(
Rφ,R

Λr

)3

− 2
Rφ,R

Λ3
r

− R3 φ,R

Λr

(
φ,Z

λz

)2 (
R
λz

)2
φ,R

Λr
φ,Z

− R
Λ3

r
φ,R

1
Λ3

r
[(Rφ,R)2 + 1] +

(
R
λz

φ,Z

)2
1

Λr
− R

Λr

φ,Z

λ2
z(

R
Λr

)2

φ,R
φ,Z

λz
− R

λz
φ,Z

[(
Rφ,R

Λr

)2

+ 1
Λ2

r
+ (

Rφ,Z

λz
)2 + 1

λ2
z

]
[(Rφ,Z)2 + 1] 1

λ3
z




(4.80)

where N = F−t
t F−1

t F−t
t
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The invariants are

J1 = 2Λ2
r + λ2

z + (ΛrR)2
[
φ2

,R + φ2
,Z

]
,

J2 =
1

Λ2
r

[
2 + (Rφ,R)2

]
+

1

λ2
z

[
1 + (Rφ,Z)2

]
,

J3 = λzΛ
2
r. (4.81)

It follows from (2.85) that a general representation for stress when the reference

configuration is stress free is

S = J3TF−t
t = γ0F

−t
t + γ1Ft + γ2F

−t
t F−1

t F−t
t , (4.82)

where here γi = J3αi(J1, J2, J3).

Then we record,

J1,R = Λ2
r

{
2R

[
φ2

,R + φ2
,Z

]
+ 2R2 [φ,Rφ,RR + φ,Zφ,ZR]

}
,

J1,Z = 2 (ΛrR)2 [φ,Rφ,ZR + φ,Zφ,ZZ ] ,

J2,R = 2R

[(
φ,R

Λr

)2

+

(
φ,Z

λz

)2
]

+ 2R2

[
1

Λ2
r

φ,Rφ,RR +
1

λ2
z

φ,Zφ,ZR

]
,

J2,Z = 2R2

[
1

Λ2
r

φ,Rφ,ZR +
1

λ2
z

φ,Zφ,ZZ

]
,

J1,Θ = J2,Θ = J3,R = J3,Θ = J3,Z = 0. (4.83)

For the assumed deformation (4.74), the balance of linear momentum reduces to

∂SrR

∂R
+

∂SrZ

∂Z
+

SrR − SθΘ

R
− SθR

∂θ

∂R
− SθZ

∂θ

∂Z
= 0,

∂SθR

∂R
+

∂SθZ

∂Z
+

SθR + SrΘ

R
+ SrR

∂θ

∂R
+ SrZ

∂θ

∂Z
= 0,

∂SzR

∂R
+

∂SzZ

∂Z
+

SzR

R
= 0, (4.84)
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and evaluates to

[γ0,1J1,R + γ0,2J2,R]
1

Λr

+ [γ1,1J1,R + γ1,2J2,R] Λr +

[γ2,1J1,R + γ2,2J2,R]
[
1 + (Rφ,R)2

] 1

Λ3
r

+ [γ2,1J1,Z + γ2,2J2,Z ]

(
R

λz

)2
φ,Rφ,Z

Λr

+2γ2

[
Rφ2

,R + R2φ,Rφ,RR

] 1

Λ3
r

+ γ2

(
R

λz

)2

[φ,RZφ,Z + φ,Rφ,ZZ ]
1

Λr

−γ1ΛrR
(
φ2

,R + φ2
,Z

)
+ γ2

R

Λr

(
φ,R

Λr

)2

= 0,

[(
γ1,1Λr −

γ2,1

Λ3
r

)
J1,R +

(
γ1,2Λr −

γ2,2

Λ3
r

)
J2,R

]
Rφ,R

+

[
γ1Λr −

γ2

Λ3
r

]
[φ,R + Rφ,RR] + ΛrRφ,Z [γ1,1J1,Z + γ1,2J2,Z ]

− [γ2,1J1,Z + γ2,2J2,Z ]
R

Λr

φ,Z

λ2
z

+ γ1ΛrRφ,ZZ − γ2
R

Λr

φ,ZZ

λ2
z

+2φ,R

[
γ1Λr −

γ2

Λ3
r

]
= 0,

[γ2,1J1,R + γ2,2J2,R]

(
R

Λr

)2

φ,R
φ,Z

λz

+
γ2

Λ2
rλz

[
2Rφ,Rφ,Z + R2 (φ,RRφ,Z + φ,Rφ,ZR)

]

+
1

λz

[γ0,1J1,Z + γ0,2J2,Z ] + λz [γ1,1J1,Z + γ1,2J2,Z ]

+ [γ2,1J1,Z + γ2,2J2,Z ]
1

λ3
z

[
1 + (Rφ,Z)2

]

+γ2
2

λ3
z

R2φ,Zφ,ZZ +
γ2

λzΛ2
r

Rφ,Rφ,Z = 0,

where γi,j = ∂γi

∂Jj
.
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The above equations can be cast in the form

u1φ,RR + v1φ,ZR + w1φ,ZZ + s1 = 0,

u2φ,RR + v2φ,ZR + w2φ,ZZ + s2 = 0,

u3φ,RR + v3φ,ZR + w3φ,ZZ + s3 = 0, (4.85)

where

u1 =

{[
γ0,1Λr + γ1,1Λ

3
r +

γ0,2

Λ3
r

+
γ1,2

Λr

]
+

[
γ2,1

Λr

+
γ2,2

Λ5
r

] [
1 + (Rφ,R)2

]
+

γ2

Λ3
r

}
2R2φ,R,

v1 =

{[
γ0,1Λr +

γ0,2

Λrλ2
z

+ γ1,1Λ
3
r +

Λr

λ2
z

γ1,2

]
+

[
γ2,1

Λr

+
1

Λ3
rλ

2
z

γ2,2

] [
1 + (Rφ,R)2

]

+

[
γ2,1Λr +

γ2,2

Λ3
r

] (
R

λz

φ,R

)2

+
γ2

2Λrλ2
z

}
2R2φ,Z ,

w1 =

[
γ2,1Λr +

γ2,2

ΛRλ2
z

]
2
R4

λ2
z

φ2
,Zφ,R + γ2

(
R

λz

)2
φ,R

Λr

,

s1 =
[
γ0,1Λr + γ1,1Λ

3
r

]
2R

[
φ2

,R + φ2
,Z

]
+

[
γ0,2

Λr

+ γ1,2Λr

]
2R

[(
φ,R

Λr

)2

+

(
φ,Z

λz

)2
]

+

{
γ2,1

Λr

(
φ2

,R + φ2
,Z

)
+

γ2,2

Λ3
r

[(
φ,R

Λr

)2

+

(
φ,Z

λz

)2
]}

2R
[
1 + (Rφ,R)2

]

+2
γ2

Λ3
r

Rφ2
,R − γ1ΛrR

(
φ2

,R + φ2
,Z

)
+ γ2

R

Λr

(
φ,R

Λr

)2

.

u2 =

[
γ1,1Λ

3
r +

γ1,2

Λr

− γ2,1

Λr

− γ2,2

Λ5
r

]
2R3φ2

,R + R

[
γ1Λr −

γ2

Λ3
r

]
,

v2 = 2R3φ,Rφ,Z

{
2γ1,1Λ

3
r +

(
1

Λr

+
Λr

λ2
z

)
γ1,2 −

(
Λr

λ2
z

+
1

Λr

)
γ2,1 +

2γ2,2

Λ3
rλ

2
z

}

w2 = 2R3φ2
,Z

{[
γ1,1Λ

3
r + Λr

γ1,2

λ2
z

]
−

[
γ2,1Λr +

γ2,2

Λrλ2
z

]
1

λ2
z

}
+ γ1ΛrR − γ2

R

Λrλ2
z

,

s2 = 2R2φ,R

{[
γ1,1Λ

3
r −

γ2,1

Λr

] [
φ2

,R + φ2
,Z

]
+

[
γ1,2Λr −

γ2,2

Λ3
r

] [(
φ,R

Λr

)2

+

(
φ,Z

λz

)2
]}

+3φ,R

[
γ1Λr −

γ2

Λ3
r

]
.
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u3 =

[
γ2,1 +

γ2,2

Λ4
r

]
2
R4

λz

φ2
,Rφ,Z +

γ2

λz

(
R

Λr

)2

φ,Z ,

v3 =

{[
γ2,1 +

γ2,2

λ2
zΛ

2
r

]
R2

λz

φ2
,Z +

γ2

2λzΛ2
r

+
1

λz

[
γ0,1Λ

2
r +

γ0,2

Λ2
r

]
+ λz

[
γ1,1Λ

2
r +

γ1,2

Λ2
r

]

+
1

λ3
z

[
γ2,1Λ

2
r +

γ2,2

Λ2
r

] [
1 + (Rφ,R)2

]}
2R2φ,R,

w3 =

{
1

λz

[
γ0,1Λ

2
r +

γ0,2

λ2
z

]
+

[
λzΛ

2
rγ1,1 +

γ1,2

λz

]
+

1

λ3
z

[
Λ2

rγ2,1 +
γ2,2

λ2
z

] [
1 + (Rφ,R)2

]

+
γ2

λ3
z

}
2R2φ,Z ,

s3 =

{
γ2,1Λ

2
r

[
φ2

,R + φ2
,Z

]
+ γ2,2

[(
φ,R

Λr

)2

+

(
φ,Z

λz

)2
]}

2
R3

Λ2
r

φ,R
φ,Z

λz

+ 3
γ2

λz

R

Λ2
r

φ,Rφ,Z .

Clearly, if the system of equations (4.85) are independent then we could solve the

linear system of equations and obtain φ,RR, φ,RZ and φ,ZZ . Then, if φ satisfies (4.12),

we can obtain a Taylor series solution as indicated above. However, there exist

constitutive relations for which (4.12) does not hold. To illustrate this, we specialize

to the exponential constitutive relation (2.97), introduced in chapter II. From which

we obtain

S = µ1µ2 exp(Q)

[
2Ft +

(
J1 −

5

J2
3

)
F−t

t

]
, (4.86)

where Q = µ2[J1J3 + 5
J3

− 8].

Now

u1 = 2[γ01Λr + 2µ2J
2
3Λ3

r]R
2φ,R,

v1 = 2[γ01Λr + 2µ2J
2
3Λ3

r]R
2φ,Z ,

w1 = 0,

s1 = 2RΛr

[
φ2

,R + φ2
,Z

] [
µ2(J1J

2
3 − 5) + 2µ2J

2
3Λ2

r

]
,
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u2 = 4µ2J
2
3Λ3

rR
3φ2

,R + 2J3RΛr,

v2 = 8µ2J
2
3Λ3

rR
3φ,Rφ,Z ,

w2 = 4µ2J
2
3Λ3

rR
3φ2

,Z + 2J3RΛr,

s2 = 4µ2J
2
3Λ3

rR
2φ,R + 6J3Λrφ,R,

u3 = 0,

v3 = 2

[
Λ2

r

λz

γ01 + 2µ2J
3
3

]
R2φ,R,

w3 = 2

[
Λ2

r

λz

γ01 + 2µ2J
3
3

]
R2φ,Z ,

s3 = 0, (4.87)

where γ01 = J3 + µ2(J1J
2
3 − 5). Solving the linear system of equations we obtain

φ,ZZ =
φ2

,R

2J3ΛrR[φ2
,R + φ2

,Z ]

[
s1

u2

u1

− s2

]
,

φ,ZR = −φ,Z

φ,R

φ,ZZ ,

φ,RR =
φ2

,Z

φ2
,R

φ,ZZ − s1

u1

. (4.88)

Straight forward but tedious calculation shows that the requirement (4.12) is not

satisfied and hence the deformation (4.74) is not possible for the constitutive relation

(4.86).

Also, there are many occasions when the linear system of equations (4.85) would

not be independent. One such occasion is when αi’s are dependent only on J3 and α2

= 0. Blatz-Ko constitutive relation (2.94) is one such relation. Next, we study this

in detail. Assuming that the reference configuration is stress free and homogeneous

and µ2 = 1, the Blatz-Ko constitutive relation can be written as

S = µ1

[
−µmF−t + Ft

]
(4.89)
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where, µm = J−2µ3

3 and µ1 and µ3 are constants. We compute

S = µ1




Λr − µm

Λr

µm

Λr
Rφ,R 0

ΛrRφ,R Λr − µm

Λr
ΛrRφ,Z

0 µmφ,Z
R
λz

λz − µm

λz




, (4.90)

with µm = (Λ2
rλ)

−2µ3 . On substituting (4.90) in (4.84) only (4.84)a and (4.84b) results

in a non-trivial equation

φ2
,R + φ2

,Z = 0, φ,RR + φ,ZZ +
φ,R

R

[
2 +

µm

Λ2
r

]
= 0. (4.91)

The only solution to the above equations is φ = constant, a trivial solution which is

the superposition of rigid body rotation along the axis of the annular cylinder over

uniaxial extension along the axis of the annular cylinder.

Understanding that the only deformation of the form (4.74) possible in a homo-

geneous Blatz-Ko body13 is homogeneous deformation, we examine the scenario in

prestressed body. We find that the deformation, (4.74) is possible in a prestressed

body only when the prestresses satisfy certain conditions, arising from the require-

ment that the body in the current configuration be in equilibrium.

It follows from (4.12) that since, the deformation varies only with respect to R

and Z, the stresses in the reference configuration too vary only with respect to R and

Z. Prestresses that vary only with respect to R and Z were obtained in section (G.2)

of chapter III.

13By Blatz-Ko body we mean a body made up of Blatz Ko material.
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For this case, we compute

J̃m1 = Λ2
r

[
1 + (Rφ,R)2]m1 + Λ2

rm2 +
[
λ2

z + (RΛrφ,Z)2]m3 + 2Λ2
rRφ,Rm4

+2Λ2
rR

2φ,Rφ,Zm5 + 2Λ2
rRφ,Zm6,

J̃m2 =
n1

Λ2
r

+

[
1

Λ2
r

+ R2

(
φ2

,R

Λ2
r

+
φ2

,Z

λ2
z

)]
n2 +

n3

λ2
z

− 2
n4

Λ2
r

Rφ,R − 2R
φ,Z

λ2
z

n6,

J̃m3 = Jr
3λzΛ

2
r, (4.92)

where

m1 = δ0 + δ1T
o
RR + δ2

[
T o2

RR + T o2
RΘ + T o2

RZ

]
,

m2 = δ0 + δ1T
o
ΘΘ + δ2

[
T o2

RΘ + T o2
ΘΘ + T o2

ΘZ

]
,

m3 = δ0 + δ1T
o
ZZ + δ2

[
T o2

RZ + T o2
ΘZ + T o2

ZZ

]
,

m4 = δ1T
o
RΘ + δ2 [T o

RRT o
RΘ + T o

RΘT o
ΘΘ + T o

RZT o
ΘZ ] ,

m5 = δ1T
o
RZ + δ2 [T o

RRT o
RZ + T o

RΘT o
ΘZ + T o

RZT o
ZZ ] ,

m6 = δ1T
o
ΘZ + δ2 [T o

RΘT o
RZ + T o

ΘΘT o
ΘZ + T o

ΘZT o
ZZ ] ,

n1 = κ0 + κ1T
o
RR + κ2

[
T o2

RR + T o2
RΘ + T o2

RZ

]
,

n2 = κ0 + κ1T
o
ΘΘ + κ2

[
T o2

RΘ + T o2
ΘΘ + T o2

ΘZ

]
,

n3 = κ0 + κ1T
o
ZZ + κ2

[
T o2

RZ + T o2
ΘZ + T o2

ZZ

]
,

n4 = κ1T
o
RΘ + κ2 [T o

RRT o
RΘ + T o

RΘT o
ΘΘ + T o

RZT o
ΘZ ] ,

n5 = κ1T
o
RZ + κ2 [T o

RRT o
RZ + T o

RΘT o
ΘZ + T o

RZT o
ZZ ] ,

n6 = κ1T
o
ΘZ + κ2 [T o

RΘT o
RZ + T o

ΘΘT o
ΘZ + T o

ΘZT o
ZZ ] ,

We illustrate the procedure using the Blatz-Ko constitutive relation which is

S̃ = − µ1J̃3

J̃
[2µ3+1]
m3

H−t
t + Ht

[
µ1

(Jr
3 )(2µ3+1)

1 + To

]
, (4.93)
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which evaluates to





SrR

SrΘ

SrZ

SθR

SθΘ

SθZ

SzR

SzΘ

SzZ





=





− µ1J3

J
[2µ3+1]
m3

1
Λr

+ Λr [γ0 + T o
rr]

µ1J3

J
[2µ3+1]
m3

Rφ,R + ΛrT
o
RΘ

ΛrT
o
RZ

Λr {T o
RΘ + R [φ,R(γ0 + T o

RR) + φ,ZT o
RZ ]}

− J3

J
[2µ3+1]
m3

µ1

Λr
+ Λr {γ0 + T o

ΘΘ + R [φ,RT o
RΘ + φ,ZT o

ΘZ ]}

Λr {T o
ΘZ + R [φ,RT o

RZ + φ,Z(γ0 + T o
ZZ)]}

λzT
o
RZ

µ1J3

J
[2µ3+1]
m3

R
λz

φ,Z + λzT
o
ΘZ

− µ1J3

λzJ
[2µ3+1]
m3

+ (γ0 + T o
ZZ)λz





(4.94)

where, γ0 = µ1

(Jr
3 )(2µ3+1) .

Now, consider (4.84)c. This evaluates to

0 = λz
∂T o

RZ

∂R
+

µ1J
2
3 (2µ3 + 1)Jr

3,Z

λzJ
(2µ3+2)
m3

−
µ1(2µ3 + 1)Jr

3,Z

(Jr
3 )2µ3+2

λz +
∂T o

ZZ

∂Z
λz +

λzT
o
RZ

R
.

(4.95)

Clearly, this is a restriction on the constitutively prescribed To rather than on the

deformation, φ(R,Z). Thus, in general, deformation of the form (4.74) is not possible

in a prestressed annular right circular cylinders made up of Blatz-Ko material.

Thus, the above examples illustrate how the scheme outlined in section (B) could

be used to find if deformations of certain forms are possible in a given body. We just

observe that the analogue of the remaining three families of the universal solution to

incompressible bodies can also be studied in the above framework for compressible,

prestressed and inhomogeneous bodies. Also, numerous other classes of deformation

becomes amenable to solution and analysis in the above framework.
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CHAPTER V

INFLATION, EXTENSION AND TWISTING OF ANNULAR AND SOLID

RIGHT CIRCULAR PRESTRESSED AND INHOMOGENEOUS CYLINDERS

Study of the inflation, extension and twisting of annular and solid right circular

cylinders is of significant practical interest. From industrial perspective, shafts and

tubes which are the components of various structural systems have this geometry.

Many a times uniaxial extension and torsion tests are conducted on solid cylindrical

specimens to identify or verify material parameters or functions in the constitutive

relations. First approximation of biological bodies like blood vessels, tendons belongs

to this class. Further since, in the next chapter we are going to concern ourself

with the response of the circumflex artery subjected to inflation and axial extension,

studying this class of deformation in some detail is essential.

In this chapter, we confine ourselves to a body, B that is the annular region

between two concentric right circular cylinders

B = {(R, Θ, Z)|Ri ≤ R ≤ Ro, 0 ≤ Θ ≤ 2π, Zb ≤ Z ≤ Ze}. (5.1)

We seek semi-inverse solution of the form

r = r(R), θ = Θ + ΩZ, z = λZ, (5.2)

for the deformation in cylindrical polar coordinates with (R, Θ, Z) denoting the coor-

dinates of a typical material point in the reference configuration and (r, θ, z) denoting

the coordinates of a typical material point in the current configuration. In equation

(5.2) Ω and λ are constant. r(R) denotes inflation or deflation of the annular region,

Ω the angle of twist per unit length of the body and λ the axial extension of the body.

The matrix components of the gradient of deformation represented using cylin-
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drical polar basis is

Ht =




r,R 0 0

0 r
R

rΩ

0 0 λ




(5.3)

It then immediately follows that

H−1
t =




1
r,R

0 0

0 R
r

−RΩ
λ

0 0 1
λ




. (5.4)

The right Cauchy Green stretch tensor and its inverse in cylindrical polar coordinate

basis is given by

C̃ =




r2
,R 0 0

0 ( r
R
)2 r2

R
Ω

0 r2

R
Ω (rΩ)2 + λ2




, C̃−1 =




( 1
r,R

)2 0 0

0 (Ω
λ
R)2 + (R

r
)2 −RΩ

λ2

0 −RΩ
λ2 ( 1

λ
)2




.

Hence, the invariants could be written as

J̃1 = r2
,R + (

r

R
)2 + (rΩ)2 + λ2, (5.5)

J̃2 = (
1

r,R

)2 + (
R

r
)2 +

(RΩ)2 + 1

λ2
, (5.6)

J̃3 = λ
r

R
r,R. (5.7)

It follows from the arguments in section (C.3) in the last chapter that the prestresses

can vary only along the radial direction. Then, from section (G.2) in chapter III, the

matrix components of To in cylindrical coordinate basis is

To =




T o
RR(R) 0 0

0 T o
ΘΘ(R) 0

0 0 0




. (5.8)
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It then follows from equations (3.20) and (3.21) that

J̃4 = r2
,RT o

RR + (
r

R
)2T o

ΘΘ, (5.9)

J̃5 = r2
,RT o2

RR + (
r

R
)2T o2

ΘΘ, (5.10)

J̃6 =
T o

RR

r2
,R

+

[
(
R

r
)2 + (

RΩ

λ
)2

]
T o

ΘΘ, (5.11)

J̃7 = (
T o

RR

r,R

)2 +

[
(
R

r
)2 + (

RΩ

λ
)2

]
T o2

ΘΘ. (5.12)

Now, equations (3.16) through (3.18) yields

J̃m1 = r2
,Rm1 + (

r

R
)2m2 + [(rΩ)2 + λ2]δ0, (5.13)

J̃m2 =
1

r2
,R

m3 +

[
(
R

r
)2 + (

RΩ

λ
)2

]
m4 +

κ0

λ2
, (5.14)

J̃m3 = Jr
3 J̃3, (5.15)

where,

m1 =
[
δ0 + δ1T

o
RR + δ2T

o2
RR

]
, m2 =

[
δ0 + δ1T

o
ΘΘ + δ2T

o2
ΘΘ

]
,

m3 =
[
κ0 + κ1T

o
RR + κ2T

o2
RR

]
, m4 =

[
κ0 + κ1T

o
ΘΘ + κ2T

o2
ΘΘ

]
. (5.16)

The components of stress in cylindrical polar basis for the special boundary value

problem being studied is





Trr

Tθθ

Tzz

Trθ

Trz

Tθz





=





α0 + α1m1r
2
,R + α2m3

1
r2
,R

α0 + α1

[
m2(

r
R
)2 + δ0(rΩ)2

]
+ α2m4(

R
r
)2

α0 + α1δ0λ
2 + α2

[
κ0

λ2 + m4(
RΩ
λ

)2
]

0

0

α1δ0rΩλ − α2m4
R2

r
Ω
λ





. (5.17)

The balance of linear momentum, (4.2) in the absence of body forces and static
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loading reduces to

dTrr

dR
+

r,R

r
[Trr − Tθθ] = 0, (5.18)

on recognizing that the non-zero components of the stress, T depends only on R.

Recognizing that this equation would reduce to the form

f1r,RR + f2 = 0, (5.19)

we seek to find f1 and f2. Towards this we compute

J̃m1,R = 2r,Rm1r,RR + h1 + g1, (5.20)

J̃m2,R = −2m3

r3
,R

r,RR + h2 + g2, (5.21)

J̃m3,R = Jr
3,RJ̃3 + Jr

3 J̃3,R, (5.22)

where

J̃3,R =
λ

R

[
r2
,R + rr,RR − r

R
r,R

]

h1 = m1,Rr2
,R + (

r

R
)2m2,R +

[
λ2 + (rΩ)2] δ0,R

h2 =
κ0,R

λ2
+

m3,R

r2
,R

+ m4,R

[
(
R

r
)2 + (

RΩ

λ
)2

]
,

m1,R = δ0,R + δ1,RT o
RR + δ1T

o
RR,R + δ2,RT o2

RR + 2δ2T
o
RRT o

RR,R,

m2,R = δ0,R + δ1,RT o
ΘΘ + δ1T

o
ΘΘ,R + δ2,RT o2

ΘΘ + 2δ2T
o
ΘΘT o

ΘΘ,R,

m3,R = κ0,R + κ1,RT o
RR + κ1T

o
RR,R + κ2,RT o2

RR + 2κ2T
o
RRT o

RR,R,

m4,R = κ0,R + κ1,RT o
ΘΘ + κ1T

o
ΘΘ,R + κ2,RT o2

ΘΘ + 2κ2T
o
ΘΘT o

ΘΘ,R, (5.23)

g1 = 2
r

R

[r,R

R
− r

R2

]
m2 + 2δ0rr,RΩ2, (5.24)

g2 = 2m4

[
R

r

(
1

r
− Rr,R

r2

)
+ R(

Ω

λ
)2

]
, (5.25)
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Noting

dTrr

dR
=

∂α0

∂R
+

∂α0

∂J̃m1

J̃m1,R +
∂α0

∂J̃m2

J̃m2,R +
∂α0

∂J̃m3

J̃m3,R

+

[
∂α1

∂R
+

∂α1

∂J̃m1

J̃m1,R +
∂α1

∂J̃m2

J̃m2,R +
∂α1

∂J̃m3

J̃m3,R

]
m1r

2
,R

+

[
∂α2

∂R
+

∂α2

∂J̃m1

J̃m1,R +
∂α2

∂J̃m2

J̃m2,R +
∂α2

∂J̃m3

J̃m3,R

]
m3

r2
,R

+α1r
2
,Rm1,R +

α2

r2
,R

m3,R + 2[α1m1r,R − α2

r3
,R

m3]r,RR. (5.26)

We find

f1 = 2
∂α1

∂J̃m1

m2
1r

3
,R +

∂α1

∂J̃m3

J̃m3m1r,R + 2

[
α1 +

∂α0

∂J̃m1

]
m1r,R +

∂α0

∂J̃m3

J̃m3

r,R

+
∂α2

∂J̃m3

J̃m3m3
1

r3
,R

− m3

[
α2 +

∂α0

∂J̃m2

]
2

r3
,R

− ∂α2

∂J̃m2

m2
3

2

r5
,R

,

+

[
∂α2

∂J̃m1

− ∂α1

∂J̃m2

]
2m1m3

r,R

(5.27)

f2 =

[
∂α0

∂J̃m1

+
∂α1

∂J̃m1

m1r
2
,R +

∂α2

∂J̃m1

m3

r2
,R

]
[g1 + h1]

+

[
∂α0

∂J̃m2

+
∂α1

∂J̃m2

m1r
2
,R +

∂α2

∂J̃m2

m3

r2
,R

]
[g2 + h2]

+

[
∂α0

∂J̃m3

+
∂α1

∂J̃m3

m1r
2
,R +

∂α2

∂J̃m3

m3

r2
,R

] [
Jr

3,RJ̃3 + Jr
3r,R(r,R − r

R
)
λ

R

]

+

[
∂α0

∂R
+

∂α1

∂R
m1r

2
,R +

∂α2

∂R

m3

r2
,R

]

+ r,Rα1

[
r,R

(
m1,R + r,R

m1

r

)
− m2

r

R2
− rΩ2δ0

]

+ α2

[
1

r2
,R

(
m3,R + r,R

m3

r

)
− R2

r3
r,Rm4

]
. (5.28)

Here we have used the fact that mi’s would depend only on R.

If we were to seek the solution to the governing equation as a Taylor’s series,

for the series to converge we require r,RR and its higher derivatives to be bounded
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on Ri ≤ R ≤ Ro. By inspection, we find that r,RR and its higher derivatives would

be bounded at all points except at R = 0 and at points where f1 = 0 assuming

that αi’s are smooth bounded functions of J̃mi and R i.e., αi ∈ C∞(ωa) where ωa =

{(J̃m1, J̃m2, J̃m3, R)|0 < J̃m1 < ∞, 0 < J̃m2 < ∞, 0 < J̃m3 < ∞, Ri ≤ R ≤ Ro}.

Therefore, we begin by investigating whether f1 and f2 is bounded at R = 0.

Towards this, let r̂,R = r,R|R=0 6= 0. Now, for r,RR to be bounded at R = 0, r(0) = 0,

the terms r2
,Rm1/r − m2r/R

2, m3/(rr,R) − R2r,Rm4/r
3, (r,R−r/R)/R, (r−Rr,R)/r2

and r/R must be bounded. For this we require m1(0) = m2(0) and m3(0) = m4(0)

or m1(0) = m2(0) = m3(0) = m4(0) = 0. For the higher order derivatives of r(R)

to be bounded we further require dnm1

dRn |R=0 = dnm2

dRn |R=0 and dnm3

dRn |R=0 = dnm4

dRn |R=0 or

dnm1

dRn |R=0 = dnm2

dRn |R=0 = dnm3

dRn |R=0 = dnm4

dRn |R=0 = 0 for any arbitrary integer, n. If

this were so, it follows from Taylor series representation for functions, m1(R), m2(R),

m3(R), m4(R) that m1(R) = m2(R) = n1(R) and m3(R) = m4(R) = n2(R).

Then, since

lim
R→0

r

R
= r̂,R,

lim
R→0

(r,RR − r)

R2
=

r̂,RR

2
, lim

R→0

(r − Rr,R)

r2
= − r̂,RR

2r̂2
,R

,

lim
R→0

r2
,R

r
− r

R2
= r̂,RR, lim

R→0

1

rr,R

− R2r,R

r3
= − r̂,RR

r̂3
,R

,

where the superposed hat denotes that these are the values at R = 0, the terms get

bounded.

Assuming that the requirement m1(R) = m2(R) = n1(R) and m3(R) = m4(R) =

n2(R) is met in some body1, we next examine if we could get any additional restriction

for r,RRR to be bounded at R = 0, r = 0, r,R|R=0 = r̂,R. Towards this consider the

1It holds in bodies for which δ1 = −δ2tr(T
o).
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derivative of the term r,R(r,R − r/R)/R in the expression for J̃3,R which is

r,RR
2r,RR − r

R2
+ 2r,R

r − Rr,R

R3
. (5.29)

For the term to be bounded at R = 0, r = 0, r,R|R=0 = r̂,R, we require r,RR|R=0 =

0. Hence, f̂2 = f2(0, 0, r̂,R) = 0. Such restrictions arise for higher order derivatives

too. Therefore, we cannot be assured that the solution is a converging series since

we cannot show that all the higher order derivatives are bounded in the interval 0

≤ R ≤ Ro. On the other hand it should be noted that the solution could still be a

converging series in special class of bodies in which these problematic terms do not

arise.

The above problem does not arise in annular cylinders. However, if one believes

that the solution to a boundary value problem depend continuously on its parameters,

in particular Ri, then the deformation (5.2) would not be possible in annular cylinders

as well unless the above restrictions are met. But there are many shear deformations

that are realizable in annular cylinders that are not possible in solid right circular

cylinders.

Thus, we have shown that when αi are smooth bounded functions of J̃mi and R

i.e., αi ∈ C∞(ωa) then the deformation of the form (5.2) is possible in bodies that have

a geometry of an annular right circular cylinder, provided suitable traction is applied

at the boundary. In cases where αi is only piecewise continuous, the deformation

(5.2) is still possible provided there exist a real valued positive solution, (d−

j )∗ for the

interface condition, Trr(R
−

j , r−j , d−

j ) = Trr(R
+
j , r+

j , d+
j ) at each interface.

Before specializing to specific constitutive relations, we record the boundary con-

ditions. The boundary conditions that should be prescribed are Trr(ri), Trr(ro), the

radial component of the normal stress at the inner and outer surfaces, the axial load,

L, defined in (4.72), the torque, T , defined in (4.73), the deformed inner and outer
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radius, ri and ro, the ratio of the deformed length to original length, λ and twist per

unit length, Ω. As discussed in the last chapter, we shall specify only a subset of

the above conditions, sufficient enough to solve the governing equation and study the

variation of the rest with respect to the specified boundary conditions. Thus, say, we

might specify that Trr(ro) = 0, λ = 1, Ω = 0 and ro = c, then study the traction

- Trr(ri), L, T - required to realize a given value of ro but for various values of c.

Here we note that the integration for the axial load and torque were performed using

Trapezoidal rule. This first order method is believed to yield accurate enough results

because adaptive meshing is used while solving the ODE.

A. Blatz-Ko constitutive relation

Now, we record the simplified governing equations for the constitutive relations dis-

cussed in chapter III. First, we study the Blatz-Ko constitutive relation used to model

polyurethane, recorded in (3.73). For this

f1 = µ1r,R
m1

J̃m3

+
µ1(2µ3 + 1)

r,RJ̃
(2µ3+1)
m3

, (5.30)

f2 = µ1
r,R

J̃m3

[
r,R

(
m1,R + r,R

m1

r

)
− m2

r

R2
− rΩ2

(Jr
3 )2µ3

]
+

µ1,R

J̃m3

[
m1r

2
,R − 1

J̃2µ3

m3

]

+

[
µ1(2µ3 + 1)

J̃
2(µ3+1)
m3

− r2
,Rµ1

m1

J̃2
m3

] [
Jr

3,RJ̃3 + λr,R

(
r,R − r

R

) Jr
3

R

]
, (5.31)

where,

m1 =
1

(Jr
3 )2µ3

+ Jr
3

T o
RR

µ1

, m2 =
1

(Jr
3 )2µ3

+ Jr
3

T o
ΘΘ

µ1

, J̃m3 = Jr
3 J̃3,

m1,R = Jr
3,R

T o
RR

µ1

+ Jr
3

T o
RR,R

µ1

− 2µ3

Jr
3,R

(Jr
3 )2µ3+1

− Jr
3T

o
RR

µ1,R

µ2
1

,

m2,R = Jr
3,R

T o
ΘΘ

µ1

+ Jr
3

T o
ΘΘ,R

µ1

− 2µ3

Jr
3,R

(Jr
3 )2µ3+1

− Jr
3T

o
ΘΘ

µ1,R

µ2
1

, Jr
3,R =

l1
l2

,
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l1 = Jr
3

[
K1,R

µ1

− K1

µ2
1

µ1,R

]
+ (Jr

3 )2µ3+1

[(
K3,R

µ3
1

− 3K3

µ4
1

µ1,R

)
(Jr

3 )2(µ3+1)

+

(
K2,R

µ2
1

− 2K2

µ3
1

µ1,R

)
Jr

3

]
,

l2 = 2(2µ3 + 1)(Jr
3 )4µ3+1 − (2µ3 + 1)(Jr

3 )2µ3

[
K3

µ3
1

(Jr
3 )2(µ3+1) + Jr

3

K2

µ2
1

]

−(Jr
3 )2µ3+1

[
2
K3

µ3
1

(µ3 + 1)(Jr
3 )2µ3+1 +

K2

µ2
1

]
+ 2µ3(J

r
3 )−(2µ3+1) − K1

µ1

,

K1 = T o
RR + T o

ΘΘ, K2 = T o
RRT o

ΘΘ, K3 = 0,

K1,R = T o
RR,R + T o

ΘΘ,R, K2,R = T o
RR,RT o

ΘΘ + T o
RRT o

ΘΘ,R, K3,R = 0, (5.32)

Thus, in prestressed bodies m1(R) 6= m2(R) and f̂2 6= 0. Hence, deformation

(5.2) is not possible in prestressed solid right circular cylinders made up of Blatz-Ko

material.

The requirement f1 6= 0 yields

(Jr
3 )(2µ3+1) T

o
RR

µ1

6= −1 − 2µ3 + 1

J̃2µ3

3

1

r2
,R

. (5.33)

Hence, the value of constants in constitutive prescriptions for T o
ΘΘ

2 are such that

(Jr
3 )(2µ3+1)T o

RR(R)/µ1 > −1 assuming µ3 > −0.5. Thus, if µ1 ∈ C∞(ωR) and T o
ΘΘ ∈

C∞(ωR), where ωR = {R|Ri ≤ R ≤ Ro} then f2/f1 ∈ C∞(ω).

Thus, the governing equation

f1r,RR + f2 = 0, (5.34)

is solved for the mixed boundary condition

r(Ro) = ro, Trr(ro) = 0, (5.35)

for a specified value of Ω and λ and Ri ≤ R ≤ Ro. Solving (5.35b) for r,R(Ro) = do

2T o
RR is derived from the constitutively prescribed T o

ΘΘ see section (G.2) of chapter
III for details
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we obtain

do =

(
Ro

roλ

) µ3
1+µ3

. (5.36)

Hence, there exist an unique deformation of the form (5.2) for the special form of

Blatz Ko constitutive relation studied here when Ri > 0 and µ1 ∈ C∞(ωR) and T o
ΘΘ

∈ C∞(ωR) and (Jr
3 )(2µ3+1)T o

RR(R)/µ1 > −1.

If the variation of µ1 and/or T o
ΘΘ is only piecewise continuous, then at the inter-

face (surface defined by R = constant across which µ1 and/or To is discontinuous)

we require Trr(r
−

j ) = Trr(r
+
j ) which translates to finding (d−

j )∗ > 0 such that

y((d−

j )∗) = 0, (5.37)

where

y(d−

j ) = µ1(R
−

j )



d−

j

m1(R
−

j )

λJr
3 (R−

j )

R−

j

r−j
−

[
1

d−

j λJr
3 (R−

j )

R−

j

r−j

]2µ3+1




−µ1(R
+
j )



d+

j

m1(R
+
j )

λJr
3 (R+

j )

R+
j

r+
j

−
[

1

d+
j λJr

3 (R+
j )

R+
j

r+
j

]2µ3+1


 . (5.38)

In general, it is not possible to solve (5.37) analytically and hence we seek numerical

solution using the bisection algorithm. Since, (5.38) is a continuous function in d−

j

and since when µ3 > −0.5,

lim
d−j →0

y(d−

j ) → −∞, and lim
d−j →∞

y(d−

j ) → ∞, (5.39)

there exist (d−

j )∗ ∈ (0,∞) such that y((d−

j )∗) = 0. Further, since (5.38) is monotonic

in d−

j for d−

j > 0, m1(R
−

j ) > 0 and µ3 > −0.5, (5.37) has an unique real valued

solution, (d−

j )∗.

As before, if the constitutive prescription of T o
ΘΘ ensures that f1 6= 0 and µ3 >

−0.5, then f2/f1 ∈ C∞(ωs
j ). Hence, there exist an unique deformation of the form
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(5.2) for the class of Blatz Ko constitutive relation studied here when Ri > 0 and for

the radial variations of µ1, T o
ΘΘ assumed here.

1. Case-1: Pure inflation

We begin by studying the response of the annular cylinder subjected to inflation at

constant length by applying a radial component of the normal stress at the inner

surface and axial component of the normal stresses at the extremities of the cylin-

der. We shall also require that the outer surface of the cylinder be free of boundary

traction. Thus, for this case we specify, λ = 1, Ω = 0, Trr(ro) = 0 and ro. Hence,

the governing equation (5.34) can be solved and we could obtain ri, Trr(ri) and the

axial load L. Figures 12 and 13 plot these quantities as a function of ro. The pre-

stresses corresponding to various cases, studied here, are plotted in figure 14. ‘cs-1’

corresponds to the case

T o
ΘΘ = ε1

[
cos(2πR) + cos(4πR) + cos(6πR) + cos(8πR)

]
, (5.40)

with ε1 = 0.2 which is a linear combination of the cosine variation recorded in section

(G.2) of chapter III. ‘cs-2’ and ‘cs-3’ corresponds to the linear variation (see section

(G.2) of chapter III) with ε1 = 1 and ε1 = −1 respectively. For ‘cs-4’ too, T o
ΘΘ is

given by (5.40) but now ε1 = −0.2.

Figures 15 and 16 plot the transmural variation of the stresses and figure 17 plots

r(R) and r,R when ro = 1.2Ro. In all these cases we assume that µ1 is a constant and

hence (µ1)m = µ1.

It transpires from figure 12 that the radial component of the normal stress re-

quired to engender a given inflation is nearly the same, in a prestressed body and the

stress free body. It could also be inferred from the figure that the magnitude of the

deviation depends both on the magnitude of the prestresses and whether the circum-
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ferential prestresses is radially increasing or decreasing. It could be seen from figure

16 that at a given location the stresses in the current configuration of a prestressed

body could vary by as much as 2 times from that in a stress free body. Also in certain

regions, even the sense, i.e. tensile or compressive, of these stresses is different, when

compared between the prestressed and stress free body. It is worthwhile, to note that

such large deviations are observed in a component of stress along which direction

there were no prestresses.

2. Case-2: Uniaxial extension

Next, we study uniaxial extension of a prestressed annular cylinder made up of Blatz-

Ko material. Thus, in this case we apply only axial component of the normal stresses

at the extremities of the annular cylinder and study the deformation of the body.

Hence, for this case, we specify Ω = 0, Trr(ri) = 0, Trr(ro) = 0 and λ. Now, the

value of ro is not specified but has to be found such that the radial component of the

normal stress at the inner surface of the cylinder, Trr(ri) must be zero. Therefore, we

begin by solving the IVP problem

r,RR = f(r, R, r,R) = −f2/f1, r(Ro) = rg
o , Trr(ro) = 0, (5.41)

for some particular value of rg
o . We then find the error associated with this solu-

tion; that is we evaluate the boundary condition at R = Ri, namely Trr(ri) using

the computed r(Ri) and r,R(Ri). Unless it happens that the boundary condition,

Trr(Ri, r(Ri), r,R(Ri)) = 0 is satisfied, we take a different value for rg
o and solve the

resulting IVP. Thus, we define ε(rg
o) = Trr(Ri, r(Ri), r,R(Ri)) and seek ro such that

ε(ro) = 0. We use bisection algorithm to find this root.

As before having specified Ω, Trr(ri), Trr(ro) and λ, we study the only other

non-trivial boundary traction, the axial load L and the boundary deformations ri
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Fig. 12. Plot of (a) −Trr(ri)/(µ1)m (b) L/(µ1)m vs. ro/Ro of an annular right circular

cylinder with Ro = 1 and Ri = 0.5 made of Blatz Ko material for various

prestress distributions shown in figure 14 when µ3 = 6.25 and µ1 = 1.
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Fig. 13. Plot of ri vs. ro/Ro of an annular right circular cylinder with Ro = 1 and Ri

= 0.5 made of Blatz Ko material for various prestress distributions shown in

figure 14 when µ3 = 6.25 and µ1 = 1.

and ro required to realize a given value of λ. Figures 18 and 19 plot the axial load L

and boundary deformations respectively for various values of λ. The prestress fields

studied here are same as that in the last sub-section. While figures 20 and 21 plot

the transmural variation of the stresses, figure 22 plots r(R) and r,R(R) when λ =

1.2. In all these cases we assume that µ1 is constant.

From figure 18 we see that the axial load required to engender a given stretch, λ

is greater for prestressed bodies in comparison to stress free bodies for all the cases

of prestresses considered here. However, ri and ro are same for both the stress free

body and the prestress bodies considered here as indicated by figure 19. Moreover,

r(R) and r,R(R) is also same for both the stress free body and the prestressed bodies
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Fig. 14. Plot of prestresses (a) T o
ΘΘ/(µ1)m (b) T o

RR/(µ1)m vs. R/Ro in an annular right

circular cylinder with Ro = 1 and Ri = 0.5.
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Fig. 15. Plot of stresses (a) Tθθ/(µ1)m (b) Trr/(µ1)m vs. R/Ro in an annular right cir-

cular cylinder with Ro = 1 and Ri = 0.5 made of Blatz Ko material subjected

to inflation with ro = 1.2Ro, for various prestress distributions shown in figure

14 when µ3 = 6.25 and µ1 = 1.



149

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

R/R
o

T zz
/(µ

1) m

cs−1
cs−2
homog
cs−3
cs−4

Fig. 16. Plot of stresses Tzz/(µ1)m vs. R/Ro in an annular right circular cylinder with

Ro = 1 and Ri = 0.5 made of Blatz Ko material subjected to inflation with

ro = 1.2Ro, for various prestress distributions shown in figure 14 when µ3 =

6.25 and µ1 = 1.

considered here as inferred from figure 22. In fact, for this case the deformation of

both the prestressed body and the stress free body is homogeneous. Thus, the stress

distributions Trr and Tθθ are same as that of the prestresses as seen by comparing

figures 20 and 14. Here it is pertinent to observe that the Blatz Ko constitutive

relation is one of the few that admit homogeneous solution for the class of boundary

value problem being studied. Finally, we note that the axial stress, Tzz is not uniform

in prestressed body because Jr
3 is not uniform.



150

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

R/R
o

r

cs−1
cs−2
homog
cs−3
cs−4

(a) 

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

0.65

0.7

0.75

0.8

0.85

0.9

R/R
o

r ,R

cs−1
cs−2
homog
cs−3
cs−4

(b) 

Fig. 17. Plot of (a) r (b) r,R vs. R/Ro in an annular right circular cylinder with Ro

= 1 and Ri = 0.5 made of Blatz Ko material subjected to inflation with ro =

1.2Ro, for various prestress distributions shown in figure 14 when µ3 = 6.25

and µ1 = 1.
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Fig. 18. Plot of L/(µ1)m vs. λ for an annular right circular cylinder with Ro = 1 and

Ri = 0.5 made of Blatz Ko material for various prestress distributions shown

in figure 14 when µ3 = 6.25 and µ1 = 1.

3. Case-3: Pure twist

Finally, we study the twisting of an annular right circular cylinder made up of Blatz-

Ko material held at a constant length. In this case too, both the inner and outer

surfaces are traction free and we apply axial component of the normal stresses and

shear stress, Tθz at the extremities of the annular cylinder. Thus, for this case we

specify, λ = 1, Trr(ri) = 0, Trr(ro) = 0 and Ω. As described in detail in the previous

case, we guess the value, rg
o , solve the IVP, obtain r(Ri) and r,R(Ri) and then verify

if Trr(Ri, r(Ri), r,R(Ri)) = 0, if not we update the guessed value rg
o , using bisection

algorithm, until the boundary condition is met.

As before having specified λ, Trr(ri), Trr(ro) and Ω, we study the other boundary
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Fig. 19. Plot of (a) ri (b) ro vs. λ of an annular right circular cylinder with Ro = 1

and Ri = 0.5 made of Blatz Ko material for various prestress distributions

shown in figure 14 when µ3 = 6.25 and µ1 = 1.
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Fig. 20. Plot of stresses (a) Tθθ/(µ1)m (b) Trr/(µ1)m vs. R/Ro in an annular right cir-

cular cylinder with Ro = 1 and Ri = 0.5 made of Blatz Ko material subjected

to uniaxial extension with λ = 1.2 for various prestress distributions shown

in figure 14 when µ3 = 6.25 and µ1 = 1.
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Fig. 21. Plot of stresses Tzz/(µ1)m vs. R/Ro in an annular right circular cylinder

with Ro = 1 and Ri = 0.5 made of Blatz Ko material subjected to uniaxial

extension with λ = 1.2 for various prestress distributions shown in figure 14

when µ3 = 6.25 and µ1 = 1.

traction, namely the axial load, L and the torque, T required along with the boundary

deformation ri and ro to realize a given value of Ω. Figures 23 and 24 plot the axial

load, the torque and the boundary deformations for various values of twist per unit

length, Ω. Figures 25 and 26 plot the radial variation of the non-zero components of

the stress field when Ω = 0.2. Figure 27 plots r(R) and r,R(R) for the same value of

Ω. As always, in this section we assume, µ1 to be a constant.

We infer from figure 23 that for the cases of prestresses studied, the magnitude

of the torque and axial load required to realize a given value of Ω is nearly the same

(within 7 percent) in the prestressed body and the stress free body. However, the

amount of deviation of the axial load and torque from the stress free body, depends
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Fig. 22. Plot of (a) r (b) r,R vs. R/Ro in an annular right circular cylinder with Ro

= 1 and Ri = 0.5 made of Blatz Ko material subjected to uniaxial extension

with λ = 1.2 for various prestress distributions shown in figure 14 when µ3 =

6.25 and µ1 = 1.
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on the magnitude of Ω and the nature of the radial variation of the circumferential

prestresses, i.e., whether they are increasing or decreasing radially. It is interesting

to observe that the axial load and the torque of the prestressed body that varies the

maximum from the stress free body in the case of pure twist is same as in the above

cases. We gather from figure 24 that the boundary deformation ri and ro in the case

of prestressed body shows an insignificant (< 2 percent) deviation from the stress

free body. Their magnitude of deviation depends on the magnitude of Ω and the

nature of the radial variation of the circumferential prestresses. However, their sense

of deviation, that is greater or lesser than the stress free body, depends only on the

nature of the radial variation of the circumferential prestress.

It transpires from figures 25 and 26 that the radial variation of the stresses is

significantly different in the case of prestressed body when compared with the stress

free body. Even the Tzz and Tθz component of the stresses, whose corresponding

prestress values are zero, the deviation is significant; the stresses developed in the

prestressed body could be as much as 1.5 times that developed in the stress free

body.
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Fig. 23. Plot of (a) T/(µ1)m (b) L/(µ1)m vs. Ω for an annular right circular cylinder

with Ro = 1 and Ri = 0.5 made of Blatz Ko material for various prestress

distributions shown in figure 14 when µ3 = 6.25 and µ1 = 1.
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Fig. 24. Plot of (a) ri (b) ro vs. Ω of an annular right circular cylinder with Ro = 1

and Ri = 0.5 made of Blatz Ko material for various prestress distributions

shown in figure 14 when µ3 = 6.25 and µ1 = 1.
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Fig. 25. Plot of stresses (a) Tθθ/(µ1)m (b) Trr/(µ1)m vs. R/Ro in an annular right cir-

cular cylinder with Ro = 1 and Ri = 0.5 made of Blatz Ko material subjected

to twisting with Ω = 0.2 for various prestress distributions shown in figure 14

when µ3 = 6.25 and µ1 = 1.
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Fig. 26. Plot of stresses (a) Tzz/(µ1)m (b) Tθz/(µ1)m vs. R/Ro in an annular right cir-

cular cylinder with Ro = 1 and Ri = 0.5 made of Blatz Ko material subjected

to twisting with Ω = 0.2 for various prestress distributions shown in figure 14

when µ3 = 6.25 and µ1 = 1.
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Fig. 27. Plot of (a) r (b) r,R vs. R/Ro in an annular right circular cylinder with Ro

= 1 and Ri = 0.5 made of Blatz Ko material subjected to twisting with Ω =

0.2 for various prestress distributions shown in figure 14 when µ3 = 6.25 and

µ1 = 1.
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B. Exponential constitutive relation

When the constitutive relation for stress is given by (3.80), the equations (5.27) and

(5.28) evaluates to

f1 = 2α11m
2
1r

3
,R + α13J̃m3m1r,R + 2(2 + α01)m1r,R + α03

J̃m3

r,R

,
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[
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2
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]
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] [
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,



163

l1 = 2 +
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1µ

2
2

δ0 +
K1 exp(−Qr)

2µ1µ2

δ2
0

]
µ2J

r
3

−
[
K2 exp(−2Qr)

4µ2
1µ

2
2

+
K1 exp(−Qr)

µ1µ2

δ0 + 3δ2
0

]
1

2
,

n2 = −
[
3K3 exp(−3Qr)

8µ3
1µ

3
2

+
2K2 exp(−2Qr)

4µ2
1µ

2
2

δ0 +
K1 exp(−Qr)

2µ1µ2

δ2
0

]
µ2

(
Jr

1 − 5

Jr2
3

)

−
[
K2 exp(−2Qr)

4µ2
1µ

2
2

+
K1 exp(−Qr)

µ1µ2

δ0 + 3δ2
0

]
5

Jr3
3

− 2Jr
3 ,

n3 =
exp(−3Qr)

8µ3
1µ

3
2

[
K3,R − 3K3

µ1

µ1,R

]
+

exp(−2Qr)

4µ2
1µ

2
2

[
K2,R − 2K2

µ1

µ1,R

]
δ0

+
exp(−Qr)

2µ1µ2

[
K1,R − K1

µ1

µ1,R

]
δ2
0,

K1 = T o
RR + T o

ΘΘ, K2 = T o
RRT o

ΘΘ, K3 = 0,

K1,R = T o
RR,R + T o

ΘΘ,R, K2,R = T o
RR,RT o

ΘΘ + T o
RRT o

ΘΘ,R, K3,R = 0,

In prestressed solid cylinders m1 6= m2 and f̂2 = f2(0, 0, r̂,R) 6= 0. Hence, this

deformation is not possible in residually stressed solid right circular cylinders made

up of a material whose relationship between stress and gradient of deformation is

given by (3.80).
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For f1 6= 0, we require

T o
RR

µ1

6= −1 − exp(Qr)

µ2r2
,R

. (5.42)

Therefore, we assign values to constants in the constitutive prescription of T o
ΘΘ

3 such

that T o
RR/µ1 > −1 assuming µ2 > 0. Thus, if µ1 ∈ C∞(ωR) and T o

ΘΘ ∈ C∞(ωR),

where ωR = {R|Ri ≤ R ≤ Ro} then f2/f1 ∈ C∞(ω).

Thus, as before the governing equation, (5.34) is solved for the mixed boundary

condition (5.35) for a specified value of Ω and λ and Ri ≤ R ≤ Ro. The boundary

condition (5.35b) requires to find do such that y(do) = 0, where

y(d) = 3mo
1d

4 + L1d
2 − 5

(λJro
3 )2

(
Ro

ro

)2

, (5.43)

L1 = mo
2

(
ro

Ro

)2

+ δo
0

[
(roΩ)2 + λ2

]
,

mo
1 = m1(Ro), mo

2 = m2(Ro), Jro
3 = Jr

3 (Ro) and δo
0 = δ0(Ro). Solving the above

equation we obtain the unique real solution

(do)2 = − L1

6mo
1

+
1

6mo
1

√

L2
1 + 60

mo
1

(λJro
3 )2

(
Ro

ro

)2

, (5.44)

assuming L1 > 0 and δo
0 > 0. The constitutive prescription of T o

ΘΘ, studied here,

ensures L1 > 0 and δo
0 > 0.

Next we consider the case when µ1 and/or T o
ΘΘ is only piecewise continuous, then

at the interface we require Trr(r
−

j ) = Trr(r
+
j ) which translates to finding (d−

j )∗ > 0

such that

y((d−

j )∗) = 0, (5.45)

3T o
RR is derived from the constitutively prescribed T o

ΘΘ see section (G.2) of chapter
III for details
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where now

y(d−

j ) = µ1(R
−

j )µ2 exp(Q−)



3(d−

j )2m−

1 + O−

1 − 5

(d−

i λJr−
3 )2

(
R−

j

r−j

)2




−µ1(R
+
j )µ2 exp(Q+)



3(d+

j )2m+
1 + O+

1 − 5

(d+
i λJr+

3 )2

(
R+

j

r+
j

)2


 ,(5.46)

Q− = µ2(J
−

m1J
−

m3 +5/J−

m3 − 8), Q+ = µ2(J
+
m1J

+
m3 +5/J+

m3 − 8), J−

m1 = m−

1 (d−

j )2 +O−

1 ,

J−

m3 = Jr−
3 (d−

j )
r−j

R−

j

λ, J+
m1 = m+

1 (d+
j )2 + O+

1 , J+
m3 = Jr+

3 (d+
j )

r+
j

R+
j

λ, O−

1 = m−

2

(
r−j

R−

j

)2

+

δ−0
[
(r−j Ω)2 + λ2

]
, O+

1 = m+
2

(
r+
j

R+
j

)2

+δ+
0

[
(r+

j Ω)2 + λ2
]
, m−

1 = m1(R
−

j ), m+
1 = m1(R

+
j ),

Jr−
3 = Jr

3 (R−

j ), Jr+
3 = Jr

3 (R+
j ), δ−0 = δ0(R

−

j ) and δ+
0 = δ0(R

+
j ) . In general, it is not

possible to solve (5.45) analytically and hence we seek numerical solution using the

bisection algorithm. Since, (5.46) is a continuous function in d−

j and since

lim
d−j →0

y(d−

j ) → −∞, and lim
d−j →∞

y(d−

j ) → ∞, (5.47)

there exist (d−

j )∗ ∈ (0,∞) such that y((d−

j )∗) = 0. Further, (5.46) is not monotonic,

in general. Hence, there could exist more than one solution. However, numerical

investigation reveals that the solution is unique for the cases studied here.

Therefore, there exist a deformation of the form (5.2) for the exponential consti-

tutive relation when Ri > 0, for the forms of µ1 and T o
ΘΘ studied here.

1. Case-1: Pure inflation

We begin by studying the response of the annular cylinder subjected to inflation at

constant length by applying a radial component of the normal stress at the inner

surface and axial component of the normal stresses at the extremities of the cylin-

der. We shall also require that the outer surface of the cylinder be free of boundary

traction. Thus, for this case we specify, λ = 1, Ω = 0, Trr(ro) = 0, ro and study the
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variation of ri, Trr(ri) and the axial load L for various prestress fields recorded in

section (G.2) of chapter III. However, we present the results of only some of the cases

studied. Figure 28 plots the prestresses corresponding to various cases, whose results

are recorded here. All the cases studied here correspond to the PWC variation with

varying values of ε1 but with the same value for k, i.e., 2. Thus, for ‘cs-1’ ε1 = 0.1,

‘cs-2’ ε1 = 0.4, ‘cs-3’ ε1 = −0.4, ‘cs-4’ ε1 = −0.1 and ‘stsf’ ε1 = 0; is a mnemonic for

stress free body4. These cases are studied here for their relevance in understanding

the mechanics of blood vessels. ‘cs-1’ and ‘cs-2’ corresponds to the case in which the

inner layer is in circumferential compression while the outer is in circumferential ten-

sion corresponding to ones expectation [5] of the prestress fields in blood vessels. In

keeping with our aim to understand the mechanics of the blood vessels, we assume the

annular right circular cylinder to be made up of two layers with the value of material

moduli, µ1 in the innermost layer being approximately half that in the outer layer,

motivated from the data in von Maltzahn [49]. Figure 29 plots the radial variation

of the material parameter µ1/(µ1)m where (µ1)m ≈ 5 MPa.

While figure 30 plots −Trr(ri) and L as a function of ro for various prestress

fields, figure 31 plots ri vs. ro. Figures 32 and 33 plot the transmural variation of the

stresses and figure 34 plots r(R) and r,R when ro = 1.2Ro.

We infer from figure 30 that while the radial component of the normal stress

required to engender a given ro for the prestressed bodies studied here varies by as

much as 55% from that of stress free body, the axial load required to maintain its

length varies by as much as 35%. We also find that the deviation depends not only

on the magnitude of the prestresses but also on whether the circumferential prestress

is radially increasing or decreasing. This constitutive relation also predicts that the

4By a stress free body we mean a body with a stress free configuration as reference.
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Fig. 28. Plot of prestresses (a) T o
ΘΘ/(µ1)m (b) T o

RR/(µ1)m vs. R/Ro in an annular right

circular cylinder with Ro = 1 and Ri = 0.9.
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Fig. 29. Plot of µ1 vs. R/Ro in an annular right circular cylinder with Ro = 1 and Ri

= 0.9.

axial load required to maintain a constant length for increasing values of ro, increases;

irrespective of the length at which it is maintained a constant. Hence, the present

constitutive relation could not satisfactorily describe the response of the blood vessels.

2. Case-2: Uniaxial extension

Next, we study the uniaxial extension of prestressed annular cylinder made up of

biological material. For this case, we specify Ω = 0, Trr(ri) = Trr(ro) = 0, and λ and

compare the computed values of axial load, L and boundary deformations ri and ro

for various prestress fields and λ. Now, we have to determine that value of ro which

results in Trr(ri) = 0. This is accomplished using techniques described in some detail

in section (A.2) of this chapter. While figure 35 plots the axial load as a function of
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Fig. 30. Plot of (a) −Trr(ri)/(µ1)m (b) L/(µ1)m vs. ro/Ro of an annular right circular

cylinder with Ro = 1 and Ri = 0.9 made of biological material for various

prestress distributions shown in figure 28 when µ1 is as shown in figure 29

and µ2 = 0.1.
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Fig. 31. Plot of ri vs. ro/Ro of an annular right circular cylinder with Ro = 1 and Ri

= 0.9 made of biological material for various prestress distributions shown in

figure 28 when µ1 is as shown in figure 29 and µ2 = 0.1.

stretch ratio, figure 36 plots ri and ro as a function of λ. From figure 35 we find that

the axial load required to engender a given stretch varies (by about 8%) with both

the magnitude of the prestresses and the value of λ. We infer from figure 37 that

axial stretching reduces the magnitude of the circumferential and radial stresses in

the prestressed body by about 10%. It can be seen from figure 38 that the prestresses

can accentuate or inaccentuate the differences in the material moduli between the two

layers, depending on whether the circumferential prestresses are radially increasing or

decreasing. Unlike in the case of Blatz-Ko bodies, the deformation is not homogeneous

as seen from figure 39. Hence, for this constitutive relation the value of ri and ro too

varies marginally (about 1%), as seen in figure 36.
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Fig. 32. Plot of stresses (a) Tθθ/(µ1)m (b) Trr/(µ1)m vs. R/Ro in an annular right

circular cylinder with Ro = 1 and Ri = 0.9 made of biological material sub-

jected to inflation with ro = 1.2Ro, for various prestress distributions shown

in figure 28 when µ1 is as shown in figure 29 and µ2 = 0.1.



172

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R/R
o

T zz
/(µ

1) m

cs−1
cs−2
stsf
cs−3
cs−4

Fig. 33. Plot of stresses Tzz/(µ1)m vs. R/Ro in an annular right circular cylinder with

Ro = 1 and Ri = 0.9 made of biological material subjected to inflation with

ro = 1.2Ro, for various prestress distributions shown in figure 28 when µ1 is

as shown in figure 29 and µ2 = 0.1.

3. Case-3: Pure twist

Finally, we study the twisting of an annular right circular cylinder made up of bio-

logical material held at a constant length. In this case too, both the inner and outer

surfaces are traction free and we apply axial component of the normal stresses and

shear stress, Tθz at the extremities of the annular cylinder. Thus, for this case we

specify, λ = 1, Trr(ri) = 0, Trr(ro) = 0 and Ω. As described in detail in section (A.2)

of this chapter, we guess the value, rg
o , solve the IVP, obtain r(Ri) and r,R(Ri) and

then verify if Trr(Ri, r(Ri), r,R(Ri)) = 0, if not we update the guessed value rg
o until

the boundary condition is met.
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Fig. 34. Plot of (a) r (b) r,R vs. R/Ro in an annular right circular cylinder with Ro

= 1 and Ri = 0.9 made of biological material subjected to inflation with ro

= 1.2Ro, for various prestress distributions shown in figure 28 when µ1 is as

shown in figure 29 and µ2 = 0.1.
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Fig. 35. Plot of L/(µ1)m vs. λ for an annular right circular cylinder with Ro = 1 and

Ri = 0.9 made of biological material for various prestress distributions shown

in figure 28 when µ1 is as shown in figure 29 and µ2 = 0.1.

As before having specified λ, Trr(ri), Trr(ro) and Ω, we study the other boundary

traction, namely the axial load, L and the torque, T required along with the boundary

deformation ri and ro, to realize a given value of Ω. Figures 40 and 41 plot the axial

load, the torque and the boundary deformations for various values of twist per unit

length, Ω. Figures 42 and 43 plot the radial variation of the non-zero components of

the stress field when Ω = 0.2. Figure 44 plots r(R) and r,R(R) for the same value of

Ω.

In this case too, the torque, T and the axial load, L required to engender a

given twist per unit length and maintain a constant length, varies depending on the

magnitude of the prestresses and whether the circumferential prestress is radially
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Fig. 36. Plot of (a) ri (b) ro vs. λ of an annular right circular cylinder with Ro = 1

and Ri = 0.9 made of biological material for various prestress distributions

shown in figure 28 when µ1 is as shown in figure 29 and µ2 = 0.1.
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Fig. 37. Plot of stresses (a) Tθθ/(µ1)m (b) Trr/(µ1)m vs. R/Ro in an annular right cir-

cular cylinder with Ro = 1 and Ri = 0.9 made of biological material subjected

to uniaxial extension with λ = 1.2 for various prestress distributions shown

in figure 28 when µ1 is as shown in figure 29 and µ2 = 0.1.
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Fig. 38. Plot of stresses Tzz/(µ1)m vs. R/Ro in an annular right circular cylinder

with Ro = 1 and Ri = 0.9 made of biological material subjected to uniaxial

extension with λ = 1.2 for various prestress distributions shown in figure 28

when µ1 is as shown in figure 29 and µ2 = 0.1.

increasing or decreasing and of course on the magnitude of the twist per unit length.

For the cases studied here, the torque varies by as much as 5 percent and the axial load

varies by as much as 2 percent as seen in figure 40. Also, the boundary deformations, ri

and ro, varies less than 1 percent from the stress free body for the cases of prestressed

bodies studied here as inferred from figure 41.
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Fig. 39. Plot of (a) r (b) r,R vs. R/Ro in an annular right circular cylinder with Ro

= 1 and Ri = 0.9 made of biological material subjected to uniaxial extension

with λ = 1.2 for various prestress distributions shown in figure 28 when µ1 is

as shown in figure 29 and µ2 = 0.1.
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Fig. 40. Plot of (a) T/(µ1)m (b) L/(µ1)m vs. Ω for an annular right circular cylinder

with Ro = 1 and Ri = 0.9 made of biological material for various prestress

distributions shown in figure 28 when µ1 is as shown in figure 29 and µ2 =

0.1.
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Fig. 41. Plot of (a) ri (b) ro vs. Ω of an annular right circular cylinder with Ro = 1

and Ri = 0.9 made of biological material for various prestress distributions

shown in figure 28 when µ1 is as shown in figure 29 and µ2 = 0.1.
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Fig. 42. Plot of stresses (a) Tθθ/(µ1)m (b) Trr/(µ1)m vs. R/Ro in an annular right cir-

cular cylinder with Ro = 1 and Ri = 0.9 made of biological material subjected

to twisting with Ω = 0.2 for various prestress distributions shown in figure 28

when µ1 is as shown in figure 29 and µ2 = 0.1.
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Fig. 43. Plot of stresses (a) Tzz/(µ1)m (b) Tθz/(µ1)m vs. R/Ro in an annular right cir-

cular cylinder with Ro = 1 and Ri = 0.9 made of biological material subjected

to twisting with Ω = 0.2 for various prestress distributions shown in figure 28

when µ1 is as shown in figure 29 and µ2 = 0.1.
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Fig. 44. Plot of (a) r (b) r,R vs. R/Ro in an annular right circular cylinder with Ro

= 1 and Ri = 0.9 made of biological material subjected to twisting with Ω =

0.2 for various prestress distributions shown in figure 28 when µ1 is as shown

in figure 29 and µ2 = 0.1.
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CHAPTER VI

EXPERIMENTS ON CIRCUMFLEX CORONARY ARTERIES FROM

NORMOTENSIVE AND HYPERTENSIVE PIGS

In this chapter, we shall apply the above gained knowledge to broaden our understand-

ing of the response of circumflex coronary arteries subjected to inflation at constant

length. Despite coronary artery disease being one of the leading causes of mortality

in the western world, there are few studies on the mechanics of the circumflex artery.

Kang et al. [77] reported finite extension and inflation tests on passive bovine cir-

cumflex arteries, but the emphasis was on delineating general characteristics of heat

induced changes in behavior and no constitutive relation was proposed. Carmines et

al. [78] reported finite inflation tests at three fixed axial extensions, for non-diseased

human and porcine LAD arteries. They placed a latex inner tube to prevent leak-

age from the side branches in the artery and proposed a different stress and strain

relationship for low and high strains, each limiting the utility of their study. By far

one of the best experimental study of the coronary arteries is by Cox [33]. He used a

1D constitutive relation which accounted for vascular smooth muscle tone but could

not capture the non-linear relationship between the stress and strains. However, he

deduced the stress and strains based on the assumption that the blood vessel could be

approximated as a thin walled homogeneous annular cylinder and that the boundary

traction free reference configuration of the body was also stress free. Blood vessels

are neither homogeneous nor stress free in a configuration free of boundary traction,

thus limiting the applicability of his study.

Here, the aim of performing mechanical tests on arteries is to move a step closer

to deducing robust 3D constitutive relations that include vascular smooth muscle tone

and to examine whether these constitutive relation changes during the time course of



185

adaptation and remodelling of arteries due to experimentally induced hypertension.

This involves finding a form of the Helmoltz potential1, i.e., ψ = ψ̂(J̃m1, J̃m2, J̃m3, ϑ,P)

and the prestress field, To = T̂o(P) as a function of vascular smooth muscle tone.

While one expects the form of Helmoltz potential not to change on sectioning the

artery, the prestress field does. Hence, it becomes necessary to perform experiments

on the intact blood vessels. This limits the experiments that can be performed. The

experiments that can be performed are inflation, extension and twisting of intact

blood vessels. A subclass of these experiments were performed in this study on

porcine circumflex coronary arteries.

Before further examining, in some detail, the mechanical response of the cir-

cumflex artery, let us briefly study its wall structure, as outlined in Humphrey [5],

to understand how best it can be approximated. Like other arteries, the circumflex

consists of three layers: the tunica intima, tunica media, and tunica adventitia. The

tunica intima consist of a monolayer of endothelial cells and a subendothelial layer of

connective tissue (i.e., basement membrane consisting of collagen IV and lamina) and

axially oriented smooth muscle cells. An internal elastic lamina, considered to be part

of media, separates the media and the intima and is essentially a fenestrated sheet of

elastin. The media contains smooth muscle cells embedded in an extracellular plexus

of elastin and collagen (type I, III and V) and an aqueous ground substance matrix

containing proteoglycans. Even though the orientation and distribution of the medial

constituents varies with species, the vascular smooth muscle cells tend to be oriented

helically, albeit nearly circumferentially in many cases. The smooth muscle appears

as a single thick layer that is bounded by a thick internal and less marked external

1Here we have suppressed the dependence of the invariants, J̃mi and the tempera-
ture, ϑ on P and assume that the functional form of the Helmoltz potential does not
change with the material points being considered, but only the material parameters
can change.
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elastic lamina. Further, the smooth muscle cells are embedded in a loose connective

tissue matrix and arranged as a sequence of concentric layers of cells; with many

of these layers. The connective tissue augments the structural integrity of the wall,

including its ability to generate force, and acts as a scaffolding on which the cells can

adhere or move. Finally, the outermost layer, the adventitia, consists primarily of

a dense network of type I collagen fibers with admixed elastin and fibroblasts. The

adventitial collagen fibers tend to have an axial orientation and are undulated slightly

in the basal state. The adventitia, comprising approximately 50% of the circumflex

wall, is thought to limit acute over distension, thus serving as a protective sheath.

Hence, for understanding the mechanical response of the circumflex artery or more

generally, muscular arteries, can be thought of as two layered2 right circular annular

cylinder with the layers being of the same thickness but with different material prop-

erties. Here we propose ways to examine whether such an assumption is adequate

given the arrangement of the smooth muscle cells which are about 5µm in diameter,

in a wall that is approximately 500µm thick.

Towards this, we observe that if the deformation is of the form

r = r(R), θ = Θ, z = λZ, (6.1)

then the value of the principal invariants is constant3 on the surface defined by R =

Ro, a constant. Here (R, Θ, Z) denotes the coordinates of a typical material point

in a reference configuration and (r, θ, z) the coordinates of a typical material point

in the current configuration; Ro is the outer radius of the artery, assumed to be

2The innermost layer, tunica intima is considered to be mechanically insignificant
[5].

3Note that while the matrix components of the gradient of deformation in cylin-
drical coordinates is constant on the surface of the cylinder, that of the Cartesian
coordinates are not.
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an annular right circular cylinder. From the results in the last chapter, it is easy

to see that the deformation (6.1) is possible provided ψ = ψ̂(J̃m1, J̃m2, J̃m3, R), To

= T̂o(R) and ψ̂(J̃m1, J̃m2, J̃m3, R) ∈ C∞(ωa) i.e., the blood vessel can be at most

radially inhomogeneous and the prestress fields vary at most radially and the Helmoltz

potential is a smooth function of the invariants J̃mi and piecewise smooth functions of

R. It should be emphasized that there can exist other deformations, not of the form

(6.1), satisfying the relevant boundary conditions4 and balance of linear momentum

when ψ = ψ̂(J̃m1, J̃m2, J̃m3, R), To = T̂o(R). Thus, it can only be concluded that if

the deformation was of the form (6.1) then the Helmoltz potential and the prestresses

do not vary circumferentially and/or axially. Thus, the first objective is to examine if

the principal invariants are constant on the surface of the circumflex artery subjected

to inflation at constant length.

Vascular smooth muscle tone is known to modify the mechanical response of the

artery [See Cox ([33],[34], [35]), Zulliger et al. [36], Fridez et al. ([37],[38],[39])], to

change the “opening angle” in a radially cut short segment of the artery ([41],[79]),

and to change the diameter of the artery held at constant length with a constant

radial component of the normal stress at its inner surface. In other words, smooth

muscle tone alters the stress field in a given configuration, particularly that in the

reference configuration. That is, To, the stress in the reference configuration depends

on the smooth muscle tone and possibly other factors, yet to be identified. In vitro,

the smooth muscle tone depends on the concentration of the agonist, temperature and

presumably on the mechanical state of the blood vessel [5]. The change in the smooth

muscle tone depending on the mechanical stress ([5], [36]) experienced by it is called

4The prescribed boundary conditions are Trr(ri), Trr(ro), the radial component of
the normal stress at the inner and outer surfaces, the axial load, L, defined in (4.72),
the torque, T , defined in (4.73), the deformed inner and outer radius, ri and ro, the
ratio of the deformed length to original length, λ and twist per unit length, Ω.
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the myogenic response. However, this dependence is deduced from the assumption

that the total stress in the artery is the sum of the active stress (i.e. the stress that

arises due to smooth muscle contraction) and the passive stress (i.e. the stress in the

arterial wall when the smooth muscles are fully relaxed). It was shown in chapter III

that an additive decomposition of the stresses does not hold, in general, when the

body undergoes finite deformations. Here we examine if we can provide experimental

evidence towards the same.

Finally, we outline the issues that arise while comparing the response of two dif-

ferent inhomogeneous and prestressed bodies. The question here is how to distinguish

differences in the mechanical response of the body arising from differences in the ge-

ometry of the bodies versus differences in the material that it is made of. Even what

we mean by differences in the material is not clear in the case of prestressed bodies.

For example, consider two bodies identical in geometry and chemical composition

except that one of them has prestresses. Now, the mechanical response of these bod-

ies would in general be different. Therefore, are we to conclude that they are made

of different materials? It is difficult to isolate the effects of geometry of the body

while experimentally investigating the mechanical response of inhomogeneous and

prestressed bodies because, in general, the stress distribution is non-uniform and the

deformations are inhomogeneous and it is rarely possible in experiments to determine

either of them without making some assumptions. Here it is pertinent to note that

deformations that are solutions to balance of linear momentum need not be algebraic

functions but might locally be well approximated by algebraic functions. However,

caution has to be exercised in such a comparison or approximation, for many differ-

ent prestress field can result in nearly the same deformation, as was shown in the

last chapter (see figures 34, 39 and 44), even though their gradients were relatively

markedly different. Thus, we finally provide a possible scheme for comparing the
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mechanical response of different inhomogeneous and prestressed bodies.

A. Experimental system

A computer controlled system originally designed and built to test embryonic chick

hearts subjected to low pressures, reported in Ling et al. [80], was adapted to test

circumflex arteries. A schematic of the experimental system is shown in figure 45.

The overall system consists of three main subsystems.

Fist, we consider a video-based system which allows 2D tracking of up to 12

markers. This system consists of a microscope (Olympus SZ60) with an auxiliary

viewing port (SZ-PT), a charged couple device (CCD) camera (Javelin JE-7442), a

VCR (Sony SVT-S3100), two B&W monitors (Sony SSM-171 for specimen prepara-

tion and a Panasonic TR-930B for visualizing the on-line tracking of fiducial markers)

and a video frame grabber board (Data Translation DT-2853SQ) that captures 8 bit

gray scale images as 512×512 pixel arrays. Markers are tracked online at 30 Hz using

the correlation-based algorithm reported in Downs et al. [81]. To maintain focus of

the markers on the surface of the artery during “extreme” deformations, a manually

controlled focussing mechanism can translate the microscope optics vertically. This

was achieved by replacing the rack and pinion microscope stand with a motorized

vertical translation stage (Newport Corporation 426 and CMA-25CC 861 controller)

mounted on a damped mounting rod (Thorlabs DP14).

Second, the cannulated specimen is held by and loaded through a system as

shown in figure 45, so that the artery is submerged in the test chamber, which con-

tains a physiologic solution. The specimen could be axially stretched using a computer

controlled actuator (Newport Corp.) through a precision x-y-z stage that allows ad-

justment of the position of the specimen within the video field of view. The x-y-z
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stage is also used to change the length of the artery at which it is held fixed while

inflating. Also, one end of the specimen is attached to a computer controlled sy-

ringe pump (World Precision Instruments SP210iw) and the other end to a pressure

transducer (Sensotec) and load cell (Sensotec), as shown in figure 45. The artery is

connected to the syringe pump and pressure transducer using tubes of 2mm inner

diameter. The syringe pump is fitted with a 3cc syringe (Hamilton 1705TLL). The

pump is controlled by the computer via ASCII commands that allows cyclic pres-

surization tests over a wide range of infusion rates. The pressure transducer has a

sensing range from 0 to 258 mmHg, with a factory reported accuracy of 0.26 mmHg.

The load cell, used to measure the axial load, has a sensing range from 0 to 250 gms

with a reported accuracy of 0.25 gms. The pressure transducer and the load cell is

sampled via a 12-bit analog to digital (A/D) board (Data Translation DT2831) in

the computer.

Third, the experiments and data collection (video, axial load and radial compo-

nent of the normal stress at the inner surface of the artery) are controlled by Keyboard

commands via a custom C code running on an Intel Pentium II computer (Compaq

Deskpro, RAM reduced to 8MB to accommodate the online tracking algorithm). The

stored data is analyzed using custom matlab code.

The pressure transducer was calibrated using sphygmomanometer and the load

cell using standard weights. The video system was not calibrated because we were

interested only in the gradient of the deformation and it is a dimensionless quantity.

B. Computation of deformation gradient

Here, we shall first concern ourself with the problem of computing the gradient of

the deformation from the position of ‘n’ markers at different instances. Towards



192

this, we first estimate a smooth deformation field from the position of ‘n’ markers

in the reference and current configurations and then compute the gradient of the

inferred smooth deformation field. As already noted, in general, it is not possible

to experimentally determine the exact deformation field by tracking ‘n’ markers, we

can at most get a reasonable approximation of the deformation field and its gradient

locally. In other words, we chose a finite dimensional function space and seek the

best approximation of the actual deformation in this space.

To elaborate, let φi be a basis for the chosen finite dimensional function space.

Then, the approximate deformation field, χa has a representation5

(χa)j =
m∑

i=1

aj
iφ

j
i (X,Y, Z), (6.2)

where aj
i are constants, (X,Y, Z) are Cartesian coordinates of the marker in the

reference configuration, m is a finite integer. The constants aj
i have to be determined

from knowing the position of ‘n’ markers in the current and reference configuration.

This can be achieved in couple of ways. In the first case, assuming m < n, we choose

‘m’ markers out of the available ‘n’ markers such that ∆j 6= 0 for j ∈ {x, y, z}, where

∆j = det(Aj),

Aj =




φj
1(X1, Y1, Z1) φj

2(X1, Y1, Z1) · · · φj
m(X1, Y1, Z1)

φj
1(X2, Y2, Z2) φj

2(X2, Y2, Z2) · · · φj
m(X2, Y2, Z2)

...
... · · · ...

φj
1(Xm, Ym, Zm) φj

2(Xm, Ym, Zm) · · · φj
m(Xm, Ym, Zm)




(6.3)

(Xk, Yk, Zk) are the Cartesian coordinates of kth marker of the chosen m markers

5Since we can track only a finite number of markers, at times it might be advanta-
geous to approximate the deformation by functions such as x =

√
a1

X2 + a2 or rational
functions. In these cases, the constants, ai can be determined by the method outlined
below, albeit with some modifications.
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in the reference configuration. Then, we find the constants aj
i by solving the linear

system of equations to be

ax = (Ax)−1x, ay = (Ay)−1y, az = (Az)−1z, (6.4)

where

aj =





aj
1

aj
2

...

aj
m





, x =





x1

x2

...

xm





, y =





y1

y2

...

ym





, z =





z1

z2

...

zm





, (6.5)

(xk, yk, zk) are the Cartesian coordinates of the kth marker of the chosen m markers

in the current configuration. The value of the constants aj depends on the choice

of the m markers, unless the actual deformation is contained in the chosen function

space.

Now, let Ic
1, Ic

2 and Ic
3 denote the principal invariants computed from (aj

i )
c, the

value of the constants obtained for the cth choice of ‘m’ markers. In general, at a

given location, we obtain different values for the principal invariants corresponding to

different choices of the ‘m’ markers. These different values of the principal invariants

not only reflect the quality of the approximation of the chosen function space of the

actual deformation, they in fact carry information about the true spatial variation of

the deformation and its gradient, as is evident when the basis of the function space is

{X,Y, Z, 1}. To understand what we mean by this, let us consider a simpler problem.

Say we are interested in approximating the function, f(x) by a straight line a ∗ x + b.

Immediately, we know that unless the function f(x) happens to be a straight line, we

could not approximate the function f(x) globally by a straight line with good degree

of accuracy. However, we could locally approximate a smooth function f(x) by the
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straight line

y =
f(x1) − f(x2)

x1 − x2

x +
x1f(x2) − x2f(x1)

x1 − x2

, (6.6)

fairly accurately in many cases. In fact as x2 tends to x1, the approximation becomes

better for both the function and its first derivative. But the important observation

here is that the value of the constants a and b varies with the choice of x1 and x2 in

keeping with the changes in the value of the function f(x). Hence, it is worthwhile to

study the variation of the principal invariants with the choice ‘m’ markers. Towards

this, we find the following two definitions useful to present our results:

Ip =
1

d

d∑

c=1

Ic
p, Is

p =

√√√√ 1

d − 1

d∑

c=1

(Ic
p − Ip)2, (6.7)

where p ∈ {1, 2, 3} and d is the total number of different sets of m markers used to

infer the invariants, Ip.

Alternatively, when one knows that the function space to which the deformation

belongs, we can use the position of all the ‘n’ markers to find the values of the

constants aj
i such that the errors

ex =
n∑

k=1

[
xk −

m∑

i=1

ax
i φ

x
i (Xk, Yk, Zk)

]2

,

ey =
n∑

k=1

[
yk −

m∑

i=1

ay
i φ

y
i (Xk, Yk, Zk)

]2

,

ez =
n∑

k=1

[
zk −

m∑

i=1

az
i φ

z
i (Xk, Yk, Zk)

]2

, (6.8)

are minimized. This yields

ax = (Dx)−1x∗, ay = (Dy)−1y∗, az = (Dz)−1z∗, (6.9)
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where

Dj =




∑n
k=1(φ̂

j
1)

2
∑n

k=1 φ̂j
1φ̂

j
2 · · · ∑n

k=1 φ̂j
1φ̂

j
m

∑n
k=1 φ̂j

2φ̂
j
1

∑n
k=1(φ̂

j
2)

2 · · · ∑n
k=1 φ̂j

2φ̂
j
m

...
... · · · ...

∑n
k=1 φ̂j

mφ̂j
1

∑n
k=1 φ̂j

mφ̂j
2 · · · ∑n

k=1(φ̂
j
m)2




, (6.10)

x∗ =





∑n
k=1 xkφ̂

1
1

∑n
k=1 xkφ̂

1
2

...
∑n

k=1 xkφ̂
1
m





, y∗ =





∑n
k=1 ykφ̂

2
1

∑n
k=1 ykφ̂

2
2

...
∑n

k=1 ykφ̂
2
m





, z∗ =





∑n
k=1 zkφ̂

3
1

∑n
k=1 zkφ̂

3
2

...
∑n

k=1 zkφ̂
3
m





, (6.11)

and note that φ̂j
i = φj

i (Xk, Yk, Zk).

Having determined the constants aj
i , it is straight forward to compute the gra-

dient of deformation and hence the principal invariants I1, I2 and I3. Note that in

this case since we have used all the ‘n’ markers there is only one set of aj
i and hence

the principal invariants. Here the errors ej, provides information about how good

the deformation was approximated in the chosen function space. However, as shown

in the last chapter, even when the deformations are close, their gradients can be far

apart and we need a good estimate of the gradient of the deformation because stress

depends on it. Hence, if we are not sure of the function space to which the defor-

mation belongs, using this method can result in significant errors in the determined

value of the gradient of deformation, which cannot be estimated. But this method is

less sensitive than the previous method to the errors in the location of the centroid

of the markers.
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Fig. 46. Selection of triangles (1-12) in the reference configuration to compute the

deformation field by tracking 12 markers (I-XII) using (6.12).

1. Illustrative example for markers tracked in 2D

Above we outlined a general scheme for computing the deformation gradient from the

position of ‘n’ markers in the reference and current configuration. Now, we apply the

scheme for inferring the deformation gradient when the markers are tracked in 2D.

Let us define the function space as that spanned by the basis {X,Z, 1} for both

the x coordinate and the z coordinate. Thus, (6.2) can be written as

x = ax
1X + ax

2Z + ax
3 , z = az

1X + az
2Z + az

3, (6.12)

where ax
i and az

i are constants and we have assumed that the 2D cartesian coordinates

of the tracked markers are x and z in the current configuration and X and Z in the

reference configuration. Now, if we know the location of three markers in the current
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and reference configuration we can obtain (ax
i )

c and (az
i )

c, the value of ax
i and az

i

corresponding to the cth choice of 3 markers, from solving the linear equations




X1 Z1 1

X2 Z2 1

X3 Z3 1








(ax
1)

c

(ax
2)

c

(ax
3)

c





=





x1

x2

x3





,




X1 Z1 1

X2 Z2 1

X3 Z3 1






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(az
1)

c

(az
2)

c

(az
3)

c





=





z1

z2

z3





,

(6.13)

where Xi and Zi are the coordinates in the reference configuration of the ith marker

in the selected 3 markers and xi and zi are the coordinates of the same ith marker

in the current configuration. It is then straight forward to see that the invariants,

tr(C2D) and det(C2D), are given by

(I2D
1 )c = (ax

1)
c2+(ax

2)
c2+(az

1)
c2+(az

2)
c2, (I2D

3 )c = [(ax
1)

c(az
2)

c−(ax
2)

c(az
1)

c]2. (6.14)

Thus, we find (I2D
1 )c and (I2D

3 )c corresponding to the cth choice of three markers.

Figure 46 shows a typical selection of 12 sets of three markers where the markers are

at the vertices of each triangle and are numbered using Roman numerals. Here we

choose different sets of 3 markers such that the triangles formed with these markers

as vertices have no overlapping areas.

Instead of finding the constants aj
i in (6.12) from the position of three markers

we can find them using all the ‘n’ markers such that the errors

ex =
n∑

i=1

[ax
1Xi + ax

2Zi + ax
3 − xi]

2 and ez =
n∑

i=1

(az
1Xi + az

2Zi + az
3 − zi)

2 , (6.15)

are minimized. This requires




∑n
i=1 X2

i

∑n
i=1 XiZi

∑n
i=1 Xi

∑n
i=1 XiZi

∑n
i=1 Z2

i

∑n
i=1 Zi

∑n
i=1 Xi

∑n
i=1 Zi n








ax
1

ax
2

ax
3





=





∑n
i=1 xiXi

∑n
i=1 xiZi

∑n
i=1 xi





, (6.16)
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

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i=1 X2

i

∑n
i=1 XiZi

∑n
i=1 Xi

∑n
i=1 XiZi

∑n
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i

∑n
i=1 Zi

∑n
i=1 Xi

∑n
i=1 Zi n








az
1

az
2

az
3





=





∑n
i=1 ziXi

∑n
i=1 ziZi

∑n
i=1 zi





. (6.17)

We solve the above linear equations to obtain the unknown ax
i ’s and az

i ’s. Then we

compute the invariants I2D
1 and I2D

3 from

I2D
1 = (ax

1)
2 + (ax

2)
2 + (az

1)
2 + (az

2)
2, I2D

3 = [(ax
1)(a

z
2) − (ax

2)(a
z
1)]

2. (6.18)

Instead of projecting deformation on to a function space spanned by {X,Z, 1},

we could project it to a function space spanned by {X,Z,XZ, 1}. Thus, (6.2) for this

case can be written as

x = ax
1X + ax

2Z + ax
3XZ + ax

4 , z = az
1X + az

2Z + az
3XZ + az

4. (6.19)

As before in this case too we can determine the constants ax
i and az

i from the position

of only 4 markers or from all the ‘n’ markers. When only 4 markers are used to infer

the deformation field, we compute

(I2D
1 )c = [(ax

1)
c + (ax

3)
cZc]

2 + [(ax
2)

c + (ax
3)

cXc]
2 + [(az

1)
c + (az

3)
cZc]

2

+[(az
2)

c + (az
3)

cXc]
2,

(I2D
3 )c = {[(ax

1)
c + (ax

3)
cZc][(a

z
2)

c + (az
3)

cXc] − [(ax
2)

c + (ax
3)

cXc][(a
z
1)

c + (az
3)

cZc]}2 ,

where

Xc =
1

n

n∑

j=1

Xj, Zc =
1

n

n∑

j=1

Zj, (6.20)

and (ax
i )

c and (az
i )

c are the value of ax
i and az

i computed from the cth choice of 4

markers. On the other hand when all ‘n’ markers are used to infer the deformation
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then

I2D
1 = (ax

1 + ax
3Zc)

2 + (ax
2 + ax

3Xc)
2 + (az

1 + az
3Zc)

2 + (az
2 + az

3Xc)
2,

I2D
3 = [(ax

1 + ax
3Zc)(a

z
2 + az

3Xc) − (ax
2 + ax

3Xc)(a
z
1 + az

3Zc)]
2 .

We record the above cases for their use later.

2. A study on the quality of approximation

Next, let us study in some detail the consequences of approximating the deformation

(6.1) using a linear polynomial, (6.12). Let (Ro, Θ1, Z1), (Ro, Θ2, Z2), (Ro, Θ3, Z3)

denote the cylindrical polar coordinates of three markers in the reference configuration

and (ro, θ1, z1), (ro, θ2, z2), (ro, θ3, z3) the cylindrical polar coordinates of the same

markers in the current configuration. Now, (6.13) becomes




Ro cos(Θ1) + xo Z1 1

Ro cos(Θ2) + xo Z2 1

Ro cos(Θ3) + xo Z3 1







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1
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2
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3





=



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ro cos(θ1) + xo

ro cos(θ2) + xo

ro cos(θ3) + xo





,




Ro cos(Θ1) + xo Z1 1

Ro cos(Θ2) + xo Z2 1

Ro cos(Θ3) + xo Z3 1







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

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=





z1

z2

z3





, (6.21)

where ro = r(Ro), xo shifts the origin from the axis of the annular cylinder to some

point outside the cylinder, as it happens when local coordinates of the frame grabber

board is used. Solving the above equations for ax
i and az

i and using Θ = θ and z =

λZ, we obtain ax
1 = ro/Ro, ax

2 = 0, ax
3 = (Ro − ro)xo/Ro, az

1 = az
3 = 0 and az

2 = λ.

Thus, the value of the constants aj
i are independent of the choice of the three markers
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selected to compute them. Hence, the value of

I2D
1 =

(
ro

Ro

)2

+ λ2 and I2D
3 =

(
ro

Ro

λ

)2

, (6.22)

are constant when inferred from tracking markers on the surface of the artery, assumed

to be a right circular annular cylinder and the actual deformation is given by (6.1).

In fact, if we assume that the material is incompressible we could obtain

I1 = λ2 +

(
ro

Ro

)2

+

(
Ro

λro

)2

, I2 =
1

λ2
+

(
Ro

ro

)2

+

(
λro

Ro

)2

, I3 = 1, (6.23)

where Ii’s are the principal invariants of C in 3D. Thus, the proposed method for

computing the deformation field and its gradient are robust at least when the actual

deformation is as given by (6.1). Also, it is pertinent here to point out that the basis

function corresponding to rigid body translation, {1}, allows shifting of the origin

from the axis of the artery to that of the local coordinates on the frame grabber

board. It is this constancy of the principal invariants that we propose to verify.

C. Experimental methods

1. Sample preparation

Hypertension was induced in a set of mature micro-mini pigs (Panapinto Micro Minip-

igs; Mansonville, CO) by controllable suprarenal aortic coarctation as described in

detail in Fossum et al. [82]. Animal care in this study conformed to the guide-

lines of the University Laboratory Animal Care Committee, Texas A&M University.

Briefly, a balloon occluder was placed around the suprarenal aorta proximal to the

diaphragm by performing a thoracotomy. In addition telemetry units for measuring

blood pressure and heart rate and vascular access ports for drawing blood samples

were implanted. The occluder was then inflated over a period of two weeks to induce
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Fig. 47. A dissected circumflex coronary artery.

aortic coarctation and hence to gradually raise the mean proximal arterial blood pres-

sure to 150 mm Hg or more. For another set of pigs, called the normotensive, while

the occluder, telemetry units and vascular access ports was placed, hypertension was

not induced, i.e., the occluder was not inflated. For the third set of pigs, called true

control, no thoracotomy was performed but telemetry units and vascular access ports

were implanted. Thus, the true control pigs are also normotensive. The pigs were

euthanized 2, 4, 6 and 8 week post attainment of the targeted blood pressure. Their

hearts were harvested and transported in ice-cold normal saline. Segments 2 to 4

cm in length of the circumflex artery from its origin at the left coronary artery were

dissected (see figure 45c) and its side branches were ligated using 2-0 or 3-0 nylon

braided sutures, depending on the size of the branches. Figure 47 shows a typical

dissected circumflex artery. The excised circumflex artery is mounted on two stain-

less steel cannulae, with outer diameters nearly equalling the inner diameter of the

circumflex artery, with care being exercised to ensure that the artery does not get
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twisted. The length of the vessel is fixed so that the axial load increases with inflation

on extending the artery by 10%. That is, the length of the vessel is within 10% of its

length at which the axial load remains constant on inflation. Let this length of the

artery be denoted by Lo. It should be pointed that in vivo length of the circumflex

changes with the inflation and deflation of the heart and hence is not well defined.

If the length of the artery were fixed at its no load value, the bending of the artery

while inflation posed difficulty in tracking the markers. Then 100 µm diameter black

spheres (Interactive Medical Technologies) made of polystyrene divinylbenzene were

placed on the surface of the artery as shown in figure 45b using fine tipped forceps

and glued (Permabond) using a glass micropipet (WPI PG52150-4) which is formed

using a pipet puller (World Precision Instruments PUL-1) and by grinding it down

to the desired diameter of 50 µm. The location chosen for placing markers is such

that it is approximately at the center of the artery and as best possible not near the

ligations. The artery is then placed in normal saline (154 mM NaCl) until activated.

2. Protocols

In this study we report the results of the experiments conducted from 2002 through

2004. In total we report the results from 43 different specimens. Table I gives the

number of specimens tested in various categories. For the specimens tested from 2002

through 2003 the following protocols were performed on each of the specimen.

1. The location of the markers on the outer surface of the body, in a configuration

free of radial component of the normal stress at the inner surface were recorded

under quiescent conditions. This recording was used to obtain the reference

configuration. Thus, this reference configuration is not free of traction on the

boundary; there exists axial component of the normal stress at the of the artery.
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Table I. Specimen statistics: HT-hypertensive, NT-normotensive, P-number of speci-

mens tested in passive state, A-number of specimens tested in activated state,

N-number of specimens tested in native state.

Duration of HT HT/NT P A N

2 week HT 4 2 4

NT 6 1 0

4 week HT 6 6 6

NT 4 1 0

6 week HT 4 4 4

NT 2 1 1

8 week HT 4 3 3

NT 3 3 3

We call this the native reference configuration and the invariants, I2D
1 and I2D

3 ,

are computed using this as the reference configuration unless otherwise stated.

2. The body was translated manually along the x direction using the actuators

in the precision x-y-z stage and the motion of the markers were tracked. This

protocol was performed to get an estimate of the error in the video tracking

system.

3. The microscope was translated vertically using a motorized actuator, described

before and the motion of the markers tracked. This protocol was performed to

get an estimate of the error in the video tracking system due to changing focus.

4. The artery was inflated cyclically for 5 cycles at constant length in a normal

saline bath (154 mM NaCl). We call this the response of the artery in its native
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state i.e., the state in which it is isolated from natural or artificial hormonal

and neural stimuli.

5. Then, in 21 of the cases, the artery was activated, i.e., the smooth muscle cells

were made to contract, by changing the solution in which the artery is perfused

from normal saline to a solution high in KCl, called the active solution which

contains 22.5 mM NaHCO3, 1.2 mM NaH2PO4, 2.4 mM Na2SO4, 1.2 mM

MgSO4.7H2O, 21 mM NaCl, 100 mM KCl, 2.5 mM CaCl2, 5.6 mM Dextrose.

The active solution is bubbled continuously with oxygen (95% O2 and 5% CO2)

and maintained at a constant temperature of 37 degrees Celsius. The artery is

perfused with this solution for one hour and during the same time a constant

pressure6 of 70 mm Hg is applied at the inner surface of the artery.

6. At the end of one hour period, the smooth muscles are assumed to have con-

tracted the maximum possible under the given conditions and the following

protocols were performed in the same order for all the specimens:

(a) Cyclic inflation from 0 to 120 mm Hg (or up to 150 mm Hg when possible)

at constant length, Lo by infusing the active solution at the rate of 15

µl/sec.

(b) The location of the markers in the body free of radial component of the

normal stress at the inner surface were recorded under quiescent conditions.

As before, this recording is used to obtain a reference configuration called

the active reference configuration.

(c) Cyclic inflation from 0 to 120 mm Hg (or up to 150 mm Hg when possible)

at constant length, 1.1Lo by infusing the active solution at the rate of 15

6By pressure we mean the radial component of the normal stress.
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µl/sec.

(d) Cyclic stretching at the rate of 24 µm/sec from Lo to 1.1Lo at a constant

pressure of 60 mm Hg at the inner surface of the artery.

In all the above cases, the artery was subjected to 5 cycles of loading and

unloading and during all the 5 cycles the 2D location of the markers, the pressure

and axial load were recorded. All the above protocols were performed within

1 hour of activation and the artery was immersed in the circulating active

solution during the entire period of mechanical testing with the solution still

being perfused with oxygen and maintained at 37 degree Celsius.

7. After testing the artery in active solution, the solution was drained and the

system washed using normal saline. Then, the artery was perfused with passive

solution: containing 116.5 mM NaCl, 22.5 mM Na2HCO3, 1.2 mM NaH2PO4,

2.4 mM Na2SO4, 4.5 mM KCl, 1.2 mM MgSO4, 1.5 mM CaCl2 and 5.6 mM

dextrose and the solution was oxygenated for 20 minutes but its temperature

was not controlled. The artery was allowed to equilibrate in the passive solution

for 1 hour with a pressure of 70 mm Hg being applied at the inner surface of

the artery.

8. After equilibrating for one hour, the smooth muscle cells are presumed to be

relaxed the maximum possible under the given conditions and the following

mechanical tests were performed in the same order on all the specimens

(a) The location of the markers in the body free of radial component of the

normal stress at the inner surface were recorded under quiescent conditions.

As before, we call this the passive reference configuration.

(b) Cyclic inflation from 0 to 120 mm Hg (or up to 150 mm Hg when possible)
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at constant length, Lo by infusing the passive solution at the rate of 15

µl/sec.

(c) Cyclic inflation from 0 to 120 mm Hg (or up to 150 mm Hg when possible)

at constant length, 1.1Lo by infusing the passive solution at the rate of 15

µl/sec.

(d) Cyclic stretching at the rate of 24 µm/sec from Lo to 1.1Lo at a constant

pressure of 60 mm Hg.

In all the above cases the artery was subjected to 5 cycles of loading and un-

loading and during all the 5 cycles the 2D location of the markers, the pressure

and axial load were recorded. All the above protocols were performed within 1

hour of passivation and during this period the artery was just immersed in the

passive solution; the solution was not perfused with oxygen nor its temperature

maintained at 37 degree Celsius.

9. Then on some specimens, one end was held fixed the other end was rotated so

that the twist per unit length, Ω is 1 degree/mm and the artery was cyclically

inflated for 5 cycles from 0 to 120 mm Hg holding the length constant at 1.1Lo

by infusing passive solution at the rate of 15 µL/sec. This was followed by

recording the configuration of the markers in which the body is free of radial

component of the normal stress at the inner surface but was extended and

twisted. We call this the twisted reference configuration.

10. Finally, the artery was fixed in formalin for histological studies and obtaining

geometrical information.

All the mechanical tests were completed within eight hours of harvesting the heart.
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For specimens tested in 2004 only protocols 8a to 8c were performed for reasons

discussed in section F.

3. Uncertainty analysis

Any experimental measurement has some error associated with it and efforts have to

be made to examine if the error can be estimated. Towards this, we first consider the

video system. Here we start with examining the error associated with determining

the location of the centroid of each marker. That is, the determined location of

marker will usually be within only certain number of pixels of the actual location

thereby inducing an error. Further, the location of the marker while tracking them

can change only discretely, as opposed to continuous variation in reality. In order to

get an estimate of these errors, three protocols elaborated above are used.

In the first case, repeated recording of a static configuration of the markers, as

done while recording the reference configuration is used. As always, we take the mean

of all the repeated recordings of the location of the marker to compute their location

in the reference configuration. Now, for the location of the markers in the current

configuration, we use the same readings obtained while recording the static configura-

tion of the markers. Hence, ideally (I2D
1 )c = 2 and (I2D

3 )c = 1 and any deviation from

this value signifies the error in their measurement. The deviation occurs because the

centroid of the markers are determined with an accuracy of ±a pixels only and hence

the inferred location of a static configuration of markers is not constant. A represen-

tative plot of these errors is shown in figure 48 when the deformation is approximated

by a linear polynomial (6.12) which is determined using three markers, as discussed

before. This error is sensitive to number of readings, ‘b’, over which the averaged

location of the markers is computed in the current configuration, the polynomial used

to approximate the deformation, and the particular selection of the markers. This
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error decreases as the number of readings over which the marker location is averaged

increases. This error, in the present case, also decreases as the area subtended by the

markers used to estimate it increases. However, as the area subtended by the mark-

ers increases, the quality of the approximation of the deformation and its gradient by

linear polynomial decreases when the actual deformation is not a linear polynomial.

Hence, a balance has to be maintained.

In the second case, the protocol 1, repeated recording of a static configuration of

the markers is used to find the location of the markers in the reference configuration

and the protocol 2, in which the markers were translated as a rigid body along the

x direction is used for the location of the markers in the current configuration and

the invariants computed for this case. As before ideally, (I2D
1 )c = 2, (I2D

3 )c = 1.

A representative plot of these errors is shown in figure 49 when the deformation is

approximated by a linear polynomial, (6.12) which is determined using three markers

and when the markers are manually translated by 300 pixels along the x direction

in 18 seconds7. This error is also sensitive to the number of readings over which

the averaged location of the markers is computed and the particular selection of the

markers. From this study, it was concluded that averaging over 10 readings of the

marker location was preferred.

Finally, the protocol three is used to obtain the error introduced due to changing

focus. In this case, the reference configuration of the markers is inferred from the

recordings in the protocol-1 and the current configuration of the markers is inferred

from the recordings in the protocol-3 and the invariants computed as before. Again,

ideally (I2D
1 )c = 2 and (I2D

3 )c = 1. A representative plot of these errors is shown

in figure 50 when the deformation is approximated by a linear polynomial which is

7Typically, while inflating the artery the markers translate 300 pixels along the x
direction in 32 seconds
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Fig. 48. Plot of (a) (I2D
1 )c − 2 (b) (I2D

3 )c − 1 under quiescent conditions.
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Fig. 49. Plot of (a) (I2D
1 )c − 2 (b) (I2D

3 )c − 1 while translating the artery along the x

direction as a rigid body.
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determined using three markers and when the microscope is translated by ±1250

µm. This error is sensitive to the same variables described above and changes in the

same manner. From these studies it was concluded that the error in the estimated

invariants is ±0.05.

Next, we examine the gross error associated with 2D tracking of the markers.

First, we note that the markers placed on the surface of the artery do not lie on a

plane. Further, as the artery deforms, if the deformation is not of the form (6.1)

significant errors are introduced due to out-of-plane motion of the markers. To get an

estimate of the error, a numerical stimulation was performed. The artery was given

a rigid body rotation about its axis, i.e., the artery was assumed to deform as

r = R, θ = β + Θ, z = Z, (6.24)

and the value of the invariants computed theoretically under the assumption that the

markers were tracked in 2D using (6.21). The results are plotted in figure 51. We

find that the value of the invariants are far off from their expected values, (I2D
1 )c =

2 and (I2D
3 )c = 1. Thus, while this experimental set up is ideal to test if the artery

deforms as given by (6.1), caution has to be exercised on interpreting the data when

the deformation differs.

Next, we turn our focus to errors that are more difficult to quantify. While

mounting the artery, inadvertently, some twist could be introduced and the effect of

this on the deformation of the artery while inflating requires quantification. Towards

this, holding one end fixed, the other end of the artery was rotated manually so that

the twist per unit length, Ω is approximately 1 deg/mm and then the response of the

artery to inflation is studied. Figures 52 and 53 plot (I2D
1 )c and (I2D

3 )c respectively

for combined inflation at a fixed extension and twist of the artery when the passive

reference configuration is used. In the same figures the response of the artery when
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Fig. 51. Theoretically computed plot of I2D
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3 − 1 when the deformation

of the artery is given by (6.24) for various values of β.

there is no twist is presented for comparison. The presence of twist not only increases

the value of the invariants for a given radial component of the normal stress at the

inner surface, as it should, but also the variation is larger when evaluated at different

locations on the surface of the artery. This dependence of the invariants on the

location on the outer surface at which they are evaluated is expected because twisting

causes out of plane deformation of the markers which the 2D tracking system is unable

to capture correctly. Figure 54 computes the invariants when the artery is inflated

by applying a radial component of the normal stress at its inner surface from the

twisted reference configuration. In other words, the only difference between figure

54 and figures 52b and 53b is the reference configuration used to compute the value

of the invariants. This is the scenario when the artery is mounted incorrectly, i.e.,
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Fig. 52. Plot of (I2D
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surface.
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Fig. 53. Plot of (I2D
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with a twist. Comparing figure 54 with figures 52a and 53a we find that while the

magnitude of the invariants are comparable when accounted for the axial extension,

their variation with the choice of the markers is different for lower pressures. This is

because in the later case the invariants are constrained to be (I2D
1 )c = 2 and (I2D

3 )c

= 1 when the pressure is 0.

Next, we explore the quality of approximation of the invariants by linear defor-

mation, (6.12). Towards this, we approximate a given deformation of the artery using

different approaches and study the result. Figure 55 plots a representative result of

one such study. In the first case, we approximate the deformation by (6.12) and use

the cth selection of three markers to compute the invariants, (I2D
p )c. We repeat this

for various choices of three markers8 and plot the mean of (I2D
p )c and denote this

curve as ‘3mhomog’. In the second case, we still use (6.12) to approximate the defor-

mation but now use all the ‘n’ available markers to find I2D
p as described in section B

and call this curve ‘nmhomog’. For the next case, we approximate the deformation

by (6.19) and use the cth selection of four markers to compute (I2D
p )c. We repeat

this for various choices of four markers, selected such that the area subtended by the

quadrilateral formed with these four markers as their vertices does not overlap and

plot the mean of (I2D
p )c computed at the centroid of all the markers and denote this

curve as ‘4mbilin’. Finally, we again use (6.19) to approximate the deformation but

now use all the ‘n’ markers to estimate the invariants and denote this estimate as

‘nmbilin’. It can be seen from figure 55 that these various methods of approximating

the invariants results in nearly the same result.

Finally, gluing of the markers onto the surface of the artery introduces some error

in the measured deformation. The motion of the markers would also be influenced

8Here we choose the three markers such that the area subtended by the triangle
formed with these three markers as their vertices does not overlap.
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Fig. 55. Plot of (a) I2D
1 − 2 (b) I2D

3 − 1 computed for various approximation of

the deformation of a 8 week NT circumflex artery in native state inflated at

constant length, Lo.
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by the ligations of the side branches. Because of their inherent difficulty, these errors

could not be quantified here. However, these can be viewed as perturbations that is

necessary with the experimental measurement of any quantity.

D. Results

Figures 56 through 65 plot typical pressure versus invariants computed from the native

reference configuration for various cases corresponding to the 4th cycle of loading and

unloading. Figures 56 to 60 correspond to data from the same 4 week hypertensive

specimen and figures 61 to 65 from the same 8 week normotensive specimen. In all

these figures the invariants are computed from native reference configuration assuming

that the deformation is given by (6.12) for various sets of three markers. Contrary

to the expectation, we see from the figures that the invariants seem to vary spatially.

The spatial variation of the invariants is far more than that can be accounted by the

error in the location of their centroid which was estimated to cause a deviation of

±0.05 in the value of the invariants. Hence, the deformation of the artery subjected

to inflation at constant length is not given by (6.1). In fact, during the experiments

one can observe bending and twisting of the artery when inflated holding the length

constant. Since this results in the out-of-plane deformation of the markers, the other

results herein have to be viewed with caution.

In spite of the above observation, the following remarks can be made from study-

ing these figures. Comparing figures 56 through 60 with figures 61 through 65 the

marked difference in the deformation, reflected by how the invariants vary with the

choice of the markers, is obvious. In fact, the variation of the invariants with the

choice of the markers seem to have some correlation with the set to which the speci-

men belongs. The standard deviation of (I2D
p )c or range of (I2D

p )c quantifies this. Here
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Fig. 56. Plot of (a) (I2D
1 )c − 2 (b) (I2D

3 )c − 1 computed for various marker sets while

inflating the circumflex artery from 4 week HT pig, in the native state at

constant length, Lo.
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Fig. 57. Plot of (a) (I2D
1 )c − 2 (b) (I2D

3 )c − 1 computed for various marker sets while

inflating the circumflex artery from 4 week HT pig, in the active state at

constant length, Lo.
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Fig. 58. Plot of (a) (I2D
1 )c − 2 (b) (I2D

3 )c − 1 computed for various marker sets while

inflating the circumflex artery from 4 week HT pig, in the active state at

constant length, 1.1Lo.
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Fig. 59. Plot of (a) (I2D
1 )c − 2 (b) (I2D

3 )c − 1 computed for various marker sets while

inflating the circumflex artery from 4 week HT pig, in the passive state at

constant length, Lo.
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Fig. 60. Plot of (a) (I2D
1 )c − 2 (b) (I2D

3 )c − 1 computed for various marker sets while

inflating the circumflex artery from 4 week HT pig, in the passive state at

constant length, 1.1Lo.
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Fig. 61. Plot of (a) (I2D
1 )c − 2 (b) (I2D

3 )c − 1 computed for various marker sets while

inflating the circumflex artery from 8 week NT pig, in the native state at

constant length, Lo.
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Fig. 62. Plot of (a) (I2D
1 )c − 2 (b) (I2D

3 )c − 1 computed for various marker sets while

inflating the circumflex artery from 8 week NT pig, in the active state at

constant length, Lo.
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Fig. 63. Plot of (a) (I2D
1 )c − 2 (b) (I2D

3 )c − 1 computed for various marker sets while

inflating the circumflex artery from 8 week NT pig, in the active state at

constant length, 1.1Lo.
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Fig. 64. Plot of (a) (I2D
1 )c − 2 (b) (I2D

3 )c − 1 computed for various marker sets while

inflating the circumflex artery from 8 week NT pig, in the passive state at

constant length, Lo.
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Fig. 65. Plot of (a) (I2D
1 )c − 2 (b) (I2D

3 )c − 1 computed for various marker sets while

inflating the circumflex artery from 8 week NT pig, in the passive state at

constant length, 1.1Lo.
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Fig. 66. Plot of (a) (I2D
1 )s (b) (I2D

3 )s while inflating the circumflex artery from 4 week

HT pig under various smooth muscle tone and constant length.
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Fig. 67. Plot of (a) (I2D
1 )s (b) (I2D

3 )s while inflating the circumflex artery from 8 week

NT pig under various smooth muscle tone and constant length.
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Fig. 68. Plot of (a) (I2D
1 )c − 2 (b) (I2D

3 )c − 1 computed for various marker sets while

the circumflex artery from 6 week NT pig is in the active and passive state

free of radial component of the normal stress at the inner surface and at a

length of Lo.
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we use standard deviation. Comparing figure 66 and 67 we immediately realize the

marked difference in the deformation of these two sets. Here ‘nat-1’ is a mnemonic

for the artery in native state held at a constant length of Lo, ‘act-1’ for the artery

in activated state held at a constant length of Lo, ‘act-11’ for the artery in activated

state held at a constant length of 1.1Lo, ‘pas-1’ for the artery in passivated state held

at a constant length of Lo, ‘pas-11’ for the artery in passivated state held at a con-

stant length of 1.1Lo. This difference in the variation of the invariants is a reflection

of the changes in the structure of the artery.

Comparison between the mechanical response of the same specimen in various

smooth muscle tones can be made in two ways. One, the value of the invariants

computed using a single set of markers can be compared for various smooth muscle

tones. It can be seen from figures 56 and 57 that one would reach different conclusions

on comparing various set of markers. For example, while the value of (I2D
1 )c computed

using markers with marker id (6, 8, 9)9 decreases on activation from the native state,

it increases when computed using markers with marker id (5, 7, 8). This indicates

that activation induces non-axisymmetric deformation. This can also be seen from

the evolution of the reference configuration from the native to the activated state (see

figure 6810). Two, one can use the mean of the invariants computed from various

choices of the set of three markers, (I2D
i )c, to compare the responses of a given artery

to various smooth muscle tones and/or axial stretch. Understanding that this is a

gross simplification, the comparative studies, to our knowledge, did not yield any

discernable pattern. In one 4 week hypertensive specimen the artery in the native

9See Figure 46 for the numbering of the markers.
10We note that the value of (I2D

1 )c − 2 and (I2D
3 )c − 1 varies from all being negative

to all being positive to the one shown in the figure, for the specimens belonging to
the same set. Hence figure 68 is not a representative figure.
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state would be softer11 than the artery in the activated state and in the another 4

week hypertensive specimen we observe the opposite. Stretching the artery should

result in an increase in the value of the 2D principal invariants and hence one would

expect the extended artery to be softer than an unextended artery. However, even

this does not hold in all cases.

E. Illustrative data

In this section, we discuss ways to compare the mechanical response of different

specimens for the collected data. In homogeneous bodies subjected to homogeneous

deformations, it is easy to obtain stress vs. (some measure of) strain plot and com-

pare them for different specimens. In case of bodies subjected to inhomogeneous

deformations, like inflation of an annular cylinder, then the boundary traction or

the integrated boundary traction is compared with the corresponding boundary dis-

placement, for example radial component of the normal stress at the inner surface

to engender a given outer diameter of the annular cylinder could be compared. As

noted in chapter IV, in this later case, all the (integrated) boundary traction on

various surfaces has to be compared with the corresponding boundary displacement.

Thus, in the case of inflation of an annular cylinder at constant length, apart from

comparing the radial component of the normal stress at the inner surface required

to engender a given outer diameter, it is also necessary to compare the variation of

the inner diameter and the axial load with pressure. Otherwise, there could be more

than one constitutive relation for stress that could satisfy the limited data for a given

11Hence forth by ‘A being softer than B’ we mean that the value of the invariant for
the case A at a given pressure is greater than the value of the invariant for the case
B at the same pressure. We caution that here the use of the term “softer” though
is in agreement with the physical connotations that goes with it in many cases, it
blatantly doesn’t in some other cases, as will become evident from the examples that
we discuss.
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Fig. 69. Plot of (a) I2D
1 − 2 (b) I2D

3 − 1 while inflating the circumflex artery in passive

state at constant length, 1.1Lo from various 8 week NT and HT pigs. Solid

symbols - mar 26 03, may 7 03 and aug 28 03 - are NT open symbols are HT.
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Fig. 70. Plot of mean and standard deviation of (a) I2D
1 − 2 (b) I2D

3 − 1 while inflating

the circumflex artery in passive state at constant length, 1.1Lo from 8 week

NT and HT pigs.
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Fig. 71. Plot of t statistic for testing the hypothesis that (a) I2D
1 (b) I2D

3 is greater in

the case of NT artery in comparison with the HT artery in passive state when

inflated at constant length, 1.1Lo.
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body. It is worthwhile to point out that while the stress vs. strain plot does not

depend on geometry of the body, the plot of radial component of the normal stress

at the inner surface of the annular cylinder versus outer diameter does.

In chapter IV, it was also pointed out that the form of the deformation must

be established. The design of experiments here was to establish the form of the

deformation when an artery is inflated at constant length. As elaborated in section

B.2, if the deformation was of the assumed form (6.1), then the boundary displacement

could be inferred from the motion of the markers alone. Since the deformation is not

of the assumed form, the boundary deformation cannot be inferred from the motion

of the markers alone and hence, now the question is how best can we compare the

response of different specimens from the available information.

Here the following procedure was adopted to compare the mechanical response

of different specimens subjected to inflation at constant length.

1. Approximating the deformation by (6.12), we first compute (I2D
p )c for various

choices of three markers for a given protocol of a particular specimen.

2. From the results of step 1, we compute I2D
p and (I2D

p )s which are defined in

equation (6.7).

3. Steps 1 and 2 are repeated for various specimens and various protocol.

4. The results of step 3 were grouped according to the different sets of specimens

for a given protocol and plot of I2D
p vs. pressure, similar to those reported in

figure 69 were obtained.

5. Then, for equally spaced pressure varying from 0 to 120 mm Hg, I2D
p is computed

using nearest neighbor cubic spline interpolation from the data obtained in step

3. Using this, the mean and standard deviation of I2D
p for a given group, as
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a function of pressure, is obtained and plotted. See figure 70 for example.

Interpolation is necessary to ensure that the statistics of I2D
p is obtained for the

same pressure.

6. At each pressure using the results computed in step 5, the hypothesis that I2D
p

for group A is less than that of group B is tested using t statistic assuming that

both the groups are statistically independent but have same variance following

methods outlined in [83]. A sample plot of the obtained t-statistic is shown in

figure 71. If for a given pressure the obtained t-statistic is greater than tcrtical,

then the null hypothesis that I2D
p for group A is equal to that of group B is not

rejected. If the null hypothesis was rejected for nearly all the range of values

of pressure considered then it was concluded that I2D
p for group A is less than

that of group B. Table II through table IV summarizes the results obtained for

various hypothesis tested. We note that for all the hypothesis tested there was

no evidence that the variances of the groups tested were different. The null

hypothesis that the variances are equal was tested using f-statistic, following

methods outlined in [83].

In tables II through IV, ‘sig.’ stands for statistical significance, ‘Y’ stands for the

hypothesis being statistically significant with p < 0.05, ‘Y ∗’ stands for the hypothesis

being statistically significant with p < 0.1, ‘Y +’ stands for the hypothesis being

statistically significant with p < 0.01, ‘N’ stands for the hypothesis being statistically

insignificant, ‘N∗’ for the hypothesis being close to significant, N+ for the t statistic

being close to 0 and hence the hypothesis being statistically insignificant, ‘−’ indicates

that statistical significance was not examined because data are not available for more

than two specimens. This happens because the corresponding protocols was not

performed for the specimens tested in 2004, due to reasons outlined in section F.
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Table II. Comparison between NT and HT specimens subjected to various proto-

cols.‘NsH’ is an acronym for NT is softer than HT, ‘HsN’ for HT is softer

than NT and ‘−’ stands for no data.

Hypothesis I2D
i 2 week 4 week 6 week 8 week

trend sig. trend sig. trend sig. trend sig.

NsH @ Lo I2D
1 HsN N NsH Y ∗ NsH Y HsN N+

in passive I2D
3 HsN N NsH N∗ NsH Y + HsN N+

NsH @ Lo I2D
1 HsN − NsH − NsH − HsN N

in active I2D
3 HsN − NsH − NsH − HsN N

NsH @ Lo I2D
1 − − NsH − HsN N+

in native I2D
3 − − NsH − HsN N+

NsH @ 1.1Lo I2D
1 HsN N NsH Y ∗ NsH − HsN N

in passive I2D
3 HsN N NsH N∗ NsH − HsN N

NsH @ 1.1Lo I2D
1 − − NsH − NsH N+

in active I2D
3 − − NsH − NsH N+

It transpires from the table II that while NT specimens are softer than HT speci-

mens at 4 and 6 weeks into hypertension, there is little difference between the two sets

2 or 8 weeks into hypertension. The above seem to hold for all the protocols studied

here. This kind of response is consistent with the observations of Cox ([84],[34]).

However, his observations were based on the mechanics of rat carotid artery, with the

hypertension being induced by renal artery stenosis or deoxycorticosterone. Moreover,

his conclusions were based on the comparison of the pressure required to engender a

given outer diameter.

We infer from table III that there is no evidence that the value of invariants in-

creases on superposing a fixed axial stretch on a vessel being inflated. This is because
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Table III. Comparison of the response of the circumflex artery to inflation at various

fixed lengths.‘LsLo’ is an acronym for the artery stretched to 1.1Lo is softer

than at Lo, ‘LosL’ for the artery at length Lo is softer than 1.1Lo and ‘−’

stands for no data.

Hypothesis I2D
i 2 week 4 week 6 week 8 week

trend sig. trend sig. trend sig. trend sig.

LsLo for HT I2D
1 LsLo N LsLo N LsLo N LsLo N

in passive I2D
3 LsLo N LsLo N LsLo N LsLo N

LsLo for HT I2D
1 LosL N LsLo N∗ LsLo N+ LsLo N+

in active I2D
3 LosL N LsLo N∗ LsLo N+ LsLo N+

LsLo for NT I2D
1 LosL N+ LsLo N LosL − LsLo N

in passive I2D
3 LosL N+ LsLo N LosL − LsLo N

LsLo for NT I2D
1 − − LosL − LsLo N

in active I2D
3 − − LosL − LsLo N

the increase in the value of invariants due to axial stretch is small in comparison to

that due to inflation and the increase is likely compensated by the associated decrease

in the circumferential stretch due to inflation as well as stretching. Thus, since in-

variants reflect the sum total of different effects; they being greater does not mean

that the material is softer, in the physical sense.

For the data in table IV, one would expect that the artery in the passive state

to be softer than the native and the active to be the stiffest. This is because the

activation reduces the circumferential stretch. While there was some evidence towards

this in 4 week HT, there was little to no evidence in 2, 6 and 8 week HT and NT.

Here it is pertinent to point out that Cox [33] reports just a marginal change in the

pressure required to engender a given outer diameter of the coronary artery from

healthy canines on activation.
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Fig. 72. Plot of mean of I2D
1 − 2 obtained for various (a) NT (b) HT pigs, while

inflating the circumflex artery in native state at constant length, Lo.
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Fig. 73. Plot of mean of I2D
3 − 1 obtained for various (a) NT (b) HT pigs, while

inflating the circumflex artery in native state at constant length, Lo.
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Fig. 74. Plot of mean of I2D
1 − 2 obtained for various (a) NT (b) HT pigs, while

inflating the circumflex artery in activated state at constant length, Lo.
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Fig. 75. Plot of mean of I2D
3 − 1 obtained for various (a) NT (b) HT pigs, while

inflating the circumflex artery in activated state at constant length, Lo.
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Fig. 76. Plot of mean of I2D
1 − 2 obtained for various (a) NT (b) HT pigs, while

inflating the circumflex artery in activated state at constant length, 1.1Lo.
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Fig. 77. Plot of mean of I2D
3 − 1 obtained for various (a) NT (b) HT pigs, while

inflating the circumflex artery in activated state at constant length, 1.1Lo.
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Fig. 78. Plot of mean of I2D
1 − 2 obtained for various (a) NT (b) HT pigs, while

inflating the circumflex artery in passive state at constant length, Lo.
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Fig. 79. Plot of mean of I2D
3 − 1 obtained for various (a) NT (b) HT pigs, while

inflating the circumflex artery in passive state at constant length, Lo.
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Fig. 80. Plot of mean of I2D
1 − 2 obtained for various (a) NT (b) HT pigs, while

inflating the circumflex artery in passive state at constant length, 1.1Lo.



251

−20 0 20 40 60 80 100 120 140
0

0.5

1

1.5

2

2.5

3

Pressure (mm Hg)

m
ea

n 
I 32D

 −
 1

2 wk
4 wk
6 wk
8 wk

(a) 

−20 0 20 40 60 80 100 120 140
0

0.5

1

1.5

2

2.5

3

Pressure (mm Hg)

m
ea

n 
I 32D

 −
 1

2 wk
4 wk
6 wk
8 wk

(b) 

Fig. 81. Plot of mean of I2D
3 − 1 obtained for various (a) NT (b) HT pigs, while

inflating the circumflex artery in passive state at constant length, 1.1Lo.
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Table IV. Comparison of the response of the circumflex artery to inflation for various

smooth muscle tone. ‘nsa’ is an acronym for the native state of the artery

being softer than that in the active state, ‘asn’ stands for the activated state

of the artery is softer than that in the native state, ‘psn’ is an acronym for

the passivated artery is softer than that in the native state, ‘nsp’ denotes

that the artery in the native state is softer than that in the passive state

‘psa’ stands for passivated artery is softer than the artery in the active state,

‘asp’ denotes that the activated artery is softer than the passivated artery

and ‘−’ for no data.

Hypothesis I2D
i 2 week 4 week 6 week 8 week

trend sig. trend sig. trend sig. trend sig.

nsa for HT I2D
1 asn N nsa N∗ nsa N asn N

@ Lo I2D
3 asn N nsa Y ∗ nsa N asn N

psa for HT I2D
1 asp N+ psa N∗ psa N psa N

@ Lo I2D
3 asp N+ psa N∗ psa N psa N

psn for HT I2D
1 psn N psn N+ psn N psn N∗

@ Lo I2D
3 psn N psn N+ psn N psn Y ∗

nsa for NT I2D
1 − − nsa − nsa N+

@ Lo I2D
3 − − nsa − nsa N+

psa for NT I2D
1 asp − psa − psa − psa N

@ Lo I2D
3 asp − psa − psa − psa N

psn for NT I2D
1 − − psn − psn N

@ Lo I2D
3 − − psn − psn N
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Figures 72 through 81 plot the mean value of I2D
p obtained for various groups,

namely 2,4,6 and 8 week NT and HT pigs, while inflating the circumflex artery in

various states. It is the information contained in these figures, that were summarized

in tables II through IV.

Figures 82 through 91 plot the mean value of (I2D
p )s obtained for various groups,

namely 2,4,6 and 8 week NT and HT pigs, while inflating the circumflex artery in

various states. From these figures we study if there is any relationship between

the spatial variation of (I2D
p )c and the group to which the specimen belonged. As

before, (I2D
p )c is obtained by approximating the actual deformation by (6.12) and

determined using three markers. It could be seen from these figures that while the

4 week HT specimens have the least value of (I2D
p )s, 6 week NT specimens have the

largest value of (I2D
p )s. Also, except for 2 week HT specimens the (I2D

p )s for the

other HT specimens is smaller than or equal to the corresponding age matched NT

specimens in passive state. This information could potentially provide insight about

the changes in the underlying structure of the artery and/or its prestress distribution

due to hypertension and/or aging.

F. Discussion

In constitutive modelling one is required to specify the Helmoltz potential and the

prestresses and it is the aim of the experiments to determine the same. Here we

designed experiments to determine the spatial variation of the prestresses and the

material parameters in Helmoltz potential. We hypothesized that the prestresses

and material parameters vary only radially. As described above, we could not get

sufficient evidence to substantiate this hypothesis. Given the microstructure of the

artery and its mechanical response being dependent on the vascular smooth muscle
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Fig. 82. Plot of mean of (I2D
1 )s obtained for various (a) NT (b) HT pigs, while inflating

the circumflex artery in native state at constant length, Lo.
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Fig. 83. Plot of mean of (I2D
3 )s obtained for various (a) NT (b) HT pigs, while inflating

the circumflex artery in native state at constant length, Lo.
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Fig. 84. Plot of mean of (I2D
1 )s obtained for various (a) NT (b) HT pigs, while inflating

the circumflex artery in activated state at constant length, Lo.
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Fig. 85. Plot of mean of (I2D
3 )s obtained for various (a) NT (b) HT pigs, while inflating

the circumflex artery in activated state at constant length, Lo.
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Fig. 86. Plot of mean of (I2D
1 )s obtained for various (a) NT (b) HT pigs, while inflating

the circumflex artery in activated state at constant length, 1.1Lo.
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Fig. 87. Plot of mean of (I2D
3 )s obtained for various (a) NT (b) HT pigs, while inflating

the circumflex artery in activated state at constant length, 1.1Lo.
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Fig. 88. Plot of mean of (I2D
1 )s obtained for various (a) NT (b) HT pigs, while inflating

the circumflex artery in passive state at constant length, Lo.



261

0 50 100 150
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Pressure (mm Hg)

m
ea

n 
(I 32D

)s

2 wk
4 wk
6 wk
8 wk

(a) 

0 50 100 150
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Pressure (mm Hg)

m
ea

n 
(I 32D

)s

2 wk
4 wk
6 wk
8 wk

(b) 

Fig. 89. Plot of mean of (I2D
3 )s obtained for various (a) NT (b) HT pigs, while inflating

the circumflex artery in passive state at constant length, Lo.
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Fig. 90. Plot of mean of (I2D
1 )s obtained for various (a) NT (b) HT pigs, while inflating

the circumflex artery in passive state at constant length, 1.1Lo.
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Fig. 91. Plot of mean of (I2D
3 )s obtained for various (a) NT (b) HT pigs, while inflating

the circumflex artery in passive state at constant length, 1.1Lo.
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tone, this is to be expected. Further, Pao et al.[85] has shown that in vivo, the

coronary artery tree bends and twists, in keeping with the changes in the size and

shape of the heart in the course of a heart beat. Here too we observed bending

and twisting of the circumflex artery while inflating in vitro. Unfortunately, the 2D

tracking system could not capture this motion accurately, due to the out of plane

motions of the markers being tracked. Hence, it remains an open question as to what

causes this bending and twisting of the circumflex artery when subjected to inflation.

Whatever the cause may be, this twisting moment is implicated in the development

of atherosclerotic lesions [30]. Hence, it is necessary to investigate this nexus between

the structure of the circumflex artery and its deformation when subject to inflation.

Also, it remains to be investigated whether the other muscular and elastic arteries

deform as given by (6.1) while inflating.

It is pertinent to note that Han and Fung [86] while investigating the residual

strain in porcine aorta by introducing a radial cut on a transverse section, also re-

port circumferential variation of the components of the residual strain apart from the

radial variation (see their figure 3), locally, that is for small variations in the circum-

ferential and radial location. However, globally the circumferential variation was not

statistically significant12. Here the reported variations are local and we do not have

information about global variations, which may prove valuable.

The value of the invariants obtained for a given pressure is less when compared

with those reported in the literature ([33],[77]). For example, according to the data

in the literature a pressure of 120 mm Hg results in the outer diameter of the vessel

12This just means that the deformation is a non-linear function of the radial location
contrary to the assumption made while computing the strain from the location of the
markers in the current and reference configuration. In fact, theoretically determined
deformation field, as reported by them, is a non-linear function of ‘R’, the radial
location
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increasing to 1.6 times its original value, yielding a value of 1.56 for both I2D
1 − 2

and I2D
3 − 1, assuming an axial stretch ratio of 1 and that the actual deformation

is given by (6.1). In the present study, this value is exceeded by only 6 week NT

specimens. The reason for this lower value can be determined only when the value

of the invariants inferred from 3D tracking of the markers is available. Thus, when

the deformation of the artery is given by (6.1), I2D
1 − 2 = I2D

3 − 1 = (ro/Ro)
2 − 1,

assuming λ = 1. This equality of the principal invariants seem to prevail in the

observed deformation as well, see figures 72 through 75 and figures 78 and 79.

As seen in figure 70 the specimen to specimen variation, even when they belonged

to the same group, is large in comparison to those reported in the literature based on

the measurement of the outer diameter. This may be because of the uncertainty in the

estimated value of I2D
p , due to the spatial variation of the invariants. This specimen

to specimen variation could not be attributed to differences in the configuration used

as reference, namely the length, Lo at which the artery was held fixed, because an

axial extension of 1.1Lo did not produce a significant difference in the response of the

artery to inflation and the arteries were rarely stretched more than ten percent from

their no load length to obtain Lo.

For the above reasons, it is essential that the experiments concerning the inflation

of the arteries be carried out by tracking the markers in 3D.

Finally, we like to caution that requiring nearly the same value of the radial

component of the normal stress to engender a given outer diameter or principal in-

variants does not mean that the constitutive relation for the two sets being compared

is same, unless the geometry of the corresponding vessels is also the same. Thus,

even though the response of the 8 week HT and NT vessels are the same, since their

geometries are likely to be different with the HT specimens being thicker, it does not

mean that their constitutive relations are the same. Similarly, requiring a different
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pressure at the inner surface to engender a different outer diameter or principal in-

variants does not mean that their constitutive relations are different; it could be just

a consequence of differing geometries. Hence, there is a dire need to fit these data to

a robust 3D constitutive relation that accounts for vascular smooth muscle tone so

that we could study the evolution of the prestress fields and/or that of the material

with the duration of hypertension.

Here we present no data corresponding to axial extension at constant pressure

or the variation of the axial load while inflating because the measured axial load was

sensitive to small perturbations of the experimental setup. Also, since by the end

of 2003, it was satisfactorily established that the deformation of the artery did not

correspond to (6.1) and 2D tracking of the markers insufficient, only protocols 8a to

8c were performed on specimens tested after 2003.
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CHAPTER VII

CONCLUSION

The aim of this work was to develop a framework to study the mechanical response of

prestressed bodies subjected to finite elastic deformations. The prestresses in many

cases are believed to arise from misfit of subparts of the body and hence the main

issue with these bodies is that there exist no single placer for the entire body in the

Euclidean space in which it is free of stresses. Consequently, one should either model

the processes that cause misfit and subsequently infer the prestress or take cognizance

of the fact that the configuration used as reference is not stress free, contrary to the

assumption made while obtaining a representation for stress and constitutively pre-

scribe the prestresses. That is, constitutive prescriptions have to be made about the

misfits or the prestresses. Here we prescribe the prestresses. There are many reasons

to take this viewpoint. Firstly, while there are no restrictions on how misfits can arise,

the prestress fields have to satisfy the balance of linear momentum under static con-

ditions and traction free boundary conditions, providing valuable restrictions on the

constitutive prescription. Secondly, almost always the experimentalist has access only

to stressed configurations due to the ever present gravity and atmospheric pressure

(unless the experiments are conducted in vacuum) apart from the prestresses. Thirdly,

it is difficult to obtain the prestress field from the misfits except in idealized cases.

Hence, we sought a representation for stress from a stressed configuration as reference,

in terms of the stress in the reference configuration and gradient of motion, with the

motion being inferred from this stressed reference configuration. We accomplished

this by recognizing that the value of stress in the current configuration is indepen-

dent of the choice of the reference configuration. However, we require the existence

of a piecewise smooth motion field from the stress free configuration to the stressed



268

reference configuration. This places some additional restrictions on the admissible

prestress fields. But we are unable to identify these restrictions. Consequently, we

assumed that all the prestress fields prescribed here satisfied these requirements. This

needs to be verified. Further, here we do not concern ourselves with the process that

resulted in the development of the prestresses but just acknowledge their presence by

constitutively prescribing them. This standpoint was adopted because the process

that cause the development of the prestresses is poorly understood in some cases, as

in biological bodies. Moreover, we study only processes in which the prestresses do

not change and call such a process elastic. The framework needs to be generalized on

this count.

However, the above study helped identify four issues. First, it helped identify

restrictions on the constitutive relations for stress so that a hydrostatic state of stress

does not result in extension along one direction and compression along the other two

or vice versa. That is, we identified restrictions so that whenever the algebraic mul-

tiplicity of the eigen values of stress is three, the algebraic multiplicity of the eigen

values of left Cauchy-Green stretch tensor is also three. Second, we find that when

we linearize the representation of the stress from a stressed configuration, the appar-

ent value1 of the shear modulus depends on the stress in the reference configuration.

While there exist scenarios where the value of the shear modulus may not change sig-

nificantly, they do change. In fact, we show that the stressed body can shear soften or

harden depending on the value of certain parameters which are not visible within the

framework of classical linearized elasticity. Thus, models for prestresses within the

context of linearized elasticity, that appeal to superposition of the prestresses with

1That is the apparent shear modulus, µa = µ − µe, where µ is the shear modulus
in a stress free configuration, µe is the correction to the shear modulus whose value
depends on the stress in the reference configuration, among other variables.
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the stresses due to service loads can under estimate or over estimate the total stresses.

The next observation concerns material properties, that is certain constants in the

constitutive equation like the shear modulus, µ1 and the exponent, µ3 in the Blatz-Ko

constitutive relation, whose value depends only on chemical composition of the body.

Two bodies identical in geometry and made up of the same material, chemically, but

having different prestress fields may respond differently i.e., say, the magnitude of the

boundary displacement to the application of the same boundary traction is different,

but the value of these material parameters are preserved2. The issue here is to find

the appropriate metrics that is experimentally measurable and reflects the invariance

of these material parameters. Of course, when one fits a constitutive relation to any

of the experimentally measured quantities this invariance would be revealed. The

last issue concerns with that of material symmetry. A deformation of the body is

said to belong to its symmetry group, if the deformed and the initial configuration of

the body are indistinguishable. Then, the issue is how to experimentally determine

whether the two given configurations are distinguishable. Towards this, we showed

that using the traction required to engender a given uniaxial stretch to identify if

the rotated and initial configuration of the body are distinguishable to be unsatis-

factory. Wineman et. al. [26] showed that when an isotropic body is uniaxially

or equi-biaxially stretched then the symmetry group for the deformed configuration

contains non-orthogonal but unimodular elements. That is two micro-structures not

related by rigid body rotation can be in the same mechanical state. Hence, micro-

structure also cannot be used to infer material symmetry for the body’s mechanical

response. Further, Hoger [63] showed that a prestressed body cannot be isotropic, in

fact a body in a stressed state different from that of hydrostatic stresses has to be

2This is more transparent than in the case of linearized equations considered above.
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anisotropic. Burghoff and Bohlen [87] have shown that the directional properties of

68-32 brass strip depends on the amount of cold-work. From which we can infer that

the prestresses developed during inelastic deformation contributes to the directional

properties of the brass strip. Hence, we postulate that the state of stress in a given

configuration determines the material symmetry in that configuration when attention

is restricted to the mechanical response of the body.

It was then argued that for boundary conditions, both the traction and the

displacement of the boundary should be prescribed for the entire boundary when the

constitutive relations are not known or the form of the deformation is not known.

However, in stimulations like the present study, when assumptions are made about

both the constitutive relation and the form of the deformation, a subset of the above

boundary conditions suffices. But as was shown in Saravanan [70] different forms of

the deformation could satisfy the limited boundary condition that is prescribed. To

elaborate, while studying the homogeneous deformation of homogeneous, isotropic

bodies, it may suffice to prescribe the boundary traction for the boundary conditions.

However, as it was shown here (section F in chapter II) and in Saravanan [70] that

different forms of the deformation, which do not differ just by a rigid body rotation,

can satisfy the limited boundary conditions.

We then outlined a constructive proof for showing the existence of deformation

of a certain form for a given constitutive relation when both the deformation, χ̃

and its gradient, Ht are known at the same point. We illustrated the working of

the constructive proof through a number of examples. In the process, we studied

inflation of a spherical shell and inflation, extension and torsion of an annular right

circular cylinder in some detail. It transpires from these studies that while the local

measures - like the stress - differ significantly for the stress free and a prestressed

body, global measures - like the axial load required to engender a given stretch differs
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insignificantly, for reasonable magnitudes and type of the prestresses studied here.

Even the deformation and its gradient differ insignificantly, making it difficult to infer

the prestress fields from the mechanical experiments conducted on intact bodies.

Finally, we sought to apply the above gained knowledge to understand the me-

chanics of circumflex arteries. Here we investigated whether the deformation of the

circumflex artery subjected to inflation at constant length corresponds to r = r(R),

θ = Θ, z = λZ, with the symbols having their usual meaning. We found this not to

be the case. In fact, the artery bends and twists when inflated. Since, in vivo the

artery bends and twists along with the deforming heart this is at the least surpris-

ing. It would have been interesting to investigate the nexus between the prestress

distribution or the inhomogeneity that causes this peculiar deformation of the artery

when inflated. However, the experimental system used could track the markers only

along two dimensions which we find to be insufficient to capture the actual deforma-

tion. Therefore, there is a need to design experimental system that could track the

markers in 3D so that the cause of bending and twisting of the artery can be inves-

tigated. This is important especially since, the twisting of the artery is implicated in

the development of atherosclerotic lesions [30].

Notwithstanding the above limitation, the general characteristics of the response

of the artery subjected to inflation at constant length were preserved. Hence, com-

parisons were made between the response of the arteries at various vascular smooth

muscle tone and stretch ratio, λ as well as between hypertensive and normotensive

specimens, using statistical methods. We find that 4 and 6 weeks into the study, the

value of the principal invariants for a given radial component of the normal stress

at the inner surface of normotensive specimens are greater than that of hypertensive

specimens in passive state. On the other hand there were no significant differences

between the hypertensive and normotensive specimens 2 or 8 weeks into the study.
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Other comparisons also did not result in significant differences.

Thus, this study made some strides towards understanding the response of pre-

stressed and inhomogeneous bodies subjected to an idealized process called elastic.
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APPENDIX A

NON-UNIQUENESS OF SOLUTIONS FOR A COMPRESSIBLE BODY

SUBJECTED TO HYDROSTATIC STRESSES

Rivlin ([88], [89], [90]) has shown that for an incompressible neo-hookean cube

subjected to hydrostatic pressure there exist solutions other than, B = 1. Here we

examine if a compressible stress free body subjected to hydrostatic pressure, i.e., T =

p1 admits solutions other than B = λ1, especially when p is given by (3.24). Since,

we find that multiple solutions are possible for this sub-class of hydrostatic pressures,

uniqueness is not ensured for the general hydrostatic pressure loading as well.

As shown in chapter II, one of the general representations for stress when a stress

free configuration is used as reference is given by

T = α01 + α1B + α2B
−1. (A.1)

Now, let λ1, λ2 and λ3 be the eigen values of B and let T = p1. Let us choose a

coordinate system that coincides with the eigen directions of B. Then

p = α0 + α1λi + α2
1

λi

, for i = {1, 2, 3}, (A.2)

which can be rearranged to obtain

[λ1 − λ2][α0 − p + α1(λ1 + λ2)] = 0, (A.3)

[λ1 − λ3][α0 − p + α1(λ1 + λ3)] = 0, (A.4)

α0 − p + α1λ1 +
α2

λ1

= 0, (A.5)

The above equations can potentially have at least four different solutions. First, λ1

= λ2 = λ3 = λ and (α0 − p)λ + α1λ
2 + α2 = 0, must hold. Second, λ1 = λ2 6= λ3
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and

α0 − p + α1(λ1 + λ3) = 0, (A.6)

(α0 − p)λ1 + α1λ
2
1 + α2 = 0, (A.7)

must hold. The other two solutions are cyclic permutations of the above solution.

It is possible that for a given αi, there exist no solutions or many solutions in some

other cases.

Here our aim is to find if there exist solution of the form B = λ1 when ∆ = 0.

In this case, the hydrostatic pressure p has a special form

p =





1
2α2

[
β2 ±

√
(α2

1J
2
3 − α2

2J2)
2
+ 4α3

2

(
2α1 − J1

J2
3
α2

)]
, when α2 6= 0,

α0 , when α2 = 0.

, (A.8)

where β2 = 2α2α0 + α2
1J

2
3 + J2α

2
2, αi = αi(J1, J2, J3).

First, let us consider the case when α2 = 0. Then, it follows from (A.8) and

(A.5) that α1 = 0. Thus, in this case the value of principal invariants of B should be

such that α1 = 0 and α2 = 0. Since, αi(J1, J2, J3) = 0 implies the principal invariants

are not independent, it would happen only when the algebraic multiplicity of eigen

values of B is two or three3. Also it is worthwhile to note that when α2 = 0 and ∆

= 0 then α1 has to be zero. Thus, we see that if ∆ = 0 and α2 = 0 then B = λ1

or B = λ1 + λ3e ⊗ e, where e is an eigen direction of B, are possible solutions. For

example, consider α1 = 3J1 − (J2J3)
2 and α2 = J1J2 − 9 which yields α1 = α2 = 0

when B = λ1.

3Here we do not consider the trivial case for which α1 = α2 = 0 identically.
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Next, we consider the case when α1 = 0. Noting that for this case

p =





α0 + α2

2

[
J2 ±

√
J2

2 − 4 J1

J2
3

]
, when α2 6= 0,

α0 , when α2 = 0.
, (A.9)

there are three solutions for equations (A.3) and (A.4).

Case 1: α2 = 0 which then reduces to the case studied above.

Case 2: λ1 = λ2 = λ3 = λ. However, for this case J2
2 − 4J1/J

2
3 = −3/λ2 < 0

and hence the solution is not possible, as otherwise p would not be real. Note that

this is not of concern when α2 = 0.

Case 3:
[
J2 ±

√
J2

2 − 4 J1

J2
3

]
= 0 which again is not possible since J1 > 0.

Thus, as one would expect, this case yields a solution same as the case considered

above.

Finally, we solve equations (A.3) through (A.5) given that α2 6= 0 and α1 6= 0.

Then, there are four possible solutions.

Solution 1: λ1 = λ2 = λ3 = λ, i.e., B = λ1 where λ is obtained by solving (A.5).

It remains to be shown that there exist a solution for this equation. However, this

can be studied only for specific constitutive relations.

Solution 2: λ2 = λ1 6= λ3. Then λ3 and λ (= λ1) are such that α0 − p + α1(λ+λ3)

= 0 and (A.5) holds. Here our interest is in examining whether there exist a solution,

λ3 6= λ such that

α1[λ + λ3] =
1

2α2

[
α2

1J
2
3 + J2α

2
2 ±

√
(α2

1J
2
3 − α2

2J2)
2
+ 4α3

2

(
2α1 −

J1

J2
3

α2

)]
,(A.10)

α1λ +
α2

λ
=

1

2α2

[
α2

1J
2
3 + J2α

2
2 ±

√
(α2

1J
2
3 − α2

2J2)
2
+ 4α3

2

(
2α1 −

J1

J2
3

α2

)]
,(A.11)

where αi = αi(J1, J2, J3), J1 = 2λ + λ3, J2 = 2/λ + 1/λ3 and J3 = λ
√

λ3. Equating
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equations (A.10) and (A.11) we obtain

λ3 =
α2

α1λ
=

µ

λ
, (A.12)

which on substituting in (A.11) we find that it is satisfied identically for any value

of λ and µ. Thus, there exist solutions other than the classical B = λ1 when T =

p1 and p is given by (A.8) whenever equation (A.12) has a solution for λ3. There

are examples for both; constitutive equations for which (A.12) has a solution and

for which it doesn’t. Consider the general Blatz-Ko model (2.94). While it admits

solutions of the form λ1 = λ2 6= λ3 when µ2 > 1 or µ2 < 0, it doesn’t when 0 < µ2

< 1, since for this case the constant, µ (= 1/µ2 − 1) < 0.

Solution 3 and solution 4 are permutations of the above case, in which λ1 = λ3

6= λ2 and λ2 = λ3 6= λ1 respectively.

For physical reasons, solutions of the form B = λ1 + λ3e ⊗ e, are not desirable

and hence we propose restrictions on the constitutive equation, as outlined in chapter

III, which ensures that these solutions are not possible when ∆ = 0.
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