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ABSTRACT 
 
 
 

Comparison of the Mechanism of Transmembrane Signaling in Bacterial Chemoreceptors 

and Sensor Kinases. (August 2005) 

Scott Michael Ward, 

B.S., Texas A&M University 

Chair of Advisory Committee:  Dr. Michael D. Manson 

 
 
 

Membrane-bound receptors transmit information from the cell exterior to the cell interior. 

Bacterial receptors capable of transmitting this information include sensor kinases, which 

control gene expression via response regulators, and methyl-accepting chemotaxis proteins 

(MCPs), which control rotation of the flagellar motor. These receptors, which have a 

similar general architecture and function, are predicted to share similar mechanisms of 

transmembrane signaling. The majority of such work has been conducted on MCPs. Our 

goal is to extend this work to the closely related sensor kinases by creating functional 

hybrid transducers. I show that a chimeric protein (Nart) that joins the periplasmic, ligand-

binding domain of the sensor kinase NarX (nitrate/nitrite sensor) to the cytoplasmic 

signaling domain of the chemoreceptor Tar is capable of modulating flagellar rotation in 

response to both nitrate and nitrite. Consistent with the properties of NarX, our Nart elicits 

a stronger response to nitrate than to nitrite. Introduction of mutations into a highly 

conserved periplasmic region affects Nart signaling in a fashion that is consistent with the 

effects seen in NarX. I also present the first example of a substitution in a presumed 

ligand-binding domain that confers a reverse-signal phenotype for both nitrate and nitrite  
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in Nart. These results support the hypothesis that the key aspects of transmembrane 

signaling are closely similar in homodimeric bacterial chemoreceptors and sensor kinases. 
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CHAPTER I 

INTRODUCTION 

 

 

Transmembrane signaling overview1 
 
 
The enteric bacterium Escherichia coli is incapable of exerting large changes on its 

surroundings. The bacteria instead depend on their ability to detect changes in the 

environment and to modify their structure, physiology, and behavior accordingly. These 

changes are triggered by the transmission of external stimuli to the internal machinery of 

the cell. Thus, a cell can determine its position in a host, utilize a preferred carbon 

source, or move towards a more favorable environment. Some of this information is 

relayed across the cell membrane by receptor proteins that contain a periplasmic input 

domain connected via a transmembrane region to a cytoplasmic signaling domain. Two 

major types of transmembrane receptors are found: sensor kinases and chemoreceptors.  

Sensor kinases are elements of two-component systems that detect external 

conditions and transmit this information to internal response regulators that control 

transcription. These pathways allow the cell to make metabolic and structural changes in 

response to external conditions. Two-component systems are responsible, among many 

other things, for porin regulation, nitrate detection, and expression of virulence factors. 

Since the output for most two-component systems is transcription, the induced changes 

occur on a time scale of minutes.  

                                                 
This dissertation follows the style and format of the journal Molecular Microbiology. 
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Cells also react to external stimuli using rotary motor-driven flagellar filaments. 

Cell locomotion is coupled to the ability to detect changes in the environment by 

transmembrane chemoreceptors. The interaction of ligands with these proteins elicits a 

signal that causes the flagellar motor to change its rotational bias, resulting in a net 

motion towards improving environmental conditions. By coupling flagellar rotation to 

external detection systems, the chemotaxis circuit allows cells to move towards better 

environmental conditions. This behavior occurs on a time scale of seconds. 

In summary, bacteria respond to changes in their surrounding by moving towards 

more favorable environments and by expressing genes that increase survival in those 

environments. The cells convert receptor input into appropriate output responses, 

allowing both directional change and adaptation to fluctuating conditions. It is not 

surprising to find both similarities and differences between these two types of 

transmembrane receptors. 

 

Bacterial chemotaxis 
 
 
Chemotaxis in E. coli is a model system for signal transduction (see Stock & Surette 

(1996) for a review of chemotaxis). The chemical environment is monitored by 

transmembrane proteins known as chemoreceptors. Information is transmitted from the 

receptors to the flagellar motor using a phospho-relay system of cytoplasmic chemotaxis 

(Che) proteins. The binding of phosphorylated CheY to the flagellar motor enhances 

clockwise (CW) rotation. By modulating rotation of the flagellar motor, the cell is able 

to move towards more favorable environmental conditions. 
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 Motile E. coli cells alternate between two types of motion. The default behavior 

is to move in a smooth-swimming pattern (run) in which the cell travels in a gently 

curved path (Berg and Brown, 1972). These runs are punctuated by abrupt changes in 

direction (tumbles) that are caused by brief reversals in the direction of flagellar rotation 

(Berg and Brown, 1972). After a tumble, the cell again runs. Alternating runs and 

tumbles result in a three-dimensional random walk (Fig. 1). 

 Chemoreceptors detect both attractant and repellent ligands, collectively known 

as chemoeffectors. The cells compare the current concentration of chemoeffectors to the 

concentration 2-3 seconds earlier (McNabb and Koshland, 1972; Berg and Brown, 1974; 

Segall et al., 1986). If the environment is improving, because of an increasing 

concentration of attractant or a decreasing level of repellent, the probability of tumbling 

decreases, and runs in the favorable direction are extended. This temporal, as opposed to 

spatial (one end of the cell relative to the other), sensing mechanism allows even 

relatively shallow gradients to be detected. 

 The output of chemotaxis is the modulation of flagellar rotation.  The default 

counter-clockwise (CCW) rotation (Clegg and Koshland, 1984) allows the rigid left-

handed flagellar filaments to coalesce into a helical bundle, resulting in a run. Reversal 

to clockwise (CW) rotation causes the helical bundle to fall apart, and the cell tumbles. 

When all motors switch back to CCW rotation, the flagellar bundle reforms, and the cell 

is randomly oriented for its next run.  
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Fig. 1. Motion of E. coli in the absence (A) or presence (B) of a chemical gradient. 
Runs result from CCW motor rotation, which allows the flagellar filaments to coalesce 
into a left-handed helical bundle and propel the cell forward. When the motor switches 
rotation from  CCW to CW, the flagellar bundle falls apart, which causes the cell to 
tumble. Alternation of these two modes of locomotion facilitates movement of the cell in 
its environment. In (A), absence of a chemoeffector gradient results in random 
movement of the cell. The large arrow (B) represents an improving chemical gradient 
(increasing attractant or decreasing repellent). Longer runs are seen as the cell travels in 
the favorable direction. 
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Chemotactic signaling pathway  
 
 
The interplay of the Che proteins that are involved in the chemotaxis circuit is shown in 

Fig. 2. Chemoreceptors embedded in the cell membrane provide sensory input from their 

periplasmic ligand-binding domains. Ligand binding initiates a conformational change in 

the periplasmic region that propagates through the inner membrane to the cytoplasmic 

signaling domain (Milligan and Koshland, 1991; Tatsuno et al., 1996; Gardina and 

Manson, 1996). The autophosphorylation activity of the core component in the signaling 

pathway, the CheA kinase, is affected by changes in the cytoplasmic domain of the 

receptor. Binding of an attractant inhibits the ability of the receptor to stimulate CheA 

activity (Borkovitch and Simon, 1990). Binding of a repellent activates 

autophosphorylation (Borkovich et al., 1989; Hess et al., 1988; Stock et al., 1988). 

Phosphorylated CheY (phospho-CheY), the product of phosphoryl group transfer from 

CheA, binds to the switch complex of the motor to promote CW flagellar rotation.

The default directional rotation in the absence of Che proteins is CCW (Clegg 

and Koshland, 1984; Wolfe et al., 1987). Phospho-CheY binds to FliM, one of three 

proteins in the motor-switch complex, to promote CW rotation (Ravid et al., 1986; 

Welch et al., 1993). As attractant concentrations rise, CheA activity is inhibited, and the 

level of phospho-CheY decreases (Alon et al., 1998; Cluzel et al., 2000). Lower levels 

of phospho-CheY promote CCW motor rotation, and cells become more smooth-

swimming. Repellents cause the level of phospho-CheY to rise, promoting CW rotation 

and increasing tumbling. In practice, cells react to decreasing repellent concentrations by 

decreasing tumbles, thereby increasing run lengths. 
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Fig. 2. Chemotaxis circuit of E. coli. Signal detection occurs via homodimeric 
chemoreceptors. Detection of attractants or repellents, respectively, inhibits or stimulates 
CheA autophosphorylation. CheA is coupled to the receptor by CheW. A phosphorylated 
CheA (CheA~P) can donate a phosphoryl group to either CheY or CheB. The default 
counterclockwise (CCW) rotation results in a run. Interaction of CheY~P with switch 
components of the flagellar motor promotes clockwise (CW) rotation, which leads to 
tumbling. CheZ facilitates the restoration of a basal signaling state by promoting 
dephophorylation of CheY~P. Adaptation is modulated by the competing activities of 
the CheR methyltransferase and the CheB methylesterase. When phosphorylated by 
CheA, CheB~P antagonizes the action of CheR by removing methyl groups.
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Several other Che proteins are required for the function of the chemotaxis circuit. 

CheW appears to stabilize the interaction between chemoreceptors and CheA (Gegner et 

al., 1992). The phophatase CheZ greatly accelerates the conversion of phospho-CheY 

back to inactive CheY (Hess et al., 1988). Adaptation in the chemotaxis pathway 

depends on two proteins, CheR and CheB. The CheR methyltransferase covalently 

modifies the chemoreceptors, and phospho-CheB, also generated by phosphoryl group 

transfer from CheA, removes these methyl groups. Receptor methylation and 

demethylation reset the receptor, allowing cells to adapt to the current ligand 

concentration and return to the basal signaling state. 

 

Chemoreceptors 
 
 
The four known E. coli chemoreceptors (Tsr, Tar, Tap, and Trg) have been divided into 

two classes, major and minor, based on their relative activities and abundances within 

the cell (Boyd et al., 1983; Krikos et al., 1983; Bollinger et al., 1984; Bibikov et al., 

1997). The major (or high-abundance) receptors are serine-sensing Tsr and aspartate-

sensing Tar, which occur in about 3000 and 1500, respectively, monomer copies per cell 

(Koman et al., 1979; Clarke and Koshland, 1979). The minor transducers, which occur 

at 10-fold lower levels, comprise galactose, glucose, and ribose-sensing Trg and 

dipeptide/tripeptide-sensing Tap. 

Both the major and minor transducers function as homodimers within the inner 

membrane (Milligan and Koshland, 1988). Each monomer consists of an N-terminal 

transmembrane helix (TM 1), a periplasmic ligand-recognition domain, a second 
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transmembrane helix (TM2), a linker region, and a cytoplasmic signaling and adaptation 

domain (Fig. 3; Krikos et al., 1985; Aravind and Ponting, 1999; Williams and Stewart, 

1999). The cytoplasmic domain contains four or five glutamyl residues that are targets 

for methylation by the CheR methyltransferase, which is why the chemoreceptors are 

alternatively referred to as methyl-accepting chemotaxis proteins (MCPs; Kort et al., 

1975)

 Mutational analyses and sequence similarities suggest that the four receptors 

share similar overall structure (Wolff and Parkinson, 1988; Lee et al., 1988; Gardina et 

al., 1992; Park and Hazelbauer, 1986). The periplasmic domains contain a four-helix 

bundle in which the final helix (α4) extends though the membrane (as TM2) to connect 

with the linker region (Bowie et al., 1995; Pakula and Simon, 1992; Lee et al., 1994). 

Current evidence suggests that ligand-initiated axial movement of helix α4 

communicates ligand binding to the cytoplasmic domain (Chervitz and Falke, 1996; 

Umemura et al., 1998; Ottemann et al., 1999). Exchanges of periplasmic domains 

between various receptors has been used to create functional hybrid proteins, indicating 

that signaling mechanisms are conserved in these chimeras. For example, a receptor 

containing the periplasmic and linker regions of Tar connected to the cytoplasmic region 

of Tsr produced a receptor with the ligand-recognition properties of Tar and the 

signaling characteristics of Tsr (Krikos et al., 1985). Similar results were found upon 

combining the periplasmic region of the minor receptor Tap with the cytoplasmic region 

of the major receptor Tar. This hybrid signaled in response to Tap ligands, but, unlike 

Tap, could function as the sole receptor in the cell (Weerasuriya et al., 1998). Hybrid 
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Fig. 3. A chemoreceptor dimer in E.coli. Each monomer contains nine helices (teal), 
α1−α9, and passes through the inner membrane twice (TM1 and TM2, ovals). 
Components of the second subunit (beige) are labeled α1’−α9’, TM1’ and TM2’. The 
N-terminal ligand-binding domain connects to the C-terminal signaling domain via a 
conserved HAMP linker domain. Four methylatable glutamyl residues (red circles), 
which are involved in adaptation, are located in helices α6 (α6’) and α9 (α9’). 
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constructs linking the periplasmic domain of Trg to the cytoplasmic domain of Tsr 

produced similar results (Feng et al., 1997). 

Both major and minor chemoreceptors sense ligands that interact with the 

periplasmic domain to initiate a signal. Although minor receptors share a similar overall 

topology with their major counterparts, they are incapable of relaying a functional signal 

in the absence of a major transducer (Koman et al., 1979; Feng et al., 1997; Weerasuriya 

et al., 1998). Even when minor receptors are expressed at the same levels as major 

transducers they do not support a robust chemotactic response because they stimulate the 

CheA kinase inefficiently (Feng et al., 1997; Weerasuriya et al., 1998). 

Tar binds aspartate at the dimer interface near the apex of the periplasmic domain 

(Mesibov and Adler, 1972; Milburn et al., 1991; Milligan and Koshland, 1993). Tar 

responds to maltose as an attractant via its interaction with maltose-binding protein 

(MBP), which binds across the apex of the dimer (Hazelbauer, 1975; Brass and Manson, 

1984; Zhang et al., 1999). Repellent responses to the divalent cations Ni2+ and Co2+ are 

also transduced by Tar (Tso and Adler, 1974), although the binding sites for those ions 

are not known.  

Serine and leucine bind to the other high-abundance chemoreceptor, Tsr, and 

mediate attractant and repellent responses, respectively (Mesibov and Adler, 1972; 

Springer et al., 1977).  The low-abundance transducer Tap responds to dipeptides via the 

dipeptide-binding protein (DppA; Manson et al., 1986; Olson et al., 1991; Adouhamad 

et al., 1991). Trg responds to ribose via the ribose-binding protein (RBP) and to 

galactose/glucose via the galactose/glucose binding protein (GBP; Hazelbauer and 
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Adler, 1971). 

 Signaling by chemoreceptors is also affected by the adaptation machinery. The 

cytoplasmic region of each receptor contains four or five glutamyl residues that are 

targets for methylation by the CheR methyltransferase (Goy et al., 1977). The activity of 

CheR is antagonized by the CheB methylesterase, which when phosphorylated by 

phospho-CheA, removes methyl groups from the glutamyl-methyl ester residues (Lupas 

and Stock, 1989; Hess et al., 1988). Through these counteracting activities, the cells 

acquire a ‘memory’ of the environmental conditions that prevailed seconds earlier. 

Without environmental stimulation, 1-2 glutamyl residues are methylated in 

steady state (Kort et al., 1975; Goy et al., 1977). When the activity of phospho-CheB 

decreases because of the inhibition of CheA activity, the methylation level of the 

receptor increases (Toews et al., 1979; Kehry et al., 1984). If repellents are detected by 

the receptor, increased CheA activity generates more phospho-CheB, thereby decreasing 

methylation of the receptor.  

 The cytoplasmic region of a high-abundance transducer transmits the signal 

received from the periplasmic region to the CheA kinase (Borkovich et al., 1989). In a 

chemically homogeneous environment, CheA activity is maintained at a level that 

supports baseline run-tumble motility. An increase in attractant or decrease in repellent 

concentration suppresses tumbling and results in smooth-swimming because levels of 

phospho-CheY transiently decrease (Borkovich and Simon, 1990). 
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Two-component system overview 
 
 
Two-component systems contain one or more members from each of two protein 

families. The sensor kinase moiety typically receives the stimulus to trigger a signaling 

cascade that is received by a response regulator protein. Response regulators exist in 

either an active (typically phosphorylated) or an inactive conformation and mediate an 

adaptive response, usually by modifying gene expression. There are over 30 two-

component sensor kinase response regulator pairs that have been identified in E. coli. 

 Most sensor kinases are membrane-spanning proteins that are predicted to 

function as homodimers. Typically, a periplasmic N-terminal input domain is joined to a 

C-terminal cytoplasmic transmitter domain by a transmembrane region and a HAMP 

(histidine kinase, adenylyl cyclase, MCP and phosphatase) linker. A chemical ligand or 

other stimulus modulates the activity of the kinase (Fig. 4). 

Response regulators are cytoplasmic proteins that typically contain an N-terminal 

‘receiver’ domain connected to a C-terminal output domain. The output domains often 

possess DNA-binding activity. Phosphorylation of a conserved Asp residue in the 

receiver domain alters DNA binding by the output domain to control transcription. 

Response regulators can either activate or repress transcription of their target genes. The 

receiver domains also catalyze hydrolysis of their own phosphoryl group, an activity that 

can be stimulated by their cognate sensor kinase acting as a phosphatase. 
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Fig. 4. A hypothetical two-component signaling pathway. The sensor kinase has three 
biochemical activities. Unstimulated sensor kinases show phosphatase activity towards 
their cognate phosphorylated response regulator(s). Stimulated sensor kinases 
autophosphorylate at a conserved His residue (the phosphorylation appears to be 
intersubunit rather than intrasubunit) and then transfer the phosphoryl groups to their 
cognate response regulators to activate them. The phosphoryl group is added to a highly 
conserved Asp residue. The active response regulators then interact with their output 
DNA targets. 
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A complex ligand-sensing two-component system 
 
 
One well-studied two-component pathway provides insight into the paradigm of 

communication between sensor kinases and response regulators. The nitrate reductase 

(Nar) system controls expression of genes involved in anaerobic respiration and 

fermentation in response to extracellular nitrate and nitrite (Darwin and Stewart, 1996; 

Stewart and Rabin, 1995). During anaerobic growth, both nitrate and nitrite function as 

efficient respiratory oxidants (Gennis and Stewart, 1996). The Nar regulatory system in 

E. coli comprises two overlapping sets of homologous two-component pathways (Fig. 

5), NarX-NarL and NarQ-NarP. NarX and NarQ sense environmental nitrate/nitrite 

levels and transmit this information through the membrane to control intracellular levels 

of phosphorylated NarL and NarP (Rabin and Stewart, 1992). 

 Both NarX and NarQ bind nitrate and nitrite, and ligand binding stimulates 

autophosphorylation at a conserved His residue. Although both sensors recognize nitrate 

and nitrite, NarX discriminates between the two to elicit differential responses, whereas 

NarQ signals similarly in response to either ligand (Williams and Stewart, 1997). 

Phospho-NarL and phospho-NarP bind to promoters of certain genes whose products are 

involved in anaerobic respiration (Stewart, 1993). These genes encode two nitrate 

reductases (narGHI and napA), two nitrite reductases (nirBDC and nrfABCDEFG), a 

nitrite export protein (narK), a formate dehydrogenase (fdnGHI), a dimethyl 

sulfoxide/trimethylamine-N-oxide reductase (dmsABC), and a fumarate reductase 

(frdABCD). 

NarX and NarQ each possess a phosphatase activity that stimulates the 
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Fig. 5. The NarX-NarL and NarQ-NarP two-component pathways. The NarX/L-NarQ/P 
system of E. coli responds to extracellular nitrate and nitrite. Either NarX or NarQ is 
capable of phosphorylating either of the response regulators NarL and NarP. In the 
absence of ligands, NarX and NarQ act primarily as phosphatases. Responses to nitrate 
mediated by both sensors are similar and favor phosphoylation of NarL and NarP. NarQ 
phosphorylates both NarL and NarP in the presence of nitrite, whereas nitrite enhances 
favors the phosphatase activity of NarX towards NarL.
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dephosphorylation of phospho-NarL and phospho-NarP (Cavicchioli et al., 1995; 

Schroeder et al., 1994; Walker and DeMoss, 1993). NarX phosphorylates NarL in the 

presence of nitrate but dephopshorylates NarL in the presence of nitrite. In contrast, 

NarQ kinase functions toward both NarL and NarP is stimulated in the presence of 

nitrate or nitrite (Darwin and Stewart, 1996; Stewart and Rabin, 1995).  

 NarX and NarQ have similar putative architectures. Both function as 

homodimers. Each contains an N-terminal periplasmic domain, two hydrophobic 

transmembrane helices (TM1 and TM2), and a cytoplasmic C-terminal transmitter 

domain that is connected to the periplasmic domain by TM2. The periplasmic regions 

are roughly the same size (about 100 residues), although they have very little sequence 

similarity. An exception is an 18-residue conserved region known as the P-box, which is 

predicted to play a role in ligand detection and signaling. The cytoplasmic transmitter 

domain of both Nar sensors contains a conserved His residue that is the target for 

autophosphorylation and serves as the donor for subsequent phosphoryl transfer to NarL 

or NarP.  

 

Transmembrane signaling 
 
 
The chemotaxis system has revealed much of what is known about transmembrane 

signaling. As a result of interaction with ligand, the periplasmic domain of a 

chemoreceptor undergoes a conformational change. This change translates into motion 

of one of the transmembrane helices of one subunit in relation to the other. This 

asymmetric motion, in turn, is predicted to cause a conformational change within the 
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cytoplasmic domain that alters receptor-coupled CheA activity (Borkovich and Simon, 

1990). 

Salmonella Tar undergoes a 1-2 Å displacement between TM2 and TM1 upon 

binding of aspartate (Chervitz and Falke, 1996; Ottemann and Koshland, 1998). Current 

models predict that helix α4 of Tar, which connects directly to TM2, moves downward 

relative to TM1, which is an N-terminal extension of helix α1 (Fig. 3). 

Some models have proposed that this slight downward shift of TM2 moves the 

HAMP domain away from the cytoplasmic membrane, preventing association of an 

amphipathic sequence (AS1) with the membrane. Although this idea is attractive, 

Ottemann and Koshland (1997) show that some ligand-induced signaling occurs in the 

absence of TM1 and TM2 and membranes in vitro. This result suggests that the relative 

movement of the TM helices is not absolutely required for communication between the 

ligand-binding and signaling domains.  

 The ‘piston’ model proposed by Chervitz and Falke (1996) suggests that the 

movement of TM2 is perpendicular to the membrane and essentially parallel to the helix 

of TM1. This model combines x-ray crystallographic data (Milburn et al. 1991), solution 

19F NMR (Danielson et al., 1994), and disulfide-engineering studies (Chervitz et al., 

1995; Chervitz and Falke, 1995). Other models suggest that helix α4 may rotate relative 

to helix α1 (Maruyama et al., 1995; Cochran and Kim, 1996). These models are not 

mutually exclusive, and α4 helix may move downward while also undergoing tilt and 

rotation. The exact mechanics of the motion remain elusive, and further experiments are 

needed to determine the precise conformational changes induced by ligand binding. 
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Transmembrane receptor similarities 
 
 
Sensor kinases and chemoreceptors have evolved to recognize different ligands and to 

communicate with and control diverse signaling pathways and output responses. 

However, they share several important structural features. As type I membrane 

receptors, they have a modular construction consisting of an N-terminal sensing domain 

connected to a C-terminal signaling domain via a HAMP linker. All of these receptors 

contain two N-terminal transmembrane regions (TM1 and TM2), which flank a 

periplasmic extension of 100-160 residues. Both types of receptor typically function as 

homodimers, and dimerization is independent of ligand. Both types of receptors function 

within their respective systems to modulate a phosphorelay in response to changing 

environmental conditions, although kinases typically have intrinsic autophosphorylation 

and phosphatase activities, whereas chemoreceptors control the activity of the CheA 

kinase (Borkovich and Simon, 1990) and, perhaps, the CheZ phosphatase (Cantwell et 

al., 2003).

The HAMP region, located just C-terminal to TM2, is involved in transmission 

of the periplasmic and transmembrane input signal to the cytoplasmic output domain. 

HAMP regions contain approximately 50 amino acids and consist of two predicted 

amphipathic α-helices (AS1 and AS2) joined via an unstructured connector (see Fig. 6). 

HAMP regions are found in all E. coli chemoreceptors and in about half of the known 

sensor kinases. Although their general chemical features are similar, they show little 

sequence identity. This overall structural similarity allows the HAMP region to be used 

as a fusion target to create hybrid receptors, although the function of a hybrid protein is 
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based, in part, upon its containing most of the HAMP domain from one of the two 

components of the chimera (Appleman et al., 2003). 

 

Receptor hybrids 
 
 
The creation of a functional hybrid protein can provide insight into the signaling 

properties of each component. As discussed earlier, functional chimeras can be created 

between chemoreceptors (Krikos et al., 1985; Feng et al., 1997; Weerasuriya et al., 

1998). The fusion joint for these hybrids was a conserved NdeI restriction site 

(CATATG) found in tar and tsr and introduced at the equivalent position in trg and tap. 

This sequence represents in-frame His and Met codons and is only six codons before the 

end of the sequence encoding AS2. 

Other hybrid transducers have been created to determine if the transmembrane 

signaling mechanisms of sensor kinases and chemoreceptors are conserved. These 

hybrids include the fusion of the input domain of Tar to the signaling domain of the 

osmosensor kinase EnvZ to create Taz1 (Utsumi et al., 1989). EnvZ is a kinase and 

phosphatase for its cognate response regulator, OmpR, which modulates the 

transcription of the ompF and ompC porin genes. Signaling by Taz1 was measured by 

the β-galactosidase activity expressed from a ompC-lacZ fusion. The Taz1 protein was 

reported to signal in response to aspartate (Utsumi et al., 1989) by downregulating the 

phosphatase activity of the EnvZ signaling domain towards phospho-OmpR. Similarly, a 

chimera combining the periplasmic, transmembrane and linker domains of the 

chemoreceptor Trg with the cytoplasmic kinase/phosphatase domain of EnvZ created 



21 

Trz1 (Baumgartner et al., 1994). Trz1 mediated a response to sugar-occupied ribose-

binding protein to the EnvZ kinase/phosphatase domain by activating ompC-lacZ 

transcription.  

Parent proteins of hybrid transducers share predicted structural identity without 

extensive sequence identity, especially in their ligand-discrimination regions. The 

varying catalytic regions of sensor kinases and chemoreceptors seem to employ a 

signaling mechanism that does not involve specific interactions among side chains 

within these regions. If signaling mechanisms are conserved, it is probable that regions 

necessary for signaling will exhibit more conservation and that mutations targeting 

regions required for signaling will have similar effects on both hybrid and parent 

receptors. 

 

Research goals and rationale 
 
 
The ability to create stable and functional chimeras by domain swapping provides a 

powerful tool to examine the mechanism of transmembrane signaling. To overcome 

obvious shortcomings of previous efforts to study the function of similar chimeras, I 

utilized the sensitivity and multiple readouts of the chemotaxis system. I fused the 

periplasmic region of the nitrate/nitrite sensor kinase NarX to the cytoplasmic signaling 

region of Tar. The NarX-Tar (Nart) hybrid is predicted to detect ligands using the 

periplasmic ligand-binding region of NarX and to transmit this information to the 

signaling region of Tar to modulate flagellar rotation. The differential responses NarX 

exhibits to nitrate and nitrite allow me to determine if this property is retained in the 
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hybrid protein. The effects of known mutations targeting the predicted NarX ligand-

interaction region in Nart can be evaluated and compared to their phenotypes in the 

intact NarX protein. This work should unequivocally establish the similarities and 

differences in transmembrane signaling by the two dominant families of bacterial 

transmembrane sensors. 
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CHAPTER II 
 

A NARX-TAR CHIMERA MEDIATES REPELLENT CHEMOTAXIS TO 

NITRATE/NITRITE*1 

 

 

Summary 
 
 
Membrane receptors communicate between the external world and the cell interior. In 

bacteria, these receptors include the transmembrane sensor kinases, which control gene 

expression via their cognate response regulators, and chemoreceptors, which control the 

direction of flagellar rotation via the CheA kinase and the CheY response regulator. 

Here, we show that a chimeric protein that joins the ligand-binding, transmembrane and 

linker domains of the NarX sensor kinase to the signaling and adaptation domains of the 

Tar chemoreceptor of Escherichia coli mediates repellent responses to nitrate and nitrite. 

Nitrate induces a stronger response than nitrite and is effective at lower concentrations, 

mirroring the relative sensitivity to these ligands exhibited by NarX itself. We conclude 

that the NarX Tar hybrid functions as a bona fide chemoreceptor whose activity can be 

predicted from its component parts. This observation implies that ligand-dependent 

activation of a sensor kinase and repellent-initiated activation of receptor-coupled CheA 

kinase involve a similar transmembrane signal. 

 
                                                           
* Reprinted with permission from “A NarX-Tar chimera mediates repellent chemotaxis to nitrate and 
nitrite” by Ward, S.M., Delgado, A., Gunsalus, R.P., and Manson, M.D., 2002, Molecular Microbiology, 
44, 709-719. 2002 by Blackwell Science, Ltd. 
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Introduction 
 
 
The Tar protein of Escherichia coli mediates attractant responses to aspartate and 

maltose (Springer et al., 1977) and repellent responses to Ni2+ and Co2+ ions (Tso and 

Adler, 1974). It is one of two high-abundance chemoreceptors in E. coli (Koman et al., 

1979). The other is Tsr, which mediates attractant responses to serine and repellent 

responses to leucine. The x-ray crystallographic structures of the periplasmic domain of 

Tar (Milburn et al., 1991; Bowie et al., 1995) and the cytoplasmic domain of Tsr (Kim 

et al., 1999) show that these proteins form homodimers in the presence or absence of 

ligands. The osmosensing EnvZ kinase of E. coli is also a homodimer (Yang and Inouye, 

1991), and it has a predicted membrane topology similar to that of the chemoreceptors 

(Forst et al., 1987). 

Each subunit of Tar spans the membrane twice and extends an N-terminal ligand 

recognition loop into the periplasmic space and a C-terminal signaling and adaptation 

domain into the cytoplasm (Krikos et al., 1983). The periplasmic domain is responsible 

for the interaction with most attractant and repellent ligands, including aspartate, 

maltose-binding protein (MBP) and Ni2+ for Tar and serine and leucine for Tsr (Krikos 

et al., 1985). Aspartate binds at the dimer interface of Tar near the apex of the 

periplasmic domains (Milburn et al., 1991). Ligand-bound MBP in a closed 

conformation (Spurlino et al., 1991) is predicted to bind in quasi-symmetrical fashion at 

the apex of the Tar dimer, with the N-terminal domain in contact with one Tar subunit 

and the C-terminal domain in contact with the second subunit (Zhang et al., 1999). 
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A number of functional chimeric chemoreceptors have been constructed. The 

fusion joint for these constructs is in the cytoplasmic domain near the C-terminal end of 

the linker region (Kalman and Gunsalus, 1990; Williams and Stewart, 1999), which 

connects the second transmembrane helix (TM2) to the signaling and adaptation 

domains. This position corresponds to a conserved NdeI restriction site present in the tar 

and tsr genes of E. coli. This site spans a CATATG sequence that encodes adjacent His 

and Met residues. The Tasr and Tsar hybrids, made by reciprocal exchange of the coding 

regions on either side of the NdeI site, have the ligand-sensing properties that correspond 

to the periplasmic domain of the hybrid (Krikos et al., 1985). Subsequent studies have 

shown that NdeI sites introduced at the same relative positions in the trg and tap genes 

can be used to generate functional chimeras between the Trg (ribose/galactose) receptor 

and Tsr (Feng et al., 1998) and between the Tap (dipeptide) receptor and Tar 

(Weerasuriya et al., 1998) 

To test whether a similar architecture dictates a similar mechanism of 

transmembrane signaling, chimeras have been constructed between Tar and EnvZ 

(Utsumi et al., 1989) and between Trg and EnvZ (Baumgartner et al., 1994). An NdeI 

site was generated in envZ at a location judged to be comparable with that of the NdeI 

site in tar and was used to join the sensing domain of Tar or Trg to the signaling domain 

of EnvZ. The level of β-galactosidase expressed from an ompC-lacZ fusion gene was 

used to monitor the activity of the resulting Taz and Trz hybrids. (Transcription of ompC 

requires a high concentration of the phosphorylated form of OmpR, the cognate response 

regulator for EnvZ.) The addition of aspartate to cells expressing Taz, or of ribose or 
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galactose to cells expressing Trz, led to a substantial increase in β-galactosidase activity. 

However, the addition of maltose to cells producing Taz did not boost the expression of 

ompC-lacZ (Utsumi et al., 1989). 

One problem with using EnvZ to create chemoreceptor-sensor kinase hybrids is 

that the function of the reciprocal chimera cannot be tested, because EnvZ lacks a known 

ligand. Deletion analysis indicates that the periplasmic domain of EnvZ is largely 

dispensable for osmosensing. It can even be exchanged with the periplasmic domain of a 

non-homologous sensor kinase, PhoR of Bacillus subtilis, without impairing 

osmoregulation (Leonardo and Forst, 1996). Without knowing how the reciprocal 

hybrids function, it is impossible to evaluate fully how similar the process of 

transmembrane signaling is in sensor kinases and chemoreceptors. 

We thus decided to construct hybrids between the NarX sensor kinase of E. coli 

(Stewart and Berg, 1988; Kalman and Gunsalus, 1990) and Tar. NarX regulates the 

expression of genes whose products (e.g. nitrate or nitrite reductase) are involved in the 

utilization of nitrate or nitrite as terminal electron receptors under anaerobic conditions 

(Rabin and Stewart, 1993). These ligands bind to the periplasmic domain of NarX 

(Caviccholi et al., 1996; Williams and Stewart, 1997; Lee et al., 1999) and thereby 

increase its autophosphorylation activity. The phosphoryl group is transferred to either 

of two response regulators, NarL or NarP, which act as positive or negative transcription 

factors for a number of genes (Stewart, 1993). 

We report here that a NarX-Tar chimera (Nart) can serve as a repellent 

chemoreceptor for nitrate and nitrite. The active fusion was made using an NdeI site 
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introduced into narX at the same relative position as that introduced into envZ to make 

Taz and the natural NdeI site in tar. The chemotactic behavior of cells producing the 

chimeric receptor suggests that ligands stimulate the kinase activity of CheA associated 

with Nart. We infer that the two responses are elicited by a similar transmembrane 

signal. 

 

Results 
 
 
The pAD56 plasmid produces a stable NarX-Tar hybrid protein  
 
 
Two narX-tar fusion genes were constructed using NdeI restriction sites introduced at 

two places in narX (Fig. 7). Antibody directed against the conserved cytoplasmic 

domain of Tsr (Ames and Parkinson, 1994) was used as a probe for the hybrid proteins 

on immunoblots. Plasmid pAD56, in which codons 1-218 of narX are joined to codons 

257-553 of tar (narX(218)-tar), produced a cross-reacting protein (Nart) of the expected 

size ( ~55 kDa) in the transducer-deleted (∆Transducer) strain VB13 (Fig. 8). The fusion 

joint in this hybrid was at the end of the predicted linker domain (Williams and Stewart, 

1999). No cross-reacting protein was seen in extracts from strain VB13 containing 

plasmid pAD48, in which codons 1-269 of narX were joined to codons 257-553 of tar. 

The Nart hybrid protein was found in significantly higher amounts in cells that make Tsr 

and Trg (∆tar-tap strain MM509) than in cells from strain VB13 (Fig. 8). We presume 

that the presence of Tsr and/or Trg stabilizes the fusion protein. 
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Fig. 7. NarX-Tar chimera function and construction. (A) Under anaerobic conditions 
NarX coli mediates a response to nitrate and nitrite (small oval) by increasing its rate of 
autophosphorylation. The Tar receptor binds the attractant ligand aspartate (large oval) 
and, in an unknown fashion, the repellent ligand Ni2+ (question mark). Attractants inhibit 
(and repellents enhance) Tar stimulation of CheA autophosphorylation. The NarX-Tar 
hybrid contains the periplasmic ligand-binding, transmembrane, and linker regions of 
NarX and the cytoplasmic signaling and adaptation regions of Tar. (B) Two NdeI sites 
introduced in the narX gene (broken lines) permit fusion of the N-terminal portion of 
NarX to the C-terminal portion of Tar at a naturally occurring NdeI site (bold line). Thin 
vertical lines show boundaries between transmembrane/periplasmic and linker regions 
and the linker and signaling domains, respectively, in each gene. Fusions were made 
after codons 218 and 270 of narX.
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Fig. 8. Levels of NarX, Tar, and NarX-Tar in strains VB13 (∆Transducer) and MM509 
(∆tar-tap). Immunoblots of proteins encoded by plasmid-borne tar (pMK113) or narX-
tar (plasmid AD56) genes were determined in immunoblots developed with antibody 
against a highly conserved region from the cytoplasmic domain of the Tsr (serine) 
chemoreceptor. Proteins in membrane extracts from equal numbers of cells were loaded 
in each lane and separated by SDS-PAGE. An extract from the parental RP437 wild-type 
strain was included to indicate the normal levels of Tsr and Tar produced from the 
chromosomal genes. A faint band of unknown provenance appears in most lanes 
between the positions occupied by Tsr and Tar. The NarX-Tar hybrid migrates to a 
position corresponding to an apparent molecular mass of about 55 kD. Molecular weight 
markers are shown in the leftmost lane. 
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Several other reproducible features of the immunoblots should be mentioned. 

First, cells of the wild-type strain RP437 contained about twice as much Tsr as cells of 

strain MM509, although these strains are isogenic except for the tar-tap deletion in 

MM509. The presence of plasmid-encoded Tar or Nart in strains MM509/pMK113 and 

MM509/pAD56 did not restore the level of Tsr seen in strain RP437. Secondly, although 

the level of Nart encoded by plasmid pAD56 was much reduced in strain VB13 relative 

to strain MM509, the level of plasmid-encoded Tar was approximately the same in 

strains VB13/pMK113 and MM509/pMK113. We presume that interactions among the 

receptors and their attendant Che proteins with the receptor patch (Maddock and 

Shapiro, 1993; Shimizu et al., 2000) can lead to their differential stabilization. Finally, a 

faint band corresponding to a protein of the same size as Tsr was consistently seen in 

strain VB13, which lacks Tsr, Tar, Tap and Trg (compare the VB13, VB13/pMK113 and 

VB13/ pAD56 lanes in Fig. 8). As the only other chemotactic signal transducer 

identified in E. coli, the oxygen receptor Aer, runs with an apparent molecular weight of 

~55 kDa (Bibikov et al., 1997), this phantom band is unlikely to be Aer, and its 

provenance remains a mystery. 

 

Behavior of strain VB13/pAD56 on swarm plates  
 
 
Plasmid pAD56 allowed strain VB13 to form a spreading colony in TB semi-solid agar, 

whereas plasmid pAD48 did not. VB13 colonies do not spread because the absence of 

chemoreceptors renders them exclusively smooth swimming. (The formation of a 

spreading colony in semi-solid agar requires that cells are able to run and tumble; Wolfe 
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and Berg, 1989.) Thus, Nart must stimulate the activity of CheA kinase to produce 

enough CheY-P to induce tumbling, which corresponds to clockwise (CW) flagellar 

rotation. 

The spreading colonies did not form chemotactic rings in semi-solid TB agar 

containing various concentrations of nitrate or nitrite. This result indicates that cells 

producing Nart as their sole transducer do not respond to any of the normal attractants 

for E. coli that are present in TB (e.g. amino acids). However, it does not indicate that 

these cells do not respond to nitrate or nitrite. The formation of chemotactic rings 

requires not only that a compound is an attractant but also that its metabolism creates a 

relatively steep gradient whose concentration increases away from the point of 

inoculation. 

 

Behavior of unstimulated tethered cells  
 
 
The flagella of tethered cells of strain VB13/pAD48 were counterclockwise (CCW) 

biased (~90% CCW flagellar rotation), although they did reverse, unlike the flagella on 

tethered cells of strain VB13, which rotated almost exclusively CCW (Table 1). The 

relatively low level of Nart present in these cells could explain the CCW bias. Tethered 

MM509 cells (~70% CCW flagellar rotation) behaved essentially like wild-type cells 

(data not shown), whereas the flagella of MM509/pAD56 cells were substantially more 

CW biased (only 20% CCW flagellar rotation). These results support the notion that 

Nart facilitates random spreading of VB13 cells in semi-solid TB agar by increasing 

their tumbling frequency.
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Strain Percentage time in CCW rotationa 

VB13 99.5 ± 0.5
VB13/pAD56 91 ± 1
MM509 71 ± 5
MM509/pAD56 20 ± 2
a. The values shown are the means of the percentage time spent rotating 
CCW out of 60 s, ± the standard error. Data from 20 cells were averaged 
for each strain.

Table 1. Rotational biases of tethered cells.
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Responses of tethered cells to the addition of repellents  
 
 
The adaptation times for tethered cells exposed to repellents are compiled in Table 2. 

RP437 (wild-type) cells gave brief (~30 s) CW responses to the addition of 10-3 M 

leucine (sensed by Tsr) or Ni2+ (sensed by Tar). The adaptation times decreased at lower 

concentrations. As expected, MM509 cells (∆tar-tap) did not respond to the addition of 

10-3 M Ni2+. However, they also did not respond to the addition of 10-3 M leucine. (Note 

that responses of <15s would not be recorded.) The introduction of pMK113 into 

MM509 restored a remarkably long CW response (480s) to Ni2+. This effect was even 

more pronounced with VB13/pMK113 cells, which had a CW response of 740s after the 

addition of 10-3 M Ni2+. However, MM509 cells containing pMK113 did not show a 

significant CW response to the addition of leucine. As expected, the pAD56 plasmid had 

no measurable effect on the responses to leucine or Ni2+ addition in either MM509 or 

VB13.

Neither nitrate nor nitrite evoked a detectable response when added to tethered 

cells of strains RP437 (wild type), VB13 or MM509 that lacked pAD56. In contrast, 

when tethered VB13 cells containing pAD56 were exposed to nitrate or nitrite, both 

induced a period of exclusively CW flagellar rotation (Table 3). The threshold 

concentrations required for this response with VB13/pAD56 cells were 10-5 M for nitrate 

and 10-3 M for nitrite. The longest mean adaptation times (110s for nitrate and 37s for 

nitrite) were seen at 10-2 M. The responses became shorter at 10-1 M for both ions, 

perhaps because, at these high concentrations, the health of the cells was compromised. 

Tethered MM509/pAD56 cells also responded to the addition of nitrate and nitrate by 
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turning their flagella only CW. The longest mean adaptation times (90s for nitrate and 

48s for nitrite) were also observed at 10-2 M (data not shown). The threshold 

concentration for the response to nitrite was again 10-3 M, but nitrate did not elicit a 

response at concentrations below 10-2 M. We currently have no good explanation for this 

somewhat surprising result. 

The addition of leucine produced CW flagellar rotation in MM509 and 

MM509/pAD56 cells, but not in VB13 or VB13/pAD56 cells, as expected. The longest 

response was seen after the addition of 10-1 M leucine, the highest concentration tested. 

It was of the same duration (37 and 38s respectively) in both strains (data not shown). 

However, the threshold concentrations needed to generate a measurable response were 

very different: <10-6 M with MM509 and 10-3 M with MM509/pAD56. 

 

Responses of tethered cells to the removal of nitrate and nitrite  
 
 
The physiologically relevant response of E. coli cells to repellents is to decrease their 

tumble frequency as the concentration of a repellent drops (Berg and Tedesco, 1975). 

Therefore, we looked at the behavior of tethered cells upon removal of nitrate and nitrite. 

The response was dramatic. VB13/pAD56 cells responded with extended periods of 

CCW rotation with thresholds of 10-5 and 10-3 M for nitrate and nitrite respectively. The 

corresponding peak adaptation times, both at 10-2 M, were 1100 and 420 s. Adaptation 

times dropped off somewhat at 10-1 M but, in this case, an alternative explanation to cell 

damage at high anion concentration is that the 15s flow did not remove all the nitrate or 

nitrite.
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MM509 cells responded for a longer time (690s) than RP437 cells to the addition 

of 10-3 M serine. Thus, a reduced level of Tsr, the absence of Tar, possible polarity of the 

∆tar-tap deletion on the expression of the downstream cheRBYZ genes, or some 

combination thereof, lowered the sensitivity, or accelerated the adaptation, to a step 

increase in the repellent leucine. These same factors may have heightened the sensitivity, 

or slowed the adaptation, to a step increase in the attractant serine. 

MM509/pAD56 cells behaved in a similar way (Table 2), but they exhibited a 

lower threshold (both nitrate and nitrite elicited significant CCW responses at 10-6 M, 

the lowest concentration tested), and the peak adaptation times, although still at 10-2 M 

for both compounds, were slightly shorter than with VB13/pAD56 (790s versus 1100s 

for nitrate and 380s versus 420s for nitrite). In MM509 cells with or without pAD56, 

removal of leucine also evoked a CCW response, but it was much briefer (adaptation 

times after dilution from 10-2 M of 66 and 79s in the absence and presence of pAD56). 

Although the plasmid did not significantly affect the maximum adaptation time to 

leucine, it did shift the threshold significantly, from <10-6 M in MM509 cells without the 

plasmid to 10-3 M in MM509/pAD56. Here, one could argue that the strong CW bias of 

MM509/pAD56 cells (Table 1) reduced the adaptation time upon removal of leucine. 

 

Repellent-in-pond capillary assays  
 
 
The repellent-in pond assay (Tso and Adler, 1974) provides a direct method of 

demonstrating negative chemotaxis. This assay is a variant of the standard chemotaxis 

assay, in which cells enter a capillary as they move up a diffusion gradient of an 
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attractant (Adler, 1973). The operating principle is that cells suspended in buffer 

containing a repellent will flee into capillary tubes filled with repellent-free buffer. With 

strain MM509, when 10-2 M leucine or acetate (both sensed by Tsr) was present in the 

pond, cells accumulated in the capillaries to four- or sixfold higher levels, respectively, 

than in the buffer controls (Fig. 9A). Neither nitrate nor nitrite in the pond led to 

increased accumulation of cells in the capillaries. 

When strain MM509/pNarX-Tar was tested, cells accumulated to densities three- 

and fivefold higher than the buffer control when 10-4 M nitrate or 10-3 M nitrite (the 

concentrations that gave the peak responses) was present in the pond (Fig. 9B). Thus, 

nitrate and nitrate both act as repellents when Nart is expressed in strain MM509 and are 

effective at lower concentrations than leucine or acetate. As in the tethered cell assay, 

the presence of Nart desensitizes strain MM509 to leucine (and also to acetate). 

VB13/pAD56 cells responded to nitrite essentially the same as the MM509/pAD56 

strain (Fig. 9C), although their response to nitrate was weaker. As Tsr is absent in strain 

VB13, neither leucine nor acetate caused cells to accumulate in the capillaries. 

 

Discussion 
 
 
Nitrate and nitrite both stimulate autophosphorylation of NarX. This response is 

consistent with the induction of a transient period of CW flagellar rotation (tumbling) 

when these ions bind to the NarX(218)-Tar chimera (Nart), as CW rotation requires 

higher levels of CheY-P produced by increased CheA kinase activity. The responses to 

the addition and removal of nitrate and nitrite by MM509(∆tar-tap)/pAD56 and 
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VB13(∆Transducer)/pAD56 cells resemble those seen after the addition and removal of 

Ni2+ from MM509/pMK113(tar+) and VB13/pMK113 cells. This similarity suggests that 

nitrate and nitrite elicit bona fide repellent responses. Furthermore, the ability of pAD56 

to support CW flagellar rotation in strain VB13 demonstrates that the hybrid receptor 

must be able to interact with CheW and CheA in a productive manner. The avoidance of 

nitrate and nitrite in the repellent-in-pond capillary assay by MM509 and VB13 cells 

expressing Nart reinforces the conclusion that the NarX-Tar fusion protein mediates 

normal sensing, signaling and adaptation. 

Nitrate typically elicited responses at lower concentrations than nitrite, and the 

peak responses induced by nitrate were longer than those seen with nitrite. Thus, nitrate 

appears to have a higher affinity for Nart than nitrite does, and it evokes a more robust 

response. This same relative efficacy of nitrate and nitrite has been observed with NarX 

itself (Williams and Stewart, 1997; Lee et al., 1999; Wang et al., 1999), bolstering our 

confidence that NarX and Nart bind ligands and carry out transmembrane signaling in a 

similar fashion. 

The NarX(218)-Tar hybrid joins residues 1-218 of NarX to residues 257-553 of 

Tar. The fusion joint is at the end of the linker region, which contains the HAMP 

domain. The HAMP domain is highly conserved in a large family of homodimeric 

transmembrane receptors that couple ligand binding to conformational changes which 

alter the signal produced by the receptor (Aravind and Ponting, 1999). The NarX(270)-

Tar hybrid fuses residues 1-270 of NarX, which still precede the conserved sensor kinase 

signaling region of NarX, to residues 257-553 of Tar. The translation product was not 
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detected on immunoblots, presumably because it is unstable. This second hybrid was 

constructed to test whether a second region of extended amphipathic helical structure, 

similar to the one preceding the fusion joint in Nart, could also be coupled to Tar to 

generate a functional chemoreceptor. The instability of the protein limits the inferences 

that can be drawn, but fusions clearly cannot be made at any arbitrary point and still 

generate a completely active chimeric protein. 

The Taz (Utsumi et al., 1989) and Trz (Baumgartner et al., 1994) proteins couple 

the ligand-binding domain of Tar or Trg to the kinase domain of EnvZ. The fusion joints 

in these proteins are in the same relative position with respect to the linker regions and 

HAMP domains as in Nart. Both proteins mediate enhanced transcription of ompC, 

which requires increased levels of phospho-transfer to OmpR from the signaling domain 

of EnvZ, in response to their respective ligands. 

Taz clearly changes its signaling behavior in response to aspartate, and Trz alters 

its signaling behavior in response to ribose and galactose. However, several limitations 

in the results reported for these two proteins prevent those authors from making an 

airtight case for a common mechanism of transmembrane signaling by chemoreceptors 

and sensor kinases. (i) As attractants inhibit the activity of CheA kinase, one might 

expect that attractants should decrease levels of Taz or Trz autophosphorylation, and 

therefore decrease levels of OmpR-P. The opposite effect is observed. (Aspartate is 

proposed to increase OmpR-P levels by inhibiting a phosphatase activity of EnvZ, but a 

similar effect on CheA has not been observed with chemoreceptors.) (ii) Although the 

ligand-occupied ribose and galactose/glucose-binding proteins elicit an increase in 
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OmpC expression, ligand-occupied maltose-binding protein does not have this effect. 

The reason for this apparent discrepancy has not been explained. (iii) The role of Taz 

and Trz on the expression of the ompF gene, which should go down when OmpR-P 

concentrations rise to a level that induces ompC expression, has not been reported. (iv) 

Finally, EnvZ has no known ligand, so the function of reciprocal constructs fusing the 

EnvZ sensing domain to a chemoreceptor cytoplasmic signaling domain cannot be 

addressed. 

We are in the process of testing a reciprocal Tar-NarX hybrid (Tarx), which fuses 

residues 1-256 of Tar to residues 219-598 of NarX, for its ability to phosphorylate the 

NarL (or NarQ) response regulator and to modify this activity in response to the Tar 

attractant ligands aspartate and maltose and the Tar repellent ligands Ni2+ and Co2+. We 

predict that cells expressing Tarx will respond to aspartate, and perhaps maltose, by 

decreasing the expression of genes whose transcription requires NarL-P and increasing 

the expression of genes whose transcription is repressed by NarL-P. Conversely, Ni2+ 

and Co2+ should induce the transcription of the first set of genes and repress the 

expression of the second. It has already been proposed, based on mutational analysis, 

that NarX and Tsr share a transmembrane signaling function (Collins et al., 1992). 

Demonstration that repellents and attractants sensed by Tar regulate the activity of Tarx 

in the expected manner will solidify our conclusion that transmembrane signaling 

operates by fundamentally the same mechanism for bacterial chemoreceptors and sensor 

kinases. 
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VB13/pAD56 cells, which overexpress Nart, gave a longer than normal repellent 

(CW) response (84 s) to the addition of 10-3 M nitrate. We presume that CheB 

methylesterase becomes limiting under these conditions, as adaptation to repellents 

involves demethylation of the receptors. This effect was considerably exaggerated when 

10-3 M Ni2+ was added to VB13/pMK113 cells that overexpress Tar, in which the 

adaptation time was 740 s. This difference could result from the higher level of 

expression of Tar compared with Nart (Fig. 8). When MM509 cells containing the same 

two plasmids were tested, however, there was no detectable CW response to adding 10-3 

M nitrate, and the CW response to 10-3 M Ni2+ decreased to 480 s. Thus, the presence of 

Tsr apparently accelerates adaptation to non-cognate repellents under these conditions. 

When repellents were removed (Table 3), very long CCW responses were seen with both 

nitrate and Ni2+, but here the differences between the VB13 and MM509 strains were 

much less pronounced. In this case, the extended adaptation times could result from a 

shortage of CheR methyltransferase, which sets the rate of adaptive methylation after the 

addition of attractant.

The effects of the expression level of Tar and Nart on responses mediated by the 

chromosomally encoded Tsr receptor, although not the focus of this work, beg comment. 

The absence of Tar in ∆tar-tap strain MM509 lengthened the period of exclusively CCW 

rotation (the adaptation time) after the addition of a saturating (10-3 M) concentration of 

serine (Table 3), and overproduction of Tar in MM509/pMK113(tar+) decreased the 

adaptation time. However, the absence of Tar decreased the adaptation time after the 

addition of 10-5 M serine, and overproduction of Tar results in relatively longer 
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adaptation times at low serine concentrations. In contrast, overproduction of Nart in 

strain MM509/pAD56(NarX218-Tar) decreased the adaptation time after the addition of 

serine (420 and 22s at 10-3 and 10-4 M, respectively, compared with 470 and 220s for 

RP437 wild-type cells). 

A totally different pattern was seen with the repellent leucine, which induces CW 

rotation upon addition and CCW rotation upon removal. The longest adaptation times to 

leucine addition (28s at 10-3 M) were seen with strain RP437, and strain MM509, with or 

without the pMK113 or pAD56 plasmids, exhibited essentially no response to leucine 

addition (Table 2). The longest adaptation times after the removal of high concentrations 

of 10-3 M leucine were seen with MM509/pMK113 cells, and the adaptation times 

became progressively shorter in strains RP437 and MM509 (Table 3). Strain 

MM509/pAD56 did not respond at all. However, the relative reduction in adaptation 

times as the initial leucine concentration decreased was much more abrupt in strain 

MM509/pMK113 than in either strain RP437 or strain MM509. 

These results are complicated enough to defy a simple explanation, at least by us. 

It seems likely that some combination of effects contributes to these phenomena: (i) 

titration of limiting Che proteins (the CheR methyltransferase and CheB methylesterase, 

whose competing activities regulate chemotactic adaptation, are good candidates); (ii) 

the effect of the level of receptor methylation in the receptor-CheW-CheA tertiary 

complex on ligand affinity; and (iii) higher order associations of different receptors and 

Che proteins within the receptor patch (Maddock and Shapiro, 1993; Shimizu et al., 

2000; Sourjik and Berg, 2000; 2002). These data reinforce the conclusion of Barak and 
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Eisenbach (2001) that the response to attractant addition is mechanistically different 

from the response to repellent removal. However, much more thought and more 

experimentation will be required to untangle this particular Gordian knot. 

Returning to the main theme after this digression, the ability of the Nart hybrid to 

function like a canonical homodimeric chemoreceptor may herald an opportunity to 

design novel receptors and sensor kinases by a mix-and-match approach. The chemical 

recognition domains (including those of the cognate periplasmic-binding proteins) of 

such designer receptors can potentially be modified to recognize novel ligands (Hellinga 

and Marvin, 1998). These engineered signal transduction systems can, in principle, be 

coupled to a wide variety of outputs and may prove to be of considerable utility. 

 

Experimental procedures 
 
 
Media  
 
 
Routine media were prepared according to the method of Miller (1972). Tryptone broth 

(TB) is 1% (w/v) tryptone extract and 0.8% (w/v) NaCl. Luria broth (LB) contains 1% 

tryptone extract, 0.5% (w/v) yeast extract, 0.5% NaCl. LB solid agar contains 1.5% 

(w/v) Difco agar, and TB swarm plates contain 0.325% (w/v) Difco agar. Liquid cultures 

and agar plates were incubated at 37°C for LB or 32°C for TB. Media were 

supplemented with ampicillin (Amp, 50µg ml-1) and tetracycline (Tet, 5µg ml-1) as 

needed. 
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Strains and plasmids  
 
 
Escherichia coli strain RP437 is wild type for motility (Parkinson and Houts, 1982). 

Strain MM509 is an eda+ ∆tar-tap5201 derivative of strain RP437 (Gardina et al., 

1992). Strain VB13 is a thr+ eda+ tsr7021 trg::Tn10 tar-tap5201 derivative of RP437. 

Plasmid pMK113 contains the E. coli tar gene and the single-stranded origin of phage 

M13 from plasmid pZ150 (Gardina et al., 1992). 

We constructed plasmids encoding two hybrid proteins, NarX(218)-Tar and 

NarX(270)-Tar, each of which contains a different number of N-terminal residues of 

NarX fused to the C-terminal cytoplasmic adaptation and signaling regions of Tar. 

NarX(218)-Tar, referred to as Nart, contains residues 1-218 of NarX fused to residues 

257-553 of Tar. NarX(270)-Tar contains residues 1-270 of NarX fused to residues 257-

553 of Tar. The narX sequences for both fusions were obtained by polymerase chain 

reaction (PCR) using pLK633 (Kalman and Gunsalus, 1990) as a template. 

To construct the NarX(218)-Tar gene, codon 218 (Asn) of narX was converted to 

a CAT (His) codon by site-directed mutagenesis. This mutation created an NdeI site 

(CATATG) 44 codons after the DNA sequence encoding the second transmembrane 

helix of NarX. A 0.7 kbp PCR fragment of pLK633 was obtained that contained codons 

1218 of narX flanked on the 3' end by the introduced NdeI site and on the 5' end by a 

region corresponding to the sequence upstream of the tar start codon up to a BamHI site 

in pMK113 (Gardina et al., 1992), which is downstream of the native tar promoter. This 

PCR product was cut with BamHI and NdeI and ligated into a 5.3 kbp BamHI-NdeI 

fragment from pMK113 generated by digestion with BamHI and partial digestion with 
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NdeI. (There is a second NdeI site in pMK113 downstream of tar.) This ligation yielded 

plasmid pAD56, which should transcribe NarX(218)-Tar from the modified tar promoter 

of pMK113. 

 NarX(270)-Tar was constructed using a similar strategy. The only difference was 

that the NdeI site was created at codons 270 (Pro) and 271 (Val), which were converted 

to the CAT (His) and ATG (Met) codons by site-directed mutagenesis. A 0.8 kbp 

fragment from pLK633 was obtained that contained codons 1270 of narX, again flanked 

on the 3' end by the introduced NdeI site and on the 5' end by the same sequence 

upstream of the tar start codon up to the BamHI site. This PCR product was ligated into 

the 5.3 kbp BamHI-NdeI fragment of pMK113 to yield plasmid pAD48, which should 

also transcribe NarX(270)-Tar from the modified tar promoter. 

 

Immunoblotting  
 
 
Cultures were grown in TB with swirling in 125 ml Erlenmeyer flasks. Overnight 

cultures were diluted 1:100 (v/v) into a 10 ml volume of TB. Cells were harvested at an 

A590 of 0.8. An equal number of cells from the exponential phase culture was pelleted 

and washed once with TE buffer (10 nM Tris, pH 7.5, 0.1 mm EDTA), and the cells 

were resuspended in 50 µl of loading buffer [2% (w/v) SDS, 5% (v/v) 2-

mercaptoethanol, 8.5% (v/v) glycerol, 60 mm Tris, pH 6.8, 0.0004% (w/v) bromophenol 

blue]. Freeze-thaw extracts were prepared from these resuspended cells by three 

alternating cycles of 5 min of boiling and 5 min on ice. Proteins were separated by 12% 

acrylamide SDS-PAGE and transferred to nitrocellulose. Antibody against the conserved 
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cytoplasmic domain of Tsr (Ames and Parkinson, 1994) was used to probe the 

immunoblots, and cross-reacting proteins were visualized with alkaline phosphatase-

conjugated goat anti-rabbit antibody (Bio-Rad). The blot was developed using 

SigmaFast (Sigma). 

  

Swarm plate assays  
 
 
The motility of each strain was assessed by inoculating colonies onto TB swarm plates. 

Plates were incubated at 32°C for 6-8 h, and the swarm diameters were measured and 

recorded. 

 

Tethered cell assays  
 
 
The flagellar filaments of highly motile cells were sheared to short stubs, and the cells 

were mixed with antifilament antibody and tethered to glass coverslips (Silverman and 

Simon, 1974). These coverslips were affixed to a flow chamber (Berg and Block, 1984), 

which was used to introduce chemoeffectors to the tethered cells. Adaptation times are 

defined as the time a cell undergoes unidirectional rotation before the first reversal to the 

opposite direction.  Sensitive cells responded to repellents with a brief period of 

exclusively clockwise (CW) flagellar rotation before adapting and returning to baseline 

reversing behavior. Removal of repellent after the introduction of buffer induced a much 

longer period of exclusively counterclockwise (CCW) flagellar rotation in sensitive 

cells, again followed by a return to reversing behavior. The adaptation time was 
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measured from the instant that flow was initiated, leading to a systematic overestimation 

(by a few seconds) of the adaptation time, as several seconds are required for the new 

medium to reach the cells. Cells that responded for <15s were scored as non-responders 

(0s) because the direction of rotation cannot be scored reliably during the flow. The 

responses of at least 20 cells were averaged for each measurement. All experiments with 

tethered cells were carried out at room temperature (22-24°C). 

 

Repellent-in-pond capillary assay  
 
 
Cells were placed in a pond containing repellents at various concentrations. A capillary 

filled with buffer was inserted into each pond. After 1 h of incubation at 30°C, the 

capillary contents were blown out, serially diluted and plated on LB agar. The number of 

cells within the capillary was calculated from colony counts. Capillary assays were 

carried out in triplicate according to the method of Adler (1973) as modified for 

repellent chemotaxis (Tso and Adler, 1974). 
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CHAPTER III 

MUTATIONALLY REVERSED SIGNAL OUTPUT IN THE NART (NARX-TAR) 

HYBRID CHEMORECEPTOR 

 

 

Summary 
 
 
Proteins that span the cytoplasmic membrane transmit information from outside the cell 

to the cell interior. In bacteria, these signal transducers include sensor kinases, which 

typically control gene expression via response regulators, and methyl-accepting 

chemoreceptor proteins (MCPs), which control flagellar rotation via the CheA kinase 

and CheY response regulator. We previously reported that a chimeric protein (Nart) that 

joins the ligand-binding, transmembrane, and linker regions of the NarX sensor kinase to 

the signaling and adaptation domains of the Tar chemoreceptor elicits a repellent 

response to nitrate and nitrite. As with NarX, nitrate evokes a stronger response than 

nitrite. Here, we show that mutations in a highly conserved sequence (the P-box) in the 

periplasmic domain of the hybrid receptor alter chemotactic signaling in a manner 

consistent with their effects in the intact NarX protein. The most dramatic phenotype is 

associated with the G51R substitution, which confers a reversed-signal phenotype that 

converts nitrate into an attractant. Our results provide further evidence for conservation 

of the mechanism of transmembrane signaling between homodimeric sensor kinases and 

chemoreceptors and highlight the plasticity of the coupling between ligand binding and 

signal output in these systems.  
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Introduction 
 
 
The Escherichia coli Tar chemoreceptor mediates attractant responses to aspartate and 

maltose (Springer et al., 1977), the latter via maltose-binding protein (Hazelbauer, 

1975), and repellent responses to Ni2+ and Co2+ (Tso and Adler, 1974). The other high-

abundance chemoreceptor, Tsr, mediates attractant and repellent responses to serine and 

leucine, respectively. Tar and Tsr form homodimers in the presence or absence of 

ligands (Milburn el al., 1991; Bowie et al., 1995), and much evidence indicates that 

these dimers can associate into both homogeneous and mixed trimers of dimers (Kim et 

al., 1999; Ames et al., 2002; Studdert and Parkinson, 2004; Umemura et al., 1998; 

Homma et al., 2004). A number of sensor kinases, including NarX and EnvZ, share 

predicted membrane topology with these chemoreceptors (Forst et al., 1987; Collins et 

al., 1992). 

The Tar and Tsr proteins contain two membrane-spanning regions that connect 

an N-terminal, periplasmic ligand-recognition domain to a C-terminal, cytoplasmic 

signaling and adaptation domain (Krikos et al., 1983; Krikos et al., 1985). Tar binds 

aspartate at the dimer interface near the apex of the periplasmic domains (Mesibov and 

Adler, 1972; Milburn et al., 1991; Milligan and Koshland, 1993), whereas ligand-bound 

MBP binds asymmetrically at the apex of the Tar homodimer (Hazelbauer, 1975; Brass 

and Manson, 1984; Gardina et al., 1997; Zhang et al., 1999). Serine and leucine are 

predicted to bind to the periplasmic domain of Tsr (Krikos et al., 1985). The cytoplasmic 

regions of the high-abundance transducers are responsible for transmitting the signal 

received from the periplasmic region to the CheA kinase (Milligan and Koshland, 1991; 
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Tatsuno et al., 1996; Gardina and Manson, 1996). When the chemical environment is 

homogeneous, CheA activity is at its baseline level, the flagellar motors alternate 

between counterclockwise (CCW) and clockwise (CW) rotation, and the cell exhibits 

normal run-tumble motility. The addition of attractants or removal of repellents inhibits 

the activation of CheA by the receptor, thereby decreasing the rate of phosphoryl-group 

transfer from CheA to the response regulator CheY. Lowering the cytoplasmic level of 

phosphorylated CheY (CheY-P) suppresses tumbling and results in the cells running for 

a longer time in the direction of increasing attractant (or decreasing repellent). See Stock 

& Surette (1996) for a review of chemotaxis. 

 The cytoplasmic domain of each subunit of Tar or Tsr contains four conserved 

glutamyl residues, two of which are originally translated as glutaminyl residues. Each of 

these glutamyl residues is a target for methylation by CheR methyltransferase (Kleene et 

al., 1977; Van der Werf and Koshland, 1977). CheR activity is antagonized by the CheB 

methylesterase, which, when it is phosphorylated by CheA, removes the methyl groups 

(Stock and Koshland, 1978). The interplay of CheR and CheB activities provides cells 

with a short-term memory that is essential for detecting temporal changes in 

chemoeffector concentrations. Adaptation to an attractant leads to a net increase in 

methylation above the baseline, unstimulated level, and adaptation to a repellent leads to 

net demethylation. 

 Tar and Tsr share 70% amino acid identity in their cytoplasmic regions but only 

33% identity within the periplasmic regions where ligand discrimination occurs. A 

similar situation is found with the sensor kinases NarX and NarQ, which detect 
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environmental nitrate and nitrite and evoke responses by phosphorylating the DNA-

binding response regulators NarL and NarP (Rabin and Stewart, 1992). Although either 

NarX or NarQ is capable of increasing autophosphorylation in response to nitrate and 

nitrite, only NarX is capable of distinguishing between the two ligands; it elicits a 

stronger response to nitrate than to nitrite (Williams and Stewart, 1997).  

The amino acid sequences of the periplasmic regions of NarX and NarQ are quite 

dissimilar except in a highly conserved region called the P-box (Fig. 10; Chiang et al., 

1992; Rabin and Stewart, 1992). This region is located at the C-terminus of the first 

transmembrane helix (TM1). It comprises 18 residues that vary at only three positions 

between NarX and NarQ (Williams and Stewart, 1997). This region is predicted to play 

an integral role in the detection and signaling of NarX ligands by interaction with 

another region of similar size, called the P'-box, which is located at the N-terminal end 

of TM2 (Stewart, 2003). Among known NarX or NarQ homologs, two invariant residues 

(Gly-51 and Met-55) exist within the P-box (Stewart, 2003).  

Mutational analyses indicate that Lys-49 in NarX provides the nitrate/nitrite 

distinguishing capacity; the residue at the equivalent position in NarQ is Ile-45 

(Williams and Stewart, 1997). Mutations altering other residues within the P-box of 

NarX (Table 4) result in a variety of phenotypes, including mimicked occupancy by 

nitrate or nitrite or inability to respond to one or both of the ligands (Cavicchioli et al., 

1996; Williams and Stewart, 1997).
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Fig. 10. The NarX periplasmic region and P-box sequences. (A) The linear, monomeric 
NarX periplasmic and transmembrane regions are depicted, in highly schematic form.  
The P-box (shaded rectangle; Rabin and Stewart, 1992) and P'-box (hatched rectangle; 
Stewart, 2003) are shown just outside the cytoplasmic membrane. (B) P-box sequences 
from E. coli NarX and NarQ sensors shown with identical residues shaded. P-box 
mutations discussed in the text are shown above the sequence. Numbers indicate the 
terminal residue in each sequence. 
 



55 

 

 

 

Table 4.  Phenotypes of P-box mutations in NarXa.

Amino Acid Phenotype 
H45E
A46V Mimicked nitrate occupancy 
K49I Nitrate-nitrite non-differentiating 
G51R
R54K
M55K

a. Phenotypes described by Williams and Stewart (1997) in Table 4

Ligand insensitive 
Mimicked nitrite occupancy

Nitrite insensitive 

Nitrate insensitive 
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 Functional chimeras between chemoreceptors and sensor kinases have been 

created by fusing genes at an NdeI restriction site (CATATG) present near the end of the 

cytoplasmic HAMP linker domain (Krikos et al.1985; Feng et al., 1998; Weerasuriya et 

al., 1998; Utsumi et al., 1989). One of these chimeras, which we call Nart, fuses the 

nitrate/nitrite detecting periplasmic domain of NarX to the cytoplasmic signaling and 

adaptation domains of Tar (Ward et al., 2002). Nart acts like a high-abundance 

transducer when it is expressed at appropriate levels, and it endows cells with the ability 

to respond to nitrate, and to a lesser extent nitrite, as repellents. Here, we show that 

mutations affecting the P-box of Nart affect both basal levels of methylation and the 

response to one or both NarX ligands in ways consistent with the phenotypes introduced 

by the same changes in intact NarX (Williams and Stewart, 1997). Most strikingly, the 

G51R substitution, which renders NarX insensitive to nitrate, converts nitrate from a 

repellent into an attractant when it interacts with G51R Nart. 

 

Results 
 
 
Behavior of unstimulated tethered cells 
 
 
The flagella of tethered cells of strain MM509 (∆tar-tap) exhibit a normal wild-type 

CCW rotational bias (~70% CCW flagellar rotation), whereas cells expressing Nart are 

more strongly CW biased (33% CCW flagellar rotation). The residue substitutions 

H45E, K49I and R54K do not alter the rotational bias (30-33% CCW).  In contrast, 
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introduction of the A46V, G51R or M55K substitution into Nart increases the CW bias 

even further (20-25% CCW). 

 

Responses of tethered cells to addition of ligands 
 
 
MM509 cells containing Nart exhibit brief periods of exclusively CW rotation after the 

addition of nitrate or nitrite (Table 5). MM509 cells expressing Nart proteins with the 

substitutions in the P-box described by Williams and Stewart (1997) behave similarly 

with the following differences: the H45E and K49I mutants respond at lower 

concentrations of nitrate, the A46V mutant does not respond to nitrate, the M55K mutant 

does not respond to nitrite, and the G51R mutant responds to both ligands with extended 

(up to several minutes for nitrate) intervals of exclusively CCW flagellar rotation. This 

remarkable result suggests that the G51R Nart receptor senses both nitrate and nitrite as 

attractants. 

 

Responses of tethered cells to removal of ligands 
 
 
Adaptation times upon removal of nitrate and nitrite from MM509 cells expressing the 

various wild-type and mutant Nart protein are also shown in Table 5. In this situation, 

which resembles the physiologically response to removal of repellents, cells expressing 

wild-type Nart rotated their flagella exclusively CCW for extended periods. Responses, 

albeit brief, were seen even after removal of only 1 µM nitrate or nitrite. Qualitatively 

similar results were obtained with cells expressing the H45E and K49I versions of Nart, 
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although extended CCW flagellar rotation was evoked only after removal of 1 mM or 

higher concentrations of nitrite. Cells producing the R54K and M55K mutant receptors 

simply gave shorter responses and only responded after removal of higher concentrations 

of nitrate and nitrite. The response mediated by the A46V protein was unique in that 

removal of nitrite produced a response that was stronger and appeared at a lower 

concentration for nitrite than for nitrate. 

G51R Nart again behaved like an attractant receptor for nitrate, supporting about 

30 sec of CW rotation after the removal of 100 mM nitrate. As is typical for responses to 

the removal of chemoattractants, the CCW response to the addition of nitrate and nitrite 

was much stronger than the CW response to their removal. Thus, it appears that a single 

residue substitution totally reverses the sign of the chemotactic response mediated by 

Nart. 

 

Responses in capillary assays 
 
 
Cells were tested for both negative and positive chemotaxis using the standard capillary 

assay and a repellent-in-pond variant. (Adler, 1973; Tso and Adler, 1974). In the 

standard assay, cells swimming in chemotaxis buffer swim towards and then into a 

capillary tube filled with buffer containing different concentrations of attractant. In the 

repellent-in-pond variant, cells are suspended in chemotaxis buffer containing different 

concentrations of a repellent and can flee into a capillary containing only buffer. The 

geometry of the assay dictates that, for a response of a given magnitude, the 

accumulation of cells in the capillary in response to an attractant in the standard will be 
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far higher than the accumulation in the capillary containing buffer in the repellent-in-

pond assay.  

Our previous work showed that MM509 cells expressing a wild-type Nart give 

peak responses in the repellent-in-pond assay when nitrate or nitrite are present at 0.1 

mM and 1 mM, respectively. Fig. 11 presents the data for cells expressing the H45E and 

K49I Nart proteins, with the data for cells expressing wild-type Nart shown for 

comparison. HK49I Nart gave a stronger response with nitrate and a weaker response 

with nitrite, but was otherwise quite similar to wild-type Nart in this assay.  With H45E 

Nart, a robust nitrate response was seen, but only at concentrations of 1 mM or above. In 

accord with its moniker of "nitrite insensitive," cells containing H45E Nart gave no 

response to nitrite up to 10 mM. Higher concentrations could not be tested because of 

the toxicity of high levels of nitrite to E. coli. The A46V, R54K, and M55K mutants 

produced negligible responses to either compound. 

The response of cells expressing G51R Nart in the standard capillary assay is 

shown in Fig. 12. An accumulation about 30-fold above the buffer level was seen with 

100 mM nitrate in the capillary. Nitrate at 10 mM also elicited a significant response, but 

little or no accumulation was seen with capillary nitrate concentrations at or below 1 

mM. No significant accumulation was seen with nitrite up to the highest concentration 

(10 mM) that could be tested. These results confirm that G51R Nart is an attractant 

chemoreceptor for nitrate. 
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Fig. 12. Capillary assay with the Nart G51R mutant. The accumulation of MM509 cells 
containing plasmid pAD56 expressing G51R Nart in capillaries containing nitrate at the 
indicated concentrations was recorded. The accumulation seen when only buffer was 
present in the capillary was 1 X 105 (dotted line). Capillary assays were done in triplicate 
according to the method of Adler (1973).
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Methylation pattern of Nart mutant proteins 
 
 
The basal and ligand-adapted methylation patterns of either wild-type or mutant Nart 

proteins from plasmid pAD56 were tested in the transducer-deleted (∆Transducer) strain 

VB13. Antiserum that targets the cytoplasmic region of Tar was used to visualize Nart 

during immunoblotting. The H45E, K49I and R54K proteins had basal methylation 

levels similar to that of wild-type Nart (Fig. 13). Decreased basal levels of methylation, 

defined by an upward shift in the band pattern, were seen with the A46V, G51R and 

M55K Nart proteins. Methylation patterns of all of the mutant proteins expressed in the 

∆tar-tap tsr+ strain MM509 showed similar changes, although the differences were not 

as pronounced, possibly due to sequestering of methyl groups by Tsr (data not shown).  

 Changes in methylation patterns of the same set of Nart proteins produced in 

strain VB13 were examined after adaptation to the addition of nitrate and nitrite (Fig. 

14). The samples were collected 20 min after the addition of ligand, by which time 

adaptation should be complete (see Table 5). The wild-type protein showed the expected 

repellent response of decreased methylation with both nitrate and nitrite, as did the K49I 

protein. The shifts were first seen at 0.1 mM nitrate and 10 mM nitrite. H45E Nart 

exhibited no change with nitrite up to 10 mM and a significant decrease only with the 

highest concentration of nitrate tested (100 mM). The A46V, R54K and M55K proteins 

showed no change in methylation pattern at any concentration of either nitrate or nitrite.  

Once more, G51R Nart behaved as an outlier. Although it did not change its 

methylation pattern with nitrite at any concentration tested, it showed a small but distinct 
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Fig. 13. In vivo basal methylation patterns of mutant Nart proteins. The greater the 
number of methyl groups per receptor (0-4), the faster the migration of the band.

H45E A46V K49I G51R M55KR54KWT H45E A46V K49I G51R M55KR54KWT
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shift toward more highly methylated, faster migrating forms after addition of 100 mM 

nitrate. Increased methylation is the canonical response seen after adaptation to an 

attractant. 

 

Discussion 
 
 
In response to either nitrate or nitrite, the sensor kinase NarX increases its 

autophosphorylation activity. In addition, NarX ligands may alter the phosphatase 

activity of NarX toward the phosphorylated forms of its cognate response regulators, 

NarL and NarP. In the chemoreceptor Tar, ligands that activate the CheA kinase elicit a 

repellent response and enhance CW flagellar rotation, thereby making cells more likely 

to change their swimming direction by tumbling.  In the Nart hybrid, the cytoplasmic 

region of NarX responsible for the autophosphorylation, phosphotransfer and 

phosphatase activities of the protein is replaced with the cytoplasmic domain of the Tar 

chemoreceptor. With this chimeric protein, the input of NarX ligand binding can be 

observed as the more simple output of either increased or decreased CheA activity. 

We define wild-type Nart as the chimera containing the normal periplasmic, 

transmembrane, and HAMP linker domains of NarX. This hybrid receptor mediates 

repellent responses to nitrate and, with lower sensitivity and signal strength, nitrite 

(Ward et al., 2002). Evidence to support this conclusion comes from observations of 

tethered cells (Table 5), the behavior of cells in repellent-in-pond capillary assays (Fig. 

11), and experiments that record adaptive methylation after the addition of nitrate and 

nitrite (Fig. 14). To test whether the signaling mechanism is truly conserved between the 
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NarX sensor kinase and chemoreceptors, we studied the effects of previously identified 

mutations that affect the activity of NarX in a known manner (Table 4). 

The phenotypes associated with the mutationally introduced residue substitutions 

in the P-box region of NarX (Williams and Stewart, 1997), which is thought to be 

responsible for ligand detection, were consistent between the intact sensor kinase and 

Nart. This correlation can be seen with the responses, or non-responses, of cells in the 

tethered-cell and capillary assays for chemotaxis (Table 6; compare Table 4 with Table 5 

and Fig. 11). However, it is more clearly seen quantitatively in the patterns of adaptive 

methylation.  

The addition of either nitrate or nitrite to wild-type Nart leads to a net 

demethylation of the receptor (Fig. 14), as expected for a repellent. The H45E (nitrite-

insensitive), K49I (nitrate-nitrite non-differentiating), and R45K (ligand-insensitive) 

Nart proteins have basal levels of methylation like those of the wild type. However, their 

response to ligands is quite different. The H45E protein requires 1000 times more nitrate 

to elicit any detectable demethylation, and it shows no decrease in methylation at the 

highest concentration of nitrite tested (10 mM). Thus, the effect of this replacement is 

most parsimoniously interpreted as being to decrease affinity for both ligands. Because 

Nart apparently has a 1000-fold lower affinity for nitrite than for nitrite, at least with 

respect to induction of demethylation, the end result is a "nitrite-blind" receptor. The 

R54K protein appears, indeed, to be blind to ligands, since no change in methylation 

level is seen after addition of any amount of nitrate or nitrite. The K49I substitution 

defies such easy explanation, since the changes in methylation seem by and large to 
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Table 6. Comparison of P-box mutation phenotypes in NarX and Nart.

Phenotype in NarX
Amino 
Acid Phenotype in Nart

High basal methylation

Response to both nitrate and nitrite

High basal methylation

No response to nitrite

Low basal methylation

Response to nitrite at high concentrations

High basal methylation

Response to both nitrate and nitrite

Low basal methylation

Reversed signaling to nitrate and nitrite

High basal methylation

Response at high nitrate/nitrite concentration

Low basal methylation
Response to nitrate at high concentrations

Wild-type -

G51R

K49I

A46V

H45E

Nitrate-nitrite non-differentiating 

Mimicked nitrate occupancy 

Nitrite insensitive 

Nitrate insensitive 

Ligand insensitive 

Mimicked nitrite occupancy M55K

R54K
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parallel those of wild-type Nart. However, demethylation never reaches the same extent 

with the K49I protein as it does with the wild type. 

The A46V (mimicked nitrate occupancy), G51R (nitrate insensitive) and M55K 

(mimicked nitrite occupancy) Nart proteins are all considerably less methylated than the 

wild-type protein in the absence of ligands. In the context of chemotaxis, this suggests 

that they are more biased toward the "on" (CheA kinase stimulating) state than is the 

wild-type protein. The same may hold true for their basal signaling state in intact NarX 

(see Williams and Stewart, 1997, Table 4). Neither A46V nor M55K Nart shows any 

change in methylation pattern after the addition of nitrate or nitrite, a result consistent 

with their mimicked ligand-occupancy phenotypes.  

The most surprising effect is the one seen with G51R. Although it shows no 

change in methylation pattern upon addition of nitrite, it increases its level of 

methylation after the addition of 10mM or 100 mM nitrate. Although increased 

methylation is not seen after addition of 10 mM nitrite, high concentrations of nitrite (10 

mM and 100 mM) do produce a relatively brief period of exclusive CCW flagellar 

rotation in tethered cells expressing G51R Nart. It is noteworthy that nitrate causes a 

two-fold reduction in the NarL output activity measured by Williams and Stewart (1997, 

Table 4), which suggests that this mutation also reverses the sign of the response to 

nitrate in the context of intact NarX

Our interpretation of the influence of the G51R substitution is that, like the A46V 

and M55K replacements, it shifts baseline signaling more toward the kinase-stimulating 

state. Unlike the A46V and M55K proteins, however, G51R Nart still binds nitrate with 
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reasonable affinity. We propose that the final conformation of the ligand-associated 

periplasmic domain may be the same for wild-type NarX and G51R NarX (Fig.15). The 

difference in the sign of the response is imposed by what the signaling state was before 

the ligand was added. In the case of the wild-type protein, the change is toward a more-

active signaling state. In the case of the G51R protein, the change is toward a less-active 

signaling state. Fig. 15 also indicates which signaling states we speculate are adopted by 

the H45E, A46V, K49I, R54K and M55K mutant proteins.

The unique advantage of monitoring the signaling state of a receptor in a chimera 

with a chemoreceptor is that the methylation readout is a very direct measure of the 

conformation of the ligand-binding domain. Draheim et al. (2005) demonstrated that 

small shifts in the position of TM2 of Tar induced by moving residue Trp-209 near the 

C-terminal end of TM in single residue increments caused profound changes in CheA 

kinase activity in the in vitro receptor-coupled assay. These same changes also produced 

major shifts in the basal methylation level of the Tar receptor in vivo, although most of 

the mutant proteins still supported nearly normal aspartate and maltose taxis. These 

results indicate that inferences made from output activities such as chemotaxis or gene 

transcription may be misleading, since they do not directly monitor the conformation of 

the receptor. We propose that studies using hybrid proteins that fuse other sensor kinases 

to chemoreceptors to make Nart-like chimeras might reveal much about the properties of 

those kinases, including their basal and ligand-induced signaling states and the effects of 

mutations on those signaling states. 
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Fig.15. Model for transmembrane signaling by Nart. It is not known whether nitrate or 
nitrite binds within a NarX monomer or at the subunit interface of the presumed NarX 
homodimer, as is the case with aspartate binding at the subunit interface of the 
periplasmic domain of Tar. For simplicity, we have chosen to show nitrate binding to the 
P box region of only one subunit. Three potential signaling states of Nart are shown. 
They differ in the relative positions of the P-box relative to the P'-box. The wild-type, 
H45E, K49I and R54K proteins are proposed to be in an "off" signaling state. By 
analogy to what is know about transmembrane signaling by Tar (Chervitz and Falke, 
1996; Draheim et al., 2005), we propose that the P'-box is displaced toward the 
membrane relative to the P-box, which pushes TM2 further toward the cytoplasm. The 
A46V, G51R and M55K proteins are proposed to be in an "on" signaling state with the 
P'-box displaced away from the membrane relative to the P-box, which pulls TM2 
further away from the cytoplasm. We suggest that when nitrate is bound that the P-box 
and the P'-box are brought into register and that nitrate stabilizes an intermediate 
signaling conformation. In the case of the wild-type protein, the ligand-bound state 
represents a movement of the P'-box and TM2 away from the cytoplasm, which would 
represent an activation of signaling (i.e., a repellent response) relative to the basal 
signaling state of this receptor. In the case of the G51R protein, the ligand-bound state 
represents a movement of the P'-box and TM2 toward the cytoplasm, which would 
represent an inactivation of signaling (i.e., an attractant response) relative to the basal 
signaling state of this mutant receptor. 
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Experimental procedures 
 
 
Media 
 
 
Routine media were prepared according to Miller (1972). Tryptone broth (TB) is 1% 

(w/v) tryptone extract and 0.8% (w/v) NaCl. Luria broth (LB) contains 1% tryptone 

extract, 0.5% (w/v) yeast extract, 0.5% NaCl. LB solid agar contains 1.5% (w/v) Difco 

agar and TB swarm plates contain 0.325% (w/v) Difco agar. Liquid cultures and agar 

plates were incubated at 37oC for LB or 32oC for TB. Media were supplemented with 

ampicillin (Amp, 50µg/ml) and tetracycline (Tet, 5µg/ml) as needed. 

 

Strains and plasmids 
 
 
Strain RP437 is wild type for motility (Parkinson and Houts, 1982). Strain MM509 is an 

eda+ ∆tar-tap5201 derivative of strain RP437 (Gardina et al., 1992). E. coli VB13 is a 

thr+ eda+ tsr7021 trg::Tn10 ∆tar-tap5201 derivative of strain RP437 (Parkinson, 1978). 

Plasmid pMK113 contains the E. coli tar gene and the single-stranded origin of phage 

M13 from plasmid pZ150 (Gardina et al., 1992). 

 We constructed plasmids encoding the hybrid protein, NarX-Tar (Nart) (Ward et 

al., 2001), and mutant derivatives of NarX-Tar. The NarX-Tar plasmid contains residues 

1 to 218 N-terminal residues of NarX fused to the C-terminal cytoplasmic adaptation and 

signaling regions of Tar. Nart contains residues 1 to 218 of NarX fused to residues 257 

to 553 of Tar. The narX sequences for both fusions were obtained by PCR using 
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pLK633 (Kalman & Gunsalus, 1989) as a template. PCR-generated mutations were 

created using primers from Invitrogen and confirmed by DNA sequencing.  

 

Methylation assay 
 
 
Our methods were based on methods by Weerasuriya et al. (1998). Cultures were grown 

in TB with swirling in 125ml Erlenmeyer flasks. Overnight cultures were diluted 1:100 

(v/v) into 10 ml of the Erlenmeyer flasks. Cells were harvested at an A590 of 0.8. An 

equal number of cells from the exponential-phase culture was pelleted and washed three 

times with methylation buffer (10 nM Tris (pH 7.5), 0.1 mM EDTA). Aliquots were 

incubated at 300C for 40 minutes followed by the addition of ligand and subsequent 

incubation for 20 minutes. Reactions were stopped with 10% TCA. Cells were kept on 

ice for 15 minutes and pelleted. The pellets were washed in 1% TCA, pelleted, and 

finally washed in 100% acetone, and pelleted. Dry samples were resuspended in 200 µl 

of loading buffer (2% (w/v) SDS, 5% (v/v) 2-mercaptoethanol, 8.5% (v/v) glycerol, 

60mM Tris (pH 6.8), 0.0004% (w/v) bromophenol blue). The extracts were resuspended 

by incubation at 600C prior to loading on gels for SDS-PAGE. Proteins were separated 

by 12% acrylamide SDS-PAGE and transferred to nitrocellulose. Anti-Tsr antibody, 

which also binds Tar, was used to probe the immunoblots, and the cross-reacting protein 

was visualized with alkaline phosphatase-conjugated, goat anti-rabbit antibody 

(BioRad). The blot was developed using SigmaFast (Sigma). 
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Tethered cell assays 
 
 
The flagellar filaments of highly motile cells were sheared to short stubs, and the cells 

were mixed with anti-filament antibody and tethered to glass cover slips (Silverman and 

Simon, 1974). These cover slips were affixed to a flow chamber (Berg and Block, 1984), 

which was used to introduce repellents to the tethered cells. Sensitive cells responded to 

the addition of repellents by exhibiting a brief period of exclusively clockwise flagellar 

rotation before adapting and returning to baseline reversing behavior. Removal of 

repellent by introduction of unadulterated buffer induced a much longer period of 

exclusively counterclockwise flagellar rotation in sensitive cells, again followed by a 

return to reversing behavior. The response time was measured from the instant that flow 

was initiated, leading to a systematic overestimation (by a few sec) of the response time, 

since it requires several seconds for the new medium to reach the cells. Cells that 

responded for less than 15 sec were scored as non-responders (0 sec) because the 

direction of rotation cannot be scored reliably while flow is occurring. The responses of 

at least 20 cells were averaged for each measurement.  

  

Repellent-in-pond capillary assay 
 
 
Cells are placed in a pond of repellent and capillaries filled with buffer are inserted into 

the pond, establishing a gradient of decreasing repellent concentration. After one hour, 

the cells within the capillary were diluted and plated. The number of cells within the 

capillary was compared to a baseline number of cells that swam from a buffer-repellent 
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mixture to a capillary filled with buffer-repellent. Capillary assays were done in 

triplicate according to the method of Adler (1973) as modified for repellent chemotaxis 

(Tso and Adler, 1074). 
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CHAPTER IV 

GENERAL CONCLUSIONS AND FUTURE DIRECTIONS 

 

 

Most cell-surface receptors do transport nothing other than conformationally coded 

information across the membrane. In the case of chemoreceptors and membrane-bound 

sensor kinases, a ligand-induced movement of a transmembrane helix is predicted to 

transmit information about ligand binding from an extracellular domain (in Gram-

negative bacteria, a periplasmic domain) to the cytoplasmic signaling domain. Studies of 

transmembrane signaling have focused on chemoreceptors because of their well-

characterized ligand interactions and robust outputs. The mechanism of transmembrane 

signal transduction by sensor kinases, however, has not been as extensively studied. If 

the similar architecture of sensor kinases and chemoreceptors dictates similar function, 

then hybrids between the two types of receptors should be functional. By studying the 

Nart sensor kinase-chemoreceptor hybrid, I have extended our knowledge of 

transmembrane signaling and found it to be similar between chemoreceptors and sensor 

kinases, at least in this example. 

In Chapter II, I show that the expressed Nart protein is the size predicted for a 

fusion of the NarX periplasmic, TM, and HAMP linker regions to the Tar cytoplasmic 

region. The location of the fusion joint is important. Fusion of residues 1-218 of NarX 

with Tar residues 257-553, which places the junction near the end of the HAMP region, 

produced a functional hybrid, NarX(218)-Tar. An attempt to fuse residues 257-553 of 
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Tar to residues 1-270 of NarX, which comprise the entire HAMP domain and the 

following amphipathic helical region, did not produce a detectable translational product. 

Our results suggest that, although the domains are largely modular in nature, fusions at 

arbitrary points do not typically produce functional chimeras. These data are supported 

by the work of Appleman et al. (2003), who showed that HAMP regions, perhaps 

because of their predicted functional conservation, often can serve as fusion joints for 

functional hybrid sensor kinases.  

Ligand interaction with NarX activates autophosphorylation of the signaling 

domain. In the chemotaxis system, repellent binding activates autophosphorylation of 

the CheA kinase. With the Nart hybrid, the NarX ligands nitrate and nitrite stimulate the 

CheA kinase to evoke a repellent chemotactic response. Thus, the ‘sign’ of the signal has 

been conserved. Furthermore, the relative sensitivity of Nart to these two ligands is 

maintained. Nitrate elicits a repellent response through Nart at lower concentrations than 

does nitrite, and the nitrate response is more robust. In NarX, nitrate also elicits a 

stronger response at lower concentrations that does nitrite (Williams and Stewart, 1997). 

In Chapter III, I show the effects of mutations targeting the presumed ligand-

binding P-box region of NarX in the context of the Nart chimera. Some of the mutations 

affect basal levels of methylation in the absence of ligand binding. These mutations have 

comparable effects on the basal signaling state of NarX (Williams and Stewart, 1997), 

indicating that the signaling mechanism is conserved between NarX and the hybrid. 

Most interestingly, a previously characterized mutation in NarX (G51R) resulted in a 

reversed signaling phenotype in Nart such that nitrate was sensed as an attractant rather 
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than as a repellent. In NarX, this same substitution was considered to have caused 

insensitivity to nitrate. I show that a residue substitution in the periplasmic domain 

reverses signal output upon exposure to nitrate. 

The logical continuation of this work would be to construct a reciprocal hybrid 

containing the Tar periplasmic region connected to the NarX signaling domain. This 

protein could be tested in the Nar pathway to determine how Tar ligands affect the 

transcription of target genes for NarL and NarP. Because Tar has both attractant and 

repellent ligands, both activation and repression of the system could be studied. In this 

analysis, special attention should be paid to signaling in response to maltose, since TazI, 

the previously discussed Tar-EnvZ hybrid, signals in response to aspartate but not 

maltose (Utsumi et al., 1989). Aspartate binds to Tar with higher affinity than maltose-

bound MBP (Mowbray and Koshland, 1987; Manson et al., 1985). Perhaps,  the 

cytoplasmic region of EnvZ in Taz forces the Tar periplasmic domain into a 

conformation that has lower affinity for both ligands, an effect which essentially 

eliminates association with MBP. 

 The creation of a hybrid between the periplasmic domain of a sensor kinase with 

known stimulatory and inhibitory ligands with the Tar signaling domain might also 

provide valuable data. This construct should allow for both activation and inhibition of 

the hybrid chemoreceptor. Although other bacteria contain such sensor kinases, such as 

SasS of Myxococcus xanthus (Yang and Kaplan, 1997), none have been discovered in E. 

coli as yet. 
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The creation of hybrid sensors between proteins from different species has 

already begun to yield information. For example, Tar has been joined to the human 

insulin receptor (Moe et al., 1989; Biemann et al., 1996). The insulin receptor signals 

upon the formation of dimers, a process facilitated by insulin. The Tar-insulin receptor 

hybrid signals in response to aspartate, also as a result of increased dimerization. In this 

hybrid, the Tar periplasmic domain apparently facilitates dimerization of the receptor in 

the presence of aspartate. More recently, the NarX ligand-recognition region has been 

fused to the signaling domain of the M. xanthus sensor kinase DifA to yield a functional 

hybrid that supports fruiting body development in M. xanthus in a nitrate-dependent 

fashion (Zhao et al., 2005, submitted). This research shows that the signal conservation 

is widespread.  

Another area of recent interest is the role of HAMP domains in signal 

transduction. This region has been the site of fusion for all successful sensor kinase–

sensor kinase and sensor kinase–chemoreceptor hybrids. HAMP regions are found in all 

chemoreceptors and in about half of the known sensor kinases, both those with and 

without known ligands. HAMP regions also link functional domains in some soluble 

proteins (Aravind and Ponting, 1999). Mutations affecting each of the two amphipathic 

helices of HAMP domains produce marked and predictable phenotypes (Appleman et 

al., 2003). Furthermore, construction of a chemoreceptor lacking the TM helices showed 

that interaction of the HAMP domain with the membrane is apparently not required for 

signaling (Ottemann and Koshland, 1997). The HAMP region may facilitate the 

formation of higher-order structures, provide signal amplification, or promote intradimer  
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or interdimer crosstalk. Construction of a hybrid protein using sensors with altered 

HAMP regions may reveal more about how these linkers function in communication 

between protein domains. 

The effects of P-box mutations in NarX and Nart reveal potentially valuable 

information about the properties of hybrid receptors. Residue substitutions in the P-box 

can affect either the kinase or phosphatase activities of the sensor kinase. Nart eliminates 

the complication of the phosphatase activity and focuses only on the control of the CheA 

kinase. Furthermore, narX mutations that create small signaling differences within the 

confines of the two-component pathway can exert profound effects in Nart due to the 

amplification properties of the chemotactic system. This advantage is highlighted by the 

properties of the G51R substitution, which causes a signal reversal in Nart. Previous 

research characterizing G51R largely ignored this mutation and simply classified it as 

‘nitrate insensitive,’ since the addition of nitrate merely decreased narG expression to 

basal levels (Williams and Stewart, 1997). In the Nart hybrid, however, it became 

obvious that G51R resets the basal signaling state of the receptor, resulting in a clear 

inhibition of kinase activity upon nitrate addition. It is likely that a previously unnoticed 

mechanism operates within NarX itself.  

Combining domains of receptors to create new chimeras may initially appear to 

be ‘Frankenscience.’ Our study of signaling mechanisms using hybrid constructs, 

however, may herald exciting new advances in this field. Receptors that possess kinase 

and phosphatase activities that are unable to function independently of other receptors or 

that are targets for activation by other receptors can perhaps have their individual 
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components placed into a context in which they can be examined rigorously. Thus, 

properties that remain cryptic or obscure in the original system may be revealed, and 

complex interactions within a receptor can be elucidated. Finally, since most individual 

domains retain their signaling properties within a hybrid, it seems likely that a variety of 

novel and useful sensors can be engineered. 
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To: robg@microbio.ucla.edu  
Cc: Michael Manson 
Subject: Dissertation Statement 
 
Dr. Gunsalus - 
 
I worked with your lab in a collaborative effort in the creation of the 
NarX-Tar chimera, which we published in Molecular Microbiology (2002).  I am 
about to finish my dissertation and one of my committee members is asking 
that with any collaborative works, we acquire a statement from our 
collaborators regarding their contribution to the work. 
 
With this collaboration, Asuncion Delgado created the two hybrid 
transducers, NarX(218)-Tar and NarX(270)-Tar.  I was responsible for the 
experimentation portion by conducting immunoblots, capillary assays, and 
tethered cell experiments. 
 
At your convenience, if you could e-mail me stating your labs contribution 
to the work, I would be very appreciative.   
 
Thank you, 
 
Scott Ward 
sward@mail.bio.tamu.edu 
 
>>> "Gunsalus, Rob" <robg@microbio.ucla.edu> 03/28/05 3:55 PM >>> 
 
Dear Scott,  
 
Your description matches exactly what I recall what the case!  I hope the 
thesis writing and other tasks go smoothly.  
 
Best, Rob 
 
Please give my regards to Mike 
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9600 Garsington Road  
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The dissertation will be made available to the public on the Web through 
Texas A&M University Libraries. In addition the dissertation will be 
microfilmed by UMI Dissertation Publishing (ProQuest Information and 
Learning), and copies of the dissertation will be sold on demand. If 
possible, please supply a signed letter granting me permission to use 
the work.  
 
You can mail or fax the permission to: 
 
Scott Ward 
PO Box 1191 
College Station, TX  77841 
Contact: (979) 255-6225 
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