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ABSTRACT

The Transporter’s Impact on Channel Coordination and Contractual Agreements.

(August 2006)

Fatih Mutlu, B.S., Bilkent University, Turkey

Chair of Advisory Committee: Dr. Sıla Çetinkaya

This dissertation focuses on the recent supply chain initiatives, such as Ven-

dor Managed Inventory (VMI) and Third-Party Logistics (3PL), enabling the co-

ordination of supply chain entities; e.g., suppliers, buyers, and transporters. With

these initiatives, substantial savings are realizable by carefully coordinating inven-

tory, transportation, and pricing decisions. The impact is particularly tangible when

the transporter’s role and the transportation costs are explicitly incorporated into

decision mechanisms that aim to coordinate the supply channel. Furthermore, ex-

panding the perspective of channel coordination by introducing the transporter as

an individual party in the channel provides tangible benefits for each member of the

channel.

Recognizing the need for further analytical research in the field of multi-echelon

inventory and channel coordination, we developed and solved a class of integrated

inventory and transportation models with explicit shipment consolidation consid-

erations. Moreover, we examined transporter-buyer and supplier-transporter-buyer

channels and solved centralized and decentralized models for these channels with the

aim of investigating the impact of transporters on channel performance. In this disser-

tation, we also developed efficient coordination mechanisms between the transporter

and the other parties in the channel.



iv

To my parents and my brother



v

ACKNOWLEDGMENTS

I am grateful to my parents for all the sacrifices they have made since I was born:

I thank my father who spent his hours helping me with my classes when I was a little

child and inspired me to work hard. I thank my mother for all the love she gave me

and for actively supporting me.

I would like to express my gratitude to my advisor Dr. Sıla Çetinkaya: She has

been my mentor since the first day of my graduate-school life, not only by guiding me

academically, but also by helping me whenever and wherever I needed. I also thank

Dr. Georgia-Ann Klutke, Dr. Guy L. Curry, Dr. Martin A. Wortman and Dr. Powell

E. Robinson for providing their valuable knowledge and for serving as members of

my advisory committee. In addition, I would like to thank Dr. Lale Yurttaş for being
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CHAPTER I

INTRODUCTION

Effective Supply Chain Management (SCM) is essential in today’s competitive envi-

ronment for two primary reasons:

Supply Chain Costs are Significant: 2001 statistics report that total supply

chain costs constitute approximately 9% of the gross national product (GNP) of

the U.S. (http://www.sctrucking.org/economics/statistics.htm). On the other

hand, the average ratio of supply chain costs to sales dollars is significant in

almost all industries. Even for the lowest case, it is around 10% (machinery and

tools industry) and can be as high as 32%, (food and food products industry).

These ratios are similar in other countries as well. In Japan, the average ratio

of supply chain costs to sales rate is about 26%, whereas it is around 21% for

European Union firms (See Ballou 1992, pp. 14-15).

Customer Expectations are Increasing: In today’s competitive markets, cus-

tomers have a wide variety of options of similar products and multiple alterna-

tives of the same product. Hence, for companies to survive, they must provide

high levels of service to their customers. The major criteria for the service level

are i) availability of products, and ii) fast delivery/response times for customer

orders. In order to satisfy high standards for such performance metrics, com-

panies must evaluate every possible alternative to make their supply links more

efficient.

As a consequence, companies have been developing and implementing innovative

supply chain practices. Vendor Managed Inventory (VMI) and Third-Party Logis-

This dissertation follows the style and format of Management Science.
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tics (3PL) are examples of such practices. In VMI, the vendor, i.e., the supplier,

assumes the responsibility of managing the inventory of items at the retailers’, i.e.,

the buyers’, sites (Çetinkaya and Lee, 2000). This gives the supplier the opportunity

to manage the overall flow of items and to control the flow of information throughout

the supplier-buyer channel. One of the most successful examples of VMI practice

has been implemented between Wal-Mart and Procter & Gamble. 3PL, on the other

hand, means that an outside logistics company controls and manages all inventory

and transportation decisions from the manufacturer’s site to the warehouses and re-

tail stores. Compaq was one of the first major companies to implement 3PL (Lee,

Çetinkaya, and Jaruphongsa, 2003). Both VMI and 3PL integrate and coordinate

various supply chain activities, such as inventory, transportation and pricing deci-

sions. They also encourage the parties in the supply chain to combine their efforts

and align their incentives so as to improve the overall performance of the chain.

Alongside these innovations in business practices, there has been a tremendous

interest in SCM in academia within the past few decades. Supply chain research has

built on an increased recognition that a well-designed plan for the chain as a whole

requires coordinating different functional specialties within each firm/entity (e.g.,

marketing, procurement, manufacturing, distribution, etc.) as well as the individual

firms/entities of the chain (Çetinkaya, 2004). Consequently, emphasis on coordination

has increased in the recent years. As a result, supplier-buyer channel coordination

has become one of the main research areas

Channel coordination is a term in the supply chain literature that refers to com-

bining the efforts of the parties in a supplier-buyer channel for the purpose of improv-

ing the system profit in the decentralized channel and bringing it to the system profit

of the centralized channel. The term decentralized channel refers to the supplier-buyer

channel where the parties make their inventory and pricing decisions so as to maxi-
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mize their own profits. In such channels, there is an inherent dominant-subordinate

relationship where the dominant party’s priorities lead the channel solution (Toptal,

2003). On the other hand, a centralized channel refers to the supplier-buyer channel

where all of the inventory and pricing decisions are made to maximize the channel

profits. In practice, centralized channels are very rare. This is because the par-

ties of the channel are usually owned by different firms. Even in cases where the

supplier and the buyer are different branches/departments of the same firm, each

branch/department may have its individual objectives. Consequently, decentralized

channels are not as efficient as centralized channels as far as the system profits are

considered. Channel coordination research attempts to identify the inefficiencies in

decentralized channels and to develop mechanisms to align the incentives for the

parties with those of the centralized channel (Tsay et. al., 2000).

The main concentration of the channel coordination literature is on only inventory

related costs and inventory decisions. However, recent supply chain initiatives, such

as VMI and 3PL, enable the coordination of inventory and transportation decisions as

well. Successful implementations of such practices show that substantial savings are

realizable through explicit consideration of the transportation costs and the careful

integration of transportation decisions with inventory decisions (Çetinkaya, 2004).

Moreover, explicit consideration of transportation costs and coordination of in-

ventory decisions with transportation decisions are vitally important for supply chains

because transportation costs constitute an important portion of the supply chain

costs. Surveys indicate that almost half of the SC costs are transportation related

costs, which implies that such costs are as high as 5% of the U.S. GDP for U.S. based

firms. On the other hand, the ratio of transportation costs to total sales dollar varies

from 1.4% (electronics industry) to 60% (food industry and 16.64% (food and food

products industry). The values are similar for other countries, also (Ballou 1992,



4

pp.14-15).

Furthermore, the highly deregulated transportation market in the U.S. provides

many opportunities for shippers to efficiently plan their transportation activities and

reduce costs. The Airline Deregulation Acts of 1977, the Staggers Rail Act of 1980,

and the Motor Carrier Act of 1980 relaxed a number of regulations in the trans-

portation industry (Ballou 1992, pp.200-202). By year 2001, the number of trucking

companies exceeded 500,000, a jump from less than 20,000 before the Motor Carrier

Act of 1980 (http://www.sctrucking.org/economics/statistics.htm). The availabil-

ity of numerous freight carriers and different transportation mode alternatives allows

shippers to select the most suitable alternative(s) with respect to their needs as well as

to enjoy cost saving opportunities. On the other hand, the availability of many trans-

portation alternatives brings crucial challenges for the transporters. Transporters

should carefully plan their activities via coordinating with their shippers. In this re-

gard, the incorporation of the transporters into channel coordination models provides

opportunities for the transporters to benefit from the combined efforts and reduce

their costs.

Based on the motivating factors described above, we set the goals of the disser-

tation as follows:

• to build on the theoretical framework of the existing literature in the context

of integrated inventory and transportation decisions,

• to determine the impact of transportation costs on channel decisions,

• to integrate transporters as a separate entity into channel coordination models

and address the cost saving opportunities that result from this integration,

• to identify effective mechanisms to coordinate supplier-transporter-buyer chan-
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nels and analyze under what conditions they work.

I.1. Scope of the Dissertation

In order to achieve the goals in this dissertation, we

• provide a critical review of the related literature and identify the unexplored

areas,

• develop and solve analytical models regarding integrated inventory and trans-

portation decisions,

• develop and solve analytical models for transporter-buyer and supplier-transporter-

buyer channels,

• test the performance of commonly used coordination mechanisms and develop

alternative mechanisms and incentive schemes that will provide a “win” situa-

tion for all parties in the channel.

The problems that we study in this dissertation relate to various levels of de-

cisions. The first three models regarding integrated inventory and transportation

decisions specify optimal decisions at the operational level, such as when to replenish

inventory and when to ship the consolidated orders to their destination. The focus

of the latter models is on tactical decisions, such as price setting and contract design

between the parties in the channel. These models also provide insights about strategic

decisions for the firms in the context of the degree of partnership among the parties

in the channel.

Next, we present some brief information about the specific problems covered in

this dissertation:
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I.1.1. Integrated Inventory and Transportation Problems with Explicit

Shipment Consolidation Decisions

Integrated inventory and transportation decisions have received increasing attention

in practical applications and academia over the past few decades. Besides the method-

ologically oriented (e.g., large scale mixed integer programs) work, a number of analyt-

ical studies attempt to provide general managerial insights into operational decisions

under conditions of uncertainty (Federgruen and Zipkin 1984a, 1984b, 1984c, Yano

and Gerchak 1989, Federgruen and Simchi-Levi 1995, Gallego and Simchi-Levi 1990,

Anily and Federgruen 1993, Ernst and Pyke 1993, Viswanathan and Mathur 1997,

Qu et. al. 1999, Çetinkaya and Lee 2000, Chan et. al. 2002, and Geunes and Zeng

2003). Çetinkaya (2004) provides a review of the related literature.

Integrated inventory-transportation problems involve the inbound inventory de-

cisions of an entity, say a supplier, as well as the outbound shipments to her cus-

tomer(s). Since the transportation costs reflect scale economies, it is a common prac-

tice to consolidate small orders before making an outbound shipment. Two types of

consolidation policies have been widely implemented in practice and identified in the

literature: (i) recurrent (ii) non-recurrent. (See Higginson 1995.)

In the non-recurrent policies, the consolidation rules are set in advance. There

are two easily implementable non-recurrent consolidation policies:

• Time-Based Consolidation Policy A shipment is made every T time units.

• Quantity-Based Consolidation Policy A shipment is made when the accumulated

quantity/load reaches a target value, q.

The literature also identifies a hybrid policy. This policy is characterized by two

parameters: T represents the maximum allowable time between two shipments, and

q is the target consolidation quantity. A shipment is made either when q units are
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accumulated, or after T time units from the previous shipment, whichever occurs

first.

There are also variants of these policies. For example, a variant of the time-based

policy ships when the waiting time of a consolidated load reaches T . Similarly, in a

variant of the hybrid policy, T denotes the maximum allowable waiting time of an

order.

Recurrent consolidation policies do not set any policy parameters in advance.

They re-evaluate the shipment release decisions several times within a consolidation

cycle; for example, every time an order arrives (Higginson 1995).

In Chapter II, we present an overview of the related literature and identify the

unexplored integrated inventory and transportation problems with explicit shipment

consolidation considerations. These include the following:

I.1.1.1. Quantity-Based Consolidation Policy

In Chapter III, we model the inbound inventory and outbound shipment consolidation

decisions of a supplier. In this model, the supplier serves a group of customers located

in close proximity. Her customers are retail stores who do not wish to carry an

inventory of the goods, except for display items. As demand arrives, they submit

an order to the supplier. The supplier consolidates the orders according to quantity-

based policy in order to benefit from the scale economies of transportation. The

transportation cost, i.e., the shipment cost, has the form

C(q) = AD + cDq, (1.1)

where the first term represents the fixed cost and the second represents the marginal

cost. The fixed cost may include all the setup cost to make the shipment as well as the

truck cost. The implicit assumption here is that the outbound shipments are made
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by private fleet. In Equation (1.1), q represents the consolidation quantity which

is a decision variable for the supplier. The supplier’s other decision variable is her

inventory replenishment quantity, Q.

Assuming the demand arrives according to a random process, we derive the

expected annual cost function for the supplier and find the optimal values for q and

Q so as to maximize this function.

I.1.1.2. Time- and Quantity-Based Consolidation Policies with Common

Carrier Freight Schedules

As mentioned above, the model in Chapter III assumes the employment of a private

fleet for outbound transportation. However, in practice, most suppliers use common

carriers to make such shipments. Common carrier freight rates also reflect scale

economies. Under a typical a common carrier freight rate, the shipment cost is of the

form

DC(q) =





c0q if 0 < q < q2,

c1q if q2 ≤ q < q4,

...

ciq if q2i ≤ q < q2i+2,

...

cIq if q2I ≤ q,

(1.2)

where c0 > . . . > cI denote per unit freight rates, and 0 < q2 < . . . < q2I denotes the

break points. Figure 1 represents the behavior of DC(q).

Observe that DC(q) > DC(q2) for all q ∈ [c1q2/c0, q2). However, it is not reasonable

to pay a higher transportation cost for a smaller weight. In fact, shippers are legally

allowed to over-declare the actual shipment size to overcome this situation. This
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Figure 1 DC(q) as Provided by the Transporter
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practice is known as a bumping clause. As a result, the actual shipment cost takes

the following form:

DC(q) =





c0q if 0 < q < q1,

c0q1 if q1 ≤ q < q2,

...

ciq if q2i ≤ q < q2i+1,

ciq2i+1 if q2i+1 ≤ q < q2i+2,

...

cI if q2I ≤ q,

(1.3)
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where q2i−1 = ciq2i/ci−1 for i = {1, . . . , I}. Figure 2 shows the dispatch cost after the

bumping clause.

Figure 2 DC(q) as Interpreted after the Bumping Clause
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An exact analysis of the model in Chapter III with such common carrier costs

has not been conducted for either a time-based policy or for quantity-based policy. In

Chapter IV, we develop the expected annual cost expressions and derive the optimal

policy parameters under both of these consolidation policies.

I.1.1.3. Hybrid Consolidation Policies

Hybrid consolidation policies try to utilize the cost benefits of quantity-based policies

and the service performance of time-based policies. Within the setting of the previous
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problems, we propose several easily implementable hybrid consolidation policies and

compare their cost and service performance with the two policies mentioned above.

Computing the optimal solution of the integrated inventory and transportation

problem of interest under a hybrid consolidation policy is analytically intractable.

Hence, we consider the pure shipment consolidation problem under a hybrid policy,

i.e., the case where inventory decisions are ignored, and compute the corresponding

optimal policy parameters, i.e., q and T values. To the best of our knowledge, this

problem has remained unexplored in the literature for several years.

I.1.2. Transporter-Buyer Channels

The focus of the integrated inventory and transportation problems of interest in

this dissertation is operational level (daily) decisions. Broadening our scope, we next

introduce problems which will provide results and insight about higher level decisions,

such as pricing decisions and coordination with the other parties in the channel. Along

with this, we not only consider explicit transportation costs in our models but also

introduce the transporter as a separate entity in our models.

We start our analysis with the transporter-buyer channel1: The buyer observes

customer demand and orders from an outside supplier. The transporter is responsible

for the inbound transportation. We model the demand as a function of the retail price.

The main rationale for assuming a price dependent demand is to analyze the impact of

transportation costs on the retail price and, thus, the demand. Channel coordination

problems with price dependent demand has begun receiving increased attention since

the early 90s. Abad (1994b), Parlar and Wang (1994), and Weng (1995a, 1995b)

1In this channel, the so-called buyer is, in fact, a retailer.Hence, we could have named the
channel a transporter-retailer channel. However, in the traditional channel coordination literature,
the channels are referred to as supplier-buyer channels. In order to keep with this convention, we
prefer to name it the transporter-buyer channel.
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produced pioneering examples of such models. In an earlier paper, Porteus (1985)

employs various price-demand functions in the EOQ-setting. We utilize his results in

our models.

The transporter’s costs are of particular importance in the problem. We assume

that the transporter owns a number of trucks (the number of trucks is not a con-

straint), each with a certain capacity P and a fixed operating cost RT . Hence, letting

q be the buyer’s order quantity, the truck cost is ⌈q/P ⌉RT . We also consider a a per

unit transportation cost denoted by cT . With these parameters, the total cost of the

transporter for carrying q units is

⌈q/P ⌉RT + cT q. (1.4)

This cost structure is also known as multiple set-up cost structure in the classical

inventory literature (Lee, 1986).

We study transporter-buyer channel via two models in Chapter VI. First one is

a single period model. The buyer orders once, and the order quantity is equal to the

demand. In the second model, the planning horizon is infinite, and time is considered

on a continuous scale.

For both models, we study the fully coordinated scenarios where the parties

operate in a centralized fashion, and uncoordinated scenarios where the parties make

their decisions independent of each other. This way, we benchmark the efficiency of

channel coordination.

I.1.3. Supplier-Transporter-Buyer Channels

In the literature, the typical supply chain coordination problem is modelled within

the supplier-buyer context. In order to analyze the impact of transporters on chan-

nel coordination decisions, we extend the transporter-buyer channel to a supplier-
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transporter-buyer channel in Chapter VII.

The supplier-transporter-buyer channel that we study is very similar to the

supplier-buyer channel of Lee and Rosenblatt (1986). The operational character-

istics and cost parameters of the supplier and buyer are the same as those in Lee and

Rosenblatt’s model. We introduce the transporter into this channel for the delivery

of items from the supplier to the buyer. The transporter’s cost function is given by

Equation (1.4).

We consider two different models for the supplier-transporter-buyer channel. In

the first model, the supplier and the buyer are controlled by a central decision maker,

and these parties act as a single entity. They decide on their order quantities and

frequencies so as to minimize their total annual cost based on an initial price schedule

from the transporter. The second model assumes all of the parties in the channel are

independent entities. In this model, the buyer chooses the order quantity to minimize

his annual cost based on the initial wholesale and transportation prices. Then, both

the supplier and the transporter would like to align the incentives of the buyer to

change this order quantity. Based on which party, i.e., supplier or buyer, incurs the

transportation charges, we study the second model in two cases.

In Chapter VII, we solve all of the resulting analytical problems regarding the

optimal order quantity, i.e., inventory replenishment decisions. In addition, we also

study the coordination mechanisms available to the transporter to coordinate the

other parties: We first analyze how commonly used coordination mechanisms per-

form and identify the necessary and sufficient conditions for them to achieve channel

coordination. Next, we propose several coordination mechanisms and contracts which

guarantee channel coordination.
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I.2. Organization of the Dissertation

Next, in Chapter II, we present an overview of the relevant literature. In Chapter III,

we study the integrated inventory and transportation problem of interest under a

quantity-based consolidation policy. We compare the cost performance of this policy

to that of time-based policy which was earlier studied by Çetinkaya and Lee (2000).

We study the same model under common carrier shipment costs in Chapter IV and

present the optimal solutions for both time- and quantity-based consolidation policies.

In Chapter V, we propose several hybrid policies, and through simulation, we com-

pare the cost and service performances of the hybrid policies to time- and quantity-

policies. Following this, we also study a pure consolidation model for which a hybrid

consolidation policy is implemented. We derive the optimal policy parameters for this

model. Chapters III- V focus mainly on the impact of transportation costs on oper-

ational decisions, such as inventory replenishment and outbound shipment decisions.

In Chapters VI and VII, we widen our scope to analyze the impact of transporters

in channel decisions. More specifically, in Chapter VI, we study transporter-buyer

channels, and in Chapter VII, we extend this to the supplier-transporter-buyer chan-

nel.
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CHAPTER II

LITERATURE REVIEW

Contemporary supply chain management research places an increased emphasis on

the integration/coordination of different functional specialties along the supply chain

as well as within the entities of the chain (Çetinkaya, 2004). As we explained in

Chapter I, (i) the advent of new supply-chain initiatives such as VMI and 3PL, (ii)

increased transportation costs, and (iii) increased competition amplifies the criticality

of the integration of inventory, transportation, and pricing decisions. In this chapter,

we present an overview of the supply chain coordination literature that emphasizes

these issues.

We classify the related supply chain coordination literature into two areas:

Coordination of inventory-transportation decisions: Integrating inventory re-

plenishment decisions with transportation decisions has always been one of

the major concerns of logistics managers, and the topic has been extensively

studied in the literature. Related literature spans a very broad range of work

from network flow and large scale optimization problems to stochastic inventory

problems. Within the scope of this dissertation, we focus on the gap in the liter-

ature and direct our attention to stochastic models for integrated inventory and

transportation decisions under explicit shipment consolidation considerations.

Çetinkaya (2004) presents a review of the class of problems in this area, reviews

the literature, and identifies possible areas for future research, which provide

the main motivations of the analytical models presented herein.

Channel coordination under explicit transportation costs: Channel coordina-

tion problems aim to synchronize inventory decisions in two-echelon settings,
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i.e., supplier-buyer settings. In this regard, the classical multi-echelon inven-

tory literature provides a foundation for channel coordination problems. Clark

and Scarf’s (1960) seminal paper is one of the first in the area of multi-echelon

inventory problems. In this paper, Clark and Scarf study a periodic review in-

ventory control problem for a serial system, i.e., a multi-echelon system, facing

independent, identically distributed demand. They show that, under certain

assumptions, the problem of deriving optimal inventory policies that minimize

the system-wide costs can be decomposed into serial single-echelon problems.

Building on Clark and Scarf’s (1960) work, many of the researchers that fol-

lowed them study the optimal inventory policies in multi-echelon settings (e.g.,

Federgruen and Zipkin 1984a, 1984b, Debodt and Graves 1985, Rosling 1989).

Federgruen (1993) and Muckstadt and Roundy (1993) present excellent reviews

of the multi-echelon production/inventory literature spanning three decades of

work since the 1960s. The classical literature in the area does not take into

account the impact of transportation costs explicitly. However, the potential

impact of transportation related costs and their impact on inventory decisions

has been gaining increasing attention. This dissertation falls into this stream of

research by addressing the impact of transportation costs on coordination. Top-

tal’s PhD dissertation (2003) also is in this category. Toptal (2003) presents

a critical review of the buyer-vendor coordination literature that emphasizes

transportation, production/inventory and channel coordination issues which are

very closely related to our work.

Next, we proceed with more detailed reviews of the two areas of literature sum-

marized above.
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II.1. Integrated Inventory and Transportation Models

The broad range of the literature on integrated inventory and transportation in supply

chain coordination makes it virtually impossible to present a complete review in this

dissertation. Hence, after briefly presenting an overall picture, we focus our attention

on the literature most relevant to our work.

That is, we provide a detailed review of the literature on analytical models that

examine the coordination of inventory and outbound shipment decisions. Consider a

supplier, serving one (a group) of retailer(s), i.e., buyer(s): the supplier’s inventory

is depleted by the orders coming from the buyer(s) and she has to control (i)when to

replenish her inventory, and (ii)how to schedule the shipment of the buyer’s orders.

This problem setting can also be extended to multi-echelon cases where the buyer’s

inventory decisions are also included in the model. In such a case, the buyer’s inven-

tory policy defines the order process for the supplier. One of the seminal works in this

area is by Yano and Gerchak (1989). They consider a single-supplier, single-buyer

model with stochastic demand. The supplier is a Just-In-Time (JIT) manufacturer,

and the retailer implements a base-stock policy. The shipments from the supplier

to the buyer can be made using a private truck fleet and a common carrier. Their

assumption is that if the order quantity exceeds the total truck capacity of the pri-

vate fleet, emergency shipments should be made using common carriers. They find

the optimal base-stock levels for the buyer and also the number of trucks to be al-

located. Ernst and Pyke (1993) extend this model to the case where the supplier

also carries inventory, and her inventory cost is also included in the average cost to

be minimized. They assume that the supplier also implements a base-stock policy;

hence, they have an additional decision variable in their model. Geunes and Zeng

(2003) consider a special case of Ernst and Pyke (1993) where the review period is
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not a decision variable, and they assume that the excess demand can be backordered

and expediting emergency orders avoided in most cases. They were able to show that

practical cases exist where a combination of backordering and expediting emergency

orders outperforms both complete backordering and complete expediting policies.

Although, the studies mentioned above consider transportation related issues,

such as the type of the carrier, and the associated transportation costs, they do not

investigate the impact of shipment scheduling decisions. This is because in all of the

papers mentioned above, shipment scheduling is implicitly determined by the buyer’s

orders. The supplier has no control over delaying shipments. However, there are

practical cases where the supplier has the flexibility to combine several orders from

her buyers and schedule the shipments so that she can benefit from the economies of

scale of transportation. This practice is known as shipment consolidation. Shipment

consolidation models constitute an essential part of this dissertation. Hence, we

proceed with a detailed discussion of the the related literature.

As defined earlier in Section I.1.1, the practice of consolidating small size or-

ders to accumulate a larger shipment size with the aim of benefiting from the scale

economies of transportation costs is called shipment consolidation. Transportation

costs may have several forms: Equations (1.1), (1.2), and (1.4) are different examples

of transportation costs. All of these examples reflect scale economies, which provide

a motivation for the shippers to consolidate for large sizes at the expense of customer

service.

Shipment consolidation practices first appeared in the logistics trade journals,

e.g., Newbourne and Barret (1972) and Pollock (1978). The early models were based

on performance testing via simulation. Some examples are Masters (1980), Jackson

(1981), Cooper (1984), and Closs and Cook (1987). Most of the early papers that ap-

peared in trade journals focused on “how to consolidate?” and identified several easily
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implemented consolidation policies. The two most common shipment consolidation

policies are the time-based policy and the quantity-based policy. The literature also

identifies hybrid policies. In Chapter I, we explain the way these policies work. An

early survey by Jackson (1981) indicates that the time-based policy is the most fre-

quently implemented consolidation policy. However, there was not a large difference

in percentage of usage between the three policies.

Another focal point of the studies within the shipment consolidation area is the

economic justification of shipment consolidation and how this is effected by external

factors. Blumenfeld et al. (1985), Burns et al. (1985), Hall (1987), Daganzo (1988),

Campbell (1990), Abdelwahab and Sargious (1990), Russell and Krajewski (1991),

and Pooley and Stenger (1992) are some examples.

Jackson (1981) is one of the first studies that compares consolidation policies via

simulation. He compares a time-based policy to a hybrid policy. More recent studies

try to compare the performances of the three consolidation policies via simulation.

Higginson and Bookbinder (1994) simulate different scenarios by varying the policy

parameters, T and Q, of the policies. In their model, they assume common carrier

transportation. Orders arrive to the system at random times and random sizes. They

identify possible situations where one policy works better than the others. They also

emphasize that “knowledge of the level of service required by the customers is crucial

in selecting a shipment-release policy. Customer service and order arrival rate must

be examined simultaneously...”.

Neither the work that identifies and compares shipment consolidation policies

nor the studies that focus on the economic justification of these policies have as their

goal computing optimal policy parameters, an area of research that has gained signif-

icant attention in the shipment consolidation literature. In Sections II.1.1 and II.1.2,

we will review the analytical studies that investigate the optimal policy parameters
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for pure consolidation and the integrated inventory and shipment consolidation mod-

els, respectively. In pure consolidation models the decision variables are only the

consolidation policy parameters; whereas, in integrated inventory and shipment con-

solidation models inventory replenishment quantity and frequency are the additional

decision variables.

II.1.1. Pure Consolidation Models

Higginson and Bookbinder (1995) employ a Markovian Decision Process (MDP) ap-

proach to determine the optimal shipment release schedule. Such an approach is called

a recurrent approach whereas the other policies can be classified as non-recurrent. The

distinction between recurrent and non-recurrent approaches is first addressed by Hig-

ginson (1995). He notes that, although non-recurrent policies yield good average

performance, for random orders, they may suffer from poor cost and service due to

some aspects realizations of the order processes. In this regard, recurrent approaches

are superior to non-recurrent ones. Higginson and Bookbinder (1995) identify the

optimal recurrent strategies for both common carrier and private fleet usage.

Gupta and Baghci (1987) study an inbound freight consolidation in a Just-in-

Time (JIT) environment. They adopt Stidham’s (1977) results on stochastic clearing

systems. Brennan’s PhD Dissertation (1981) provides structural results when consol-

idated loads are reviewed on a periodic basis for both deterministic and stochastic

demand problems. Other analytical treatments include those based on queueing the-

ory (Powell 1985, Powell and Humblet 1986) in the setting of passenger transport;

stochastic clearing systems (Stidham 1977); and dynamic vehicle dispatch (Minkoff

1993, Gans and Van Ryzin 1999).

In a recent paper, Çetinkaya and Bookbinder (2003) study the optimization of

the policy parameters for time- and quantity- policies in a stochastic setting. They
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analyze the problems for private carriage, and then for common carriage. In their

model, both the size and the interarrival times of orders follow a probability dis-

tribution. The order arrival stream is Poisson. However, most of the results for

quantity-based policy still hold for general arrival processes. They assume a fixed

cost for the delivery of each order in addition to the fixed cost associated with each

shipment release. Under these modelling assumptions, for private carriage, they were

able to provide exact optimal solutions for the two policies. They also provide ap-

proximate solutions for common carriage, and discuss the special case with unit order

sizes and provide results. Although Çetinkaya and Bookbinder (2003) study time-

based policy and quantity-based policy, they do not focus on optimizing the model

parameters of hybrid policies. To the best of our knowledge, there is no work that

specifically considers this problem. In this dissertation, we fill this gap in the lit-

erature by studying the hybrid policy in Chapter V. On the other hand, Çetinkaya

and Bookbinder’s (2003) common carriage models are closely related to the models

that we consider in Chapter IV. Our work differs from theirs, because we consider

common carriage in an integrated inventory and shipment consolidation model, and

we only study unit demand size. A special case of our work, where the supplier does

not carry any inventory, is equivalent to the pure consolidation models. We were able

to provide exact expected cost expressions for common carriage cases. However, for

the time-based policy, we could not obtain analytical solutions either.

II.1.2. Integrated Models

The main objective of the studies mentioned in Section II.1.1 is obtaining analytical

results for the shipment consolidation policies, only. They do not investigate the

interactions between inventory and shipment consolidation decisions. Observing the

need for analytical models examining these interactions, Çetinkaya and Lee (2000)
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study the inventory replenishment and outbound shipment scheduling problem of a

supplier in a VMI context. The supplier is authorized to manage inventories of an

agreed-upon item at several retail stores located in a given geographical region. The

VMI contract between the retailer and the supplier gives the supplier the liberty of

controlling the downstream, i.e., retailers, resupply decisions rather than filling the

orders as they arrive. The orders are assumed to arrive according to a Poisson stream,

and they are of unit size. The supplier implements a time based consolidation policy

for dispatching the retailers’ orders, and the policy parameter, T , is a decision vari-

able. The retailers agree to wait for their orders; however, they charge the supplier $w

on a per unit per time basis. The supplier also has to manage her inbound inventory

replenishment. She implements a periodic review, and orders Q units when the inven-

tory level drops below 0. Q is the supplier’s other decision variable. The analytical

problem is deriving the optimal T and Q so as to minimize the expected annual cost.

Çetinkaya and Lee (2000) provide an easily implementable approximate solution al-

gorithm for this problem. Axsäter (2001) presents a procedure that optimally solves

the problem.

Çetinkaya, Tekin, and Lee (2000) consider a similar setting. In their model, the

supplier implements a quantity-based consolidation policy, and the target load size is

q. Differently from Çetinkaya and Lee (2000), the size of each order is also a random

variable. The analytical model for this problem tends to be highly complicated, which

makes it impossible to obtain exact analytical solutions. Hence, the authors provide

an approximate solution procedure. Based on this solution, they identify three policy

forms: In Form I, the supplier does not carry any inventory, i.e., Q = 0; Form II

represents the case where the supplier carries inventory and shipment consolidation

is economically justified, i.e., Q, q > 0; and Form III is the immediate delivery case,

i.e., q = 0. Observe that a case can be both of Form I and Form III.



23

The model that we consider in Chapter III can be considered a special case of

Çetinkaya, Tekin, and Lee (2000) for orders with a unit size. In our model, we were

able to derive exact solutions for general order arrival processes. We also compare

the results of the quantity-based policy to those of the time-based policy studied by

Çetinkaya and Lee (2000).

Çetinkaya and Lee’s (2000) and Çetinkaya, Tekin, and Lee’s (2000) models as-

sume stochastic order arrival processes. Çetinkaya and Lee (2002), on the other hand,

study deterministic orders. The order stream is modelled with a known and station-

ary rate D per year. The time-based and the quantity-based policies are equivalent in

this setting. Çetinkaya and Lee (2002) provide exact solutions for the optimal policy

parameters. They show that the optimal consolidation load is not constant. Defining

the time between two inventory replenishment epochs as replenishment cycles, they

prove that the last shipment size, i.e. the last consolidation quantity, in a replenish-

ment cycle should be larger than the previous ones. Çetinkaya and Lee (2002), also,

study a so-called finite cargo capacity model. In this model, the outbound shipments

are made using a private fleet of trucks, each with certain capacity P , and a fixed

cost is incurred for each truck used. This cost structure is the same transportation

cost structure that we use in Chapters VI and VII. In Equation 1.4, we present an

analytical expression for this type of transportation cost as a function of the shipment

quantity, q.

II.2. Channel Coordination Literature

Tsay et. al. (2000) defines channel coordination, using a phrase coined in the mar-

keting literature that applies to improving the total expected system profits in a

decentralized model and to bringing them closer to those of a centralized model. A
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centralized model is one where all decisions are made in order to maximize(minimize)

the system profits(costs). In the decentralized models, each party in the channel

makes her/his decisions so as to maximize(minimize) her/his profits(costs).

Traditionally in the literature, a supply channel is considered a two-echelon sys-

tem with a supplier/vendor/manufacturer at the upper echelon and a buyer/retailer

at the lower echelon. The problems of interest in the context of the channel coor-

dination literature focus on the inventory and pricing decisions at these echelons.

The centralized models provide the benchmarks for channel efficiency (Toptal, 2003).

Consequently, the optimal solutions for the centralized models have a particular sig-

nificance. As mentioned before, the integrated models that aim to optimize inventory

decisions in a supply chain are known as multi-echelon inventory models. We have

also noted already that the origins of the multi-echelon inventory models date back

to the classical work of Clark and Scarf (1960). In the following five decades, a great

body of literature has been built in this area. In the following section, we present a

brief summary of this multi-echelon inventory literature.

II.2.1. Multi-Echelon Production/Inventory Literature

After Clark and Scarf (1960) showed that, under certain conditions, multi-echelon

inventory problems can be solved as a series of single-echelon inventory problems, in-

terest in these problems surged. Clark and Scarf’s model assumed stochastic demand,

which relates the multi-echelon problem to the theory of stochastic inventory. An-

other line of work in this area treats demand as deterministic and relates the problems

to the theory of deterministic inventory and production. In our review, we classify

the multi-echelon literature according to the demand assumptions and mention only

the most seminal work in each of these groups.

Although the theoretical implications of Clark and Scarf’s (1960) solution are
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very promising, the technique is computationally intense. Federgruen and Zipkin

(1984a, 1984b) provide approximations and computationally effective tools for com-

puting the optimal base-stock levels for the problem studied by Clark and Scarf. All

of these models assume periodic review of the inventory levels and use of (s, S) pol-

icy for inventory replenishments. Axsäter (1997, 1998a, 1998b),Axsäter and Rosling

(1993), and Chen (2000) study multi-echelon serial systems in a continuous review

setting and derive the optimal values for the (Q, R) policies. In addition, Axsäter

(1993), Cachon (1995), and Chen (2000) study the impact of batch-ordering poli-

cies for serial systems. Axsäter (1995) derives the approximate cost functions for a

single-supplier multi-retailer model with batch ordering policies. The literature on

stochastic demand, multi-echelon inventory models is vast, and an extensive review

is beyond the scope of our research. We refer to Axsäter (2000) for a review of broad

range of papers that study multi-echelon problems under various assumptions.

On the other hand, the deterministic-demand multi-echelon inventory started

flourishing in the early 1970s. The pioneers of these studies are Schwarz (1973) and

Goyal (1976). In fact, Goyal (1976) is one of the first to introduce the “centralized”

and “decentralized” models. Goyal’s (1976) problem setting is very similar to the

supplier-buyer setting which we consider in Chapter VII. Both the supplier and the

buyer incur fixed costs for replenishing inventory, AS and AB, respectively; and both

incur a per unit per time inventory carrying cost, hS and hB, respectively. Demand

is known and has a stationary rate D. In our problem, we formulate the annual cost

as a function of the order quantities. Goyal (1976) builds the annual cost function

based on the times between orders. We note that, under these demand assumptions,

both formulations are equivalent. In addition, although Goyal models the supplier

as a manufacturer, he assumes such a high production rate that the manufacturer’s

inventory is instantaneously replenished.
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Both Schwarz (1973) and Goyal (1976) consider a two-echelon setting with a

single supplier and single buyer. Single supplier - multiple buyer problems have also

been a major avenue of research. The most notable results in this area are by Roundy

(1985, 1986) who develops 98% effective nested delivery policies, which are known as

power-of-two policies, for a single-supplier multi-retailer model. Banerjee and Burton

(1994), and Lu (1995) other examples.

An important generalization of the deterministic two-echelon inventory models is

the case where the supplier is a manufacturer having a finite production rate (Banerjee

1986b, Goyal 1988, Banerjee and Burton 1994, Goyal 1995, Viswanathan 1998, Hill

1999). Toptal (2003) provides a detailed review of the production/inventory models

in two-echelon settings. We refer to Toptal (2003) for further information and proceed

with the review of channel coordination models.

II.2.1.1. Channel Coordination Models

The concept of channel coordination is adopted from the marketing literature. The

idea of using quantity discounts as a mechanism to influence the buyer’s ordering de-

cisions constitutes the roots of channel coordination. Quantity discounts have been

frequently used by marketing managers for a very long time. However, the role of

discounts was not clearly understood by many until Dolan (1987) presented a detailed

analysis of the motivations of quantity discounts. Jeuland and Shugan’s (1983) study

is another example from the marketing literature that discusses how price discounts

can be implemented for the purpose of sharing profits and achieving channel coordina-

tion. They propose channel coordination mechanisms for single supplier-single buyer

channels as well as single supplier- multiple buyer channels. The coordination mech-

anisms for single supplier - multiple buyer channels provided by Jeuland and Sguan

(1983) require that the supplier offers different price schedules to different buyers.
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However, such an implementation does not comply with the Robinson Patman Act,

which aims to assure that suppliers do not price differentiate their buyers. Lal and

Staelin (1984) and Hoffman (2000) study the channel coordination mechanisms that

comply with the Robinson Patman Act.

Dolan (1987) and Jeuland and Shugan (1983) offer meritorious examples of chan-

nel coordination ideas in the marketing literature. The pioneers in adopting channel

coordination in the supply chain management literature are, on the other hand, Mon-

ahan (1984) and Lal and Staelin (1984).

Monahan (1984) considers a single supplier single buyer channel where the buyer

observes a deterministic and constant demand. The buyer’s goal is to minimize his

annual inventory and ordering costs. In this sense, the buyer’s problem is identical to

the classical EOQ problem. On the other hand, the supplier’s replenishment size is

equal to the buyer’s order quantity. Hence, the supplier’s annual cost depends solely

on the buyer’s order size. This type of a setting represents a decentralized model with

sequential decisions. In this particular case, the buyer is the leader, and the supplier

is the follower. Monahan identifies how the supplier’s profit can be increased if the

buyer’s order size increases by a factor K. He shows that the optimal value of K

is
√

1 + AS/AB, where AS and AB are the fixed replenishment costs of the supplier

and the buyer, respectively. In fact, the resulting order quantity is the optimal order

quantity for the centralized model. Later Toptal (2003) generalizes Monahan’s result

by proving that when the supplier’s profit is an increasing function of the buyer’s

order quantity, then the buyer’s optimal order quantity is always less than the optimal

order quantity in the centralized model. Monahan (1984) also shows that a quantity

discount with a single break point suffices to align the buyer’s incentives so as to

change his order quantity from qB to qS = K∗qB. Banerjee (1986a) extends Monahan’s

(1984) model to incorporate the inventory carrying costs of the supplier. In Banerjee’s
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(1986a) model, the supplier is a manufacturer with a finite production rate, R. He

shows that there are cases for which decreasing the buyer’s order quantity increases

the channel profits. Banerjee finds that the K∗ for this setting is
√

(1 + α)/(1 + β)

where α = AS/AB, and β = DhS/RhB. Lee and Rosenblatt (1986) extend Monahan’s

(1984) model to the case where the supplier also carries inventory. Unlike Banerjee

(1986), the supplier, in their model, is not a manufacturer. Their model is similar

to the supplier-buyer model that we study in Chapter VII. They show that under

certain conditions, Monahan’s deduction that the system-wide optimal order quantity

is larger than the buyer’s EOQ is correct.

Dada and Srikanth (1987), Goyal (1987), Joglekar (1988), Kohli and Park (1989),

Abad (1994a), Joglekar and Kelly (1998), Klastorin, Moinzadeh and Son (2002) offer

other examples of channel coordination models. All of these channel coordination

models we have discussed so far assume constant demand. Weng (1995a) studies the

channel coordination problem with price dependent demand and shows that neither an

all-units nor an incremental quantity discount is sufficient to coordinate the channel

at the system optimal. However, he shows that both the supplier’s and the buyer’s

profits can be improved through a carefully designed quantity discount schedule.

Abad (1994b), Parlar and Wang (1994), Weng (1995b), Weng and Zeng (2001), Ertek

and Griffin (2002), and Lau and Lau (2003) also study channel coordination under

price dependent demand.

None of the studies that we mentioned here explicitly consider transportation

costs and their impact on channel coordination with the exceptions of Toptal, Çetinkaya,

and Lee (2003), and Toptal and Çetinkaya (2004, 2006). Toptal, Çetinkaya, and Lee

(2003) consider a centralized supplier-buyer channel in a deterministic demand set-

ting. They assume that both the supplier’s and buyer’s order cost have the generic

form presented by Equation (1.4). Toptal and Çetinkaya (2004) study the corre-
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sponding decentralized channels and coordination mechanisms. Toptal and Çetinkaya

(2006), on the other hand, study counterpart centralized and decentralized channels

and coordination mechanisms in a stochastic demand environment. Neither of these

studies models the transporter as a separate entity in the channel. However, our

work is unique in the literature in that we model the transporter as a separate entity

in the channel and propose a wider perspective for supply channels, extending them

from supplier-buyer channels to supplier-transporter-buyer channels. Our work dif-

fers from these studies in the sense that we introduce the transporter as a separate

entity to the channel. Hence, beyond analyzing the impact of transportation costs on

channel decisions, we also analyze the role of transporters in channel coordination.
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CHAPTER III

INTEGRATED INVENTORY AND TRANSPORTATION DECISIONS: A

QUANTITY-BASED SHIPMENT CONSOLIDATION PROBLEM

In this chapter, we study a joint inventory replenishment and outbound dispatch

scheduling problem identified in a recent paper by Çetinkaya and Lee (2000). The

problem of interest arises in the context of vendor-managed supply arrangements

where the vendor is authorized to manage the supply of agreed upon items at a

group of downstream supply-chain members, i.e., a group of retailers located in a

given geographical region. By retrieving demand information from the retailers, the

vendor makes decisions regarding the quantity and timing of re-supply. Hence, the

vendor has the autonomy to consolidate small orders from the retailers until a larger

dispatch quantity accumulates. This practice is known as temporal shipment/load

consolidation. If a temporal shipment consolidation policy is in place, then the actual

inventory requirements at the vendor are, in part, specified by the timing and quantity

of dispatch decisions. In this context, the vendor’s problem is the computation of an

integrated inventory replenishment and outbound dispatch policy.

As discussed in Axsäter (2001), two different types of temporal shipment con-

solidation routines are popular in transportation and logistics applications (also see

Çetinkaya and Bookbinder 2003, Higginson and Bookbinder 1994, Higginson and

Bookbinder 1995.) These are i) time-based, and ii) quantity-based dispatch policies.

A time-based policy ships accumulated loads (clears all outstanding orders) every

T periods whereas a quantity-based policy ships an accumulated load when an eco-

nomical dispatch quantity, say q, is available. Çetinkaya and Lee (2000) develop a

model for joint optimization of inventory replenishment and shipment release deci-

sions where the vendor implements a time-based dispatch policy, and they present
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an approximate optimization technique. In a recent note, Axsäter (2001) provides an

exact optimization procedure for Çetinkaya and Lee’s (2000) model.

Building on Çetinkaya and Lee (2000), we develop here a model for the case

where the vendor implements a quantity-based dispatch policy. We develop an exact

optimization procedure for the quantity-based model. We also present analytical

proofs as well as numerical results showing that the cost savings in using this model,

rather than the time-based model, can be substantial.

This chapter is organized as follows: The quantity-based dispatch model and its

exact optimal solution are discussed in Section III.2. In Section III.3, we provide

some analytical results proving that the cost savings obtained by using the quantity-

based model are substantial. In Section III.4, we present results of our numerical

study that compares time- and quantity-based policies.

III.1. Problem Setting

As we have already mentioned, the problem setting considered here is the same as the

one in Çetinkaya and Lee (2000). As an example of this setting, consider a product

that is clearly unreasonable for the retailers to keep in stock—say office photocopy

machines, expensive laptop computers, etc. The retailers may own some display

models of the product, but, typically, they act as sales agents who help customers

decide what type of product best suits their needs and offer after-sales service so that

customer orders are placed from, and delivered to, retail locations. These situations

are particularly common for businesses selling high-tech, bulky, or expensive items

through retail stores where the inventory holding cost for the retailer is high and the

customer waiting cost is modest for “reasonable” time intervals so the retailer does

not have to carry inventory and the vendor satisfies orders from end-customers placed
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through a retailer. Before releasing an outbound shipment to the retailers, the vendor

has the liberty of consolidating several small orders/deliveries so that transportation

scale economies can be achieved.

For the particular practical application that motivated this study, the vendor is a

distributor (i.e., a third-party logistics provider operating under the terms of a service

contract for warehousing and distribution), and the cost of replenishing inventory at

the distributor’s warehouse (i.e., the cost of an inbound shipment) is a fixed cost and

the corresponding delivery lead time is negligible. Note that these assumptions are

valid provided that the two parties are located within a certain proximity, say 200-

300 miles, so that a fast delivery with a negligible lead-time is possible. Under the

terms of a service contract between the two companies (i.e., the manufacturer and

the distributor), the manufacturer pays the distributor for storage and distribution

based on the number of demands that are satisfied and the costs incurred. As a result,

both the manufacturer and the distributor would like to take advantage of cost saving

opportunities at the distributor’s location. In this context, an important cost saving

opportunity is realized through shipment consolidation in outbound transportation.

The distributor serves a group of downstream retailers with stochastic demands

that are located in a given geographical region. The orders from the geographical

region (i.e., retailers) arrive at the distributor’s site possibly through an electronic

data interchange (EDI) link. After consolidating these orders, the distributor releases

a combined dispatch quantity to the region to satisfy the outstanding orders of all the

retailers in the area. Since the major cost of a dispatch is a fixed term associated with

launching a truck to the geographical area and this cost does not drastically change

based on which or how many retailers are visited, we model the cumulative demand

of the region as a convolution of the individual retailers’ demands. Hence, in the

remainder of the paper, we refer to a single retailer with this revised demand distri-
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bution. Since demand is modeled as a pure Poisson process, our results are applicable

regardless whether the geographical region includes a single retailer or multiple re-

tailers whose demands arrive according to independent Poisson processes. We note

that this approach is viable if different geographical regions are served individually

or by different distributors, while the case where multiple geographical regions are

served simultaneously is a topic for future research.

In sum, replenishment decisions at the distributor’s warehouse contribute to a

build up of inventory, which is depleted later by outbound dispatch decisions, for

delivery to the retail location. As a result, the actual inventory requirements and the

costs of the distributor are dictated by the dispatch schedules. Hence, we consider

alternative integrated inventory and outbound dispatch models for the purpose of

investigating the impact of practical dispatch policies on the cost efficiency. We also

note that the results of this paper can be used by the distributor for operational plan-

ning or by the manufacturer for the purpose of estimating the distribution contract

value/cost for a particular geographical area of interest.

III.2. The Integrated Inventory/Quantity-Based Dispatch Model

We begin our analysis by developing an analytical model for the case where the vendor

releases a shipment as soon as the size of an outbound load waiting to be released

reaches a critical dispatch quantity denoted by q. In this context, the time between

two successive outbound dispatch decisions is called a dispatch cycle, and all orders

arriving during a dispatch cycle are combined to form a large outbound load. Our

assumptions regarding the characteristics of the underlying demand and inventory

processes are as follows:

• As we have already mentioned, since one of the objectives of this paper is to

provide a comparative analysis of the model in Çetinkaya and Lee (2000), we
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concentrate on the case where demand arrivals form a Poisson process with

interarrival times Xi, i = 1, 2, . . . where E[Xi] = 1/λ so that the arrival rate

is λ. However, we note that the quantity-based dispatch model developed in

this section is also applicable for general unit arrival processes.1 Letting S0 = 0

and Si =
∑i

j=1 Xj, we define N(t) = sup {i : Si ≤ t} as the underlying demand

arrival process.

• We let L(t) denote the size of the accumulated/consolidated outbound load

waiting to be released at time t and let I(t) denote the inventory level at the

vendor’s warehouse at time t. Under these assumptions, the vendor’s inventory

and dispatch decisions can be made in the following manner:

– L(t) is updated each time a customer order is received. This way, the

time that the accumulated outbound load reaches q for the first time in a

dispatch cycle can be registered immediately.

– The vendor employs a special kind of (s, S) policy with s = 0 and S = Q.

Since the replenishment lead-time at the vendor is negligible, there is no

need to replenish stock if I(t) ≥ 0 after a shipment is dispatched. Hence,

an (s, S) policy with s = 0 is appropriate. It follows that at the end of a

dispatch cycle, say at t, a replenishment quantity of size Z(t) is ordered

where

Z(t) =





Q + q − I(t), if I(t) < q,

0, if I(t) ≥ q.

The time between two successive inventory replenishment decisions is called

an inventory replenishment cycle.

– Upon the receipt of Z(t), a load containing L(t) = q units is dispatched

1The case of bulk arrival processes is considerably more complicated and is modeled in Çetinkaya,
Tekin and Lee (2000).
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instantaneously. A new dispatch cycle begins with Y (t) units of inventory

where

Y (t) =





Q, if I(t) < q,

I(t) − q, if I(t) ≥ q.

Figure 3 An Illustration of I(t) and L(t).

L(t)

I(t)

q

2q

q

t

t

As a result, the vendor’s problem is to compute the optimal q and Q values

minimizing the total replenishment, transportation, inventory carrying, and waiting

costs. Observe that one can safely substitute Q = (k − 1)q where k is an integer

denoting the number of dispatch cycles within an inventory replenishment cycle so

that there is no inventory at the vendor during the last dispatch cycle of an inventory

replenishment cycle. That is, the maximum inventory at the vendor’s warehouse is
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(k−1)q whereas the order quantity is kq. Also, it is important to note that, unlike in

the case of the time-based dispatch policy in Çetinkaya and Lee (2000), the number

of dispatch cycles within an inventory replenishment cycle is no longer a random

variable after we fix Q and q. Under these assumptions, a realization of L(t) and I(t)

is depicted in Figure 3.

Let RCost, DCost, HCost, and WCost denote the replenishment, dispatch, hold-

ing, and waiting costs per replenishment cycle, respectively. Then, by letting cR

denote the unit procurement cost; AR the fixed cost of replenishing the inventory, h

the inventory carrying cost per unit per unit time, cD the unit shipment cost; AD the

fixed cost of dispatching; and w the customer waiting penalty per unit per unit time,

it is easy to show

E[RCost] = cRkq + AR,

E[DCost] = cDkq + kAD,

E[HCost] = hE
[
qSq + qS2q + · · ·+ qS(k−1)q

]

= hE


q


(k − 1)

q∑

i=1

Xi + (k − 2)

2q∑

i=q+1

Xi + · · ·+
(k−1)q∑

i=(k−2)q+1

Xi






= hE


q

k−1∑

j=1

(k − j)

jq∑

i=(j−1)q+1

Xi


 = hq

k−1∑

j=1

(k − j)

jq∑

i=(j−1)q+1

E [Xi]

=
hk(k − 1)q2

2λ
,

E[WCost] = kE

[
w

q−1∑

i=0

iXi+1

]
= kw

q−1∑

i=0

iE [Xi+1] = k
w(q − 1)q

2λ
,
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so that

E[Replenishment cycle cost] = E[RCost] + E[DCost] + E[HCost] + E[WCost]

= cRkq + AR + cDkq + kAD +
hk(k − 1)q2

2λ

+
wk(q − 1)q

2λ
.

It is straightforward to show that

E[Replenishment cycle length] = kE[Dispatch cycle length]

= k E

[
q∑

i=1

Xi

]
= kqE[Xi] = kq/λ,

and, hence, using the Renewal Reward Theorem, the expected total long-run average

cost per unit-time, denoted by C(k, q), is given by

C(k, q) =
E[Replenishment cycle cost]

E[Replenishment cycle length]

= cRλ +
ARλ

kq
+ cDλ +

ADλ

q
+

h(k − 1)q

2
+

w(q − 1)

2
. (3.1)

Consequently, the problem reduces to

min C(k, q)

s.to q, k : positive integers.

Let k∗ and q∗ denote the optimal k and q values, respectively. We define

k0 =

√
AR(w − h)

ADh
.

Also, let ⌊x⌋ denote the largest integer less than, or equal to, x and ⌈x⌉ denote the

smallest integer greater than, or equal to, x where x is a real number. Although

C(k, q) is not necessarily jointly convex in k and q, the exact solution of the prob-

lem can be computed very easily using Proposition 1. Also, note that although the
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motivations of the underlying problems are different, the mathematical formulation

of the quantity-based dispatch model considering stochastic demands is similar to

Goyal’s (1976) and Schwarz’s (1973) formulations for the deterministic buyer-vendor

coordination problem which received significant academic attention. That is, the cost

function given by (3.1) exhibits the same characteristics as the cost function of the

deterministic buyer-vendor coordination problem with the exception that q is a con-

tinuous variable and w > h in Goyal (1976) and Schwarz (1973). Although the proof

is straightforward, these two papers do not prove that this function has a unique finite

minimizer which is the underlying idea we use for developing a simple solution. For

our purposes, both q and k are discrete variables, and computing the optimal solution

is simple as described in Proposition 1. The proof of the proposition is presented here

for the sake of completeness.

PROPOSITION 1 • If w ≤ h, then k∗ = 1 and q∗ is either
⌊√

2(AR + AD)λ/w
⌋

or
⌈√

2(AR + AD)λ/w
⌉

depending on which one yields a lower value of C(1, q).

• If w > h, then the optimal solution is given by

min {C(k1, q1), C(k1, q2), C(k2, q3), C(k2, q4)} where

k1 = ⌊k0⌋ , k2 = ⌈k0⌉ ,

q1 = ⌊q(k1)⌋ , q2 = ⌈q(k1)⌉ , q3 = ⌊q(k2)⌋ , q4 = ⌈q(k2)⌉ , and

q(k) =

√
2(AR + kAD)λ

k[w + h(k − 1)]
. (3.2)

Proof:

Let us treat q as a continuous variable momentarily. For a fixed k = 1, 2, . . . , the

function C(k, q), given by (3.1), is convex in q. Solving ∂C(k, q)/∂q = 0 for q, we

obtain (3.2). Thus, for a fixed k = 1, 2, . . . , the optimal value of q is computed using
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q(k) in (3.2). Let us define F (k) = C(k, q(k)) so that

F (k) =

√
2(AR + kAD)λ[h(k − 1) + w]

k
.

Also, let k∗ denote the optimal solution of mink∈Z+ F (k). Consequently, the optimal

solution for the quantity-based dispatch model is given by k∗ and q(k∗) where q(k∗)

is computed using (3.2). Therefore, in order to complete the proof, it is sufficient to

compute k∗.

Case 1: w ≤ h. In this case,

F (k) =

√
2(AR + kAD)λ[h(k − 1) + w]

k

≥
√

(AR + kAD)
2λkw

k
=
√

(AR + kAD)2λw, ∀k ≥ 1.

Also, we can easily show that

√
2(AR + AD)λw ≥ C(1, q(1) + 1) ≥ C(1, ⌈q(1)⌉) ≥ min{C(1, ⌈q(1))⌉, C(1, ⌊q(1)⌋)}.

It follows that k∗ = 1.

Case 2: w > h. Rewriting F (k), it is easy to show that F (k) =
√

a + bk + c/k

where a = 2ARλh + 2ADλ(w − h), b = 2ADλh, and c = 2ARλ(w − h). Let us

treat k as a continuous variable momentarily. Observe that a + bk + c/k is a convex

function of k with a minimizer at k0 =
√

c/b =
√

AR(w − h)/ADh. On the other

hand, F (k) =
√

a + bk + c/k is not necessarily convex in k. However, interestingly,

k0 also minimizes F (k) as we prove below. Observe that the first derivative of F (k)

is given by

F ′(k) =
−c/k2 + c

2
√

a + bk + c/k
.

Since w > h, we have c > 0. Thus, for k < k0, we have −c/k2 + b < −c/k2
0 + b = 0.

It follows that F (k) is a strictly decreasing function of k for k < k0. In a similar
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fashion, it can be easily shown that F (k) is a strictly increasing function of k for

k ≥ k0. Therefore, k∗ = arg min {F (⌊k0⌋) , F (⌈k0⌉)} , and this completes the proof.

�

Once k∗ and q∗ are computed, the optimal Q, denoted by Q∗, is given by (k∗ −

1)q∗. Proposition 1 implies that if the cost of waiting is less than the cost of holding,

then there is no incentive to carry inventory at the vendor, and the warehouse can

either be operated as a transshipment terminal or closed. On the other hand, if the

cost of holding is less than the cost of waiting, then the warehouse is operated as a

break-bulk terminal where we replenish stock in bulk, carry inventory, and dispatch

several outbound shipments in a replenishment cycle.

III.3. Analytical Comparison of Time- and Quantity-Based Policies

Proposition 1 states that the optimal Q and q values imply one of the following two

forms for the integrated inventory/quantity-based dispatch policy under considera-

tion:

Form I. There is a single dispatch cycle within a replenishment cycle. This is

the case if k∗ = 1, and, hence, Q∗ = 0, and q∗ =
√

2(AR + AD)λ/w.

Form II. There are multiple dispatch cycles within a replenishment cycle. This

is the case when k∗ > 1, q∗ is computed using (3.2), and Q∗ = (k∗ − 1)q∗ > 0.

Proposition 1 suggests that if w ≤ h, then the optimal policy is of Form I. However,

even if w > h, such a policy may still be optimal, e.g., the problem instance h =

1, λ = 16, AR = 40, AD = 20, and w = 2. We also introduce one more policy type,

and we call it Form III:

Form III. If q∗ = 1, then we say that the optimal policy is of Form III. Hence,

Form III represents the class of immediate delivery policies.
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Note that, although a Form I policy cannot be of Form II at the same time (and vice

versa), both Form I and Form II policies can also be of Form III.

Interpretations of these three different policy forms may lead to insightful results

about distribution system design in the following manner:

• If the optimal integrated inventory/quantity-based dispatch policy is of Form I,

then no inventory is held at the vendor’s warehouse, i.e., the vendor’s warehouse

should be either operated as a transshipment point for consolidating orders over

time or closed. Since each replenishment cycle consists of a single dispatch cycle,

this policy implies that it is more economical to ship the consolidated orders

directly from the manufacturer (vendor’s supplier) to the customer.

• If the optimal integrated inventory/quantity-based dispatch policy is of Form II,

then the vendor’s warehouse is operated as a break-bulk terminal so that several

outbound shipments are dispatched from the warehouse during a given replen-

ishment cycle. In this case, the suggested vendor-managed supply agreement

makes perfect economical sense.

• If the optimal integrated inventory/quantity-based dispatch policy is of Form III

then each order is shipped individually without consolidation. An optimal policy

is of Form III if the suggested quantity-based dispatch arrangement does not

make economical sense.

Let T and QT denote the dispatch interval and the vendor’s order-up-to level

for the time-based dispatch model in Çetinkaya and Lee (2000), and let function

CT (QT , T ) denote the underlying expected long-run total average cost per unit-time.

We note that in the time-based dispatch model, as in the quantity-based dispatch

model presented in Section III.2, inventory is only replenished if the current load
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before a dispatch is larger than the inventory on hand, and, hence, the underlying

inventory policy is again an (s, S) policy with s = 0 and S = Q. For specific details

of the time-based dispatch model, the reader may refer to Çetinkaya and Lee (2000).

Also, let T ∗ and Q∗
T denote the optimal dispatch interval and the vendor’s optimal

order-up-to level. Hence, CT (Q∗
T , T ∗) denotes the optimal cost for the time-based

dispatch model. It is worth noting that the optimal integrated inventory/time-based

dispatch policies can also be classified in a similar fashion. However, the very basic

assumptions of the time-based dispatch model excludes the class of immediate dis-

patch policies. Hence, the resulting integrated inventory/time-based dispatch policies

are either of Form I, representing the case Q∗
T = 0, or Form II, representing the case

Q∗
T > 0.

In fact, for a given problem data set, if the optimal integrated inventory/time-

based dispatch policy is of Form I, then we can provide an analytical proof showing

that the optimal integrated inventory/quantity-based dispatch policy performs better

in terms of costs (see Propositions 2–5 below.) This is simply because if Q∗
T = 0, then

we can easily obtain the closed form expressions of T ∗ and CT (0, T ∗). In other cases,

i.e., those problem instances where Q∗
T > 0, we rely on the overwhelming numerical

evidence, discussed in Section III.4.1, illustrating that the cost savings resulting from

using the optimal integrated inventory/quantity-based dispatch policy are substantial.

The following propositions identify those cases where the optimal integrated

inventory/quantity-based dispatch policy is proved to be superior to the time-based

counterpart. These propositions also provide an analytical basis for Observations 1

through 3 in Section III.4.1 where we provide numerical results for a comparison of

the two dispatch policies.
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PROPOSITION 2 For a given parameter set, if Q∗
T = 0, then

CT (Q∗
T , T ∗) − C(k∗, q∗) ≥ 0,

i.e., the optimal integrated inventory/quantity-based dispatch policy is always superior

to the optimal integrated inventory/time-based dispatch policy.

Proof: Using the development in Çetinkaya and Lee (2000), it can be shown that

CT (0, T ) = cRλ +
AR

T
+ cDλ +

AD

T
+

wλT

2
. (3.3)

Hence, if Q∗
T = 0, then T ∗ =

√
2(AR + AD)/(λw) and

CT (0, T ∗) =
√

2(AR + AD)λw + cRλ + cDλ. (3.4)

Let C∗ = C(k∗, q∗) denote the optimal value of the cost function C(k, q) in (3.1).

For the sake of simplicity, let us treat q as a continuous variable momentarily. Under

this assumption, Proposition 1 implies that, if w < h, then C∗ =
√

2(AR + AD)λw +

cRλ + cDλ − w/2, and if w ≥ h, then

C∗ ≤ C
(
1,
√

2(AR + AD)/(λw)
)

=
√

2(AR + AD)λw + cRλ + cDλ − w/2.

Therefore, under the assumption that q is continuous, if Q∗
T = 0, then CT (0, T ∗) ≥ C∗.

Since q is not a continuous variable, in order to prove CT (0, T ∗) ≥ C∗, we show

that
√

2(AR + AD)λw + cRλ + cDλ ≥ C (1, q∗(1)) ≥ C∗, (3.5)

where q∗(1) is either
⌊√

2(AR + AD)λ/w
⌋

or
⌈√

2(AR + AD)λ/w
⌉

depending on

which one yields a lower value of C(1, q).
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The inequality on the right hand side of (3.5) is trivial. Recalling (3.1), the

inequality on the left hand side of (3.5) can be written as

ARλ

q∗(1)
+

ADλ

q∗(1)
+

w(q∗(1) − 1)

2
≤
√

2(AR + AD)λw. (3.6)

Let us define

G(q) =
ARλ

q
+

ADλ

q
+

wq

2
, and q =

⌈√
2(AR + AD)λ

w

⌉
.

Observe that, in order to show (3.6), it is sufficient to show

G(q) − w

2
≤
√

2(AR + AD)λw.

Since G(·) is an EOQ type convex function with a minimizer at
√

2(AR + AD)λ/w,

we have

G (⌈q⌉) ≤ G(q + 1), ∀q ≥
√

2(AR + AD)λ/w,

and

G(q)√
2(AR + AD)λw

=
1

2


 q√

2(AR+AD)λ
w

+

√
2(AR+AD)λ

w

q


 .

Therefore,

G(q) − w

2
≤ 1

2

√
2(AR + AD)λw




√
2(AR+AD)λ

w
+ 1

√
2(AR+AD)λ

w

+

√
2(AR+AD)λ

w√
2(AR+AD)λ

w
+ 1


− w

2

≤ 1

2

√
2(AR + AD)λw

(
2 +

1√
2(AR + AD)λ/w

)
− w

2

=
√

2(AR + AD)λw +
w

2
− w

2
=
√

2(AR + AD)λw,
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It follows that if Q∗
T = 0, then the quantity-based policy outperforms the time-based

policy, and this completes the proof of Proposition 2. �

The following intuitive explanation of Proposition 2 also underlies its proof. If

Q∗
T = 0 and Q∗ = 0, then the corresponding time-based and quantity-based models

reduce to pure shipment consolidation models where inventory at the vendor has no

effect on the cost because it is nonexistent. In this case, the optimal quantity-based

policy always outperforms the optimal time-based policy, i.e., the inequality in (3.5) is

correct. The intuition is based on the fact that if we restrict ourselves to a fixed time

interval, then any time we release a shipment at the end of this interval, we could have

dispatched it earlier (i.e., when the previous demand arrived,) or later (i.e., when the

next demand arrived.) One of these options may be cheaper than dispatching at fixed

intervals, since, in the first case, we did not realize the scale economies associated with

larger dispatch quantities, and, in the second case, we unnecessarily held inventory

too long.

Based on Proposition 2, we know that if Q∗
T = 0, then the cost savings resulting

from a quantity-based policy is always positive. Now we discuss those cases where the

actual savings are less than w/2, in excess of 50%, depending on the values of T ∗ and

Q∗.

PROPOSITION 3 For a given parameter set, if both Q∗
T = 0 and Q∗ = 0, then

0 ≤ CT (Q∗
T , T ∗) − C(k∗, q∗) ≤ w/2.

Proof of Proposition 3: Now, suppose that both Q∗
T = 0 and Q∗ = 0. Hence,

Proposition 1 implies k∗ = 1 and q∗ is either
⌊√

2(AR + AD)λ/w
⌋

or
⌈√

2(AR + AD)λ/w
⌉



46

depending on which one yields a lower value of C(1, q). Therefore,

C∗ ≥
√

2(AR + AD)λw + cRλ + cDλ − w/2. (3.7)

Using (3.4) and (3.7), we can write CT (0, T ∗) − C∗ ≤ w/2, and this completes the

proof. It is worth noting that in the numerical results that will be discussed in

Section III.4.1, the smallest cost savings (e.g., % Savings < 5% as shown in the table

on p.49) correspond to such problem instances.) �

PROPOSITION 4 For a given parameter set, if Q∗
T = 0 and λT ∗ ≤ 1, then the per-

centage of cost savings resulting from using the optimal integrated inventory/quantity-

based dispatch policy is at least 50%.

Proof of Proposition 4: Assuming that Q∗
T = 0 and λT ∗ < 1, we compare the

operational cost savings resulting from using the quantity-based model. That is, we

ignore the fixed terms cRλ and cDλ in the cost expressions CT and C, and compute

CT (Q∗
T , T ∗) − C∗

CT (Q∗
T , T ∗)

.

Recalling (3.3), we have

T ∗ =
√

2(AR + AD)/(λw) (3.8)

so that λT ∗ < 1 implies
√

w >
√

2(AR + AD)λ. Also, recalling (3.1) and noting that

C∗ ≤ C(1, 1) = (AR + AD)λ, we can write

CT (0, T ∗) − C(1, 1)

CT (0, T ∗)
= 1 − (AR + AD)λ√

2(AR + AD)λw
> 1 − (AR + AD)λ

2(AR + AD)λ
= 0.5.

The intuition behind this proposition is based on the fact that if the dispatch fre-

quency is smaller than the arrival rate, then a regular dispatch schedule does not

make economical sense. �
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PROPOSITION 5 For a given parameter set, if Q∗
T = 0 and λT ∗ ≤ 1.5, then the

percentage of cost savings resulting from using the optimal integrated inventory/quantity-

based dispatch policy is at least 25%.

Proof of Proposition 5: Again, using (3.8), λT ∗ < 1.5 leads to

√
w >

√
2(AR + AD)λ/1.5.

Hence,

CT (0, T ∗) − C(1, 1)

CT (0, T ∗)
= 1 − (AR + AD)λ√

2(AR + AD)λw
> 1 − (AR + AD)λ

2(AR + AD)λ/1.5
= 0.25.

It is worth noting that in the numerical results discussed in Section III.4.1, the largest

cost savings correspond to such problem instances. �

III.4. Numerical Results

In this section, we first provide numerical results for a comparison of the time-based

and quantity-based policies, and, then, we proceed with a demonstration of the cost

and service performance improvements achievable using hybrid policies. For these

purposes, we use two data sets:

• The data used in Axsäter (2001). (Since this is a smaller data set, we use it for

tabulating specific results.)

• A set of 1024 problem instances was generated using factorial design and con-

sidering cR = 0; cD = 0; AR = 40, 80, 160, 320; AD = 5, 10, 20, 40; h = 1, 2, 4, 8;

w = 2, 4, 8, 16; and λ = 2, 4, 8, 16. (This data set is used for providing stronger

numerical evidence.)



48

III.4.1. Numerical Results for a Comparison of Time-Based and Quantity-

Based Policies

Proposition 1 implies that the exact optimization of the quantity-based dispatch

model is easy, i.e., it can be performed manually with minimal effort whereas the exact

optimization of the time-based dispatch model cannot be presented in closed form for

the reasons addressed in Çetinkaya and Lee (2000). As we have already mentioned,

a numerical technique for exact optimization of the time-based dispatch model is

developed in Axsäter (2001). Hence, for the purpose of comparing the performance

of the time-based and quantity-based models numerically, we have utilized the exact

optimization technique in Axsäter (2001) and Proposition 1.

Considering the numerical examples presented in Axsäter (2001), we first ob-

tained the results in Table 1 where the cost savings realized by using the suggested

quantity-based dispatch model are as high as 14.19%. For the purpose of providing a

comprehensive comparative analysis of time-based and quantity-based dispatch mod-

els, in addition to the results in Table 1, we have conducted an extensive numerical

study considering the 1024 problem instances discussed above. We have observed

that the average cost savings under the quantity-based dispatch model is 6.58%; the

maximum saving is 25.79%; and the minimum saving is 0.66%.

Next, we present some observations regarding the results of the numerical study.

(These observations hold for both of the examples presented in Table 1 and the 1024

problems solved.)

OBSERVATION 1 In general, i.e., regardless of the form of the optimal policy, the

quantity-based dispatch model performs better than the time-based dispatch model

in terms of the resulting expected total long-run average cost per unit-time.
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Table 1 Performance Improvement for the Problems in Axsäter (2001)
cR = 0, cD = 0.

AR λ h AD w Q∗
T T ∗ CT (Q∗

T , T ∗) Q∗ q∗ C∗ %Saving

125 1 1 10 10 14 1.42 29.43 18 2 25.25 14.19
125 1 1 25 10 14 2.24 37.63 12 2 32.43 13.82
125 1 3 10 10 7 1.44 39.91 8 2 34.50 13.55
125 1 3 25 10 7 2.27 47.99 6 3 41.22 14.11
125 10 1 10 10 47 0.45 94.18 45 5 87.50 7.10
125 10 1 25 10 45 0.71 120.14 42 7 112.22 6.59
125 10 3 10 10 26 0.45 129.63 25 5 119.17 8.07
125 10 3 25 10 24 0.71 155.42 18 9 141.07 9.23
125 20 1 10 10 66 0.32 133.42 63 7 125.79 5.72
125 20 1 25 10 65 0.5 170.12 60 10 160.71 5.53
125 20 3 10 10 37 0.32 183.99 32 8 170.50 7.33
125 20 3 25 10 35 0.5 220.46 26 13 201.56 8.57
125 10 7 50 10 0 1.87 187.08 0 19 182.11 2.66
100 10 7 50 10 0 1.73 173.21 0 17 168.24 2.87
150 10 7 50 10 0 2.00 200.00 0 20 195.00 2.50
125 5 7 50 10 0 2.65 132.29 0 13 127.31 3.76
125 15 7 50 10 0 1.53 229.13 0 23 224.13 2.18
125 10 5 50 10 0 1.87 187.08 12 12 178.75 4.45
125 10 9 50 10 0 1.87 187.08 0 19 182.11 2.66
125 10 7 25 10 0 1.73 173.21 10 10 167.50 3.29
125 10 7 75 10 0 2.00 200.00 0 20 195.00 2.50
125 10 7 50 8 0 2.09 167.33 0 21 163.33 2.39
125 10 7 50 12 0 1.71 204.94 0 17 198.94 2.93

Average Saving 6.35%

OBSERVATION 2 The cost savings are particularly large, e.g., ≥ 5%, if the time-

based solution suggests Q∗
T > 0 rather than Q∗

T = 0. The case Q∗
T > 0 represents

those problem instances where it is optimal to operate the vendor’s warehouse as a

break-bulk terminal and dispatch several outbound shipments from the warehouse

during a given replenishment cycle. On the contrary, the case Q∗
T = 0 represents

those problem instances where no inventory is carried at the vendor’s warehouse, so

that the warehouse, in fact, acts as a transshipment point for consolidating orders
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over time. Considering the set of 1024 scenarios, for those problems where Q∗
T > 0,

the average cost savings in using the quantity-based dispatch policy is 9.31% whereas

the overall average (including the case Q∗
T = 0) is 6.58%.

OBSERVATION 3 For a given set of problem data, the cost savings decrease as λ

and λT ∗ increase. However, the magnitude of the cost savings also depends on the

relative values of the h/w and AR/AD ratios as well as the individual values of AR,

AD, h, and w; and it is not straightforward to make conclusive comments about the

magnitude of the cost savings depending on a particular cost parameter value. On

the other hand, we can simply conclude that the cost savings are tangible in general.

OBSERVATION 4 We note that the expected average dispatch cost per-unit time

under the quantity-based dispatch model is in most cases smaller than the one un-

der its time-based counterpart. This result is rather intuitive since one expects the

quantity-based policy to realize transportation economies of scale to a greater extent.

On the other hand, it is difficult to make general conclusive comments about the

relative values of the other expected average per unit-time cost components, i.e.,

replenishment, holding, and waiting costs.

III.5. Managerial Takeaways and Conclusions

In this chapter, we demonstrate that significant cost savings can be achieved by using

the suggested quantity-based policy rather than the exact solutions of time-based

dispatch models. In particular, our numerical results indicate that quantity-based

dispatch policies are always superior to time-based policies.

In practical applications, it is important to take into account the simplicity and

periodic delivery advantages of time-based dispatch policies in evaluating the cost

improvements obtained through quantity-based policy. That is, in practice, it may be
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easier to schedule deliveries so that a shipment is released on a periodic-basis, rather

than on as-needed basis. It is worth noting that, both time-based and quantity-based

dispatch policies are popular in practice, and they are incorporated in VMI contracts

for the purposes of achieving timely delivery and load optimization, respectively.

Typically, time-based policies are used for A-class (lower volume, higher value) items,

such as expensive hardware in the computer industry, to guarantee timely delivery.

Quantity-based policies are used for B-class and C-class (higher volume, lower value)

items, such as peripheral computer equipment. On the other hand, our numerical

results show that quantity-based policies also offer large savings for lower volume,

lower value items, i.e., those items where λ and h2 are smaller.

2Note that h is typically a percentage of the per unit procurement cost/value.
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CHAPTER IV

ANALYSIS OF TIME- AND QUANTITY-BASED POLICIES UNDER COMMON

CARRIER FREIGHT SCHEDULES

In Chapter III, we studied a joint inventory and shipment consolidation model. In this

model, the outbound shipment cost implied the use of a private fleet. Use of common

carriers for outbound transportation is also very common in practice. In this chapter,

we study the model where a common carrier is employed for outbound transportation.

We analyze this model for both the time-based policy and the quantity-based policy.

The characteristics of the model are the same as those in Chapter III except

for the outbound shipment, i.e., dispatch, cost structure. The dispatch cost for this

model is presented in Chapter I by Equation(1.3).

Çetinkaya and Bookbinder (2003) study a similar problem. However, their focus

is on the shipment consolidation only, i.e., the inventory replenishment decisions are

not incorporated. In that sense, their model is a special case of our model where the

inventory replenishment quantity is equal to the dispatch quantity. In our model,

we identify this case as a “single dispatch case.” On the other hand, Çetinkaya and

Bookbinder consider a more general order process in which the order sizes are also

random.

IV.1. Time-Based Policy

The decision variables for this model under the time-based policy are

Q is the order up-to level for replenishing the inventory. (Here we note that Q

should not be confused with the inventory replenishment size that we used for

the quantity-based policy model in Chapter III.)
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T is the consolidation cycle length, i.e., the time between two dispatches.

All of the model parameters are the same as those in the model in Chapter III.

As we mentioned before, this model is studied by Çetinkaya and Lee (2000)

excluding the common carrier charges. They show that the system stochastically

regenerates itself at every inventory replenishment epoch. Hence, we consider the

time between two replenishment epochs as a replenishment cycle. To find the long

run average of the total expected cost, it suffices to calculate the total expected

cost for one replenishment cycle and divide this by the expected cycle length. This

argument is a direct consequence of the Renewal Reward Theorem.

We refer to Çetinkaya and Lee (2000) for the calculation of the E[HC], E[RC]

and E[WC] and also the expected cycle length and use their results. However, the

derivation of the E[DC] is different in our problem, and we present a detailed deriva-

tion of the E[DC] below.

IV.1.1. Derivation of the E[DC] for the Time-Based Policy

Before going into the details of the calculation, we note that:

c0q1 ≈ c1q2.

If q were a continuous variable, then the above relation would hold an exact

equality for all cases. For the rest of the chapter, we assume that c0q1 = c1q2.

Otherwise, it would be very difficult to make analytical comments on the problem.

We define the time between two dispatches as a dispatch cycle. For the time-

based policy, the number of dispatch cycles within a replenishment cycle is a random

variable denoted by K. In order to compute E[DC], we first compute the Expected

Dispatch Cost for one dispatch cycle and then multiply it by E[K]. (Derivation of
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E[K] is given by Çetinkaya and Lee 2000.) The Expected Dispatch Cost for one

dispatch cycle, E[DCC], is given by:

E[DCC] = c0

q1∑

x=1

xpx + c0q1

q2∑

x=q1+1

px + . . . + ci

q2i+1∑

x=q2i+1

xpx

+ciq2i+1

q2i+2∑

q2i+1+1

px + . . . + cI

∞∑

x=q2I+1

xPx,

where px = (λT )xe−λT /x! .

More explicitly;

E[DCC] =
I−1∑

i=0

{
ci

q2i+1∑

x=q2i

x
(λT )xe−λT

x!
+ ciq2i+1(Fq2i+2

− Fq2i+1
)

}

+cI

∞∑

x=q2I+1

x
(λT )xe−λT

x!

=
I−1∑

i=0

{
ciλT

q2i+1−1∑

x=q2i−1

(λT )xe−λT

x!
+ ciq2i+1(Fq2i+2

− Fq2i+1
)

}

+cIλT
∞∑

x=q2I

(λT )xe−λT

x!

=

I−1∑

i=0

{
ciλT (F(q2i+1−1) − F(q2i−1)) + ciq2i+1(Fq2i+2

− Fq2i+1
)
}

+cIλT (1 − F(q2I−1))

=

I−1∑

i=0

{
λT (ciF(q2i+1−1) − ci+1F(q2i+2−1)) + ciq2i+1(Fq2i+2

− Fq2i+1
)
}

+ cIλT,

where Fx represents the cumulative poisson distribution function value for x.

The Expected Dispatch Cost for one replenishment cycle, E[DC], is simply ob-

tained by multiplying the above the expression by E[K].
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IV.1.2. Analysis of C(Q,T)

So far, we have derived the expression for the E[DC]. We use the results of Çetinkaya

and Lee (2000) for E[RC], E[HC], E[WC] and E[K]:

E[RC] = AR + cRλE[K]T,

E[HC] = hQT +
hQ(Q + 1)

2λ
,

E[WC] =
wλT 2

2
, and

E[K] ≈





1 if Q + 1 ≤ λT,

Q+1
λT

if Q + 1 > λT.

Now we apply the Renewal Reward Theorem to obtain the long run average of

the Expected Cost, C(Q, T ):

C(Q, T ) =
E[RC] + E[HC] + E[DC] + E[WC]

E[K]T
. (4.1)

The numerator in Equation(4.1) is the total replenishment cycle cost and the de-

nominator is the replenishment cycle length. Substituting the expressions for E[RC],

E[HC], E[WC], E[WC] and E[K], we obtain the following for C(Q, T ):
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C(Q, T ) =





AR

T
+ cRλ + hQ + hQ(Q+1)

2λT

+
∑I−1

i=0 λ(ciF(q2i+1−1) − ci+1F(q2i+2−1))

+
∑I−1

i=0 λ ciq2i+1

T
(Fq2i+2

− Fq2i+1
)

+cIλ + wλT
2

if Q + 1 ≤ λT,

ARλ
Q+1

+ cRλ + hλT − hλT
Q+1

+ hQ
2

+
∑I−1

i=0 λ(ciF(q2i+1−1) − ci+1F(q2i+2−1))

+
∑I−1

i=0 λ ciq2i+1

T
(Fq2i+2

− Fq2i+1
)

+cIλ + wλT
2

if Q + 1 > λT.

Then, we formulate our problem as

min C(Q, T )

s.t Q ∈ N
+, T > 0.

When Q + 1 ≤ λT , the optimal Q is 0. This means that in one replenishment cycle,

there is only one dispatch cycle. We call this case the Single Dispatch Case and the

other case the Multi Dispatch Case. We optimize both cases separately and then
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pick the solution with the lower cost as the optimal solution. Since cRλ and cIλ are

constants, we will not consider those cost components in the rest of the paper.

IV.1.2.1. Single Dispatch Case

In this case, the objective function depends on only one decision variable, T . Hence,

we use C(T ) instead of C(Q, T ). We can easily derive C(T ) from C(Q,T) by substi-

tuting Q = 0:

C(T ) =
AR

T
+

I−1∑

i=0

{
λ(ciF(q2i+1−1) − ci+1F(q2i+2−1)) +

ciq2i+1

T
(Fq2i+2

− Fq2i+1
)
}

+
wλT

2
.

If the function is convex in the region where λT ≥ 1, then it suffices to find the

T value that solves for the first derivative.

LEMMA 1 The first derivative of C(T ) is given by:

dC(T )

dT
=

wλ

2
− AR

T 2
−

I−1∑

i=0

ciq2i+1

T 2
(Fq2i+2

− Fq2i+1
). (4.2)

PROOF: Here we present a sketch of the proof. Initially we start with I = 1. Then

our cost expression for the single dispatch case will be as follows:

C1(T ) =
AR

T
+

wλT

2
+ λ(c0F(q1−1) − c1F(q2−1)) +

c0q1

T
(Fq2

− Fq1
) + c1λ.

Below is the procedure to find the derivative of the above function with respect

to T :

First, we take the derivative of λ(c0F(q1−1) − c1F(q2−1)). Let’s call it A(T). Then

dA(T )

dT
= λ

{
c0

q1−1∑

x=0

d

dT
(
(λT )xe−λT

x!
) − c1

q2−1∑

x=0

d

dT
(
(λT )xe−λT

x!
)

}
. (4.3)
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To make things easier, we compute the following generic expression:

k∑

x=0

d

dT

(
(λT )xe−λT

x!

)
= λ

k−1∑

x=0

(λT )xe−λT

x!
− λ

k∑

x=0

(λT )xe−λT

x!

= −λpk.

When we substitute the above expression in (4.3), we obtain the following:

dA(T )

dT
= λ2(c1p(q2−1) − c0p(q1−1)). (4.4)

Next, we compute the derivative of (c0q1/T )(Fq2
− Fq1

):

d

dT

(c0q1

T
(Fq2

− Fq1
)
)

= −c0q1

T 2
(Fq2

− Fq1
) +

c0q1

T

[
q2∑

x=q1+1

d

dT

(λT )xe−λT

x!

]

= −c0q1

T 2
(Fq2

− Fq1
)

+
c0q1

T

[
q2∑

x=q1+1

−λ
(λT )xe−λT

x!
+

q2−1∑

x=q1

λ
(λT )xe−λT

x!

]

= −c0q1

T 2
(Fq2

− Fq1
) − λ

c0q1

T
[Fq2

− Fq1
− F(q2−1) + F(q1−1)]

= −c0q1

T 2
(Fq2

− Fq1
) + λ

c0q1

T
(Fq1

− F(q1−1))

−λ
c0q1

T
(Fq2

− F(q2−1))

= −c0q1

T 2
(Fq2

− Fq1
) + λ

c0q1

T
pq1

− λ
c0q1

T
pq2

= −c0q1

T 2
(Fq2

− Fq1
) + λ

c0q1

T
pq1

− λ
c1q2

T
pq2

= −c0q1

T 2
(Fq2

− Fq1
) + c0λ

2p(q1−1) − c1λ
2p(q2−1).
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When we add the above expression and the expression in (4.4), we obtain

−(c0q1/T
2)(Fq2

− Fq1
).

The derivative of the rest of the C(T ) is wλ/2 − AR/T 2, and we obtain

dC1(T )

dT
=

wλ

2
− AR

T 2
− c0q1

T 2
(Fq2

− Fq1
).

Finally, we extend the procedure to the general case of I and obtain Equation(4.2).

This completes the sketch of the proof. �

To check convexity, we look at the second derivative. We state the second deriva-

tive without proof:

d2C(T )

dT 2
=

2AR

T 3
+

I−1∑

i=0

{
2ciq2i+1

T 3
(Fq2i+2

− Fq2i+1
) +

ciq2i+1

T 2
λ(pq2i+2

− pq2i+1
)

}
. (4.5)

The second derivative is always positive when pq2i+2
≥ pq2i+1

for all i. The worst

case occurs when pq2i+2
< pq2i+1

for all i; however, we can still state a sufficient

condition in this case which is: 2(Fq2i+2
− Fq2i+1

)/pq2i+2
− pq2i+1

≥ λT .

So far, we have given the sufficient conditions for convexity. Hence the next step

is to solve for the T that makes the first derivative 0 and check to see whether or not

it is convex at that point.

IV.1.2.2. Multi Dispatch Case

In this case, the cost function is given as follows:

C(Q, T ) =
ARλ

Q + 1
+

QhλT

Q + 1
+

hQ

2

+
I−1∑

i=0

{
λ(ciF(q2i+1−1) − ci+1F(q2i+2−1)) +

ciq2i+1

T
(Fq2i+2

− Fq2i+1
)
}

+
wλT

2
.

The cost function has 2 decision variables, Q and T . One way to minimize
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C(Q, T ) is to look at the stationary points where both ∂C(Q, T )/∂Q and ∂C(Q, T )/∂T

are 0. However, for such a point, if itexists, to be the minimizer, the function must

be jointly convex in Q and T . This requires a Hessian check. Below we present the

first and second order partial derivatives:

∂C(Q, T )

∂T
= hλ − hλ

Q + 1
+

wλ

2
−

I−1∑

i=0

ciq2i+1

T 2
(Fq2i+2

− Fq2i+1
),

∂C(Q, T )

∂Q
=

h

2
+

hλT − ARλ

(Q + 1)2
,

∂2C(Q, T )

∂T 2
=

I−1∑

i=0

{
2ciq2i+1

T 3
(Fq2i+2

− Fq2i+1
) +

ciq2i+1

T 2
λ(pq2i+2

− pq2i+1
)

}
,

∂2C(Q, T )

∂Q2
=

2(ARλ − hλT )

(Q + 1)3
,

∂2C(Q, T )

∂Q∂T
=

hλ

(Q + 1)2
.

We compute the determinant of the Hessian matrix as follows:

|H| =

I−1∑

i=0

{
4ciq2i+1λ(AR − hT )(Fq2i+2

− Fq2i+1
)

(Q + 1)3T 3
+

2c0q1λ
2(AR − hT )(pq2i+2

− pq2i+1
)

(Q + 1)3T 2

}

− (hλ)2

(Q + 1)4
. (4.6)

From (4.6) it is not easy to say anything about the convexity of C(Q,T). Fur-

thermore, C(Q, T ) is not necessarily convex in T either. That is why we must make a

search over all possible values of Q and T . The search algorithm proceeds as follows:

ALGORITHM 1 Step 0: Set Q = 0, C∗ = M , where M is a very large number.
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Step 1: Q = Q + 1 and Tm
Q = (Q + 1)/λ.

Step 2: If Q ≥ Qs then STOP, else go to Step 3.

Step 3: grid = min0.01, Tm
Q /50.

Step 4: for T = 0.01 to T <= Tm
Q , T by grid; evaluate C(Q,T).

Step 5: If C(Q, T ) < C∗, set T ∗ = T and Q∗ = Q.Go to Step 1.

The Qs value in this procedure is the stopping Q value for the search. The following

Lemma helps determine Qs:

LEMMA 2 The stopping value of Q, namely Qs, is

Qs =

√
2ARλ

h
− 1. (4.7)

PROOF : Let Qs be a stopping value. Then for any Q = Qs + m, m ≥ 0, C(Q, T )

must be greater than C(Qs, T ) for all T; in other words, C(Q, T ) − C(Qs, T ) ≥ 0:

C(Q, T )−C(Qs, T ) =
hm

2
−ARλ

m

(Qs + 1 + m)(Qs + 1)
+hλT

m

(Qs + 1 + m)(Qs + 1)
.

We guarantee that the above expression is nonnegative when h/2 ≥ ARλ/(Q + 1)2.

This completes the proof. �

REMARK 1 Although this search procedure does not provide an optimal solution,

it still is a good approximation, because the grid size for T is always less than, or

equal to, 0.01.

IV.1.2.3. The Solution

After solving the Single Dispatch and Multi Dispatch problems, we compare both

solutions and pick the one with the minimum cost.
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IV.2. Quantity-Based Policy

Similar to the procedure that we followed for the time-based policy, we first express

the cost function in terms of the decision variables. Recall from Chapter III that

there are two decision variables in this case: k and q. Also, we refer to Chapter III

for the derivation of the expected annual cost excluding the expected annual dispatch

cost. Next, we derive the expected annual cost:

IV.2.1. Derivation of E[DC] for Quantity-Based Policy

For the quantity-based policy, the dispatch quantity is no longer a random variable.

Hence, we can express the expected cost for a shipment as follows:

E[DCC] =






c0q if 1 ≤ q < q1,

c0q1 if q1 ≤ q < q2,

...

ciq if q2i ≤ q < q2i+1,

ciq2i+1 if q2i+1 ≤ q < q2i+2,

...

cI if q2I ≤ q.

Then the expected dispatch cost for one replenishment cycle, E[DC], is simply

given by multiplying the above expression by kE[Dispatch Cycle Length]. Note that
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since E[DC] is a piecewise function, C(k, q) is also a piecewise function:

C(k, q) =






[h(k−1)+w]q
2

+ ARλ
kq

− w
2

+ c0λ if 1 ≤ q < q1,

[h(k−1)+w]q
2

+ ARλ
kq

− w
2

+
A0

D
λ

q
if q1 ≤ q < q2,

...

[h(k−1)+w]q
2

+ ARλ
kq

− w
2

+ ciλ if q2i ≤ q < q2i+1,

[h(k−1)+w]q
2

+ ARλ
kq

− w
2

+
Ai

Dλ

q
if q2i+1 ≤ q < q2i+2,

...

[h(k−1)+w]q
2

+ ARλ
kq

− w
2

+ cIλ if q2I ≤ q.

where we define Ai
D to be ciq2i+1.

IV.2.2. Analysis of C(k, q)

We state our problem as:

min C(k, q)

s.t k, q ∈ N
+.

Although the cost function has many pieces, we can see that there are two types

of functions, one with a fixed dispatch cost (having Ai
Dλ/q term)and the other is

without a fixed dispatch cost but with a per unit dispatch cost (having ciλ term). We

name these functions FCi(k, q) and LCi(k, q) respectively:

FCi(k, q) =
[h(k − 1) + w]q

2
+

ARλ

kq
− w

2
+

Ai
Dλ

q
, (4.8)

LCi(k, q) =
(h(k − 1) + w)q

2
+

ARλ

kq
− w

2
+ ciλ. (4.9)

The resulting subproblems are
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min FCi(k, q) (4.10)

s.t q2i+1 ≤ q < q2i+2

k, q ∈ N
+,

min LCi(k, q) (4.11)

s.t q2i ≤ q < q2i+1

k, q ∈ N
+.

Observe that both FCi(k, q) and LCi(k, q) have a structure similar to C(k, q),

which is given by Equation (3.1) in Chapter III. However, we cannot simply follow

the solution technique that we developed in Chapter III, because these subproblems

have constraints on q. Next, we present the solution procedures for FCi(k, q) and

LCi(k, q), respectively:

IV.2.2.1. Analysis of FC(k, q)

Observe that, FCi(k, q) is convex in k. Momentarily assuming k as a continuous

variable, we can easily show that for a given q, the optimal k, namely k∗(q) is

k∗(q) =
1

q

√
2ARλ

h
.

Note that, k∗(q) is decreasing in q. Hence, k∗(q2i+1) ≥ k∗(q2i+2). On the other hand,

for a given k, FCi(k, q) is convex in q and is minimized at q∗(k) where

q∗(k) =

√
2λ(Ai

D + AR/k)

h(k − 1) + w
.

Using these results, we propose the following procedure to solve the problem:
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ALGORITHM 2 Let, k = ⌊k∗(q2i+2)⌋, and k = ⌈k∗(q2i+1)⌉.

Step 0: Set FC∗
i = ∞ and k = k.

Step 1: Find q∗(k). If q∗(k) /∈ [q2i+1, q2i+2], set q∗(k) to the closest boundary point.

Step 2: Compute FCi(k, q∗(k)). If FCi(k, q∗(k)) < FC∗
i , then set FC∗

i = FCi(k, q∗(k)).

Step 2: Increment k by 1. If k ≤ k, go to Step 1.

IV.2.2.2. Analysis of LCi(k, q)

The analysis is similar to that of FCi(k, q). For LCi(k, q),

k∗(q) =
1

q

√
2ARλ

h
q∗(k) =

√
2λ(Ai

D + AR/k)

h(k − 1) + w
,

k = ⌊k∗(q2i+1)⌋, k = ⌈k∗(q2i)⌉.

We simply implement Algorithm 2 with the updated values to minimize LCi(k, q).

After solving each subproblem, we simply pick the solution which yields the

minimum expected cost as the optimal solution of C(k, q).

IV.3. Summary and Conclusions

In this chapter, we characterized the solutions for the integrated inventory and ship-

ment consolidation problem with common carrier charges. We developed solution

procedures for both the time-based policy and quantity-based policy.

As was also noted by Çetinkaya and Bookbinder (2003), it is not possible to ob-

tain exact analytical solutions for the time-based policy with common carrier charges.

We have provided an extensive search procedure and upper and lower bounds for

the ranges of the search. However, in a pure consolidation setting, Çetinkaya and

Bookbinder’s approximate solutions can also be used.
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An immediate extension to this problem is to study the consolidation policies

under different transportation cost structures, e.g., incremental freight discounts.
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CHAPTER V

A HYBRID POLICY FOR SHIPMENT CONSOLIDATION

In Chapter III, we solved the integrated inventory and dispatch consolidation problem

under a quantity-based consolidation regime. We also showed the cost superiority of

quantity-based policy over time-based policy.

Under a time-based policy, each order is dispatched by a pre-specified shipment

release date, even though the dispatch quantity does not necessarily realize trans-

portation scale economies. On the other hand, under a quantity-based policy, the

dispatch quantity assures transportation scale economies, but a specific dispatch time

cannot be guaranteed. An alternative to these two policies is a hybrid routine aimed at

balancing the tradeoff between the timely delivery advantages of time-based policies

and the transportation cost savings associated with quantity-based policies. Under

a hybrid policy, the objective is to consolidate an economical dispatch quantity, de-

noted by qH . However, if this quantity does not accumulate within a reasonable time

window, denoted by TH , then a shipment of smaller size may be released. A dispatch

decision is made either when the size of a consolidated load exceeds qH or when the

time since the last dispatch exceeds TH .

Through a numerical investigation, we show that although the resulting costs of

hybrid policies are higher than those of quantity-based policies, they lead to better

service for the retailer when service is measured by the long-run average cumulative

waiting time. This is simply because a hybrid policy imposes an upper bound on the

maximum waiting time for an order by specifying the maximum time between two

successive dispatch decisions. We also illustrate that the main advantage of hybrid

policies over time-based policies is that they may lead to lower expected total average

costs per unit-time. Hence, hybrid policies are attractive in the sense that they are
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cost-wise superior to time-based policies and service-wise superior to quantity-based

policies.

In the numerical study, we select the parameters of the hybrid policy using the

optimal policy parameters of the corresponding time-based policy and quantity-based

policy. This is mainly because it is analytically intractable to express the expected

annual cost function of the hybrid policy and optimize its parameters under the model

assumptions of Chapter III. However, computing the optimal policy parameters of

a hybrid policy is both an analytically challenging problem and an unexplored area

of research. In this chapter, we also model a pure hybrid policy, derive the expected

annual cost function, and find the optimal policy parameters.

This chapter is organized as follows: The operational characteristics of the pro-

posed hybrid policies are discussed in Section V.1. We present our numerical results

in Section V.1.1 where we provide a comparison of the cost and service performances

of time-based -, quantity-based -, and hybrid policies. Section V.2 studies an anayti-

cal model for a pure hybrid policy. Finally, Section V.3 concludes the study with a

discussion of important observations and generalizations.

V.1. Easily Implementable Hybrid Policies

We suggest that a cost effective hybrid solution for the inventory system under con-

sideration can be obtained using our results for the models with time-based - and

quantity-based - policies. Under the suggested hybrid policy, the goal is to consolidate

an outbound load of size qH . However, if the time since the last dispatch exceeds TH

before an economical dispatch quantity of qH accumulates, then a dispatch decision

should be made immediately. We argue that, if qH and TH are specified carefully,

then the corresponding hybrid policy exhibits the cost advantages associated with
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quantity-based policies as well as the timely delivery advantages associated with time-

based policies. For this purpose, letting QH denote the order-up-to level for inventory

replenishments under a hybrid solution, we propose two easily implementable hybrid

solutions.

1. Hybrid-quantity-based solution: This solution is specified by the following

three parameters: QH = Q∗, TH = T ∗, and qH = q∗.

2. Hybrid-time-based solution: This solution is specified by the following three

parameters: QH = Q∗
T , TH = T ∗, and qH = q∗.

Both of these hybrid solutions require the exact optimization of Çetinkaya and

Lee’s (2000) time-based model using the exact numerical optimization technique in

Axsäter (2001) so that we have the numerical values for Q∗
T and T ∗. For implemen-

tation purposes, it is important to note that the exact optimization of this model is

not as simple as the exact optimization of the quantity-based model in Section III.2

where we have a closed form solution. Hence, the approximate technique presented in

Çetinkaya and Lee (2000) can be utilized to form easily implementable hybrid policies.

This approximate technique is appealing since it can be implemented on a spreadsheet

with minimal effort. The implementation details for using the approximate technique

and computing the costs of the hybrid solutions are discussed next.

Some of the numerical examples in Axsäter (2001) seem to imply that the ap-

proximate approach in Çetinkaya and Lee (2000) may lead to errors, particularly, if

Q∗
T = 0, i.e., if it is optimal to operate the vendor’s warehouse as a transshipment

point under a time-based dispatch model. It is worth noting that this is, in fact,

the only case that the approximate technique developed in Çetinkaya and Lee (2000)

may overlook, and that the technique performs remarkably well in all other problem

instances. Further, the approximate technique can be modified in a trivial manner
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so that its performance is excellent in general (See Çetinkaya, Mutlu, and Lee 2006).

The modification suggests the following: i) Compute the corresponding exact costs

of the solutions given by QT = 0 and T =
√

2(AR + AD)/w and the original approx-

imate solution suggested in Çetinkaya and Lee (2000), and ii) pick the one producing

a smaller exact cost value as the solution to the time-based dispatch model. Since

the modified approximation works remarkably well and is easy to implement, we also

suggest the use of the approximate approach described above in specifying the pa-

rameters of easily-implementable hybrid solutions. Let Q̃T and T̃ denote the resulting

approximate order-up-to level for the vendor and the dispatch frequency, respectively,

under the time-based dispatch model. The approximate hybrid solutions are obtained

as follows.

1. Approximate hybrid-quantity-based solution: This solution is specified

by QH = Q∗, TH = T̃ , and qH = q∗.

2. Approximate hybrid-time-based solution: This solution is specified by

QH = Q̃T , TH = T̃ , and qH = q∗.

In order to compare the cost implications of the suggested hybrid solutions, we

need to develop a technique for computing the expected total average cost per unit-

time under these solutions, namely CH(Q, q, T ). Under a hybrid policy, identifying

the regenerative cycles and computing the expected number of dispatch cycles within

a replenishment cycle is a challenging task. Therefore, obtaining a closed form ana-

lytical formula for CH(Q, q, T ) is not practical for our purposes. In order to overcome

this hurdle, we have computed the empirical cost of the hybrid solutions using simu-

lation.



71

V.1.1. Numerical Results Illustrating Cost and Service Performance Im-

provements under Hybrid Policies

The numerical results presented in this section illustrate that, in terms of the re-

sulting average cost, the hybrid policies may be superior to a time-based policy, but

a quantity-based policy is the best. Furthermore, the numerical results also indicate

that the hybrid policies are superior to the quantity policies in terms of service, i.e.,

average waiting times of customers. As a result, the hybrid policies provide reason-

able alternatives by improving on the cost performance of the time-based policy and

the service measures of the quantity-based policy. As we demonstrate in the following

discussion, these improvements are significant, and, hence, the hybrid policies provide

favorable alternatives for practical problems.

Using the numerical examples considered in Axsäter (2001), we first obtain the

results presented in Table 2. Hence, the problem instances considered in Table 2 are

the same as those considered in Table 1. The % cost savings in Table 2 represent

the savings from using the corresponding hybrid-solution rather than the time based

solution, i.e.,

%∆CH(·, ·, ·) =
CT (Q∗

T , T ∗) − CH(·, ·, ·)
CT (Q∗

T , T ∗)
× 100%.

For this particular data set, Table 2 suggests that the cost savings resulting from a

hybrid solution can be in excess of 12%.

Although the approximate technique suggested for the time-based dispatch model

performs remarkably well in estimating the exact solution (see Table 2), and the re-

sults are promising in general, one should be cautious in using this approximate

technique in forming a hybrid policy. This is because, based on our numerical results

and the examples in Table 2, we conclude that while the hybrid-quantity-based so-

lution with TH = T ∗ does reduce the cost, the hybrid-quantity-based solution with
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Table 2 % Cost Savings Using Hybrid Solutions

%∆CH(Q∗, q∗, T ∗) %∆CH(Q∗, q∗, T̃ ) %∆CH(Q∗
T , q∗, T ∗) %∆CH(Q̃T , q∗, T̃ )

12.84 12.78 13.97 13.85
9.05 8.74 9.66 9.29
10.13 9.94 9.80 9.94
6.29 5.56 6.61 5.93
2.71 1.96 2.70 2.01
1.68 0.76 1.94 0.93
2.00 0.27 1.83 0.42
-0.38 -3.08 1.12 -1.21
1.76 0.91 1.79 1.04
1.25 0.43 1.32 0.55
0.46 -1.30 0.98 -0.67
-0.78 -3.27 0.66 -1.30
1.33 1.17 1.17 1.17
1.21 1.41 1.41 1.41
1.28 1.08 1.08 1.08
1.56 1.60 1.60 1.60
1.00 1.06 1.06 1.06
4.22 4.22 -7.66 -7.66
1.17 1.17 1.17 1.17
3.18 3.18 -12.74 -12.74
1.08 1.08 1.08 1.08
1.19 1.19 1.19 1.19
1.25 1.25 1.25 1.25

2.85 2.27 1.87 1.36

TH = T̃ may not. On the other hand, both of the hybrid-time-based solutions, with

TH = T ∗ or TH = T̃ , seem worse than the hybrid-quantity-based solution in terms of

their worst case performance.

Considering the average % of cost savings in the last row of Tables 1 and 2,

the quantity-based policy outperforms the hybrid-quantity-based solution which out-

performs the time-based policy. Given that a hybrid solution offers timely delivery

advantages similar to those of a time-based policy, the cost improvements gained by

using a hybrid-quantity-based solution are still significant although they are not as
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great as those realized by using a quantity-based policy. Our numerical results for the

1024 problem instances1 also demonstrate this fact.

A natural extension of the hybrid policies studied above arises when we start

counting time after the first order is realized, rather than right after the last dispatch,

since this approach uses more demand information. In fact, time-based policies can

also be modified in a similar fashion, but since the above hybrid policies already

improve on cost performance while achieving the same timely delivery advantages,

we only discuss the impact of this modification on the cost performance of the hybrid

policies. Our results based on this modification are summarized in Table 32. where

%∆CHM(·, ·, ·) represents the cost savings from using the corresponding modified

hybrid solution rather than the time-based solution. After this modification, the

cost performance of the hybrid policies improves. However, this improvement is not

substantial.

Table 3 Average % Cost Savings from Using the Modified Hybrid Solutions
Average Average Average Average

%∆CHM(Q∗, q∗, T ∗) %∆CHM (Q∗, q∗, T̃ ) %∆CHM (Q∗
T , q∗, T ∗) %∆CHM (Q̃T , q∗, T̃ )

3.78% 3.30% 2.52% 2.31%

We also have tested the sensitivity of the cost performance of the hybrid policies

to the TH and qH values. We have found the intuitive result that the cost decreases as

TH increases, and the cost increases as TH decreases. This is simply because for larger

(resp. smaller) values of TH , the dispatch load is more (resp. less) likely to be equal

to qH for most dispatch cycles, which implies that the hybrid policy works almost like

1These problems are the ones that we generated in Chapter III.

2Problem settings in Table 3 are the same as in Table 1
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a quantity-based policy (resp. time-based policy). In fact, for smaller values of TH , we

are, in fact, imposing a more strict time constraint on the problem, and, hence, the

cost performance deteriorates. The relationship between the cost performance of the

hybrid policy and the underlying qH value is more complicated. For some problem

instances, the cost increases as we deviate from qH because qH becomes too large and

unlikely to accumulate during a dispatch cycle so that the hybrid policy effectively

reduces to a time-based policy. In other problem instances, the cost may increase first

and then decrease. The reason behind this result is that we use a heuristic approach

to specify the qH and TH values, and for a given TH , there may be a more suitable

qH value that we are underestimating.

Finally, we argue that although the cost performance of the quantity-based policy

is superior to the cost performance of the hybrid policies, the hybrid policies lead

to higher service measures. In this context, the service measure we consider is the

long-run average of cumulative waiting, i.e.,

lim
t→∞

sum of waiting times of orders in [0, t]

t
,

which has been estimated using simulation for the problem settings in Table 1 as well

as the 1024 additional problem instances solved. Table 4 provides some results for a

comparison of the average service and cost performances of hybrid and quantity-based

solutions for the 1024 problem instances.

It is worth noting that the hybrid policies lead to higher service measures than

the quantity-based policy because they impose an upper bound on the waiting times of

orders. Also, by definition, the resulting service measure of a hybrid policy is the same

as the service measure of the underlying time-based policy used to set the value of

TH . Naturally, our numerical results are consistent with these intuitive expectations

about the service and cost performance of the hybrid policies.
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Table 4 A Comparison of the Average Service and Cost Performances of Hybrid Poli-

cies and the Quantity-Based Policy
Average % service Average % cost

measure improvement increase

Hybrid quantity p. vs. quantity p. 16.20 3.82
Hybrid time p. vs. quantity p. 16.20 4.46
Appr. Hybrid quantity p. vs. quantity p. 22.85 4.46
Appr. Hybrid time p. vs. quantity p. 22.82 5.37

V.2. An Analytical Model for a Pure Hybrid Consolidation Policy

In Chapter III, we derived the optimal policy parameters for an integrated inven-

tory and shipment consolidation model under a quantity-based consolidation regime.

We also compared the cost performance of this consolidation practice to that of a

time-based consolidation policy. Quantity-based and time-based policies are the most

common consolidation practices. In addition to these, there are mixed consolidation

strategies that utilize both the time and quantity aspects. In the first section of this

chapter, we characterized some of these hybrid consolidation strategies whose policy

parameters are derived from the optimal policy parameters of the quantity-based and

time-basedpolicies, and we have compared the cost and service performances of these

hybrid policies in an integrated inventory and shipment consolidation model. We

also noted that, deriving an analytical expression for the expected cost of the hybrid

policyin such a model is analytically intractable. However, in order to have a better

understanding of the performance of hybrid policies, we can isolate the shipment con-

solidation decisions from inventory decisions and build a pure consolidation model.

In this section, we build a pure consolidation model with a hybrid consolidation policy

and analytically derive the optimal policy parameters.

The model assumptions are same as those of Chapter III. The hybrid policy works
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as follows: A shipment is released either when the accumulated load exceeds q, i.e.,

reaches q + 1, or the waiting time of the first order exceeds T . We define a shipment

consolidation cycle to be the time between two consecutive shipment epochs.

We note here that T is not the maximum shipment cycle length, but the max-

imum waiting time of the first order. This is slightly different from Çetinkaya and

Lee’s (2000) model. In their model, the shipment cycle length is set to T time units.

Such an implementation ensures periodic shipments but does not necessarily realize

the scale economies. On the other hand, in the hybrid policy, periodic shipments

cannot be guaranteed by setting a maximum cycle length. Hence, in order to ensure

the scale economies, we define T to be the maximum waiting time of an order. The

related costs are as follows:

K̃ : Fixed cost for each shipment.

c : Shipment cost per unit of item.

w : Cost of delaying the shipment of one unit of item for one unit of time.

Since the annual demand rate is constant, c, the per unit shipment cost, does

not affect the choice of q and T . Hence, without loss of generality, we assume c = 0

in the rest of the paper.

In the next section, we derive the long run average of the expected cost of the

system for unit demand sizes.

V.2.1. An Analytical Model

First, we state some assumptions about the underlying demand and inventory pro-

cesses and introduce some notation:

• We let Xi, i = 1, 2, . . . denote the interarrival time of the ith order in a shipment

cycle. Since demand is Poisson, the Xi’s follow an Exponential distribution with

mean E[Xi] = 1/λ.
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• Also let S0 = 0, Si =
∑i

j=1 Xj , and N(t) = sup {i : Si ≤ t} as the underlying

demand arrival process in a shipment cycle. Observe that N(t) is the counting

process that registers the number of Poisson arrivals within the first t time units

of the cycle. For any given t, the distribution of N(t) is Poisson with parameter

λt. Recall that, T is the decision variable that represents the maximum tolerable

waiting time for a customer. Since we use the probability distribution of N(T )

very frequently in the paper, we define the following shorthand notation:

pn = P{N(T ) = n} =
e−λT (λT )n

n!
.

We also define

F (x) =
x∑

n=0

pn and,

F (x) =
∞∑

n=x+1

pn.

• Each time a customer order is received, we update the size of the accumu-

lated/consolidated outbound load waiting to be released at time t. This way,

the time when the accumulated outbound load reaches q + 1 for the first time

in a shipment cycle can be registered immediately.

In order to calculate the long run average of the expected cost, we employ the

renewal reward theorem. For this, we should first identify the regeneration epochs,

and define the regenerative cycles. Since the orders arrive according to a Poisson

Process, no matter what triggers the shipment decision, each shipment stochastically

clears the system, i.e., each shipment is a regeneration epoch.3 Using the Renewal

Reward Theorem, we can express the long run average of the expected cost, G̃(q, T )

3We note that, this argument would not have held if the order stream were not Poisson.
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as follows:

G̃(q, T ) =
E[CC ]

E[L]
. (5.1)

Here, E[CC ] represents the expected cost for a shipment cycle, and E[L] repre-

sents the expected shipment cycle length. The expression for the latter, required to

derive the former, is presented first.

LEMMA 3 The expected cycle length is given by

E[L] =
1

λ
+

q

λ
F (q) + TF (q − 1). (5.2)

Proof: The cycle length is

(L|S1 = s1) =





s1 + (Sq+1 − S1)|S1 = s1) if Sq+1|S1 − s1 ≤ T,

s1 + T otherwise.
(5.3)

Using expectations, we can write

E[L|S1 = s1] = s1 + E[min((Sq+1 − S1)|S1 = s1), T )]. (5.4)

We know that S1 follows an exponential distribution with mean 1/λ. We observe

that the distribution of (Sq+1 − S1)|S1 = s1 has Erlang(q, λ). For notational clarity,

we define Yq := (Sq+1 − S1)|S1 = s1, and rewrite Equation (5.4) as

E[L|S1 = s1] = s1 + E[min(Yq, T )]. (5.5)

We can derive E[min(Yq, T )], by conditioning on Yq:

E[min(Yq, T )] =

∫ T

0

tfYq
(t)dt + TP{Yq > T} (5.6)

=

∫ T

0

tλ(λt)q−1 e−λt

(q − 1)!
dt + TF (q − 1). (5.7)
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Here, we note that

∫ T

0

(λt)qe−λtdt = (λT )q e−λT

−λ
−
∫ T

0

qλqtq−1 e−λt

−λ
dt

= −(λT )q e−λT

λ
+ q

∫ T

0

(λt)q−1 e−λt

λ
dt

= −(λT )q e−λT

λ
− q(λT )q−1e−λT

λ
+ q(q − 1)

∫ T

0

(λt)q−2 e−λt

λ
dt

...

= −e−λT

λ

(
q−1∑

n=0

q!(λT )q−n

(q − n)!

)
+ q!

∫ T

0

e−λtdt

= −e−λT

λ

(
q−1∑

n=0

q!(λT )q−n

(q − n)!

)
− q!e−λT

λ
+

q!

λ

= −e−λT

λ

(
q∑

n=0

q!(λT )q−n

(q − n)!

)
+

q!

λ

=
q!

λ

(
1 −

q∑

n=0

pn

)

=
q!

λ
F (q).

Thus, ∫ T

0

(λt)q e−λt

(q − 1)!
dt =

q

λ
F (q). (5.8)

Substituting Equation (5.8) into Equation (5.6), we obtain

E[min(Yq, T )] =
q

λ
F (q) + TF (q − 1). (5.9)

We, next, substitute Equation (5.9) into (5.5) and obtain

E[L|S1 = s1] = s1 +
q

λ
F (q) + TF (q − 1). (5.10)

Note that E[L] = ES1
[E[L|S1]]. By taking the expectation of the expression

(5.10) over S1, we obtain Equation (5.2). �
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Next, note that the cost per cycle has two components, namely the shipment

costs, CD, and the customer waiting cost, CW . CD is simply a setup cost K̃ associated

with each shipment, which is constant over all realizations of the shipment cycle.

E[CW ] is found in the following lemma:

LEMMA 4 The expected customer waiting cost per cycle is given by

E[CW ] = w

(
q

λ
F (q) + TF (q − 1) +

(q − 1)

2

q

λ
F (q) +

T

2

q−1∑

n=0

npn

)
. (5.11)

Proof: Observe that, the expected waiting time for the first order in a shipment

cycle is E[L] − E[S1]. By using the expression of E[L] in Equation (5.2), we obtain

the expected waiting time of the first customers as

q

λ
F (q) + TF (q − 1). (5.12)

Next, we explain how to derive the total waiting times of other orders in the

cycle. Let W be the random variable to denote the total waiting times of those

orders, and W̃ be W |S1. Let us also define

Yi = (Si+1 − S1)|S1 = s1, for i = 1 . . . q.

Each Yi follows Erlang(i, λ).

Further, let τ be the random variable for denoting the time that elapses between

the arrival of the first order and the shipment conditional on S1. Recalling the proof

of Lemma 3, τ is in fact identical to min(Yq, T ), i.e.,

τ =





Yq if Yq ≤ T,

T otherwise.
(5.13)
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Equation (5.13) basically says that, if the time it takes to accumulate q units is less

than T , then τ is equal to that time; otherwise, τ = T . Utilizing that equation, we

find E[W̃ ] by conditioning on the value of τ :

E[W̃ ] = Eτ [E[W̃ |τ ]] =

∫ T

0

E[W̃ |τ = t]fτ (t)dt + E[W̃ |τ = T ]P{τ = T}. (5.14)

The two pieces in (5.14) pertain, respectively, to the cases when q units are

consolidated in a time less than T and when fewer than q orders arrive within an

interval T . The first piece is

∫ T

0

E[W̃ |τ = t]fτ (t)dt =

∫ T

0

E[W̃ |τ = t]fτ (t)dt

=

∫ T

0

E

[
q−1∑

n=1

(t − Yn|Yq = t)

]
fτ (t)dt

=

∫ T

0

(
(q − 1)t − E

[
q−1∑

n=1

(Yn|Yq = t)

])
fτ (t)dt.(5.15)

By Lemma 4.5.1 in Resnick (2002), if Yq = t, then the joint distribution of Yn for

n < q, is the same as the joint distribution of {U(1), . . . , U(n)}, the order statistics

of a sample of size n from the Uniform distribution on (0, t). Also, since
∑q

n=1 Yn is

symmetric in the elements of the summand, the following assertion holds:

E

[
q−1∑

n=1

(Yn|Yq = t)

]
= E

[
q−1∑

n=1

U(n)

]
=

(q − 1)t

2
. (5.16)

We next substitute Equation (5.16) into (5.15), and obtain

∫ T

0

E[W |τ = t]fτ (t)dt =

∫ T

0

(q − 1)t

2
fτ (t)dt

=
(q − 1)

2

∫ T

0

tλ(λt)q−1 e−λt

(q − 1)!
dt
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Using Equation (5.8), we obtain

∫ T

0

E[W |τ = t]fτ (t)dt =
(q − 1)

2

q

λ
F (q). (5.17)

Continuing, we calculate the second piece in Equation (5.14):

E[W̃ |τ = T ]P{τ = T} =

q−1∑

n=0

E[W̃ |N(t, T + t] = n]P{N(s1, T + s1] = n}

=

q−1∑

n=0

E[W̃ |N(T ) = n]pn

=

q−1∑

n=0

E

[
n∑

i=1

(T − Yi|N(T ) = n)

]
pn

=

q−1∑

n=1

(
nT − E

[
n∑

i=1

Yi|N(T ) = n

])
pn

=

q−1∑

n=1

(
nT − E

[
n∑

i=1

Yi|N(T ) = n

])
pn. (5.18)

Using Theorem 4.5.2 of Resnick (2002) and the symmetric property of
∑n

i=1 Yi in Yi,

we find

E

[
n∑

i=1

Yi|N(T ) = n

]
= E

[
n∑

i=1

U(i)

]
= E

[
n∑

i=1

Ui

]
=

nT

2
. (5.19)

Substituting Equation (5.19) into (5.18) results in

E[W̃ |τ = T ]P{τ = T} =

q−1∑

n=1

nT

2
pn =

q−1∑

n=0

nT

2
pn. (5.20)

Combining Equations (5.17) and (5.20) in Equation (5.14), we obtain the follow-

ing:

E[W̃ ] =
(q − 1)

2

q

λ
P{N(T ) > q} +

T

2

q−1∑

n=0

npn. (5.21)

Since E[W ] = ES1
[W̃ ], we compute E[W ] by taking the expectation of Equation

(5.21) over S1. However, since this equation is independent of S1, we conclude that
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E[W ] is given by the same expression.

Recall that Equation (5.12) gives the expected waiting time of the first order,

and now we have Equation (5.21), the sum of the expected waiting times of the other

orders in the cycle. Hence, summation of (5.12) and (5.21) yields Equation (5.11). �

Using Equations (5.2) and (5.11) in Equation (5.1), we find

G̃(q, T ) =
K̃ + w

(
q
λ
F (q) + TF (q − 1) + (q−1)

2
q
λ
F (q) + T

2

∑q−1
n=0 npn

)

1
λ

+ q
λ
F (q) + TF (q − 1)

. (5.22)

The following remark simplifies the objective function in Expression (5.22).

REMARK 2 Minimizing G̃(q, T ) is equivalent to minimizing

G(q, t) =
K + wq(q + 1)F (q, t) + wt[

∑q−1
n=0 npn + 2F (q − 1, t)]

1 + qF (q, t) + tF (q − 1, t)
, (5.23)

where K := 2K̃λ, t := λT , and G(q, t) = 2G̃(q, T ).

Proof: Substituting t = λT in Expression (5.22), we have

G̃(q, t) =
K̃λ

1 + qF (q) + tF (q − 1)
+

w

2

(
q(q + 1)F (q) + t

∑q−1
n=0(n + 2)pn

)

1 + qF (q) + tF (q − 1)

=
1

2

(
K + wq(q + 1)F (q, t) + wt[

∑q−1
n=0 npn + 2F (q − 1, t)]

1 + qF (q, t) + tF (q − 1, t)

)
.

Having shown 2G̃(q, t) = G(q, t), we can say that the (q, t) that minimizes G(q, t)

also minimizes G̃(q, t). �

Before attempting to minimize G(q, t), we consider two limiting cases:

1. t → ∞: When t is very large, the shipments are always triggered when the

target load is reached. Hence, the hybrid policy reduces to the quantity-based

policy. In this case, G(q, t) is

G(q,∞) =
K

q + 1
+ wq. (5.24)
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It is trivial to show that G(q,∞) is minimized at

q∗ =

√
K

w
− 1 and, (5.25)

G(q∗,∞) = 2
√

Kw − w. (5.26)

In practice, q∗ is rounded to one of the closest integer, since it is in fact an

integer variable.

2. q → ∞: When q is very large, the target load can never be consolidated, and

shipments are released T time units after the arrival of the first order. Thus,

the hybrid policy becomes time-based policy, and G(q, t) is

G(∞, t) =
K

1 + t
+ wt

(
1 +

1

1 + t

)
.

One can show that G(∞, t) is minimized at

t∗ =

√
K − w

w
− 1 and, (5.27)

G(∞, t∗) = 2
√

(K − w)w. (5.28)

Next, we provide the following Remark which compares G(q∗,∞) and G(∞, t∗).

We will use this result for minimizing G(q, t).

REMARK 3 For K > 2w, the expected average cost of the optimal quantity-based

policy is lower than that of the optimal time-based policy.
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Proof: We proceed to the proof by contradiction. Let us assume that G(∞, t∗) <

G(q∗,∞). Using Equations (5.26) and (5.28), we derive

G(∞, t∗) = 2
√

(K − w)w < 2
√

Kw − w = G(q∗,∞)

w < 2(
√

Kw −
√

(K − w)w)

√
w < 2(

√
K −

√
(K − w)).

Multiplying both sides by (
√

K +
√

(K − w)) gives

√
Kw +

√
(K − w)w < 2w.

Since
√

(K − w)w <
√

Kw, we can say

√
(K − w)w < w.

However, by the assumption of K > 2w, we already know that

√
(K − w)w >

√
w2 = w.

This contradiction completes the proof. �

Having looked at the extreme cases, we turn back to minimizing G(q, t). It is

possible to show that the function is neither jointly convex nor convex in any of the

variables. Such characteristics make the optimization problem a rather challenging

task. (Figure 4 illustrates the behavior of G(q, t) for a given problem instance.) On the

other hand, the optimization problem is even more complicated under the integrality

constraint on q. However, since consolidation policies make economic sense only

for large quantities, we may concentrate on those applications where we expect the

optimal q to be large. To be able to derive some optimality characteristics for such
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cases, we will assume that q is a continuous variable where necessary in the rest of

the paper.

Figure 4 An Illustration of G(q, t) for K = 100, w = 3
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Assuming a continuous q, we obtain the necessary first order conditions for the optimal

(q, t) :

∂G(q, t)

∂q
=

F (q, t)

E[L(q, t)]
(w(2q + 1) − G(q, t)) = 0, (5.29)

∂G(q, t)

∂0
=

2w[tF (q − 2) + F (q − 1)] − F (q − 1)G(q, t)

E[L(q, t)]
= 0. (5.30)
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Equation (5.29) provides us with very useful information about the stationary

points and brings us to the following lemma:

LEMMA 5 For a given t, G(q, t) has either a unique minimizer, q(t) which satisfies

w(2q(t) + 1) = G(q(t), t), (5.31)

or q(t) is at infinity.

Proof: Equation (5.29) shows that any q that satisfies w(2q(t)+ 1) = G(q(t), t) is a

stationary point. Furthermore, one can observe that such a point is a local minimum

because the second derivative of G(q, t), with respect to q at that point is nonnegative:

∂2G(q, t)

∂q2
=

2wF (q, t)

E[L(q, t)]
− (w(2q + 1) − G(q, t))

{
pq

E[L]
+ 2

F
2
(q, t)

E2[L]

}
.

The next step is to show that the minimizer is unique. For this, observe that

each local minimum satisfies w(2q(t) + 1) = G(q(t), t). Hence, the smallest of the q

values that satisfy this equality is the minimizer.

If no finite value of q can satisfy that equality, then the stationary point is in the

limit where q approaches infinity, because in Equation (5.29),

lim
q↑∞

F (q, t)

E[L(q, t)]
= 0.

This completes the proof. �

PROPOSITION 6 (Assuming a continuous solution for q) For K > 2h, G(q, t) is

minimized at (q∗,∞) where q∗ is given by Equation (5.25).

Proof: We know from Lemma 5 that, for any given t, if there is a finite q that

minimizes G, it should satisfy Equation (5.29). By substituting the expression of
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G(q, t) given by Equation (5.23) into (5.29), we obtain the following:

w(2q + 1) =
K + wq(q + 1)F (q, t) + wt[

∑q−1
n=0 npn + 2F (q − 1, t)]

1 + qF (q, t) + tF (q − 1, t)
.

(5.32)

After multiplying both sides of the equation by the denominator of the right

hand side and doing some simplifications, we obtain

w(2q + 1) = K − wq2F (q) + wt(

q−1∑

n=0

npn − (2q − 1)F (q − 1)). (5.33)

Let g(q, t) denote the right side of Equation (5.33). Note that for the optimal solution

with a finite q for a given t, g(q, t) = G(q, t). We can also show that g(q, t) is decreasing

in t, since

∂g(q, t)

∂t
= w

[
q−1∑

n=0

npn − (2q − 1)F (q − 1)

]
+ wt [F (q − 2) + qpq−1] − wq2pq

= w

{
q−1∑

n=0

npn − (2q − 1)F (q − 1) + tF (q − 2) + tqpq−1 − q2pq

}

= w

{
q−1∑

n=0

npn −
q−1∑

n=0

2qpn +

q−1∑

n=0

pn +

q−2∑

n=0

tpn

}

= w

{
q−1∑

n=0

npn −
q−1∑

n=0

2qpn +

q−1∑

n=0

pn +

q−1∑

n=1

npn

}

= w

{
q−1∑

n=0

2(n − q)pn +

q−1∑

n=0

pn

}
≤ 0.

Since g is decreasing in t for any given q, g is minimized when t is at infinity. The

function g(q,∞) takes the form

g(q,∞) = K − wq2. (5.34)
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Note that q∗ =
√

K/w − 1 is the unique solution to

w(2q + 1) = g(q,∞).

At this point, we claim that (q∗,∞) minimizes G(q, t). The proof proceeds with

a contradiction argument:

Suppose there exists a stationary point (q◦, t◦) where q◦ is finite and G(q◦, t◦) <

G(q∗,∞). By Lemma 5, (q◦, t◦) should satisfy Equality (5.31). Thus, q◦ should be

less than q∗. Then by the implication of Equation (5.34)

g(q◦,∞) > g(q∗,∞), (5.35)

because Equation (5.34) shows that g(q,∞) is decreasing in q for q > 0. On the other

hand,

g(q◦, t◦) ≥ g(q◦,∞), (5.36)

because g is decreasing in t. Combining the Inequalities (5.35) and (5.36), we obtain

G(q◦, t◦) = g(q◦, t◦) ≥ g(q◦,∞) > g(q∗,∞) = G(q∗,∞).

This contradiction shows that there is not a finite (q◦, t◦) that leads to a lower expected

cost than G(q∗,∞).

Now, let us investigate if there is any (q◦, t◦) where q◦ = ∞ and G(q◦, t◦) <

G(q∗,∞). When q◦ = ∞, the consolidation policy reduces to a time-based policy.

Then, the best value of t◦ is t∗ - the optimal policy parameter of the time-based

policy- given by Equation (5.27). However, in Remark 3, we showed that G(q∗,∞) <

G(∞, t∗) when K > 2h.

Having shown that no (q◦, t◦) pair could lead to a better expected cost than

G(q∗,∞), we conclude that (q∗,∞) is the unique minimizer of G(q, t). �
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V.2.2. Service vs Cost: A Trade-off Analysis

Proposition 6 can be interpreted as showing the cost-wise superiority of the quantity-

based policy compared to both the time-based policy and the hybrid policy. However,

the proposition refers to an unconstrained problem; there is no upper bound on the

maximum waiting time. Because customers may object to a lead time beyond T

for receipt of their orders, the hybrid policy is attractive for practical applications.

Recall that Lemma 5 provides the best q value for any given T . We can derive q(T ),

corresponding to a hybrid policy, with time parameter T .

The service measure, “maximum waiting time,” demonstrates the responsiveness

of the supplier to its customers. Intuitively, any improvement in service performance

results in additional cost. We now numerically analyze the trade-off between maxi-

mum waiting time and expected annual cost.

For a given problem instance, i.e., given K and w values (note that we can

always assume a normalized demand for which λ = 1), we first derive q∗ and the

corresponding expected annual cost, C(q∗,∞). Next, we calculate q(T ) for different

values of T , i.e., the maximum tolerable waiting time, and derive the percentage

increase in the cost. In fact, T and q(T ) also imply an expected maximum waiting

time which can be expressed as E[min(Sq+1 − S1, T )]. Figure 5 shows the percentage

increase in the expected cost with respect to the decrease in expected maximum

waiting time. In this example, the model parameters are K = $616, and w = $0.41.

An interesting observation in Figure 5 is that even when the expected maximum

waiting time changes by almost 50%, the average cost only increases by around 23%.

One can argue that this is due to the fact that K >> w. However, even when K/w is

not this high, the increase in the cost is still limited. Figure 6 shows such an example
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Figure 5 Percentage Cost Increase with Respect to Expected Maximum Waiting Time

for High K/w Ratio
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where K = $48, and w = $1.49.

Our numerical study over 650 problems4 indicates that the increase in cost is always

less than 25% when the expected maximum waiting time decreases by half. This

relative insensitivity of expected cost to maximum waiting time is very similar to

the cost sensitivity observed in the EOQ-Model, and in the present case it shows the

benefits and near optimality of a hybrid policy.

4We have generated the problems through a factorial design of the model parameters K and w.
K varies from 40 to 4000 with a factor of 1.2, and w varies from 0.2 to 40 with a factor of 1.2.
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Figure 6 Percentage Cost Increase with Respect to Expected Maximum Waiting Time

for Low K/w Ratio
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V.3. Summary

In this chapter, we introduced several hybrid consolidation policies and demonstrated

that hybrid policies can not only achieve cost savings over time policies but are also

superior to quantity-based policies in terms of customer service. We also studied

an analytically pure consolidation model with a hybrid policy, and showed that the

optimal hybrid policy is, in fact, a quantity-based policy. This coincides with the earlier

numerical results which clearly imply that a quantity-based policy leads to the lowest

expected cost.
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CHAPTER VI

COORDINATION IN TRANSPORTER-BUYER CHANNELS

In the previous three chapters, we have studied the impact of transportation costs

on operational decisions. Starting with this chapter, we expand our scope and begin

analyzing the impact of transporters on supply channels.

The major focus of the channel coordination literature has been on supplier-

buyer interactions. Although recent studies (See Toptal 2003) take into account

transportation related costs in channel coordination decisions, there is not any work

in the literature that treats the transporter as a member of the channel. However,

increased transportation costs and new innovative practices such as 3PL and VMI

necessitate a broader look at supply channels by integrating transportation costs

and transporters into these channels. In this chapter, we take the first steps in

this direction by introducing transporter-buyer channels and showing the substantial

savings that can be achieved through coordination of these parties.

The organization of this chapter is as follows: In Section VI.1, we explain the

problem setting and introduce the notation. We study transporter-buyer channels for

two different models: (i) A single period model is studied in Section VI.2. (ii) An

infinite planning horizon model is presented in Section VI.3.

VI.1. Problem Setting and Operational Characteristics

We consider a buyer who orders a certain type of item from an external source and

a transporter who ships these orders to the buyer’s site. The buyer needs to de-

cide about his order size, order frequency, and retail price. On the other hand, the

transporter’s decision variable is the freight rate that he charges to the buyer.

The buyer observes a deterministic price dependent customer demand. Eco-
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nomic theory suggests an inverse relation between the retail price and the demand

of an item. Demand can be represented as a decreasing function of price. Two of

the most commonly used price-demand functions are linear demand and iso-elastic

demand. For linear demand, the demand linearly decreases with the retail price, and

the function is given by D(p) = a − bp. For iso-elastic demand, the elasticity of the

demand is constant, and the function is given by D(p) = ap−b. In our analysis, we

consider these two type of functions.

For certain industries and product types transportation costs are relatively high.

For example, in the food industry, transportation costs account for around 16% the

sales dollar of the products on the average. This value is more than 13% for chemicals

and rubber products, and 11% for wood products and furniture. (Ballou 1992, pp.15)

For such items, transportation costs play a significant role in the retail price. On

the other hand, in the marketing and operations management literature, the retail

prices of items are usually modelled as a function of the wholesale prices. Retailers

often apply a price multiplier on the wholesale price and a markup price to cover the

operating costs. In this dissertation, we assume that the transportation price is a per

unit price, and we model the retail price as a function of both the wholesale price and

the transportation price. Hence, the demand is indirectly affected by the per unit

transportation rate. By considering price dependent demand, we intend to analyze

the impact of transportation costs on pricing and ordering decisions.

The operational characteristics of the parties are explained below.

VI.1.1. Operational Characteristics of the Buyer

For a particular type of item, the buyer observes a deterministic price dependent

demand. He orders from an outside source. Loss of sales or backorders are not

allowed, which means the buyer has to order enough to satisfy all the demand. Every
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time the buyer places an order, he incurs a fixed cost, denoted by AB, possibly

representing the the sum of administrative, receiving, and inspection costs. Each

unit of item costs the buyer ν dollars. This cost includes the wholesale price, and

handling charges. In addition to this, there is also a per unit shipment price, pT , that

the buyer pays to the transporter. The buyer also incurs a per unit, per unit-time

inventory holding cost denoted by hB.

The buyer has two decision variables: order size, q, and retail price p.

For the single period problem, the fixed ordering cost, AB, is irrelevant to the

buyer’s decision variables, because AB is independent of the order size. Thus, for this

problem, we exclude AB from the analytical model. Since the planning horizon is one

period, the per unit per time inventory carrying cost, hB, is also irrelevant for this

problem, and is also excluded from the model.

VI.1.2. Operational Characteristics of Transporter

We consider a transporter operating a fleet of vehicles, say trucks. The size of the

fleet. i.e., the number of trucks in the fleet, is sufficiently large, and each truck

has a finite capacity of P . Hence, we say that the fleet size for each dispatch has

installable capacity in increments of P . Naturally, there is a fixed cost, denoted by

RT , associated with using each truck of size P . This cost includes the driver’s hourly

wages, fueling costs associated with the shipment from the supplier’s location to the

buyer’s location, etc. Additionally, the transporter also incurs a fixed cost, denoted

by AT , associated with each dispatch regardless of the fleet size used or the dispatch

quantity. This cost may include fixed costs of administrative paperwork and bundling.

We note that in the rest of the paper, the transporter’s fixed cost AT is assumed to

be zero for the sake of simplicity. However, our analysis can easily be extended to

consider the case where AT > 0. Finally, the transporter may incur a cost per unit
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item transferred, cT .

VI.2. Single Period Problem in a Single-Buyer, Single-Transporter Set-

ting

In this section, we consider the single period transporter-buyer channel coordination

problem.

In order to simplify the notation, we define

w := pT + ν,

c := ν + cT .

The buyer’s profit function is

ΠB(p) = (a − bp)(p − w).

On the other hand, the transporter’s profit function is

ΠT (p̃T ) = (a − bp)(pT − cT ) −
⌈

(a − bp)

P

⌉
RT .

We can also express the profits as functions of demand. Observe that in the

single period problem, the demand is also the order quantity:

ΠB(D) = D

(
a − D

b
− ω

)
,

ΠT (D) = D(pT − cT ) −
⌈

D

P

⌉
RT .

VI.2.1. Centralized Problem

We first consider a centralized model where both parties are branches of the same

company, and the objective is to maximize the total system profit. The system profit
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is

ΠC(D) = D

(
a − D

b
− c

)
−
⌈

D

P

⌉
RT .

ΠC(D) consists of two parts: the first part which we call φ(D) is a concave

function of D, and the second part, namely ϕ(D), is a step function which causes

discontinuities. We can write ΠC(D) as ΠC(D) = φ(D) − ϕ(D). Figure 7 shows the

behavior of ΠC(D).

Figure 7 Centralized Profit Function - ΠC(D)

0

50

100

150

200

250

300

350

40 60 80 100 120

q

Recall that, φ(D) is concave in D. and its maximizer is

D◦ :=
a − bc

2
.
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The corresponding retail price is

p◦ :=
a + bc

2b
.

Before going further in the analysis, we also define:

pk :=
a − kP

b
.

In the above expression, pk corresponds to the retail price that sets the total demand,

Dk to kP , an integer multiple of the truck load.

When D decreases from Dk to Dk−1, ϕ(D) decreases by RT . Thus, we can

observe jumps with a magnitude of RT in ΠCD at Dk values. This observation has

several implications. The first immediate implication is presented in the following

lemma:

LEMMA 6 The maximizer of ΠC(D) is less than, or equal to, D◦.

PROOF: Let k◦ be the number of trucks needed to ship D◦ units. Consider Dk◦−1.

If we slightly increase the demand, ΠC will decrease by RT units. As we continue to

increase D, the function will increase and reach its local maximum at D◦. However,

the total increase can be less than RT . Thus, it is possible to have ΠC(Dk◦−1) >

ΠC(D◦). In other words, one can find a D < D◦ which leads to a higher function

value.

On the other hand, ΠC(D) is decreasing for D > D◦ including the discontinuity

points. This completes the proof. �.

In the following proposition, we quantify the net change in ΠT (p) when D in-

creases from Dk−1 to Dk, and characterize the system-wide optimal solution:
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PROPOSITION 7 The centralized solution is given by the following:

DC =





D◦ if k∗
C > k◦,

arg max{ΠC(D◦), ΠC(k∗
CP )} otherwise,

where,

k∗
C = max

k∈Z+

{
k : k <

a − bc

2P
+

1

2
− bRT

2P 2

}
.

PROOF: As mentioned in Lemma 6, when p changes from Dk−1 to Dk, the

amount of decrease in ϕ(D) is RT . Mathematically,

∆ϕ(k) := ϕ(Dk) − ϕ(Dk−1) = RT .

On the other, we can quantify the change in φ(D) as follows:

∆φ(k) := φ(Dk) − φ(Dk−1) =
aP + P 2

b
− 2kP 2

b
− Pc.

In sum, the change in ΠC(D) is

∆Π(k) = ∆φ(k) − ∆ϕ(k)

=
aP + P 2

b
− 2kP 2

b
− Pc − RT .

Note that ∆Π(k) is linearly decreasing in k. One can check that ∆Π(k) is negative

for k > k∗
C ; there is a maximum k value for which ∆Π(k) < 0. If 0 < k∗

C < k◦, Dk∗

C is

a candidate to maximize ΠC . This completes the proof. �

VI.2.2. Decentralized Problems

The previous section solves the centralized problem which represents full coordination

between the transporter and the buyer. The solution to the centralized problem is the

benchmark for system-wide profit. In this section, we investigate the cases where there

is no coordination among the parties. In such cases, each party makes his/her own
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decisions by considering the other party’s possible decisions. We model decentralized

cases as Stackelberg games in which one of the parties is making the first move, i.e.,

leading the channel. In the subsequent analysis, we study transporter driven and

buyer driven channels, respectively.

VI.2.2.1. Transporter Driven Non-Cooperative Decentralized Problem

In the transporter driven channel, the transporter moves first and declares the per

unit transfer price pT . Then, the buyer decides the retail price, p. We recall the

buyer’s profit function:

ΠB(D) = D

(
a − D

b
p − w

)
.

It is easy to check that ΠB(p) is concave in D.

Π
′

B(D) =
a − bw

b
− 2D

p
, and

Π
′′

B(p) =
−2

b
< 0.

The buyer’s profit is maximized at

DB =
a − bw

2
. (6.1)

Next, we substitute buyer’s optimal solution into the transporter’s profit func-

tion:

ΠT (pT ) =
a − bw

2
(pT − cT ) −

⌈
a − bw

2P

⌉
RT .

Since w and pT differ by only a constant, i.e., w = pT + c, and the relation

between D and w is given by Equation (6.1), we can rewrite ΠT as a function of D:
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ΠT (D) = D

(
a − 2D

b
− c

)
−
⌈

D

P

⌉
RT .

Observe that, ΠT (D) has a similar structure to ΠC(D). We provide the optimal

solution to the transporter’s problem in the following proposition.

PROPOSITION 8 The optimal D in the transporter driven channel is

DT =





D◦
T if k∗

T > k◦,

arg max{ΠT (D◦
T ), ΠT (k∗

T P )} otherwise,
(6.2)

where,

D◦
T =

a − bc

4
,

k◦ =

⌈
D◦

T

P

⌉
,

k∗
T = max

k∈Z+

{
k : k <

a − bc

4P
+

1

2
− bRT

4P 2
,

}
.

Transporter’s optimal price is

p∗T =
a − 2DT

b
− ν. (6.3)

PROOF: The proof follows the same steps as of the proof of Proposition 7. �

VI.2.2.2. Buyer Driven Non-Cooperative Decentralized Problem

In Section 4.3 we considered the decentralized model where the transporter moves

first. In this section, we consider a similar model where the buyer moves first.

The buyer announces a non-negative price multiplier, α̂ In other words, he de-

clares that the retail price, p, is going to be α̂w. For a given w, the total demand is

a − bα̂w. For notational simplicity, we define α := bα̂. On the other hand, since w

and pT differ by only a constant, we can write the transporter’s problem as a function
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of w. (Recall that w = pT + ν.) Thus, the transporter’s profit function is

ΠT (w) = (a − αw)(w − c) −
⌈

a − αw

P

⌉
RT .

If we want to write ΠT as a function of D, then it takes the following form:

ΠT (D) = D

(
a − D

α
− c

)
−
⌈

D

P

⌉
RT .

Observe that ΠT (D) has the same structure as ΠC(D) where the only difference

is that we have b in ΠC and w in ΠT . Hence, we mimic the optimal solution to the

centralized model and present the solution to the transporter’s problem:

PROPOSITION 9 The optimal response of the transporter to a given α is given by

the following:

DB
T =





D◦

B if k∗
B > k◦,

arg max{ΠT (D◦
B), ΠT (k∗

BP )} otherwise,

where,

D◦
B =

a − αc

2
and,

k∗
B = max

k∈Z+

{
k : k <

a − αc

2P
+

1

2
− αRT

2P 2

}
.

It is not possible to derive the buyer’s optimal response, α, analytically. Hence

we propose a numerical search over α.

VI.2.3. Channel Efficiency: Centralized vs. Decentralized Channels

We have finished modelling and deriving the optimal decision variables in central-

ized and decentralized buyer-transporter channels. Although it is not possible to

derive theoretical results to quantify the efficiency of channel coordination, we can

still compare the system profit of centralized channels to that of decentralized chan-
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nels through a numerical study. Furthermore, a numerical study also can provide a

comparison between transporter driven and buyer driven channels. For this purpose,

we generated 8821 problem instances via a factorial design of the model parameters.

The model parameters are chosen as follows:

1. Demand Function: Recall that the relation between demand and price is given

by D(p)a − bp. In our numerical study

- a varies from 300 to 1300 with increments of 200.

- b varies from 6 to 26 with increments of 4.

2. Wholesale Price: ν varies from 3 to 12 with increments of 3.

3. Truck Cost: R varies from 30 to 270 with increments of size 30.

4. Truck Capacity: P varies from 40 to 110 with increments of size 10.

5. Per Unit Transportation Cost: cT is set equal to $2 in all of the problem in-

stances.

From these problems, the ones that cannot generate positive profit are eliminated.

Table 5 provides insight about the cost parameters of the 8600 problems that we

solved. The average proportion of transportation costs to total costs is about 38.26%,

which is close to the overall average of transportation costs to logistics costs as this

ratio is stated to be approximately 36% (Ballou 1992, pp.15). Furthermore, the ratio

of the transportation costs to sales dollars is 11.21 % on the average for our problem

set. This ratio varies from 1% to 60%. By looking at these figures, we can claim

that our numerical examples are both large enough to cover a broad range of possible

situations and reasonable enough to derive insights.



104

Table 5 Ratio of Transportation Costs to Total Costs and Total Sales

Avg. Ratio Min. Ratio Max. Ratio

Transportation Costs / Total Costs 38.26% 16.08 % 75.23%

Transportation Costs / Total Sales 11.23% 1.38% 60.58%

In Table 6, we compare the average savings that can be achieved through co-

ordination in the two decentralized cases. One of the most important insights that

we can obtain from comparing these savings results is that decentralized channels

are very inefficient. Even the buyer driven channel, which is by far better than the

transporter driven channel in terms of system profit, the average inefficiency is more

than 12%. In other words, if the parties can align their incentives, the system profit

can be increased by more than 12%.

Table 6 Centralized Channel Savings over Decentralized Channels

Avg. Savings Min. Saving Max. Saving

Transporter Driven Channel 34.07% 0% 90.22%

Buyer Driven Channel 12.60% 0% 44.93%

Even though centralized solution yields the highest profit most of the time, there

are a few cases where the buyer driven channel is as efficient as the centralized channel.

Moreover, for certain cases, buyer driven channel can be better than the transporter

driven channel for the transporter. In fact, in all of these problem instances, profit

margins are very low, and the transporter driven channel is often not efficient enough

to generate positive profit. However, if the buyer leads the channel, then both parties

can derive profit.
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VI.3. Infinite Horizon Problem with Deterministic Price Sensitive De-

mand

In this section, we extend the single period problem to the infinite horizon. The

time is modelled on a continuous scale. In this model, we introduce some more cost

parameters: AB is the fixed cost that the buyer incurs when he submits an order, and

hB is the per unit per time inventory carrying cost.

One of the major differences in this model from the single period model is the

demand. We assume that demand in this model occurs continuously at a constant

rate, D. Recall that in the single period model, the retail price implies the demand,

i.e., the order quantity. In this model, the retail price determines the annual demand

rate. Once the price is set, the demand rate is known. In this model, the buyer

submits an order every time he runs out of inventory. The buyer has a constant order

size, q, and he orders every q/D years.

Even though we analyze supplier-transporter-buyer channels in the next chapter,

the transporter-buyer model that we study here can be extended to the supplier-

transporter-buyer channel under the following conditions:

i. The supplier and buyer are controlled by a central decision maker,

ii. the supplier’s inventory replenishment quantity is an integer multiple of the

buyer’s order quantity, say n, and n is set exogenously.

If these conditions hold, one can redefine

AB = AB + AS and, hB = hB + (n − 1)hS,

and apply the solution techniques that we develop in this section.
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VI.3.1. Centralized Model

In this section, we derive the optimal solution to the centralized transporter-buyer

channel.The problem is to simultaneously select the delivery quantity, q, and the sales

price, p, so as to maximize the annual channel profit. The objective function is given

by

ΠC(q, p) = D(p)(p − ν − cT )

−
{

ABD(p)

q
+

hBq

2
+

⌈q/P ⌉D(p)RT

q

}
.

(6.4)

Since demand is a function of the price, we can also express ΠC as a function of

q, quantity, and D, demand. In fact, working with D is usually easier than working

with p. That is why we prefer expressing ΠC as follows:

ΠC(q, D) = D(p(D) − c) −
{

ABD

q
+

hBq

2
+

⌈q/P ⌉DRT

q

}
. (6.5)

We divide our analysis into two cases depending on the value of the order quan-

tity, qC :

1. The order quantity is an integer multiple of the truck load, i.e., qC = kP .

2. The order quantity is not necessarily an integer multiple of the truck load, but

the number of trucks used for each dispatch is known, i.e., (k−1)P < qC ≤ kP .

VI.3.1.1. Case 1 - q = kP :

The objective function has the following form:

PIk : max
D

ΠC
Ik(D) = (p(D) − c)D −

{
ABD

kP
+

hBkP

2
+

DRT

P

}
.
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We, next, write the first and second derivatives of ΠC
Ik(D) with respect to D:

ΠC′

Ik(D) = p(D) + p
′

(D)D − γk,

ΠC′′

Ik (D) = 2p
′

(D) + p
′′

(D)D,

where

γk := c +
AB

kP
+

RT

P
.

Observe that, it is necessary (but not sufficient) to have p(D) > γk for the system to

generate a positive annual profit.

One can easily see that for linear demand ΠC
Ik(D) is concave. However, the same

is not true for iso-elastic demand. Hence, we study the two different demand functions

separately:

(a) Linear Demand: We have already mentioned that for linear demand, i.e.,

p(D) = (a − D)/b, ΠC
Ik(D) is concave in D, and the stationary point, which is also

the maximizer, is given by

DC
Ik :=

a − bγk

2
.

ΠC
Ik(D

C
Ik) is

ΠC
Ik(D

C
Ik) =

1

4b
(a2 − b2γ2

k) −
hBkP

2
.

(b) Iso-Elastic Demand: When demand is of form D(p) = ap−b, the first and

second derivative of the objective function are

ΠC′

Ik(D) = âD−1/b(1 − 1/b) − γk and,

ΠC′′

Ik (D) =
â

b2
(1 − b)D− b+1

b ,

where â := a1/b. The characteristics of ΠC
Ik(D) vary with respect to b:

(i) b ≤ 1: In this case, the objective function is convex and decreasing in D. Hence,
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it is optimal to set D = D, where D is the lowest possible value of D. Observe

that the lowest possible value of D corresponds to the highest possible value of

p. Hence, when b ≤ 1, it is optimal for ΠC
Ik to set the price as high as possible.

(ii) b > 1: The objective function is concave in D, and it is maximized at

D◦
Ik =

(
â(1 − 1/b)

γk

)b

.

The objective function value at this point is

ΠC
Ik(D

◦
Ik) =

a

b

(
1 − 1/b

γk

)b−1

− hBkP

2
.

VI.3.1.2. Case 2 - (k − 1)P < q ≤ kP :

The objective function has the following form:

PIIk : max
D,q

ΠC
IIk(D, q) = (p(D) − c)D −

{
ABD

q
+

hBq

2
+

kDRT

q

}

s.t. (k − 1)P < q ≤ kP.

LEMMA 7 In order to solve PIIk, it suffices to solve

P̃IIk : max
D

Π̃C
IIk = (p(D) − c)D −

√
2(AB + kRT )DhB (6.6)

s.t. Dk ≤ D ≤ Dk,

where

Dk =
(k − 1)2P 2hB

2(AB + kRT )
and,

Dk =
k2P 2hB

2(AB + kRT )
.

PROOF: Observe that q appears only in the second piece of ΠC
IIk(D, q), and this

piece is an EOQ-type function. Hence, for a given D,
√

2(AB + kRT )D/hB maximizes

ΠC
IIk(D, q). Substituting it for q gives Π̃C

IIk of Equation (6.6).
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In PII
k , the lower bound for q is (k − 1)P , and the upper bound is kP . By

substituting
√

2(AB + kRT )D/hB with the lower and upper bounds, we obtain Dk

and Dk, respectively. Observe that P̃IIk imposes bounds on D but not on q, while

P̃IIk does vice versa. At this point, one can argue that a (Da, qa) pair exists where

Da /∈ (Dk, D
k
], qa 6=

√
2(AB + kRT )Da/hB, and (Da, qa) yields a higher objective

function value than the optimal solution of (6.6): Suppose that such a point exists,

and let ⌈qa/P ⌉ be equal to ka. It is trivial that the pair (Da, kaP ) yields a better

annual profit than (Da, qa). However, the solution to the problem PI
ka is always

superior to (Da, kaP ).

Note that, the feasible region in the original formulation is ((k− 1)P, kP ], which

is a half open set. The corresponding feasible region with variable D should be

(Dk, Dk]. On the other hand, it is always more convenient to work with closed sets

in optimization problems. In this case, we can extend the feasible set to [Dk, Dk]

without loss of generality by including Dk in the feasible set. Although the quantity

that Dk implies - k − 1 trucks to be used (whereas all the other D values in the

constraint set imply the quantities that require k trucks)- we can still assume that k

trucks are used when D = Dk. If Dk is the optimal solution to PIIk, it is obvious that

ΠC
IIk(Dk) underestimates the annual profit. However, this would not cause incorrect

conclusions at the end, because Dk = Dk−1, and PII
k−1 gives the correct annual profit

value for Dk−1. �

Problem P̃II
k is similar to the EOQ-problem with price dependent demand. This

problem has been widely studied in the literature for several demand functions and

under various assumptions. However, to the best of our knowledge, the existing liter-

ature is not complete enough to provide all the necessary solutions for the problems

we consider. Hence, we next discuss the solution procedures of P̃II
k given by Equation

6.6 for different demand functions:
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In order to find the maximizer of Π̃C
IIk, we first investigate its behavior, i.e., we

compute the first two derivatives:

Π̃C′

IIk(D) = p
′

(D)D + p(D) − c −
√

2(AB + kRT )hB

2
√

D
,

Π̃C′′

IIk(D) = p
′′

(D)D + 2p
′

(D) +

√
2(AB + kRT )hB

4
√

D
3 .

Without further information about p(D) it is not possible to derive conclusions

about the concavity, or convexity of Π̃C
IIk(D). For this reason, at this point, we

continue our analysis by considering the demand functions that we introduced before.

We proceed first with linear demand and then iso-elastic demand.

Linear Demand: For a given annual demand rate D, we can express price as

p =
a − D

b
.

When we substitute this into (6.6), the objective function becomes

max Π̃C
IIk(D) = D

(
a − D

b
− c

)
−
√

2(AB + kRT )DhB

s.to D ∈ (Dk, Dk].

The feasible set of this problem is a half-closed set, and working with such con-

straint sets in an optimization problem can cause technical difficulties. (Consider the

case where the optimal solution is at the left end point.) In order to overcome that

problem, we extend the feasible set to [Dk, Dk]. We can always do this extension

without loss of generality. Suppose that the optimal solution for Π̃C
IIk happens to be

Dk, and say the objective function value at this point is M . In fact, the actual annual

profit function at this point is M +RT /Dk. However, this value was already observed

in problem Π̃C
II(k−1).
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Porteus (1984) solves a relaxation of this problem where the only constraint is

the nonnegativity of the demand. In the following proposition, we utilize his results

to obtain the solution of the above problem:

PROPOSITION 10 Π̃C
IIk(D) is maximized at

DC
IIk =





D̂k, if D̂k ∈ [Dk, Dk],

arg min{Dk, Dk}, otherwise,

where,

D̂k =
4D̃

3
cos2(φ/3),

φ := arccos

( −bK

4(D̃/3)3/2

)
, and

D̃ =
a − bc

2
.

An approximation of D̂k is given by

D̂k
∼= D̃ − 2bKD̃

4D̃3/2 − bK
,

where K =
√

(AB + kRT )hB/2.

PROOF: The first two derivatives of Π̃C
IIk(D) are as follows:

Π̃C′

IIk(D) = −2D

b
+
(a

b
− c
)
−
√

2(AB + kRT )hB

2
√

D
,

Π̃C′′

IIk(D) = −2

b
+

√
2(AB + kRT )hB

4
√

D
3 .

By looking at the second derivative, we can see that Π̃C
IIk(D) is convex on [0, D◦

k]

and concave on [D◦
k,∞), where D◦

k = [b
√

2(AB + kRT )hB/8]2/3. The next step is to

find the stationary point of Π̃C
IIk(D), which is a candidate for the maximizer. We can
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rewrite the first derivative as

Π̃C′

IIk(D) = − 2

b
√

D

{√
D

3 − a − bc

2

√
D + b

√
(AB + kRT )hB/8

}
.

The above is a cubic polynomial of
√

D. Porteus shows that this polynomial has 3

real roots, and one of them belongs to [D◦
k,∞). Hence the maximizer is either the

larger root or one of the end points. D̂k is the larger of the positive roots of the cubic

polynomial. This completes the first part of the proof.

The approximation of D̂k comes from the first order Taylor expansion of Π̃C′

IIk(D) =

0 as stated in Porteus (1984). �

Iso-Elastic Demand: Substituting

p(D) = âD−1/b

into (6.6), the objective function becomes

max Π̃C
IIk(D) = D

(
âD−1/b − c

)
−
√

2(AB + kRT )DhB

s.to D ∈ (Dk, Dk].

The first and second derivatives of the objective function take the following forms:

Π̃C
IIk′(D) = − â

b
D−1/b + âD−1/b − c − D−1/2

√
2(AB + kRT )hB/2,

Π̃C
IIk′′(D) = D−3/2

√
2(AB + kRT )hB/4 − D−(1+ 1

b
)â(b − 1)b−2.

Now we look at 4 different cases:

b ∈ (0, 1]:

PROPOSITION 11 When b ∈ (0, 1], DC
IIk = Dk.
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PROOF: Π̃C
IIk′(D) < 0 which implies that ΠC

IIk(D) is decreasing in D. Hence

Π̃C
IIk(D) achieves its maximum at D = Dk. �

b ∈ (1, 2):

Notice that the second derivative is increasing in D. It is equal to 0 at D = D◦
k where

D◦
k =

(
â(b − 1)(1/b2)√

2(AB + kRT )hB/4

) 2b
2−b

.

The next proposition characterizes the optimal solution to the maximization

problem:

PROPOSITION 12 When b ∈ (1, 2), the optimal demand rate that maximizes Π̃C
IIk

is

DC
IIk =






D̂k, if D̂k ∈ [Dk, Dk],

arg min{Dk, Dk}, otherwise,

where D̂k is the unique root to ΠC
IIk′(D) = 0.

PROOF:As we mentioned above, Π̃C
IIk(D) is concave over [0, D◦

k] and convex over

[D◦
k,∞). Also, we can easily show that Π̃C

IIk′(0+) > 0 and that limD↑∞ ΠC
IIk′(D) < 0.

All these imply that Π̃C
IIk(D) reaches its local maximum in the concave region and

the local maximum is, in fact, the global maximum over [0,∞). �

In fact, it is not easy to find D∗
k analytically. One should appeal to numerical

methods to find its value.

b = 2:

This special case can be solved analytically and leads to closed form results. The

following proposition presents the joint optimal solution for b = 2.
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PROPOSITION 13 When b = 2, the maximizer of Π̃C
IIk is given by

DC
IIk =

(√
a −

√
2(AB + kRT )hB

2c

)2

,

if a > 2(AB + kRT )hB. Otherwise DC
k = Dk.

PROOF: By substituting 2 for b in the first and second derivatives of ΠC
IIk we obtain

Π̃C
IIk′(D) = −c + D−1/2

[√
a

2
−
√

2(AB + kRT )hB

2

]
,

Π̃C
IIk′′(D) = −D−3/2[

√
a −

√
2(AB + kRT )hB]/4.

If a > 2(AB + kRT )h, then the objective function is concave and the maximizer

is the root of the first derivative, which is given by

(√
a −

√
2(AB + kRT )hB

2c

)2

.

However, if the above inequality does not hold, then the objective function is convex

and decreasing. Hence the maximizer is D which implies that the price should be set

to its highest possible value. �

(b > 2):

When b > 2, the objective function is convex over [0, D◦
k) and concave afterwards,

where

D◦
k =

(
â(b − 1)(1/b2)√

2(AB + kRT )hB/4

) 2b
b−2

.

Hence, similarly to the linear demand case, the maximizer is the larger root of ΠC
IIk′ =

0.
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VI.3.1.3. Solution of the Centralized Problem

So far, we have completed the solution of PI
k and P̃II

k . In order to solve the centralized

problem, we must solve the two sets of sub-problems for a range of values of k. We

would normally start the enumeration from k = 1. The question that arises at this

point is what should the upper and lower bounds on k be. Next, we discuss this

question.

We derive the bounds on k for PI
k separately for linear and iso-elastic demand

functions.

In the Linear Demand case, for a given k, ΠC
Ik is maximized at DC

Ik = (a−bγk)/2,

and

ΠC
Ik(D

C
Ik) =

1

4
b(a2 − b2γ2

k) −
hBkP

2
.

Momentarily assume k is continuous, and consider the above expression as a

function of k, say ΠI(k). Its first derivative with respect to k is

Π
′

I(k) =
ABb

2P

1

k2

(
AB/P

k
+ c + RT /P

)
− hBP

2
.

Observe that Π
′

I(k) decreases as k increases. Hence, if Π
′

I(1) > 0, then there

exists a k∗ such that

k∗ = arg max{k|Π′

I(k) > 0}.

It suffices to make a search over the values of k ≤ k∗.

In the Iso-Elastic Demand case, following an analysis similar to the one we did

for Linear Demand, we have

ΠC
Ik(D

C
Ik) =

a

b

(
1 − 1/b

γk

)b−1

− hBkP

2
and,

ΠC′

Ik(D
C
Ik) =

ABa(b − 1)b

Pbb

kb−2

[AB/P + k(c + RT /P )]b
− hBP

2
.
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For b ≤ 1, the first derivative is always negative. Hence, it suffices to solve PI
k

for k = 1 and then compare it to k = 0.

For b > 1, one can observe that the first derivative is decreasing in k. Hence, the

analysis is similar to the linear demand case. This concludes the derivation of bounds

on k for PI
k.

Even though we can derive finer upper bounds on k for PII
k , for both linear and

iso-elastic demand functions, it suffices to stop enumeration at the specific k value

which satisfies Dk < D̃ ≤ Dk where D̃ = D(c).

VI.3.2. Buyer Driven Decentralized Channel

As the centralized solution represents the fully coordinated channel and benchmarks

the channel efficiency, we next look at the uncoordinated channel.

In the decentralized channel, the buyer’s problem is to decide on the order quan-

tity and the retail price, and the transporter’s problem is to determine the per unit

transportation price. We model this problem as a two stage Stackelberg Game. The

sequence of the events is as follows:

1. The buyer announces his per unit profit margin, 1 − α̂. In other words, he

declares that p = α̂(ν + pT ) = α̂w.

2. The transporter announces his per unit freight rate, pT .

Such a Stackelberg setting is called a buyer driven channel in the supply chain

literature. In our case, it is reasonable to assume a buyer driven channel because,

typically, the shippers exert power on their carriers.

We divide our analysis into two, representing the two different demand functions:

Linear Demand: If we express the demand rate in terms of the α̂, we obtain D =

a − bα̂w. For notational simplicity, we introduce α := bα̂. Then, the transportation
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price can be written in terms of demand:

pT = (a − D)/α − ν.

We first characterize the transporter’s response to a quoted α.

ΠT (D) = D(
a − D

α
− ν − cT ) −

⌈q

2ABD

h

P

⌉
RT D

√
2ABD

h

= D(
a − D

α
− c) −

⌈q

2ABD

h

P

⌉
RT D

√
2ABD

h

.

Suppose that the number of trucks used for each dispatch is k, i.e.,

(k − 1)P <

√
2ABD

h
≤ kP.

For this to be true, the following inequality should hold:

hℓk

2AB

< D ≤ huk

2AB

,

where ℓk := [(k − 1)P ]2 and uk := [kP ]2. For notational simplicity, we define Dk

as the left-hand-side of the above inequality and D
k

as the right-hand-side. When

D ∈ (Dk, D
k
], the transporter’s annual profit function is

Πk
T (D) = D(

a − D

α
− c) − kRT

√
D√

2AB/h
.

The next two lemmas provide helpful insights about the behavior of Πk
T (D).

LEMMA 8 Πk
T (D) is convex for k ≤ k1, where

k1 = arg max

{
k : k2 ≤ αRT AB

4P 3h
= Φ

}
.
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PROOF: When D ∈ (Dk, D
k
], the second derivative of ΠT (D) is

Πk′′

T (D) =
−2

α
+

kRT

4
√

2AB/h

1

D3/2
.

On this interval, Πk′′

T (D) is decreasing in D. On the other hand, the function is not

continuous at D = Dk. However, we can show that

lim
D↑D

k
Πk′′

T (D) =
−2

α
+

kRT

4
√

2AB/h

1

D
k3/2

<
−2

α
+

(k + 1)RT

4
√

2AB/h

1

D
k3/2

= lim
D↓D

k
Π

′′

T (D).

Also, note that

lim
D↑D

k
Πk′′

T (D) =
−2

α
+

kRT

4
√

2AB/h

1

D
k3/2

=
−2

α
+

RT

4PD
k
.

This indicates that lim
D↑D

k Πk′′

T (D) is decreasing in k. Hence, if lim
D↑D

k∗ Πk′′

T (D) > 0,

then, lim
D↑D

k Πk′′

T (D) > 0 for all k < k∗.

In order to derive the expression for k1, one needs to check

−2

α
+

RT

4PD
k

< 0

by substituting

D
k

=
h(kP )2

2AB

.

The proof is complete. �

LEMMA 9 Πk
T (D) is piecewise concave for k ≥ k2 where

k2 = arg min

{
k :

(k − 1)3

k
≥ αABRT

4P 3h
= Φ

}
.

PROOF: On (Dk, D
k
], sup Πk′′

T (D) = limD↓Dk Πk′′

T (D), and

lim
D↓Dk

Πk′′

T (D) =
−2

α
+

RT k

4
√

2AB/hDk3/2
.
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We substitute

Dk =
(k − 1)2P 2h

2AB

into the above equation and obtain

lim
D↓Dk

Πk′′

T (D) =
−2

α
+

ABRT k

2P 3h(k − 1)3
.

Notice that this expression is decreasing in k. Hence, if it is negative for a value of k,

say k∗, then it should be negative for all k > k∗. As it is the supremum of the second

derivative over the interval (Dk, D
k
], the second derivative is always negative. This

completes the proof. �

LEMMA 10 Πk
T (D) is decreasing for k ≥ k3 where

k3 = arg min

{
k : k2 >

AB[2P (a − cα) − RT α]

2hP 3
= Φ3

}
.

PROOF: We first note that the function is decreasing at the discontinuity points.

In order to complete the proof, we need to show that the function is decreasing over

(Dk, D
k
] for all k > k3. First, we show that if lim

D↑D
k Πk′

T (D) < 0, then the same

assertion holds for k + 1. lim
D↑D

k Πk′

T (D) is given by

lim
D↑D

k
Πk′

T (D) =
( a

α
− c
)
− 2D

k

α
− RT

2P
.

By looking at this expression, one can trivially observe that it is decreasing in k.

Furthermore,

lim
D↓D

k
Πk′

T (D) =
( a

α
− c
)
− 2D

k

α
− RT

2P

√
Dk+1

√
Dk

< 0,

and

Πk′

T (D) =
( a

α
− c
)
− 2

α
− RT

2P

√
Dk+1

√
D

< 0, ∀D ∈ (Dk+1, D
k+1

)

for every k such that lim
D↑D

k Πk′

T (D) < 0. In other words, Πk
T (D) is decreasing on
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the interval (Dk, D
k
] if lim

D↑D
k Πk′

T (D) < 0.

Hence, we have shown that Πk
T (D) is decreasing for [D

k
,∞) for k such that

lim
D↑D

k Πk′

T (D) < 0. One can easily check that k3 is the minimum of such k’s. �

The next proposition identifies the solution to the transporter’s optimal response:

PROPOSITION 14 One can derive the transporter’s optimal response to a given

α as follows:

• For k = {1, . . . , k3 − 1}:

– if k ≤ k1, evaluate Πk
T (D) at D

k
.

– if k1 < k ≤ k2, find the stationary points of Πk
T (D). If the larger of the

stationary points lies on (Dk, D
k
] select that. Otherwise select D

k
.

– if k > k2, find the unique stationary point of Πk
T (D). If the stationary

point is in (Dk, D
k
], select the stationary point. Otherwise select D

k
.

Out of the possible candidates, pick the one that leads to the highest profit.

Proposition 14 suggests finding a stationary point of ΠT (D) on the interval

(Dk, D
k
] for which Πk

T (D) is concave. Note that the first derivative of Πk
T (D) on

such an interval can be rewritten as a function of
√

D:

Πk
T (D) =

1√
D

{
(a/α − c)

√
D − 2

√
D

3 − kRT

2
√

2AB/h

}
.

Note that, Πk′

T (D) is a cubic polynomial of
√

D and that finding the roots of this

polynomial is similar to the task that we discussed in the previous section. Using the

results of that section, an approximation of the local maximizer of Πk
T is given by:

D∗
k = Ď −

(
2αρkĎ

4Ď3/2 − αρk

)
,
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where

Ď =
a − αc

2
and,

ρk =

√
k2R2

T h

8AB
.

Iso-Elastic Demand: When D = ap−b, we can model D as a function of α̂ as follows:

D = ap−b = a(α̂(pT + ν))−b := α̃(pT + ν)−b.

Using the above expression, we can express pT as

pT = α̃1/bD−1/b − ν := αD−1/b − ν.

For a given α, the transporter’s response function takes the following form:

Πk
T (D) = D(αD−1/b − c) −

⌈q

2ABD

h

P

⌉
RT D

√
2ABD

h

.

Following an analysis similar to the one we did in the linear demand case, when the

order quantity requires k trucks, the transporter’s annual profit function is

Πk
T (D) = D(αD−1/b − c) − kRT

√
D√

2AB/h
.

In fact, this function demonstrates the same characteristics as ΠC
IIk.

VI.3.3. Numerical Results and Conclusions

In order to quantify the channel coordination benefits, we generate a set of problem

instances by altering the model parameters. Following an approach similar to the

one we used in generating single period problems, the model parameters are chosen

as follows:
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Demand Function: We use linear demand in the numerical examples. Recall

that the relation between demand and price is given by D(p)a − bp. In our

numerical study

- a varies from 300 to 1300 with increments of 250.

- b varies from 6 to 24 with increments of 6.

Wholesale Price: c varies from $3 to $12 with increments of $3.

Buyer’s Set-up Cost: AB varies from $150 to $900 with increments of $150.

Buyer’s Inventory Carrying Rate: hB varies from $0.6 to $3.0 with increments

of $0.8.

Truck Cost: R varies from $30 to $180 with increments of size $30.

Truck Capacity: P varies from 40 to 100 with increments of size 15.

Per Unit Transportation Cost: cT is set equal to $2 in all of the problem in-

stances.

After eliminating the ones that cannot generate positive profit, we solve a total

of 28,850 problem instances. Table 7 gives an overview of the cost parameters. By

looking at the table, we can see that the selection of model parameters is reasonable

and that it reflects the industry averages. In fact, the ratio of transportation costs to

annual sales dollars is lower than the quoted average.

Even though the ratio of transportation costs to annual sales volume is lower

than the average, the amount of savings that can be obtained through coordination

is promising. As indicated in Table 8, full coordination brings about an average of

12.75% savings. Compared to the savings that can be realized in the single period
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Table 7 Ratio of Transportation Costs in Numerical Examples

The Ratio of Transportation Costs to Avg. Min. Max

Total Costs 18.19% 9.16% 36.43%

Annual Sales Dollars 5.80% 1.71% 21.67%

models, coordination is even more efficient in long term business relationships. The

maximum savings in these examples is 753.56%. This figure seems to be very high,

but it corresponds to the case where the decentralized channel generates very low

profit and the centralized channel justifies the business. We identified 238 problem

instances in which the decentralized channel cannot generate positive profit but the

centralized channel can.

Table 8 Centralized Channel Savings over Buyer-Driven Decentralized Channel

Avg. Savings Min. Saving Max. Saving

Buyer Driven Channel 12.75% 0% 753.56%
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CHAPTER VII

CHANNEL COORDINATION PROBLEMS UNDER CONSTANT AND

DETERMINISTIC DEMAND

In Chapter VI, we took the first steps to introduce transporters into channel coor-

dination by considering a transporter-buyer channel. The theoretical and numerical

results clearly show that channel performance improves with coordination. Motivated

by this, we continue to study the impact of transporters and transportation costs on

channel coordination via analyzing supplier-transporter-buyer channels.

Supplier-transporter-buyer channels encompass the supplier-buyer channels which

are the primary focus of the channel coordination literature and can help us see the

additional benefits that transporters can bring to the channel. Also, by expanding the

scope of transporter-buyer channels, the study of supplier-transporter-buyer channels

provides a more realistic perspective on the impact of transporters.

In this chapter, we study the transporter’s impact on channel performance under

deterministic and constant demand. The remainder of the chapter is organized as fol-

lows. We start by introducing the general operational characteristics of the parties in

the channel and the problem setting. Next, we discuss the cost saving opportunities

of the parties in the channel. We introduce two models that demonstrate the inter-

actions between the supplier and buyer, and we study these models in detail before

concluding with managerial insights.

Our assumptions regarding the operational characteristics of the supplier-buyer

system under consideration are similar to those of the classical problem described in

Goyal (1976) except for the fact that, eventually, we aim to analyze the transporter’s

impact on the costs associated with the link from supplier to buyer. In the following,

we briefly describe the operational characteristics of the buyer and the supplier, and
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then we elaborate on the operational characteristics of the transporter.

VII.1. Operational Characteristics and Problem Setting

We consider a supplier-buyer channel in which a supplier sells a certain product to

a buyer. The buyer observes a deterministic and constant customer demand with an

annual rate of D. The transporter is responsible for delivery of the items from the

supplier’s site to the buyer’s site.

The operational characteristics of the transporter are the same as those in Chap-

ter VI. Next, we explain the operational characteristics of the supplier and the buyer.

VII.1.1. Operational Characteristics of Supplier and Buyer

For a particular type of item, the buyer observes a deterministic constant demand

with an annual rate of D. He periodically replenishes his inventory from the supplier.

The supplier also replenishes her inventory from an outside supplier or produces the

items with an infinite production rate. Given the costs for both parties associated

with replenishing (including setup/procurement and transportation costs) and hold-

ing the inventory, the problem is to compute the replenishment quantities for the

supplier and the buyer, denoted by Q and q, respectively. It follows that the sup-

plier’s replenishment cycle length is Q/D and the buyer’s replenishment cycle length

is q/D. Since, no lost-sales or backorders are allowed, Q = nq where n is a positive

integer representing the number of buyer replenishments, i.e., dispatches, within one

supplier replenishment cycle.

Considered in the supplier’s costs is a fixed term denoted by AS, possibly rep-

resenting the setup cost associated with instantaneously producing or purchasing Q

units, as well as a per unit, per unit-time inventory holding cost denoted by hS. Sim-
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ilarly, considered in the buyer’s inventory replenishment cost is a fixed term, denoted

by AB, possibly representing the fixed costs associated with ordering/receiving q units,

such as the sum of administrative, receiving, and inspection costs. The buyer also

incurs a per unit, per unit-time inventory holding cost denoted by hB. Additionally,

the supplier may incur a per unit production or purchase cost, cS, whereas the buyer

may incur a per unit purchase cost, cB. Since the demand rate is constant, these costs

do not have an impact on determining the values of Q and q. However, supplier-buyer

coordination can be achieved by adjusting the value of cB. In the classical channel

coordination literature, it is argued that all-units or incremental quantity discounts

can coordinate the system in several situations. In Appendix A we discuss the role

of quantity discounts under several different transportation price structures.

VII.1.2. Problem Setting and Notation

For this problem, we consider two different models. In Model I, the buyer and the

supplier are interested in designing an efficient channel coordination mechanism for

improving their supply-chain efficiency. In Model II, there is virtually no coordination

between the buyer and the supplier; however, the supplier tries to align the buyer’s

decision by arranging her own wholesale price structure.

VII.1.2.1. Interactions Between Supplier and Buyer

Model I assumes an integration between supplier and buyer. In other words, the

supplier and buyer act as a single unit and they operate at their joint optimal solution.

There are several cases where such an integration can occur. The model where both

the supplier and the buyer are branches of one company and controlled by a central

decision maker is one example as is the model where both parties agree on a contract

that binds them both to operate at the system optimal. For our purposes, it does
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not make a significant difference how coordination is achieved.

On the other hand, in Model II, the supplier and buyer make their decisions

independently with each trying to maximize(minimize) his/her own profit(cost). In

such a situation, it is the buyer who makes the final decision about the order quantity.

The buyer’s decision depends on the transportation price (if he incurs transportation

charges) and the wholesale price. The supplier can coordinate the buyer by changing

the wholesale price schedule. As shown in Appendix A, it is always optimal for the

supplier to coordinate the buyer at their joint optimal level.

We can see that in either model the order quantity is going to be qJ . Then

the obvious question arises: what is the difference between these two models? The

answer lies in the stability of the supplier-buyer solution. More specifically, if the

transporter wants to change this order quantity, in the first model the transporter

has to negotiate a contract with the buyer and/or the supplier. However, in the

second model the transporter can easily change the order quantity by adjusting the

transportation price.

Next, we explain how the supplier and buyer decide about the order quantity in

Model I. As mentioned earlier, there is not much difference between the way these

two models work.

Although the supplier and buyer do not have information about the transporter’s

actual operating expenses, they can easily obtain information about possible pricing

schedules, and their preliminary analysis regarding the dispatch service they request

from the transporter is based on this information. For this purpose, given some initial

transportation pricing information, they develop a coordinated solution specifying the

value of the coordinated dispatch quantity denoted by qJ . During this process, they

may encounter different transportation pricing structures including the following:

• pT : a per unit price for each item transferred.



128

• Ap: a fixed price for each dispatch.

• Mp: a fixed price for each truck used.

• {p1
T , q1, p

2
T}: a per unit price with freight discounts.

In fact, any combination of the above pricing structures is a possibility depending on

the transportation mode or the transporter’s operational policy, etc. For example,

if the transporter is an LTL, or overnight, carrier, he may prefer a per unit based

pricing scheme. If the transporter dedicates some of his fleet to serving a specific

customer, preferably by using FTL shipments, he/she may charge a fixed price for

each truck and/or each dispatch.

We can prove that under the transportation pricing schedules listed above, the

supplier-buyer system can be coordinated by developing win-win solutions for both of

the parties1. In fact, the coordinated dispatch quantities leading to win-win solutions,

are equal to the corresponding q values of the centralized optimal solutions minimizing

the system-wide costs of the supplier-buyer system, namely qJ . On the other hand,

qJ may not be the best choice as far as the transporter’s actual operating costs are

concerned. For example, qJ may not be sufficiently large for the transporter to enjoy

the benefits of scale economies or increased resource utilization. More specifically,

the transporter may improve his/her cost efficiency and resource utilization, possibly,

by trying to influence qJ via offering a contractual dispatch quantity, denoted by

qT , applicable under a new pricing schedule. However, he should convince both the

buyer and the supplier to shift from qJ because any deviation from qJ leads to an

increase in the (ideal) system-wide annual cost of the supplier-buyer system. Hence,

the transporter should compensate for this increase in cost. The problem associated

with developing a compensation mechanism for this purpose is called the transporter’s

1Formal proofs are presented in Appendix A.
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coordination problem.

The interactions between the supplier and buyer in Model II is slightly different.

These interactions also depend on which party is incurring the transportation charges.

Below we summarize how these interactions are shaped in either case.

If the buyer incurs the transportation charges, he has preliminary information

about the transportation price as in the first model. Based on this preliminary infor-

mation and the initial wholesale price, he can choose his order quantity to minimize

his annual average cost. However, the transporter also has the same preliminary infor-

mation; therefore, he can arrange the wholesale price structure in such a way that the

solution to the buyer’s problem is qJ , the joint optimal solution of the supplier-buyer

problem.

If the supplier incurs transportation charges, then buyer’s problem is the same

regardless of the structure of transportation price. This will allow the supplier to

align the buyer at the system optimal by providing a quantity discount schedule.

Details of the theory of quantity discounts are provided in the appendix.

VII.1.2.2. Interactions Between Transporter and the Party Who Incurs

Transportation Charges

The order quantity agreed upon between supplier and buyer is not always the most

desirable quantity for the transporter. Hence, he may want to induce the other parties

to alter this quantity. This is explained in detail in Section VII.3.1.

After solving his problem, the transporter has to find effective mechanisms to

convince the other parties to operate under his decision. The structure of such mech-

anisms is discussed in Sections VII.3.2 and VII.4.2.

Before proceeding with further details of the problem, let us summarize the no-

tation used so far and introduce additional notation that will be used in our analysis.



130

Model Parameters

D : Buyer’s annual demand.

AS : Supplier’s fixed replenishment cost.

AB : Buyer’s fixed replenishment cost.

hS : Supplier’s inventory holding cost per unit per year.

hB : Buyer’s inventory holding cost per unit per year.

Q : Supplier’s replenishment quantity.

q : Buyer’s replenishment quantity, i.e., dispatch quantity.

n : # of dispatches in a supplier’s replenishment cycle.

c : Supplier’s per unit purchasing cost.

pS : per unit wholesale price paid by the buyer to the supplier.

AT : Transporter’s fixed cost per shipment.

RT : Transporter’s cost for launching one truck.

P : Truck capacity.

cT : Transporter’s per unit transfer cost.
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Cost, Revenue, and Profit Functions

PS(q) : The initial total revenue of the supplier

P S(q) : Total revenue of the supplier after coordinating/negotiating with

the buyer.

PT (q) : Price that the transporter charges for each dispatch before

coordination.

P T (q) : Price that the transporter charges for each dispatch after

coordination.

GB(q) : Buyer’s average annual operating cost.

GS(q, n) : Supplier’s average annual operating cost.

GC(q, n) : Average annual cost of the centralized system.

GJ(q, n) : Joint average annual cost of the supplier-buyer system before

transporter coordination.

ĜB(q) : Buyer’s average annual operating cost excluding the transportation

costs.

ĜS(q, n) : Supplier’s average annual operating cost excluding the transportation

costs.

ĜJ(q, n) : Joint average annual cost of the supplier-buyer system excluding

the transportation costs.

GJ(q, n) : Joint average annual cost of the supplier-buyer system after

transporter coordination.

GSB(q, n) : Sum of supplier’s and buyer’s average annual operating costs.

GT (q) : Transporter’s average annual operating cost.
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Decision Variables

pT : Per unit transfer price.

Ap : Fixed price per each dispatch.

Mp : Price charged for launching one truck.

qB : Buyer’s optimal order quantity.

(qJ , nJ) : Optimal solution to the joint supplier-buyer problem.

(qSB, nSB) : Coordinated/negotiated solution for the supplier-buyer system,

i.e., the outcome of channel coordination between

the buyer and the supplier.

(qT , nT ) : Coordinated solution proposed by the transporter, i.e., the

solution of the transporter’s coordination problem or outcome

of channel coordination between the three parties.

At this point, we make a distinction between GJ and GSB. The first term implies

that the supplier and the buyer are either controlled by a central decision-maker or

are in strategic partnership, whereas the latter implies that the supplier and the buyer

act independently, and they may or may not be coordinated under a contract.

VII.2. Analysis of Costs for the Parties

VII.2.1. Transporter’s Costs and Cost Saving Opportunities

Under the assumptions of our model, given the dispatch quantity q and the annual

volume D, the transporter’s average annual cost can be expressed as

GT (q) =
⌈q/P ⌉RT D

q
+

AT D

q
+ cT D.
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As mentioned earlier, the per unit transfer cost is irrelevant for our purposes, that is

why from now on we will express GT (q) as

GT (q) =
⌈q/P ⌉RT D

q
+

AT D

q
.

Figure 8 illustrates the behavior of GT (q) for the case where AT = 0. The first

term represents the average annual truck cost, with a minimum value equal to RT D/q,

at q = kP for all positive integer k values. Also, for each positive integer k, this term

is a decreasing convex function of q over (k − 1)P < q ≤ kP . It follows that the

transporter’s average annual cost is minimized only when full trucks are dispatched,

i.e., truck capacities are fully utilized.

VII.2.2. Supplier’s and Buyer’s Costs and Cost Saving Opportunities

As we have already discussed in Section VII.1, according to the first model, given

some initial transportation pricing information, the supplier and buyer develop a

coordinated solution specifying the value of the coordinated dispatch quantity, qJ .

For this purpose, they need to compute their centralized solution by solving the

following problem:

PJ : min
q≥0, n∈Z+

GJ(q, n) =
ASD

nq
+

hS(n − 1)q

2
+

ABD

q
+

hBq

2
+ PT (q). (7.1)

The characteristics of PJ depend on the form of PT (q):

• Case 1 - PT (q) = pT q: If the initial pricing is based on only a per unit item

charge then the transporter’s average annual revenue is independent of q, i.e.,

PT (q) = pT D.
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Figure 8 Transporter’s Cost Structure
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• Case 2 - PT (q) = pT q + Ap: If the initial pricing is based on a fixed price for

each dispatch as well as a per unit item charge PT (q) = pT D + ApD/q.

• Case 3 - PT (q) = pT q + Ap + Mp⌈q/P ⌉: If the initial pricing also involves a

fixed price for each truck used, then

PT (q) = pT D +
ApD

q
+
⌈ q

P

⌉MpD

q
.
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• Case 4 - All units freight discount: Per unit transfer price is p1
T for q ∈

(0, q2) and p2
T for q ≥ q2 where p1

T > p2
T . Hence,

PT (q) =





p1
T q, if 0 < q < q2,

p2
T q, if q ≥ q2.

As explained in Chapter I, this price schedule is often interpreted as

PT (q) =






p1
T q, if 0 < q < q1,

p1
T q1 if q1 ≤ q < q2,

p2
T q, if q ≥ q2,

where q1 ∈ (0, q2) such that p1
T q1 = p2

T q2. Note that we can also consider more

general discount schedules with multiple breaks.

For the first two cases listed above, the minimization problem given in Expression

(7.1) reduces to the problem solved in Lee and Rosenblatt (1986). We present the

solution for these two cases in Appendix A.

For Case 3, the problem given in (7.1) leads to

min
q≥0, n∈Z+

GJ(q, n) =
ASD

nq
+

hS(n − 1)q

2
+

ABD

q
+

hBq

2
+

ApD

q

+
⌈ q

P

⌉MpD

q
+ pT D, (7.2)

which corresponds to a variation of the class of minimization problems studied in

Çetinkaya and Lee (2002) and Toptal et. al. (2003). Motivated by practical applica-

tions of inventory and transportation planning, these two papers develop finite time

minimization procedures for functions corresponding to special cases of the following
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functional form:

G(qk, n) =

(
A1 +

⌈
Pk=n

k=1 qk

P1

⌉
R1

)
D

∑k=n
k=1 qk

+
h1

∑k=n
k=2 qk(

∑i=k−1
i=1 qi)∑k=n

k=1 qi

+

(
nA2 +

∑k=n
k=1

⌈
qk

P2

⌉
R2

)
D

∑k=n
k=1 qk

+
h2

∑k=n
k=1 q2

k

2
∑k=n

k=1 qk

. (7.3)

In particular, the technique developed in Çetinkaya and Lee (2002) focuses on the

case

M1 = 0, A2 = 0, A1 ≥ M2, q1 = q2 = . . . = qn−1 ≤ qn,

whereas the two techniques developed in Toptal et. al. (2003) concentrate on the

cases

M1 = M2, P1 = P2, q1 = q2 = . . . = qn,

respectively. Observe that the function in Expression (7.2) is also a special case of

the functional form in Expression (7.3) where q1 = q2 = . . . = qn, A1 and A2 can take

any positive value, as well as

M1 = 0, M2 > 0,

and, hence, the techniques developed in Çetinkaya and Lee (2002) and Toptal et. al.

(2003) are not directly applicable for our purposes. On the other hand, utilizing some

of the fundamental ideas in Çetinkaya and Lee (2002) and Toptal et. al. (2003), we are

able to develop a finite time exact procedure for minimizing GJ(q, n) given by Equa-

tion (7.2). This problem is, in fact, equivalent to minimizing the system-wide annual

cost for the supplier-transporter-buyer system, which we solve in Section VII.3.1.

Unlike in Model I, in Model II the supplier and buyer do not engage in cooper-

ation but make their decisions independently. The buyer always tries to choose the

order quantity that minimizes his annual cost. However, this order quantity may not

always be the most desirable quantity for supplier. She may be better off if the order
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quantity changes. Therefore she may try to affect the buyer’s decision and coordinate

him at a different order quantity. The only way the supplier can achieve coordination

is to change the wholesale pricing structure. We can formally state the supplier’s

problem as follows:

“By changing the initial pricing structure, PS(q), to a new pricing schedule,

P S(q), find the order quantity and the corresponding n value

(i) that maximizes her annual profit (Condition 1) and,

(ii) that minimizes buyer’s annual cost under the new pricing schedule. (Condition

2)”

The supplier should also take care of the incentive compatibility constraint for the

buyer which says that the buyer’s optimal annual cost under this new pricing should

not exceed his optimal annual cost under the initial pricing.

In fact, the second condition is related to the structure of P S(.). While formu-

lating the supplier’s problem, we omit this condition momentarily. We discuss the

structure of P S(.) later.

We formulate supplier’s problem for two different cases: (i) the supplier incurs

transportation charges, (ii) the buyer incurs transportation charges.

Case 1: Supplier Incurs Transportation Charges

Given the initial wholesale price, PS(q) = pSq, the buyer’s annual cost is

GB(q) =
ABD

q
+

hBq

2
+ pSD.
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The minimizer of this function, i.e. the buyer’s optimal order quantity is given by

qB. We also define G̃B(q) as

G̃B(q) =
ABD

q
+

hBq

2
.

The supplier’s problem can be formulated as follows:

max
q,n

P S(q)D

q
− GS(q, n)

s.t. G̃B(q) +
P S(q)D

q
= G̃B(qB) + pSD.

Equivalently,

max
q,n

G̃B(qB) + pSD − G̃B(q) − GS(q, n) = GB(qB) − G̃B(q) − GS(q, n)

= GB(qB) − GSB(q)

≡ min
q,n

GSB(q).

Case 2: Buyer Incurs Transportation Charges

Given the initial wholesale price, PS(q) = pSq, and the initial transportation price,

PT (q), the buyer’s annual cost is

GB(q) =
ABD

q
+

hBq

2
+

PT D

q
+ pSD.

The minimizer of this function, i.e., the buyer’s optimal order quantity, is given by

qB. We also note that, the buyer’s annual cost excluding the purchase cost, G̃B(q), is

G̃B(q) =
ABD

q
+

hBq

2
+

PT D

q
.
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Using the above information, the supplier’s problem can be formulated as follows:

max
q,n

P S(q)D

q
− GS(q, n)

s.t. G̃B(q) +
P S(q)D

q
= G̃B(qB) + pSD.

From the above constraint, we substitute the value of P S(q) into the objective

function so that

max
q,n

G̃B(qB) + pSD − G̃B(q) − GS(q, n)

= GB(qB) − G̃B(q) − GS(q, n)

= GB(qB) − GSB(q)

≡ min
q,n

GSB(q).

As we can see from these results, the supplier’s problem, no matter who incurs

the transportation charges, is essentially to minimize the joint annual cost of the

buyer and supplier. Recall that it is the same problem that the buyer and supplier

face in Model I. Depending on the structure of the transportation price function, this

problem can be solved using the appropriate techniques developed in Appendix A.

The supplier’s next problem is to find a new pricing schedule, P S(q), which

satisfies Condition 2. The structure of this new price function depends on the trans-

portation price and on which party incurs the transportation price. In Appendix A,

we discuss this problem for each possible case.

In conclusion, whichever model we consider, given the preliminary information

about the parties’ price schedules, the buyer’s order quantity is always the joint

optimal order quantity of the supplier-buyer system.
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VII.3. Model I - Supplier and Buyer Coordinates

As mentioned in Section VII.1, this model assumes either that the buyer and supplier

are controlled by a central decision maker or that they align their incentives in a long-

term strategic partnership and operate on a contractual basis. In either instance, the

order quantity between the buyer and the supplier will be their joint optimal quantity,

qJ , and the supplier’s replenishment quantity is (nJ − 1)qJ . We should note that the

joint optimal solution of the supplier-buyer problem, (qJ , nJ) depends on the initial

transportation price or the preliminary information that the buyer and/or supplier

have about the transportation price.

In this section, based on the joint optimal solution of the buyer and supplier, we

introduce the transporter’s problem, formulate and solve it, and finally discuss how

the transporter can coordinate the supplier-buyer system at his solution.

VII.3.1. Transporter’s Problem

Suppose that the buyer and the supplier have already decided on a dispatch quantity,

qJ , based on initial transportation pricing information. As we have already mentioned,

this quantity may not be the best choice as far as the transporter’s actual operating

costs are concerned. Hence, the transporter is interested in influencing qJ via offering

a contractual dispatch quantity, denoted by qT . Preferably, the transporter’s annual

cost is reduced when the order quantity is changed from qJ to qT , i.e., GT (qT ) ≤

GT (qJ). On the other hand, deviating from the optimal quantity increases the annual

cost of the supplier and buyer, i.e., ĜJ(qJ , nJ) ≥ ĜJ(qT , nT )2. The transporter should

also compensate this increase in order to be able to coordinate the channel at qT .

2When the buyer’s order quantity changes to qT , the supplier also changes her replenishment
quantity so as to reduce the costs. nT qT is the replenishment quantity that minimizes the joint
annual cost of the supplier and buyer when buyer’s order quantity is qT .
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Formally, qT is the quantity that solves the following problem:

PT : max
q≥0, n∈Z+

(GT (qJ) − GT (q)) −
(
ĜJ(q, n) − ĜJ(qJ , nJ)

)
, (7.4)

or

PT : min
q≥0, n∈Z+

GC(q, n) = ĜJ(q, n) + GT (q)

=
(AS + nAB)D

nq
+

(hB + (n − 1)hS)q

2
+

⌈q/P ⌉RT D

q

+
AT D

q
. (7.5)

Hence, the transporter’s problem is equivalent to minimizing the system-wide costs,

GC(q, n). The structure of GC(q, n) makes it very difficult to find the minimizer

directly. Figure 9 displays the behavior of the continuous approximation of GC(q, n).

Figure 9 GC(q, n)
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Since it is rather difficult to directly minimize GC(q, n), we stick to the first

formulation and develop a technique for maximizing (7.4) under AT = 0 (Equivalently

minimizing (7.5)). In the next section, we will generalize this technique to the case

where AT > 0.

The summary of the technique is as follows. First, we find the best q value for

the transporter for any given value of n. Then, we do an enumeration over a set of

possible values of n.

Step-I: Optimizing over q for a fixed n

• We first analyze the increase in the joint cost of the supplier-buyer when n is

fixed and q is changed:

For a fixed value of n, the structure of ĜJ(q, n) is identical to an EOQ-type

function in q. That is, defining

A =
AS + nAB

nD
and B =

(n − 1)hS + hB

2
,

we have

ĜJ(q) =
A

q
+ Bq.

Now suppose we deviate from q∗(n) by a factor K, keeping n constant. The

following property helps us find the amount of increase in ĜJ(q, n).

PROPERTY 1 In an EOQ-Type function, f(.), with minimizer x∗, f(Kx∗)−

f(x∗) = f(x∗)(K − 1)2/2K.

Proof: A Typical EOQ-Type function has the form f(x) = a/x + bx. The

minimizer of this function, x∗, is given by
√

a/b; hence, the minimum value of
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f is 2
√

ab. Noting that

f(Kx∗) =
a

Kx∗
+ bKx∗ =

a

K
√

a/b
+ Kb

√
a/b =

√
ab(

1

K
+ K)

= f(x∗)
1 + K2

2K
,

we have f(Kx∗) − f(x∗) = f(x∗)(K − 1)2/2K. �

Given that the change in q is u units - either an increase or a decrease - K is

equal to

q + u

q
.

On the other hand, for any given n, the q that minimizes ĜJ(q, n) is:

q∗(n) =

√
2(AS + nAB)D

n(hB − hS + nhS)
. (7.6)

Once this value is substituted into ĜJ(q, n), ĜJ(q, n) can be expressed as only

a function of n, namely φ(n):

φ(n) =
√

2(AS + nAB)D(hB − hS + nhS)/n.

With these expressions, we are now ready to state the expression for the change

in ĜJ(q, n) when the dispatch quantity is changed by u:

∆J(u) =
u2

2q(q + u)
φ(n) .

• Next, we investigate the decrease in the transporter’s cost when q is changed

by u units. For this purpose, we present the following observations:

– The transporter’s annual cost is minimized when q = kP , k ∈ N.

– The value of k above does not affect the annual cost. As a consequence of

this, we have the following property: If q is not an integer multiple of P ,
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we specify the following two possible actions that a transporter can take:

Action 1: try to decrease q to P ⌊q/P ⌋. The decrease in cost is

RT D(P ⌈q/P ⌉ − q)

qP
.

Action 2: try to increase q by u units where 0 ≤ u ≤ P ⌈q/P ⌉ − q.

The decrease in cost is

⌈q/P ⌉RT Du

q(q + u)
.

The observations indicate that, given any dispatch quantity, there will be one

and only one truck which is not completely full unless the q = kP (we call this

truck the last truck), and there is always room for decreasing the transporter’s

cost either by decreasing the dispatch quantity so that the last truck is cancelled

and the other trucks have full load or by increasing the dispatch quantity so

that the utilization of the last truck is increased.

There are also two other actions that the transporter can take:

Action 3: Decrease the quantity more than (RT D(P ⌈q/P ⌉ − q))/qP .

Action 4: Increase the quantity more than P ⌈q/P ⌉ − q.

However, these two actions are dominated by the first two actions. The annual

transportation cost under Action 3 is always greater than, or equal to, the

transportation cost under Action 2, because the annual transportation cost

under Action 2 is the minimum annual cost that can be achieved. Similarly,

the annual transportation cost under Action 4 is always greater than, or equal

to, the annual transportation cost under a particular choice of Action 4 where

the last truck is filled completely.

On the other hand, the increase in the joint annual cost of the supplier and
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buyer is more under Actions 3 and 4, because they require a higher deviation

from the joint optimal quantity q(n).

Using the above results, the transporter’s problem can be formulated as follows:

max Πq,n(u) = ∆T (u) − ∆J(u),

s.t u ∈ {P ⌊q/P ⌋ − q} ∪ [0, P ⌈q/P ⌉ − q].

We call this problem PZERO. Once we substitute the values of ∆T (u) and ∆J (u),

we obtain

Πq,n(u) =





RT D(P ⌈q/P ⌉−q)
qP

− (q−P ⌊q/P ⌋)2

2q(P ⌊q/P ⌋)
φ(n) if u = P ⌊q/P ⌋ − q,

⌈q/P ⌉RT Du
q(q+u)

− u2

2q(q+u)
φ(n) if 0 ≤ u ≤ P ⌈q/P ⌉ − q.

The first piece of the function is a single value (we call this value α(q, n) from

now on), and the latter piece is concave in u. The solution to the problem PZERO

is given by the following Proposition:

PROPOSITION 15 The optimal value of u is given by:

u∗
q,n =





P ⌊q/P ⌋ − q if α(q, n) > max(u∈[0,P ⌈q/P ⌉−q])Πq,n(u),

uq,n if α(q, n) ≤ Πq,n(u) and u ≤ P ⌈q/P ⌉ − q,

P ⌈q/P ⌉ − q otherwise,

where u is the stationary point of the second piece, and its value is given by

uq,n = q

√
1 +

2⌈q/P ⌉RT D

φ(n)q
− q.

Proof: Note that (dΠq,n(u)/du)|u=0 > 0. Hence uq,n is the global maximizer over

[0,∞). Then over [0, P ⌈q/P ⌉−q], the function attains its maximum if uq,n is feasible,
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otherwise the maximizer is the right end point. Finally, we compare the maximum

value of Πq,n(u) to α(q, n). �

Step-II: Search Over n

So far, we have solved the transporter’s problem while assuming that n is fixed.

However, it is quite possible that a change in q would lead the supplier to change n.

So the solution we have found may not reflect the best decision that the transporter

could make. To compensate for this, we propose a search procedure over the possible

values of n:

ALGORITHM 3

Step 0: Start with nJ and qJ . Find ΠqJ ,nJ
and find u∗

qJ ,nJ
. Set nT = nJ , qT =

qJ + u∗
qJ ,nJ

, and C∗ = ĜJ(qT , nT ) + GT (qT ).

Step 1: Set i = 1. While ĜJ(q(nJ + i), nJ + i) + DRT /P ≤ C∗:

- Calculate ∆i = (GT (q(nJ +i))−GT (q(nJ)))−(ĜJ(q(nJ+i), nJ +i)−ĜJ (qT , nT )).

- Find u∗
q,n and Πq,n(u) for q = q(nJ + i), and n = nJ + i.

- Add ∆i to Πq,n(u). This is the net savings that are obtained by changing n from

nJ to nJ + i. If this net savings leads to less total cost than the current optimal

solution, then update qT , nT and C∗ accordingly.

- increase i by 1.

Step 2: Repeat Step 1 this time by starting with i = −1 and decrease n at each sub-

step.

Algorithm 3 is a finite-step algorithm. This is easy to prove, but first we must

justify the stopping criterion: ĜJ(q(nJ + i), nJ + i) + DRT /P is the lower bound for
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the system-wide cost when n = nJ + i. Obviously, if this cost is greater then the

current optimal cost, then for this value of n, we cannot achieve a better solution.

That justifies the stopping criterion.

Next we show that the algorithm is a finite-step algorithm. Recall that ĜJ(q(n), n)

is given by
√

2(AS + nAB)D(hB − hS + nhS)/n. We know that this expression has

a unique minimizer,nJ , and that it is increasing for n > nJ and n < nJ . Hence, if

for a particular value of n, say n > nJ , the lower bound is greater than the current

optimal solution, then for all other n > n, the lower bound should be greater than

the current optimal. Similarly, if for a particular n < nJ , the lower bound is greater

than the current optimal, then for all n < n, the lower bound will be greater than

the current optimal. We also know that

limn→∞

√
2(AS + nAB)D(hB − hS + nhS)/n = ∞,

so there exists an nmin such that

√
2(AS + nAB)D(hB − hS + nhS)/n+

DRT

P
≥ ĜJ(qJ , nJ)+

⌈qJ/P ⌉RT

qJ
∀n ≥ nmin.

The right hand side of the inequality is GC(qJ , nJ); its value is always greater than, or

equal to, the current optimal solution to the transporter’s problem in any iteration.

This proves the existence of a finite n > nJ after which the procedure can be stopped.

For n < nJ , a bound can be derived in a similar manner. In addition, n = 1 is already

a lower bound for such n < nJ .

VII.3.1.1. Solution to the Transporter’s Problem When AT > 0

When AT > 0, the observations of the possible actions of the transporter do not hold

directly. However, we can still solve the transporter’s problem by utilizing the ideas

developed for the AT = 0 case. We have a two step procedure. First, we solve the
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transporter’s problem by assuming that he has no cargo cost, i.e. he has only a fixed

cost for each dispatch. Under this assumption, the transporter’s problem is identical

to the supplier-buyer problem where the buyer’s fixed dispatch cost is AB + AT . We

denote the solution of this problem as (q′T , n′
T ). In the second step, we assume that

the joint solution of the supplier-buyer is (q′T , n′
T ) and that the transporter has only

cargo costs. Rewriting (7.5), we have

PT : min
q≥0, n∈Z+

GC(q, n) = ĜJ(q, n) + GT (q)

=
(AS + n(AB + AT ))D

nq
+

(hB + (n − 1)hS)q

2
+

⌈q/P ⌉RTD

q

=
(AS + nAB)D

nq
+

(hB + (n − 1)hS)q

2
+

⌈q/P ⌉RT D

q
+

AT D

q
,

and, hence, this second problem is identical to the problem that we solved in the

previous section.

VII.3.2. Coordination Mechanisms

So far, we have developed the solution to the transporter’s problem. The next step

is to find an answer as to how the transporter can coordinate the buyer and the

supplier to his solution. While structuring the transporter’s problem, we mentioned

that the transporter has to compensate the cost increase for the supplier and buyer

system. The transporter can provide contractual mechanisms, which compensate the

supplier-buyer system and coordinate the channel at (qT , nT ). In this dissertation,

we discuss two different types of contractual mechanisms:

Transportation Price Contracts: The transporter changes the initial price sched-

ule, and offers a new price schedule, namely P T (q), as a contract to the supplier

and buyer. The supplier and the buyer solve their joint optimization problem

with the new price schedule. When providing the new price schedule, the trans-
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porter has to make sure that the new joint solution of the supplier and the

buyer is (qT , nT ) and the increase in the joint cost of the supplier and buyer is

compensated.

Order Quantity Contracts: The transporter offers a contract to the supplier and

buyer that sets the order quantity to qT . Keeping the initial pricing schedule, the

transporter compensates the cost increase of the supplier-buyer system through

fixed annual payments.

VII.3.2.1. Coordination by Transportation Price Contracts

The structure of the transportation price contracts may depend on the initial pricing

structure. Hence, we consider each case separately. Before going into the details of

each case, we mention once more that in this model, it does not matter which party

is incurring the transportation charges since they act as a single entity.

Case 1: PT (q) = pT q:

We derive the joint solution of the supplier-buyer problem with the transportation

price schedule in Appendix A. The transporter’s new price schedule, P T (q) has to sat-

isfy similar conditions as Condition 1 and Condition 2, which are given in the VII.2.2.

This new pricing schedule implies a new annual revenue for the transporter and a new

annual transportation cost for the supplier-buyer. Below we adapt Condition 1 and

Condition 2 for the transporter’s problem:

i- ĜJ(qT , nT ) + P T (qT )D/qT ≤ ĜJ(qJ , nJ) + PT (qJ)D/qJ . (Condition 1), and

ii- (qT , nT ) = arg min ĜJ(q, n) + P T (q)D/q. (Condition 2)

One of the most commonly used pricing mechanisms used for channel coordi-

nation is quantity discounts. In the transportation industry, quantity discounts are
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referred to as freight discounts. We next discuss, how the freight discounts can be

employed as new price schedules to coordinate the supplier and the buyer.

We first consider em incremental freight discounts. Incremental freight discount

schedules can be of various types. Here we present three types of incremental discount

schedules:

P T (q) =





pT q if q < q1,

pT q1 + p
′

T (q − q1) q1 ≤ q,
(7.7)

P T (q) =





0 if q < q0,

p
′

T (q − q0) if q0 ≤ q < q1,

p
′

T q1 + pT (q − q1) q1 ≤ q. (p
′

T > pT )

(7.8)

Equation (7.7) represents two types of incremental discounts. pT > p
′

T represents

the standard form of the incremental discount. If pT < p
′

T , then the price schedule

offers a negative discount. In other words, higher volumes are discouraged. On the

other hand, equation (7.8) represents a negative discount with a fixed reward for each

dispatch.

Following this brief preliminary information about incremental discounts, we

next analyze how they can be used for coordination purposes. Consider the second

condition, which requires (qT , nT ) to be the joint optimal solution of the buyer and

supplier problem. Momentarily assume that the transporter is charging a fixed price,

Ap, for each dispatch in his modified price schedule. There are three necessary and

sufficient conditions for (qT , nT ):

qT =

√
2(AS + nT (AB + Ap))D

nT (hB − hS + nT hS)
, (7.9)
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AhS + (AB + Ap)hS − AShe

nT (nT + 1)
≥ 0, (7.10)

AShe

nT (nT + 1)
− (AB + Ap)hS − AhS ≥ 0, (7.11)

where he := hB − hS.

Equation (7.9) is a direct consequence of equation (7.6). Inequalities (7.10) and

(7.11) result from the difference equations, and they ensure the optimality of nT .

From (7.9), we can derive the value of Ap as follows:

Ap =
q2
T nT (he + nT hS)/2D − AS

nT

− AB. (7.12)

After finding the value of Ap, we need to check whether or not the other two condi-

tions are satisfied. If they are also satisfied, then imposing this fixed price, Ap, will

coordinate the supplier-buyer system at (qT , nT ).

Next, we explain the analogy between imposing a fixed price and offering incre-

mental freight discounts. Consider the region where q > q1 in Equation (7.7). In

this region, we can rewrite P T (q) as q1(pT − p
′

T ) + qp
′

T . The first term is constant;

hence, if the dispatch quantity is greater than q1, this price schedule is equivalent to

offering a fixed price for each dispatch and a per unit price. Note that, depending on

the relations between pT and p
′

T , the fixed term can be negative. On the other hand,

consider the region where q0 ≤ q < q1 in Equation (7.8). Rewriting P T (q) in this

region we obtain p
′

T q− p
′

T q0. Note that the second term represents a fixed reward for

each dispatch.

If qJ < qT , the transporter may offer the incremental discount schedule as in

Equation (7.7); if qJ > qT , then a discount schedule as in Equation (7.8) would be

appropriate. The transporter has to determine the value of q1, p
′

T , and/or q0. p
′

T can
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be derived from Condition 1 as follows:

p
′

T D = ĜJ(qJ , nJ) + pT D − ĜJ(qT , nT ) − ApD/qT .

After finding p
′

T , the value of q1 can be derived by setting q1(pT − p
′

T ) equal to Ap

for the case qJ < qT . For qJ > qT , q0 can be derived from q0 = −Ap/p
′

T , and q1 is

obtained from p
′

T (q1 − q0) = pT q1.

Below we state the necessary and sufficient conditions for the incremental dis-

count to coordinate the supplier-buyer system:

1- qJ < qT :

The freight schedule in expression (7.7) coordinates the supplier-buyer system if the

following conditions hold:

(i1C1) Expressions (7.10) and (7.11).

(i1C2) q1 ≤ qT .

(i1C3) p
′

T D = ĜJ(qJ , nJ)+ pTD− ĜJ(qT , nT )−ApD/qT and q1(pT − p
′

T ) = Ap

where Ap is given by equation (7.12).

2- qJ > qT :

The freight schedule in expression (7.8) coordinates the supplier-buyer system if the

following conditions hold:

(i2C1) Expressions (7.10) and (7.11).

(i2C2) q1 ≥ qT .

(i2C3) p
′

T D = ĜJ(qJ , nJ) + pT D − ĜJ(qT , nT ) − ApD/qT , q0 = −Ap/p
′

T , and

q1 =
p
′

T q0

p
′

T
−pT

where Ap is given by equation (7.12).
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Next, we consider all-units freight discounts. Consider the following all-units

freight discount schedule:

P T (q) =





pT q if q < q2,

p
′

T q if q2 ≤ q.
(7.13)

In this expression, we assume pT > p
′

T . As explained in Appendix A, this discount

schedule is interpreted as follows:

P T (q) =





pT q if q < q1,

p
′

T q2 if q1 ≤ q < q2,

p
′

T q if q2 ≤ q,

where q1 = (c2
T q2)/c

1
T . We now define [0, q1] as Region I, (q1, q2) as Region II, and

[q2,∞) as Region III. As explained in Appendix A, given this price schedule, the joint

annual cost of the supplier and buyer, namely GJ(q, n), becomes

GJ(q, n) =





(AS+nAB)D
nq

+ (hS(n−1)+hBq
2

+ pT D if q < q1,

[AS+n(AB+c2T q2)]D

nq
+ (hS(n−1)+hBq

2
+

p
′

T q2D

q
if q1 ≤ q < q2,

(AS+nAB)D
nq

+ (hS(n−1)+hBq
2

+ p
′

T D if q2 ≤ q.

Recall that the joint annual cost of the supplier-buyer under the initial pricing is

GJ(q, n) =
(AS + nAB)D

nq
+

(hS(n − 1) + hBq

2
+ pT D.

The structure of GJ(q, n) in Regions I and III is the same as the structure of GJ(q, n).3

After presenting some preliminary information, we next summarize the necessary

and sufficient conditions for such an all-units discount schedule to be optimal. We

divide this analysis into two cases:

3Regions I, II, and III refer to q < q1, q1 ≤ q < q2, and q ≥ q2, respectively.
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1- qJ < qT :

If the transporter wants to coordinate the buyer and the supplier, qT cannot be in

Region I. Hence, we need to consider two regions only.

First, we let qT be in Region II and state the necessary and sufficient conditions

for (qT , nT ) to be optimal:

(IIC1) p
′

T and q2 has to satisfy

p
′

T q2 =
q2
T nT (he + nT hS)/2D − AS

nT

− AB.

(IIC2) GJ(qT , nT ) ≤ φ(n) + c2q2D/q(n) ∀n such that q(n) is in Region II.

(IIC3) GJ(qT , nT ) ≤ GJ(q1, n(q1)) and GJ(qT , nT ) ≤ GJ(q2, n(q2)).

(IIC4) qJ < qT .

(IIC5) GJ(qT , nT ) ≤ GJ(q(nmax), nmax) where nmax = arg max{q(n) ≥ q2}.

(IIC6) If qJ ≤ q1, the discounted freight price has to satisfy

p
′

T q2D/qT ≤ ĜJ(qJ , nJ) + pT D − ĜJ(qT , nT ).

On the other hand, if qJ > q1, it should satisfy

p
′

T q2D(1/qT − 1/qJ) ≤ ĜJ(qJ , nJ) − ĜJ(qT , nT ).

The inequalities in the conditions imply that the transporter can share some of

the system savings with the buyer and the supplier.

Using (IIC1), the transporter can determine p
′

T q2 and then he can also derive

the value of q1 from pT q1 = p
′

T q2. That also specifies the location of qJ .
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In order to satisfy (IIC5), the transporter can restrict the discounted price to an

interval, i.e. he can set his discount schedule as

P T (q) =





pT q if q < q2,

p
′

T q if q2 ≤ q, q3,

pT q if q3 ≤ q,

for some q3.

Next, letting qT be in Region III, we state the necessary and sufficient conditions

for (qT , nT ) to be the minimizer of GJ , i.e. to satisfy Condition 2:

(IIIC1) n(qT ) = nT .

(IIIC2) Either qT = q2 and n(qT ) = nT or qT = q(nmax) where nmax =

arg max{q(n) ≥ q2}.

(IIIC3) qJ < q2.

(IIIC4) If qT = q2, then GJ(qT , nT ) ≤ φ(nmax) + p
′

T D.

(IIIC5) GJ(qT , nT ) should not lead to a higher joint cost than the minimizer

of GJ(q, n) in Region II.

(IIIC6) If qJ is in Region I, the discounted price, p
′

T has to satisfy

p
′

T D ≤ ĜJ(qJ , nJ) + pT D − ĜJ(qT , nT ).

If qJ is in Region II, p
′

T and q2 have to satisfy

p
′

T D ≤ ĜJ(qJ , nJ) + p
′

T q2D/qJ − ĜJ(qT , nT ).

The inequalities indicate that the transporter may be willing to share some

of the system savings in order to achieve coordination. The transporter can
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restrict his discount structure only to an interval as in the case where qT is in

Region II.

In conclusion, the transporter has to either satisfy (IIC1)-(IIC6) or (IIIC1)-

(IIIC6) to achieve coordination. Because he can only control the values of p
′

T and

q2, he may not always be able to satisfy those conditions. If those conditions cannot

be satisfied, we conclude that the all-units discount schedule cannot coordinate the

supplier-buyer system when qJ < qT .

2- qJ > qT :

In this case, the quantity discount schedule as given in expression (7.13) will not

coordinate the supplier-buyer system. Instead, a discount schedule of the following

form would do so:

P T (q) =





p
′

T q if q ≤ q2,

pT q if q2 < q.
(7.14)

In this schedule, there are only two regions, Region I and Region II. The necessary

and sufficient conditions for price schedule (7.14) to be optimal are:

(IC1) Either qT = q and n(qT ) = nT or qT = nmax(q) where nmax = arg max{q(n) ≤

q2}.

(IC2) p
′

T has to satisfy

p
′

T D ≤ ĜJ(qJ , nJ) + pT D − ĜJ(qT , nT ).

It is very unlikely that (IC1) will be satisfied. Also, note that the transporter

cannot control the related variables.



157

Case 2. PT (q) = pT q + Ap

In Appendix A, we analyze the solution to the supplier-buyer problem under the

stated pricing schedule, i.e. finding (qJ , nJ). The transporter will try to change the

supplier-buyer decision, so that they are operating at qT . As in Section VII.3.2, he

has two choices: either change the price, or make a contract with the supplier and

buyer.

If the transporter decides to change the price, he can offer an incremental, or an

all units, freight discount. The mechanics of the freight discount are same as in Case

1.

The transporter can also induce the supplier and buyer by changing the fixed

dispatch price Ap to A′
p such that (qT , nT ) is the minimizer of the resulting joint

annual cost function of the supplier-buyer system. In fact, this is similar to offering

incremental discounts. The necessary and sufficient conditions for this to work are

either (i1C1), (i1C3) or (i2C1), (i2C3). With the new fixed price, A′
p, the joint annual

cost function is given by

GJ(q, n) =
ASD

nq
+

hS(n − 1)q

2
+

(AB + A′
p)D

q
+

hBq

2
.

If the transporter wants (qT , nT ) to be the minimizer of this function, the three

conditions given by (7.9)-(7.11) have to be satisfied, and the value of A′
p can be found

by equation (7.12).

If one of these conditions is not satisfied, then changing the fixed price may not

be sufficient to align the incentives of the supplier and the buyer. The transporter

also needs to change the value of pT to p
′

T in order to keep the joint annual cost of the

supplier-buyer system the same. Recall that in the initial pricing schedule, this cost

is equal to ĜJ(qJ , nJ)+ApD/qj +pT D. With the modified price schedule, it becomes
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ĜJ(qT , nT ) + A′
pD/qT + p

′

T D. The value of p
′

T can be solved by equating these two

quantities, that is

p
′

T =
ĜJ(qJ , nJ) − ĜJ(qT , nT )

D
+

Ap

qj
− Ap

qT
− pT .

Case 3 - PT (q) = pT q + Ap + ⌈q/P ⌉Mp

In Appendix A, we analyze the solution of the supplier-buyer problem when the

transportation price includes a per truck cost.

Next, we discuss how the transporter could switch his solution from (qJ , nJ)

to (qT , nT ). The transporter may try to offer an all-units freight discount, or he

may change the fixed price for this purpose. The mechanics of these methods are

similar to those explained in SectionVII.3.2. We now propose a third method that

the transporter might try to implement. This is to change the per truck price.

Consider the following situation. Suppose that the transporter set Ap = 0. 4

Then, the supplier-buyer problem is formulated as follows:

min
q,n

ASD

nq
+

hS(n − 1)q

2
+

ABD

q
+

hBq

2
+

⌈q/P ⌉MpD

q
+ pT D. (7.15)

On the other hand, using (7.5), we can write the transporters problem as follows:

min
q,n

ASD

nq
+

hS(n − 1)q

2
+

ABD

q
+

hBq

2
+

⌈q/P ⌉RT D

q
. (7.16)

The structure of these two problems are identical. They differ only by a constant

term pT D, which has no effect on the problem and by the per truck component. That

is why, if the transporter wants the solution of (7.15) to be equal to the solution of

(7.16), he should set Mp = RT .

Under this new pricing schedule, Ap = 0 and Mp = RT , the joint annual cost of

4If AT > 0, then set Ap = AT .
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the supplier-buyer system will change. In order to keep the cost at the same level,

the transporter should set the new per unit price p
′

T to

p
′

T =
ĜJ(qJ , nJ) − ĜJ(qT , nT )

D
+

⌈qJ/P ⌉Mp

qJ
− ⌈qT /P ⌉RT

qT
+ pT .

Unlike the other pricing incentives, setting the per truck price equal to the per

truck cost, Ap = AT , always ensures aligning the supplier-buyer system to operate at

qT .

VII.3.2.2. Coordination by Order Quantity Contracts

We have seen in the previous section that if the transporter wants to align the supplier-

buyer system by changing the transportation price schedule, he may not always be

able to force the system to operate at qT . Changing the price schedule will always

work only if it exactly reflects the transporter’s costs.

In this section, we provide another contracting mechanism to help the transporter

coordinate the system. This mechanism is to offer a contract to the supplier-buyer

system. Keeping the transportation price schedule the same, the terms of the contract

should include two parameters:

1. order quantity,

2. the compensation amount to be made by the transporter to the supplier-buyer

system, namely ν.

The order quantity should be set to qT for that is the quantity that minimizes

the total cost of all the parties. The supplier will also change her replenishment

quantity to (nT − 1)qT so as to minimize her costs. With (qT , nT ), the joint annual

cost of the supplier-buyer becomes GJ(qT , nT ). However, their initial joint annual

cost was GJ(qJ , nJ), which is lower than GJ(qT , nT ) because (qJ , nJ) is the minimizer



160

of GJ(q, n). The buyer and supplier will only be willing to sign this contract if at

least the increase in their joint cost is compensated. Hence, ν should at least be

GJ(qT , nT ) − GJ(qJ , nJ). The compensation might be higher if the buyer and the

supplier also want to allocate some of the system savings.

The transporter can pay ν as a franchise fee every year. Another way to pay this

compensation, which may be more practical, is to offer a per unit discount for the

items transferred. Since the annual demand is constant, this discount can substitute

for a fixed payment. The value of the discount is ν/D. This type of a freight discount

is different from the other discount schedule that we discussed in Section VII.3.2.

In the previous one, the supplier-buyer system can independently decide the order

quantity; however in the latter case, they are bound by a contract which has already

set the order quantity at a specific value.

VII.4. Model II : Supplier and Buyer Act Independently

In this section, we again consider the transporter’s problem and investigate the co-

ordination mechanisms under the assumption that the supplier and buyer do not act

as a single unit but are both trying to minimize their own annual costs.

Even though the supplier and buyer behave independently, the supplier still tries

to induce the buyer’s decisions by changing the wholesale price schedule and coordi-

nating him at their joint optimal solution. Recall that in Section VII.2.2 where we

stated and formulated the supplier’s problem, we showed that the supplier’s prob-

lem is essentially to minimize the total annual cost of the buyer and the supplier,

GSB(q, n). The solution to this problem, which is denoted by (qSB, nSB), depends on

the structure of the transportation price function. For each possible transportation

price function, the solution procedures are explained in Appendix A. The supplier
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also has to find a new wholesale pricing structure, P S(q), so that when the buyer

minimizes his total annual cost under this price, the minimizer will be qSB. The

structure and the parameters of P S(q) depend on the structure of the transportation

price function and on which party incurs the transportation charges. We discuss how

to develop practical P S(q) structures in Appendix A .

As in Model I, after determining the order quantity of the buyer, the next step is

to construct the transporter’s problem. The transporter’s problem and coordination

mechanisms depend on which party is incurring the transportation costs. That is

why, we divide the analysis of Model II into two cases:

1. The transporter’s problem when the supplier incurs the transportation charges

2. The transporter’s problem when the buyer incurs the transportation charges

VII.4.1. Transporter’s Problem When Supplier Incurs the Transporta-

tion Charges

The analysis of this case is more straightforward. First of all, we should note that

regardless of the structure of the transportation price, the buyer’s annual cost function

is an EOQ type function given by

ĜB(q) =
ABD

q
+

hBq

2
+ pSD.

As explained in Appendix A, the supplier can change the buyer’s decision to any

quantity she wishes by offering an all-units quantity discount. Notice that the buyer

always wants to choose his optimal order quantity, qB. The supplier, depending on

her preliminary information about the transportation price schedule, finds an optimal

order quantity, qSB, that minimizes the sum of the annual costs of the buyer and

supplier and then offers a quantity discount schedule to the buyer.
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In this case, the transporter negotiates or coordinates with the supplier because

the supplier incurs the transportation charges. Since the supplier always tries to

minimize the joint supplier-buyer cost, the transporter’s problem is exactly the same

as the transporter’s problem in the first model that was introduced, formulated and

solved in Section VII.3.1. Furthermore, the coordination mechanisms that the trans-

porter should follow are exactly the same as the ones in Model I. The reader may

refer to Section VII.3.2 for details.

VII.4.2. Transporter’s Problem When Buyer Incurs the Transportation

Charges

The analysis of this case is perhaps the most complicated one, because, in this case,

both the supplier and the transporter try to align the buyer’s incentives. At this point,

we make an assumption and model this problem as a Stackelberg Game in which the

supplier leads and the transporter follows. The game is described as follows:

• First, the supplier offers an all-units quantity discount schedule to the buyer.

Depending on the relative location of the discount quantity, qSB, to the buyer’s

optimal order quantity qB, the discount schedule takes different forms. If qB <

qSB, then it becomes as follows:

P S(q) =





pS if q < qSB,

p
′

S if qSB ≤ q.
(7.17)

If qSB < qB, then

P S(q) =





p
′

S if q ≤ qSB,

pS if qSB < q.
(7.18)

Figures 10 and 11 graphically show the discounts.



163

Figure 10 Supplier’s Discount Schedule Given by Equation (7.17)
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• Then the transporter offers a freight schedule to further change the buyer’s

order quantity to qT .

In the remainder of this section, we analyze the equilibrium strategies of the

supplier and the transporter:

VII.4.2.1. Transporter’s Problem

Suppose that the supplier provides one of the discount schedules given by (7.17)

and (7.18) to the buyer. The buyer’s respective annual cost functions, excluding the

transportation costs, GB(q) takes one of the following forms.

GB(q) =






ABD
q

+ hBq
2

+ (pS + pT )D, if 0 < q < qSB,

ABD
q

+ hBq
2

+ (p
′

S + pT )D if qSB ≤ q,
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Figure 11 Supplier’s Discount Schedule Given by Equation (7.18)
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for qSB ≥ qB. On the other hand, when qSB < qB, the buyer’s annual cost is

GB(q) =





ABD
q

+ hBq
2

+ (p
′

S + pT )D, if 0 < q ≤ qSB,

ABD
q

+ hBq
2

+ (pS + pT )D if qSB < q.

In either case, GB(q) is a piecewise continuous function, and its minimizer, namely

q∗B, is either qB, or the discontinuity point qSB. (See Figure 12.)

Next, we formulate the transporter’s problem in a similar manner as we did for

Model I. First, find the order quantity, namely qT , that will maximize the decrease in

the transporter’s annual cost minus the increase in the buyer’s annual cost. Stated

mathematically,

max
q

[GT (q∗B) − GT (q)] − [GB(q) − GB(q∗B)]. (7.19)
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Figure 12 Possible Forms of GB(q) Depending on the Supplier’s Discount
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Since there are two candidates for q∗B, we can decompose the transporter’s prob-

lem into two problems:

max
q

[GT (qB) − GT (q)] − [GB(q) − GB(qB)], (7.20)

max
q

[GT (qSB) − GT (q)] − [GB(q) − GB(qSB)]

−[GB(qSB) − GB(qB) − (pS − p
′

S)D]. (7.21)

We explain the last term in the second problem as follows. The supplier offers a

quantity discount p
′

S to the buyer. If the buyer’s order quantity is qSB, then his

annual cost reduces by (pS − p
′

S)D due to the discount. On the other hand, his

annual cost increases by GB(qSB) − GB(qB) because of deviating from his optimal

solution. Thus, GB(qSB) − GB(qB) − (pS − p
′

S)D represents the net change in the
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buyer’s annual cost if he changes his order quantity from qB to qSB. In the classical

channel coordination problems where there is no transporter, the net change should

at most be 0 for the buyer to change his order quantity. However, now the supplier

knows that the transporter also provides a freight discount, she does not have to set

her discount high enough to make it 0. That is why, the transporter should also

compensate for this difference. Note that, given the supplier’s discount schedule,

GB(qSB) − GB(qB) − (pS − p
′

S)D is constant. We call this constant δS from now on.

Let us consider the first problem and restate it as

max
ω

Γ(ω) := [GT (qB) − GT (qB + ω)] − [GB(qB + ω) − GB(qB)]

:= ΓT (ω) − ΓB(ω). (7.22)

Examining (7.22) carefully, the above problem has the same structure as the trans-

porter’s problem, given by equation (7.7), in Section VII.3.1. In this case, ΓT (ω)

represents the decrease in the transporter’s annual cost, and ΓB(ω) represents the

increase in the buyer’s annual cost. In order to solve this problem, we use the same

techniques. As in that problem, the transporter has two best possible actions:

1. change qB to ql
B = ⌊qB/P ⌋P , i.e. eliminate the last truck.

2. increase qB by u where u ∈ [0, qf
B − qB], i.e. increase the utilization of the last

truck, where qf
B = ⌈qB/P ⌉P .

By using this information, we rewrite the transporter’s problem as

max
ω

Γ(ω) =





Γ1(q
l
B − qB) = Γ1

T (ql
B − qB) − Γ1

B(ql
B − qB) if ω = ql

B − qB,

Γ2(ω) = Γ2(ω) = Γ2
T (ω) − Γ2

B(ω) if 0 ≤ ω ≤ qf
B − qB.

(7.23)
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Observe that

Γ1
T (ql

B − qB) =
⌈qB/P ⌉RT D

qB
− RT D

P
, (7.24)

Γ1
B(ql

B − qB) =
√

2ABDhB
(ql

B − qB)2

2ql
BqB

=
hB(ql

B − qB)2

2ql
B

, (7.25)

whereas

Γ2
T (ω) =

⌈qB/P ⌉RT D

qB
− ⌈(qB + ω)/P ⌉RTD

qB + ω

= ⌈qB/P ⌉RT D

(
1

qB

− 1

qB + ω

)
(⌈qB/P ⌉ = ⌈(qB + ω)/P ⌉)

=
⌈qB/P ⌉RT Dω

qB(qB + ω)
, (7.26)

Γ2
B(ω) =

√
2ABDhB

w2

2qB(qB + ω)
=

hBw2

2(qB + ω)
. (7.27)

When we substitute expressions (7.24)-(7.27) into (7.23), we obtain the following:

max
ω

Γ(ω) =





Γ1(ω) = ⌈qB/P ⌉RT D
qB

− RT D
P

− hB(ql
B
−qB)2

2ql
B

if ω = ql
B − qB,

Γ2(ω) = ⌈qB/P ⌉RT Dω
qB(qB+ω)

− hBw2

2(qB+ω)
if 0 ≤ ω ≤ qf

B − qB.

We can easily calculate the value of Γ1(ω), say γ1. On the other hand, Γ2(ω)

is a concave function over its feasible region. The first and second derivatives with

respect to ω are

dΓ2(ω)

dω
=

⌈qB/P ⌉RT D +
√

2ABDhB/2

(qB + ω)2
− q2

BhB

2
,

d2Γ2(ω)

dω2
= −(⌈qB/P ⌉RT D +

√
2ABDhB/2)

(qB + ω)3
.

We can also show dΓ2(ω)
dω

|ω=0+ , which implies that Γ2(ω) is increasing at the left end

point of the feasible region. As a consequence of these properties of Γ2(ω), its max-

imizer, say ω0, is min{ω, qf
B − qB} where ω is the stationary point of Γ2(ω), and its
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value is given by

ω =

√
⌈qB/P ⌉RT D + q2

BhB/2

hB/2
− qB = qB

√

1 +
⌈qB/P ⌉RT

AB

− qB.

Finally, the maximizer of Γ(ω), say ω∗, is either ql
B − qB or w0, whichever leads to

more savings. Using these results, we next present the lemma to characterize the

solution to the first problem:

LEMMA 11 The solution to the first problem given by (7.20), namely q1
T , is given

by

q1
T = arg min{ql

B, min{qB

√
AB + ⌈qB/P ⌉RT

AB
∧ qf

B}}. (7.28)

Next, we present the solution of the second problem, (7.21), in a similar manner.

The solution procedure is very similar to the solution procedure in (7.20). Hence, we

skip the details and restate the problem as:

max
u

Λ(u) =






Λ1(u) = RT D⌈qSB/P ⌉
qSB

− RT D
P

− hB(ql
SB−qB)2

2ql
SB

−1qSB>qB
δ−S

−1qSB>qB

(
δS − hB(qSB−qB)2

2qSB

)
if u = ql

SB − qSB,

Λ2(u) = ⌈qSB/P ⌉RT Du
qSB(qSB+u)

− hB(qSB+u−qB)2

2(qSB+u)

−1qSB>qB

(
δS − (qSB−qB)2

2qSB

)

−1qSB<qB
δ−S if 0 ≤ u ≤ qf

SB − qSB.

Λ1(u) is a constant value, and we can easily compute it. The second piece, Λ2(u),

is a concave function of u. (Observe that the relative locations of qSB and qB do not

change the structure of Λ2(u).) The first derivative and second derivative with respect

to u are given by

dΛ2(u)

du
=

1

(qSB + u)2

[
⌈qSB/P ⌉RT D − hB

2
(qSB + qB + u)(qSB − qB + u)

]
,
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d2Λ2(u)

du2
=

−2D(⌈qSB/P ⌉RT + AB)

(qSB + u)3
.

Λ
(2)
2 (u) < 0 for u ≥ 0; and this ensures the concavity. The maximizer of Λ2(u),

namely u∗
2, is either the stationary point, or one of the end points, of the feasible

region. If dΛ2(u)
du

|u=0+ < 0, then u∗
2 = 0 because dΛ2(u)

du
|u=0+ < 0 shows that Λ2(u) is

decreasing over the feasible region. dΛ2(u)
du

|u=0+ is

dΛ2(u)

du
|u=0+ =

⌈qSB/P ⌉RTD − (hB/2)(q2
SB − q2

B)

q2
SB

.

If dΛ2(u)
du

|u=0+ ≥ 0, then the maximizer is u0 = min{u, qf
SB − qSB} where u is the

stationary point and its expression is

u = qB

√

1 +
⌈qSB/P ⌉RT

AB
− qSB.

The solution of this problem, say u∗, is either ql
SB − qSB or u0, whichever leads

to higher savings. We are now ready to state our next lemma that characterizes the

solution to the second problem:

LEMMA 12 The solution to the problem in (7.21), namely q2
T , is given by

q2
T = arg min{ql

SB, max{qSB, min{qB

√
AB + ⌈qSB/P ⌉RT

AB
, qf

SB}}}. (7.29)

The solution of the transporter’s problem, i.e., the transporter’s optimal response

to the supplier’s quantity discount schedule, is arg min{q1
T , q2

T}.

VII.4.2.2. Freight Discount Schedule

The next step for the transporter is to find the mechanism that will induce a change

in the buyer’s annual cost function so that the minimizer of the resulting function is

qT . Freight discounts work for this purpose. We define p
′

T as the discounted per unit
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transfer charge. At this point, we should note that the interpretation of this freight

discount by the buyer will be different from the interpretation of the freight discounts

in the case where the supplier and buyer act as a single unit or where the supplier

incurs transportation charges. The reader may refer to Appendix A for a detailed

discussion of this.

Depending on the value of qT , we propose three different discount mechanisms

for the transporter:

1. qT < qB: The following quantity discount will suffice to align the buyer:

P T (q) =






p
′

T q if q ≤ qT ,

pT q if qT < q.
(7.30)

Then, the buyer’s annual cost, GB(q), is given by

GB(q) =





ABD
q

+ hBq
2

+ (pS + p
′

T )D, if 0 < q ≤ qT ,

ABD
q

+ hBq
2

+ (pS + pT )D, if qT < q < qSB,

ABD
q

+ hBq
2

+ (p
′

S + pT )D, if qSB ≤ q.

(7.31)

Figure 13 provides an illustration of GB(q) in this case.

2. qB ≤ qT < qSB: In this case the transporter would choose to offer a partial freight

discount, whose structure can be given by

P T (q) =





pT q if q < qT ,

p
′

T q if qT ≤ q < qSB,

pT q if qSB ≤ q.

(7.32)
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Figure 13 An Illustration of GB(q) in Expression (7.31)
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The buyer’s annual cost, G(q), is given by

GB(q) =






ABD
q

+ hBq
2

+ (pS + pT )D, if 0 < q < qSB,

ABD
q

+ hBq
2

+ (pS + p
′

T )D, if qT ≤ q < qSB,

ABD
q

+ hBq
2

+ (p
′

S + pT )D, if qSB ≤ q.

(7.33)

Figure 14 provides an illustration of GB(q) in this case.

3. qT ≥ qSB: We know that GB(q) is increasing over [qSB,∞). When qT ≥ qSB, it

will be sufficient for the transporter to offer a freight discount starting from qT

in order to coordinate the buyer at qT . Under this discount, the transportation
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Figure 14 An Illustration of GB(q) in Expression (7.33)
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price schedule as a function of the shipment quantity, namely P T , is

P T (q) =





pT q if q < qT ,

p
′

T q if qT ≤ q.
(7.34)

Then, the buyer’s annual cost, GB(q), is given by

GB(q) =






ABD
q

+ hBq
2

+ (pS + pT )D, if 0 < q < qSB,

ABD
q

+ hBq
2

+ (p
′

S + pT )D, if qSB ≤ q < qT ,

ABD
q

+ hBq
2

+ (p
′

S + p
′

T )D, if qT ≤ q.

(7.35)

Figure 15 provides an illustration of GB(q) in this case.

VII.4.2.3. Supplier’s Optimal Strategy

It is not possible to characterize a closed form expression of the supplier’s optimal

strategy, namely qSB and p
′

S. We derive the supplier’s optimal response numerically.
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Figure 15 An Illustration of GB(q) in Expression (7.35)

482

483

484

485

486

487

488

489

490

60 70 80 90 100 110 120 130 140

q

VII.5. Conclusion

In this paper, we set a framework for incorporating transporters into supply chain

coordination. We considered a two-echelon setting that includes one supplier and one

buyer. Customer demand is deterministic, stationary and observed only at the buyer’s

site. The buyer replenishes his inventory from the supplier, and the transporter is

responsible for the delivery of the items from the supplier to the buyer. In the classical

channel coordination literature, the emphasis is on supplier-buyer coordination, i.e.

finding the system optimal solution and coordination mechanisms that the supplier

can employ in order to coordinate the buyer. In this study, we initiate a different

perspective on channel coordination, and we study the transporter’s coordination

problem and the mechanisms that the transporter can use to coordinate the system.

In our analysis, we decomposed the basic setting into two models which differ

based on the interactions between the buyer and supplier. For both models, we
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formulated and solved the transporter’s problem. Then, we identified some of the

possible coordination mechanisms that the transporter can use in order to coordinate

the buyer and/or supplier.

Model I assumes that supplier and buyer act as a single unit. That is, either

they are controlled by a central decision maker or they are coordinated by a contract.

Hence, given an initial transportation price schedule, they choose the order quantity

that minimizes their joint annual cost. Intuitively, this order quantity is not always the

most desirable load for the transporter. Therefore, he may want to try to induce the

supplier-buyer system to order at a different quantity level. Notice that because the

supplier-buyer unit already operates at their joint optimal, any other order quantity

will increase their average annual cost. The transporter must take this fact into

account while trying to induce the buyer and the supplier.

For this model, we showed that the transporter’s problem is to minimize the

system-wide costs, regardless of his initial price schedule. We developed a solution

procedure to solve the joint minimization problem of system-wide costs. Then, we

proposed several coordination mechanisms for different initial transportation price

schedules. When the initial price schedule was on a per unit basis, we studied the

effects of incremental and all-units freight discounts on system coordination. We

have derived the necessary and sufficient conditions that allow these discounts to

coordinate the supplier-buyer system. Our results show that both the structure and

the performance of these mechanisms are highly data dependent. Depending on the

relative locations of qT and qSB, the discount schedules can take different forms such

as negative discounts which discourages high volumes, discounts with a fixed reward,

or partial discounts which are only valid for one interval. For instances where the

necessary conditions are not satisfied, freight discount schedules do not coordinate

the system. To make a comparison between the relative performances of incremental
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and all-units discounts, we can say that incremental discounts perform much better

in coordinating the system because they provide an opportunity to the transporter

to change the structure of the joint annual cost of the supplier-buyer system. When

the initial price schedule includes a fixed price per each dispatch in addition to a per

unit price, freight discounts could still coordinate the buyer and the supplier in the

same manner. In addition, changing the value of the fixed price may also work for

coordination. When the initial pricing structure also includes a per truck price, the

safest way to coordinate the system is to bind the per truck price to the per truck

cost and the fixed price to the fixed cost. Unlike other coordination mechanisms, this

mechanism would always work.

Regardless of the initial pricing structure, transporter can offer a contract to the

buyer and the supplier, which specifies the order quantity, order frequency, trans-

portation price, and compensation amount to be made by the transporter, in order

to coordinate the system to his solution. We name such contracts as order quantity

contracts. These contracts always coordinate the system.

All of the coordination mechanisms that we propose in this chapter provide a

win- situation for all of the parties as long as the necessary and sufficient conditions

are satisfied. Table 9 summarizes the results for Model I.

Model II assumes the supplier and the buyer act independently. The analysis

of this model depends on which party is incurring the transportation charges. If

the supplier is incurring the transportation charges, the transporter’s problem and

the coordination mechanisms are identical to the ones in the first model. On the

other hand, if the buyer is responsible for the transportation charges, then both the

supplier and the transporter will try to affect his decisions. We modelled this case as

a Stackelberg Game, where the supplier leads the game and offers a quantity discount

schedule. Based on the discount schedule, the transporter offers a freight discount
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Table 9 Summary of Coordination Mechanisms for Model I

Initial Price Schedule Coordination Mechanism

Mechanism Structure N&S Conditions

Incremental Discount qJ < qT : Equation (7.7) i1C1-i1C3
qJ > qT : Equation (7.8) i2C1-i2C3

All-Units Discount qJ < qT : Equation (7.13) either IIC1-IIC6
PT (q) = pT q or IIIC1-IIIC6

qJ > qT : Equation (7.14) IC1-IC2

Contract (q, FP ): always works

q = qT

FP = GSB(qT , nT ) − GSB(qJ , nJ )

Incremental Discount qJ < qT : Equation (7.7) i1C1-i1C3
qJ > qT : Equation (7.8) i2C1-i2C3

All-Units Discount qJ < qT : Equation (7.13) either IIC1-IIC6
or IIIC1-IIIC6

qJ > qT : Equation (7.14) IC1-IC2
PT (q) = pT q + Ap

ChangeAp A′

p given by Equation (7.12) either i1C1, i1C3

or i2C1, i2C3

Contract (q, FP ): always works

q = qT

FP = GSB(qT , nT ) − GSB(qJ , nJ )

Reflect Costs p
′

T
q + AT + ⌈q/P ⌉RT always works

PT (q) = pT q + Ap + ⌈q/P ⌉Mp Quantity Contracts (q, FP ): always works

q = qT

FP = GSB(qT , nT ) − GSB(qJ , nJ )
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schedule. As a result, the buyer observes a cost structure (which we represented by

GB(q)) that has both quantity discounts and freight discounts. The buyer chooses

the order quantity that minimizes this cost.

VII.5.1. Managerial Insights and Future Work

One of the most important results of this study is that the transporter is better off

by being integrated into the channel coordination, which also reduces the system-

wide costs. As a consequence, the supplier and buyer are better off sharing the

system savings. Hence, it is always beneficial for the whole chain to incorporate the

transporter into the channel coordination mechanisms.

An intuitive coordination mechanism that the transporter can implement is re-

flecting the actual transportation costs and imposing a profit margin in the price

schedule, which is always successful for coordinating supplier and buyer. By doing

this, the transporter can make himself look as if he is being used as a private car-

riage. Offering freight discounts is another way to coordinate the channel. Typically,

transportation companies offer freight discounts in order to increase the volume of

transferred items. The results of this study indicate that freight discounts can also

be used for coordination purposes.

Another interesting result of this study is that sometimes it is effective for the

transporter to offer negative freight discounts and/or partial freight discounts. Such

negative discounts may result from the transporter’s cost structure. For the trans-

porter, it is not always less more desirable to have more volume to ship. Often it is

more important for the transporter to better utilize his trucks.
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CHAPTER VIII

SUMMARY AND CONCLUSIONS

This dissertation investigates the impact of transportation costs and transporters in

supply chain coordination. The goals of the dissertation are to build on the theoretical

framework of the existing literature in the context of joint inventory and transporta-

tion decisions and to address the impact of transporters in channel coordination by

integrating them in the coordination processes.

As discussed in Chapter I, transportation costs realize scale economies. There-

fore it is a common logistics practice to consolidate small size shipments in order

to benefit from the reduced fares for larger shipment sizes. Time-based, quantity-

based, and time-and-quantity based consolidation policies are the most commonly

implemented consolidation regimes. Both the analytical treatment for optimizing the

policy parameters of these consolidation regimes and the synchronization of inventory

replenishment and shipment consolidation decisions have received significant interest

in the literature. Such problems have also practical importance; since, the recent

supply chain innovations such as 3PL and VMI encourage the integration of different

supply chain activities. In Chapter II, we identify the unexplored research problems

in this area.

The earlier work by Çetinkaya and Lee (2000) studies an integrated inventory and

shipment consolidation model under a time-based consolidation policy. However, it is

noted in the literature that the quantity-based consolidation policies perform better in

realizing the scale economies. In order to compare the performances of both policies,

in Chapter III, we study the same model under a quantity-based policy. We optimize

the model parameters for the quantity policy that we consider. We show, theoretically

that when there is no inventory considerations the quantity policy outperforms the
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time-policy in terms of the expected cost. We also show numerically, that the quantity

policy outperforms the time-policy in terms of the expected cost even when there is

inventory considerations. On the other hand, time policies are superior to quantity

policies in terms of customer service as they guarantee timely deliveries.

The model that we consider in Chapter III, assumes the use of a private fleet for

outbound shipments of the supplier. However, the use of common-carriers are also

available for such shipments. Furthermore, common carrier rates also reflect the scale

economies. There are some studies in the literature that analyze the shipment consoli-

dation policies under common carrier rates. However, to the best our knowledge, joint

inventory and shipment models have not been studied under common carrier rates in

the literature. In Chapter IV, we provide optimal solution procedures for the model

in Chapter III under common carrier rates for both time-policy and quantity-policy.

Although there are several studies on the analytical treatment of time- and

quantity-based consolidation policies, the analytical treatment of hybrid policies is

missing in the literature. However hybrid policies, which are also known as time-

and quantity policies, balance the tradeoff between the timely delivery advantages of

time policies and the transportation cost savings associated with quantity policies. In

Chapter V, we propose several easily implementable hybrid policies and compare the

cost and service performances of these hybrid policies with the time- and quantity-

policies. We also present an analytical model for computing the optimal policy pa-

rameters for a hybrid policy.

Chapters III through V aim to study the impact of transportation cost regarding

the operational supply chain decisions such as shipment scheduling and inventory

replenishment. In Chapters VI and VII, we broaden our scope by introducing the

transporter as a separate entity to a supply channel. Channel coordination literature

focuses only on the interactions between the supplier and the buyer. However, we show
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that substantial savings can be achieved if the cost parameters of the transporters

are included in the decision process. With this motivation, in Chapter VI, we study a

transporter-buyer channel, and benchmark the channel efficiency. In Chapter VII, we

extend the transporter-buyer channel to the supplier-transporter-buyer channel. We

derive the optimal policy parameters so as to minimize the system-wide costs. We

also develop efficient coordination mechanisms, which the transporter can employ to

align the incentives of the supplier and the buyer.

We believe that, apart from its practical contributions, this dissertation makes

several theoretical contributions in modelling and optimization. Chapters III and IV

build on the existing models but are important for their contribution to deterministic

optimization. Chapter V is important for both its contribution to stochastic modelling

and deterministic optimization. Chapters VI and VII introduce a new perspective

to the channel coordination literature by introducing supply channel models with

transporters. They are also important for their contribution to optimization.
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Çetinkaya, S. 2004. Coordination of inventory and shipment consolidation deci-

sions: A review of premises, models, and justification, in Applications of Sup-



183

ply Chain Management and E-Commerce Research in Industry. J. Geunes et. al.,

eds., Kluwer Series: Applied Optimization. 92 1–50.

Çetinkaya, S., J.H. Bookbinder. 2003. Stochastic models for the dispatch of con-

solidated shipments. Transp. Res. B 37-8 747–768.
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APPENDIX A

COORDINATION MECHANISMS FOR SUPPLIER-BUYER SYSTEM

In Section VII.2.2, we discuss the supplier’s problem of influencing the buyer’s

decisions. There, we show that the best order quantity for the supplier is in fact

the joint optimal quantity of the supplier-buyer problem which is denoted by qJ .

The corresponding n value is denoted by nJ . This conclusion is independent of the

transportation price or of the party that is incurring the transportation cost.

The supplier also has to find effective mechanisms to align the buyer’s decisions.

She can do this in two ways:

- Sign a contract with the buyer,

- Change the wholesale price structure, so that the optimal solution to the buyer’s

problem under this new price is qJ .

In either approach, the supplier has to compensate for the increase in the buyer’s

total annual cost.

In this paper, we consider two models. In Model II, we assume that there is

virtually no coordination between the supplier and the buyer. Hence, in this model,

signing a contract with the buyer is not an option. As a result, the only thing that

the supplier can do is to change her wholesale price schedule.

In this Appendix, we provide solution methods for minimizing the joint annual

cost of the supplier and the buyer, G̃SB(q, n), and we also provide pricing mechanisms

that the supplier can employ to align the buyer. Minimization procedures and the

structure of the pricing mechanisms depend on two factors:

i The structure of the transportation price,
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ii Which party, buyer or supplier, incurs the transportation charges.

Therefore, we present our results for four different transportation price schedules: per

unit price,; per unit price and fixed dispatch price; per unit price with fixed dispatch

price and fixed truck price; and per unit price with freight discounts.

Case 1: PT (q) = pT q

Under this transfer pricing structure, the annual transportation cost of the supplier-

buyer is pT D. With this term, PSB is

PSB : min
q≥0, n∈Z+

=
ASD

nq
+

hS(n − 1)q

2
+

ABD

q
+

hBq

2
+ pT D.

This problem is identical to the problem in Banerjee (1986). The closed form

solution is as follows:

- nSB is one of the closest integers to n0 =
√

Av(hB − hS)/(ABhS), whichever

leads to a smaller GSB

- For a given nJ :

qSB =

√
2(AS + nSBAB)D

nSB(hB − hS + nSBhS)
.

Coordination Mechanism if Supplier Incurs PT (q) = pT q

We know that given all the parameters, it is the buyer who makes the final decision

about his order quantity, and the buyer always chooses the order quantity that min-

imizes his annual cost GB(q). Before coordinating with the supplier, his annual cost

function is:

GB(q) =
ABD

q
+

hBq

2
+ pSD,
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and his optimal order quantity is

qB =

√
2ABD

hB
.

Now, if the supplier wants to coordinate the buyer at qJ , she needs to change

the pricing structure, PS(q), to P S(q). We define the buyer’s annual cost under this

new pricing schedule as GB(q), and it is given by

GB(q) =
ABD

q
+

hBq

2
+

P S(q)D

q
.

The supplier should set her new pricing schedule such that

i- GB(qJ ) ≤ GB(qB),

ii- qSB = arg min GB(q).

The first condition sets the limits of the modified pricing structure, P S(q), such

that the buyer’s optimal annual cost under this modified price should not exceed his

initial optimal annual cost. The second condition implies that the buyer’s solution

under the modified pricing structure should be equal to the joint solution.

In fact, to collect all the system savings, the supplier would want the above

inequality to be equality. We can also characterize this as the supplier providing a

reward to the buyer if the buyer operates at qSB. The amount of the reward can be

found by:

GB(qSB) − reward = GB(qB).

There are several ways for the supplier to decide on the reward’s structure. A

linear incentive would work. We know the value of ∆ = GB(qSB) − GB(qB). We can

express ∆ in terms of D, that is ∆ = Dr, where r ≥ 0. The r value can be interpreted

as a per unit reward. Hence, if the new per unit price is set to cS′ = pS − r, then the

first condition is satisfied. The second condition remains to be satisfied. Notice that,
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with the new per unit price, the annual cost function for the supplier does not change

its structure but only shifts downwards by ∆. That is why the buyer’s optimal

solution is still qB. However, if the per unit reward is given only when the order

quantity is greater than some q value where q > qB, then that q value will minimize

the annual cost of the buyer since the GB is increasing over [qB,∞). Accounting for

this fact, the q value where the per unit reward starts should be qSB.

As a result of the above discussion, the following pricing scheme satisfies the two

conditions, i.e. coordinates the buyer at qSB:

P S(q) =






pSq, if 0 < q < qSB,

p
′

Sq if qSB ≤ q,
(A.1)

where

p
′

S = pS − {GB(qSB) − GB(qB)}/D. (A.2)

In the classical channel coordination literature, this pricing schedule is known as

an all-units quantity discount.

Coordination Mechanism if the Buyer Incurs PT (q) = pT q

When the buyer incurs the transportation charges, his annual cost is

GB(q) =
ABD

q
+

hBq

2
+ pSD + pT D.

Essentially this cost is identical to the one when the supplier incurs the transportation

charges. The only difference is an extra constant term, pT D, which does not affect

any decision.

Since everything remains the same, the coordination mechanism is the same as in

the previous case where the transportation charge was on the supplier. The discount

schedule can be found using equations (A.1) and (A.2).
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Case 2: PT (q) = pT q + Ap

With this pricing schedule, the annual revenue of the transporter, i.e. the annual

transportation cost of the supplier (or the buyer), is

ApD

q
+ pT D.

Then, the joint optimization problem of the supplier-buyer, PSB becomes:

PSB : min
q≥0, n∈Z+

=
ASD

nq
+

hS(n − 1)q

2
+

ABD

q
+

hBq

2
+

ApD

q
+ pT D.

It can be easily noticed that the structure of the above problem is identical to

the PSB of Case 1. The only difference is that now we have AB + Ap instead of

AB. Hence, the expressions of (qSB, nSB) can be given as in that case, with AB + Ap

replacing AB.

Coordination Mechanism if the Supplier Incurs PT (q) = pT q + Ap

The buyer’s annual cost is independent of the transportation price; therefore, qB

remains the same as in Case 1. The quantity discount works to coordinate the

system, and the discount schedule can be found using equations (A.1) and (A.2).

Coordination Mechanism if the Buyer Incurs PT (q) = pT q + Ap

When the buyer incurs the transportation charges, his optimal order quantity is

qB =

√
2(AB + Ap)D

hB

.

The quantity discount still works in the same way and the discount schedule can be

found using equations (A.1) and (A.2).
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Case 3 - PT (q) = pT q + Ap + ⌈q/P ⌉Mp

The implied annual transfer price is

pT D + ApD/q + ⌈q/P ⌉MpD/q.

With this Π(q), the supplier-buyer problem PSB becomes

PSB : min
q≥0, n∈Z+

=
ASD

nq
+

hS(n − 1)q

2
+

ABD

q
+

hBq

2
+

ApD

q

= +
⌈q/P ⌉MpD

q
+ pT D.

This problem is identical to the transporter’s problem that we discuss in detail

in Section VII.3.1. Hence, the algorithm given in that section can be used to solve it.

We cannot obtain closed form expressions for qSB and nSB.

Coordination Mechanism if the Supplier Incurs PT (q) = pT q +Ap + ⌈q/P ⌉Mp

As mentioned earlier, the buyer’s annual cost remains an EOQ type function when

the supplier incurs the transportation charges. Therefore, a quantity discount coor-

dinates the system as in the other cases and the discount schedule can be found using

Equations (A.1) and (A.2).

Coordination Mechanism if the Buyer Incurs PT (q) = pT q + Ap + ⌈q/P ⌉Mp

With this transportation price, the buyer’s annual cost GB(q) is

GB(q) =
ABD

q
+

hBq

2
+ pSD + pT D + ApD/q + ⌈q/P ⌉MpD/q.

The minimization of GB(q) is given in Lee (1986). Unfortunately there is no

closed form expression for the solution.

This is one of the cases where an all-units quantity discount may not work. We
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next present a case where a quantity discount definitely does not work.

Using Lee (1986), let qEOQ be the EOQ for the buyer, when the truck cost is

ignored. Let i be such that iP < qEOQ ≤ (i + 1)P . Define qB as the EOQ for the

buyer when he has an additional fixed cost of (i+1)Mp. The optimal q for the buyer is

arg min{GB(iP ), GB(qB), GB((i+1)P )}. Let’s assume that iP is the buyer’s optimal

order quantity and call this quantity q′B. Also assume that q′B < qSB < qB < (i+1)P .

Under this scenario, a quantity discount will not be able to coordinate the system

under qSB. The reason for this is as follows: GB(q) is decreasing on (q′B, qB] but

GB(qB) > GB(q′B). For a simple all-units quantity discount to work, the discount

should start at qSB and the annual cost of the buyer under the discount, should be

at most equal to GB(q′B), i.e., GB(qSB) ≤ GB(qB). However, since the discount also

applies to all q ≥ qSB, and GB(q) is decreasing on (q′B, qB], the buyer’s annual cost

achieves its minimum at qB. Hence, he will want to operate at qB instead of qSB.

Under such a case, coordination at qSB can best be satisfied with a special

contract. Fixed annual payment contracts from the supplier to the buyer are al-

ways sufficient for this purpose. The fixed annual payment amount is given by

GB(qSB) − GB(qB).

However, one should be careful about the interpretation and implementation of

contracts. The contract that we propose should offer a fixed annual payment only if

the buyer’s order quantity is set to qSB. That is what differentiates the contract from

a quantity discount. Remember that quantity discounts are given for all quantities

that are greater than some q value. The other important point about the contract is

the implementation process, which involves specifically deciding on how these annual

payments are to be made. A very practical method is to decrease the per unit

wholesale price which looks similar to the quantity discounts, but the new wholesale

price can be found by equation (A.2).
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Case 4: Price Schedule with Freight Discounts

In this case, the per unit transportation price is

pT (q) =






c1
T if q < q2,

c2
T if q2 ≤ q,

(A.3)

where c1
T > c2

T . Hence, PT (q) has the following form:

PT (q) =





c1
T q if q < q2,

c2
T q if q2 ≤ q.

Notice that the cost of shipping any q units where q ∈ ((c2
T q2)/c

1
T , q2) is more costly

than shipping q2 units. That is why, if the dispatch quantity is in that region, the

buyer or the supplier can always make their dispatch quantity look as if it were q2 by

adding a dummy load. Hence, the actual transportation cost for them becomes

PT (q) =





c1
T q if q < q1,

c2
T q2 if q1 ≤ q < q2,

c2
T q if q2 ≤ q,

(A.4)

where q1 = (c2
T q2)/c

1
T . Note that c1

T q1 = c2
T q2.

If we look at the joint annual cost of the buyer and supplier under this trans-

portation pricing schedule, we can see that it has a piecewise form with three pieces:

PSB : min
q≥0, n∈Z+

=






(AS+nAB)D
nq

+ (hS(n−1)+hBq
2

+ (c1
T + pT )D if q < q1,

[AS+n(AB+c2
T

q2)]D

nq
+ (hS(n−1)+hBq

2
+ pT D if q1 ≤ q < q2,

(AS+nAB)D
nq

+ (hS(n−1)+hBq
2

+ (c2
T + pT )D if q2 ≤ q.

Although the function has three pieces, the first and second pieces differ only

by a constant. Hence the unconstrained minimizers of those are the same. We call

that minimizer (q0, n0). We also call the unconstrained minimizer of the second piece
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(qf , nf). Before going into the analysis, we name the three regions of q as I, II, and

III. We also define two values: qF is the constrained optimal solution of region II,

and qL is the constrained optimal solution of regions I and III.

1. Search for qF :

• If qf ∈ II, then qF = qf .

• If qf ∈ I, check for the maximum value of n, nmax, such that n < nf and

q(nmax) ∈ II. Set qF = q(nmax). If there is no such n value, then qF is not

set.

• If qf ∈ III, check for the minimum value of n, nmin, such that n > nf and

q(nmin) ∈ II. Set qF = q(nmin). If there is no such n value, then qF is not

set.

2. Search for qL:

• If q0 ∈ I, find the maximum value of n, n̂max, such that n < n0 and

q(n) ∈ III. If such n̂max exists,compare the corresponding joint annual

cost for it and compare it to the joint annual cost for (q0, n0). Set the qL

value to the q value that leads to the minimum joint annual cost.

• If q0 ∈ II, find maximum value of n, n̂max, such that n < n0 and q(n) ∈

III. Also find the minimum n, n̂min, such that n > n0 and q(n) ∈ I. If

such n̂max and n̂min values exist, calculate the corresponding joint annual

costs and set qL to the one that leads to the minimum cost.

• If q0 ∈ III, then set qL = q0.
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3. Compute the joint costs for q1 and q2.
1

Out of qF , qL, q1, and q2, choose the one that leads to the minimum joint cost.

Coordination Mechanism if the Supplier Incurs PT (q)

As in the other cases, a quantity discount is enough to coordinate the buyer at the

joint optimal. The discount schedule can be found using equations (A.1) and (A.2).

Coordination Mechanism if the Buyer Incurs PT (q)

With the piecewise structure of the transportation charges, the buyer’s annual cost

takes the following form:

GB(q) =





ABD
q

+ hBq
2

+ (pS + c1
T )D if q < q1,

(AB+c2T q2)D

q
+ hBq

2
+ pSD if q1 ≤ q < q2,

ABD
q

+ hBq
2

+ (pS + c2
T )D if q2 ≤ q.

Notice that the first and third pieces have the same structure, i.e. the unconstrained

optima for both are the same, say qB
0 . On the other hand, the unconstrained minimizer

of the second piece, qB
f , is always larger than qB

0 . Using these properties, we can find

the optimal solution as follows:

• Define qB
L to be the constrained minimizer of regions I and III and qB

F to be

the constrained minimizer of region II.

• If qB
0 ∈ II, then qB

L is not set to anything. Otherwise, set qB
L = qB

0 .

• If qB
f ∈ II, then set qB

F = qB
f . Otherwise it is not set to anything.

1This step is not necessary all the time. If qf ∈ II and q0 ∈ III, then the other q values won’t
lead to a lower joint cost.
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• Calculate the GB(q) for q1 and q2.

Out of qB
L , qB

F , q1 and q2 qB is the one that leads to the minimum GB value.

So far, we have derived the optimal order quantity for the buyer when he incurs

the transportation charges. The next step is to look at how the supplier could co-

ordinate the buyer to operate at qSB. All units quantity discounts may not always

work for this purpose. Here is an example.

Suppose that qB
0 ∈ I, qB

L = qB
0 , and qB

F = qB
f ∈ II. Further assume that qB = qB

L

and qSB ∈ (qB, qB
F ). If the quantity discount is given, under the discounted schedule,

qB
F will lead to a lower annual cost than qSB for the buyer. In such a case, the

supplier can coordinate the buyer by using multiple-break quantity discounts which

possibly include negative discounts. For example, consider the above situation and

further suppose that qSB ∈ II. Then GB(.) is decreasing at qSB. Hence any quantity

discount that starts at qSB will help the buyer to choose a higher quantity and that

will not be what the supplier wants. We propose that the supplier start the discount

at q1, and the amount of the discount is (G(qSB) −G(qB))/D. Also, let the discount

to be active only for the q values, such that q ∈ [q1, qSB]. Then, as it can be seen

from Figure 11, this quantity discount schedule coordinates the buyer at qSB.

At this point, we question the interpretation of the freight discount when the

transportation charges are incurred by the buyer, and there is no coordination between

the supplier and the buyer. We said earlier that when the transporter offers a quantity

discount as in (A.3), it is interpreted as (A.4). Recall that if the order quantity is

between q1 and q2, the supplier can add a dummy load to increase the load to q2

units because it is always cheaper to send q2 units. However, when the buyer incurs

the transportation charges and there is no coordination between the buyer and the

supplier, she will have no motivation to add a dummy load to the buyer’s orders.
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Hence, the buyer cannot interpret the freight discount schedule as (A.4). For this

reason, his total annual cost will have the following form:

GB(q) =





ABD
q

+ hBq
2

+ (pS + c1
T )D if q < q2,

ABD
q

+ hBq
2

+ (pS + c2
T )D if q2 ≤ q.

Finding the minimizer of this function is fairly straightforward, and the procedure is

available in many textbooks about inventory theory.

As in the previous interpretation, the supplier may not be able to induce the

buyer with an all units quantity discount having a single break. Consider the situation

where qB < qSB < q2. If the supplier offers the discount schedule as in (A.1) and

(A.2), then G̃B(q2) < G̃B(qSB) and the buyer’s order quantity will be q2 instead of

qSB. In such a situation the supplier’s discount schedule should be of the following

form:

P S(q) =






pSq if q < qSB,

p
′

Sq if qSB ≤ q ≤ q2,

pSq if q2 ≤ q,

where c′S is given by (A.2).
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