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ABSTRACT

Applications of the Thermodynamics of Elastic, Crystalline Materials. (August

2005)

Xiuhua Si, B.S., Dalian University of Technology;

M.S., Dalian University of Technology

Chair of Advisory Committee: Dr. John C. Slattery

The thermodynamic behaviors of multicomponent, elastic, crystalline solids un-

der stress and electro-magnetic fields are developed, including the extension of Euler’s

equation, Gibbs equation, Gibbs-Duhem equation, the conditions to be expected at

equilibrium, and an extension of the Gibbs phase rule. The predictions of this new

phase rule are compared with experimental observations.

The stress deformation behaviors of the single martensitic crystal with and with-

out magnetic fields were studied with the stress deformation equation derived by

Slattery and Si (2005). One coherent interfacial condition between two martensitic

variants was developed and used as one boundary condition of the problem. The

dynamic magnetic actuation process of the single crystal actuator was analyzed. The

extension velocity and the actuation time of the single crystal actuator are predicted.

The relationship between the external stress and the extension velocity and the ac-

tuation time with the presence of a large external magnetic field was studied.

The extended Gibbs-Duhem equation and Slattery-Lagoudas stress-deformation

expression for crystalline solids was used. Interfacial constraints on the elastic por-

tion of stress for crystalline-crystalline interfaces and crystalline-fluids or crystalline-

amorphous solids interfaces were derived and tested by the oxidation on the exterior

of a circular cylinder, one-sided and two-sided oxidation of a plate. An experiment

for measuring solid-solid interface surface energies was designed and the silicon-silicon
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dioxide surface energy was estimated.

A new generalized Clausius-Clapeyron equation has been derived for elastic crys-

talline solids as well as fluids and amorphous solids. Special cases are pertinent to

coherent interfaces as well as the latent heat of transformation.



v

To my parents, my husband, and my son



vi

ACKNOWLEDGMENTS

Special thanks go to Dr. J. C. Slattery for his support, guidance, and constant

encouragement during the five years of study. His fatherly love, encouragement, and

consideration let me, a foreign student, a wife of a student, and a mother of a 2-year-

old boy finish my study. Without his encouragement, love, and patience, it would

have been impossible for me to finish. His integrity and enthusiasm for research is

a perfect example of a scientist. Under his guidance, I learned not only research

expertise, but also his kindness and love of people.

I would also like to thank Dr. I. Karaman and Dr. D. C. Lagoudas for many

insightful discussions on my research and also thank Dr. V. K. Kinra, and Dr. M.

Andrews for serving on my committee.

I would like to thank Kaibin Fu, Eun-Suok Oh, and Yongzhe Tian. They gave

me a lot of help both in my research and life.

I would like to thank Dr. M. S. Zubairy, professor in the department of physics.

He helped me make many physical definitions clear in the first and second parts of

my work.

I also need to give special thanks to my parents and my husband for their love,

support, and patience.

Finally, I would like to thank my sisters and brothers in our church home group.

They gave me so much spiritual support. All glory to our God!



vii

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 1

A. Magnetic field controlled actuation of single crystal shape

memory alloy . . . . . . . . . . . . . . . . . . . . . . . . . 1

B. Equilibrium thermodynamics of martensitic transformation 3

C. Interfacial constraints . . . . . . . . . . . . . . . . . . . . . 5

II THERMODYNAMICS OF MULTICOMPONENT, ELAS-

TIC, CRYSTALLINE SOLIDS: EFFECTS OF ELECTRIC

AND MAGNETIC FIELDS . . . . . . . . . . . . . . . . . . . . 8

A. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 8

B. Problem statement . . . . . . . . . . . . . . . . . . . . . . 8

C. Euler, Gibbs, and Gibbs-Duhem equations . . . . . . . . . 11

D. Equilibrium: constraints on isolated systems . . . . . . . . 14

1. Species mass balance . . . . . . . . . . . . . . . . . . 15

2. Momentum balance . . . . . . . . . . . . . . . . . . . 18

3. Moment-of-momentum balance . . . . . . . . . . . . . 18

4. Energy balance . . . . . . . . . . . . . . . . . . . . . . 19

5. Conservation of magnetic flux . . . . . . . . . . . . . . 22

6. Conservation of charge . . . . . . . . . . . . . . . . . . 22

7. Entropy inequality . . . . . . . . . . . . . . . . . . . . 23

E. Implications of equilibrium . . . . . . . . . . . . . . . . . . 24

F. Phase rule . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1. With no homogeneous or heterogeneous chemical

reactions . . . . . . . . . . . . . . . . . . . . . . . . . 31

a. Example 1: Observation in the absence of elec-

tric and magnetic fields (Tickle and James,

1999) . . . . . . . . . . . . . . . . . . . . . . . . 33

b. Example 2: Observation with a transverse mag-

netic field Tickle and James (1999) . . . . . . . . 34

c. Example 3: Experiment of Murray et al. (2001) . 35

2. With r independent reactions . . . . . . . . . . . . . . 35

G. Summary of new results . . . . . . . . . . . . . . . . . . . 35



viii

CHAPTER Page

III STRESS-DEFORMATION BEHAVIOR AT EQUILIBRIUM

IN THE LIMIT OF INFINITESIMAL DEFORMATIONS . . . . 37

IV SINGLE CRYSTAL ACTUATOR . . . . . . . . . . . . . . . . . 43

A. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 43

B. Basic theory . . . . . . . . . . . . . . . . . . . . . . . . . . 44

C. Problem statement . . . . . . . . . . . . . . . . . . . . . . 47

D. Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

E. Analysis of the experiments of Tickle (2000) . . . . . . . . 56

1. Static observations of Tickle (2000) . . . . . . . . . . . 57

a. Strain in terms of apparent strain . . . . . . . . . 57

b. Determining C(A) and C(B) . . . . . . . . . . . . 60

c. Determining K(A) and K(B) . . . . . . . . . . . . 62

2. Dynamic transformation from variant A to variant B . 64

F. Discussion and summary . . . . . . . . . . . . . . . . . . . 66

V INTERFACE CONSTRAINTS, OXIDATION, AND A GEN-

ERALIZED CLAUSIUS-CLAPEYRON EQUATION . . . . . . 68

A. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 68

1. Boundary conditions at interfaces with solids . . . . . 68

2. Clausius-Clapeyron equation . . . . . . . . . . . . . . 69

3. Summary of results from Slattery and Lagoudas (2005) 70

B. Dynamic interfaces . . . . . . . . . . . . . . . . . . . . . . 71

C. Static interfaces with crystalline solids . . . . . . . . . . . 74

1. Bending of plate as the result of oxidation . . . . . . . 76

a. Oxidation on one side of a plate . . . . . . . . . . 76

b. Oxidation on two sides of a plate with different

thickness . . . . . . . . . . . . . . . . . . . . . . . 81

c. Oxidation equally on two sides of a plate . . . . 89

d. Oxidation on the exterior of a circular cylinder . . 90

D. The generalized Clausius-Clapeyron equation . . . . . . . . 92

1. Experiments of Sehitoglu et al. (2001) . . . . . . . . . 94

E. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

VI SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

NOTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106



ix

CHAPTER Page

APPENDIX A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118



x

LIST OF TABLES

TABLE Page

I Mechanical properties of silicon and silicon dioxide (Nikanorov

et al., 1972) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88



xi

LIST OF FIGURES

FIGURE Page

1 A single crystal A is compressed and subjected to a constant mag-

netic field H, creating a second variant B. The plane interface

between variants A and B moves in the z2 direction. . . . . . . . . . 48

2 a: Variant A is compressed by a uniaxial stress; light lines are

magnetic domain walls; arrows indicate the magnetization direc-

tion of the domains. b: Variant B is exposed to an external mag-

netic field and an uniaxial stress; the magnetization in variant B

is uniform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3 The experimental data from Tickle (2000) are used to fit a straight

line. The slope of the straight line is used to evaluate the coeffi-

cient in Equation (4.77) for a single variant A. . . . . . . . . . . . . . 61

4 The experimental data from Tickle (2000) are used to fit a straight

line. The slope of the straight line is used to evaluate the coeffi-

cient in Equation (4.77) for a single variant B. . . . . . . . . . . . . . 62

5 Extension velocity changes with the magnitude of the uniaxial

load;V is the extension velocity, σ is the magnitude of the uniaxial stress 65

6 Actuation time changes with the magnitude of the uniaxial load;

t is the actuation time, σ is the magnitude of the uniaxial stress . . . 66

7 Oxidation on one side of a plate; point A is the point where the

pivot is placed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

8 Oxidation on two sides of a plate with different thickness, x1,

x2, and x3 are the thickness of the second layer of the oxide, the

thickness of the metal, and the thickness of the first layer of oxide;

point A is the point where the pivot is placed. . . . . . . . . . . . . . 82

9 The relationship of the r-component of displacement ur, the radius

of curvature R, and the length of the beam l. . . . . . . . . . . . . . 85



xii

FIGURE Page

10 The schematic description of the equilibrium state of austenite-

martensite phase transition under uniaxial stress σ at certain tem-

perature. The crystal is three-dimensional, exposed to the at-

mosphere on four sides. Phase A is austenite and B is martensite.

The shape of the interface does not have to be the same shape as

the figure, it is not specified in our analysis. . . . . . . . . . . . . . . 95

11 σ, defined by (5.117), as a function of temperature T under a

uniaxial stress in the [100] direction. The straight line is (5.118),

which assumes that the latent heat ∆H is a linear function of T . . . 96

12 σ, defined by (5.117), as a function of temperature T under a

uniaxial stress in the [122] direction. The straight line is (5.118),

which assumes that the latent heat ∆H is a linear function of T . . . 96



1

CHAPTER I

INTRODUCTION

The literature review about the thermodynamics for multicomponent, elastic, crys-

talline materials has been done by Slattery and Lagoudas (2005). I will not repeat

what they did. Additionally, I will add the reviews for the related research with the

presence of electric-magnetic fields, the equilibrium thermodynamics for austenite-

martensite transitions, and the interfacial constraints for crystalline-crystalline solids

in the following sections.

A. Magnetic field controlled actuation of single crystal shape memory alloy

Shape memory effects are due to a difussionless structural transformation from a high

temperature phase (austenite) to a low temperature low symmetry phase (marten-

site). If the martensitic transformation is induced by temperature in the absence of

biasing stress or fields, all of the invariants are equally likely to form. When a biased

field or stress is applied to the mixture of variants, certain variants will be favored

and appear in larger amounts than other variants.

Ferromagnetic shape memory effect is due to a magnetic field induced redistrib-

ution of twin variants in a martensitic phase.

In ferromagnetic crystalline materials, magnetization vectors lie along the easy

axes (certain crystallographic axes along which crystal is easy to be magnetized), or

called c axes in a tetragonal crystal. When an external magnetic field is applied, the

magnetization tends to turn from the easy axes to the direction of the external field,

or reorient the easy axes to the direction of the external field. The second case may

This dissertation follows the style and format of Mechanics of Materials.
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need lower energy through the twin boundary motion, it means the external field

reorient the tetragonal cells. An increasing magnetic field will thus cause a growth

of variants with easy axes along with the external field through the move of the twin

boundaries. The reorientation of the c axis will cause a giant strain.

Magnetic control of the shape memory effect should be possible in several ferro-

magnetic materials. Ni2MnGa are the mostly studied alloys to possess shape memory

effects which can be excited through magnetic fields. In recent years, most research

has been devoted to the Ni2MnGa system to date, which has shown a 6 percentage

strain in a field of 300 kA/m (O’Handley et al. 2000; Tickle and James 1999; Henry

et al. 2002; Enkovaara et al. 2002; Murray et al. 2000b; Jin et al. 2003).

Magnetic controlled actuation is rapid and precise. It is attracting more and

more attentions from industry. With the appearance of commercial devices based on

Ni-Mn-Ga, the focus on applications has increased. Understanding the dynamics of

the field-induced twin boundary motion and the speed of the actuation are necessary

for the design of actuators.

Several models have been developed and applied to explain quantitatively the

static results of some experiments (Vasilev et al. 1999). However, no theoretical

study has been done to investigate the dynamic process of the magnetic induced

actuation of the shape memory alloys.

In chapter IV, we will study the dynamic actuation process of a cubic or tetrag-

onal martensitic variant under stress with switching on a strong static external mag-

netic field. We assume the stress deformation behavior (Slattery and Si, 2005) can

be applied to a dynamic system. This is supported by (Tian et al., 2005), who use it

to correctly predict wave propagation in cubic crystals. The applied magnetic field

is sufficiently large that variant B in the figure on page 48 is aligned with its easy

axis in the z1 direction. This appears to conform to the experiments of Murray et al.
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(2001). In considering the dynamic transformation from A to B, we will assume

that the magnetization of variant A was unaffected by the application of the external

magnetic field. The interfaces between two martensitic variants are coherent.

In section 4.1, we will study the static properties of the two martensitic variants.

In section 4.2, we will study the dynamic actuation process through the jump mass,

momentum balances, and the coherent interfacial condition.

B. Equilibrium thermodynamics of martensitic transformation

The equilibrium thermodynamic theory has been applied to martensitc transforma-

tion for many years. This transformation can be considered as a recoverable, but never

reversible, because of a hysteresis is present. However, reversible thermodynamic is

still used if an equilibrium temperature T0 is defined. This T0 is usually approxi-

mated to be half way between Ms(martensitic start temperature) and Af (austenite

finish temperature) for thermally induced martensitic transformation. Analogously,

in stress-induced transformation, the equilibrium stress T is also assumed to lie half

way between the Ts(the transformation stress) and Ti(retransformation stress)(Yawny

et al., 1995).

A lot of attempts have been done for the thermodynamic description of the

martensitic transformation (Ortin and Planes, 1988, 1990, 1991, Wollants et al. 1979,

1983, 1991, Otsuka et al. 1976). Deng and Ansell (1991) have pointed out that

the ”null entropy production” made by Ortin and Planes (1988, 1990, 1991)is not

consistent with the second law of thermodynamics. Later, Torra and Tachoire (1992)

have also shown that the assumption of Ortin and Planes (1988) are unjustified. More

recently, (Wollants et al., 1993) also remarked that the ”null entropy production” is

”contradiction in terminis”.
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The equilibrium values of stress T and temperature T or thermodynamics pres-

sure P and temperature T are described by the Clausius-Clapeyron equation. The

Clausius-Clapeyron relationship of stress and temperature has attracted a lot of at-

tentions from the experimentalists (Kato et al. 2002, Liu et al. 2004, Chernenko et al.

2003, 2004, Karaca et al. 2004). They have found that the critical stress for marten-

sitic transformation has a linear relationship with the martenstic start temperature

or austenite finish temperature.

Several Clausius-Clapeyron-like equations have been derived (Otsuka et al. 1976;

Wollants et al. 1979; 1983; 1991; Kato and Pak 1984; 1985). Otsuka et al. (1976,

eq. 4.1) begin with an assumed form for the Clausius-Clapeyron equation in terms

of the critical stress for inducing a martensitic transformation, the associated strain,

temperature and heat of transformation. Wollants (1979; 1983; 1991) begin their

discussions assuming an equation of state for the Gibbs free energy of a macroscopic

phase that has undergone a one-dimensional strain. Kato and Pak use a non-standard

definition of Gibbs free energy (1984, eq. 26; 1985, eq. 6). They study a system with

only one phase rather than two phases in equilibrium (Kato and Pak, 1984, eq. 36).

The Clausius-Clapeyron equation refers to two phases in equilibrium.

In Chapter V, we derive a generalized Clasius-Clapeyron equation for multicom-

ponent fluids, amorphous solids, and crystalline solids at equilibrium state. At the

same time, we also derive the clausius-Clapeyron equation for fluids and amorphous

solids and clausius-Clapeyron equation for crystalline solids with uniform composi-

tions respectively.

Martensitic transformation usually is considered as a ”diffusionless process”, the

composition in each phase is the same. A martensitic transformation is studied

through the clausius-clapeyron equation for crystalline solids.
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C. Interfacial constraints

When there are phase change or chemical reactions, the interfacial conditions on the

interfaces of two different phases are crucial conditions to study the properties of

the the two phases and their relationship. Fluid-fluid interfaces and fluid-amorphous

solids interfaces have been studied a lot in the classic thermodynamics (Denbigh,

1963) through the studying of the phase change. And also, they are quite simpler

compare with the crystalline-crystalline solids interface because the elastic portion of

stress in fluids and amorphous solids does not exist. The interfacial constraints of the

crystalline-crystalline interfaces have attracted a lot of attentions recently.

Recently, people defined two different forms of solid state phase interface, coher-

ent interface and incoherent interface.

Johnson and Muller (1991) found that the equilibrium characteristics of elasti-

cally stressed two-phase coherent solids are fundamentally different from those of the

incoherent system. The difference is thought to be the result of the long-range elastic

interaction between phases which renders the state of deformation.

The characteristics of the coherent equilibrium have been studied intensively in

the recent decades.

Larche and Cahn (1973; 1978) defined that coherency of the solids is subjected

to what is called as the network constraints, which requires that only one reference

configuration exist to which each of the phases in the system may be referred; the

displacement from a single crystal state to the current state is continuous across all

interfaces. Larche and Cahn (1978)proposed that “. . . if the interface is coherent, the

two phases, as far as lattices are concerned, appear as a single phase.” Apparently,

they are considering the two different phases as one single phase, in other words, they

are using the unique reference configuration for two different phase.
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Johnson and Voorhees (1999) investigated the interfacial stress of the binary

alloys. In the α-β phase transformation, he calculated the stress with a strain based

on a unique reference configuration for the two different phases.

Bhattacharya (2003) and Bhattacharya et al. (1994) described the coherent in-

terface as the crystalline-crystalline interface where the tangential vectors on the

interface are continuous. They also consider the adjoining phases have the same

reference configurations.

The choice of reference configuration is very important because the computation

of the displacements, strains, and stresses are directly related to it. Oh et al. (2005)

have a clear description about the reference configuration. They pointed out that

stress is a functional of the history of the deformation gradient for simple materials;

for a single phase, if different reference configurations are used, the functional has

the same form, but there is a ∇λ to connect the new reference configuration and the

old one, where λ is the map of the old reference configuration onto the new reference

configuration (Truesdell, 1977). But for different phases, there is no map which can

bridge the two different reference configurations. For example, metal and oxide have

to have different reference configurations. This one confirms the point of views of

Rajagopal and Srinivasa (1998). All these descriptions mean that for a interface

between two different phases, we have to use two different reference configurations

rather than an unique one.

In chapter V, we will examine a two-phase system at quasi-static or static state.

An interfacial condition for the two different phases will be derived, which let us

be able to see stress relationship based on different reference configurations for two

different phases in the crystalline-crystalline solids interfaces. With the derived in-

terfacial stress constraints, the stress and strain distributions of the oxidation of a

beam, oxidation of a cylinder, and oxidation of a plate will be studied. An exper-
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iment of measuring the solid-solid surface energies will be proposed. At the same

time, a generalized Clausius-Clapeyron equation will be derived and compared with

the experimental data of austenite-martensite transition.
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CHAPTER II

THERMODYNAMICS OF MULTICOMPONENT, ELASTIC, CRYSTALLINE

SOLIDS: EFFECTS OF ELECTRIC AND MAGNETIC FIELDS

A. Introduction

Slattery and Lagoudas (2005) have presented a review of the literature as well as

a development of the thermodynamics of elastic crystalline solids emphasizing the

consequences of equilibrium. Perhaps their most important results were a new de-

scription of stress-deformation behavior for these crystals as well as an extension of

the Gibbs phase rule.

In what follows, we wish to extend their work to include the effects of electric

and magnetic fields.

B. Problem statement

Our objective in what follows is to develop the thermodynamics of elastic, crystalline

solids, including the effects of electric and magnetic fields.

With this point of view, we will assume that for a solid the specific Helmholtz

free energy

Â = Â
(
T, ρ, ω(1), . . . , ω(N−1),E(1),E(2),E(3), e(1), e(2), e(3),M,P

)
(2.1)

Here T is the temperature, ρ the total mass density, ω(A) is the mass fraction of species

A, E(i) (i = 1, . . . , 3) the lattice vectors in the reference or natural configuration of

the solid (a stress-free, electric field-free, and magnetic field-free state),

e(i) ≡ FE(i) (2.2)
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the deformed lattice vectors,

F ≡ grad z (2.3)

the deformation gradient (the gradient operation grad is to be performed in the

reference configuration), M the magnetization of the material, and P the electric

polarization. In the reference state, M = M(0) and P = P(0).

From the implications of the principle of frame indifference (Truesdell and Noll,

1965, p. 44), Â is an isotropic scalar function of the vectors e(i), P and M (Truesdell

and Noll, 1965, p. 29). The most general form of such a function is one in which all

possible scalar products of the various lattice vectors appear. Slattery and Lagoudas

(2005) argued that, in the absence of electric and magnetic fields, the scalar product

E(m)· e(n) should not appear, since it would lead to a non-symmetric stress tensor. In

view of this reasoning, we will write

Â = Â
(
T, ρ, ω(1), . . . , ω(N−1), e(1)· e(1), e(1)· e(2), . . . , e(3) · e(3), E(1)·E(1),

E(1)·E(2), . . . ,E(3) ·E(3), M·E(1), . . . ,M·E(3), e(1)·M, . . . , e(3)·M,

P·E(1), . . . ,P·E(3), e(1)·P, . . . , e(3)·P,M · M, P · P, M·P)
(2.4)

In applying this equation of state, it is important to recognize that two materials

which differ only by a rotation, a translation, or a reflection are identical.

For present purposes, we will find it more convenient to abbreviate the represen-

tation of the scalar products appearing in (2.4). For example

I
(1)
(mn) ≡ e(m) · e(n) − E(m)·E(n)

= FE(m)·FE(n) − E(m)·E(n)

= E(m)·FTFE(n) − E(m)·E(n)

= E(m)· (C − I)E(n) m = 1, . . . , 3 and n = 1, . . . ,m (2.5)
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where

C ≡ FTF (2.6)

is the right Cauchy-Green strain tensor in phase j and I(mn) can be interpreted as

the components of C − I with respect to a set of basis vectors formed by the lattice

vectors E(m) (m = 1, . . . , 3). In view of (2.5) and (3.9),

ρ =
ρ0√

det C

= ρ0 − ρ0

2

(
I(11) + I(22) + I(33)

)
+ . . . (2.7)

In other words, ρ, I(11), I(22), and I(33) are not independent. Similarly, we will intro-

duce

I
(2)
(m) ≡ e(m) · M − E(m) · M (2.8)

I
(3)
(m) ≡ e(m) · P − E(m) · P (2.9)

I(4) ≡ M · M − M(0) · M(0) (2.10)

I(5) ≡ P · P − P(0) · P(0) (2.11)

I(6) ≡ M · P − M(0) · P(0) (2.12)

This permits us to write (2.4) asa

Â = Â
(
T, ρ, ω(1), . . . , ω(N−1), I

(1)
(11), . . . , I

(1)
(32), I

(2)
(1) , . . . , I

(2)
(3) , I

(3)
(1) , . . . , I

(3)
(3) ,

I(4), I(5), I(6)
)

(2.14)

aAs an alternative to (2.4), one can consider

Â = Â
(
T, ω(1), . . . , ω(N−1), I

(1)
(11), . . . , I

(1)
(33), I

(2)
(1) , . . . , I

(2)
(3) , I

(3)
(1) , . . . , I

(3)
(3) ,

I(4), I(5), I(6)
)

(2.13)
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Â = Â
(
T, V̂ , ω(1), . . . , ω(N−1), I

(1)
(11), . . . , I

(1)
(32), I

(2)
(1) , . . . , I

(2)
(3) , I

(3)
(1) , . . . , I

(3)
(3) ,

I(4), I(5), I(6)
)

(2.15)

Ǎ = Ǎ
(
T, ρ(1), . . . , ρ(N), I

(1)
(11), . . . , I

(1)
(32), I

(2)
(1) , . . . , I

(2)
(3) , I

(3)
(1) , . . . , I

(3)
(3) ,

I(4), I(5), I(6)
)

(2.16)

in which V̂ is the volume per unit mass and ρ(A) is the mass density of species A.

It should always be kept in mind that the functional forms of (2.14) through

(2.16) are different for each phase.

C. Euler, Gibbs, and Gibbs-Duhem equations

From the differential entropy inequality (Slattery, 1999, p. 438), we conclude

Ŝ = −
(
∂Â

∂T

)
ρ, ω(B)(B=1,...,N−1), I

(1)
(mn)

,...

(2.17)

Extending the standard definition for the thermodynamic pressure

P ≡ −
(
∂Â

∂V̂

)
T, ω(B)(B �=N), I

(1)
(mn)

(mn�=33),...

(2.18)

and the chemical potential for species A on a mass basis, we have

µ(A) ≡
(

∂Ǎ

∂ρ(A)

)
T, ρ(B)(B �=A), I

(1)
(mn)

(mn�=33),...

(2.19)

We will also require

µ(I(1),mn) ≡
(

∂Â

∂I
(1)
(mn)

)
T, ρ, ω(B)(B �=N), I

(1)
(rs)

(rs �=mn), I
(2)
(m)

, I
(3)
(m)

,...

(2.20)

and

µ(I(2),m) ≡
(

∂Â

∂I
(2)
(m)

)
T, ρ, ω(B)(B �=N), I

(1)
(mn)

, I
(2)
(r)

(r �=m), I
(3)
(m)

,...

(2.21)
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µ(I(3),m) ≡
(

∂Â

∂I
(3)
(m)

)
T, ρ, ω(B)(B �=N), I(rs), I

(2)
(m)

, I
(3)
(r)

(r �=m),...

(2.22)

µ(I(4)) ≡
(
∂Â

∂I(4)

)
T, ρ, ω(B)(B �=N), ..., I

(3)
(r)

,I(5), ...

(2.23)

µ(I(5)) ≡
(
∂Â

∂I(5)

)
T, ρ, ω(B)(B �=N), ..., I(4), I(6)

(2.24)

µ(I(6)) ≡
(
∂Â

∂I(6)

)
T, ρ, ω(B)(B �=N), ..., I(5)

(2.25)

With these expressions, the differentials of (2.15) and (2.16) may consequently

be expressed as

dÂ = −P dV̂ − Ŝ dT +
N−1∑
B=1

(
∂Â

∂ω(B)

)
T, V̂ , ω(C) (C �=B, N), I

(1)
(i)

dω(B)

+
3∑

m=1

[(
2∑

n=1

µ(I(1),mn)dI
(1)
(mn)

)
+ µ(I(2),m)dI

(2)
(m) + µ(I(3),m)dI

(3)
(m)

]

+ µ(I(4))dI
(4) + µ(I(5))dI

(5) + µ(I(6))d(I
(6)) (2.26)

dǍ = − Ŝ

V̂
dT +

N∑
B=1

µ(B)dρ(B)

+
1

V̂

{
3∑

m=1

[(
2∑

n=1

µ(I(1),mn)dI
(1)
(mn)

)
+ µ(I(2),m)dI

(2)
(m) + µ(I(3),m)dI

(3)
(m)

]

+µ(I(4))dI
(4) + µ(I(5))dI

(5) + µ(I(6))d(I
(6))

}
(2.27)
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Equation (2.27) may be rearranged to read

d

(
Â

V̂

)
= − Ŝ

V̂
dT +

N∑
B=1

µ(B)d

(
ω(B)

V̂

)

+
1

V̂

{
3∑

m=1

[(
2∑

n=1

µ(I(1),mn)dI
(1)
(mn)

)
+ µ(I(2),m)dI

(2)
(m) + µ(I(3),m)dI

(3)
(m)

]

+µ(I(4))dI
(4) + µ(I(5))dI

(5) + µ(I(6))d(I
(6))

}
dÂ =

(
Â

V̂
−

N∑
B=1

µ(B)ρ(B)

)
dV̂ − Ŝ dT +

N−1∑
B=1

(
µ(B) − µ(N)

)
dω(B)

+
3∑

m=1

[(
2∑

n=1

µ(I(1),mn)dI
(1)
(mn)

)
+ µ(I(2),m)dI

(2)
(m) + µ(I(3),m)dI

(3)
(m)

]

+ µ(I(4))dI
(4) + µ(I(5))dI

(5) + µ(I(6))d(I
(6))

(2.28)

Comparison of the coefficients in (2.26) and (2.28) gives(
∂Â

∂ω(B)

)
T, ρ, ω(C) (C �=B, N), I(mn),...

= µ(B) − µ(N) (2.29)

as well as Euler’s equation

Â = −P V̂ +
N∑

B=1

µ(B)ω(B) (2.30)

Equations (2.26) and (2.29) yield the modified Gibbs equation

dÂ = −P dV̂ − Ŝ dT +
N−1∑
B=1

(
µ(B) − µ(N)

)
dω(B)

+
3∑

m=1

[(
2∑

n=1

µ(I(1),mn)dI
(1)
(mn)

)
+ µ(I(2),m)dI

(2)
(m) + µ(I(3),m)dI

(3)
(m)

]

+ µ(I(4))dI
(4) + µ(I(5))dI

(5) + µ(I(6))d(I
(6)) (2.31)

The modified Gibbs-Duhem equation follow immediately by subtracting (2.31)
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from the differential of (2.30):

Ŝ dT − V̂ dP +
N∑

B=1

ω(B) dµ(B) −
3∑

m=1

[(
2∑

n=1

µ(I(1),mn)dI
(1)
(mn)

)
+ µ(I(2),m)dI

(2)
(m)

+µ(I(3),m)dI
(3)
(m)

]
− (

µ(I(4))dI
(4) + µ(I(5))dI

(5) + µ(I(6))dI
(6)

)
= 0 (2.32)

We would like to emphasize that the modified Euler’s equation, the modified Gibbs

equation, and the modified Gibbs-Duhem equation all apply to dynamic processes,

so long as the underlying statements about behavior are applicable to the materials

being considered.

D. Equilibrium: constraints on isolated systems

We define equilibrium to be achieved by an isolated body, when the entropy inequality

becomes an equality. In the following sections, we wish to develop necessary and

sufficient criteria for the achievement of equilibrium in a multiphase, multicomponent

body that at some time t = 0 becomes isolated. We will assume that, the once

the body is isolated, it is capable of undergoing a number of simultaneous chemical

reactions and that it is totally enclosed by an impermeable, stationary boundary at

which the energy flux and charge flux (current) are both zero. Each species is acted

upon by what may be a different external or mutual force, although these forces are

assumed to be independent of time once the body is isolated. We restrict the analysis

somewhat by requiring each of these external or mutual forces to be representable

by a potential. These boundary conditions on the system and constraints on the

external forces are consistent with commonly observed experiments, in particular the

experiments discussed in Sec. F.

In this paper, we will not discuss intrinsically stable equilibrium and metastable

equilibrium. These questions have been discussed elsewhere for a simpler case Slattery
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(1990).

Let us begin by examining the constraints imposed upon an isolated, multiphase,

multicomponent body by the mass balances for the individual species, by the momen-

tum balance, by the energy balance, and by the entropy inequality. For simplicity,

we will neglect all interfacial effects other than surface (heterogeneous) reactions; the

more general case can be constructed by extending the discussion of Slattery (1990).

1. Species mass balance

The mass balance for each species requires that the time rate of change of the mass

of each component A be equal to the rate at which the mass of that component is

produced by chemical reactions (Slattery, 1990, p. 679):

d

dt

∫
R

ρω(A) dV =

∫
R

J∑
j=1

r(A,j) dV +

∫
Σ

K∑
k=1

r
(σ)
(A,k) dA (2.33)

Here R denotes the region occupied by the body, Σ represents its internal phase

interface, r(A,j) is the rate per unit volume at which mass of species A is produced

by homogeneous chemical reaction j (= 1, 2, . . . , J); r
(σ)
(A,k) is the rate per unit area

at which mass of species A is produced by heterogeneous chemical reaction k (=

1, 2, . . . , K). After an application of the transport theorem (Slattery, 1999, p. 433) as

well as Green’s transformation recognizing that all velocities are zero on the boundary
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of the system, we have

∫
R

{
ρ
d(v)ω(A)

dt
+ div

[
ρ(A)

(
v(A) − v

)] − J∑
j=1

r(A,j)

}
dV

+

∫
Σ

(
−

K∑
k=1

r
(σ)
(A,k) +

[[[
ρω(A)

(
v(A) − u

) · ξ
]]])

dA

=

∫
R

{
ρ
d(v)ω(A)

dt
−

J∑
j=1

r(A,j)

}
dV +

∫
Σ

(
−

K∑
k=1

r
(σ)
(A,k) +

[[[
ρω(A) (v − u) · ξ

]]])
dA

= 0 (2.34)

Let us introduce the jth homogeneous reaction coordinate ψ(j) by defining for all

A = 1, . . . , N :

∂ψ(j)

∂t
≡ r(A,j)

M(A)ν(A,j)

(2.35)

The right side of this equation represents a normalized rate of production of moles of

species A by the homogeneous chemical reaction j; M(A) is the molecular weight of

species A and ν(A,j) is the stoichiometric coefficient for species A in chemical reaction

j. The stoichiometric coefficient is taken to be a negative number for a reactant,

positive for a product. Overall mass conservation requires that for each homogeneous

reaction
N∑

A=1

r(A,j) =
∂ψ(j)

∂t

N∑
A=1

M(A)ν(A,j) = 0 (2.36)

Our assumption is that

∂ψ(j)

∂t
�= 0 (2.37)

which implies (j = 1, 2, . . . , J)

N∑
A=1

M(A)ν(A,j) = 0 (2.38)

In much the same manner, we can introduce the kth heterogeneous reaction
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coordinate ψ
(σ)
(k) by defining for all A = 1, 2, . . . , N (Slattery, 1999, p. 830)

∂ψ
(σ)
(k)

∂t
−∇(σ)ψ

(σ)
(k) ·u ≡

r
(σ)
(A,k)

M(A)ν
(σ)
(A,k)

(2.39)

Here ψ
(σ)
(k) is a function of time t and two surface coordinates on the moving and

deforming interface (Slattery, 1999, p. 1065); ∇(σ) denotes the surface gradient oper-

ation (Slattery, 1999, p. 1075); u is the time rate of position following a surface point

(Slattery, 1999, p. 24). On the right side of this equation, we have a normalized rate

of production of moles of species A by the heterogeneous chemical reaction k at a

point fixed on the surface in such a way that its only motion is normal to the interface;

ν
(σ)
(A,k) is the stoichiometric coefficient for species A in the heterogeneous reaction k.

Overall mass conservation requires that for each heterogeneous reaction

N∑
A=1

r
(σ)
(A,k) =

(
∂ψ

(σ)
(k)

∂t
−∇(σ)ψ

(σ)
(k) · u

)
N∑

A=1

M(A)ν
(σ)
(A,k) = 0 (2.40)

Again our assumption is that

∂ψ
(σ)
(k)

∂t
−∇(σ)ψ

(σ)
(k) · u �= 0 (2.41)

which means that k = 1, 2, . . . , K)

N∑
A=1

M(A)ν
(σ)
(A,k) = 0 (2.42)
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In view of (2.35) and (2.39), we may express (2.34) as

Z(A) ≡
∫

R

[
ρ
d(v)ω(A)

dt
− ∂

∂t

(
J∑

j=1

M(A)ν(A,j)ψ(j)

)]
dV

+

∫
Σ

{
− ∂

∂t

J∑
j=1

M(A)ν
(σ)
(A,j)ψ

(σ)
(j) + ∇(σ)

(
J∑

j=1

M(A)ν
(σ)
(A,j)ψ

(σ)
(j)

)
· u

+
[[[
ρω(A) (v − u) · ξ

]]]}
dA

= 0 (2.43)

2. Momentum balance

The momentum balance requires (Slattery, 1990, p. 709):

d

dt

∫
R

ρv dV =

∫
S

Tn dA+

∫
R

ρf dV (2.44)

(Because there is no mass transfer at the boundary, we do not distinguish between

the region occupied by a body of species A and the region occupied by the multicom-

ponent body, the material particles of which move with the mass-averaged velocity

v.) Applications of the transport theorem (Slattery, 1999, p. 433) and of Green’s

theorem yields

Zm ≡
∫

R

[
ρ
d(v)v

dt
− divT − ρf

]
dV +

∫
Σ

[[[
ρv(v − u)· ξ − Tξ

]]]
dA

= 0 (2.45)

3. Moment-of-momentum balance

In order to allow for a non-symmetric stress tensor, we must consider the moment-

of-momentum balance:

d

dt

∫
R

ρ (p × v) dV =

∫
S

p × Tn dA+

∫
R

(L + ρp × f) dV (2.46)
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where p is the position vector and L is a source of moment-of-momentum per unit

volume. This reduces to (Slattery, 1999, p. 36)

Zmom ≡
∫

R

[
p ×

(
ρ
d(v)v

dt
− divT − ρf

)
− eijkTkjei − L

]
dV

+

∫
Σ

[[[
p × (ρv (v − u) · ξ − Tξ)

]]]
dA (2.47)

If L = 0 as is commonly assumed in the absence of magnetic and electric fields, T is

symmetric. One objective in what follows will be to determine L at equilibrium.

4. Energy balance

For this isolated body totally enclosed by an adiabatic boundary, the energy balance

(Slattery, 1990, p. 716) states that

d

dt

∫
R

ρ

(
Û +

1

2
v2

)
dV

=

∫
S

v·Tn dA+

∫
R

N∑
A=1

ρ(A)

(
v(A) · f(A)

)
dV

=

∫
S

v·Tn dA+

∫
R

[
N∑

A=1

ρ(A)

(
v(A) − v

) · f(A) − ρv · f

]
dV (2.48)

We also neglect the possibility of mutual radiant energy transmission.

The first term on the right of (2.48) can be rearranged using Green’s transfor-

mation as

∫
S

v·Tn dA =

∫
R

{
v· divT + tr

[
T(∇v)T

]}
dV +

∫
Σ

[[[
v·Tξ

]]]
dA (2.49)

The body force f(A) is a sum of two contributions, an external (or mutual) body force

f ext
(A) that can be represented in terms of a potential and an electro-magnetic body
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force fmag that is the same for all species:

f(A) = f ext
(A) + fmag

= −∇φext
(A) + fmag (2.50)

If we assume that this potential is only a function of position and not a function of

time , we may write

ρ(A)

(
v(A) − v

) · f ext
(A) = − div

[
ρ(A)φ(A)

(
v(A) − v

)]
+ φ(A)div

[
ρ(A)

(
v(A) − v

)]
= − div

[
ρ(A)φ(A)

(
v(A) − v

)]
+ φ(A)

[
−ρd(v)ω(A)

dt
+

J∑
j=1

r(A,j)

]
(2.51)

From (2.35) we see that

J∑
j=1

r(A,j) =
J∑

j=1

∂

∂t
(M(A)ν(A,j)ψ(j)) (2.52)

This allows us to express (2.51) as

ρ(A)

(
v(A) − v

) · f ext
(A) = −div

[
ρ(A)φ(A)

(
v(A) − v

)]
+

J∑
j=1

∂

∂t

(
φ(A)M(A)ν(A,j)ψ(j)

) − ρφ(A)

d(v)ω(A)

dt
(2.53)

This together with Green’s transformation permit us to arrange the second term on

the right of (2.48) as

∫
R

N∑
A=1

ρ(A)

(
v(A) − v

) · f(A) dV

=

∫
R

N∑
A=1

[
J∑

j=1

∂

∂t

(
φ(A)M(A)ν(A,j)ψ(j)

) − ρφ(A)

d(v)ω(A)

dt
+ ρ(A)

(
v(A) − v

) · fmag
(A)

]
dV

+

∫
Σ

N∑
A=1

φ(A)

[[[
ρ(A)

(
v(A) − v

) · ξ
]]]
dA (2.54)
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An application of the transport theorem (Slattery, 1999, p. 433) allows us to express

the left side of (2.48) as

d

dt

∫
R

ρ

(
Û +

1

2
v2

)
dV

=

∫
R

ρ
d(v)

dt

(
Û +

1

2
v2

)
dV +

∫
Σ

[[[
ρ

(
Û +

1

2
v2

)
(v − u) · ξ

]]]
dA (2.55)

In view of (2.49), (2.54), and (2.55), equation (2.48) takes the form

∫
R

{
ρ
d(v)

dt

(
Û +

1

2
v2

)
+

N∑
A=1

[(
∂

∂t

J∑
j=1

−φ(A)M(A)ν(A,j)ψ(j) − ρφ(A)

d(v)ω(A)

dt

)

+
(
ρ(A)

(
v(A) − v

) · fmag
)] − v · (divT + ρf) − tr

[
T(∇v)T

]}
dV

+

∫
Σ

[[[
ρ

(
Û +

1

2
v2

)
(v − u) · ξ

]]]
dA

=

∫
Σ

{
N∑

A=1

φ(A)

[[[
ρ(A)

(
v(A) − v

) · ξ
]]]

+
[[[
v · Tξ

]]]}
dA

(2.56)

This can be expressed more conveniently for our purposes as

Ze ≡
∫

R

{
ρ
d(v)Ê

dt
−

N∑
A=1

[(
∂

∂t

J∑
j=1

(
φ(A)M(A)ν(A,j)ψ(j)

) − ρφ(A)

d(v)ω(A)

dt

)

+
(
ρ(A)

(
v(A) − v

) · fmag
)] − v · (divT + f) − tr

[
T (∇v)T

]}
dV

+

∫
Σ

{[[[
ρÊ (v − u) · ξ −

N∑
A=1

φ(A)ρ(A)

(
v(A) − v

) · ξ − v · Tξ
]]]}

dA

= 0 (2.57)

Here we have introduced the total energy per unit mass associated with each phase

Ê ≡ Û +
1

2
v2 (2.58)

Neglecting the inertia term, because it is small.

Ê = Û (2.59)
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5. Conservation of magnetic flux

Conservation of magnetic flux requires for a body (bounded by a closed surface S)

(Hutter and vandeVen, 1978, p. 12).

d

dt

∫
S

B·n dA = 0 (2.60)

or ∫
S

B·n dA = a constant

= C (2.61)

Traditionally, we write ∫
S

B·n dA = 0 (2.62)

(perhaps recognizing by analogy with the conservation of electric charge below that

there is no ”free magnetic charge” associated with the body). By the divergence

theorem,

Zmag ≡
∫

R

divB dV +

∫
Σ

[[[
B· ξ]]]

dA = 0 (2.63)

6. Conservation of charge

Let Q be the charge density. For an isolated body, conservation of charge requires

(Hutter and vandeVen, 1978, p. 12)

d

dt

∫
R

ρQdV = 0 (2.64)

or ∫
R

ρQdV = C

= a constant (2.65)
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By analogy with the magnetic flux density B above, we will introduce the dielectric

displacement D: ∫
S

D · n dA = C (2.66)

For an isolated body with no free charge,

∫
S

D · n dA = 0 (2.67)

Applying the divergence theorem, we find

Zc ≡
∫

R

divD dV +

∫
Σ

[[[
D · ξ

]]]
dA = 0 (2.68)

7. Entropy inequality

For the isolated body under consideration here, the entropy inequality (Truesdell and

Toupin 1960, p. 644; Truesdell 1969, p. 35; Slattery 1990, p. 838) says that the time

rate of change of the body’s entropy must be greater than or equal to zero:

d

dt

∫
R

ρŜ dV ≥ 0 (2.69)

Equilibrium is achieved, when this inequality becomes an equality. As equilibrium is

approached, (2.69) tells us that the entropy of this isolated body is maximized and

d2

dt2

∫
R

ρŜ dV ≤ 0 (2.70)

The implications of (2.70) and therefore the requirements for a stable equilibrium

have been explored elsewhere [Slattery (1972, 1981, 1990), Edelen 1975]. To the

lowest order of perturbations to the system, no new results are developed here, and

for this reason they will not be repeated. Applying the transport theorem (Slattery,
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1999, p. 433), we find that this may also be written as

∫
R

ρ
d(v)Ŝ

dt
dV +

∫
Σ

[[[
ρŜ (v − u) · ξ

]]]
dA ≥ 0 (2.71)

From (2.69), we define equilibrium to be attained, when

∫
R

ρŜ dV

is maximized, the left side of (2.69) is minimized, and the inequalities in (2.69) and

(2.71) become equalities.

E. Implications of equilibrium

Referring to the beginning of the prior section, we continue to restrict our attention to

a multiphase, multicomponent body capable of undergoing a number of simultaneous

chemical reactions and totally enclosed by an impermeable, adiabatic boundary. As

explained above, if equilibrium is to be achieved, the left side of (2.69) must approach

zero within the constraints imposed by conservation of mass for each species, by the

momentum balance, by the moment of momentum balance, by the energy balance,

by the conservation of magnetic flux, and by the conservation of electric charge as

developed in the prior section. Since Z(A), Zm, Zmom, Ze, Zmag, and Zc are all zero

by (2.43), (2.45), (2.47), (2.57), (2.63), and (2.68), there is no loss in generality in

writing (2.71) as (Slattery 1981, p. 490; Slattery 1990, p. 839)

∫
R

ρ
d(v)Ŝ

dt
dV +

∫
Σ

[[[
ρŜ(v − u)· ξ]]]

dA+
N∑

A=1

λ(A)Z(A)

+λm · Zm + λmom · Zmom + λeZe + λmagZmag + λcZc ≥ 0 (2.72)

where λ(A), λe, λmag, and λc are constants or Lagrangian multipliers; λm and
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λmom are constant spatial vectors, the components of which are Lagrangian multipli-

ers. In examining this result, we will require several relationships. From (2.26) and

the definition of Â (Slattery, 1999, p. 446), we have

d(v)Ŝ

dt
=

1

T

d(v)U

dt
+
P

T

d(v)V̂

dt
− 1

T

[
N−1∑
A=1

(
µ(A) − µ(N)

) d(v)ω(A)

dt
+ µ(I(4))

d(v)I
(4)

dt

+µ(I(5))

d(v)I
(5)

dt
+ µ(I(6))

d(v)I
(6)

dt

]

− 1

T

3∑
m=1

[
2∑

n=1

(
µ(I,mn)

d(v)I(mn)

dt

)
+ µ(I(2),m)

d(v)I
(2)
(m)

dt
+ µ(I(3),m)

d(v)I
(3)
(m)

dt

]

=
1

T

d(v)U

dt
+

P

Tρ
divv − 1

T

[
N−1∑
A=1

(
µ(A) − µ(N)

) d(v)ω(A)

dt
+ µ(I(4))

d(v)I
(4)

dt

+µ(I(5))

d(v)I
(5)

dt
+ µ(I(6))

d(v)I
(6)

dt

]

− 1

T

3∑
m=1

[
2∑

n=1

(
µ(I(1),mn)

d(v)I
(1)
(mn)

dt

)
+ µ(I(2),m)

d(v)I
(2)
(m)

dt
+ µ(I(3),m)

d(v)I
(3)
(m)

dt

]

(2.73)

where we have used the overall differential mass balance (Slattery, 1999, p. 432)

ρ
d(v)V̂

dt
= divv (2.74)

in this last line. We will also require from (2.30), we see that

Ŝ =
1

T

(
Û +

P

ρ
−

N∑
A=1

µ(A)ω(A)

)
(2.75)

as well as from (2.5)

d(v)I
(1)
(mn)

dt
= ∇v e(m)· e(n) + e(m)·∇v e(n)

= tr
[(

e(m) ⊗ e(n) + e(n) ⊗ e(m)

)∇v
]

= tr
[(

e(m) ⊗ e(n) + e(n) ⊗ e(m)

)
(∇v)T

]
(2.76)
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and from (2.8) through (2.12)

d(v)I
(2)
(m)

dt
= ∇v e(m)·M +

(
e(m) − E(m)

) · d(v)M

dt

= tr

[(
e(m) ⊗ M

)∇v +
(
e(m) − E(m)

) ⊗ d(v)M

dt

]

= tr

[(
M ⊗ e(m)

)
(∇v)T +

(
e(m) − E(m)

) ⊗ d(v)M

dt

]
(2.77)

d(v)I
(3)
(m)

dt
= ∇v e(m)·P +

(
e(m) − E(m)

) · d(v)P

dt

= tr

[(
e(m) ⊗ P

)∇v +
(
e(m) − E(m)

) ⊗ d(v)P

dt

]

= tr

[(
P ⊗ e(m)

)
(∇v)T +

(
e(m) − E(m)

) ⊗ d(v)P

dt

]
(2.78)

d(v)I
(4)

dt
= 2

d(v)M

dt
· M

= 2 tr

(
d(v)M

dt
⊗ M

)
(2.79)

d(v)I
(5)

dt
= 2

d(v)P

dt
·P

= 2 tr

(
d(v)P

dt
⊗ P

)
(2.80)

d(v)I
(6)

dt
=

d(v)M

dt
· P + M · d(v)P

dt

= tr

(
d(v)M

dt
⊗ P + M ⊗ d(v)P

dt

)
(2.81)

After rearranging (2.72) by means of (2.73), (2.75), and (2.76) through (2.81), we
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have

∫
R

{
ρ

(
1

T
+ λe

)
d(v)Û

dt
+

N∑
A=1

[
ρ

(
−µ(A)

T
+ λeφ(A) + λ(A)

) d(v)ω(A)

dt

+ρ(A)

(
v(A) − v

) · fmag
]
+ (λev + λm) ·

(
ρ
d(v)v

dt
− divT − ρf

)

−
N∑

A=1

J∑
j=1

(
λeφ(A)M(A)ν(A,j) + λ(A)M(A)ν(A,j)

) ∂ψ(j)

∂t
+

1

T
tr {[−TλeT + P I

−ρ
3∑

m=1

{
2∑

n=1

µ(I(1),mn)

(
e(m) ⊗ e(n) + e(n) ⊗ e(m)

)
+ µ(I(2),m)M ⊗ e(m)

+µ(I(3),m)P ⊗ e(m)

}]
(∇v)T − ρ

[
3∑

m=1

µ(I(2),m)

(
e(m) − E(m)

) ⊗ d(v)M

dt

+µ(I(3),m)

(
e(m) − E(m)

) ⊗ d(v)P

dt

]
− 2µ(I(4))

(
d(v)M

dt
⊗ M

)

−2µ(I(5))

(
d(v)P

dt
⊗ P

)
− µ(I(6))

(
d(v)M

dt
⊗ P + M ⊗ d(v)P

dt

)}
+ λcdivD

+λmagdivB + λmom·
(
p ×

(
ρ
d(v)v

dt
− divT − ρf

)
− eijkTkjei − L

)}
dV

+

∫
Σ

{[[[
ρ

[(
1

T
+ λe

)
Û +

P

Tρ
+

N∑
A=1

(
− 1

T
µ(A)ω(A) + λeω(A)φ(A) + λ(A)ω(A)

)

−λe

2
v2

]
(v − u) · ξ −

N∑
A=1

λeφ(A)ρ(A)

(
v(A) − u

) · ξ

+ (λev + λm) · [ρv (v − u) − T] ξ

+λmom (p × (v (v − u) · ξ − Tξ)) + [λcD + λmagB] · ξ

]]]

−
J∑

j=1

N∑
A=1

λ(A)M(A)ν
(σ)
(A,j)

(
∂ψ

(σ)
(j)

∂t
−∇(σ)ψ

(σ)
(j) · u

)}
dA ≥ 0 (2.82)
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or

∫
R

{
ρ

(
1

T
+ λe

)
d(v)Û

dt
+

N∑
A=1

[
ρ

(
−µ(A)

T
+ λeφ(A) + λ(A)

) d(v)ω(A)

dt

−ρv · fmag] −
N∑

A=1

J∑
j=1

(
λeφ(A)M(A)ν(A,j) + λ(A)M(A)ν(A,j)

) ∂ψ(j)

∂t

+
1

T
tr

{[
−TλeT + P I − ρ

3∑
m=1

{
2∑

n=1

µ(I(1),mn)

(
e(m) ⊗ e(n) + e(n) ⊗ e(m)

)

+µ(I(2),m)M ⊗ e(m) + µ(I(3),m)P ⊗ e(m)

}]
(∇v)T

−ρ
[

3∑
m=1

µ(I(2),m)

(
e(m) − E(m)

) ⊗ d(v)M

dt
+ µ(I(3),m)

(
e(m) − E(m)

) ⊗ d(v)P

dt

]

−2µ(I(4))

(
d(v)M

dt
⊗ M

)
− 2µ(I(5))

(
d(v)P

dt
⊗ P

)

−µ(I(6))

(
d(v)M

dt
⊗ P + M ⊗ d(v)P

dt

)}
− λmom· (eijkTkjei + L)

}
dV

+

∫
Σ

{[[[
ρ

[(
1

T
+ λe

)
Û +

P

Tρ
+

N∑
A=1

(
− 1

T
µ(A)ω(A) + λeω(A)φ(A) + λ(A)ω(A)

)]

×(v − u) · ξ

]]]

−
J∑

j=1

N∑
A=1

(
λ(A)M(A)ν

(σ)
(A,j) + λeφ(A)M(A)ν

(σ)
(A,k)

) (
∂ψ

(σ)
(j)

∂t
−∇(σ)ψ

(σ)
(j) · u

)}
dA ≥ 0

(2.83)

In arriving at this result, we have neglected kinetic energy with respect to internal

energy, and we have recognized the differential momentum balance, the Maxwell

equations, the jump mass balance for species A (Slattery, 1999, p. 427), the jump

momentum balance, the jump moment-of-momentum balance, the jump conditions

for conservation of magnetic flux and electric charges, the definition of the total mass

density, the definition of the mass-averaged velocity, and (2.40).

A sufficient conditions that (2.83) be satisfied for equilibrium is that the system

be static.
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Necessary and sufficient conditions for (2.83) to be satisfied in the presence of

small perturbations to the system are

T = − 1

λe

= a constant (2.84)

µ(A) + φ(A) = Tλ(A)

= a constant for each species A = 1, 2, . . . , N (2.85)

N∑
A=1

(
− 1

T
φ(A)M(A)ν(A,j) + λ(A)M(A)ν(A,j)

)
=

N∑
A=1

µ(A)M(A)ν(A,j)

T

= 0 (2.86)

N∑
A=1

(
− 1

T
φ(A)M(A)ν

(σ)
(A,j) + λ(A)M(A)ν

(σ)
(A,j)

)
=

N∑
A=1

µ(A)M(A)ν
(σ)
(A,k)

T

= 0 (2.87)

T = −P I + ρ

3∑
m=1

[
2∑

n=1

µ(I(1),mn)

(
e(m) ⊗ e(n) + e(n) ⊗ e(m)

)

+µ(I(2),m)M ⊗ e(m) + µ(I(3),m)P ⊗ e(m)

]
(2.88)

d(v)M

dt
=
d(v)P

dt
= 0 (2.89)

L = −eijkTkjei

= −ε : T (2.90)

as well as

at Σ : P is continuous (2.91)

It is important to recognize that (2.88) is the description of stress-deformation

behavior at equilibrium.

To summarize, for the isolated body described at the beginning of the previ-
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ous section, the necessary and sufficient conditions that (2.83) be satisfied and that

equilibrium be achieved (under non-trivial conditions) are (2.84) through (2.91).

F. Phase rule

The phase rule was developed by Gibbs (Gibbs 1928, p. 354; Denbigh 1963, p. 180)

for multiphase, multicomponent systems at equilibrium with the restriction that in

each phase

Â = Â
(
T, ρ, ω(1), ω(2), . . . , ω(N−1)

)
(2.92)

For such a system, the phase rule states that the maximum number p of phases

that can be observed is

p ≤ N + 2 (2.93)

or the number of degrees of freedom one has in observing p phases is

f = N + 2 − p (2.94)

The phase rule has been extend by Slattery and Lagoudas (2005) to systems that

include crystalline solids. They found by analogy with (2.93) and (2.94)

p ≤ N + 2 + p(c)M − 3Qc −Qi (2.95)

f = N + 2 − p+ p(c)M − 3Qc −Qi

≥ 0 (2.96)

Here M is the number of independent variants defined by (2.5), restricted by (2.7);

Qc denotes the number of coherent, solid-solid phase interfaces; Qi denote the number

of incoherent, solid-solid phase interfaces.
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1. With no homogeneous or heterogeneous chemical reactions

In the case where there are no homogeneous or heterogeneous chemical reactions,

we see from (2.14) that the state of each solid crystalline phase is determined by

N +M + 1 independent variables: T , ρ, ω(1), . . . , ω(N−1), and M invariants

M ≡M1 +M2 +M3 +M4 (2.97)

HereM1 ≤ 5 denotes the non-zero invariants formed from the deformed lattice vectors,

defined by (2.5) and restricted by (2.7); M2 the non-zero invariants formed from the

magnetization and the deformed lattice vectors, defined by (2.8) and (2.10); M3 the

non-zero invariants formed from the polarization and the deformed lattice vectors,

defined by (2.9) and (2.11); M4 the scalar product of the magnetization and the

polarization, defined by (2.12). The state of each gas, liquid, or amorphous solid

phase is fixed by N + 1 variables: T , ρ, ω(1), . . . , ω(N−1). If p is the number of phases

and p(c) is the number of crystalline solid phases, the system is determined by

p(N + 1) + p(c)M

variables.

Let us consider a system consisting of p distinct phases and therefore p−1 distinct

internal phase interfaces. Focusing on these internal phase interfaces, we find that

• From (2.84), there are p− 1 independent equations relating T in each phase.

• From (2.85), there are N(p − 1) independent equations relating µ(A) + φ(A) in

each phase.

• From (2.91), there are p− 1 independent equations relating P (thermodynamic

pressure) in each phase.
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• Let Qc denoted the number of coherent, solid-solid phase interfaces, where the

adjoining solid phases are deformed. From jump condition of stress at equilib-

rium, there are 3Qc independent components of the jump momentum balance,

Qc jump magnetic flux balances, and Qc jump charge balances.

• Let Qi denoted the number of incoherent, solid-solid phase interfaces, where the

adjoining solid phases are deformed. The incoherent solid-solid phase interface

is one at which the tangential components of stress on the interface are zero;

Commonly. such an interface will be the result of fracture. There are Qi jump

momentum balances (the normal component), Qc jump magnetic flux balances,

and Qc jump charge balances.

To summarize, we have p(N+1)+p(c)M variables related by (p−1)(N+2)+aQc+bQi

equations. Here

a = 3 if there are no magnetic or electric fields

= 4 if there is either a magnetic field or an electric field, but not both

= 5 if there are both a magnetic field and an electric field

b = 1 if there are no magnetic or electric fields

= 2 if there is either a magnetic field or an electric field, but not both

= 3 if there are both a magnetic field and an electric field (2.98)

We know that

p(N + 1) + p(c)M ≥ (p− 1)(N + 2) + aQc + bQi (2.99)

we get:

p ≤ N + 2 + p(c)M − aQc − bQi (2.100)

This tells us the maximum number of phases that might be observed in a given
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equilibrium experiment. Equation (2.99) also can be expressed in terms of the number

of degrees of freedom f (or the number of independent variables) one has in observing

a fixed number of phases:

f = N + 2 − p+ p(c)M − aQc − bQi

≥ 0 (2.101)

If a system is subjected to c constraints, (2.101) should be replaced by

f = N + 2 − p+ p(c)M − aQc − bQi − c (2.102)

Note that (2.99) and (2.101) reduce to the Gibbs phase rule (2.93) and (2.94), when

there are no crystalline phases. They also reduce to the extended phase rule of

Slattery and Lagoudas (2005) given by (2.95) and (2.96), when there are no magnetic

or electric fields.

Let us apply (2.102) to some observations that have been reported in the litera-

ture.

a. Example 1: Observation in the absence of electric and magnetic fields (Tickle

and James, 1999)

Tickle and James (1999) began their studies with a rectangular (Ni51.3Mn24.0Ga24.7)

austenite bar with < 100 > edges (long edge as the axial direction, short edge as the

transverse direction), first cooling it below −14 celisius degree to produce a polycrys-

talline martensite. Following cooling, an axial compressive stress σ was applied to

produce a single, tetragonal, axial martensite variant in the absence of magnetic or

electric fields.

It is immediately clear that the original Gibbs phase rule (2.94) is not applicable,

since it assumes that stress is attributable only to thermodynamic pressure.
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Our objective is to determine whether their observation of one variant (or in the

case, one phase) is consistent with (2.96) and (2.102).

Since the tangential components of stress exerted on the faces of the sample are

all zero, from (2.88) one solution would have two of the deformed lattice vectors e(i)

be everywhere tangent to these faces. In order to account for the normal stresses,

the third lattice vector would be normal to the face, which is consistent with their

tetragonal crystal structure. In this case, only two of the invariants (2.5) restricted

by (2.7) are different from zero or M = 2. The initial careful orientation of the parent

austenite phase may have been unnecessary.

There are six independent variables: temperature, density, two mass fractions,

and two invariants. It is common to replace density by pressure, employing the

definition of thermodynamic pressure (2.18).

Here N = 3, P = P (c) = 1, M = 2, Qi = Qc = 0, and c = 4 (temperature,

pressure, and two mass fractions). The phase rule (2.102) predicts f = 2: the two

invariants, which are determined by the normal stresses applied on the boundary.

b. Example 2: Observation with a transverse magnetic field Tickle and James (1999)

Subsequent to the observations described above, Tickle and James (1999) applied a

constant transverse magnetic field to the single martensite phase, producing another

martensitic variant having a different orientation.

In this case, M = 4: M1 = 2 (see Example 1), M2 = 2, and M3 = M4 = 0.

Following the same reasoning, we find f = 4: the four invariants, determined by the

applied stresses, the magnitude and orientation of the magnetic field.
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c. Example 3: Experiment of Murray et al. (2001)

In an experiment similar to that described in Example 2 above (same species but

different composition), Murray et al. (2001) observed two variants in equilibrium.

As indicated in Example 2, our phase rule predicts that they should have observed

only one phase, which is consistent with their observation of two variants of the same

phase.

2. With r independent reactions

Let us now assume that the system is capable of undergoing r independent chem-

ical reactions, either homogeneous or heterogeneous. This means that we have an

additional r equations describing chemical reaction equilibrium, either (2.86) for ho-

mogeneous reactions or (2.87) for heterogeneous reactions.

Following the same reasoning as above, (2.102) should be replaced by

f = N + 2 − p+ p(c)M − aQc − bQi − r − c (2.103)

Unfortunately, there do not appear to be any experiments with which we can compare

these predictions.

G. Summary of new results

Four principal results have been developed here.

1. To our knowledge, this is the first time that the Gibbs phase rule has been

extended to crystalline elastic solids exposed to electro-magnetic fields. The

result is consistent with three illustrative examples.

2. While the form of Euler’s equation (2.30) remains unchanged, the extensions
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of the Gibbs equation (2.31) and of the Gibbs-Duhem equation (2.32) to these

systems appears to be new.

3. A new expression for stress-deformation behavior, including the effects of mag-

netization and polarization, has been derived at equilibrium.

4. A new expression for the moment-of-momentum per unit volume at equilibrium

has been derived. This is important, since the stress tensor is not necessarily

symmetric.
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CHAPTER III

STRESS-DEFORMATION BEHAVIOR AT EQUILIBRIUM IN THE LIMIT OF

INFINITESIMAL DEFORMATIONS

Since it is common to consider infinitesimal deformations, let us consider how equation

48 in chapter II reduces in this limit:

T = −P I + ρ
3∑

m=1

[
2∑

n=1

µ(I,mn)

(
e(m) ⊗ e(n) + e(n) ⊗ e(m)

)

+µ(I(2),m)M ⊗ e(m) + µ(I(3),m)P ⊗ e(m)

]
= −P I + ρ

3∑
m=1

[
2∑

n=1

µ(I,mn)

(
FE(m) ⊗ FE(n) + FE(n) ⊗ FE(m)

)

+µ(I(2),m)M ⊗ FE(m) + µ(I(3),m)P ⊗ FE(m)

]
(3.1)

Define

u ≡ z − zκ

= χ̂κ − zκ (3.2)

to be the displacement vector, and zκ is the position vector of a material particle in

the natural configuration. It follows that the displacement gradient

H ≡ gradu

≡ ∂ (zi − zκ,i)

∂zκ j

eiej

=
∂zi

∂zκ j

eiej − δijeiej

= F − I (3.3)
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Let ε be a very small dimensionless variable characterizing an infinitesimal deforma-

tion process. We will seek a solution of the form

u = u(0) + εu(1) + ε2u(2) + . . . (3.4)

Let us recognize that in the absence of an infinitesimal deformation or as ε→ 0

u(0) = 0 (3.5)

This means that

H = εH(1) + ε2H(2) + . . . (3.6)

H(1) = gradu(1) (3.7)

C = (I + εH(1) + . . .)T (I + εH(1) + . . .)

= I + ε
(
H(1) + H(1)

T
)

+O
(
ε2

)
(3.8)

From (2.6) and (3.8) (the derivative of a determinant is discussed by Slattery (1999,

p. 679)),

ρ =
ρ0

detF

=
ρ0√

det C

=
ρ0√

det
[
I + ε

(
H(1) + H(1)

T
)]

+ . . .

=
ρ0

det I
− ε

ρ0

2 (det I)2 tr
(
H(1) + H(1)

T
)

+ . . .

= ρ0 − ε
ρ0

2
tr

(
H(1) + H(1)

T
)

+ . . .

= ρ0 − ρ0

2
tr (C − I) + . . . (3.9)
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Since, in the limit of small deformations, the strain

e ≡ 1

2

[∇u + (∇u)T
]

.
=

1

2

[
gradu + (gradu)T

]
.
= ε

1

2

(
H(1) + H(1)

T
)

(3.10)

which allows us to also express (3.9) as

ρ = ρ0 (1 − tr e) + . . . (3.11)

Equations (3.3) and (3.6) also permit us to rewrite (3.1) to the first order in ε as (for

the moment not addressing the order of µ(I,mn) )

T = −P I + ρ

{
3∑

m=1

2∑
n=1

µ(I(1),mn)

(
I + εH(1)

) (
E(m) ⊗ E(n) + E(n) ⊗ E(m)

) (
I + εH(1)

)T

+
[
µ(I(2),m)M ⊗ [(

I + εH(1)

)
E(m)

]
+ µ(I(3),m)P ⊗ [(

I + εH(1)

)
E(m)

]]}
= −P I + ρ

[
3∑

m=1

2∑
n=1

µ(I(1),mn)

(
E(m) ⊗ E(n) + E(n) ⊗ E(m)

)

+µ(I(2),m)M ⊗ E(m) + µ(I(3),m)P ⊗ E(m)

]
+ ρε

{
3∑

m=1

2∑
n=1

µ(I(1),mn)

{
H(1)

(
E(m) ⊗ E(n) + E(n) ⊗ E(m)

)

+
[
H(1)

(
E(m) ⊗ E(n) + E(n) ⊗ E(m)

)]T
}

+
[
µ(I(2),m)M ⊗ H(1)E(m) + µ(I(3),m)P ⊗ H(1)E(m)

]}
(3.12)



40

If the natural configuration is a stress-free configuration (an isotropic stress attribut-

able to thermodynamic pressure),

0 = ρ0

[
3∑

m=1

2∑
n=1

µ(I(1),mn)0

(
E(m) ⊗ E(n) + E(n) ⊗ E(m)

)
+ µ(I(2),m)0M(0) ⊗ E(m)

+µ(I(3),m)0P(0) ⊗ E(m)

]
(3.13)

where the µ(I(1),mn)0, µ(I(2),m)0, and µ(I(3),m)0 are evaluated in the natural configuration.

As a special case, let us assume that Â, as described by (2.14), can be represented as

a quadratic function of I
(1)
(11) . . . I

(1)
(33) . . . I

(6) (Truesdell and Noll, 1965, pp. 311-312):

Â = c(0) +
3∑

i=1

2∑
j=1

c(ij)I
(1)
(ij) +

1

2

3∑
i=1

2∑
j=1

3∑
m=1

2∑
n=1

c(ijmn)I
(1)
(ij)I

(1)
(mn) +

3∑
i=1

d(i)I
(2)
(i)

+

(3)∑
(i=1)

(2)∑
(j=1)

(3)∑
(m=1)

d(ijm)I
(1)
(ij)I

(2)
(m) +

1

2

(3)∑
(i=1)

(2)∑
(j=1)

d(ij)I
(2)
(i) I

(2)(j) +

(3)∑
(i=1)

f(i)I
(3)(i)

+

(3)∑
(i=1)

(2)∑
(j=1)

(3)∑
(m=1)

f(ijm)I
(1)
(ij)I

(3)
(m) +

(3)∑
(i=1)

(2)∑
(j=1)

g(ij)I
(2)
(i) I

(3)
(j)

+
1

2

(3)∑
(i=1)

(2)∑
(j=1)

f(ij)I
(3)
(i) I

(3)
(j) +

(3)∑
(i=1)

(2)∑
(j=1)

G(ij)I
(1)
(ij)I

(4) +

(3)∑
(i=1)

G(i)I
(2)
(i) I

(4) + . . .

(3.14)

It should be understood here that c(0), c(ij), c(ijmn), d(i),d(ij),d(ijm),f(i),f(ij),f(ijm), and

g(ij) are functions of T , ρ, and ω(A) (A = 1, . . . , N−1) with the additional restrictions

c(ij) = c(ji) (3.15)
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and

c(ijmn) = c(mnij)

c(ijmn) = c(ijnm)

c(ijmn) = c(jimn) (3.16)

d(ij) = d(ji) (3.17)

d(ijm) = d(jim) (3.18)

f(ij) = f(ji) (3.19)

f(ijm) = f(jim) (3.20)

g(ij) = g(ji) (3.21)

G(ij) = G(ji) (3.22)

For this special case, from (2.32)

µ(I(1),mn) = c(mn) +
3∑

i=1

2∑
j=1

c(ijmn)I
(1)
(ij) +

3∑
i=1

d(mni)I
(2)
(i) + h(mn)I

(4) + . . . (3.23)

and from (3.13)

µ(I(1),mn)0 = c(mn) + h(mn)I
(4) + . . . = 0 (3.24)

Similarly:

µ(I(2),m) = d(i) +
3∑

i=1

2∑
j=1

d(ijm)I
(1)
(ij) +

3∑
i=1

d(im)I
(2)
(i) +

3∑
i=1

f(im)I
(3)
(i) +h(m)I

(4) + . . . (3.25)

µ(I(2),m)0 = d(i) + h(m)I
(4) + . . . = 0 (3.26)

µ(I(3),m) = f(i) +
3∑

i=1

2∑
j=1

f(ijm)I
(1)
(ij) +

3∑
i=1

f(im)I
(2)
(i) +

3∑
i=1

g(im)I
(3)
(i) +G(m)I

(4) + . . . (3.27)

µ(I(3),m)0 = f(i) +G(m)I
(4) + . . . = 0 (3.28)
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From (2.5), (2.8), (2.9), (3.3), (3.6), (3.8), and (3.10), we see that

I
(1)
(ij) = E(i) · (C − I)E(j)

= 2E(i) · eE(j)

= εE(i) · (H(1) + HT
(1))E(j) (3.29)

I
(2)
(i) = M · e(i) − M · E(i)

= M · FE(i) − M · E(i)

= M · εH(1)E(i) (3.30)

I
(3)
(i) = P · e(i) − P · E(i)

= P·FE(i) − P · E(i)

= P· εH(1)E(i) (3.31)

and

P = P0 + εP1 (3.32)

then, the stress equation (3.12) can be expressed as:

T = −P0I − εP1I

+ ερ

[
3∑

m=1

2∑
n=1

3∑
i=1

2∑
j=1

(
c(ijmn)E(i)· (H(1) + HT

(1))E(j) + d(imn)M·H(1)E(i)

+f(imn)P·H(1)E(i)

) (
E(m) ⊗ E(n) + E(n) ⊗ E(m)

)
+

(
d(mij)E(i)· (H(1) + HT

(1))E(j) + d(im)M·H(1)E(i)

+f(im)P·H(1)E(i)

)
M ⊗ E(m) +

(
f(mij)E(i)· (H(1) + HT

(1))E(j)

+f(im)M·H(1)E(i) + g(im)P·H(1)E(i)

)
P ⊗ E(m)

]
(3.33)
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CHAPTER IV

SINGLE CRYSTAL ACTUATOR

A. Introduction

Actuators made from materials which can develop large strokes under precise and

rapid control can replace hydraulic, pneumatic, and electromagnetic drives in many

applications. An ideal actuator material for engineering applications could develop

rapid strokes with large displacement and high forces under precise control. Besides,

it should also be economical enough to be in mass products.

Since the initial discovery of a giant magnetic field-induced strain by Ullakko

(1996), Ferromagnetic shape memory alloys have attracted considerable attentions.

Magnetic control of shape memory materials have been suggested for a principle of

a new class of actuator materials due to a rearrangement of the martensite structure

induced by a magnetic field (Murrayetal. 2000a, 2001; Ullakko 1996).

Shape memory alloys have two stable phases, the lower temperature phase is

martensitic with a tetragonal unit cell. A complete characterization of the actuator

behavior of bulk Ni−Mn−Ga specimens activated under the influence of magnetic

inputs has yet to be fully realized (Couch and Chopra, 2003). Twin boundaries in

martensitic Ni−Mn−Ga can move when suitable magnetic fields are applied, some

twin variants grow and some shrink to accommodate the shape change, this process

produces the magnetic field actuation (Murray et al. 2001; Sozinov et al. 2001).

Magnetic field-induced strains of 6 percent and 10 percent in ferromagnetic Ni-

Mn-Ga martensites have been reported at room temperature (Murray et al. 2000a;

Sozinov et al. 2002). Ni-Mn-Ga ferromagnetic shape memory alloys have become a

new class of actuator materials that deform under a magnetic field in the ferromag-
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netic martensite phase.

Several important steps have been made during the last few years to understand

the magneto-mechanical phenomena observed in ferromagnetic shape memory alloys

(Likhachev and Ullakko 2000; 2001; 2002). In particularly, several models have been

developed and applied to explain quantitatively the static results of some experiments

(Vasilev et al. 1999). However, no theoretical study has been done to investigate

the dynamic process of the magnetic induced actuation of the shape memory alloys.

With the appearance of commercial devices based on Ni −Mn − Ga, the focus on

applications has increased. Understanding the dynamics of the field-induced twin

boundary motion and the speed of the actuation are necessary for the design of

actuators.

In the following sections, based upon the stress-deformation behavior of single

crystal with the presence of magnetic field (Slattery and Si, 2005), we will study the

dynamic process of the magnetic field induced actuation of a single crystal.

B. Basic theory

Chapter II have discussed the thermodynamic behavior of multicomponent, crys-

talline, elastic solids in the presence of magnetic and electric fields. In the absence of

electric fields but in the presence of a magnetic field and after an application of the

principle of frame indifference, their principal assumption reduces for each phase j to

Â = Â
(
T, ρ, ω(1), . . . , ω(N−1), I

(1)
(11), . . . , I

(1)
(32), I

(2)
(1) , . . . , I

(2)
(3) , I

(3)
)

(4.1)
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Here Â is the Helmholtz free energy per unit mass in phase j, T the temperature, ρ

the density, and ω(A) the mass fraction of species A. We define

I
(1)
(mn) ≡ e(m) · e(n) − E(m) · E(n)

= FE(m) · FE(n) − E(m) · E(n)

= E(m) · FTFE(n) − E(m) · E(n)

= E(m) · (C − I)E(n) (4.2)

I
(2)
(m) ≡ e(m)·M − E(m)·M (4.3)

I(3) ≡ M·M − M0·M0 (4.4)

with the understanding that

e(i) ≡ FE(i) (4.5)

are the current (deformed) lattice vectors in phase j, E(i) are the lattice vectors for

phase j in the natural (reference) configuration,

F ≡ grad z (4.6)

is the deformation gradient, z the current position of a material particle, H the

magnetic field, and grad denotes a gradient operation in the reference configuration.

Here

C ≡ FTF (4.7)

is the right Cauchy-Green strain tensor in phase j. It will be important to note that,

in the limit of small deformation (Slattery and Si, 2005, eq. 7),

ρ =
ρ0√

det C

= ρ0 − ρ0

2

(
I

(1)
(11) + I

(1)
(22) + I

(1)
(33)

)
+ . . . (4.8)
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In other words, ρ, I
(1)
(11), I

(1)
(22), and I

(1)
(33) are not independent. One of their conclusions

is that at equilibrium

T = −P I

+ ρ
3∑

m=1

[
2∑

n=1

µ(I(1),mn)

(
e(m) ⊗ e(n) + e(n) ⊗ e(m)

)
+ µ(I(2),m)M ⊗ e(m)

]
(4.9)

Here they have introduced

µ(I(1),mn) ≡
(

∂Â

∂I
(1)
(mn)

)
T, ρ, ω(B)(B �=N), I

(1)
(rs)

(rs �=mn), I
(2)
(m)

,I(3)...

(4.10)

µ(I(2),m) ≡
(

∂Â

∂I
(2)
(m)

)
T, ρ, ω(B)(B �=N), I(mn), I

(2)
(r)

(r �=m),...

(4.11)

and

µ(I(3)) ≡
(

∂Â

∂I
(3)
(m)

)
T, ρ, ω(B)(B �=N), I(mn), I

(2)
(r)

(r �=m), ...

(4.12)

as well as the thermodynamic pressure P . If they choose the independent variables

of the Holmholtz free energy per unit mass as all the invariants, temperature, and

mass fraction,

Â = Â
(
T, ω(1), . . . , ω(N−1), I

(1)
(11), . . . , I

(1)
(33), I

(2)
(1) , . . . , I

(2)
(3) , I

(3)
)

(4.13)

They will get a different Euler’s equation, which is only related to species’ mass

fractions. And the term where the thermodynamic pressure and density are involved

in the modified Gibbs equation and modified Gibbs-Duhem equation will be dropped

out too. Therefore, the conclusions of the equilibrium will be different. Especially, a

different constitutive equation of stress-deformation will be concluded:

T = ρ

3∑
m=1

[
3∑

n=1

µ(I(1),mn)

(
e(m) ⊗ e(n) + e(n) ⊗ e(m)

)
+ µ(I(2),m)M ⊗ e(m)

]
(4.14)
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Our objective in what follows is to analyze the single crystals’ stress-deformation

behavior and the dynamic transformation process of different variants in the experi-

ments in the context of this theory. And also to show how this theory can be used to

direct the designment of a single crystal actuator.

C. Problem statement

We will consider here the rectangular bar shown in Fig. 1 that is initially composed

of a single martensitic variant A. It is subjected to a compressive axial stress σ, but

the other four faces of the bar are open to atmospheric pressure. It will be convenient

to work in terms of stresses beyond atmospheric pressure. The mechanical boundary

conditions for the rectangular bar are the following:

at z2 = L : t1 = T
(A)
12 = 0

t2 = T
(A)
22 = −σ

t3 = T
(A)
32 = 0 (4.15)

at z2 = 0 : t1 = 0

t3 = 0

u
(A)
2 = 0

v
(A)
2 = 0 (4.16)

at z1 = 0 and W : t = 0 (4.17)

at z3 = 0 and D : t = 0 (4.18)

Here t is the traction vector applied on the sample, and ti is the components of the

traction vector. v
(A)
2 is the second component of velocity of variant A. u

(A)
2 is the

second component of the displacement of variant A. T
(A)
ij denotes a component of
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z1

z2

σξ
Α

ξ
Β

z2=h1(z1, t)

H z2= L(t)

z2 = 0

A

B

ξ
Β

ξ
Α

A

z2=h2(z1, t)

M

M M

z3

z3 = D

z3 = 0

z1 = 0

z1 = W

Fig. 1. A single crystal A is compressed and subjected to a constant magnetic field H,

creating a second variant B. The plane interface between variants A and B

moves in the z2 direction.

the stress T(A) in variant A. At t = 0, a transverse magnetic field is switched on,

and variant B is nucleated internally, and two interfaces begin sweeping across the

sample.

In the analysis that follows, we will make several assumptions.

1. The crystals are either cubic or tetragonal. The analysis is easily extended to

orthorhombic crystals.

2. We will assume that (4.14), which was derived for a system at equilibrium

(Slattery and Lagoudas, 2005), can be applied to a dynamic system. This is

supported by (Tian et al., 2005), who use it to correctly predict wave propaga-

tion in cubic crystals. In order to make the argument simpler and clearer, we

will ignore the effects of atmospheric pressure.

3. The crystals A and B shown in Fig. 1 are variants of the same phase as in the

experiments of Murray et al. (2001). See the discussion of these experiments
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given by Slattery and Si (2005).

4. The applied magnetic field is independent of time and position.

5. Variant A is aligned with its easy axis (the short lattice vector seen as E(2))

aligned in the z2 direction as seen in the reference configuration. The applied

magnetic field is sufficiently large that variant B in Fig. 1 is aligned with its

easy axis in the z1 direction. This appears to conform to the experiments of

Murray et al. (2001). The only non-zero components of the lattice vectors in

the reference configurations for variant A and B are:

E
(A)
(1)1 = a (4.19)

E
(A)
(2)2 = b (4.20)

E
(A)
(3)3 = a (4.21)

E
(B)
(1)2 = a (4.22)

E
(B)
(2)1 = b (4.23)

E
(B)
(3)3 = −a (4.24)

6. We will assume that the system undergoes a plane strain with no dependence

upon the z3 direction.

7. In considering the dynamic transformation from A to B, we will assume that

the magnetization of variant A was unaffected by the application of the external

magnetic field.

8. The interfaces between two martensitic variants are coherent. By coherent, here

we will mean that adjoining deformed lattice vectors have the same length.
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9. The magnetic body force (Pao, 1978, p. 264)

f = f (∇B) (4.25)

where B is the magnetic induction, which is proportional to the magnetic field

H. Since B is a constant, ∇B = 0, and there is no body force attributable to

the magnetic field.

10. Any effects of gravity will be neglected.

The final objective of the analysis which follows is to determine how the length

L of the sample changes with time.

D. Solution

Let us seek a solution of plane strain for each variant (C = A, B) of the form

v
(C)
2 = v

(C)
2 (z2, t)

v
(C)
1 = v

(C)
3 = 0 (4.26)

Here, v
(C)
i are components of the velocity of variant C. We will also say that, because

one end of the variant is fixed,

for 0 < z2 < h1 : v
(A)
2 = 0 (4.27)

Equation (4.26) suggests that we also assume that the velocities u(i) of interface i in

Fig. 1 has only one non-zero component:

u(i)2 = u(i)2 (z2, t)

u(i)1 = u(i)3 = 0 (4.28)
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The differential mass balances (Slattery, 1999, p. 21) for variants A and B

d(m)ρ

dt
+ ρdivv = 0 (4.29)

Let us introduce some dimensionless variables,

t� ≡ t

t0

ρ� ≡ ρ

ρ0

v� ≡ v

v0

(4.30)

where ρ0 is the density in the reference configuration and v0 is a characteristic velocity

that will be defined later, and t0 is the time required for the lattice vectors to be

rotated at the interface, which is very small. In terms of these variables, (4.30)

becomes

d(m)ρ
�

dt�
+
t0v0

L0

ρ�divv� = 0 (4.31)

if

v0 ≡
√
σ

ρ0

(4.32)

Even t0 is small, but L0 is small and v0 is very large, therefore

t0v0

L0

	 1 (4.33)

eq.(4.29) reduces to

∂v
(A)
2

∂z2

= 0

∂v
(B)
2

∂z2

= 0 (4.34)
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Our conclusion is that

v
(A)
2 = v

(A)
2 (t)

v
(B)
2 = v

(B)
2 (t) (4.35)

In view of (4.26) through (4.28), the jump mass balances for the two interfaces

shown in Fig. 1 require (Slattery, 1999, p. 25)

at z2 = h1 : ρ(A)u(1)2 + ρ(B)(v
(B)
2 − u(1)2) = 0 (4.36)

at z2 = h2 : −ρ(A)
(
v

(A)
2 − u(2)2

)
+ ρ(B)

(
v

(B)
2 − u(2)2

)
= 0 (4.37)

where, ξ(B) is the unit normal to the interfaces pointing into variant B.

In view of assumptions 9 and 10, the differential momentum balance (Slattery,

1999, p. 34) reduces to

ρ
d(m)v

dt
= divT (4.38)

Let us introduce two more dimensionless variables

z�
i ≡ zi

L0

T� ≡ T

σ
(4.39)

where L0 is the length of the sample in the reference configuration. In terms of these

variables defined in (4.39) and (4.30), (4.38) becomes

ρ�d(m)v
�

dt�
=

σ

ρ0v0
2

t0v0

L0

divT � (4.40)

From (4.32), we know

σ

ρ0v0
2

= 1 (4.41)

from (4.33), we know that

σ

ρ0v0
2

t0v0

L0

	 1 (4.42)
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and (4.38) reduces to

divT = 0 (4.43)

for both variants A and B. With the boundary conditions listed by equation (4.15)

and (4.16), recognizing that the other four faces of the bar are exposed to atmospheric

pressure, which we are ignoring (assumption 6), we find for variant C (C = A,B)

T
(C)
22 = constant

T
(C)
11 = T

(C)
33 = 0 (4.44)

All other components of stress in both variants are zero.

The jump momentum balance requires(Slattery, 1999, p. 34) at z2 = h1 :

T
(A)
22 − T

(B)
22 + ρ(B)v

(B)
2

(
v

(B)
2 − u(1)2

)
= 0 (4.45)

Similarly at z2 = h2 :

T
(A)
22 − T

(B)
22 − ρ(A)v

(A)
2

(
v

(A)
2 − u(2)2

)
+ ρ(B)v

(B)
2

(
v

(B)
2 − u(2)2

)
= 0 (4.46)

From the extended Gibbs phase rule derived by Slattery and Si (2005), we know

the variants A and B belong to the same phase (see their example 3). Therefore,

they have the same reference configuration, although the reference configurations are

rotated with respect to one another.

According to assumption 8, for the coherent interface adjoining deformed lattice

vectors in variants A and B must have the same length:

e
(A)
(1) = e

(B)
(2)

F(A)E
(A)
(1) = F(B)E

(B)
(2) (4.47)
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and

e
(A)
(3) = −e

(B)
(3)

F(A)E
(A)
(3) = −F(B)E

(B)
(3) (4.48)

where the deformation gradient F can be expressed as

F = gradu + I

.
= ∇u + I (4.49)

In view of (4.14) and (4.44), we see that all of the deformed lattice vectors in the

tetragonal variants A and B are either perpendicular or parallel to the boundaries of

the specimen. Substitute (4.5) and (4.49) into (4.47) and recognizing (4.19) through

(4.24), we have for both coherent interfaces

e
(A)
11 =

b

a

(
1 + e

(B)
11

)
− 1 (4.50)

Slattery and Si (2005, eq. 136) have derived an expression for stress-deformation

behavior appropriate to small deformations of elastic, crystalline materials in the

presence of both electric and magnetic fields. In addition to using density and five in-

variants I
(1)
(mn) among their independent variables in describing the specific Helmholtz

free energy Â, they also assumed that the reference configuration was stress-free.

Here we wish to assume that there is no electric field, that the stress distribution

T(0) in the reference configuration is non-zero, and that the independent variables for

Â include all six I
(1)
(mn) but not density. With these relatively simple changes, their
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result for small deformations (Slattery and Si, 2005, p. 136) becomes

T = T(0) + εT1

= ρ(0)

{
3∑

m=1

3∑
n=1

c(mn)

(
E(m) ⊗ E(n) + E(n) ⊗ E(m)

)
+ d(m)M ⊗ E(m)

}

+ ερ(0)

{
3∑

m=1

3∑
n=1

c(mn) +

[
3∑

i=1

3∑
j=1

c(ijmn)E(i)· (eE(j))

+d(imn)M· [(∇u(1))E(i)] + c(mn)(∇u(1))
] (

E(m) ⊗ E(n) + E(n) ⊗ E(m)

)
+

[
3∑

i=1

3∑
j=1

d(ijm)E(i)· (eE(j)) + d(im)M· [(∇u(1))E(i)]

]
M ⊗ E(m)

+c(mn)

(
E(m) ⊗ E(n) + E(n) ⊗ E(m)

)
(∇u(1))

T + d(m)M ⊗ [(∇u(1))E(m)]
}

− ρ(0)tr e

[
3∑

m=1

3∑
n=1

c(mn)

(
E(m) ⊗ E(n) + E(n) ⊗ E(m)

)
+ d(m)M ⊗ E(m)

]

(4.51)

Here ε is an unspecified perturbation parameter characterizing the small deformation

from the reference configuration, in which the stress T(0) �= 0. It is important to

note that the coefficients used here are functions of only temperature, whereas the

coefficients in Slattery and Si (2005, eq. 136) were functions of both temperature and

density. In (4.51), the dependence upon density drops out, because we are using all

six invariants I
(1)
(mn) rather than only five.

The important thing we need to remember is that we are studying a plane strain,

and there is no dependence upon z3.

Assumption 5, (4.19) through (4.21), and (4.51), tells us that the (22) component

of the stress in the reference state is:

T(0)22 = ρ(0)

(
2 c(22) b

2 + d(2) bM
)

(4.52)

Equation (4.26) and assumption 6 imply that the only non-zero components of
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strain are e11 and e22. From 6, (4.44) and (4.19) through (4.24), equation (4.51)

requires

0 = ρ(0)

[(
4a2b2c(2211) + 2a2bMd(211)

)
e
(A)
22 + 4a2b2c(1111)e

(A)
11

]
(4.53)

T
(A)
22 − T(0)22 = ρ(0)

[(
2b2c(22) + 4b4c(2222) + 4b3Md(222) +M2b2d(22)

)
e
(A)
22

+
(
4a2b2c(2211) + 2a2bMd(211)

)
e
(A)
11

]
(4.54)

0 = ρ(0)

[(
2b2c(22) + 4b4c(2222) + 4b3Md(222) +M2b2d(22)

)
e
(B)
11

+
(
4a2b2c(2211) + 2a2bMd(211) − T0

)
e
(B)
22

]
(4.55)

T
(B)
22 − T(0)22 = ρ(0)

[(
4a2b2c(1122) + 2a2bMd(211)

)
e
(B)
11

+4a2b2c(1111)e
(B)
22

]
(4.56)

E. Analysis of the experiments of Tickle (2000)

Tickle (2000) did a series of experiments to study the relationship between stress and

apparent strain with and without a magnetic field. A single austenitic Ni2MnGa

crystal was cooled to −17 celsius degree, which is much lower than the martensite

finish temperature(about −13 celsius degree). An axial load was applied to bias the

sample into a single axial variant A, whose easy axis, corresponding to the short

lattice vector of the tetragonal crystal, is parallel to the compression axis. We will

choose the initial configuration of variant A under the smallest compression stress

used as the reference configuration, and we will refer to its length as L(0).

A large transverse magnetic field (12 kOe) was then applied to variant A, and

a second variant B was nucleated with its short lattice vector or easy axis parallel

to the magnetic field. In Fig. 1, we show two interfaces bounding variant B that

quickly sweep across the specimen to form a single crystal of variant B. Tickle (2000)
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measured for different compressive stresses the length L(A) of variant A before the

magnetic field was applied and the length L(B) of variant B after the transformation

was concluded.

In reporting his observations, Tickle (2000) speaks in terms of an apparent strain

for variant C (C = A, B)

ε(C) ≡ L(C) − L(R)

L(R)
(4.57)

Here L(C) is the current length of the specimen, and L(R) is the length of the original

austenite specimen.

Tickle (2000) reported two static experiments with a single crystal of martensite

under compression: with and without a constant magnetic field. In addition to

investigating these experiments, we will also examine the dynamic process that occurs

in going from the first to the second when the magnetic field is switched on.

Our objective here is to use the two static experiments of Tickle (2000) to deter-

mine the parameters in our theory and to use our theory to predict the time required

for the complete transformation of A to B in the dynamic portion of his experiments.

This is the lag time that a single crystal actuator would exhibit in operation.

1. Static observations of Tickle (2000)

Let us begin by examining the static experiments.

a. Strain in terms of apparent strain

Let us begin by showing that e
(C)
22 , where C = A, B. In the initial configuration of

variant A, there is no external magnetic field. As shown in Fig. 2, the magnetization

of variant A is parallel to the axial direction, but magnetization in different domain

has opposite direction. Since the stress is uniform inside variant A, (4.53) and (4.54)
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variant A                              variant B

H

a                                                                                                       b

σ σ σσ

Fig. 2. a: Variant A is compressed by a uniaxial stress; light lines are magnetic do-

main walls; arrows indicate the magnetization direction of the domains. b:

Variant B is exposed to an external magnetic field and an uniaxial stress; the

magnetization in variant B is uniform.

suggest that

d(ijk) = 0

d(m) = 0 (4.58)

Substitute (4.58) into (4.53), we find

e
(A)
11 = − b2c(2211)

a2c(1111)

e
(A)
22 (4.59)

let

K(A) ≡ − b2c(2211)

a2c(1111)

(4.60)

From (4.60), (4.59) is changed to

e
(A)
11 = K(A) e

(A)
22 (4.61)
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From (4.53), (4.54) and (4.59), We see that T22 and e22 have a linear relationship:

T
(A)
22 − T(0)22 = C(A) e

(A)
22 (4.62)

where,

C(A) ≡ b2ρ(0)

a2c(1111)

[
a2c(1111)

(
4b2c(2222) − 2c(22) +M2d(22)

)
+b2c(2211)

(
2c(22) − 4a2c(2211)

)]
= a constant (4.63)

Similarly, from (4.55), we find

e
(B)
11 =

2c(22) − 4a2c(1122)

4b2c(2222) +M2d(22)

e
(B)
22 (4.64)

let

K(B) ≡ 2c(22) − 4a2c(1122)

4b2c(2222) +M2d(22)

(4.65)

From (4.65), (4.64) is changed to

e
(B)
11 = K(B) e

(B)
22 (4.66)

Substituting (4.64) into (4.56), we have

T
(B)
22 − T(0)22 = C(B) e

(B)
22 (4.67)

in which

C(B) ≡ 4a2ρ(0)

4b2c(2222) +M2d(22)

[
a2c(1111)

(
4b2c(2222) +M2d(22)

)
+b2c(2211)

(
2c(22) − 4a2c(2211)

)]
= a constant (4.68)
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In Tickle (2000)’s experiments,

T
(C)
22 = −σ

T(0)22 = −σ(0) (4.69)

We can summarize (4.62) and (4.67) as

e
(C)
22 =

σ(0) − σ

C(C)

= a constant (4.70)

From (4.70) and the definition of strain

e
(C)
22

∫ L(C)

0

d z2 =

∫ L(C)−L(0)

0

d u2 (4.71)

or

e
(C)
22 =

L(C) − L(0)

L(C)
(4.72)

Tickle (2000) did not identify L(0) in his experiments, but he did give the initial

apparent strain ε0

ε(0) ≡
L(0) − L(R)

L(R)
(4.73)

which means that

L0 = L(R) + ε(0) L
(R) (4.74)

From (4.57),

L(C) = L(R) + ε(C) L(R) (4.75)

Substitute equations (4.74) and (4.75) into equation (4.72), we conclude

e
(C)
22 =

ε(C) − ε(0)

1 + ε(C)
(4.76)

b. Determining C(A) and C(B)

Here we will determine C(A) and C(B) for the static observations of Tickle (2000).
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Fig. 3. The experimental data from Tickle (2000) are used to fit a straight line. The

slope of the straight line is used to evaluate the coefficient in Equation (4.77)

for a single variant A.

From (4.70) and (4.76), we have (C = A, B)

ε(C) − ε(0)

1 + ε(C)
=
σ(0) − σ

C(C)
(4.77)

Tickle (2000) reported apparent strain ε(A) as functions of the uniaxial stress σ.

We choose the reference state as variant A under the smallest stress:

σ(0) = 1.297 MPa

ε(0) = −0.0115 (4.78)

The least-square fits of (4.77) to the data for variants A and B are shown in Figs.

3 and 4 with the results

C(A) = 1.82125 × 108 Pa (4.79)

C(B) = 2.02981 × 108 Pa (4.80)
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Fig. 4. The experimental data from Tickle (2000) are used to fit a straight line. The

slope of the straight line is used to evaluate the coefficient in Equation (4.77)

for a single variant B.

c. Determining K(A) and K(B)

Let us introduce some variables to substitute those variables in (4.60), (4.65), (4.63)

and (4.68)

A1 ≡ − b2 c(2211) (4.81)

A2 ≡ a2 c(1111) (4.82)

B1 ≡ b2C(2211)

(
2 c(22) − 4 a2 c(2211)

)
(4.83)

B2 ≡ 4 b2 c(2222) +M2 d(22) (4.84)

Substitute (4.81) and (4.82) into (4.60), we find

K(A) =
A1

A2

(4.85)

Substitute (4.81) and (4.84) into (4.65), we find

K(B) = − B1

A1B2

(4.86)
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Substitute (4.82), (4.83), and (4.84) into (4.63) and (4.68), we find

C(A) = b2 ρ0

[
A2

(
B2 − 2c(22)

)
+B1

A2

]
(4.87)

C(B) = 4 a2ρ0

[
A2B2 +B1

B2

]
(4.88)

B1 can be expressed by A1 as

B1 =
−A1

(
2 b2 c(22) + 4 a2A1

)
b2

(4.89)

If we substitute (4.61), (4.66), (4.70), (4.81), (4.82), and (4.84) into the coherent

interfacial condition (4.50), we have

b− a = (σ − σ0)

[
aA1

A2C(A)
+

bB1

A1B2C(B)

]
(4.90)

From (4.52), (4.58), and (4.69), we find

c(22) = − σ0

2 b2ρ0

(4.91)

Tickle (2000) gave us the parameters of the reference configuration:

a = 2.95 Å

b = 2.77 Å

ρ(0) = 8020 kg/m3 (4.92)

Now, with the condtions in (4.91) and (4.92), we solve the four equations (4.87)

through (4.89) and (4.90) for the four unknowns A1, A2, B1, and B2.

Substitute the results into equations (4.85) and (4.86), K (A) and K(B) are calcu-

lated,

K(A) = − 0.0093

K(B) = −54.83 (4.93)
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Substitute (4.93) into (4.61) and (4.66), we find

e
(A)
11 = − 0.0093 e

(A)
22

e
(B)
11 = −54.83 e

(B)
22 (4.94)

2. Dynamic transformation from variant A to variant B

The solution to the dynamic problem shown in Fig. 1 has been developed in Sec.

D, except for the constants of integration. In each variant C, the only non-zero

component of stress T
(C)
22 .

Starting from the right in Fig. 1 and using boundary condition (4.15), we have

T
(A)
22 = σ. From (4.62), (4.69), (4.78), and (4.79), we have e

(A)
(22). Given (4.94), we can

compute e
(A)
(11).

the coherent condition for both interfaces (4.50) let us get e
(B)
(11) from e

(A)
(11). simi-

larly, from (4.94), we get e
(B)
(22). We knew C(B) from (4.80). Then, from (4.67), we got

T
(B)
(22).

With a similar process, we calculated the stress and strain of the left side variant

A.

At this point, we get the stress and strain of all the variants. In order to get the

extension velocity, we need to solve the four equations, the jump mass balances (4.36)

and (4.37), the jump momentum balances (4.45) and (4.46) with four unknowns, u(1)2,

u(2)2, v
(A)
(2) , and v

(B)
(2) , the second component of the velocities of the two interfaces and

the second component of the velocities of variant B and the right side variant A.

The relationship between the extension velocity, v
(A)
(2) and the magnitude of the

uniaxial load σ is described in Fig. 5 and the relationship of the extension time and

the magnitude of the uniaxial stress σ is showed in Fig. 6. From Fig. 5, we find

that the extension velocities are large, which makes the transformation between two
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Fig. 5. Extension velocity changes with the magnitude of the uniaxial load;V is the

extension velocity, σ is the magnitude of the uniaxial stress

variants instantaneously, that is the actuation process is very fast. Fig. 6 shows that

the time needed for the actuation is very short, which means the pulsed magnetic

field with certain frequency is applicable for the magnetic actuation. Experimentally,

pulsed magnetic fields are easier to get and to operate practically than static constant

magnetic fields. The prediction of the actuation time is very important for the design

of a magnetic single crystal actuator with a pulsed magnetic field. For example, if

the uniaxial stress is 5 MPa, from Fig. 6, we know the actuation time is 40 µs, which

requires the frequency of the pulsed magnetic field can not extend than 2500 Hz.

We haven’t found any experimental or theoretical report about the quantity of

the actuator’s extension velocity, and the quantity of the actuation time under the

same condition. But most of the experimentalists did describe that the actuation

process is transient (Murray et al. 2001; O’Handley et al. 2000).
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Fig. 6. Actuation time changes with the magnitude of the uniaxial load; t is the actu-

ation time, σ is the magnitude of the uniaxial stress

F. Discussion and summary

The stress deformation behavior for multicomponent, elastic, crystalline solids with

the presence of magnetic fields derived by Slattery and Si (2005) was tested with

Tickle (2000)’s static experimental data, and fits the data very well.

The Slattery-Si stress deformation behavior was derived for the equilibrium state,

it can be applicable in a quasi-equilibrium dynamic process through the assumption

of local equilibrium.

A new coherent interfacial condition, matching the lattice vectors of the two

variants, between two martensitic variants was developed and used in studying the

dynamic process of the martensitic variants transition. This coherent condition is

applicable to fairly simple case like this. For polycrystalline materials, the relationship

between the lattice vectors will be too complicated to study. A different coherent

condition will be used. Si and Slattery (2005) derived a coherent condition which can

be applicable in the complex polycrystalline coherent interfaces.

This is the first theoretical study of the dynamic process of the magnetic field
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induced martensitic variant transition. The extension velocity and the actuation time

of the single crystal actuator were calculated.
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CHAPTER V

INTERFACE CONSTRAINTS, OXIDATION, AND A GENERALIZED

CLAUSIUS-CLAPEYRON EQUATION

A. Introduction

This paper derives a new constraint on stress at interfaces with crystalline solids as

well as an extension of the Clausius-Clapeyron equation for systems with crystalline

solids. The derivations are based upon results derived by Slattery and Lagoudas

(2005).

1. Boundary conditions at interfaces with solids

Perhaps the most common conditions imposed at interfaces are the jump mass, mo-

mentum, and energy balances (Slattery, 1990, 1999).

It is also common in solving problems, either dynamic or static, to assume local

equilibrium at the interface. This means that thermodynamic pressure, temperature,

and all of the chemical potentials are continuous across the interface.

Another common condition at solid-solid interfaces is to say that the normal

component of displacement is continuous (Larche and Cahn, 1973, 1978) . This

of course assumes that both phases have the same reference configuration. While

this is often true, it is not true for phases that are formed either by phase tran-

sitions (austenite-martensite transformations) or by chemical reactions (oxidation)

(Rajagopal and Srinivasa, 1998; Oh et al., 2005; Slattery and Lagoudas, 2005). If

continuity of displacement can not be used, one normally finds that one boundary

condition is missing in solving a problem involving an interface with a crystalline

solid.
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The Hadamard condition (Bhattacharya, 2003, p. 28) is a constraint on strain in

the plane tangent to an interface. It is appropriate for a coherent interface between

phases having the same reference configuration. A coherent interface is one in which

material points in adjoining phases stay together in all configurations, reference or

current. It for example is appropriate for a martensite-martensite transformation. It

would not be appropriate for an interface formed by an oxidation, because the metal

and the oxide would have different reference configurations.

In Sec. C we derive a new constraint to be applied at interfaces interfaces with

crystalline solids. This is based upon upon the extended Gibbs-Duhem equation

derived by (Slattery and Lagoudas, 2005, eq. 24).

2. Clausius-Clapeyron equation

For fluids, amorphous solids, and crystalline solids in the absence of residual elas-

tic stresses, the Clausius-Clapeyron equation describes how thermodynamic pressure

changes as a function of temperature for two phases in equilibrium (Denbigh, 1963,

p. 197). Up to this point, there has been no general agreement on its derivation for

crystalline solids with stress.

Otsuka et al. (1976, eq. 4.1) begin with an assumed form for the Clausius-

Clapeyron equation in terms of the critical stress for inducing a martensitic transfor-

mation, the associated strain, temperature and heat of transformation.

Wollants (1979; 1983; 1991) begin their discussions assuming an equation of state

for the Gibbs free energy of a macroscopic phase that has undergone a one-dimensional

strain.

Kato and Pak use a non-standard definition of Gibbs free energy (1984, eq. 26;

1985, eq. 6). They study a system with only one phase rather than two phases in

equilibrium (Kato and Pak, 1984, eq. 36). The Clausius-Clapeyron equation refers



70

to two phases in equilibrium.

In Sec. D, we will present a new derivation of the Clausius-Clapeyron equation

which is also based upon the extended Gibbs-Duhem equation derived by (Slattery

and Lagoudas, 2005, eq. 24).

3. Summary of results from Slattery and Lagoudas (2005)

Slattery and Lagoudas (2005) have discussed the thermodynamic behavior of multi-

component, crystalline, elastic solids. Their principal assumption for each phase j

is

Â = Â
(
T, ρ, ω(1), . . . , ω(N−1), I(11), . . . , I(32)

)
(5.1)

For phase j, Â is the Helmholtz free energy per unit mass in phase j, T the temper-

ature, ρ the density, and ω(A) the mass fraction of species A. They defined

I(mn) ≡ e(m) · e(n) − E(m) · E(n) (5.2)

with the understanding that

e(i) ≡ FE(i) (5.3)

are the current (deformed) lattice vectors in phase j, E(i) are the lattice vectors for

phase j in the natural (reference) configuration,

F ≡ grad z (5.4)

is the deformation gradient, z the current position of a material particle, and grad

denotes a gradient operation in the reference configuration.

Two of their results that we shall require here are an extended Gibbs-Duhem
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equation (Slattery and Lagoudas, 2005, eq. 24)

Ŝ dT − V̂ dP +
N∑

i=1

ω(i)dµ(i) −
3∑

m=1

2∑
n=1

µ(I,mn)dI(mn) = 0 (5.5)

which was derived for non-equilibrium conditions, and a new expression for stress-

deformation behavior (Slattery and Lagoudas, 2005, eq. 55)

T = −P I + ρ

3∑
m=1

[
2∑

n=1

µ(I,mn)

(
e(m) ⊗ e(n) + e(n) ⊗ e(m)

)]
(5.6)

which was derived under equilibrium conditions. Here T is the stress tensor, P the

thermodynamic pressure and

µ(I,mn) ≡
(

∂Â

∂I(mn)

)
T, ρ, ω(B)(B �=N), I(rs)(rs �=mn),...

(5.7)

B. Dynamic interfaces

An (phase) interface between two solid phases can be formed only by a phase change

or by a chemical reaction, such as oxidation. It can not be formed by bringing two

solid phases together, since there will always be a (discontinuous) thin film of air

between them. There of course is no such problem in forming fluid-fluid or fluid-solid

interfaces.

The discussion that immediately follows is based upon the extended Gibbs-

Duhem equation (5.5), which was derived for non-equilibrium or dynamic conditions.

We will make only two assumptions:

1. The crystalline solid undergoes only infinitesimally small deformations.

2. At each point on a dynamic phase interface, there is local equilibrium:

µ
(A)
(i) = µ

(B)
(i) ≡ µ(i), T (A) = T (B) ≡ T, P (A) = P (B) ≡ P (5.8)
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or

d µ
(A)
(i) = d µ

(B)
(i) = d µ(i), d T (A) = d T (B) = d T, d P (A) = dP (B) = dP (5.9)

From (5.2), we have

dI(mn) = d
(
e(m) · e(n)

)
=

1

2
d

[
tr

(
e(m) ⊗ e(n) + e(n) ⊗ e(m)

)]
(5.10)

and

3∑
m=1

2∑
n=1

µ(I,mn)dI(mn) =

1

2

3∑
m=1

2∑
n=1

µ(I,mn)d
[
tr

(
e(m) ⊗ e(n) + e(n) ⊗ e(m)

)]
(5.11)

From (5.6), we see that

d [tr (T + PI)] = ρ
3∑

m=1

2∑
n=1

µ(I,mn)d
[
tr

(
e(m) ⊗ e(n) + e(n) ⊗ e(m)

)]

+ ρ
3∑

m=1

2∑
n=1

tr
(
e(m) ⊗ e(n) + e(n) ⊗ e(m)

)
dµ(I,mn) (5.12)

We conclude from (5.11) that

ρ
3∑

m=1

2∑
n=1

µ(I,mn)dI(mn) =
1

2
d [tr (T + PI)]

− ρ

2

3∑
m=1

2∑
n=1

tr
(
e(m) ⊗ e(n) + e(n) ⊗ e(m)

)
dµ(I,mn) (5.13)

Let ε be a dimensionless parameter characterizing an infinitesimal deformation

from the reference configuration. To the zeroth order we know

I
(0)
(mn) = 0 (5.14)
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and (Slattery and Lagoudas, 2005, eq. A.18)

µ
(0)
(I,mn) = 0 (5.15)

This means that, to the second order in ε, (5.13) reduces to

ρ0

3∑
m=1

2∑
n=1

µ(I,mn)dI(mn) =
1

2
d [tr (T + PI)]

− ρ0

2

3∑
m=1

2∑
n=1

tr
(
e(m) ⊗ e(n) + e(n) ⊗ e(m)

)
dµ(I,mn) (5.16)

where ρ0 is the density at the zeroth order or the density in the reference configuration.

With (5.9) and (5.16), the extended Gibbs-Duhem equation (5.5) requires

V̂ (A)dP − Ŝ(A) dT −
N∑

i=1

ω
(A)
(i) µ(i) +

1

2
d

[
tr

(
T(A) + P I

ρ
(A)
0

)]

− 1

2

3∑
m=1

2∑
n=1

(
e

(A)
(m) ⊗ e

(A)
(n) + e

(A)
(n) ⊗ e

(A)
(m)

)
dµ(I(A),mn) =

V̂ (B)dP − Ŝ(B) dT −
N∑

i=1

ω
(B)
(i) µ(i) +

1

2
d

[
tr

(
T(B) + P I

ρ
(B)
0

)]

− 1

2

3∑
m=1

2∑
n=1

(
e

(B)
(m) ⊗ e

(B)
(n) + e

(B)
(n) ⊗ e

(B)
(m)

)
dµ(I(B),mn) (5.17)

or

(
V̂ (A) − V̂ (B)

)
dP −

(
Ŝ(A) − Ŝ(B)

)
dT −

N∑
i=1

(
ω

(A)
(i) − ω

(B)
(i)

)
d µ(i)

+
1

2
d

[
tr

(
T(B) + P I

ρ
(B)
0

)
− tr

(
T(A) + P I

ρ
(A)
0

)]

− 1

2

3∑
m=1

2∑
n=1

(
e

(A)
(m) ⊗ e

(A)
(n) + e

(A)
(n) ⊗ e

(A)
(m)

)
dµ(I(A),mn)

+
1

2

3∑
m=1

2∑
n=1

(
e

(B)
(m) ⊗ e

(B)
(n) + e

(B)
(n) ⊗ e

(B)
(m)

)
dµ(I(B),mn) = 0 (5.18)
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Since

Ŝ(A) − Ŝ(B) =
∆Ĥ

T
, ∆V̂ ≡ V̂ (A) − V̂ (B) (5.19)

(5.18) reduces to

∆V̂ dP − ∆Ĥ

T
dT −

N∑
i=1

(
ω

(A)
(i) − ω

(B)
(i)

)
d µ(i)

+ d

[
tr

(
T(B) + P I

2ρ
(B)
0

)
− tr

(
T(A) + P I

2ρ
(A)
0

)]

− 1

2

3∑
m=1

2∑
n=1

(
e

(A)
(m) ⊗ e

(A)
(n) + e

(A)
(n) ⊗ e

(A)
(m)

)
dµ(I(A),mn)

+
1

2

3∑
m=1

2∑
n=1

(
e

(B)
(m) ⊗ e

(B)
(n) + e

(B)
(n) ⊗ e

(B)
(m)

)
dµ(I(B),mn) = 0 (5.20)

Note that (5.20) describes how changes in P , T , µ(i), . . . at an interface are related to

one another.

The extended Gibbs-Duhem equation (5.5) was derived by Slattery and Lagoudas

(2005) for a dynamic system. Although Slattery and Lagoudas (2005) derived (5.6)

for a system at equilibrium, it has been demonstrated to correctly predict wave prop-

agation in cubic crystals (Tian et al., 2005), which is a nonequilibrium problem. This

suggests that it may be appropriate to use (5.20) to describe dynamic systems as well.

C. Static interfaces with crystalline solids

In this section, we will make two further assumptions:

1. At least one of the phases adjoining the interface is a crystalline solid.

2. The system is either static or quasi-static.
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In a quasi-static or static system where T , P , the chemical potentials µ(i), and

µ(I,mn) can be considered to be nearly independent of time, (5.20) requires

d

dt

[
tr

(
T(B) + P I

ρ
(B)
0

)
− tr

(
T(A) + P I

ρ
(A)
0

)]
= 0 (5.21)

or

tr

(
T(B) + P I

ρ
(B)
0

)
− tr

(
T(A) + P I

ρ
(A)
0

)
= a constant (5.22)

To emphasize the point, this is a condition to be satisfied at an interface between two

crystalline solids.

For a crystalline solid-fluids(or amorphous solids) interface, (5.22) becomes

tr

(
T(B) + P I

ρ
(B)
0

)
= a constant (5.23)

where the constants are to be determined in each application.

Perhaps the most difficult cases are those involving polycrystalline solids. The

interface is is a discontinuous surface, each segment of which is seen in a two-phase

crystal. We recommend applying either (5.22) or (5.23) to each of these interface

segments, and therefore to the entire interface.

But working with polycrystalline materials one anisotropic crystal at a time is

generally avoided. Commonly, a polycrystalline solid is replaced by a single-phase

isotropic solid. In what follows, we will assume that the stress-deformation behavior

of this isotropic solid can be described by the generalized Hooke’s law in which stress

is a linear function of strain.

In summary, while (5.22) or (5.23) have been derived for interfaces adjoining

a crystalline solid whose stress-deformation behavior is described by (5.6), we will

assume, in agreement with common practice, that the stress-deformation behavior of

the isotropic crystalline solid can be described by the generalized Hooke’s law.
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Note that, because two solid crystalline phases adjoining an interface will have

different reference configurations (Slattery and Lagoudas, 2005; Oh et al., 2005), one

can not use continuity of displacement. Equation (5.22) or (5.23) must be used

instead.

Note that in deriving (5.22) and (5.23) we assumed that the stress-deformation

behavior can be described by (5.6). We have also argued above that it can be applied

at every point on an interface formed by polycrystalline solids. But, at a larger scale,

polycrystalline solids are typically viewed as isotropic, and their stress-deformation

behavior is expressed by the generalized Hooke’s law. That will be the view taken

here in considering polycrystalline solids.

Hooke’s law is commonly expressed in terms of the elastic portion of the stress

σ ≡ T + P I (5.24)

The inertial and body forces having been neglected, the differential momentum bal-

ance (Slattery, 1999, p. 52) is reduced to

divσ = 0 (5.25)

In what follows, we will consider several examples.

1. Bending of plate as the result of oxidation

We will describe several cases.

a. Oxidation on one side of a plate

Here we wish to determine the stress and displacement distributions in a two-dimensional

(thin) plate as it is oxidized from one side. Because the density of the oxide is smaller

than that of the metal, the oxide expands more than the metal, an unbalanced stress
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Fig. 7. Oxidation on one side of a plate; point A is the point where the pivot is placed.

distribution is developed, and the plate bends to form a concave, unoxidized metal

surface.

A strip or beam of silicon is initially flat or bounded by parallel planes. After

oxidation, it is bent as shown in Figure 7, where it is shown balanced on a pivot at

its center. in what follows we will seek a solution in which the components of stress

are independent of θ. We will further recognize that, because the system is assumed

to be at equilibrium, P is uniform throughout the system (Slattery and Lagoudas,

2005)

A general solution Let us make no assumption about stress-deformation be-

havior. Let us make four assumptions.

1. We will seek a plane stress solution.

2. The system is axisymmetric in cylindrical coordinates. All quantities are inde-

pendent of θ.

3. Because the system is assumed to be at equilibrium, P is uniform throughout

the system (Slattery and Lagoudas, 2005).
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4. The plate has a finite length, and, referring to Fig. 7

at θ = ±θ1 : σθθ = σrθ = 0 (5.26)

With the assumption of plane stress, the non-zero components of the differential

momentum balance can be expressed as (Slattery, 1999),

1

r

∂

∂r
(rσrr) − σθθ

r
= 0 (5.27)

1

r2

∂

∂r
(r2σθr) = 0 (5.28)

In view of (5.26), we conclude that

σθθ = σθr = 0 (5.29)

and

σrr =
c

r
(5.30)

Here, c is a unknown constant for each phase.

The jump momentum balance (Slattery, 1990, p. 252) at the air-metal interface

is

at r = R(a,m) :
γ(a,m)

R(a,m)
= σ(m)

rr (5.31)

where γ(a,m) is the surface energy of the air-metal interface and R(a,m) the radius of

the air-metal interface. At the metal-oxide interface, the jump momentum balance

requires

at r = R(m,o) :
γ(m,o)

R(m,o)
= σ(o)

rr − σ(m)
rr (5.32)

in which γ(m,o) is the surface energy of the metal-oxide interface and R(m,o) the radius

of the metal-oxide interface. The jump momentum balance on the oxide-air interface



79

requires

at r = R(o,a) :
γ(o,a)

R(o,a)
= −σ(o)

rr (5.33)

Here, γ(o,a) is the surface energy of the air-oxide interface and R(o,a) the radius of the

oxide-air interface.

Let’s consider two cases.

• If we neglect surface energies in (5.31) through (5.33), we find in (5.30)

c = 0 for both phases (5.34)

and the stress distributions in both the oxide and the metal are zero.

• If the surface energies are all nonzero, (5.31) through (5.33) suggest that there

is no solution, since (5.32) would require an unlikely relation among the three

surface energies. This means that something in the problem formulation is

physically unrealistic. We believe that (5.26) does not describe reality, since it

assumes that there is no curvature at the ends of the beam

Polycrystalline phases Here we will retain only the first four assumptions

above. We will assume that both phases are polycrystalline, and, following the dis-

cussion above, we will represent the stress-deformation behavior of each phase by the

linearized Hooke’s law. The beam will be considered sufficiently long that end effects

can be neglected.

Under these conditions, the elastic portion of the stress tensor can be written in

terms of the Airy stress function ϕ as

σ = ∇2ϕI −∇∇ϕ (5.35)
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which is a solution of the biharmonic equation

∇4ϕ = 0 (5.36)

For an axisymmetric system, solution is (Little, 1999, p. 156)

ϕ = A ln r +Br2 ln r + Cr2 +D (5.37)

The corresponding components of stress in the metal and oxide are

σ(m)
rr =

c1
r2

+ 2c2 ln r + c2 + 2c3 (5.38)

σ
(m)
θθ = −c1

r2
+ 2c2 ln r + 3c2 + 2c3 (5.39)

σ(o)
rr =

c4
r2

+ 2c5 ln r + c5 + 2c6 (5.40)

σ
(o)
θθ = −c4

r2
+ 2c5 ln r + 3c5 + 2c6 (5.41)

The jump momentum balances (5.31) through (5.33) continue to apply.

From (5.22) and (5.23) at the three interfaces, we have

at r = R(a,m) :
σ

(m)
rr + σ

(m)
θθ

ρ
(m)
0

= C(a,m) (5.42)

at r = R(m,o) :
σ

(o)
rr + σ

(o)
θθ

ρ
(o)
0

− σ
(m)
rr + σ

(m)
θθ

ρ
(m)
0

= C(m,o) (5.43)

at r = R(o,a) :
σ

(o)
rr + σ

(o)
θθ

ρ
(o)
0

= C(o,a) (5.44)

Here, C(a,m), C(m,o), and C(o,a) are the constants defined by (5.22) and (5.23) for the

air-metal, metal-oxide, and oxide-air interface.

We have six equations (5.31) through (5.33) and (5.42) through (5.45) in 9 un-

knowns. We will seek a solution in which

C(a,m) = C(m,o) = C(o,a) = 0 (5.45)



81

If surface energies are zero, we conclude that

σrr = σθθ = 0 (5.46)

There is no stress in the metal-oxide plate.

Let us assume that the surface energies for all three interfaces are non-zero.

Recognizing (5.45), we can solve the six equations (5.31) through (5.33) and (5.42)

through (5.44) for the six unknowns c1 through c6 using Mathematica (2003).

The reference configuration for the metal is that portion of the initial metal

beam remaining after oxidation. The corresponding r-component of displacement

at the metal-air interface is available from Little (1999, p. 159) in terms of two

additional parameters. One is eliminated, when we recognize that the r-component

of displacement must be a symmetric function of θ. The other constant is determined

by saying that the displacement is zero at θ = 0, since it is supported on a pivot.

b. Oxidation on two sides of a plate with different thickness

In addition to the first three assumptions stated above, we will also assume

(4′.) We will assume that the pivot shields the beam from oxidation at the point

(r = R(o,m), θ = 0). In other words, we assume that the displacement of this

point from the reference configuration of the metal is zero.

(5.) We will continue to assume that both the metal and oxide phases are polycrys-

talline and that their behavior can be represented by Hooke’s law.

(6.) We will assume that the radii of curvature of the four interfaces in Fig. 7 are

very large compared with the thickness of the metal beam.

(7.) We will assume that the x1, the thickness of the thinner oxide in Fig. 7, is very
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Fig. 8. Oxidation on two sides of a plate with different thickness, x1, x2, and x3 are

the thickness of the second layer of the oxide, the thickness of the metal, and

the thickness of the first layer of oxide; point A is the point where the pivot is

placed.

small compared with the thickness of the metal beam.

Extending the solution described above, we find that the components of stress in the

metal and oxide are

σ(m)
rr =

c1
r2

− 2c2 ln
1

r
+ c2 + 2c3 (5.47)

σ
(m)
θθ = −c1

r2
− 2c2 ln

1

r
+ 3c2 + 2c3 (5.48)

σ(o)1
rr =

c4
r2

− 2c5 ln
1

r
+ c5 + 2c6 (5.49)

σ
(o)1
θθ = −c4

r2
− 2c5 ln

1

r
+ 3c5 + 2c6 (5.50)

σ(o)2
rr =

c7
r2

− 2c8 ln
1

r
+ c8 + 2c9 (5.51)

σ
(o)2
θθ = −c7

r2
− 2c8 ln

1

r
+ 3c8 + 2c9 (5.52)
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Referring to Figure 8, we can write jump momentum balances as

at r = R(a,o) :
γ(a,o)

R(a,o)
= σ(o1)

rr (5.53)

at r = R(o,m) :
γ(o,m)

R(o,m)
= σ(m)

rr − σ(o1)
rr (5.54)

at r = R(m,o) :
γ(m,o)

R(m,o)
= σ(o2)

rr − σ(m)
rr (5.55)

at r = R(o,a) : −σ(o2)
rr =

γ(a,o)

R(o,a)
(5.56)

From (5.22) and (5.23) at the four interfaces, we have

at r = R(a,o) :
σ

(o1)
rr + σ

(o1)
θθ

ρ
(o)
0

= C(a,o) (5.57)

at r = R(o,m) :
T

(m)
rr + T

(m)
θθ

ρ
(m)
0

− σ
(o1)
rr + σ

(o1)
θθ

ρ
(o1)
0

= C(o,m) (5.58)

at r = R(m,o) :
σ

(o2)
rr + σ

(o2)
θθ

ρ
(o)
0

− σ
(m)
rr + σ

(m)
θθ

ρ
(m)
0

= C(m,o) (5.59)

at r = R(o,a) :
σ

(o2)
rr + σ

(o2)
θθ

ρ
(o)
0

= C(o,a) (5.60)

The eight equations (5.53) through (5.60) are in terms of 13 unknowns: c1

through c9 and the four constants in (5.57) through (5.60). The problem is ill pro-

posed; there is no axisymmetric solution for this problem.

However there is an axisymmetric solution in the limit where the radii of curva-

ture are very large compared with the thickness of the metal beam. In that limit,

c1 = c4 = c7 = 0 (5.61)

From (5.61) and (5.47) through (5.60), we find that we have eight equations in

10 unknowns.
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If the surface energies are all zero, (5.53) through (5.56) require that

σrr = σθθ = 0 (5.62)

There are two obvious solutions to this problem assuming that the surface ener-

gies are not all zero.

Solution one

One solution assumes

C(a,o) = C(o,a) = 0 (5.63)

This together with (5.61) mean that the eight equations (5.47) through (5.60) now

involve only eight unknowns, assuming that the radii of curvature of the four in-

terfaces are known. We have solved this problem symbolically using Mathematica

(Mathematica, 2003).

At this point, we have solved for stress as a function of the radii of curvature

and the surface energies. Our objective is to find a relation between R(o,m) and the

surface energies. In order to do that, we must first determine the the r-component of

displacement of that interface.

As Slattery and Lagoudas (2005) and Oh et al. (2005) have discussed, the metal

and the oxide phases will have different reference configurations. In this case, the ref-

erence configuration for the metal is that portion of the initial metal beam remaining

after oxidation. Since we know only the reference configuration of the metal, we will

discuss only the r-component of the displacement of the metal (Little, 1999, p. 159):

u(m)
r =

1

E(m)

{
2c3

(
1 − ν(m)

)
R(o,m) + F sin θ +G cos θ

+c2
[(

1 − ν(m)
) (

2R(o,m) lnR(o,m)r −R(o,m)
) − 2ν(m)R(o,m)

]}
(5.64)

where, E(m) and ν(m) are the Young’s modulus and the Poisson’s ratio of the metal.
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-

Fig. 9. The relationship of the r-component of displacement ur, the radius of curvature

R, and the length of the beam l.

Since u
(m)
r is symmetric with respect to θ = 0, we conclude that

F = 0 (5.65)

Assumption 4′ requires that

at θ = 0, u(m)
r = 0 (5.66)

and

G = − 2c3
(
1 − ν(m)

)
R(o,m)

− c2
[(

1 − ν(m)
) (

2R(o,m) lnR(o,m) −R(o,m)
) − 2ν(m)R(o,m)

]
(5.67)

From Fig. 9, we see

cos θ =
R(o,m)

R(o,m) − u
(m)
r

(5.68)

Substitute (5.65), (5.67), and (5.68) into (5.64), we have

u(m)
r =

1

E(m)

{
2c3

(
1 − ν(m)

)
R(o,m) +

GR(o,m)

R(o,m) − u
(m)
r

+c2
[(

1 − ν(m)
) (

2R(o,m) lnR(o,m) −R(o,m)
) − 2ν(m)R(o,m)

]}
(5.69)
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This equation can be solved for u
(m)
r .

From Fig. 9, we find that:

l2

4
+R2(o,m) = (R(o,m) − u(m)

r )2 (5.70)

The length of the beam is

l = 2R(o,m) θ (5.71)

In practice, θ in Fig. 9 is very small. We will take only the first two terms of the

Taylor expansion of it,

cos θ = 1 − θ2

2
(5.72)

From (5.68) and (5.72), we find that

θ2 =
2u

(m)
r

R(o,m) − u
(m)
r

(5.73)

From (5.70), (5.71), and (5.73), we find

3R(o,m) − u(m)
r = 0 (5.74)

From (5.69) and (5.74), we can determine R(o,m). Because

R(a,o) = R(o,m) − x1 (5.75)

we also have R(a,o).

Solution two

As an alternative to C(a,o) = C(o,a) = 0 in solution one, the second solution

assumes

C(m,o) = C(o,m) = 0 (5.76)
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An experiment for measuring the surface energies

EerNisse (1979) studied oxidation of (100) Si wafers. The cleaned wafers were

oxidized on both sides until the SiO2 was 4000 Å thick. The oxide on one side was

removed, leaving a two-layer beam of total thickness 1.5× 10−2 cm. New SiO2 grows

on the back surface at 900 ℃degree. In a subsequent operation at 900 ℃, the curvature

of the beam was measured in the oven as a thin layer of SiO2 was formed on the bare

side.

In his experiments, R(o,m) is a weak function of x1 (EerNisse, 1979, fig. 2), and

R(o,m) ≈ R(a,m) = 5.03 m (5.77)

where R(a,m) is the radius of curvature at the air-Si interface at the beginning of the

experiment.

From (5.69) and (5.74), we used Mathematica (2003) symbolically determine

d
(
1/R(o,m)

)
dx1

in the limit as x1/x2 → 0 as a function of the material properties, including γ(o,a) and

γ(o,m). For the experimental observations of EerNisse (1979, figure 2)

d
(
1/R(o,m)

)
dx1

= 5.8 × 105m−2 (5.78)

Girifalco and Good (1957) and Adamson (1976) proposed that γ(a,o) can be

estimated as

γ(a,o) = γ(m,o) + γ(a,m) − 2
(
γ(a,m)γ(m,o)

)1/2
(5.79)

The surface energy of the air-silicon interface at 300 K is 1.4 N/m (Israelachvili, 2000,

p. 205). We will assume that the surface energy is proportional to the Hamaker

constant (Israelachvili, 2000, p. 202) and that the Hamaker constant is proportional
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Table I. Mechanical properties of silicon and silicon dioxide (Nikanorov et al., 1972)

E(m)(Pa) ν(m) ρ(m)(kg/m3) ρ(o)(kg/m3)

119.7 0.265 2330 2198

to the absolute temperature (Israelachvili, 2000, p. 181). This suggests that at 1173

K,

γ(a,m) =
1173

300
× 1.4 = 5.5 N/m

Using (5.79), we can eliminate γ(a,o) in terms of γ(m,o):

γ(a,o) = γ(m,o) + 5.5 − 2
(
5.5γ(m,o)

)1/2
(5.80)

Some mechanical properties of silicon and silicon dioxide at 1173 K listed in Table

I, where E(m) is the Young’s Modulus of silicon, ν(m) the Poisson’s ratio of silicon,

ρ(m) the density of the silicon, and ρ(o) the density of silicon dioxide.

Using the symbolic expression for

d
(
1/R(o,m)

)
dx1

from Mathematica (2003) and the experimental value of this slope from (5.78), we

find

γ(m,o) = 106.8 N/m (5.81)

and from (5.80), we find

γ(a,o) = 62.9 N/m (5.82)

Solution two give us a physically unrealistic (negative) number.

Unfortunately, there are no previous estimates with which to compare these

results.
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c. Oxidation equally on two sides of a plate

When a two-dimensional plate is oxidized on both sides, it will not bend. Our objec-

tive here is to determine the stress distributions in the three phases.

In this case, the Airy stress function is (Little, 1999, p. 108)

ϕ = A1 +B1x+C1x
2 +D1x

3 +B2y +C2y
2 +D2y

3 +E1xy +E2x
2y +E3xy

2 (5.83)

and the corresponding components of stress in the metal and oxide are

σ(m)
xx = c1 + c2y (5.84)

σ(m)
yy = c3 + c4y (5.85)

σ(o)
xx = c5 + c6y (5.86)

σ(o)
yy = c7 + c8y (5.87)

The plate is symmetric with y = 0 plane.

The jump momentum balances (Slattery, 1990, p. 252) require at the air-oxide

interfaces

at y = ± l(o,a) : σ(o)
yy = 0 (5.88)

and at the oxide-metal interfaces

at y = ± l(m,o) : 0 = σ(o)
yy − σ(m)

yy (5.89)

From (5.22) and (5.23), the coherent conditions on the air-oxide, oxide-metal

interfaces are described as

at y = ± l(o,a) :
σ

(o)
xx + σ

(o)
yy

ρ
(o)
0

= C(a,o) (5.90)
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at y = ± l(m,o) :
σ

(o)
xx + σ

(o)
yy

ρ
(o)
0

− σ
(m)
xx + σ

(m)
yy

ρ
(m)
0

= C(m,o) (5.91)

Here, C(a,o) and C(m,o) are the constants defined by (5.22) and (5.23) for the air-oxide

and metal-oxide interface.

Up to this point, we have eight equations (5.88) through (5.91) in ten unknowns

c1 through c8, C
(a,o) and C(m,o). One solution to this problem is:

C(a,o) = C(m,o) = c1 = c2 = · · · · ·· = c8 = 0 (5.92)

It means there is no stress in this two-sided oxidation plate. Equation (5.88) and

(5.89) suggest that it is physically correct.

d. Oxidation on the exterior of a circular cylinder

Oh et al. (2005) have analyzed oxidation on the exterior surface of a metal cylinder,

assuming that the oxide and the metal are in a state of plane stress. They found

σ(m)
rr = σ

(m)
θθ = C1 (5.93)

σ(o)
rr =

C2

r2
+ C3 (5.94)

σ
(o)
θθ = −C2

r2
+ C3 (5.95)

At each point on the metal-oxide interface, the jump momentum balance (Slat-

tery, 1990, p. 252) tells us

at r = R(m,o) :
γ(m,o)

R(m,o)
= σ(o)

rr − σ(m)
rr (5.96)

Here, γ(m,o) is the surface energy of the metal-oxide interface; R(m,o) is the radius of

this interface. The jump momentum balance at the oxide-air interface requires

at r = R(o,a) : −σ(o)
rr =

γ(o,a)

R(o,a)
(5.97)
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where, γ(o,a) and R(o,a) are the surface energy and radius of the oxide-air interface.

For simplicity, we are neglecting the effect of atmospheric pressure.

Equations (5.96) and (5.97) must be solved consistent with (5.22) and (5.23) in

the form

at r = R(m,o) : tr

(
σ(m)

ρ
(m)
0

)
− tr

(
σ(o)

ρ
(o)
0

)
= C(m,o) (5.98)

at r = R(o,a) : tr

(
σ(o)

ρ
(o)
0

)
= C(o,a) (5.99)

Here, C(m,o) and C(o,a) are the constants defined by (5.22) and (5.23) for the metal-

oxide and oxide-air interface.

This leaves us with four equations (5.96) through (5.99) in five unknowns C1

through C3, C
(m,o) and C(o,a). There are several solutions.

Surface energies are neglected Oh et al. (2005) assumed that γ(m,o) =

γ(o,a) = 0. Either C(m,o) = 0 or C(o,a) = 0, since there are only four equations in five

unknowns. We conclude that the only solution is

C1 = C2 = C3 = 0 (5.100)

in which case there is no stress in the oxide-metal cylinder.

In addition to neglecting the surface energies, Oh et al. (2005) did not use the

compatibility conditions defined by (5.22) and (5.23), and they found that the stresses

were non-zero. Unfortunately, there are no experimental data that would allow us to

distinguish between these solutions, but we do know that the surface energies should

be non-zero.

Surface energies are not neglected Since there are four equations to be

solved in five unknowns, there are two possible solutions.
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The first solution corresponds to C(m,o) = 0, in which case we find

C(o,a) = − 2γ(m,o)R(m,o) + 2γ(o,a)R(o,a)

ρ(m)R(m,o)2 − ρ(o)R(m,o)2 + ρ(o)R(o,a)2

σ
(o)
θθ =

γ(o,a)ρ(m) − 2γ(m,o)ρ(o) − 2γ(o,a)ρ(o)

ρ(o)R(o,a)

σ(o)
rr = − γ(o,a)

R(o,a)

σ(m)
rr = σ

(m)
θθ = −γ

(m,o) + γ(o,a)

R(o,a)
(5.101)

We reject this solutions, since intuitively we expect σ
(o)
θθ and σ

(m)
θθ to have opposite

signs.

The second solution corresponds to C(o,a) = 0, and

C(m,o) = −2γ(m,o)R(m,o) + 2γ(o,a)R(o,a)

ρ(m)R(m,o)2

σ
(o)
θθ =

2γ(m,o)

R(o,a)

σ(o)
rr = − γ(o,a)

R(o,a)

σ(m)
rr = σ

(m)
θθ = −γ

(m,o) + γ(o,a)

R(o,a)
(5.102)

The signs of these stresses are in agreement with our intuition as well as with the

signs of the stresses determined by Oh et al. (2005).

D. The generalized Clausius-Clapeyron equation

Here we wish to extend the Clausius-Clapeyron equation derived for fluid and amor-

phous solid systems (Denbigh, 1963, p. 197) to systems involving crystalline solids. In

particular, we wish to examine a sequence of system formed as temperature changes,

in which all interfaces are governed by (5.20). In addition to the assumptions made in

deriving that equation, we will assume each system is at equilibrium. It is important

to recognize that, for a system at equilibrium, P , T , and chemical potential µ(A) are
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uniform throughout the system.

At equilibrium, the derivative of (5.20) with respect to time is reduced to,

∆V̂
dP

dt
− ∆Ĥ

T

dT

dt
+
d

dt

[
tr

(
T(B) + P I

2ρ
(B)
0

)
− tr

(
T(A) + P I

2ρ
(A)
0

)]
= 0 (5.103)

For a fluid or an amorphous solid system, the elastic component of stress is zero

at equilibrium, if

∆Ĥ

T∆V̂
= a constant (5.104)

Equation (5.103) reduces to

d

dt

[
P − (

∆Ĥ

T∆V̂
)T

]
= 0 (5.105)

or

P − (
∆Ĥ

T∆V̂
)T = a constant (5.106)

If we only consider a limited range of temperature that in which the constant in

(5.106) will not change with temperature. We can get a common form of the Clausius-

Clapeyron equation (Denbigh, 1963, p. 197)

dP

dT
=

∆Ĥ

T∆V̂
(5.107)

where ∆Ĥ is the latent heat of transformation.

For a crystalline system at a constant thermodynamic pressure, if

∆Ĥ

T
= a constant (5.108)

Equation (5.103) is reduced to

d

dt

{[
tr

(
T(B) + P I

2ρ
(B)
0

)
− tr

(
T(A) + P I

2ρ
(A)
0

)]
− (

∆Ĥ

T
)T

}
= 0 (5.109)
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or [
tr

(
T(B) + P I

2ρ
(B)
0

)
− tr

(
T(A) + P I

2ρ
(A)
0

)]
− (

∆Ĥ

T
)T = a constant (5.110)

If we also only consider a limited range of temperature in which the constant in

(5.110) will not change with temperature, we conclude that

d

dT

[
tr

(
T(B) + P I

2ρ
(B)
0

)
− tr

(
T(A) + P I

2ρ
(A)
0

)]
=

∆Ĥ

T
(5.111)

1. Experiments of Sehitoglu et al. (2001)

Beginning with a 51.5at%Ni−Ti austenite single crystal, Sehitoglu et al. (2001)low-

ered the temperature and applied an uniaxial stress to create a sequence of equilib-

rium, two-phase mixtures of martensite and austenite at atmospheric pressure. The

equilibrium temperature T for austenite and martensite phase transformation was

approximated as (Funakubo 1984; Tong and Wayman 1974),

T =
Ms + Af

2
(5.112)

where Ms is the martensite start temperature and Af is the austenite finish temper-

ature.

Referring to Fig. 10, we see that one solution of the differential momentum

balance

divT = 0 (5.113)

and the jump momentum balances at the austenite-martensite interface requires that

T(A)ξ(A) + T(B)ξ(B) = 0 (5.114)
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Fig. 10. The schematic description of the equilibrium state of austenite-martensite

phase transition under uniaxial stress σ at certain temperature. The crystal

is three-dimensional, exposed to the atmosphere on four sides. Phase A is

austenite and B is martensite. The shape of the interface does not have to be

the same shape as the figure, it is not specified in our analysis.

together with the appropriate boundary conditions is

T
(A)
11 = σ

T
(A)
22 = T

(A)
33 = 0

T
(A)
ij,i�=j = 0 (5.115)

and

T
(B)
11 = σ

T
(B)
22 = T

(B)
33 = 0

T
(B)
ij,i�=j = 0 (5.116)

This means that

tr
(
T(A)

)
= tr

(
T(B)

)
= σ (5.117)

and (5.111) reduces to

dσ

dT
=

2ρ
(A)
0 ρ

(B)
0 ∆H(

ρ
(B)
0 − ρ

(A)
0

)
T

(5.118)
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Fig. 11. σ, defined by (5.117), as a function of temperature T under a uniaxial stress

in the [100] direction. The straight line is (5.118), which assumes that the

latent heat ∆H is a linear function of T .
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Fig. 12. σ, defined by (5.117), as a function of temperature T under a uniaxial stress

in the [122] direction. The straight line is (5.118), which assumes that the

latent heat ∆H is a linear function of T .

Equations (5.118) is compared with the experimental data of Sehitoglu et al.

(2001) in Figs. 11 and 12. Our conclusion is that ∆H is slightly dependent upon the

orientation of the crystal with respect to the axis of compression or extension.

For crystalline materials with the same density in the reference state, for example,

the martensite-martensite transformation, (5.111) is changed to

d

dT

[
tr(T(B) − T(A)

]
=

2ρ0∆Ĥ

T
(5.119)
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At the equilibrium condition,

tr(T(B) − T(A) = 0 (5.120)

Substitute (5.120) into (5.119), we get

2ρ0∆Ĥ

T
= 0 (5.121)

We find

∆Ĥ = 0

It means that the latent heat is zero when there is no phase change. It is physically

true.

E. Discussion

Equations (5.22) and (5.23) represent new constraints on the stress at an interface

where at least one of the adjoining phase is a crystalline solid. The constants in-

troduced in (5.22) and (5.23) are unknown, and they must be determined as part

of the solution of a problem. Four examples in the context of oxidation are give,

but unfortunately there are no experimental data available with which to check the

results.

In analyzing these oxidation problems, we have demonstrated that all residual

stresses are zero, unless we recognize that the surface energies at the interfaces are

non-zero.

To our knowledge, there have been no experiments previously proposed to mea-

sure the surface energy of an interface between two crystalline solids. We have pro-

posed that the bending of a beam with unequal oxide thicknesses can be used as such

an experiment, and we have demonstrated the analysis with the data of EerNisse
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(1979) for the silicon-silicon dioxide system.

Again starting with (5.20), a Clausius-Clapeyron equation (5.107) for fluids and

amorphous solids, a well-known form of the Clausius-Clapeyron equation (Denbigh,

1963), has been derived for two phases in equilibrium.

In discussing crystalline solids, we assume that the stress-deformation behavior

(5.6) derived by Slattery and Lagoudas (2005) applies.

For the special case where both phases are crystalline solids at a uniform pres-

sure, (5.103) reduces to (5.111), which is reduced to either (5.118) under a uniaxial

stress. In comparison with the experimental data available, it implies that, for the

system studied, the latent heat of transformation ∆Ĥ is slightly dependent upon the

orientation of the crystal with respect to the axis of compression or extension.
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CHAPTER VI

SUMMARY

In this dissertation, we studied the thermodynamics of the multicomponent, elastic,

crystalline materials with the presence of the electric-magnetic fields and its applica-

tions. The following results are derived:

1. The equilibrium condition of the multicomponent, elastic, crystalline solids un-

der stress and electric and magnetic fields are investigated. A new constitutive

equation of stress deformation behavior of a single crystal with the existence of

electromagnetic fields under stress are derived.

2. An extended Gibbs equation. Gibbs-Duhem equation, and an extended Gibbs

phase rule are derived, which can help predict the phase transition of the crys-

talline solids under stress and electromagnetic fields.

3. The mechanism of the magnetic single crystal actuator was studied. The dy-

namic actuation process was modeled. The relationship of actuation time and

stress are studied.

4. An interfacial condition for interfaces with crystalline solids are derived for a

static or quasi-static system. The stress-strain distribution of the oxidation of a

beam, the exterior of a cylinder are studied. It showed that the surface energies

play important roles in the distribution of the residual stress of the oxidation.

The oxidation on two sides of a plate with different thickness was proposed as

an experiment of measuring the surface energies of the crystalline-crystalline

solid interfaces.

5. A generalized Clausius-Clapeyron equation was derived for an equilibrium crystalline-
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crystalline solids system. It showed that the trace of the elastic portion of stress

of the two different phases and the temperature have a linear relationship, which

agrees with the experimental data.
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NOTATION

Roman Symbols

Â Helmholtz free energy per unit mass

Ǎ Helmholtz free energy per unit volume

B magnetic flux

C relative right Cauchy-Green strain tensor defined by (2.6)

C(o,a) the constant in the coherent condition of the oxide-air interface

C(m,o) the constant in the coherent condition of the metal-oxide interface

C(a,m) the constant in the coherent condition of the air-metal interface

e strain tensor defined in Appendix A

e
(j)
(i) deformed lattice vectors for phase j defined by (2.2)

Ê sum of internal energy and kinetic energy per unit mass as defined

in equation (2.58)

E
(j)
(i) unit lattice vectors in natural (equilibrium) configuration for phase

j

E
(0)
(i) lattice vectors in natural (equilibrium) configuration for the parent

phase 0 (as seen in the current frame of reference)

E Young’s modulus

f degrees of freedom

f(A) body force per unit mass acting on species A

body force per unit mass

F deformation gradient

H displacement gradient defined in Appendix A

I identity tensor
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I
(1)
(mn) scalar invariants defined by (2.5)

I
(2)
(mn) scalar invariants defined by (2.8)

I
(3)
(mn) scalar invariants defined by (2.9)

I(4) scalar invariants defined by (2.10)

I(5) scalar invariants defined by (2.11)

I(6) scalar invariants defined by (2.12)

J number of homogeneous chemical reactions

K number of heterogeneous chemical reactions

M number of non-zero invariants described by (2.97)

M Magnetization of the materials

M(A) molecular weight of species A

N number of species

p number of phases

p(c) number of crystalline phases

P thermodynamic pressure defined by (2.18)

P electric ploarization

Q number of internal, coherent, solid-solid phase interfaces at which

elastic components of stress exist. In the absence of deformation,

Q = 0.

r(A,j) rate of production of species A by homogeneous reaction j

rσ
(A,k) rate of production of species A by heterogeneous reaction k
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R region occupied by body (Because there is no mass transfer at the

boundary, we do not distinguish between the region occupied by a

body of species A and the region occupied by the multicomponent

body, the material particles of which move with the mass-averaged

velocity v.)

R(o,a) the radius of the oxide-air interface

R(m,o) the radius of the metal-oxide interface

R(a,m) the radius of the air-metal interface

S bounding surface of body

Ŝ entropy per unit mass

t time

T temperature

T stress tensor

u time rate of change of position following a surface point (Slattery,

1999, p. 24); used as displacement in Appendix A

Û internal energy per unit mass

v mass average velocity

v(A) velocity of species A

V̂ volume per unit mass

z position vector

zκ position of material particle in reference configuration

Z(A) defined by (2.43)

Zc defined by (2.68)

Zmag defined by (2.63)

Zmom defined by (2.47)
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Ze defined by (2.57)

Zm defined by (2.45)

ε dimensionless parameters representing the disturbance from equi-

librium

λ(A) Lagrangian multiplier

λ(c) Lagrangian multiplier

λ(e) Lagrangian multiplier

λ(mag) Lagrangian multiplier

λm Lagrangian multiplier

µ(A) chemical potential for species A defined by (2.19)

µ(I(1),mn) defined by (2.20)

µ(I(2),mn) defined by (2.21)

µ(I(3),mn) defined by (2.22)

µ(I(4)) defined by (2.23)

µ(I(5)) defined by (2.24)

µ(I(6)) defined by (2.25)

ν(A,j) stoichiometric coefficient for species A in homogeneous reaction j.

The stoichiometric coefficient is taken to be a negative number for

a reactant, positive for a product.

ν
(σ)
(A,k) stoichiometric coefficient for species A in heterogeneous reaction k.

The stoichiometric coefficient is taken to be a negative number for

a reactant, positive for a product.

ξ unit normal to phase interface

Σ phase interface

ρ overall mass density
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ρ(A) mass density of species A

φA) potential energy of species A introduced in (2.50)

ψ(j) reaction coordinate of homogeneous reaction j introduced in (2.35)

ψ
(σ)
(j) reaction coordinate of heterogeneous reaction j introduced in (2.39)

ω(A) mass fraction of species A or ρ(A)/ρ

γ(o,a) surface energy of the oxide-air interface

γ(m,o) surface energy of the metal-oxide interface

γ(a,m) surface energy of the air-metal interface

σ the magnitude of the uniaxial stress applied on the sample

σ the stress includes atmospheric pressure defined my (5.24)

θ the angle of the beam

ν Poisson’s ratio

ϕ Airy stress function[[[
aξ

]]]
= a(1)ξ(1) + a(2)ξ(2) at an interface separating phases 1 and 2. Here

a(i) is the value of the quantity a in phase i adjacent to the interface

Σ; ξ(i) is the unit normal to the interface pointing into phase i.

dA indicates that an area integration should be performed

dV indicates that a volume integration should be performed. The inte-

grand will be discontinuous generally at phase interfaces.

d(v)

dt
derivative following a particle that moves with the mass-averaged

velocity v

grad gradient with respect to reference configuraiton

∇(σ) denotes the surface gradient operation (Slattery, 1999, p. 1075)
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APPENDIX A

Slattery and Si (2005) set Holmholtz free energy as a function of temperature, den-

sity, species’ mass fractions, crystals’ reference lattice vector, deformed lattice vector,

magnetization, and electric polarization. In order to satisfy the implications of the

principle of frame indifference (Truesdell and Noll, 1965, p. 44), they defined a series

of invariants: I
(1)
(mn), I

(2)
(m), I

(3)
(m), I

(4), I(5), andI(6). They then define A as a function of

T , ρ, ω, and invariants.

I
(1)
(mn) ≡ e(m) · e(n) − E(m)·E(n)

= FE(m)·FE(n) − E(m)·E(n)

= E(m)·FTFE(n) − E(m)·E(n)

= E(m)· (C − I)E(n) m = 1, . . . , 3 and n = 1, . . . ,m (A.1)

I
(2)
(m) ≡ e(m) · M − E(m) · M (A.2)

I
(3)
(m) ≡ e(m) · P − E(m) · P (A.3)

I(4) ≡ M · M − M(0) · M(0) (A.4)

I(5) ≡ P · P − P(0) · P(0) (A.5)

I(6) ≡ M · P − M(0) · P(0) (A.6)

Slattery and Lagoudas (2005) have already found that density is a function of the

invariants. In other words, ρ, I(11), I(22), and I(33) are not independent.

ρ =
ρ0√

det C

= ρ0 − ρ0

2

(
I

(1)
(11) + I

(1)
(22) + I

(1)
(33)

)
+ . . . (A.7)
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This permits us to write the Holmholtz free energy as:

Â = Â
(
T, ω(1), . . . , ω(N−1), I

(1)
(11), . . . , I

(1)
(33), I

(2)
(1) , . . . , I

(2)
(3) , I

(3)
(1) , . . . , I

(3)
(3) ,

I(4), I(5), I(6)
)

(A.8)

Ǎ = Ǎ
(
T, ω(1), . . . , ω(N−1), I

(1)
(11), . . . , I

(1)
(33), I

(2)
(1) , . . . , I

(2)
(3) , I

(3)
(1) , . . . , I

(3)
(3) ,

I(4), I(5), I(6)
)

(A.9)

in which ω(A) is the mass fraction of species A. From the differential entropy inequality

(Slattery, 1999, p. 438), we conclude

Ŝ = −
(
∂Â

∂T

)
ρ, ω(B)(B=1,...,N−1), I

(1)
(mn)

,...

(A.10)

We also require

µ(I(1),mn) ≡
(

∂Â

∂I
(1)
(mn)

)
T, ρ, ω(B)(B �=N), I

(1)
(rs)

(rs �=mn), I
(2)
(m)

, I
(3)
(m)

,...

(A.11)

and

µ(I(2),m) ≡
(

∂Â

∂I
(2)
(m)

)
T, ρ, ω(B)(B �=N), I

(1)
(mn)

, I
(2)
(r)

(r �=m), I
(3)
(m)

,...

(A.12)

µ(I(3),m) ≡
(

∂Â

∂I
(3)
(m)

)
T, ρ, ω(B)(B �=N), I(rs), I

(2)
(m)

, I
(3)
(r)

(r �=m),...

(A.13)

µ(I(4)) ≡
(
∂Â

∂I(4)

)
T, ρ, ω(B)(B �=N), ..., I

(3)
(r)

,I(5), ...

(A.14)

µ(I(5)) ≡
(
∂Â

∂I(5)

)
T, ρ, ω(B)(B �=N), ..., I(4), I(6)

(A.15)

µ(I(6)) ≡
(
∂Â

∂I(6)

)
T, ρ, ω(B)(B �=N), ..., I(5)

(A.16)
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With these expressions, the differentials of (A.8) and (A.9) may consequently be

expressed as

dÂ = −Ŝ dT +
N−1∑
B=1

(
∂Â

∂ω(B)

)
T, V̂ , ω(C) (C �=B, N), I

(1)
(i)

dω(B)

+
3∑

m=1

[(
3∑

n=1

µ(I(1),mn)dI
(1)
(mn)

)
+ µ(I(2),m)dI

(2)
(m) + µ(I(3),m)dI

(3)
(m)

]

+ µ(I(4))dI
(4) + µ(I(5))dI

(5) + µ(I(6))d(I
(6)) (A.17)

dǍ = − Ŝ

V̂
dT +

N∑
B=1

µ(B)dρ(B)

+
1

V̂

{
3∑

m=1

[(
3∑

n=1

µ(I(1),mn)dI
(1)
(mn)

)
+ µ(I(2),m)dI

(2)
(m) + µ(I(3),m)dI

(3)
(m)

]

+µ(I(4))dI
(4) + µ(I(5))dI

(5) + µ(I(6))d(I
(6))

}
(A.18)

Comparison of the coefficients in (A.17) and (A.18) gives(
∂Â

∂ω(B)

)
T, ρ, ω(C) (C �=B, N), I(mn),...

= µ(B) − µ(N) (A.19)

as well as

Â =
N∑

B=1

µ(B)ω(B) (A.20)

Equations (A.19) and (A.20) yield the modified Gibbs equation

dÂ = −Ŝ dT +
N−1∑
B=1

(
µ(B) − µ(N)

)
dω(B)

+
3∑

m=1

[(
2∑

n=1

µ(I(1),mn)dI
(1)
(mn)

)
+ µ(I(2),m)dI

(2)
(m) + µ(I(3),m)dI

(3)
(m)

]

+ µ(I(4))dI
(4) + µ(I(5))dI

(5) + µ(I(6))d(I
(6)) (A.21)
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The modified Gibbs-Duhem equation :

Ŝ dT +
N∑

B=1

ω(B) dµ(B) −
3∑

m=1

[(
3∑

n=1

µ(I(1),mn)dI
(1)
(mn)

)
+ µ(I(2),m)dI

(2)
(m)

+µ(I(3),m)dI
(3)
(m)

]
− (

µ(I(4))dI
(4) + µ(I(5))dI

(5) + µ(I(6))dI
(6)

)
= 0 (A.22)

We would like to emphasize that the modified Euler’s equation, the modified Gibbs

equation, and the modified Gibbs-Duhem equation all apply to dynamic processes,

so long as the underlying statements about behavior are applicable to the materials

being considered. from the definition of A and (A.20), we get:

Ŝ =
1

T

(
Û −

N∑
B=1

µ(B)ω(B)

)
(A.23)

Referring to Slattery and Si (2005), we continue to restrict our attention to a

multiphase, multicomponent body capable of undergoing a number of simultaneous

chemical reactions and totally enclosed by an impermeable, adiabatic boundary. If

equilibrium is to be achieved, the entropy inequality must be minimized and approach

zero within the constraints imposed by conservation of mass for each species, by the

momentum balance, by the energy balance, by the conservation of the magnetic flux,

and by the conservation of charge as developed (Slattery and Si, 2005). we get a

conclusion about the stress-deformation behavior of this body as:

T = ρ
3∑

m=1

[
3∑

n=1

µ(I(1)),mn)

(
e(m) ⊗ e(n) + e(n) ⊗ e(m)

)
+ µ(I(2),m)M ⊗ e(m)

]
(A.24)
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