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ABSTRACT 

Study of the Asphalt Pavement Damage through Nondestructive Testing on Overweight 

Truck Routes. (May 2004)  

Sonia Inés Ramos Aparicio, B.S., National   

Engineering University, Lima, Peru 

Chair of Advisor Committee: Dr. Robert L. Lytton 

  
 Many highway facilities experience deterioration due to high traffic volumes and 

a service life that has been extended beyond facility design life. The 75th and 76th Texas 

Legislatures passed bills allowing trucks of gross vehicle weights (GVW) up to 125,000 

lbs to routinely use a route in south Texas. Since the Texas Department of Transportation 

(Tx DOT) is concerned about the impact of overweight truck traffic (OTT) on its 

highways, there is a need to establish how the impact of this OTT on Texas roads will be 

incorporated into a long-term strategy for identifying and developing solutions to this 

problem.  

In this study the effects of overweight truck traffic was investigated on a permitted 

truck route in the city of Brownsville. This route proceeds from the Veterans International 

Bridge to the Port of Brownsville via US77, SH4 and SH48 (SH 4/48).  

The objective of this study is to establish the impact of heavy loads on the 

pavement structure through nondestructive testing. The problem increased in severity due 

to the increased flow of trade from the Port of Brownsville to Mexico, thus the expecting 

deterioration on the routes is mainly along the southbound lanes K6 and K7.  

To accomplish this objective two nondestuctive testings were conducted as GPR 

and FWD tests. The K6 and K7 lanes were divided on 56 and 50 FWD stations, 

respectively. In addition, AC core samples were taken to be tested with frequency sweep 

test. All collected-data helped to analyze the route profile, layers thickness, static and 

dynamic backcalculated AC moduli, dynamic (complex) modulus from laboratory 
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testing, creep compliance parameters from the laboratory testing and dynamic analysis, 

and corrected AC moduli by temperature using three differents equations. In addition, it 

analyzed the effect of the cumulative 18-kip Equivalent Single Axle (ESAL) in both K6 

and K7 lanes. 

The results from the first analysis provided evidence of damage in the K6 lane; 

however, more significant results were found in the traffic analysis. This study confirms 

that because of greater amount of truck traffic (OTT) travels on K6 has lesser AC moduli 

than the K7 lane.  
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CHAPTER I 

INTRODUCTION 

Many highway facilities experience deterioration due to high traffic volumes and a 

service life that has been extended beyond facility design life. As aging road network 

conditions deteriorate, there is a need to increase investments and rehabilitation 

treatments in order to restore and maintain the road conditions at acceptable levels. The 

75th and 76th Texas Legislatures passed bills allowing trucks of gross vehicle weights 

(GVW) up to 125,000 lbs to routinely use a route in south Texas, along the Mexican 

border. Since the Texas Department of Transportation (Tx DOT) is concerned about the 

impact of overweight truck traffic (OTT) on its highways, there is a need to establish how 

the impact of this OTT on Texas roads will be incorporated into a long-term strategy for 

identifying and developing solutions to this problem. These solutions could effectively 

promote future economic growth within the state Texas by  preserving its highway 

infrastructures. 

 In this thesis was investigated the effects of overweight truck traffic on a 

permitted truck route in the city of Brownsville. This route proceeds from the Veterans 

International Bridge to the Port of Brownsville via US77, SH4 and SH48.  The portion of 

the route along US77 is on a new concrete pavement and includes an elevated structure 

over half of its length.  Most of the permitted truck route runs along SH4 and SH48.  This 

research focused on studying the behaviour of the asphalt pavement supporting routine 

overweight truck traffic on SH4/48.  Ninety-five percent of the truck traffic originates 

from the Port of Brownsville where the route starts at the FM 511 bridge, and runs along 

SH 48 until its intersection with Boca Chica Blvd.  From there, truckers proceed  along  

SH4 up to the US77 intersection, where they turn left to go to Mexico. Figure 1 gives an 

overview of the permitted truck route. 

_____________________________ 

The thesis follows the style and format of the Transportation Research Board. 
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FIGURE 1    Permitted Truck Route in Brownsville SH 4/48.  
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 The payloads carried by permitted trucks are mostly coiled metal sheets, oil, and 

powder mineral (fluorite), which are transported from the Port of Brownsville to Mexico 

and vice versa.  Figure 2 illustrates the types of payloads transported along the permitted 

truck route.  The  route was established in response to the need expressed by truckers to 

haul cargo at their trucks’ operating capacities to improve operational efficiency.  This 

meant hauling in excess of legal load limits, thus requiring permits to be issued.  

 The permit fee is US $30 per one-way trip. Even though the Pharr District retains 

85% of the permit fee, it is too small an amount to cover the route’s maintenance because 

of the potential for accelerated pavement deterioration. Therefore, it is relevant to study 

the effects of these routine overweight loads that run on SH 4/48 in order to identify 

requirements for building pavements to sustain routine overweight truck traffic. This 

information could help in maximizing trucking productivity and in enhancing the 

economic competitiveness of the state. 

OBJECTIVES 

 The primary objectives of this research are to: 

• characterize the effects of routine overweight truck loads on the performance 

of SH 4/48; and 

• establish the impact of heavy truck loads on pavement performance. 

 These objectives were accomplished by carrying out nondestructive pavement 

testing, laboratory materials testing, evaluation of material properties from field and 

laboratory test data, and modeling of pavement response The expected benefits from this 

study are recommendations regarding an analysis procedure to determine the feasibility 

of using existing routes for overweight truck traffic.  This project offered the first 

opportunity to study the effects of OTT on Texas highways.  The data collected from this 

research are expected to be useful in establishing and developing ways to achieve the best 

accommodation of increased truck use on Texas highways.  
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FIGURE  2    Types of Loads Carried by Permitted Trucks. 
 

PROBLEM STATEMENT 

The nature of this complex problem can be stated as follows: 

• the initial design for this route was based on conventional truck traffic 

conforming to legal load limits. Routine use of SH4/48 by overweight trucks 

began in March 1998. 

• the  problem increased in severity due to the increased flow of trade from the 

Port of Brownsville to Mexico. The deterioration on the routes is mainly along 

the southbound lanes K6 and K7.  

• the impact of overweight truck traffic is a concern because the service life of 

highways under these conditions is unknown.  
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SCOPE OF THE RESEARCH  

 This thesis is documented in nine chapters.  Chapter 1 is the introductory Chapter 

that gives the impetus for this study.  Chapter II describes the concepts involved in the 

nondestructive test methods used to evaluate the effects of routine overweight truck 

traffic on SH4/48.  Chapter III details the field data and laboratory testing methodology.  

It also describes how the SH4/48 route was segmented into different sections on the K6 

and K7 lanes for the purpose of field data collection.  The Chapter also identifies the 

locations (FWD stations) where cores were taken for laboratory testing. These FWD 

stations are named “core stations” in this study.  Chapter IV summarizes the results of the 

analyses of the field data collected during the project.  The field data taken with the 

falling weight deflectometer (FWD) and ground penetrating radar (GPR) are analyzed in 

this Chapter in order to predict pavement layer thickness profiles and static layer moduli 

values.  Chapter V reports on the analysis of FWD data to characterize the dynamic 

modulus and the creep compliance properties of the asphalt concrete layer using dynamic 

analysis.  The dynamic moduli backcalculated  by system identification are  compared to 

the backcalculated moduli from the static analysis.  The dynamic analysis of full-time 

FWD data was conducted using the Dynamic Backcalculation by System Identification 

(DBSID) program developed by the Texas Transportation Institute (TTI).  Static 

backcalculations were performed using MODULUS. 

Chapter VI presents the results of laboratory tests of the field cores taken from 

SH4/48.  The test carried out to characterize the asphalt layer was the frequency sweep 

test.  Chapter VII presents the temperature corrections of backcalculated moduli 

beginning with the pavement temperature predictions.  It was examined the corrected 

moduli as well as the modulus-temperature relationships determined from the test data as 

part of assessing the pavement damage along the route.  For this analysis, the FWD 

stations on the K6 and K7 lanes were grouped, taking into consideration their values and 

the stations’ proximity to each other.  The temperature corrections of backcalculated 

moduli were done using three methods: the Chen equation, the TxDOT equation, and the 

Wictzak-Fonseca equation. 
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Chapter VIII discusses the comparison between the results obtained  from field 

data presented in Chapters IV and V, and the laboratory data presented in Chapter VI.  In 

addition, this Chapter takes the results obtained from the Witczak-Fonseca equation in 

order to show the current damage to the different sections along the route.  Chapter IX 

summarizes the conclusions and recommendations stemming from this study. 
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CHAPTER II 

LITERATURE REVIEW 

 This chapter presents relevant  information regarding the test methods used to 

characterize the effects of permitted overweight loads on SH4/48. 

GPR APPLICATIONS 

 Applying GPR techniques for nondestructive testing on highways and bridge 

decks has become more common in recent years.  GPR has been demostrated to be an 

accurate and practical tool for nondestructive evaluation and inspection of highway 

structures.  Different types of radar may be used for different applications on highway 

pavements. Depending on the way they operate, radar falls into two categories: air-

launched and ground-coupled.  

Air-launched GPR operates with the antena mounted at a specific height 

perpendicular to the pavement surface. This type of GPR is ideal for highway speed data 

collection, since there is no contact between the pavement surface and the antenna (1). 

 Ground-coupled GPR operates with its plannar antennas in close contact with the 

pavement.  This contact allows a better horizontal resolution, in the direction of the 

survey motion.  This antenna is particularly suited to investigating defects in concrete 

pavements and bridge decks. The drawback is its data acquisition speed, which is limited 

to less than 6 mph.  Defects such as surface cracks, voids, etc., or those of with relative 

profundity, one meter below the surface, can sometimes be detected with low frequency 

ground-coupled radar.  

 Air-launched radar systems work at the central frequency of  approximately 1 

GHz, while most ground-coupled radar systems work at lower frequencies, typically from 

20 to 500 MHz (2).  The lower the frequency, the greater the penetration depth, but those 

lower frequencies offer less in near-surface resolution.  For instance, under similar soil 

conditions, 100 MHz antennas may provide subsurface information to depths of 50 ft.  
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However, they will not be able to identify the presence of thin surface layers.  On the 

other hand, a high frequency ground-coupled systems may only penetrate to a depth of 3 

ft, but it can identify thin layers close to the surface.  The Texas Transportation Institute’s 

air-launched GPR unit operates at highway speeds (60 mph), and transmits and receives 

50 pulses per second.  It can effectively penetrate to a depth of two feet. 

 For the  practical implementation of  a GPR system, a automated signal 

processing is needed so that the mass of waveforms collected in a GPR survey can be 

transformed into information meaningful to highway engineers.  In the past, TTI 

researchers used a signal  processing system named DACQ to analyze GPR data (3). Its 

main feature is an automated peak tracking system, in which the user identifies significant 

peaks within the GPR trace.  The software then automatically traces those peaks 

throughout the entire file (3). For each peak, the amplitudes and arrival times was of 

reflections were determined from the GPR data and used to compute the layer diealectrics 

and thicknesses. Other advanced features of DACQ is a correction procedure for antenna 

bounce, and several signal clean-up routines, which are applied prior to processing.  

However, there were several drawbacks with DACQ such as slow data processing if long 

lengths of highway were  to be processed.  Additionally, it was difficult to identify 

section breaks and the peak tracking system was difficult to use on several projects  with 

badly distressed pavements.. 

 Because of these limitations, a new processing package was subsequently 

developed to match Tx DOT’s needs more closely. These needs are the capability of 

rapidly evaluating long sections of highway, of defining section changes,  estimating 

layer thickness, and locating subsurface problem areas.  COLORMAP is the software 

package that succeeded DACQ (4).  It was developed to provide a simple program that 

non-GPR experts can easily understand and use to interpret GPR data for pavement 

evaluation.  In order to evaluate massive amounts of data in a timely fashion, 

COLORMAP employs several innovative data processing techniques.  It relies on a color 

graphics display of GPR data to identify breaks and surface problems, and the manual 

tracking of layer interfaces in the layer computation routine. 
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FALLING WEIGHT DEFLECTOMETER  

 A nondestructive test is one from which the necessary information can be 

obtained to define physical properties of a sample without destroying it.  In pavement 

evaluation, this involves a large mechanical device to duplicate vehicle loads without 

breaking up  the pavement.  By measuring the pavement response induced by loads, the 

structural integrity or stress-strain properties of the pavement structure can be determined 

(5). 

 The FWD is an impulse device used in the nondestructive testing of pavements 

because it reasonably simulates the shape and temporal nature of a moving wheel loading 

(5).  In addition, during FWD tests, the pavement’s stress and strain conditions are similar 

to the conditions under a heavy vehicle load (6).  The major advantages of FWD testing 

are that: 

• The impulse dropweight force on the pavement simulates traffic loads at 

highway speed. 

• It is nondestructive. 

• Pavement layer materials remain undisturbed. 

• AC creep compliance data can be computed from FWD full-time history data 

and dynamic analysis.  Pavement cracking and rutting can then be predicted 

from the creep compliance properties. 

 FWD is used in pavement evaluations to estimate pavement layer moduli for 

predicting remaining life.  Most backcalculation procedures currently implemented 

predict the layer moduli from the peak load and the peak deflections measured by 

geophones.  In this analysis, it is assumed that the FWD load is applied statically to the 

pavement, which is represented as an elastic layered system with linear or non linear 

(stress-dependent) material properties.  These properties are backcalculated by 

minimizing the sum of the absolute or square of the errors between the predicted and the 

measured peak deflections at the geophone locations. 
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FWD works by applying an impulse load to the pavement which generates body 

waves and surface waves (7).  These waves travel at finite velocities and are recorded at 

different times by the geophones.  The time lag of the response of the geophones is 

determined by transforming the load and the deflection histories from the time domain to 

the frequency domain by using the fast Fourier transform (FFT) method.  Then, the FFT 

of the deflection history is divided by the FFT of the load history in order to obtain the 

pavement system transfer function.  The magnitude of the deflection per unit force and 

the phase angle are then determined, frequency by frequency.  

 The layered elastic backcalculation program MODULUS 6.0 (8) developed by 

TTI, was used to analyze the FWD deflection data, specifically, to backcalculate layer 

moduli at different locations along the permitted truck route.  

DYNAMIC ANALYSIS OF FWD DATA FOR PAVEMENT EVALUATION  

 Lytton (7) explained that there are more information in the FWD data than load 

and  displacement amplitudes, and showed how other properties may be backcalculated 

using the load and displacement histories from the FWD.  These properties include the 

creep compliance coefficients that may be determined from the analysis of the FWD load 

and deflection time histories: 

 ( ) m
o tDDtD 1+=   (2.1) 

where, 

 D(t)   = creep compliance at loading time t, 

 Do, D1 and m  = coeficients of the power law model given by Eq. (2.1). 

The slope m of the log creep compliance vs log time curve is directly related to the 

material damping as characterized by the phase angle.  

 There are several computer programs used to analyze the full time history data.  

These programs predict the transfer function or the FWD dispacement history for each 

sensor.  Among them are PUNCH (9), UTFWIBM (10), SCALPOT (11), and FWD-DYN 
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(12).  The first three methods predict the tranfer function and the fourth, FWD-DYN, 

predicts the displacement history for a given sensor and pavement. 

 The FWD-DYN predicts the displacement history for each sensor, given the 

material properties and thickness of each pavement layer.  In this program, the FWD load 

is first decomposed into its frequency components using FFT.  Then, the transfer 

function, which defines the response of the pavement system to a steady-state unit load, is 

evaluated.  Finally, the transfer function is multiplied by the FFT of the load to determine 

the Fourier transform of the displacement time history. FWD-DYN performs an inverse 

FFT on this Fourier transform to determine the time history of the displacement  for each 

FWD sensor.  It is significant to point out that the procedure assumes a linear system in 

view of the use of superposition to predict pavement response to the impulse load  (13).  

 The computer program DBSID determines the material properties using FWD 

data and full time load and displacement histories. DBSID  was the result of adding a 

system identification routine to the FWD-DYN program.  In this computer program, the 

pavement structure is limited to three layers of pavement, the first layer (AC) being a 

viscoelastic material following the power law creep compliance relationship of Eq. (2.1). 

The other two unbound layers are modeled as damped elastic solids characterized by 

Young’s modulus and the damping coefficient. The equations to backcalculate the creep 

compliance parameters of  Eq. (2.1) represent the relationship between the complex 

compliance and the complex modulus, and are given by Lytton (7). 
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where, 

 D’(ω) = real part of the complex compliance, 

 D”(ω) = imaginary part of the complex compliance, 

 Ε’(ω) = real part of the complex modulus, 

 E”(ω) = imaginary part of the complex modulus, 

 ζ(ω) = damping ratio, 

 Γ(1+m) = gamma function with parameter (1+m), and 

 ω = loading frequency, radians/sec. 

TEMPERATURE CORRECTIONS OF BACKCALCULATED AC MODULUS 

 The use of surface deflection measurements to evaluate pavements has steadily 

increased in the majority of highway agencies since the American Association of State 

Highway Officials (AASHO) road test was conducted.  Deflection testing is used to 

evaluate a variety of pavement characteristics, including axle or vehicle load capacity, 

structural life, and uniformity.  Deflection results are dependent upon seasonal variations 

that are affected by the underlying aggregate base course and subgrade.  It is more 

significant in asphalt pavements which are dependent on the temperature of the asphalt 

(14).  In fact, those factors that influence deflections are loading, environment, and 

pavement conditions.  The environmental conditions related to seasonal variations are the 

temperature and moisture distributions within and around the pavement structures.  The 

importance of these major factors is that they change the strength of the pavement 

materials and their resistance to traffic-induced stresses. 

  For pavement applications, the asphalt concrete moduli backcalculated from FWD 

data must be corrected to reference or standard conditions of temperature and loading 
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frequency.  Before the temperature correction may be made, it is first necessary to 

determine the pavement temperature one is correcting from.  This temperature is referred 

to herein as the base temperature, and correspond to the pavement temperature when the 

FWD data were collected.  For this purpose, pavement temperatures may be measured 

directly with a temperature probe, or predicted from measured air and surface 

temperatures.  In this regard, Lukanen (14) developed a set of equations for predicting 

pavement temperatures.  These equations, referred to in the literature as BELLS2 and 

BELLS3, were developed using pavement temperature data from 41 Seasonal Monitoring 

Program (SMP) sites in North America. 

 BELLS2 is the equation used for the FWD testing protocol employed in the Long-

Term Pavement Performance (LTPP) program, while BELLS3 is used for routine testing.  

The latter was developed to account for the effects of shading on the infrared 

temperatures measured at the SMP sites.  Both equations require use of the infrared (IR) 

surface temperature at the time of the FWD measurements, and the average of the 

previous day’s minimum and maximum air temperatures in the area of the project 

surveyed.  The BELLS2 and BELLS3 equations have the following form and are 

different only in the coefficients βi: 

 Td = βo + β1 IR + [ log10(d) – 1.25][β2 IR + β3 T(1-day) + β4 sin(hr18 -15.5)] 

         +β3 IR sin (hr18 – 13.5) (2.7) 

where, 

 Td =  pavement temperature at depth, d (mm), within the asphalt layer in 

°C, 

 IR = surface temperature measured with the infrared temperature gauge 

in °C, 

 T(1-day) =  the average of the previous day’s high and low air temperature in 

°C,  
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 hr18 = time of day in the 24-hour system, but calculated using an 18-hour  

asphalt temperature rise and fall time according to Stubstad (15),  

 βi = coefficients of Eq. (2.7), which are given in Table 1 for both the 

BELLS2 and BELLS3 equations. 

 In TxDOT Project 0-1863, (16) TTI researchers developed  an alternative 

equation, named the Texas-LTPP equation, which is considered more applicable for use 

in Texas. This equation is given by : 

   Td = βo + β1 (IR+2)1.5  + log10(d) × {β2 (IR+2)1.5 + β3 sin2(hr18 -15.5)+ β4 sin2(hr18 -

13.5) + β5 [T(1-day) + 6]1.5} + β6 sin2(hr18 -15.5) sin2(hr18 -13.5)  (2.8) 

The coefficients, βi, of Eq. (2.8) were determined using multiple linear regression 

with measured IR and pavement temperature data from the asphalt concrete SMP sites in 

Texas, New Mexico, and Oklahoma, and from asphalt sections located at the Texas A&M 

Riverside Campus.  Table 2 presents the coefficients of the Texas –LTPP equation. The 

interested reader is referred to Fernando, Liu and Ryu (16) for additional details on the 

development of this equation.  Comparing the predictions of the BELLS2, calibrated 

BELLS2, and the Texas-LTPP equations, these researchers found that the most accurate 

predictions for Texas conditions are obtained using the Texas-LTPP equation.  

 Project 0-1863 led to the development of the TxDOT Modulus Temperature 

Correction Program (MTCP), which may be used to correct asphalt concrete moduli 

backcalculated from FWD data to reference or standard conditions of temperature and 

loading frequency (17). MTCP provides users with the option of using BELLS2, 

BELLS3, or the Texas-LTPP equation for predicting pavement temperature.  The 

program uses the output from MODULUS as an input to the modulus temperature 

correction.  
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        TABLE 1    Coefficients of the BELLS2 and BELLS3 Equations. 
Coefficient BELLS 2 BELLS 3 

β0 + 2.78  +0.950 
β1 + 0.912 +0.892 
β2  -0.428 -0.448 
β3 +0.553 +0.621 
β4 +2.63 +1.83 
β5 +0.027 +0.042 

 

 

 TABLE 2    Coefficients of the Alternative Model for Predicting Pavement  
Temperature. 

Coefficient Estimate 
t-statistic for testing the null Hypothesis that 

βi = 0 p-value 

β0 6.46 21.1 0.0000 
β1 0.199 60.79 0.0000 
β2 -0.083 -43.08 0.0000 
β3 -0.692 -3.46 0.0000 
β4 1.875 7.5 0.0000 
β5 0.059 50.11 0.0000 
β6 -6.784 -11.5 0.0000 
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CHAPTER III 

  FIELD DATA COLLECTION 

 The field data collection on SH4/48 involved the following tasks: 

• An initial site investigation, 

• Establishing FWD monitoring sections, 

• Material sampling. 

This chapter documents the tasks carried out to collect data for characterizing the effects 

of overweight truck traffic on SH4/48 in Brownsville. 

INITIAL SITE  OF  INVESTIGATION 

 The main objective of the initial site investigation was to collect information that 

may be used to establish test segments for  field monitoring.  For this purpose, the 

following tasks were conducted: 

• Ground penetrating radar measurements along SH4/48; 

• Identification of homogeneous segments from GPR surveys according to the 
predicted layer thickness profiles; 

• Selection of FWD stations on each homogeneous segment; 

• Prediction of layer thicknesses of the asphalt and flexible base materials; and 

• Core sampling to verify GPR predictions, assist in data interpretation, and 
provide cores for laboratory testing. 

 It began with inputting a name for of different lanes of the route in both directions. 

The route lanes that run from Mexico to the Port of Brownsville, northbound, were called 

K1 and K2, which were the outside and inside lanes, respectively. In the same way the 

route lanes which run from the Port of Brownsville to Mexico, southbound, were named 

K6, the outside lane and K7, the inside lane. 

 Two GPR surveys were conducted to estimate the pavement layer thickness 

profiles along SH4/48 as first tasks.  The first survey, conducted in September 2000, was 

done using TxDOT’s air-launched GPR system.  From the data collected was predicted 
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the surface layer thickness variations along SH4/48.  However, information on the 

layering beneath the surface material was difficult to get, as the reflections coming after 

the surface layer were either not visible or very faint.  Consequently, it was conducted 

another survey in February 2001, using ground-coupled radar antennas manufactured by 

Geophysical Survey Systems Incorporated (GSSI).  This second survey was conducted 

along the outside and inside southbound lanes of SH4/48 corresponding, respectively, to 

the K6 and K7 lanes of the permitted truck route.  Since most of the permitted trucks 

(about 95 percent) travel from the Port of Brownsville to Mexico, the decision was made 

to monitor these lanes during the project. 

 Two ground-coupled radar antennas were used.  One was a GSSI 200 MHz unit 

that was primarily used to check the depth of the water table along the route.  The other 

was a 1.5 GHz antenna that it was used to collect data on the near-surface pavement 

layers.  Figure 3 shows the ground-coupled antennas used by researchers.  Data from the 

1.5 GHz antenna, along with coring information taken at various locations, were used to 

establish the base layer thickness profiles along the K6 and K7 lanes.  It was not possible 

to see the ground water table from the GPR data collected with the 200 MHz antenna.  

Researchers note that Pharr District personnel drilled a hole on the shoulder near the 

location of a weigh-in-motion (WIM) site along SH48.  No water table was encountered 

to a depth of 13 ft from the pavement surface at this location.   

ESTABLISHING FWD MONITORING STATIONS 

 Based on the GPR measurements, it was established FWD stations along the K6 

and K7 lanes of the permitted truck route.  The portion of the route monitored in this 

study begins at the FM511 and SH48 intersection and ends approximately 0.14 miles 

south of Cleveland Street along SH4.  The K6 lane was segmented into 16 homogeneous 

sections (A to P), while the K7 lane was divided into 6 homogeneous sections (A to F).  

Tables 3 and 4 summarize the locations of the different sections established, respectively, 

on the K6 and K7 lanes.  The locations of the section endpoints are referred to the south 

end of the bridge over FM511.  



  

 

18

 
FIGURE 3    Ground-Coupled GSSI Antennas Used on the Second GPR Survey. 
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   TABLE  3    Locations of the K6 Lane Sections.*  
Section From To 

  (miles) (feet) (miles) (feet) 
K6-A 0 1254 0 1610 
K6-B 0 1610 0 1809 
K6-C 0 1809 0 1954 
K6-D 0 1954 1 1484 
K6-E 1 1484 1 2874 
K6-F 1 2874 2 1894 
K6-G 2 1894 2 2639 
K6-H 2 2639 3 3269 
K6-I 3 3269 3 3544 
K6-J 3 3544 3 3879 
K6-K 3 4794 4 49 
K6-L 4 49 4 3269 
K6-M 4 3269 4 3514 
K6-N 4 3514 4 3914 
K6-O 4 3914 5 1189 
K6-P 5 1189 5 1404 

* Referred from south end of bridge over FM511  

    
 
     TABLE 4    Locations of the K7 Lane Sections.*  

Section From To 
  (miles) (feet) (miles) (feet) 

K7-A 0 505 3 3159 
K7-B 3 4064 3 4504 
K7-C 3 4504 3 5174 
K7-D 3 5174 4 399 
K7-E 4 399 4 3199 
K7-F 4 3199 5 669 

  * Referred from south end of bridge over FM511 
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Once the homogeneous sections in each lane were defined, researchers established the 

locations of the FWD stations in each section.  Altogether, there were 56 FWD stations 

established on the K6 lane, and 50 stations on the K7 lane.  Tables 5 and 6 show the 

locations of the FWD stations on which data were collected at different times during the 

project.  In this regard, personnel from the Pharr District provided FWD data for 

evaluating and monitoring pavement performance along the K6 and K7 lanes.  

   
 
    TABLE  5    Locations of the FWD Stations in the K6 Lane. 

Section FWD  Distance of Station from FM 511 Bridge 
  Station (miles) 

K6-A 6-1 0.267 
K6-B 6-2 0.314 
K6-D 6-3 0.379 
K6-D 6-4 0.466 
K6-D 6-5 0.560 
K6-D 6-6 0.655 
K6-D 6-7 0.750 
K6-D 6-8 0.845 
K6-D 6-9 1.009 
K6-D 6-10 1.091 
K6-D 6-11 1.166 
K6-D 6-12 1.261 
K6-E 6-13 1.356 
K6-E 6-14 1.451 
K6-F 6-15 1.545 
K6-F 6-16 1.668 
K6-F 6-17 1.739 
K6-F 6-18 1.829 
K6-F 6-19 1.924 
K6-F 6-20 2.019 
K6-F 6-21 2.113 
K6-F 6-22 2.208 
K6-F 6-23 2.303 
K6-G 6-24 2.398 
K6-G 6-25 2.435 
K6-G 6-26 2.492 
K6-H 6-27 2.530 
K6-H 6-28 2.606 
K6-H 6-29 2.701 
K6-H 6-30 2.805 
K6-H 6-31 2.890 
K6-H 6-32 2.985 
K6-H 6-33 3.079 
K6-H 6-34 3.193 
K6-H 6-35 3.288 
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   TABLE  5     Continued 
Section FWD  Distance of Station from FM 511 Bridge 

  Station (miles) 
K6-H 6-36 3.382 
K6-H 6-37 3.477 
K6-H 6-38 3.572 
K6-I 6-39 3.657 
K6-J 6-40 3.685 
K6-K 6-41 3.951 
K6-K 6-42 3.988 
K6-L 6-43 4.083 
K6-L 6-44 4.178 
K6-L 6-45 4.273 
K6-L 6-46 4.339 
K6-L 6-47 4.416 
K6-L 6-48 4.547 
K6-L 6-49 4.613 
K6-M 6-50 4.642 
K6-O 6-51 4.796 
K6-O 6-52 4.838 
K6-O 6-53 4.932 
K6-O 6-54 5.033 
K6-O 6-55 5.163 
K6-P 6-56 5.238 
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    TABLE  6    Locations of the FWD Stations in the K7 Lane. 
Section FWD  Distance of Station from FM 511 Bridge 

  Station (miles) 
K7-A 7-1 0.288 
K7-A 7-2 0.382 
K7-A 7-3 0.430 
K7-A 7-4 0.523 
K7-A 7-5 0.618 
K7-A 7-6 0.713 
K7-A 7-7 0.808 
K7-A 7-8 0.902 
K7-A 7-9 0.997 
K7-A 7-10 1.092 
K7-A 7-11 1.177 
K7-A 7-12 1.272 
K7-A 7-13 1.366 
K7-A 7-14 1.461 
K7-A 7-15 1.613 
K7-A 7-16 1.707 
K7-A 7-17 1.802 
K7-A 7-18 1.897 
K7-A 7-19 1.991 
K7-A 7-20 2.086 
K7-A 7-21 2.181 
K7-A 7-22 2.389 
K7-A 7-23 2.470 
K7-A 7-24 2.559 
K7-A 7-25 2.654 
K7-A 7-26 2.749 
K7-A 7-27 2.844 
K7-A 7-28 2.938 
K7-A 7-29 3.033 
K7-A 7-30 3.128 
K7-A 7-31 3.222 
K7-A 7-32 3.317 
K7-A 7-33 3.412 
K7-A 7-34 3.506 
K7-A 7-35 3.601 
K7-A 7-36 3.686 
K7-B 7-37 3.961 
K7-C 7-38 4.088 
K7-D 7-39 4.160 
K7-E 7-40 4.255 
K7-E 7-41 4.349 
K7-E 7-42 4.444 
K7-E 7-43 4.539 
K7-E 7-44 4.595 
K7-E 7-45 4.650 
K7-E 7-46 4.747 
K7-F 7-47 4.842 
K7-F 7-48 4.927 
K7-F 7-49 5.022 
K7-F 7-50 5.145 
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 According to the initial GPR survey in Appendix A was detected variations on  

the asphalt concrete (AC) thickness and the posibility of the stripping layers. The extreme 

cases of AC thickness variation are seen in the sections K6-H, K6-I, K6-K, K7-C and K7-

E. Possible stripping layers are seen in the sections K6-L and at some points in sections 

K7-E. Consequent to these possible issues, each section of the lanes K6 and K7 were 

divided into homogeneous sub-segments. The FWD stations were chosen from these sub-

segments.   

 In  COLORMAP Figures 4 to 23 the location of all FWD stations for lanes both 

K6 and K7 are indicated. Each trace marker indicates the respective FWD station. 

 The average distance between two consecutive stations is approximately 152 m 

(500 feet). These stations were selected on the asphalt pavement, skipping the FM 511 

(bridge), and the intersecion FM 802 and Central Ave and the intersection between Boca 

Chica  Blvd. with SH 48. 

 To locate the FWD stations, the distance measured between them were referred to 

the center of the street intersections or culverts. The streets used as references were the 

FM 511-bridge, FM 802, Minnessota Ave, Central Ave, Fruitdale Rd, Price Rd, 

Intersection SH4/SH48, Security Dr., Southmost Rd and Cleveland St 

 In this study, FWD data were monitored from February of 2001 to April of 2003 

through intervals between four and seven months. In 2001, FWD data were collected in 

February, May, July and August; in 2002 in March, July, October and December, and in 

2003, data was collected only in April. FWD data was taken in K6 lane four times  in 

2001: in February, May, July and August; and three times in 2002: in March, July and 

December. FWD data were collected in K7 lane three times in 2001: in February, May 

and August; four times in 2002: in March, July, October and December; and once in 

April of 2003. 

 In addition, the FWD stations K6-9, K7-8 and K7-9 were  removed and no longer 

used after March of 2002 due to construction work on the road. There were other FWD 

stations which were omitted once in the FWD data collection because of road 
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maintenance or construction work. They were K6-8 in March of 2002, K6-33 in July of 

2002, K7-11, K7-12 and K7-22 in October of 2002 and K7-43 in April of 2003.        

  

   

   

 

 
FIGURE 4    K6-1, K6-2, K6-3, K6-4, K6- 5, and K6-6 FWD Stations. 

 

K6-1 K6-2 K6-6 K6-5K6-3 K6-4
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FIGURE 5    K6-7 and K6-8 FWD Stations. 

 

 
FIGURE 6    K6-9, K6-10, K6-11, K6-12, K6-13, and K6-14 FWD Stations. 

K6-7 K6-8

K6-9 

K6-10 K6-11 K6-12 K6-13 K6-14 
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FIGURE 7    K6-15, K6-16, K6-17, K6-18, K6-19, and K6-20 FWD Stations. 
 
 
 

 
FIGURE 8    K6-21, K6-22, K6-23, K6-24, K6-25, K6-26, and K6-27 FWD 
                      Stations. 

K6-15 K6-16 K6-17 K6-18 K6-19 K6-20 

K6-25

K6-24K6-23K6-22 K6-21 

K6-27 

K6-26
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FIGURE 9    K6-28, K6-29, K6-30, K6-31, K6-32, and K6-33 FWD Stations. 
 
 
 

 
FIGURE 10    K6-34, K6-35, K6-36, K6-37, K6-38, and K6-39 FWD Stations. 

K6-28 K6-32K6-31K6-30K6-29 K6-33 

K6-39 K6-38 K6-37K6-36K6-35 K6-34 
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FIGURE 11    K6-41, K6-42, K6-43, and K6-44 FWD Stations. 

 

 
FIGURE 12    K6-45, K6-46, K6-47, K6-48, K6-49, and K6-50 FWD Stations. 

K6-41 K6-43 K6-44 K6-42

K6-47

K6-46 

K6-45 K6-48

K6-49

K6-50 
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FIGURE 13    K6-51, K6-52, K6-53, K6-54, K6-55, and K6-56 FWD Stations.  
 
 

 
FIGURE 14    K7-1, K7-2, and K7-3 FWD Stations. 

K6-54 K6-55 K6-56 K6-53

K6-52 

K6-51 

K7-1

K7-2

K7-3 
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FIGURE 15    K7-4, K7-5, K7-6, K7-7, K7-8, and K7-9 FWD Stations. 

 

 

 
FIGURE 16    K7-10, K7-11, K7-12, K7-13, and K7-14 FWD Stations. 

K7-4 K7-5 K7-6 K7-7 K7-8 K7-9 

K7-10 K7-11 K7-12 K7-13 K7-14 



  

 

31

 
FIGURE 17    K7-15, K7-16, K7-17, K7-18, and K7-19 FWD Stations.  

 

 
FIGURE 18    K7-20, K7-21, and K7-24 FWD Stations.  

K7-15 K7-16 K7-17 K7-18 K7-19 

K7-24 K7-21K7-20 
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FIGURE 19    K7-25, K7-26, K7-28, and K7-29 FWD Stations.  

 

 
FIGURE 20    K7-32, K7-33, K7-34, K7-35, and K7-36 FWD Stations. 

K7-26 K7-25 K7-29K7-28

K7-32 K7-33 K7-34 K7-35 K7-36 
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FIGURE 21    K7-37, K7-38, and K7-39 FWD Stations. 

 

 

 
FIGURE 22    K7-40, K7-41, K7-43, and K7-45 FWD Stations. 

K7-38K7-37 K7-39 

K7-43 K7-45

K7-42K7-41 K7-40 
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FIGURE 23    K7-46, K7-47, K7-49, and K7-50 FWD Stations.  

 

 

MATERIAL SAMPLING  

 For GPR data interpretation and verification,  a total of 20 cores were initially 

taken from SH4/48, 10 samples in each of the K6 and K7 lanes. Tables 7 and 8 show the 

locations were cores were taken.  At these locations, the coring crew also measured the 

base thickness.  The measured base thicknesses at the coring locations are also given in 

Tables 7 and 8. 

 During coring, a number of the six-inch diameter cores broke.  These occurred in 

the downtown area along SH4, where difficulty was encountered in getting intact cores.  

Disintegration of the asphalt material during coring suggested possible stripping within 

the mix.  In order to get additional cores for laboratory testing, Pharr District personnel 

took several more cores from the K6 lane along SH4, specifically at FWD stations K6-48, 

K7-50 K7-49K7-47K7-46 
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K6-50, K6-51, and K6-53.  This time, three-inch diameter cores were taken.  Table 9 

shows the thicknesses of the additional cores. 

 In addition, a set of five cores were taken at the WIM site along SH48.  These are 

identified as C2 to C6 in Table 9.  C2 and C3 were taken from the wheelpaths of the K6 

lane, while C4 and C5 were taken from the K7 lane.  C6 was taken from the center lane 

along SH48, which receives very little traffic at the vicinity of the WIM site. 

 

     TABLE 7    Thickness Measurements at Initial Coring Locations in the K6 Lane.  
  Thickness 

Nº ID Diameter AC Base 
  mm in mm in mm in 

1 K6-1 144 5.7 202 8.0 305 12 

2 K6-4 142 5.6 182 7.2 279 11 

3 K6-11 142 5.6 204 8.0 305 12 

4 K6-23 142 5.6 192 7.6 330 13 

5 K6-29 144 5.7 217 8.5 305 12 

6 K6-35 145 5.7 197 7.8 305 12 

7 K6-42 142 5.6 159 6.3 330 13 

8 K6-45 142 5.6 216 8.5 203 8 

9 K6-50 142 5.6 263 10.4 152 6 

10 K6-53 144 5.7 191 7.5 330 13 
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 TABLE 8    Thickness Measurements at Initial Coring Locations in the K7 Lane.  
  Thickness 

Nº ID Diameter AC Base 
  mm in mm in mm in 

1 K6-1 144 5.7 202 8.0 305 12 

2 K6-4 142 5.6 182 7.2 279 11 

3 K6-11 142 5.6 204 8.0 305 12 

4 K6-23 142 5.6 192 7.6 330 13 

5 K6-29 144 5.7 217 8.5 305 12 

6 K6-35 145 5.7 197 7.8 305 12 

7 K6-42 142 5.6 159 6.3 330 13 

8 K6-45 142 5.6 216 8.5 203 8 

9 K6-50 142 5.6 263 10.4 152 6 

10 K6-53 144 5.7 191 7.5 330 13 
 

 

 

 TABLE 9    Measurements of Additional AC Cores Taken in the K6 Lane.  
  Field measurements 

Nº ID Diameter Thickness 
  mm in mm in 

1 K6-48-16 92 3.6 208 8.2 

2 K6-48-12 92 3.6 164 6.4 

3 K6-50-16 92 3.6 127 5.0 

4 K6-50-12 92 3.6 157 6.2 

5 K6-51 92 3.6 133 5.3 

6 K6-53-10 92 3.6 140 5.5 

7 C2 102 4.0 164 6.5 

8 C3 102 4.0 202 8.0 

9 C4 102 4.0 202 8.0 

10 C5 102 4.0 205 8.1 

11 C6 102 4.0 188 7.4 
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CHAPTER  IV 

STATIC ANALYSIS 

ANALYSIS OF THE LAYER THICKNESS 

 As was explained in Chapter III, TTI conducted a two GPR survey with a Ground-

Coupled Antenna (200 MHz) and another GPR survey with an Air-launched Antenna 

(1.5GHz) on the SH 4/48 in Brownsville, Texas. This study was conducted  for both lanes 

K6 and K7, covering 106 FWD stations.  

 The data processing, positioning and interpretations of these measurements were 

done by Roadscanner Oy which analyzed the data using Road Doctor™ software. The 

processing methods were the static background removal, signal amplification and 

horizontal and vertical filtering. Roadscanner Oy reported the layer thickness of the AC 

and the flexible base course  after verifing with the thickness of the cores. Because the 

FWD stations are located at approximately 150 m (500 feet) spacing and Roadscanner Oy 

made the analysis of layer thickness every foot the average layer thickness was calculated 

for each 100 feet. Tables 10 and 11 show the predicted thicknesses reported by 

Roadscanners Oy, the average thickness and standard deviation calculated by +/- 50 feet 

of FWD stations. 

  The thicknesses of the AC and the flexible base (FB) for both lanes were plotted 

and can be seen in Figures 24, 25, 26 for the K6 lane, and 27, 28 and 29 for the K7 lane. 

These charts show four significant points, upon which it is necessary to remark: first, the 

thickness calculated by Roadscanner Oy; second, the average thickness; third, the core 

thickness taken in the initial 20 FWD stations; and finally, the layer thickness at each 

FWD station. It should be noted that there are more variations of AC thickness in the K6 

lane than in the K7 lane, as seen in Figures 25 and 27. In addition, in both lanes, the AC 

thicknesses increase and the FB thicknesses decrease in the downtown area, as seen in 

Figures 24 and 29. 
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TABLE 10    AC and FB  Predicted Thickness in the K6 Lane. 
FWD Predicted Thickness (cm) Mean thickness (cm) Std. Dev. (cm) 

Section  AC FB AC FB AC FB 
K6_1 22.20 28.80 21.88 29.05 1.35 0.80 
K6_2 22.20 27.40 21.88 29.05 1.35 0.80 
K6_3 24.30 30.90 21.88 29.05 1.35 0.80 
K6_4 17.10 30.10 18.33 29.24 1.16 0.80 
K6_5 22.20 30.10 20.39 29.05 1.49 0.80 
K6_6 21.20 28.90 20.39 29.05 1.49 0.80 
K6_7 19.10 28.30 20.39 29.05 1.49 0.80 
K6_8 22.00 30.10 20.39 29.05 1.49 0.80 
K6_9 17.60 29.80 18.95 29.17 1.08 0.80 

K6_10 19.10 28.30 18.95 29.17 1.08 0.80 
K6_11 20.70 29.10 18.95 29.17 1.08 0.80 
K6_12 22.80 28.40 20.74 29.31 1.41 1.69 
K6_13 22.80 29.80 20.74 29.31 1.41 1.69 
K6_14 20.20 28.80 20.74 29.31 1.41 1.69 
K6_15 19.70 28.70 20.74 29.31 1.41 1.69 
K6_16 22.00 29.40 20.74 29.31 1.41 1.69 
K6_17 22.80 29.10 20.74 29.31 1.41 1.69 
K6_18 19.70 29.10 20.74 29.31 1.41 1.69 
K6_19 20.40 28.60 20.74 29.31 1.41 1.69 
K6_20 20.70 29.20 20.74 29.31 1.41 1.69 
K6_21 20.70 29.00 20.74 29.31 1.41 1.69 
K6_22 20.70 30.80 20.74 29.31 1.41 1.69 
K6_23 19.10 32.60 20.74 29.31 1.41 1.69 
K6_24 23.30 29.30 20.74 29.31 1.41 1.69 
K6_25 22.80 28.40 20.74 29.31 1.41 1.69 
K6_26 22.80 28.70 20.74 29.31 1.41 1.69 
K6_27 20.70 29.90 20.74 29.31 1.41 1.69 
K6_28 20.20 29.30 20.74 29.31 1.41 1.69 
K6_29 19.70 31.10 20.74 29.31 1.41 1.69 
K6_30 16.60 30.40 18.49 29.68 1.68 1.69 
K6_31 18.10 29.40 18.49 29.68 1.68 1.69 
K6_32 22.80 28.00 18.49 29.68 1.68 1.69 
K6_33 17.30 30.90 18.49 29.68 1.68 1.69 
K6_34 16.80 30.90 18.49 29.68 1.68 1.69 
K6_35 19.70 30.00 18.49 29.68 1.68 1.69 
K6_36 19.70 29.30 18.49 29.68 1.68 1.69 
K6_37 20.70 30.80 20.78 29.33 1.56 1.69 
K6_38 17.10 29.90 17.84 30.03 0.58 1.69 
K6_39 22.80 29.60 20.53 29.34 1.34 1.69 
K6_40 21.20 27.80 20.53 29.34 1.34 1.69 
K6_41 17.30 33.90 17.76 30.10 1.18 1.69 
K6_42 18.60 31.70 17.76 30.10 1.18 1.69 
K6_43 16.60 29.60 15.09 31.17 1.99 1.69 
K6_44 22.80 29.60 21.10 30.55 2.24 1.69 
K6_45 18.60 28.00 17.04 28.89 1.11 1.69 
K6_46 15.50 30.00 17.04 28.89 1.11 1.69 
K6_47 16.60 28.40 17.04 28.89 1.11 1.69 
K6_48 23.50 23.10 24.32 21.92 1.62 1.69 
K6_49 28.00 17.50 24.32 21.92 1.62 1.92 
K6_50 24.40 20.40 24.32 21.92 1.62 1.92 
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TABLE 10    Continued 
FWD Final Thickness (cm) Mean thickness (cm) Std. Dev. (cm) 

Section  AC FB AC FB AC FB 
K6_51 16.60 29.60 17.71 27.19 1.48 2.05 
K6_52 19.70 25.60 17.71 27.19 1.48 2.05 
K6_53 19.10 33.30 19.68 30.77 1.32 2.03 
K6_54 23.50 21.60 22.88 23.02 1.65 1.23 
K6_55 23.30 21.50 22.88 23.02 1.65 1.23 
K6_56 20.70 23.80 22.88 23.02 1.65 1.23 

 

 

 
FIGURE 24   AC and FB Predicted Thickness  in the K6 Lane.  
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FIGURE 25    AC Predicted Thickness in the K6 Lane.  

 

  
FIGURE 26    Flexible Base Predicted Thickness in the K6 Lane.  
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FIGURE 27    AC  Predicted Thickness  in the K7 Lane.  
 
 

  
FIGURE 28    Flexible Base Predicted Thickness  in the K7 Lane. 
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FIGURE 29   AC and FB Predicted Thickness  in the K7 Lane.  
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TABLE 11    AC and FB Predicted Thickness in the K7 Lane.  
FWD Final Thickness (cm) Mean thickness (cm)  Std. Dev.(cm) 

Section  AC FB AC FB AC FB 
K7_1 21.20 30.00 20.50 29.64 1.63 1.06 
K7_2 23.80 30.50 20.50 29.64 1.63 1.06 
K7_3 21.50 32.60 20.50 29.64 1.63 1.06 
K7_4 22.80 30.50 20.50 29.64 1.63 1.06 
K7_5 18.60 30.00 20.50 29.64 1.63 1.06 
K7_6 21.00 31.30 20.50 29.64 1.63 1.06 
K7_7 19.10 29.00 20.50 29.64 1.63 1.06 
K7_8 21.20 29.80 20.50 29.64 1.63 1.06 
K7_9 22.80 28.70 20.50 29.64 1.63 1.06 

K7_10 17.80 29.30 20.50 29.64 1.63 1.06 
K7_11 23.80 30.80 20.50 29.64 1.63 1.06 
K7_12 21.20 28.20 20.50 29.64 1.63 1.06 
K7_13 19.10 30.30 20.50 29.64 1.63 1.06 
K7_14 21.20 29.90 20.50 29.64 1.63 1.06 
K7_15 23.30 29.00 20.50 29.64 1.63 1.06 
K7_16 21.70 28.50 20.50 29.64 1.63 1.06 
K7_17 19.90 29.50 20.50 29.64 1.63 1.06 
K7_18 17.60 30.00 20.50 29.64 1.63 1.06 
K7_19 22.50 29.50 20.50 29.64 1.63 1.06 
K7_20 18.20 32.40 20.50 29.64 1.63 1.06 
K7_21 20.80 29.00 20.50 29.64 1.63 1.06 
K7_22 19.10 30.70 20.50 29.64 1.63 1.06 
K7_23 19.10 30.30 20.50 29.64 1.63 1.06 
K7_24 22.20 28.40 20.50 29.64 1.63 1.06 
K7_25 19.10 29.20 20.50 29.64 1.63 1.06 
K7_26 21.70 29.60 20.50 29.64 1.63 1.06 
K7_27 22.00 30.10 20.50 29.64 1.63 1.06 
K7_28 21.50 30.20 20.50 29.64 1.63 1.06 
K7_29 22.00 32.30 20.50 29.64 1.63 1.06 
K7_30 21.60 28.60 20.50 29.64 1.63 1.06 
K7_31 18.20 30.90 20.50 29.64 1.63 1.06 
K7_32 22.40 30.80 20.50 29.64 1.63 1.06 
K7_33 19.90 31.00 20.50 29.64 1.63 1.06 
K7_34 21.50 30.20 20.50 29.64 1.63 1.06 
K7_35 21.10 30.20 20.50 29.64 1.63 1.06 
K7_36 21.00 29.20 20.50 29.64 1.63 1.06 
K7_37 22.80 27.80 23.64 29.64 0.98 1.06 
K7_38 18.60 26.00 19.24 29.64 1.07 1.06 
K7_39 24.10 20.90 24.50 22.82 0.93 1.33 
K7_40 24.60 22.80 24.50 22.82 0.93 1.33 
K7_41 25.00 22.20 24.50 22.82 0.93 1.33 
K7_42 26.10 21.50 24.50 22.82 0.93 1.33 
K7_43 24.30 22.20 24.50 22.82 0.93 1.33 
K7_44 24.20 21.50 24.50 22.82 0.93 1.33 
K7_45 24.10 20.90 24.50 22.82 0.93 1.33 
K7_46 19.40 23.00 21.14 22.82 1.31 1.33 
K7_47 22.20 23.10 21.14 22.82 1.31 1.33 
K7_48 24.10 21.60 21.14 22.82 1.31 1.33 
K7_49 20.20 31.10 19.52 29.65 0.92 0.75 
K7_50 19.90 29.20 19.52 29.65 0.92 0.75 
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ANALYSIS OF THE LAYER MODULI 

 As it was stayed previously, FWD data was collected seven different times during 

three years: 2001, 2002, and 2003. The MODULUS 6.0 software (18) was used for the 

determination of moduli values. Due to the apparent thickness variations along the K6 

lane, the backcalculated modulus was done by station using the predicted thickness from 

Tables 10 and 11. Several trials have been made to adjust the backcalculated modulus 

beginning with the predicted thickness. Figure 30 gives the initial idea about the 

pavement structural layers  used to determine  the backcalculated moduli. They are 

asphalt concrete (AC), flexible base (FB), and subgrade (SG). Unfortunately, the first 

attempt had a high error rate between the measured and predicted deflections more than 

10% in all the downtown stations in the K6 lane, from K6-42 up to K6-56. In addition, in 

some of the stations such as K6-11, K6-33, K7 -31 the backcalculated moduli did not 

have variations over time. It means that they did not show any time-temperature 

relationships. Therefore, it was evaluated different ways of modeling the pavement 

materials underlying the AC surface.    

 

         Legend Layer Thickness    

       
AC  20 cm (8 in) 
       
FB  30 cm  (12 in) 
       
SG  Variable  

 FIGURE 30    Initially Assumed Pavement Structure Layers. 

 

 The next attempts at reducing the error rate were made by combining the flexible 

base predicted thickness with lower layer thicknesses such as the salvaged flexible base 

(Salv.) and treated limestone (LT). This gave a new flexible base thickness (NFB). These 

lower layer thicknesses were checked out in the field, at the K6-4 FWD station as seen in 

Figure 31, and with the maintenance records of the Pharr District. The representation of 
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the pavement layering for modulus backcalculation resulting in lower errors is shown in 

the Figure 32. 

 Since the backcalculated modulus is determined by station using the predicted 

thickness from Tables 10 and 11, the thickness values that appear on the Figures 30, 31 

and 32 are only approximated. 

 

     Legend Layer Thickness 

       
AC  20 cm  (8 in) 
       
FB  30 cm  (12 in) 
       
Salv  12.7cm    (5 in) 
       
LT  30 cm (12 in) 
       
SG  Variable    

 FIGURE 31    Pavement Structure Thickness in the K6-4 FWD Station. 

 

 

   Legend Layer Thickness 

       
AC  20 cm  (8 in) 
       
       
NFB  74 cm (29 in) 
       
       
       
SG  Variable   

FIGURE 32    Pavement Structure Layers Used in Backcalculated Modulus.  
 

 The backcalculated modulus has been plotted vs. time by station. This means that 

the AC, NFB and SG moduli can be seem in same plot in the bar chart. Appendix B 

shows all these plots for both lanes K6 and K7. Tables 12 and 13 indicate the percentage 

of error in backcalculated modulus found in these analyses. 
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TABLE 12    Percentage of the Backcalculated Modulus Error by Stations for the 
K6 Lane.  

Section FWD 2001 2002 
 Stations Feb May Jul Aug Mar Jul Dec 

K6-A 6-1 5 5 4 6 5 5 4 
K6-B 6-2 3 3 2 2 2 3 1 
K6-D 6-3 3 4 2 3 3 3 4 
K6-D 6-4 1 2 4 1 2 3 2 
K6-D 6-5 4 3 3 3 2 2 3 
K6-D 6-6 2 2 5 4 2 4 2 
K6-D 6-7 4 2 5 4 1 2 4 
K6-D 6-8 1 4 2 3 * 2 2 
K6-D 6-9 2 2 4 2 * * * 
K6-D 6-10 1 2 2 1 3 2 2 
K6-D 6-11 2 1 3 1 2 1 2 
K6-D 6-12 1 2 2 2 1 3 4 
K6-E 6-13 3 3 5 4 4 2 5 
K6-E 6-14 3 1 3 2 3 2 4 
K6-F 6-15 2 2 3 4 1 3 1 
K6-F 6-16 2 2 4 4 5 4 2 
K6-F 6-17 5 2 2 4 2 5 2 
K6-F 6-18 5 5 3 4 3 5 4 
K6-F 6-19 2 1 5 5 3 3 4 
K6-F 6-20 4 2 5 3 4 3 2 
K6-F 6-21 3 4 5 2 3 3 3 
K6-F 6-22 3 2 3 2 6 4 1 
K6-F 6-23 3 4 6 5 5 5 4 
K6-G 6-24 1 4 5 5 5 5 2 
K6-G 6-25 3 4 4 5 5 5 4 
K6-G 6-26 5 2 5 6 1 4 2 
K6-H 6-27 2 4 2 4 2 4 5 
K6-H 6-28 3 5 5 5 2 4 5 
K6-H 6-29 1 3 5 3 3 4 3 
K6-H 6-30 5 5 5 3 2 5 3 
K6-H 6-31 1 4 3 4 3 3 5 
K6-H 6-32 2 2 4 5 5 4 5 
K6-H 6-33 1 5 4 6 4 * 5 
K6-H 6-34 2 2 3 1 3 3 2 
K6-H 6-35 1 5 5 5 5 5 4 
K6-H 6-36 4 3 4 1 2 3 4 
K6-H 6-37 0 4 2 5 5 5 5 
K6-H 6-38 1 3 4 6 2 5 5 
K6-I 6-39 1 6 5 5 5 5 4 
K6-J 6-40 4 5 5 5 5 6 5 
K6-K 6-41 4 3 5 5 2 5 5 
K6-K 6-42 9 7 12 12 5 2 2 
K6-L 6-43 7 9 10 19 9 8 6 
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TABLE 12    Continued 
Section FWD 2001 2002 

 Stations Feb May Jul Aug Mar Jul Dec 
K6-L 6-44 2 2 2 2 1 2 4 
K6-L 6-45 1 3 3 4 3 3 2 
K6-L 6-46 5 5 3 4 4 5 4 
K6-L 6-47 3 3 3 4 3 5 2 
K6-L 6-48 1 3 3 3 2 2 2 
K6-L 6-49 4 4 4 5 2 5 2 
K6-M 6-50 4 3 4 3 3 5 3 
K6-O 6-51 3 3 3 4 3 5 3 
K6-O 6-52 4 5 4 4 4 5 3 
K6-O 6-53 1 2 1 3 1 2 5 
K6-O 6-54 4 6 7 7 7 7 3 
K6-O 6-55 1 3 4 5 3 4 4 
K6-P 6-56 2 4 5 6 3 3 4 

 * No data. 
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TABLE 13    Percentage of the Backcalculated Modulus Error by Stations for the   
K7 Lane. 

Section FWD 2001 2002 2003 

 Stations Feb May Aug Mar Jul Oct Dec Apr 
K7-A K7-1 1 2 4 1 2 2 1 * 
K7-A K7-2 1 2 5 2 1 2 1 2 
K7-A K7-3 1 1 2 2 1 1 1 4 
K7-A K7-4 1 1 1 1 1 1 5 1 
K7-A K7-5 3 2 3 3 3 2 2 3 
K7-A K7-6 2 1 * 2 2 2 3 3 
K7-A K7-7 1 1 1 1 1 4 2 1 
K7-A K7-8 1 2 2 * * * * * 
K7-A K7-9 1 2 3 * * * * * 
K7-A K7-10 1 1 5 2 3 1 4 2 
K7-A K7-11 2 2 4 2 2 * 5 2 
K7-A K7-12 2 5 1 2 4 3 2 1 
K7-A K7-13 1 3 1 2 2 1 2 1 
K7-A K7-14 2 1 2 2 2 1 1 5 
K7-A K7-15 4 5 4 4 5 5 3 1 
K7-A K7-16 1 4 1 3 4 3 3 4 
K7-A K7-17 1 3 1 1 2 3 2 1 
K7-A K7-18 2 2 3 1 4 4 3 1 
K7-A K7-19 2 5 4 4 3 4 1 4 
K7-A K7-20 1 * 3 1 1 1 2 2 
K7-A K7-21 1 5 0 5 1 1 5 4 
K7-A K7-22 0 1 1 1 1 * 4 1 
K7-A K7-23 1 1 2 2 2 2 3 3 
K7-A K7-24 4 1 1 3 1 2 3 1 
K7-A K7-25 2 1 2 3 2 3 4 2 
K7-A K7-26 1 2 2 0 2 5 2 1 
K7-A K7-27 1 2 2 1 4 3 1 1 
K7-A K7-28 4 1 2 1 1 2 2 1 
K7-A K7-29 3 3 4 2 * 3 3 3 
K7-A K7-30 4 5 4 4 5 2 2 3 
K7-A K7-31 4 3 3 3 4 3 4 3 
K7-A K7-32 4 2 4 3 2 2 4 2 
K7-A K7-33 1 3 4 2 2 1 3 3 
K7-A K7-34 1 2 3 2 1 1 1 1 
K7-A K7-35 1 2 3 4 1 2 2 4 
K7-A K7-36 1 5 4 5 1 2 1 6 
K7-B K7-37 4 5 2 5 5 4 4 4 
K7-C K7-38 8 10 6 8 9 11 7 13 
K7-D K7-39 1 3 1 3 2 4 4 2 
K7-E K7-40 1 2 3 0 2 4 2 1 
K7-E K7-41 2 1 3 2 2 2 3 1 
K7-E K7-42 4 2 4 1 2 5 5 3 
K7-E K7-43 2 2 2 3 3 4 1 * 
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TABLE 13    Continue 
Section FWD 2001 2002 2003 

 Stations Feb May Aug Mar Jul   Oct     Dec   Apr 
K7-E K7-44 1 5 2 1 5 5 1 2 
K7-E K7-45 4 3 3 5 3 4 4 3 
K7-E K7-46 2 4 4 4 4 4 4 4 
K7-F K7-47 2 3 2 5 3 5 3 2 
K7-F K7-48 2 1 3 3 4 4 2 1 
K7-F K7-49 2 2 2 3 2 3 1 2 
K7-F K7-50 3 2 4 3 2 2 4 9 

 * No data. 



  

 

50

CHAPTER V 

DYNAMIC ANALYSIS 

DYNAMIC MODULUS AND CREEP COMPLANCE PARAMETERS 

 For the dynamic analysis the computer program DBSID was used, (18). This 

program uses the FWD full time histories of load and displacement for the 

backcalculation of pavement material properties. This program permits the simulation of 

a pavement layer structure consisting of up to three layers. The consideration taken for 

this analysis was that the first layer (AC) is modeled as a viscoelastic material and the 

second layer (flexible base) and third layer (subgrade) as damped elastic material. Since 

the maximum iteration number of DBSID is 40 iterations, there is a variety of results that 

may be analyzed. These results were analyzed by two criteria: by plotting the measured 

and predicted displacement history data and by the root mean square error (RMSE) of 

deflections of each iteration. 

 Even though there is a significant amount data to process in dynamic analysis, in 

this study, only the core stations were analyzed. These FWD stations are K6-1 K6-4, K6-

11, K6-23, K6-29, K6-35, K6-48, K7-3, K7-11, K7-20, K7-31, K7-37 and K7-40. The 

stations K6-50, K6-51 and K6-53 were omitted because  they did not give clear results in 

the laboratory testing. In addition, K7-9 was not analyzed due to the fact that FWD data 

was stopped due to construction that resulted ina change of pavement at this station.  

 In Appendix C one may see the plots of the measured and predicted displacement 

histories by the FWD stations and the time corresponding to both the  K6 and K7 lanes. 

These plots show that the predicted measurement fit the measured values quite adequately 

in most of the FWD stations. However, there were some FWD stations that did not 

provide a good results in dynamic analysis, such as K7-3 during any months, K6-1 and 

K6-4 in the month of February of 2001, and K6-35 in May and August of 2001, March, 

July and August of 2002.  
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 In addition, Tables 14 to 26 present the creep compliance parameters, layer 

modulus, depth to a rigid layer (DB), and RMSE in the predicted deflections by station 

and time.  

 

Lane K6 
 
TABLE 14     Creep Compliance Parameters and Modulus from K6-1 FWD Station. 

        MODULUS (MPa) DB RMSE 
Month Do D1 m  AC FB SG (m) (µm) 
May 01 3.3E-05 5.6E-02 0.344 684 66 66 66 22 
Jul 01 1.7E-05 3.4E-02 0.417 1602 87 87 87 13 

Aug 01 1.9E-06 6.2E-02 0.354 648 48 48 48 28 
Mar 02 1.0E-03 4.5E-02 0.474 1322 56 56 56 31 

 
 

 

TABLE 15     Creep Compliance Parameters and Modulus from K6-4 FWD Station. 
        MODULUS (MPa) DB RMSE 

Month Do D1 m  AC FB SG (m) (µm) 
May 01 1.0E-05 1.5E-02 0.430 3718 88 90 6 9 
Jul 01 1.7E-05 1.5E-02 0.435 3903 75 70 6 11 
Mar 02 1.3E-05 1.5E-02 0.415 3530 86 86 6 10 
Jul 02 1.3E-05 2.7E-02 0.497 2854 111 71 7 14 

 
 

 
 

TABLE 16    Creep Compliance Parameters and Modulus from K6-11 FWD Station. 
        MODULUS (MPa) DB RMSE 

Month Do D1 m  AC FB SG (m) (µm) 
Feb 01 3.3E-06 2.8E-03 0.322 1227 869 93 6 1 
May 01 7.3E-06 1.7E-02 0.476 4052 818 80 6 2 
Jul 01 1.4E-05 5.0E-02 0.539 1881 911 82 6 4 

Aug 01 1.9E-05 9.9E-02 0.577 1138 816 75 5 3 
Mar 02 8.3E-06 1.2E-02 0.443 5113 758 88 7 3 
Jul 02 1.0E-05 3.0E-02 0.498 2653 1007 89 6 2 
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TABLE 17    Creep Compliance Parameters and Modulus from K6-23 FWD Station. 
        MODULUS (MPa) DB RMSE 

Month Do D1 m  AC FB SG (m) (µm) 
Feb_01 5.00E-06 1.37E-02 0.384 3358 551 73 6 2 
May_01 1.67E-05 6.66E-02 0.500 1185 316 76 6 8 
Jul_01 1.58E-05 5.35E-02 0.398 918 542 67 5 5 

Aug_01 3.33E-05 1.77E-01 0.485 416 501 74 5 5 
Mar_02 1.04E-05 1.93E-02 0.413 2723 503 68 5 3 
Jul_02 1.48E-05 4.59E-02 0.427 1223 656 73 5 5 

 

 

 

TABLE 18    Creep Compliance Parameters and Modulus from K6-29 FWD Station. 
        MODULUS (MPa) DB RMSE 

Month Do D1 m  AC FB SG (m) (µm) 
Feb_01 3.50E-06 3.54E-03 0.308 9028 438 99 7 2 
May_01 1.04E-05 1.33E-02 0.390 3538 337 89 7 4 
Jul_01 2.78E-07 1.38E-02 0.399 3582 564 82 6 3 

Aug_01 2.27E-05 8.24E-02 0.572 1332 326 81 6 6 
Mar_02 8.77E-06 8.60E-03 0.374 5070 519 85 7 3 
Jul_02 1.25E-05 1.41E-02 0.441 4244 574 81 6 3 

 

 

 

TABLE 19    Creep Compliance Parameters and Modulus from K6-35 FWD Station. 
        MODULUS (MPa) DB RMSE 

Month Do D1 m  AC FB SG (m) (µm) 
Feb_01 4.55E-06 4.55E-03 0.294 6564 111 109 5 11 
Jul_01 3.13E-05 1.02E-01 0.580 1116 95 96 6 15 

 

 

 

TABLE 20    Creep Compliance Parameters and Modulus from K6-48 FWD Station. 
        MODULUS (MPa) DB RMSE 

Month Do D1 m  AC FB SG (m) (µm) 
Feb_01 1.95E-05 3.21E-02 0.416 1663 73 83 6 5 
Jul_01 5.51E-05 1.99E-01 0.549 496 66 69 5 12 

Aug_01 8.74E-05 2.40E-01 0.483 304 75 59 4 14 
Mar_02 3.54E-05 8.67E-02 0.486 853 72 75 5 8 
Jul_02 3.98E-05 1.14E-01 0.514 739 70 76 5 9 
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Lane K7 

TABLE 21    Creep Compliance Parameters and Modulus from K7-11 FWD Station. 
    MODULUS (MPa) DB RMSE 

Month Do D1 m AC FB SG (m) (µm) 
May_01 7.01E-06 1.37E-02 0.387 3426 481 108 7 4 
Aug_01 8.33E-06 1.20E-02 0.337 3077 478 102 6 4 
Mar_02 5.00E-06 2.01E-03 0.202 9488 364 105 7 2 
Jul_02 1.41E-05 3.27E-02 0.444 1871 477 90 6 3 

April_03 5.81E-06 5.95E-03 0.315 5588 456 111 7 3 
 

 

 

TABLE 22    Creep Compliance Parameters and Modulus from K7-15 FWD Station. 
    MODULUS (MPa) DB RMSE 

Month Do D1 m AC FB SG (m) (µm) 
May_01 7.14E-06 1.88E-02 0.356 2156 390 118 8 5 
Aug_01 7.14E-06 9.73E-03 0.289 3013 407 108 8 4 
Mar_02 3.33E-06 4.30E-03 0.229 5107 439 115 8 4 
Jul_02 1.19E-05 3.13E-02 0.430 1833 285 116 7 6 
Oct_02 9.09E-06 2.96E-02 0.553 3431 230 92 7 11 

April_03 4.89E-06 2.74E-03 0.214 7418 287 93 6 2 
 

 

 

TABLE 23    Creep Compliance Parameters and Modulus from K7-20 FWD Station.  
    MODULUS (MPa) DB RMSE 

Month Do D1 m AC FB SG (m) (µm) 
Feb_01 3.70E-06 2.98E-03 0.221 7076 471 82 7 2 
Aug_01 8.33E-06 6.48E-03 0.332 5539 498 72 7 3 
Mar_02 3.65E-06 3.85E-03 0.298 7967 508 72 7 3 
Jul_02 1.11E-05 1.75E-02 0.424 3189 511 73 6 3 
Oct_02 1.22E-05 3.22E-02 0.488 2336 540 72 7 3 

April_03 4.07E-06 3.07E-03 0.241 7547 405 82 7 3 
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TABLE 24    Creep Compliance Parameters and Modulus from K7-31 FWD Station. 
    MODULUS (MPa) DB RMSE 

Month Do D1 m AC FB SG (m) (µm) 
May_01 7.14E-06 5.80E-03 0.415 9165 593.011 84 5 3 
Aug_01 1.25E-05 2.44E-02 0.671 7067 839.375 17 2 15 
Jul_02 1.11E-05 1.20E-02 0.501 6606 580.725 72 5 3 
Oct_02 1.04E-05 3.79E-02 0.528 2382 781.693 78 4 6 

April_03 6.10E-06 2.70E-03 0.341 13824 682.988 87 5 3 
 

 

 

TABLE 25    Creep Compliance Parameters and Modulus from K7-37 FWD Station. 
    MODULUS (MPa) DB RMSE 

Month Do D1 M AC FB SG (m) (µm) 
Feb_01 2.63E-06 8.67E-03 0.356 4664 436 108 8 2 
May_01 1.90E-07 3.28E-02 0.456 1981 337 105 8 4 
Aug_01 1.25E-05 4.35E-02 0.467 1572 408 107 8 3 
Mar_02 4.55E-06 1.19E-02 0.356 3399 382 112 8 3 
Jul_02 1.79E-05 5.01E-02 0.447 1241 276 100 9 9 
Oct_02 2.00E-05 5.90E-02 0.562 1788 190 99 8 12 

April_03 7.14E-06 2.71E-02 0.496 2877 355 117 7 6 
 

 

 

TABLE 26    Creep Compliance Parameters and Modulus from K7-40 FWD Station. 
    MODULUS (MPa) DB RMSE 

Month Do D1 m AC FB   SG  (m)  (µm) 
Feb_01 6.35E-06 8.20E-03 0.347 4732 123 85 6 3 
May_01 1.25E-05 2.77E-02 0.452 2290 122 74 6 4 
Aug_01 1.79E-05 2.90E-02 0.461 2280 144 76 5 4 
Mar_02 8.05E-06 9.34E-03 0.343 4075 133 77 6 3 
Jul_02 2.32E-05 7.32E-02 0.519 1186 95 69 5 9 
Oct_02 1.67E-05 6.39E-02 0.586 1840 98 68 6 11 

April_03 1.02E-05 1.63E-02 0.401 3075 119 79 6 3 
 

  

 In Chapter VIII the backcalculated AC modulus obtained from dynamic analysis 

will be discussed and compared to those from static analysis. In addition, the correlation 

between the creep compliance parameters from the dynamic analysis and laboratory 

testing will be analyzed. 
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CHAPTER  VI 

LABORATORY TESTING 

 The main purpose of laboratory testing is to get helpful information about  the 

changes in the AC layer of the pavement as it is affected by routine overweight truck 

traffic. Due to the fact that AC undergoes time-dependent changes, it is significant to 

consider this condition in material characterizations. According to the AASHTO 2002 

Design Guide (19), the long-term, time-dependent property changes come about because 

of one of these conditions: the chemical and physical hardening of the asphalt binder due 

to short or long–term aging of the AC binder, curing caused by evaporation of the 

moisture inside of asphalt emulsion system, and pozzuolanic  reactions of cementitious 

materials.  

 In addition, the 2002 Design Guide (19) indicates that materials subjected to load-

related fatigue distress may undergo a severe degradation of properties with time and load 

repetitions. Microcracks may develop, leading to a reduced modulus. The possible 

reduction of modulus due to this, would lead to an increase in a stress and larger 

possibility of permanent deformation. 

DYNAMIC MODULUS OF THE ASPHALT CONCRETE MIXTURE /E*/ 

 The standard tests in the NCHRP 1-37 DM1 Draft Standard Test Method for the 

Dynamic Modulus of Asphalt Concrete Mixtures ASU May –2002 (20), and ASTM 

D3497-79, Standard Test Method for Dynamic Modulus of Asphalt Mixtures (21) cover 

procedures for preparing and testing to determine the dynamic modulus and phase angle 

over a range of temperature and loading frequencies. Both tests are carried out by 

applying a sinusoidal (haversine) axial compression stress to the asphalt concrete sample 

at a given temperature and loading frequency. The applied stress and recoverable axial 

strain response of the samples are measured to calculate the dynamic modulus and phase 

angle. The method produces results that differ with the frequencies and temperatures used 
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in the testing. While ASTM D3497-79 (21) uses temperatures such as 5, 25 and 40 oC 

with frequencies of 1, 4 and 16 Hz, the NCHRP 1-37 (20) has a greater range of 

temperatures and frequencies used, such  as -10, 4, 20, 37.8 and 54.4 oC, and 25, 10, 5, 1, 

0.5 and 0.1 Hz, respectively. 

 On the other hand, the number of replications indicated by ASTM D3497-79 is 6 

samples of the pavement cores, while the NCHRP 1-37 is limited to 4 specimens if it is 

used with two LVDTs per specimen. Therefore, with the purpose of getting the best 

simulation of the field’s AC properties the NCHRP 1-37 standard was selected to 

determine the dynamic (complex) modulus of the AC cores. 

 It is known that the temperatures in the city of Brownsville do not drop a grade 

below zero during the winter season. In addition, since the laboratory testing was begun 

during Summer of 2002 and the only pavement temperatures from the FWD data 

available by that time, as seen in Table 27, reflect that the pavement temperature at  25.4 

mm (1 in) or predicted pavement temperature at middle depth had a range  between  

21.1oC  and 54.4oC (70 oF and 130 oF). Consequently, the temperatures used in the test 

were six: 21.1, 29.4, 37.8, 43.3 and 54.4 oC (70, 85, 100, 110 and 130 oC).  

 

 

TABLE 27    Field and Predicted Pavement Temperatures by March 2002. 

  
Field  Pav.  Temperature 

25.4 mm (1") 
Predicted Pav  Temperature  

at middle depth 
Lane Month Min Max Mean Min Max Mean 

  o F o C o F o C o F o C o F oC o F o C o F o C
K6 Feb_01 76 24 91 33 85 30 79 26 88 31 83 28 

 May_01 103 39 124 51 115 46 97 36 108 42 103 39 
 Jul_01 112 44 127 53 119 48 109 43 116 47 112 45 
 Aug_01 135 57 145 63 135 57 116 46 126 52 121 49 
 Mar 02 108 42 119 48 113 45 99 37 105 41 102 39 

K7 Feb_01 78 26 92 33 85 29 89 32 94 34 91 33 
 May_01 115 46 128 53 122 50 99 37 108 42 103 39 
 Aug_01 * * * * * * 107 42 111 44 108 42 
 Mar 02 89 32 104 40 96 36 94 35 112 44 103 40 

  * No data. 
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 As was mentioned in Chapter II the number of AC cores taken initially were 

reduced by handling or breaking problems. The final number of tested cores were 12 

cores for the lane K6, and 9 for the lane K7, and an additional 4 samples collected in the 

vicinity of the K6-4 FWD station. Tables 28, 29 and 30 specify core measurements from 

the laboratory testing. Even though in the NCHRP 1-37 standard specifies that the 

dynamic modulus testing ought to be tested on cores with nominal diameters of 101,6 

mm (4 in), the second set of samples taken in the downtown area were cored with smaller 

diameters due to their lower stiffness.  It is significant that the cores did not have a 

homogenous AC material with height (thickness). For that reason the position of the 

linear variable differential transformer (LVDT) clamps were set up  25mm (1”) from the 

top and the bottom ends of the surface cores. The LVDT gauge length (GL) that was 

employed on the tested cores is detailed in Figure 33. 

 The set of frequencies and number of cycles used were those indicated in  the 

selected standard. They are 25, 10, 5, 1, 0.1 and 0.5 Hz, and with 200, 200, 100, 20, 15, 

and 15 cycles, respectively.  Before cores could be tested, they were placed in the 

environmental chamber to equilibrate them to the required  temperature. The specimen 

C2 was used as a dummy specimen in the preparation of this test. 

 

 

   TABLE  28    Laboratory Measurements of the AC Cores of the K6 Lane. 
Nº ID Diameter Height GL Diameter Height GL 

  (mm) (mm) (mm) (in) (in) (in) 
1 K6-1 102 195 142 4 8 6 
2 K6-4 102 165 117 4 6 5 
3 K6-11 102 193 114 4 8 4 
4 K6-23 102 170 116 4 7 5 
5 K6-29 102 204 124 4 8 5 
6 K6-35 102 194 105 4 8 4 
7 K6-48-16 92 208 130 3.6 8 5 
8 K6-48-12 92 164 102 3.6 6 4 
9 K6-50-16 92 127 76 3.6 5 3 

10 K6-50-12 92 157 102 3.6 6 4 
11 K6-51 92 133 83 3.6 5 3 
12 K6-53-10 92 140 102 3.6 6 4 
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TABLE  29    Laboratory Measurements of the AC  Cores of the K7 Lane. 
Nº ID Diameter Height GL Diameter Height GL 

  (mm) (mm) (mm) (in) (in) (in) 
1 K7-3 102 208 157 4 8 6 
2 K7-9 102 192 141 4 8 6 
3 K7-11 102 209 151 4 8 6 
4 K7-12 102 206 152 4 8 6 
5 K7-15 102 208 141 4 8 6 
6 K7-20 102 209 151 4 8 6 
7 K7-31 102 206 141 4 8 6 
8 k7-37 102 206 155 4 8 6 

10 K7-40 102 207 152 4 8 6 
  

 

 

  TABLE  30   Laboratory Measurements of the AC Cores on K6-4 FWD Station. 
Nº ID Diameter Height GL Diameter Height GL 

  (mm) (mm) (mm) (in) (in) (in) 
1 C2 102 164 115 4.0 6.5 5 
2 C3 102 195 151 4.0 7.7 6 
3 C4 102 202 150 4.0 8.0 6 
4 C5 102 205 152 4.0 8.1 6 
5 C6 102 188 90 4.0 7.4 4 
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 FIGURE 33    Location of the LVDTs at the AC Cores.   

 

 

  The laboratory data were processed by computer  program to get complex 

modulus (E*) and  creep compliance (D) with their corresponding real and imaginary 

parts. The dynamic complex modulus (/E*/) is got from the absolute value of the complex 

modulus.  

 The calculations of the angle phase (φ)  

    φ = (ti/ tp) x 360  

were determined from max (min) points and not from the mid point values. Figure  34 

shows the time lag (ti)  and loading cycle period (tp) used.   
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  All of these properties (E*, D and /E*/) were calculated with four approaches 

named Case 1, Case 2, Case 3, and Case 4. 

• Case 1: The amplitude of the load and deformation were from regresion data 

and the angle phase was calculated from the regression at minimun points. 

• Case 2: The amplitude of the load and deformation were from raw data and 

the angle phase was from the regression at minimum points. 

• Case 3: The amplitude of the load and deformation were from regresion data 

and the angle phase was from the regression at maximum points.  

• Case 4: The amplitude of the load and deformation were from raw data and 

the angle phase was from the regression at maximum points. 

 Appendix D shows all of the possible combinations (a max 12 combinations in 

each testing temperature) neccesary to get the curves of the dynamic modulus at different 

frequencies. Figures 35 to 49 present the best results in each tested core.   
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 FIGURE 34    Stresses and Strains in Complex Modulus Test. 
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 FIGURE 35    Dynamic (Complex) Modulus of the K6-1 FWD Station. 
   Case 1 and Case 3.   
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FIGURE 36    Dynamic (Complex) Modulus of the K6-4 FWD Station. 

             Case 1 and  Case 3.  
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FIGURE 37    Dynamic (Complex)  Modulus of the K6-11 FWD Station. 
      Case 1 and  Case 3.  
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FIGURE 38    Dynamic (Complex)  Modulus of the K6-23 FWD Station. 
                         Case 1 and  Case 3.  
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FIGURE 39     Dynamic (Complex) Modulus of the K6-29 FWD Station. 
  Case 2 and  Case 4.  
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FIGURE 40     Dynamic (Complex)  Modulus of the K6-48 FWD Station. 
 Case 1 and  Case 3. 
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Lane K7 
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FIGURE 41    Dynamic (Complex)  Modulus of the K7-3 FWD Station.  
 Case 2 And  Case 4. 
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 FIGURE 42    Dynamic (Complex)  Modulus of the K7-9 FWD Station. 

     Case 1 and  Case 3.  
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FIGURE 43    Dynamic (Complex) Modulus of the K7-11 FWD Station.  
             Case 1 and  Case 3. 
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FIGURE 44    Dynamic (Complex)  Modulus of the K7-15 FWD Station.  
   Case 1 and  Case 3. 
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FIGURE 45    Dynamic (Complex)  Modulus of the K7 20 FWD Station.  
   Case 2 and  Case 4.  
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FIGURE 46    Dynamic (Complex)  Modulus of the K7-31 FWD Station.  
     Case 1 and  Case 3. 
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FIGURE 47     Dynamic (Complex)  Modulus of the K7-37 FWD Station.  
   Case 1 and  Case 3. 
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FIGURE 48     Dynamic (Complex) Modulus of the K7 40 FWD Station  
                         Case 1 and  Case 3  
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FIGURE 49    Dynamic (Complex) Modulus of the C6 Core. 
   Case 1 and  Case 3.  

 
 
 

CREEP COMPLIANCE PARAMETERS  

 Due to the fact that the creep compliance (D) is a  complex number defined as the 

inverse of the complex modulus (E*) for a linear viscoeslatic material (22) whose values, 

real and imaginary, were calculated with the computer programm indicated before; then, 

it is possible to backcalculate the parameters of the creep compliance as defined in 

equations 2.1, 2.2 and 2.3. Tables 31 to 41 give the predicted creep compliance 

parameters, Do, D1 and “m” , based upon values obtained from computer analysis of  

laboratory data. These tables also mention the Sum of Square Error (SSE) of each data set 

calculated. Even though all core stations were performed by computer programs to 

obtained the creep compliance parameters, some stations such as K6-29, K6-35, K7-3 and 

K7-9 could  not get valid “m” values. The  criteria to select valid “m” values was that the 

“m” values should increase as the temperature increases.  

 However, most  “m” values of  core stations fall at the higher temperature 54.4 oC  

(130 oF) for both the K6 and the K7 lane. 
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Lane K6 

 
      TABLE 31    Creep Compliance Parameters of the K6-1 FWD Station. 

No Temperature Case Do D1 m SSE 
 o C oF      

1 21.1 70 C1 1.48E-05 1.76E-04 3.89E-01 2.18E-01 
2 29.4 85 C2 2.69E-11 5.40E-04 4.06E-01 1.68E-01 
3 37.8 100 C4 1.77E-04 1.28E-03 4.29E-01 1.59E-01 
4 43.3 110 C1 3.31E-04 1.39E-03 4.28E-01 5.97E-01 
5 54.4 130 C4 8.68E-04 1.76E-03 5.19E-01 1.46E+00 

 
 
 
 
      TABLE 32    Creep Compliance Parameters of the K6-4 FWD Station.  

No Temperature Case Do D1 m SSE 
 o C o F      

1 21.1 70 C1 4.11E-05 3.47E-04 4.64E-01 2.22E-01 
2 29.4 85 C2 4.89E-05 4.91E-04 4.90E-01 1.52E-01 
3 37.8 100 C2 1.12E-04 1.66E-03 5.31E-01 5.61E-01 
4 43.3 110 C4 3.06E-04 1.24E-03 5.62E-01 1.55E+00 
5 54.4 130 C3 1.27E-04 2.72E-03 3.49E-01 7.72E-01 

 
      
 
 
     TABLE 33    Creep Compliance Parameters of the K6-11 FWD Station.  

No Temperature Case Do D1 m SSE 
 o C o F      

1 21.1 70 C2 2.71E-05 1.97E-04 4.50E-01 2.10E-01 
2 29.4 85 C2 1.16E-04 4.81E-04 5.11E-01 4.40E-01 
3 37.8 100 C1 1.76E-04 1.14E-03 5.17E-01 6.20E-01 
4 43.3 110 C4 2.40E-04 1.88E-03 5.41E-01 7.98E-01 
5 54.4 130 C1 2.69E-11 2.66E-03 2.89E-01 5.43E-01 
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     TABLE 34    Creep Compliance Parameters of the K6-23 FWD Station.  
No Temperature Case Do D1 m SSE 

 o C o F      
1 21.1 70 C4 3.56E-05 4.58E-04 3.24E-01 1.41E-01 
2 29.4 85 C2 9.64E-05 3.51E-04 3.78E-01 4.26E-02 
3 37.8 100 C3 2.76E-04 1.18E-03 4.27E-01 1.58E-01 
4 43.3 110 C4 4.45E-04 1.69E-03 4.31E-01 2.29E-01 
5 54.4 130 C2 8.31E-04 1.65E-03 4.69E-01 1.12E+00 

       
      
 
      
      TABLE 35    Creep Compliance Parameters of the K6-48 FWD Station. 

No Temperature Case Do D1 m SSE 
 o C o F      

1 21.1 70 C1 1.53E-04 4.01E-04 3.59E-01 4.34E-02 
2 29.4 85 C4 2.05E-04 6.28E-04 3.96E-01 2.47E-01 
3 37.8 100 C3 2.04E-04 6.30E-04 3.99E-01 2.29E-01 
4 46.6 115 C2 3.08E-04 8.23E-04 4.41E-01 7.68E-01 
5 54.4 130 C3 2.69E-11 2.13E-03 3.72E-01 8.33E-01 

 

 

Lane K7 

 
      TABLE 36    Creep Compliance Parameters of the K7-11 FWD Station.  

No Temperature Case Do D1 m SSE 
 o C o F      

1 21.1 70 C2 2.69E-11 1.72E-04 4.08E-01 1.74E-01 
2 29.4 85 C4 9.01E-05 4.79E-04 4.81E-01 1.87E-01 
3 37.8 100 C4 8.74E-05 1.00E-03 5.42E-01 5.60E-01 
4 43.3 110 C4 2.97E-04 1.53E-03 5.84E-01 1.10E+00 
5 54.4 130 C3 7.75E-04 2.36E-03 5.18E-01 1.22E+00 
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     TABLE 37    Creep Compliance Parameters of the K7-15 FWD Station.  
No Temperature Case Do D1 m SSE 

 o C o F      
1 21.1 70 C2 4.31E-05 2.58E-04 3.99E-01 1.55E-01 
2 29.4 85 C2 5.91E-05 5.41E-04 4.41E-01 1.51E-01 
3 37.8 100 C4 6.85E-05 6.51E-04 4.86E-01 7.87E-01 
4 43.3 110 C4 1.47E-04 1.73E-03 4.96E-01 3.90E-01 
5 54.4 130 C1 2.69E-11 3.26E-03 3.60E-01 4.06E-01 

 
  
 
 
     TABLE 38   Creep Compliance Parameters of the K7-20 FWD Station.  

No Temperature Case Do D1 m SSE 

 o C o F      
1 21.1 70 C2 1.57E-05 1.93E-04 3.93E-01 1.85E-01 
2 29.4 85 C3 3.95E-05 3.25E-04 5.28E-01 4.43E-01 
3 37.8 100 C4 3.39E-05 8.89E-04 6.61E-01 5.71E-01 
4 43.3 110 C3 3.92E-05 1.35E-03 5.24E-01 3.32E-01 

      
 
 
 
    TABLE 39   Creep Compliance Parameters of the K7-31 FWD Station.  

No Temperature Case Do D1 m SSE 

 o C o F      
1 21.1 70 C2 1.25E-05 2.53E-04 3.50E-01 2.86E-01 
2 29.4 85 C2 7.86E-05 3.75E-04 4.39E-01 1.52E-01 
3 37.8 100 C3 1.02E-04 8.12E-04 4.93E-01 1.53E-01 
3 43.3 110 C3 3.72E-04 1.17E-03 7.14E-01 2.13E+00 
5 54.4 130 C1 3.71E-04 8.10E-04 9.88E-01 3.64E+00 
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     TABLE 40   Creep Compliance Parameters of the K7-37 FWD Station.  
No Temperature Case Do D1 m SSE 

 o C o F      
1 21.1 70 C2 5.90E-06 1.15E-04 4.39E-01 2.73E-01 
2 29.4 85 C1 2.60E-05 2.90E-04 4.63E-01 1.26E-01 
3 37.8 100 C3 1.05E-04 9.87E-04 4.79E-01 9.33E-02 
4 43.3 110 C2 1.31E-04 1.09E-03 5.78E-01 1.99E+00 
5 54.4 130 C3 3.25E-04 2.90E-03 4.32E-01 6.60E-01 

      
 
 
 TABLE 41   Creep Compliance Parameters of K7-40 FWD Station.  

No Temperature Case Do D1 m SSE 
 o C o F      

1 21.1 70 C1 1.05E-04 4.48E-04 3.65E-01 9.51E-02 
2 29.4 85 C1 9.53E-05 8.22E-04 3.81E-01 2.08E-01 
3 37.8 100 C4 2.69E-11 1.47E-03 4.02E-01 1.20E+00 
4 43.3 110 C1 6.26E-04 1.15E-03 5.05E-01 1.40E+00 
5 54.4 130 C3 9.70E-04 1.38E-03 5.63E-01 1.85E+00 
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CHAPTER VII 

TEMPERATURE CORRECTION OF BACKCALCULATED 

MODULUS 

PREDICTION OF PAVEMENT TEMPERATURES 

Before conducting the temperature correction of the backcalculated modulus it 

was necessary to set up which pavement temperatures would be used in this correction. 

This pavement temperature is based on the temperatures taken from the FWD collected 

data, which could be taken by direct measurements with a temperature probe or from 

predictive methods based on air and surface temperatures.  

In the FWD survey, the operator took the surface pavement temperature at each 

station and the air temperatures were directly set up  in the system of the FWD data. The 

pavement temperature was taken at 25 mm of depth below the AC surface, and was 

collected at every ten stations, from the first to the last FWD stations of each lane. 

In TTI Research Report 1863-1 was developed software that assists in the 

prediction of pavement temperatures at different depths, Modulus Temperature 

Correction Program (MTCP) (17), (18). MTCP  was utilized in this study to predict the 

pavement temperatures. MTCP uses the infrared surface temperature and the previous 

day’s average air temperature to predict the pavement temperature at given depth, d.  

The depth from the surface employed in this study, to predict pavement 

temperatures, was at the middle of the AC thickness.The surface pavement temperature 

was measured with a calibrated infrared surface temperature gauge and the previous day’s 

average air temperature was found through the Texas Office of State Climatologist of the 

Texas A&M University.  

To get a prediction of the pavement temperature, the MTCP should select one of  

three equations: the BELLS2, the BELLS3 and the Texas-LTPP. According to 

recommendations by the TTI Research Report 1863-1, the Texas-LTPP equation was 
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chosen  due to this model’s showing the least bias among than the other equations studied 

in that report. 

Because the backcalculated moduli was determined by each FWD station, the 

prediction of the pavement temperature at the  middle of the AC thickness was also 

carried out by each FWD stations using the MTCP software. Consequently, there is a 

predicted pavement temperature for each set of FWD data at each of the FWD stations in 

both lanes K6 and K7 that were taken in the period from 2001 to 2003. Tables 42 and 43 

shows the predicted temperatures by month obtained by MTCP in both K6 and K7 lanes. 

 

 

TABLE 42    Predicted Pavement Temperatures (oC) for the K6 Lane. 
Section FWD 2001 2002 

 Station Feb May Jul Aug Mar Jul Dec 
K6-A 6-1 31 37 43 48 39 39 27 
K6-B 6-2 26 36 43 48 39 40 27 
K6-D 6-3 26 37 43 47 38 40 27 
K6-D 6-4 26 38 45 50 39 41 26 
K6-D 6-5 26 37 43 48 38 40 27 
K6-D 6-6 26 37 44 48 38 40 27 
K6-D 6-7 27 38 44 49 38 40 26 
K6-D 6-8 27 37 43 47 * 40 27 
K6-D 6-9 28 39 45 50 * * * 
K6-D 6-10 27 39 44 49 39 41 26 
K6-D 6-11 28 38 46 48 38 41 26 
K6-D 6-12 28 38 46 48 38 41 26 
K6-E 6-13 28 38 46 48 38 41 26 
K6-E 6-14 27 39 46 49 39 42 27 
K6-F 6-15 27 39 46 49 39 42 27 
K6-F 6-16 27 38 45 48 38 41 27 
K6-F 6-17 27 38 45 48 39 41 27 
K6-F 6-18 27 39 46 49 39 43 27 
K6-F 6-19 27 39 46 49 39 42 27 
K6-F 6-20 28 39 46 49 39 42 27 
K6-F 6-21 28 39 44 49 38 42 27 
K6-F 6-22 28 39 44 48 38 42 27 
K6-F 6-23 28 39 45 50 38 42 27 
K6-G 6-24 27 38 44 48 38 41 27 
K6-G 6-25 27 38 44 48 38 41 27 
K6-G 6-26 27 38 44 48 38 41 27 
K6-H 6-27 28 39 44 49 38 41 27 
K6-H 6-28 28 39 44 49 38 41 27 
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TABLE 42   Continued 
Section FWD 2001 2002 

 Station Feb May Jul Aug Mar Jul Dec 
K6-H 6-29 29 39 45 49 38 41 27 
K6-H 6-30 29 39 45 49 38 41 27 
K6-H 6-31 29 40 46 51 39 43 27 
K6-H 6-32 28 39 45 49 39 42 27 
K6-H 6-33 29 41 47 52 39 * 27 
K6-H 6-34 29 42 47 52 39 44 27 
K6-H 6-35 29 40 46 50 39 42 27 
K6-H 6-36 29 40 46 50 39 42 27 
K6-H 6-37 28 40 45 50 39 42 27 
K6-H 6-38 30 41 47 52 39 44 27 
K6-I 6-39 28 39 45 49 39 43 27 
K6-J 6-40 28 39 45 49 38 42 27 
K6-K 6-41 30 41 46 51 38 43 27 
K6-K 6-42 30 40 45 49 38 43 27 
K6-L 6-43 30 42 46 52 38 44 27 
K6-L 6-44 28 40 44 49 39 42 27 
K6-L 6-45 30 41 45 50 45 44 27 
K6-L 6-46 30 42 46 52 46 46 26 
K6-L 6-47 30 42 46 52 39 46 27 
K6-L 6-48 28 39 44 48 39 43 27 
K6-L 6-49 27 38 43 46 39 41 28 
K6-M 6-50 28 39 43 48 39 43 27 
K6-O 6-51 29 42 46 51 39 46 27 
K6-O 6-52 29 41 45 50 39 45 27 
K6-O 6-53 28 39 44 48 39 43 27 
K6-O 6-54 28 39 44 48 39 43 28 
K6-O 6-55 28 39 44 49 39 43 28 
K6-P 6-56 29 41 44 50 48 45 27 

 * No Data 
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 TABLE 43   Predicted Pavenment Temperatures (oC)  for the K7 Lane. 
Section FWD 2001 2002 2003 

 Stations Feb May Aug Mar Jul Oct Dec Apr 
K7-A K7-1 28 36 42 33 45 37 25 * 
K7-A K7-2 28 36 42 33 44 37 26 34 
K7-A K7-3 28 37 42 33 46 37 26 35 
K7-A K7-4 28 36 42 33 45 40 26 35 
K7-A K7-5 29 37 42 33 48 42 26 35 
K7-A K7-6 29 37 * 33 45 41 26 35 
K7-A K7-7 29 38 42 33 47 42 26 35 
K7-A K7-8 29 37 42 * * * * * 
K7-A K7-9 29 37 42 * * * * * 
K7-A K7-10 29 38 42 33 47 42 26 36 
K7-A K7-11 28 37 42 33 45 * 26 35 
K7-A K7-12 29 38 42 33 46 * 26 36 
K7-A K7-13 32 39 42 34 47 43 26 36 
K7-A K7-14 32 37 42 33 45 42 26 35 
K7-A K7-15 31 37 42 33 44 42 26 35 
K7-A K7-16 32 38 42 33 46 43 26 35 
K7-A K7-17 32 39 42 32 47 43 26 36 
K7-A K7-18 32 39 43 33 47 44 26 36 
K7-A K7-19 32 37 42 33 45 42 26 35 
K7-A K7-20 32 42 34 46 45 26 35 * 
K7-A K7-21 32 38 42 33 45 42 26 35 
K7-A K7-22 32 38 43 33 45 26 36 * 
K7-A K7-23 32 38 42 33 45 42 26 36 
K7-A K7-24 32 37 42 33 44 41 26 35 
K7-A K7-25 32 39 43 34 46 42 26 36 
K7-A K7-26 32 38 42 34 45 41 26 36 
K7-A K7-27 32 38 42 34 45 42 26 36 
K7-A K7-28 32 38 42 34 46 42 26 36 
K7-A K7-29 32 38 42 35 42 26 36 * 
K7-A K7-30 32 38 43 35 46 42 26 37 
K7-A K7-31 32 39 43 37 48 42 26 38 
K7-A K7-32 32 39 43 35 47 42 26 37 
K7-A K7-33 32 40 43 36 47 43 26 38 
K7-A K7-34 33 39 43 34 46 41 26 36 
K7-A K7-35 33 39 42 36 46 43 26 38 
K7-A K7-36 33 39 42 35 47 43 26 37 
K7-B K7-37 33 39 43 34 46 41 26 36 
K7-C K7-38 33 40 43 35 47 42 26 37 
K7-D K7-39 33 38 43 34 45 40 26 36 
K7-E K7-40 33 37 42 34 45 41 26 35 
K7-E K7-41 33 38 42 33 45 41 26 36 
K7-E K7-42 33 39 42 33 44 41 26 36 
K7-E K7-43 33 39 42 34 45 41 26 * 
K7-E K7-44 33 40 42 34 45 41 26 37 
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TABLE 43  Continued 
Section FWD 2001 2002 2003 

 Stations Feb May Aug Mar Jul Oct Dec Apr 
K7-E K7-45 33 40 42 34 46 42 26 37 
K7-E K7-46 33 42 44 35 48 44 26 39 
K7-F K7-47 33 42 43 35 46 42 26 38 
K7-F K7-48 33 42 43 35 46 42 26 38 
K7-F K7-49 34 42 44 35 48 43 26 39 
K7-F K7-50 34 42 44 35 48 42 26 38 

 
 
 
 

VARIATION OF THE BACKCALCULATED AC MODULUS WITH 
TEMPERATURE 

Even though there is a large number of stations analyzed (106 stations), only the 

core stations are plotted in these section. Figures 50 through 64 show the backcalculated 

AC moduli variation due to the  predicted pavement temperature in each the  core 

stations. In these figures are presented the results from the static analysis  and the 

dynamic (complex) modulus obtained through laboratory tessting. 

Lane K6 
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FIGURE 50    Variation of Backcalculated AC Modulus. K6-1 FWD Station.  
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FIGURE 51    Variation of Backcalculated AC Modulus. K6-4 FWD Station.  
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FIGURE 52    Variation of Backcalculated AC Modulus. K6-11 FWD Station.  
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FIGURE 53    Variation of Backcalculated AC Modulus. K6-23 FWD Station.  
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FIGURE 54    Variation of Backcalculated AC Modulus. K6-29 FWD Station.  
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FIGURE 55    Variation of Backcalculated AC Modulus. K6-35 FWD Station.  
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FIGURE 56    Variation of Backcalculated AC Modulus. K6-48 FWD Station.  
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Lane K7 
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FIGURE 57    Variation of Backcalculated AC Modulus. K7-3 FWD Station.  
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FIGURE 58    Variation of Backcalculated AC Modulus. K7-9 FWD Station.  
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FIGURE 59    Variation of Backcalculated AC Modulus. K7-11 FWD Station.  
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FIGURE 60    Variation of Backcalculated AC Modulus. K7-15 FWD Station.  
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FIGURE 61    Variation of Backcalculated AC Modulus. K7-20 FWD Station.  
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FIGURE 62    Variation of Backcalculated AC Modulus. K7-31 FWD Station.  
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FIGURE 63    Variation of Backcalculated AC Modulus. K7-37 FWD Station.  
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FIGURE 64    Variation of Backcalculated AC Modulus. K7-40 FWD Station.  
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SELECTION OF THE PAVEMENT GROUPS. 
 

To facilitate the better interpretation of the results of backcalculated AC modulus, 

it was necessary to group the FWD stations of both lanes K6 and K7. The criteria to 

select these pavement groups was based on two major aspects: 

• the physical proximity of the FWD stations, and  

• the points from the plot of the backcalculated modulus versus the predicted 

pavement temperature of the group should have the same trend. 

 Once these criteria were applied to the results, the route was divided into seven 

pavement groups. They are: 

Pavement Group 1: From FM 511 to Coffee Port Rd.  

  Lane K6: FWD Stations from K6-1 to K6-15 

  Lane K7: FWD Stations from K7-1 to K7-15 

Pavement Group 2: From Coffee Port Rd. to Dunlap St. 

  Lane K6: FWD Stations from K6-6 to K6-18 

  Lane K7: FWD Stations from K7-16 to K7-17 

Pavement Group 3: From Dunlap St. to Central Ave. 

    Lane K6: FWD Stations from K6-19 to K6-23 

    Lane K7: FWD Stations from K7-18 to K7-21 

Pavement Group 4: From Central Ave. to Austin Rd. 

 Lane K6: FWD Stations from K6-24 to K6-26 

 Lane K7: FWD Stations from K7-22 to K7-23 

Pavement Group 5: From Austin Rd. to Fruitdale Rd. 

 Lane K6: FWD Stations from K6-27 to K6-36 

 Lane K7: FWD Stations from K7-24 to K7-33 

Pavement Group 6: Fruitdale Rd. to Boca Chica Blvd. 

 Lane K6: FWD Stations from K6-37 to K6-41 

 Lane K7: FWD Stations from K7-34 to K7-37 
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Pavement Group 7: From Boca Chica Blvd. to Cleveland St. 

  Lane K6: FWD Stations from K6-42 to K6-56 

  Lane K7: FWD Stations from K7-38 to K7-50 

 

SELECTION OF THE TEMPERATURE CORRECTIONS METHODS 

 The temperature corrections methods used in the current study are as follows:  

• The Chen equation uses FWD and pavement temperature data collected from 

TxDOT’s Mobile  Load Simulator (MLS) investigations. 

   ETr  = ET ( T/Tr)2.4462        (7.1) 

  where 

  ETr  :  the modulus corrected to a reference temperature of  Tr  (oF ) 

  ET  :  the modulus determined from testing at a temperature of  T (oF ) 

• The existing TX DOT equation used in the Flexible Pavement System (FPS) 

and load zoning analysis programs  

                    E75 = ET (T 2.81) / 185000                                           (7.2) 

  where 

  E75  :  the modulus corrected to a temperature of  75 oF  

  ET  :  the modulus determined from testing at a temperature of T (oF) 

• The Witczak and Fonseca equation (1996), which is proposed as a method for 

predicting the dynamic modulus in the AASHTO 2002 pavement design 

guide. 
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where  

E : asphalt mix dynamic modulus, 105 psi; 

η : bitumen viscosity at a given temperature and degree of aging, 106 poises; 
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f : loading frequency in Hz; 

Va : percent of air voids by volume; 

Vbeff      : percent of effective binder content by volume; 

p 3/4 : percent retained on a ¾-inch sieve by the total aggregate weight; 

p 3/8 : percent retained on a 3/8-inch sieve by the total aggregate weight; 

p 4 : percent retained on a No 4 sieve by the total aggregate weight; 

p 200 : percent retained on a No 200 sieve by the total aggregate weight; 

 From the Witczak and Fonseca equation the following equation is derived for 

temperature correction (17): 

  ( ) ( ) ⎥⎦
⎤

⎢⎣
⎡

+
−

+
α+= η+−η+− T10TR10R log7425.0Blog7425.0BT10R10 e1

1
e1

1ElogElog                  (7.4) 

 where 

 α  : 1.87 + 0.003 p 4 + 0.00004 p 3/8 – 0.00018 (p 3/8)2 + 0.0164 p 3/4   

 BR : 0.716 log 10 fR 

 BT : 0.716 log 10 fT 

ER        : the AC modulus corrected for the selected reference temperature and       

loading frequency. 

 ET : the measured backcalculated asphalt concrete modulus; 

ηR : the binder viscosity corresponding to the reference temperature in 106         

poises, 

 ηT : binder viscosity corresponding to the test temperature in 106 poises, 

p 4 : the cumulative percent retained in a No. 4 sieve by the total aggregate 

weight; 

p 3/8        : the cumulative percent retained in a No. 3/8-inch sieve by the total 

aggregate weight; 

p ¾ : the cumulative percent retained in a  3/4-inch sieve by the total  

aggregate weight; 

fR : the reference loading frequency in Hz; and 

fT : the test loading frequency in Hz. 
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  In these three equations, the basic AC mixtures properties are included. The 

binder viscosities corresponding to test and reference temperatures are employed, to 

correct the measured or backcalculated moduli to specific reference temperatures.  

 To get the viscosity-temperature relationship for the binder used in the AC mix the 

equation from American Society for Testing and Material, standard ASTM-D2493 is 

used. 

 log 10 log 10 η  = A + VTS log 10 T oR      (7.5) 

where 

η     : the binder viscosity in centipoises; 

T oR     : the temperature in degrees Rankine; 

A and VTS: the model coefficients determined from testing. 

EVALUATION OF THE BINDER-VISCOSITY RELATIONSHIP 
 As it was said previously it was necessary to find the parameters A, VTS, and the 

binder viscosity to get a corrected modulus. In this study the DSR test was not done, 

however the values of the parameters can be obtained by regression analysis using this 

formula: 

 ( )xe
y γβ

αδ
−+

+=
1

      (7.6) 

where 

     y    : log 10 E; 

δ, α        : the coefficients (functions of the volumetric mixture   properties); 

β : -0.716 log 10 f ; 

f :  1/2πt; 

γ : 0.7425;  and 

x : log 10 η. 

Equation 7.6 was developed as a function of the test temperature using equation 7.5. 

Employing SAS sofware, Eq 7.6 was solved by nonlinear regression to find the 

coefficients A, VTS,  δ and α. Since there were no data from volumetric mixture 
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properties from the laboratory testing conducted for this project, a range of δ and α were 

obtained from the LTPP database and the results from the TTI Research Report 1863-1. 

These ranges were used as boundaries values in the nonlinear regression analysis to 

obtain the coefficients.  

 Tables 44 and 45 show the coefficients obtained by the nonlinear regression  of 

each group for lanes K6 and K7. Tables 46 and 47 show the results of analysis of the 

variance (ANOVA) in these regression analyses. Being the p value < 0.001, these 

regression equations may be aceptable. Figures 65 to 79 show a comparison between  the 

predicted AC modulus using the Witczak and Fonseca equation (Eq. 7.6) and 

backcalculated AC modulus. 

 

TABLE 44    Coefficients of the Binder-Viscosity Relationship for the K6 Lane.  
Pavement Range  of A VTS α δ 
Group Fwd Stations     

1 K6 1 to K6 15 11.122 -3.747 2.587 -0.500 
2 K6 16 to K6 18 8.987 -3.000 3.000 -0.510 
3 K6 19 to K6 23 9.011 -3.000 3.000 -0.202 
4 K6 24 to K6 26 9.000 -2.989 2.474 -0.511 
5 K6 27 to K6 36 10.000 -3.343 2.662 -0.500 
6 K6 37 to K6 41 12.171 -4.247 6.790 0.141 
7 K6 42 to K6 56 10.000 -3.380 2.521 -0.500 

 
 
 
 
 
TABLE 45    Coefficients of the Binder-Viscosity Relationship of the K7 Lane.  

Pavement Range of A VTS α δ 
Group FWD Stations     

1 K7 1 to K7 15 10.367 -3.464 2.450 -0.50 
2 K7 16 to K7 17 10.000 -3.335 2.856 -0.51 
3 K7 18 to K7 21 10.000 -3.331 2.605 -0.50 
4 K7 22 to K7 23 10.000 -3.324 2.450 -0.50 
5 K7 24 to K7 33 10.335 -3.449 2.450 -0.50 
6 K7 34 to K7 37 10.000 -3.338 2.771 -0.50 
7 K7 38 to K7 50 12.011 -4.080 2.451 -0.50 

C6 K6 -4 Station 8.918 -3 -3 -0.26 
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   TABLE 46   Analysis of Variance of Non-linear Regression for the K6 Lane. 
Pavement Source  DF Sum of Mean F Approx
Group   Squares Squares Value Pr > F 

1 Regression 3 68.07 22.69 1015.13 <.0001 
 Residual 99 2.21 0.02   
 Uncorrected Total 102 70.29    
 Corrected Total 101 11.14    

2 Regression 3 3.48 1.16 15.54 0.0001 
 Residual 18 0.58 0.03   
 Uncorrected Total 21 4.06    
 Corrected Total 20 1.58    

3 Regression 3 23.58 7.86 109.15 <.0001 
 Residual 32 0.37 0.01   
 Uncorrected Total 35 23.95    
 Corrected Total 34 2.90    

4 Regression 3 5.85 1.95 9.69 0.0014 
 Residual 18 2.27 0.13   
 Uncorrected Total 21 8.13    
 Corrected Total 20 4.72    

5 Regression 3 36.27 12.09 828.40 <.0001 
 Residual 66 0.96 0.01   
 Uncorrected Total 69 37.23    
 Corrected Total 68 6.02    

6 Regression 4 11.37 2.84 9.24 0.0002 
 Residual 31 1.09 0.04   
 Uncorrected Total 35 12.46    
 Corrected Total 34 2.06    

7 Regression 3 5.05 1.68 42.43 <.0001 
 Residual 102 4.05 0.04   
 Uncorrected Total 105 9.10    

 Corrected Total 104 8.92    
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   TABLE 47    Analysis of Variance of Non-linear Regression for the K7 Lane. 
Pavement Source  DF Sum of Mean F Value  Approx 
  Group   Squares Squares  Pr > F 

1 Regression 4 90.28 22.57 122.2 <.0001 
 Residual 102 0.87 0.01   
 Uncorrected Total 106 91.16    
 Corrected Total 105 4.01    

2 Regression 3 16.06 5.35 81.9 <.0001 
 Residual 13 0.09 0.01   
 Uncorrected Total 16 16.14    
 Corrected Total 15 1.16    

3 Regression 3 29.44 9.81 1602.8 <.0001 
 Residual 28 0.17 0.01   

 Uncorrected Total 31 29.61    
 Corrected Total 30 1.98    

4 Regression 2 15.88 7.94 1743.0 <.0001 
 Residual 13 0.06 0.00   
 Uncorrected Total 15 15.93    
 Corrected Total 14 0.69    

5 Regression 3 69.88 23.29 2782.2 <.0001 
 Residual 76 0.64 0.01   
 Uncorrected Total 79 70.52    
 Corrected Total 78 4.44    

6 Regression 3 25.48 8.49 46.1 <.0001 
 Residual 29 0.88 0.03   
 Uncorrected Total 32 26.35    
 Corrected Total 31 3.66    

7 Regression 4 32.84 8.21 268.3 <.0001 
 Residual 99 3.03 0.03   
 Uncorrected Total 103 35.87    
 Corrected Total 102 8.65    
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 FIGURE 65    Comparison of the Backcalculated AC Modulus with Eq 7.6. 
           Pavement Group 1 of the K6 Lane. 
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 FIGURE 66    Comparison of the Backcalculated AC Modulus with Eq 7.6. 
   Pavement Group 1 of the K7 Lane. 
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 FIGURE 67    Comparison of the Backcalculated AC Modulus with Eq 7.6. 
           Pavement Group 2 of the K6 Lane. 
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 FIGURE 68    Comparison of the Backcalculated AC Modulus with Eq 7.6. 
   Pavement Group 2 of the K7 Lane. 
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 FIGURE 69    Comparison of the Backcalculated AC Modulus with Eq 7.6. 
           Pavement Group 3 of the K6 Lane. 
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 FIGURE 70    Comparison of the Backcalculated AC Modulus with Eq 7.6. 
           Pavement Group 3 of the K7 Lane. 
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 FIGURE 71    Comparison of the Backcalculated AC Modulus with Eq 7.6. 
           Pavement Group 4 of the K6 Lane. 
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 FIGURE 72    Comparison of the Backcalculated AC Modulus with Eq 7.6. 
           Pavement Group 4 of the K7 Lane. 
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 FIGURE 73    Comparison of the Backcalculated AC Modulus with Eq 7.6. 
           Pavement Group 5 of the K6 Lane. 
 
 
 

 

100

1000

10000

100000

20 30 40 50 60

Test Temperature oC

A
C

 M
od

ul
i (

M
Pa

)

Backcalculated  Modulus Witczak & Fonseca
 

 FIGURE 74    Comparison of the Backcalculated AC Modulus with Eq 7.6. 
           Pavement Group 5 of the K7 Lane. 
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 FIGURE 75    Comparison of the Backcalculated AC Modulus with Eq 7.6. 
           Pavement Group 6 of the K6 Lane. 
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 FIGURE 76    Comparison of the Backcalculated AC Modulus with Eq 7.6. 
           Pavement Group 6 of the K7 Lane. 
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 FIGURE 77    Comparison of the Backcalculated AC Modulus with Eq 7.6. 
           Pavement Group 7 of the K6 Lane. 
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 FIGURE 78    Comparison of the Backcalculated AC Modulus with Eq 7.6. 
   Pavement Group 7 of the K7 Lane. 
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 FIGURE 79    Comparison of the Backcalculated AC Modulus with Eq 7.6. 
           C6 Core. 
 

 

 Since the figures of the modulus comparison between the backcalculated and the 

predicted by Witczak and Fonseca have been set by pavement groups and lanes, the 

comparison between both lanes can be seen by observing two consecutive figures.  

 It is important to note that the AC moduli from the K6 lane has a lesser value than 

the K7 lane in the same group, indicating possible damage on the K6 lane. This is 

supported by the field data, since the K6 lane (outside) is more frequently used by 

overweight trucks than K7 lane (inside). 

 Figure 79 belongs to the C6 core taken in the center left turn lane in the vicinity of 

the K6-4 FWD station. This data will be very useful later when it will be focused on the 

corrected modulus by temperature.  
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CALCULATIONS OF THE CORRECTED BACKCALCULATED AC MODULUS  

 Three equations of making temperature corrections were selected for this research: 

the Chen, the Tx DOT and the Witczak and Fonseca. The reference temperature for these 

corrections was determined to be 23.8 oC (75 oF). The corrected modulus by each group 

and by each lane were calculated using equations 7.1, 7.2, 7.4 and 7.5. The last two 

equations used the coefficients taken from Tables 44 and 45. 

 The corrected moduli were plotted by each method, with the best results coming 

from the Witczak and Fonseca equation. In spite of the fact that FWD data was taken in 

the K6 lane until December of 2002, this month was not included due to the fact that the 

K6 lane was being milled in that month. Thus, the FWD data analyzed for the K6 lane is 

only until July of 2002.  

 However, when  the Witczak and Fonseca equations are  plotted,  the corrected 

AC modulus values from the K6 lane  were rather flat or with a small decreasing slope, 

which show an insignificantly decreasing trend with time indicating a negligible increase 

in damage on this lane. This could be explained if it is considered that FWD data 

incorporates two effects: load and environmental conditions, since the data were taken in 

the wheel paths. To verify this, two additional corrections were made. First, the corrected 

backcalculated AC moduli from the K6 lane were corrected using the  modulus 

temperature relationship from frequency sweep tests done in the laboratory on the core 

sample taken at the center left turn lane, C6. The second was using the modulus 

temperature relationship from K7 lane on K6 lane. The mixtures of both lanes should be 

the same and in the K7 lane which would have smaller load effects because it is the 

passing lane.  

 From these two additional corrections, evidence of damage was found on the K6 

lane when the correction was carried out with the modulus temperature relationship from 

the C6 core. Figures 80 through 86 present plots of all groups of the K6 lane with the 

modulus temperature relationship from the C6 core. Appendix E shows the results of the 

temperature corrected modulus aalysed in all groups stations using the Chen and TxDOT 

temperature corrections methods. 
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 FIGURE 80   Evidence of Damage in the Pavement Group 1 of SH 4/48. 
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 FIGURE 81   Evidence of Damage in the Pavement Group 2 of SH4/48. 
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 FIGURE 82   Evidence of Damage in the Pavement Group 3 of SH4/48. 
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 FIGURE 83   Evidence of Damage in the Pavement Group  4 of SH4/48. 



  

 

103

 

0

200

400

600

Feb
 01

May 0
1

Jul 0
1

Aug 01

Mar 0
2

Jul 0
2

Oct 
02

Dec 
02

Apr 0
3

Time

C
or

re
ct

ed
 A

C
 M

od
ul

us
 (M

Pa
)

K7 K6  
 FIGURE 84   Evidence of Damage in the Pavement Group 5 of SH4/48. 
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 FIGURE 85   Evidence of Damage in the Pavement Group 6 of SH4/48. 



  

 

104

 

0

4000

8000

12000

Feb
_0

1

May
_0

1

Ju
l_0

1

Aug
_0

1

Mar
_0

2

Ju
l_0

2
Oct 

02

Dic_
02

Apr
_0

3

Time

C
or

re
ct

ed
 A

C
 M

od
ul

us
 (M

Pa
)

K
7 

L
an

e

0

1000

2000

3000

C
or

re
ct

ed
 A

C
 M

od
ul

us
 (M

Pa
)

  K
6 

L
an

e

K7 K6
 

 
 FIGURE 86    Evidence of Damage in the Pavement Group 7 of SH4/48. 
  

 As it was said earlier, Figures 80 to 86 show the corrections done to the 

backcalculated AC modulus using the modulus temperature relationship from the C6 

core. The corrected backcalculated AC moduli from the K6 lane show in these plots a 

decreasing line over time, evidence of damage to this lane. Group stations 1, 3, 5, 6 and 7 

show more  damage. The number of the FWD stations included in these three groups on 

the K6 lane are more than 50 % of segment route SH4/48.  
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CHAPTER VIII 

DISCUSSION OF THE RESULTS 

BACKCALCULATED MODULUS ERROR 

 Tables 12 and 13 on pages 46  through 48 reflect the accuracy of the 

backcalculated modulus values. Since the maximum error should be 5 %, the values 

obtained from these tables are less than 5 % with three exceptionsat the K6-42, K6-43 

and K7-38 FWD stations.  

 The possible reasons for these anomalie could be they are located at the beginning 

of the downtown area where the truck traffic is not only due to overweight loads but also 

due to normal traffic. It means the number of repetitions of load would be increasing 

more in this intersection of Boca Chica Boulevard and SH 48 with dense traffic. 

BACKCALCULATED AC MODULI RELATIONSHIP BETWEEN THE STATIC 

ANALYSIS AND THE DYNAMIC (COMPLEX) MODULUS /E*/. 

 The backcalculated AC results at core locations from static analysis (MODULUS) 

are compared with the  dynamic (complex) modulus /E*/ obtained  from the laboratory 

testing. Figures 87, and 88  show theses plots and theirs linear correlations correspondient 

to a los values got from K6 and K7 lane, respectively. The Figure 89 present the 

combination of both K6 and K7 lane values. The linear regression found was comparable 

with the form: 

    /E*/ = (1+a) E static     (8.1) 

where 

 /E*/     :     dynamic (complex) modulus  get from Labotatory testing, 

 E static    :    backcalculated AC Modulus gets from Static Analyis, 

 (1+a)   :     slope; 
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• Regression Linear for K6 Lane values. 

    /E*/ = 1.087 E static 

 
 
TABLE 48     Testing of Significance for the Linear Regression between 

Backcalculated AC Modulus from Static Analysis and Dynamic 
(Complex) Modulus /E*/ for the K6 Lane. 

Source of Sum of Degree of Mean    
Variation Squares Freedom Square fo f 0.01,1,34 P value
Regression 238376337 1 238376337.2 37.22 7.46 < 0.0005

Error 6405116 34 6405116.4    
Total 244781454 35     
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FIGURE 87    Backcalculated AC Moduli Relationship between the Static Analysis  
  and the Dynamic (Complex) Modulus for the K6 Lane. 
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• Regression Linear for K7 Lane values. 

    /E*/ = 1.042 E static 

 

TABLE 49    Testing of Significance for the Linear Regression between 
Backcalculated AC Modulus from Static Analysis and Dynamic 
(Complex) Modulus /E*/ for the K7 Lane. 

Source of Sum of Degree of Mean    
Variation Squares Freedom Square fo f 0.01,1,54 P value 
Regression 431907550 1 431907550 7096.9113 7.1605 < 0.0005 

Error 3225502 53 60859    
Total 435133052 54     
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FIGURE 88    Backcalculated AC Moduli Relationship between the Static Analysis  
  and the Dynamic (Complex) Modulus for the K7 Lane. 
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• Regression Linear for the combination of K6 and K7 lane values. 

     /E*/ = 1.055 E static 

 

TABLE 50    Testing of Significance for the Linear Regression between 
Backcalculated AC Modulus from Static Analysis and Dynamic 
(Complex) Modulus /E*/  for Both K6 and K7 Lanes. 

Source of Sum of Degree of Mean    

Variation Squares Freedom Square fo f 0.01,1,89 P value 
Regession 892634944 1 892634944 22438 6.968 << 0.0005

Error 3540696 89 39783    
Total 896175640 90     
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FIGURE 89    Backcalculated AC Moduli Relationship between the Static Analysis  
  and the Dynamic (Complex) Modulus for Both Lanes. 
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 In these comparisons the values of K6-48 core station were separated because the 

values did not show the same tendency as the other cores. This deviation is explained 

because of K6 48 is located in the downtown area where most of the extracted core 

samples from the K6 lane lacked a homogeneous AC mixture as it shown in Figures 87, 

pictures a, b, c and d.  

 In the K7 lane, contrary to the K6 lane, the results from the FWD stations, K7-37 

and K7 40 downtown area, fit well with the results of laboratory testing. The 

interpretation of this is reflected on pictures e) and f) of Figure 90 where the quality of 

the cores is stronger and more uniform than those in the K6 lane.  

Figure 91 presents the comparison of the backcalculated AC modulus from the 

MODULUS program versus Dynamic (Complex) Modulus from the laboratory testing 

corresponding to group stations 1, 3, 4, 5 and 6 from the K6 lane. Groups 2 and 7 did not 

have good correlations with the closer FWD core station results. Because Group 7 is 

located in the downtown area, it is expected that the results from laboratory testing will 

not be exact.  

 According to Figure 92 shows that in all group stations from the K7 lane,  the 

correlation between laboratory testing and static analysis is accurate, even in the group 

station 7. Once again is shown how the overweight truck traffic is impacting more on the 

K6 lane than K7 lane. 
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a) K6 42 FWD Station.               b) K6 46 FWD Station. 

  
c) K6 50 FWD Station.          d) K6 53 FWD Station. 

   
e) K7 40 FWD Station.          f) K7 37 FWD Station. 

FIGURE 90    The Core Samples from Downtown Area.  
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FIGURE 91    Backcalculated AC Moduli from Static Analysis versus Dynamic 
(Complex) Modulus by K6 Lane Pavement Groups. 
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FIGURE 92    Backcalculated AC Moduli from Static Analysis versus 
  Dynamic (Complex) Modulus by K7 Lane Pavement Groups.  
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BACKCALCULATED AC MODULI RELATIONSHIP BETWEEN THE STATIC 

ANALYSIS AND  THE DYNAMIC ANALYSIS. 

 Figures 93 and  94  plot the backcalculated AC modulus obtained from DBISD 

(dynamic analysis) versus those obtained from the MODULUS program (static analysis) 

and show theirs linear regression for both K6 and K7 lane. The Tables 50 and 51 present 

the significance of their linear regression done. Figure 95 joins both K6 and K7 lane 

values and present its linear regression. Table 52 show the significance of its linear 

regression. The linear regression found was comparable with the form: 

    E static  = (1+b) E DBSID    (8.2) 

where 

 E DBSID     :     backcalculated AC modulus gets from dynamic analyis 

 E static         :     backcalculated AC modulus gets from static analyis, 

 (1+b)      :    slope; 

   It is significant to point out that the pavement structure thicknesses selected in the 

static analysis (Figure 30) fit well with the dynamic analysis in both lanes K6 and K7. 

However, it is observed that in some stations values obtained from the MODULUS are 

slightly greater than the DBISD especially in the K7 lane. 
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• Regression Linear for K6 Lane values. 

    E static  = 1.047 E DBSID 

 

TABLE 51     Testing of Significance for the Linear Regression between 
Backcalculated AC Modulus from Static and Dynamic Analysis for 
the K6 Lane. 

Source of Sum of Degree of Mean    

Variation Squares Freedom Square fo f 0.01,1,34 P value 
Regression 271068416 1 271068416 4930 7.46 < 0.0005 

Error 1869347 34 54981    
Total 272937763 35     
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FIGURE 93  Backcalculated AC Moduli  Relationship between the Static Analysis 

and the Dynamic Analyis for the K6 Lane. 
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• Regression Linear for K7 Lane values. 

 

   E static  = 1.0308 E DBSID 

 

TABLE 52     Testing of Significance for the Linear Regression between 
Backcalculated AC Modulus from Static and Dynamic Analysis for 
the K7 Lane. 

Source of Sum of Degree of Mean    

Variation Squares Freedom Square fo f 0.01,1,35 P value 
Regression 202716160 1 202716160 87.936736 7.435 < 0.0005 

Error 80683750 35 2305250    
Total 283399910 36     
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FIGURE 94  Backcalculated AC Moduli  Relationship between the Static Analysis 

and the Dynamic Analyis for the K7 Lane. 
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• Regression Linear for combination both K6 and  K7 Lane values. 

    E static  = 1.065 E DBSID 

 

TABLE 53     Testing of Significance for the Linear Regression between 
Backcalculated AC Modulus from Static and Dynamic Analysis for 
Both K6 and K7 Lanes. 

 
Source of Sum of Degree of Mean    

Variation Squares Freedom Square fo f 0.01,1,71 P value 
Regression 448017558 1 448017558 357.7 7.0378 << 0.0005 

Error 88923870 71 1252449    
Total 536941428 72     
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FIGURE 95   Backcalculated AC Moduli  Relationship between the Static Analysis 
    and the Dynamic Analyis for Both Lanes. 
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 As it known backcalculated AC modulus from dynamic analysis (DBSID) is an 

isotropic modulus which follow this laws: 

 

  

(8.4)                                                                        
c

E
E

(8.3)                                                        E*EE

VERTICAL
HORIZONTAL

HORIZONTALVERTICALDBSID

=

=

 

and Evertical is  the AC modulus gets in the laboratory testing (/E*/) , then it may obtained 

“c” value combining the Eq. 8.3 and 8.4 with 8.1 and 8.2 given this expression:   

   c =  (1 + a)2 * (1 +b)2            (8.5) 

  In this study was calculated “c” value for each lane. They are  1.3 and 1.15 for the 

K6 and K7 lanes, respectively. However a better result of “c” was obtained when both K6 

and K7 data are analyzed together. This value is  1.26.  

COMPARISON OF THE CREEP COMPLIANCE PARAMETERS OBTAINED   

FROM THE DYNAMIC ANALYSIS AND  FROM THE LABORATORY 

TESTING 

 As it was explained in Chapter VI only the cores stations K6-1, K6-4, K6-11, K6-

23 and K6-48 offered valid creep compliance parameters in the K6 lane. In the same way, 

the following core stations: K7-11, K7-15, K7-20, K7-31, K7-37 and K7-40, offered 

valid creep compliance paameters. 

 To process and compare “m” values between those obtained from dynamic 

analysis  and laboratory data, it was necessary to set up a reference temperature. For 

convenience 23.8 oC (75 oF) was chosen. This is the same reference temperature used in 

the temperature corrected modulus. The “m” value from the laboratory was corrected to 

this reference temperature which is possible with the trendline of  “m” from the 

laboratory temperature data as see in Figure 96 a).  
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The ratio m ref /m temp for each “m” value is used to get the correction factor line. 

See Figure 96 b). As the correction factor line is a function of temperature, the correction 

factor is calculated for each ‘m” value The corrected value of “m” is called “mc ” is 

obtained multiplying the correction factor by the “m” values from DBSID.  

 

Temp 

mlab 

t ref

m ref

 

1.00

Temp

m ref 

m tmp

t ref

Correction Factor Line

 
   a) Temperature and “m” Reference.           b)   Correction Factor Line. 
 
FIGURE  96    Procedure to Obtain “mc” .  
 

  

Figures 97 and 98 show the variation of “mc” with time for both the K6 and K7 

lanes, respectively. The increasing values of “mc” over time in the K6 lane reflects 

deterioration. The “m” value is related to two major problems with the asphalt pavement, 

fatigue cracking and permanent deformation. The increasing “m” values obtained in this 

analysis confirms the deterioration of the K6 lane with time.  Contrary to the trends in the 

K6 lane, in the K7 lane “mc” values show a flat line, or a very small positive slope 

indicating that in the K7 lane, the initial conditions of the road  have undergone little 

change. 
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FIGURE 97  Variation of the “mc” Values for the K6 Lane. 
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FIGURE 98  Variation of  “mc” Values for the K7 Lane. 



  

 

120

CORRECTED BACKCALCULATED AC MODULUS WITH ENVIRONMENTAL 

CONDITIONS 

 Figures 80 trough 86  present the corrected backcalculated AC moudlus with 

environmental conditions. The fact that corrected bakcalculated AC modulus from the K6 

lane show a greater decresing line overtime and lower AC moduli than the K7 lane  

indicate that there is evidency of damage in K6 lane. 

RELATIONSHIP BETWEEN CORRECTED BACKCALCULATED AC 

MODULUS AND CUMULATIVE 18-kip ESALs. 

 A reduction in asphalt moduli with increasing amounts of 18-kip Equivalent 

Single Axle (ESAL) provides evidence that pavements are damaged by increasing 

numbers of load repetititons.  

 The fact that a greater amount of truck traffic travels in the K6 lane than in the K7 

lane provides an opportunity to evaluate the amount of damage that is done by this traffic 

by plotting the observed reduction in modulus against the accumulate 18-kip Equivalent 

Single Axle Loads in both lanes. 

 To analyse the number of the ESALs in each lane it was necessary to request  the 

current traffic data and the historical Average Daily Traffic (ADT) from Tx DOT traffic 

record. 

 TxDOT sent data corresponding to the Fiscal Year 2003, from September 2002 to 

August 2003, which was collected and recorded by the weigh-in-motion (WIM) stations 

along the SH 4/48 roadway. Table 54 shows the number of 18-kip ESALs separated into 

axle configuration: single, tandem, triple or quad, by monthly mean and per year (2003). 

In addition, the historical average daily traffic (ADT) from SH 4/48 provided by the Pharr 

District office was useful to calculate the traffic growth rate “g and to project backward in 

time to obtain the 18-kip ESALs for the past years.  

 Because SH 4/48 was divided on seven Pavement Groups in Chapter VII, it was 

necessary to select the ADT values in the same Pavement Groups to get the 18-kip ESAL 

in each of them. Table 55 presents the greater ADT selected values by Pavement Group. 
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It notes that the ADT values are the same in the Pavement Group 2, 3, 4, and 5, but 

different in the Pavement Group 1, 6 and 7. Equation 8.6 was used to determine the 

values of the Growth Rate “g” which are shown in Table 55 too. 

 

 1
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=                                                                 (8.6) 

where; 

 g           :  Growth rate; 

 ADT o  :   Average daily traffic at the start of the design period; 

 ADT n  :   Average daily traffic at the end of the design period; 

 n           :   Number of the years of the design period.   

 

TABLE  54    Results of 18-kip ESALs  in  the Fiscal Year 2003 by Axle 
Configuration. 

Axle configuration By Month By Year 
Single axle 6878 82535 
Tandem axle 17990 215880 
Triple axle 1496 17957 
Quad axle  1 13 
TOTAL ESALs 26365 316385 

 
 
 
 
        TABLE 55    Growth Rate “g” by Pavement Group. 

Pavement  ADTo ADTn Growth Factor 
Group 1993 2003 “g” 

1 14079 18974 0.0303 
2,3,4,5 23511 28344 0.0189 

6 28022 34356 0.0206 
7 27148 29253 0.0075 
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 Equation (8.7) was used to compute the total number of 18-kip ESAL’s for each  

year before 2003. 

( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −+
−=−

g
1g1*)(

n

On ESAL kip18 TotalESAL kip18  Cumulative                   (8.7) 

where; 

Cumulative  18-kip ESALn : It is the total number of the 18-kip ESAL at the year “n”; 

Total 18-kip ESALo  :  It is the total number of the 18-kip ESAL at the year “o” ; 

g  : growth rate; 

n  : the number of the years between the yearn  and the yearo. 

 

 The Table 56 presents the total number of 18-kip ESAL by year, from 1993 up to 

2003. The year 1993 was chosen because it was during that year the SH 4/48 sections in 

this study were repaved. 

 

TABLE  56    Number of  the Total 18-kip ESAL by Year and Pavement Groups. 
   Pavement Groups 

Year 1-1A 2 to 5 6 7 
1993 2.3E+05 2.6E+05 2.6E+05 2.9E+05 
1994 2.3E+05 2.6E+05 2.6E+05 2.9E+05 
1995 4.8E+05 5.3E+05 5.2E+05 5.9E+05 
1996 7.3E+05 8.0E+05 7.9E+05 8.9E+05 
1997 9.8E+05 1.1E+06 1.1E+06 1.2E+06 
1998 1.2E+06 1.4E+06 1.3E+06 1.5E+06 
1999 1.5E+06 1.7E+06 1.6E+06 1.8E+06 
2000 1.8E+06 1.9E+06 1.9E+06 2.1E+06 
2001 2.1E+06 2.2E+06 2.2E+06 2.4E+06 
2002 2.4E+06 2.5E+06 2.5E+06 2.7E+06 
2003 2.7E+06 2.9E+06 2.8E+06 3.0E+06 
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 Table 57 presents the percentage of incidence of each vehicle class in the 

westbound  direction, from Port of Brownsville to Mexico. Table 58 shows the 

percentages that were used to compute the FHWA vehicle class distribution in both the 

K6 and K7 lanes. The lane distribution of traffic along of SH4/48 were provided by 

TxDOT. 

 

        TABLE 57    FHWA Class Distribution in the Westbound Direction.  
FHWA  Description Monthly  Percentage 
Class (Texas 6 Vehicle Classifications)    Mean  of Incidence 

4 2D-Six Tre Single Unit 1854 12% 
5 3 Axles Single Unit 2821 18% 
6 4, or more, Axles Single Unit 1307 8% 
7 3 Axles Single Trailer 237 1% 
8 4 Axles Single Trailer 486 3% 
9 5 Axles Single Trailer 7755 49% 

10 6, or more, Axles Single Trailer 1304 8% 
11 5, or Less, Axles Multi-Trailers 153 1% 
12 6 Axles, Multi-Trailers 16 0.10% 
13 7, or More, Axles Multi-Trailers 3 0.02% 
  Total number of vehicles 15936 1 

 

 

 TABLE 58     Traffic   Distribution by Lanes. 
FHWA Description Percentage Traffic Distribution 
Class (Texas 6 Vehicle Classifications of Incidence K6 Lane K7 Lane

4 2D-Six Tre Single Unit 12% 0.70 0.30 
5 3 Axles Single Unit 18% 0.70 0.30 
6 4, or more, Axles Single Unit 8% 0.60 0.40 
7 3 Axles Single Trailer 1% 0.80 0.20 
8 4 Axles Single Trailer 3% 0.80 0.20 
9 5 Axles Single Trailer 49% 0.78 0.22 

10 6, or more, Axles Single Trailer 8% 0.70 0.30 
11 5, or Less, Axles Multi-Trailers 1% 0.40 0.60 
12 6 Axles, Multi-Trailers 0.10% 0.40 0.60 
13 7, or More, Axles Multi-Trailers 0.02% 0.40 0.60 
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 Table 59 shows the cumulative 18-kip ESALs by Pavemenet Group which is 

generated with the data in Table 56 using the percentages from the Tables 57 and 58 for 

each lane and each vehicle class. 

 

 TABLE 59  Cumulative 18-kip ESALs by Lanes and by Pavement Group. 
Lane Date Cumulative 18-kip ESALs 

    1A 1 2 to 5 6 7 
K7 Feb 01 5.0E+05 5.0E+05 5.4E+05 5.3E+05 5.8E+05 

  May 01 5.2E+05 5.2E+05 5.6E+05 5.5E+05 6.0E+05 
  Aug 01 5.4E+05 5.4E+05 5.8E+05 5.7E+05 6.2E+05 
  Mar 02 5.8E+05 5.8E+05 6.3E+05 6.2E+05 6.7E+05 
  Jul 02 6.1E+05 6.1E+05 6.5E+05 6.5E+05 7.0E+05 
  Oct 02 6.3E+05 6.3E+05 6.7E+05 6.7E+05 7.2E+05 
  Dec 02 6.4E+05 6.4E+05 6.9E+05 6.8E+05 7.4E+05 
  Apr 03 6.7E+05 6.7E+05 7.2E+05 7.1E+05 7.6E+05 

  Sep 03 7.1E+05 7.1E+05 7.5E+05 7.4E+05 8.0E+05 
K6 Feb 01 1.3E+06 1.3E+06 1.5E+06 1.4E+06 1.6E+06 

  May 01 1.4E+06 1.4E+06 1.5E+06 1.5E+06 1.6E+06 
  Jul 01 1.4E+06 1.4E+06 1.5E+06 1.5E+06 1.7E+06 
  Aug 01 1.5E+06 1.5E+06 1.6E+06 1.5E+06 1.7E+06 
  Mar 02 1.6E+06 1.6E+06 1.7E+06 1.7E+06 1.8E+06 
  Jul 02 1.7E+06 1.7E+06 1.8E+06 1.7E+06 1.9E+06 
  Sep 03 1.9E+06 1.9E+06 2.0E+06 2.0E+06 2.2E+06 

 

 

     TABLE  60      Corrected Backcalculated EAC  by Pavement Groups. 
Lane Date Corrected Backcalculated EAC  by Groups (MPa) 

    1A 1 2 3 4 5 6 7 
K6 Feb-01 12684 13109 4106 12214 7587 10238 4454 1937 

  May-01 6625 7232 2824 6935 1014 5568 3867 1207 
  Jul-01 4332 4776 2108 5123 1801 4560 3575 1219 
  Aug-01 3520 4224 2148 4959 1243 3636 2635 1002 
  Mar-02 5627 6433 2521 7303 4931 5860 4306 1535 
  Jul-02 5957 6372 3247 6479 4475 5386 3685 1547 

K7 Feb-01 9997 12516 27496 20156 22364 19148 27120 10699 
  May-01 14919 16201 21203 17260 18087 16961 15492 8209 
  Aug-01 17078 17290 22886 19356 17137 16093 16358 9342 
  Mar-02 13054 14594 22886 19356 17137 16093 16358 9342 
  Jul-02 16338 15731 19027 20683 20854 17095 19967 9582 
  Oct 02 16070 14519 17771 15945 17302 16123 13762 7955 
  Dec 02 13325 13365 19698 15459   15128 10192 7364 
  Apr 03 14684 15597 18503 15277 13965 15045 19618 7286 
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 Figures 99 through 106 presents the plots of  the cumulative 18-kip ESAL versus 

corrected backcalculated AC modulus belong to westbound direction, K6 and K7 lanes to 

each Pavement Group. The Figure 106 belongs to Pavement Group 1A corresponds to the 

first eight FWD stations to both lanes and it starts in FM 511 and ends in FM 802. These 

plots utilize the data from Tables 59 and 60.  

 In addition, a fitted curve has beed added to each of the plots. Equation 8.8 was 

used to obtain these fitted curve. The  coefficients ρ, β, EAsym, and Eo from the Equation 

8.8 were obtained by nonlinear regression. Table 61 show the results of analysis of 

variance (ANOVA) for each Pavement Groups.     

 )e1(*EEE N
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−

−+=                                                                 (8.8) 

where :            EASYM , Eo, ρ, β : Coefficeints; 

                     E : Corrected Backcalculated AC Modulus; 

                     N : Cumulative 18-kip ESAL. 

 

  
FIGURE 99    Plot of Cumulative 18-kip ESAL versus Corrected Backcalculated AC 

Modulus in the Pavement Group 1A.  
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FIGURE 100     Plot of Cumulative 18-kip ESALs versus Corrected Backcalculated 

AC Modulus  in the Pavement Group 1. 
 

  
FIGURE 101     Plot of Cumulative 18-kip ESALs versus Corrected Backcalculated 

AC Modulus in the Pavement Group 2. 
 



  

 

127

   
FIGURE 102    Plot of Cumulative 18-kip ESALs versus Corrected Backcalculated 

AC Modulus in the Pavement Group 3. 
 

  
FIGURE 103     Plot of Cumulative 18-kip ESALs versus Corrected Backcalculated 

AC Modulus in the Pavement Group 4. 
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FIGURE 104    Plot of Cumulative 18-kip ESALs versus Corrected Backcalculated 

AC Modulus in the Pavement Group 5. 
 

  
FIGURE 105     Plot of Cumulative 18-kip ESALs versus Corrected Backcalculated 

AC Modulus in the Pavement Group 6. 
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FIGURE 106     Plot of Cumulative 18-kip ESALs versus Corrected Backcalculated 

AC Modulus in the Pavement Group 7. 
 
 
  These eight figures, Figures 99 through 106,  point out how the traffic affects each 

lane. In each of figure the cumulative 18-kip ESAL is greater in the K6 lane  than in the 

K7 lane, confirming the fact that the K6 lane is more heavily used by all vehicle classes.  

These plots clearly demonstrate that this greater cumulative 18-kip ESAL is associated 

with lower corrected backcalculated  AC moduli in the K6 lane. It is important to note 

that the K7 lane carries lower cumulative 18-kip ESAL and higher corrected 

backcalculated AC modulus than in the K6 lane. These data confirm that more damage is 

produced by the greater amount of  18-kip ESALs in the K6 lane.  
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   TABLE 61    Analysis of Variance of Non-Linear Regression of the Eq. 8.8.  
Pavement Source DF Sum of Mean of  F Approx. 

Group 
No     Squares Square Value Pr > F 
1A Regression 3 45040517 15013506 165.62 <.0001 
  Residual 13 1178459 90650.7     

  
Uncorrected 
Total 16 46218976       

  Corrected Total 15 7605180       
1 Regression 3 49832570 16610857 394.95 <.0001 
  Residual 12 504693 42057.7     

  
Uncorrected 
Total 15 50337263       

  Corrected Total 14 6290649       
2 Regression 3 98195065 32731688 192.82 <.0001 
  Residual 12 2037067 169756     

  
Uncorrected 
Total 15 100230000       

  Corrected Total 14 31839626       
3 Regression 3 66578186 22192729 249.99 <.0001 
  Residual 12 1065291 88774.3     

  
Uncorrected 
Total 15 67643477       

  Corrected Total 14 10023397       
4 Regression 3 60469580 20156527 105.92 <.0001 
  Residual 11 2093336 190303     

  
Uncorrected 
Total 14 62562915       

  Corrected Total 13 18543367       
5 Regression 3 60133474 20044491 444.06 <.0001 
  Residual 12 541666 45138.8     

  
Uncorrected 
Total 15 60675140       

  Corrected Total 14 10405033       
6 Regression 3 91572515 30524172 76.57 <.0001 
  Residual 12 4783480 398623     

  
Uncorrected 
Total 15 96355995       

  Corrected Total 14 29367555       
7 Regression 3 11568756 3856252 194.67 <.0001 
  Residual 12 237711 19809.3     

  
Uncorrected 
Total 15 11806468       

  Corrected Total 14 3255912       
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CHAPTER IX 

CONCLUSIONS AND RECOMMENDATIONS 

  The impact of overweight truck traffic (OTT) on the segment route SH4/48 has 

been analyzed in this research by carrying out a monitoring process of FWD testing for 

three years on the road and  breaking down  their data by static and dynamic analysis. In 

addition, a frequency sweep test  was conducted to get the Dynamic (Complex) Modulus 

and creep compliance parameters neccesary to compare with those static and dynamic 

analysis and to find their correlations. 

 With the purpose of finding out if these OTTs  produce damage to the pavement 

on the route SH4/48 the backcalculated AC moduli were corrected to a common 

temperature using the Witczak and Fonseca Equation. 

 These are the conclusions reached in this research: 

1. There is evidence of damage on the route SH4/48 due to overweight truck 

traffic.  
2. Combining the thickness of the flexible base layer with the salvage base layer 

and the treated limestone layer  (Figure 32) produce the smallest errors in the 

backcalculated moduli in both lanes. Only the K6 42, K6 43 and K7 38  FWD 

stations gave errors in the order of 10% in some months. 
3. A linear regression between backcalculated AC modulus from static analysis 

and dynamic (complex) modulus /E*/ from the frequency sweep lab test gave 

the best equation /E*/ =1.0554 E static  when the core stations from both lanes 

are analyzed together. The results are shown in Figure  89 and Table 50. 

4. The correlation between the backcalculated AC modulus from the static 

analysis and the Dynamic (Complex)  Modulus obtained through frequency 

sweep test in the laboratory are very acceptable in all FWD stations of the K7 

lane (Figure 92). In the K6 lane there is a good correlations except for those 

values from Pavement Group 2 and the downtown area (Figure 91).  
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5. The AC mixture in the K6 lane in the downtown area gave the lowest 

backcalculated AC moduli and the dispersion of the dynamic (complex) 

modulus /E*/ (Figures B42  up to  B56 and Figure 90 pictures a), b), and c) of 

all pavements sections in this study. This is also supported by the laboratory 

testing results in which from ten core samples taken in the downtown area in 

the K6 lane, four were disintegrated in the handling process, six were tested in 

the laboratory and only one core sample had acceptable values.  
6. The linear regression between backcalculated AC moduli from dynamic 

analysis and static analysis gave the equation  Estatic = 1.065 EDBSID, when the 

core stations from both lanes were analyzed together.The results are shown in 

the Figure 95 and Table 52. 

7. The best “c” value that correlates E horinzontal with E vertical was 1.26. This is 

when all data from both K6 and K7 lane are combinated. 
8. The greater “c” value obtained in the K6 lane, 1.3, than 1.15 in the K7 lane, 

indicates that as damage increases, the anysotropy of the asphalt layer 

increase.  
9. Since the corrected backcalculated AC moduli by temperature show a 

decreasing line on the K6 lane in mostly all Pavement Groups, this lane must 

have more damage than the K7 lane (Figures 98 to 104). This conclusion is 

supported by the mc values from the K6 lane whose values increase with time, 

indicating te presence of large fatigue cracking or  permanent deformation 

over time. Unlike the mc values from the K7 lane which show a flat trend 

(Figures 97 and 98), indicating little damage. 
10. The total number of the 18-kip ESAL by year (Tables 56 and 59) provides 

evidence of a greater use in the K6 lane than the K7 lane for all vehicle 

classes. 
11. The greater cumulative 18-kip ESALs with lower corrected backcalculated 

AC modulus shown in the Figures 106 up to 113 confirm again the damage 

which occurred in the K6 lane due to current traffic (overweight truck). 
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12.  The percentage by incidence of the FHWA classes 9 and 10 (overweight 

truck class) gave 4.21% and 0.73% porcentages, respectively, (Table 57 and 

58) the porcentage  of the ESALs for tandem axle produced by these classes is 

35 % of the total 18-kip ESALs obtained from the axle distribution (Table 56). 
13. Damage to asphalt flexible pavement can be detected by non-destructive FWD 

testing.  
14. This research has proved that FWD data must be corrected for the effects of 

load level and environmental conditions and the resulting backcalculated 

modulus values are consistent with laboratory data. 
 

RECOMMENDATIONS 

 Because the SH 4/48 is a segmened route which carries overweight truck traffic, it 

is necessary to have a homogenous hardening AC layer in all downtown areas, especially 

in the K6 lane FWD stations from K6 42 up to K6 56 (From Boca Chica Blvd. to 

Cleveland St.). 
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 FIGURE A1   K6-A and K6-B Section 
 
 

 
 FIGURE A2   K6-B, K6-C, and K6-D Section 
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 FIGURE A3   K6-D and K6-E Sections  

 
 

 
 FIGURE A4   K6-E and K6-F Sections 
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E F
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 FIGURE A5   K6-F and K6-G Sections 
 
 
 
 

 
 FIGURE A6   K6-G and K6-H Sections 
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 FIGURE A7   K6-H Section 
 
 
 

 
 FIGURE A8   K6-H, K6-I, K6-J, and K6-K Sections 
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 FIGURE A9   K6-L Section 
 
 

 
 FIGURE A10   K6-L, K6-M, K6-N, and K6-O Sections 
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 FIGURE A11   K6-O and K6-P Sections 
 
 

 
 FIGURE A12   K7-A Section 
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 FIGURE A13   K7-A Section 
 
 

 
 FIGURE A14   K7-A Section 

A
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 FIGURE A15   K7-A Section 
 
 

 
 FIGURE A16   K7-A Section 

A
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 FIGURE A17   K7-A Section 

     
     

  
 FIGURE A18   K7-A Section  

A

A



  

 

147

 
 FIGURE A19   K7- A, K7-B, K7-C, and K7-D Sections 
 
 

  
 FIGURE A20   K7-D and K7- E Sections 

A B C D 
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 FIGURE A21   K7- E and K7- F Sections 
 
 

  
 FIGURE A22   K7- F Section 
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PLOTS OF BACKCALCULATED MODULI
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 FIGURE B1   Backcalculated Modulus of K6 1 FWD Station  
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 FIGURE B2   Backcalculated Modulus of K6 2 FWD Station  
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 FIGURE B3   Backcalculated Modulus of K6 3 FWD Station  
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FIGURE B4   Backcalculated Modulus of K6 4 FWD Station  
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FIGURE B5   Backcalculated Modulus of K6 5 FWD Station  
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FIGURE B6   Backcalculated Modulus of K6 6 FWD Station  
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FIGURE B7   Backcalculated Modulus of K6 7 FWD Station  
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FIGURE B8   Backcalculated Modulus of K6 8 FWD Station  
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FIGURE B9   Backcalculated Modulus of K6-9 FWD Station  
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FIGURE B10   Backcalculated Modulus of K6-10 FWD Station  
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FIGURE B11   Backcalculated Modulus of K6-11 FWD Station  
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FIGURE B12   Backcalculated Modulus of K6-12 FWD Station  
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FIGURE B13   Backcalculated Modulus of K6-13 FWD Station  
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FIGURE B14   Backcalculated Modulus of K6-14 FWD Station  
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FIGURE B15   Backcalculated Modulus of K6-15 FWD Station  
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FIGURE B16   Backcalculated Modulus of K6-16 FWD Station  
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FIGURE B17   Backcalculated Modulus of K6-17 FWD Station  
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FIGURE B18   Backcalculated Modulus of K6-18 FWD Station  
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FIGURE B19   Backcalculated Modulus of FWD Station K6-19 
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FIGURE B20   Backcalculated Modulus of FWD Station K6-20 
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FIGURE B21   Backcalculated Modulus of FWD Station K6-21 
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FIGURE B22   Backcalculated Modulus of K6-22 FWD Station  
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FIGURE B23   Backcalculated Modulus of K6-23 FWD Station  
 

1

10

10 0

10 0 0

10 0 0 0

10 0 0 0 0

F e b-0 1 M a y-0 1 J ul-0 1 A ug -0 1 M a r-0 2 J ul-0 2 D ic -0 2

Time

Ba
ck

ca
lc

ul
at

ed
 M

od
ul

us
(M

Pa
)

A C F B S G
 

FIGURE B24   Backcalculated Modulus of K6-24 FWD Station  
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FIGURE B25   Backcalculated Modulus of K6-25 FWD Station  
 

1

10

100

1000

10000

100000

Feb-01 May-01 Jul-01 Aug-01 Mar-02 Jul-02 Dic-02

Time

Ba
ck

ca
lc

ul
at

ed
 M

od
ul

us
(M

Pa
)

A C F B S G
 

FIGURE B26   Backcalculated Modulus of K6-26 FWD Station  
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FIGURE B27   Backcalculated Modulus of K6-27 FWD Station  
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FIGURE B28   Backcalculated Modulus of K6-28 FWD Station  
 

1

10

100

1000

10000

100000

Feb-01 May-01 Jul-01 Aug-01 Mar-02 Jul-02 Dic-02

Time

Ba
ck

ca
lc

ul
at

ed
 M

od
ul

us
(M

Pa
)

A C F B S G
 

FIGURE B29   Backcalculated Modulus of K6-29 FWD Station  
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FIGURE B30   Backcalculated Modulus of K6-30 FWD Station  
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FIGURE B31   Backcalculated Modulus of K6-31 FWD Station  
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FIGURE B32   Backcalculated Modulus of K6-32 FWD Station  
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FIGURE B33   Backcalculated Modulus of K6-33 FWD Station  
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FIGURE B34   Backcalculated Modulus of K6-34 FWD Station  
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FIGURE B35   Backcalculated Modulus of K6-35 FWD Station  
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FIGURE B36   Backcalculated Modulus of K6-36 FWD Station  
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FIGURE B37   Backcalculated Modulus of K6-37 FWD Station  
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FIGURE B38   Backcalculated Modulus of K6-38 FWD Station  
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FIGURE B39   Backcalculated Modulus of K6-39 FWD Station  
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FIGURE B40   Backcalculated Modulus of K6-40 FWD Station  
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FIGURE B41   Backcalculated Modulus of K6-41 FWD Station  
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FIGURE B42   Backcalculated Modulus of K6-42 FWD Station  
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FIGURE B43   Backcalculated Modulus of K6-43 FWD Station  
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FIGURE B44   Backcalculated Modulus of K6-44 FWD Station  
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FIGURE B45   Backcalculated Modulus of K6-45 FWD Station  
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FIGURE B46   Backcalculated Modulus of K6-46 FWD Station  
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FIGURE B47   Backcalculated Modulus of K6-47 FWD Station  
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FIGURE B48   Backcalculated Modulus of K6-48 FWD Station  
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FIGURE B49   Backcalculated Modulus of K6-49 FWD Station  
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FIGURE B50   Backcalculated Modulus of K6-50 FWD Station  
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FIGURE B51   Backcalculated Modulus of K6-51 FWD Station  
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FIGURE B52   Backcalculated Modulus of K6-52 FWD Station  
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FIGURE B53   Backcalculated Modulus of K6-53 FWD Station  
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FIGURE B54   Backcalculated Modulus of K6-54 FWD Station  
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FIGURE B55   Backcalculated Modulus of K6-55 FWD Station  
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FIGURE B56   Backcalculated Modulus of K6-56 FWD Station  
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FIGURE B57   Backcalculated Modulus of K7-1 FWD Station  
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FIGURE B58   Backcalculated Modulus of K7-2 FWD Station  
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FIGURE B59   Backcalculated Modulus of K7-3 FWD Station  
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FIGURE B60   Backcalculated Modulus of K7-4 FWD Station  
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FIGURE B61   Backcalculated Modulus of K7-5 FWD Station  
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FIGURE B62   Backcalculated Modulus of K7-6 FWD Station  
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FIGURE B63   Backcalculated Modulus of K7-7 FWD Station  
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FIGURE B64   Backcalculated Modulus of K7-8 FWD Station  
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FIGURE B65   Backcalculated Modulus of K7-9 FWD Station  
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FIGURE B66   Backcalculated Modulus of K7-10 FWD Station  
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FIGURE B67   Backcalculated Modulus of K7-11 FWD Station  
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FIGURE B68   Backcalculated Modulus of K7-12 FWD Station  
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FIGURE B69   Backcalculated Modulus of K7-13 FWD Station  
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FIGURE B70   Backcalculated Modulus of K7-14 FWD Station  
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FIGURE B71   Backcalculated Modulus of K7-15 FWD Station  
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FIGURE B72   Backcalculated Modulus of K7-16 FWD Station  
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FIGURE B73   Backcalculated Modulus of K7-17 FWD Station  
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FIGURE B74   Backcalculated Modulus of K7-18 FWD Station  
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FIGURE B75   Backcalculated Modulus of K7-19 FWD Station  
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FIGURE B76   Backcalculated Modulus of K7-20 FWD Station  
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FIGURE B77   Backcalculated Modulus of K7-21 FWD Station  
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FIGURE B78   Backcalculated Modulus of K7-22 FWD Station  
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FIGURE B79   Backcalculated Modulus of K7-23 FWD Station  
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FIGURE B80   Backcalculated Modulus of K7-24 FWD Station  
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FIGURE B81   Backcalculated Modulus of K7-25 FWD Station  
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FIGURE B82   Backcalculated Modulus of K7-26 FWD Station  
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FIGURE B83   Backcalculated Modulus of K7-27 FWD Station  
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FIGURE B84   Backcalculated Modulus of K7-28 FWD Station  
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FIGURE B85   Backcalculated Modulus of K7-29 FWD Station  
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FIGURE B86   Backcalculated Modulus of K7-30 FWD Station  
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FIGURE B87   Backcalculated Modulus of K7-31 FWD Station  
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FIGURE B88   Backcalculated Modulus of K7-32 FWD Station  
 

1

10

10 0

10 0 0

10 0 0 0

10 0 0 0 0

F e b-0 1 M a y-0 1 A ug -0 1 M a r-0 2 J ul-0 2 Oc t-0 2 D ic -0 2 A pr-0 3

Time

B
ac

kc
al

cu
la

te
d 

M
od

ul
us

 
(M

Pa
)

A C F B S G
 

FIGURE B89   Backcalculated Modulus of K7-33 FWD Station  
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FIGURE B90   Backcalculated Modulus of K7-34 FWD Station  
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FIGURE B91   Backcalculated Modulus of K7-35 FWD Station  
 

1

10

10 0

10 0 0

10 0 0 0

10 0 0 0 0

F e b-0 1 M a y-0 1 A ug -0 1 M a r-0 2 J ul-0 2 Oc t-0 2 D ic -0 2 A pr-0 3

Time

B
ac

kc
al

cu
la

te
d 

M
od

ul
us

(M
Pa

)

A C F B S G  
FIGURE B92   Backcalculated Modulus of K7-36 FWD Station  
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FIGURE B93   Backcalculated Modulus of K7-37 FWD Station  
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FIGURE B94   Backcalculated Modulus of K7-38 FWD Station  
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FIGURE B95   Backcalculated Modulus of K7-39 FWD Station  
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FIGURE B96   Backcalculated Modulus of K7-40 FWD Station  
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FIGURE B97   Backcalculated Modulus of K7-41 FWD Station  
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FIGURE B98   Backcalculated Modulus of K7-42 FWD Station  
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FIGURE B99   Backcalculated Modulus of K7-43 FWD Station  
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FIGURE B100   Backcalculated Modulus of K7-44 FWD Station  
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FIGURE B101   Backcalculated Modulus of K7-45 FWD Station  
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FIGURE B102   Backcalculated Modulus of K7-46 FWD Station  
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FIGURE B103   Backcalculated Modulus of K7-47 FWD Station  
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FIGURE B104   Backcalculated Modulus of K7-48 FWD Station  
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FIGURE B105   Backcalculated Modulus of K7-49 FWD Station  
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FIGURE B106   Backcalculated Modulus of K7-50 FWD Station  
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FIGURE C1   Comparison of Measured and Predicted Displacement Histories on 
K6 11 FWD Station in February 01 
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FIGURE C2     Comparison of Measured and Predicted Displacement Histories on 
K6 23 FWD Station in February 01 
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FIGURE C3      Comparison of Measured and Predicted Displacement Histories on 
K6 29 FWD Station in February 01 
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FIGURE C4     Comparison of Measured and Predicted Displacement Histories on 
K6 35 FWD Station in February 01 
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FIGURE C5      Comparison of Measured and Predicted Displacement Histories on 

K6 48 FWD Station in February 01  
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FIGURE C6      Comparison of Measured and Predicted Displacement Histories on 
K6 1 FWD Station in May 01  
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FIGURE C7     Comparison of Measured and Predicted Displacement Histories on 

K6 4 FWD Station in May 01  
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FIGURE C8     Comparison of Measured and Predicted Displacement Histories on 
K6 11 FWD Station in May 01  
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FIGURE C9      Comparison of Measured and Predicted Displacement Histories on 

K6 23 FWD station in May 01  
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FI GURE C10    Comparison of Measured and Predicted Displacement Histories   
   on K6 29 FWD station in May 01  
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FIGURE C11   Comparison of Measured and Predicted Displacement Histories   on 
K6 1 FWD station in July 01  
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FIGURE C12   Comparison of Measured and Predicted Displacement Histories     
on K6 4 FWD station in July 01  
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FIGURE C13   Comparison of Measured and Predicted Displacement Histories on 

K6 11 FWD station in July 01  
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FIGURE C14   Comparison of Measured and Predicted Displacement Histories     

on K6 23 FWD station in July 01  
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FIGURE C15   Comparison of Measured and Predicted Displacement Histories on 
K6 29 FWD station in July 01  
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FIGURE C16   Comparison of Measured and Predicted Displacement Histories on 
K6 35 FWD station in July 01  
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FIGURE C17   Comparison of Measured and Predicted Displacement Histories on 
K6 48 FWD Station in July 01  
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FIGURE C18   Comparison of Measured and Predicted Displacement Histories on 
K6 1 FWD Station in August 01  
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FIGURE C19   Comparison of Measured and Predicted Displacement Histories on 
K6 11 FWD Station in August 01  
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FIGURE C20   Comparison of Measured and Predicted Displacement Histories on 
K6 23 FWD Station in August 01  
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FIGURE C21   Comparison of Measured and Predicted Displacement Histories on 

K6 29 FWD Station in August 01  
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FIGURE C22   Comparison of Measured and Predicted Displacement Histories on 
K6 48 FWD Station in August 01  
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FIGURE C23   Comparison of Measured and Predicted Displacement Histories on 
K6 1 FWD Station in March 02  
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FIGURE C24   Comparison of Measured and Predicted Displacement Histories on 
K6 4 FWD Station in March 02  
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FIGURE C25   Comparison of Measured and Predicted Displacement Histories on 
K6 11 FWD Station in March 02  
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FIGURE C26   Comparison of Measured and Predicted Displacement Histories on 
K6 23 FWD Station in March 02  
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FIGURE C27   Comparison of Measured and Predicted Displacement Histories on 
K6 29 FWD Station in March 02  
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FIGURE C28   Comparison of Measured and Predicted Displacement Histories on 
K6 48 FWD Station in March 02  
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FIGURE C29   Comparison of Measured and Predicted Displacement Histories on 
K6 4 FWD Station in July 02  
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FIGURE C29   Comparison of Measured and Predicted Displacement Histories on 
K6 11 FWD Station in July 02  
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FIGURE C30   Comparison of Measured and Predicted Displacement Histories on 
K6 23 FWD Station in July 02  
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FIGURE C31   Comparison of Measured and Predicted Displacement Histories on 

K6 29 FWD Station in July 02  
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FIGURE C32   Comparison of Measured and Predicted Displacement Histories on 
K6 48 FWD Station in July 02  
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FIGURE C33   Comparison of Measured and Predicted Displacement Histories on 
K7 20 FWD Station in February 01  
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FIGURE C34   Comparison of Measured and Predicted Displacement Histories  on 
K7 37 FWD Station in February 01  
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FIGURE C35   Comparison of Measured and Predicted Displacement Histories on 
K7 40 FWD Station in February 01  
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FIGURE C36   Comparison of Measured and Predicted Displacement Histories on 

K7 11 FWD Station in May 01  
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FIGURE C37   Comparison of Measured and Predicted Displacement Histories on 
K7 15 FWD Station in May 01  
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FIGURE C38   Comparison of Measured and Predicted Displacement Histories on 
K7 31 FWD Station in May 01  
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FIGURE C38   Comparison of Measured and Predicted Displacement Histories on 
K7 37 FWD Station in May 01  
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FIGURE C39   Comparison of Measured and Predicted Displacement Histories on 

K7 40 FWD Station in May 01  
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FIGURE C40   Comparison of Measured and Predicted Displacement Histories on 
K7 11 FWD Station in August 01  
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FIGURE C40   Comparison of Measured and Predicted Displacement Histories on 
K7 15 FWD Station in August 01  
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FIGURE C41   Comparison of Measured and Predicted Displacement Histories on 
K7 20 FWD Station in August 01  
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FIGURE C42   Comparison of Measured and Predicted Displacement Histories on 
K7 37 FWD Station in August 01 
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FIGURE C43   Comparison of Measured and Predicted Displacement Histories on 

K7 40 FWD Station in August 01  
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FIGURE C44   Comparison of Measured and Predicted Displacement Histories on 
K7 11 FWD Station in March 02 
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FIGURE C45   Comparison of Measured and Predicted Displacement Histories on 
K7 15 FWD Station in March 02  
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FIGURE C46   Comparison of Measured and Predicted Displacement Histories on 
K7 20 FWD Station in March 02 
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FIGURE C47   Comparison of Measured and Predicted Displacement Histories on 
K7 37 FWD Station in March 02  
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FIGURE C48   Comparison of Measured and Predicted Displacement Histories on 
K7 40 FWD Station in March 02  
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FIGURE C49   Comparison of Measured and Predicted Displacement Histories on 
K7 11 FWD Station in July 02  
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FIGURE C49   Comparison of Measured and Predicted Displacement Histories on 
K7 15 FWD Station in July 02  
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FIGURE C50   Comparison of Measured and Predicted Displacement Histories on 

K7 20 FWD Station in July 02  
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FIGURE C51   Comparison of Measured and Predicted Displacement Histories on 
K7 31 FWD Station in July 02  
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FIGURE C52   Comparison of Measured and Predicted Displacement Histories on 

K7 37 FWD Station in July 02  
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FIGURE C53   Comparison of Measured and Predicted Displacement Histories on 
K7 40 FWD Station in July 02 
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FIGURE C54   Comparison of Measured and Predicted Displacement Histories on 
K7 20 FWD Station in October 02  
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FIGURE C55   Comparison of Measured and Predicted Displacement Histories on 

K7 31 FWD Station in October 02  
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FIGURE C56   Comparison of Measured and Predicted Displacement Histories on 
K7 37 FWD Station in October 02  
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FIGURE C57   Comparison of Measured and Predicted Displacement Histories on 

K7 40 FWD Station in October 02  
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FIGURE C58   Comparison of Measured and Predicted Displacement Histories on 
K7 11 FWD Station in April 03  
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FIGURE C59   Comparison of Measured and Predicted Displacement Histories s    

on K7 15 FWD Station in April 03  
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FIGURE C60   Comparison of Measured and Predicted Displacement Histories on 
K7 20 FWD Station in April 03 
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FIGURE C61   Comparison of Measured and Predicted Displacement Histories on 

K7 31 FWD Station in April 03 
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FIGURE C62   Comparison of Measured and Predicted Displacement Histories on 
K7 37 FWD Station in April 03 
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FIGURE C63   Comparison of Measured and Predicted Displacement Histories on  
K7 40 FWD Station in April 03 
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APPENDIX D 

PLOTS OF DYNAMIC (COMPLEX) MODULUS VERSUS 

FREQUENCIES AT DIFFERENT TEST TEMPERATURES 
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 FIGURE D1    Dynamic (Complex) Modulus of K6-1 FWD Station. 
      Case 1 and  Case 3 (LVDT 1).  
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 FIGURE D2   Dynamic (Complex) Modulus of K6-1 FWD Station. 
     CASE 2 AND  CASE 4 (LVDT 1)   
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FIGURE D3   Dynamic (Complex) Modulus of K6-4 FWD Station. 

   Case 1 and  Case 3 (Average)   
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FIGURE D4   Dynamic (Complex) Modulus of K6-4 FWD Station. 
   Case 1 and  Case 3 (LVDTs)   
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FIGURE D5   Dynamic (Complex) Modulus of K6-4 FWD Station. 
   Case 2 and  Case 4 (Average)   
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FIGURE D6   Dynamic (Complex) Modulus of K6-4 FWD Station. 
   Case 2 and  Case 4 (LVDTs)   



  

 

225

 

100

1000

10000

100000

0.1 1 10 100

FREQUENCY  (Hz)

/E
*/

(M
Pa

)

Test Temperature, degree C 21.1 29.4 37.8 43.3 54.4
 

FIGURE D7  Dynamic (Complex) Modulus of K6-11 FWD Station. 
   Case 1 and  Case 3 (Average)   

 

100

1000

10000

100000

0.1 1 10 100

FREQUENCY (Hz)

/E
*/

 (M
Pa

)

Test Temperature, degree C 21.1 29.4 37.8 43.3 54.4
  

FIGURE D8   Dynamic (Complex) Modulus of K6-11 FWD Station. 
   Case 2 and  Case 4 (Average)  
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FIGURE D9     Dynamic (Complex) Modulus of K6-11 FWD Station  Case 
1 and  Case 3 (LVDT 1)   
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FIGURE D12     Dynamic (Complex) Modulus of K6-11 FWD Station. 
      Case 2 and  Case 4  (LVDT 1)   
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FIGURE D13    Dynamic (Complex) Modulus of K6-23 FWD Station. 
     Case 1 and  Case 3 (Average)   
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FIGURE D14     Dynamic (Complex) Modulus of K6-23 FWD Station. 
       Case 2 and  Case 4 (Average)   
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FIGURE D15     Dynamic (Complex) Modulus of K6-23 FWD Station. 
         Case 1 and  Case 3 (LVDTs)   
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FIGURE D16    Dynamic (Complex) Modulus of K6-23 FWD Station. 
       Case 2 and  Case 4 (LVDTs)   
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FIGURE D17    Dynamic (Complex) Modulus of K6-29 FWD Station. 
       Case 1 and  Case 3 (LVDT 2)   
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FIGURE D18     Dynamic (Complex) Modulus of K6-29 FWD Station. 
       Case 2 and  Case 4 (LVDT-2)  



  

 

230

 

100

1000

10000

100000

0.1 1 10 100

FREQUENCY (Hz)

/E
*/

 (M
Pa

)

Test Temperature, degree C 21.1 29.4 37.8 43.3 54.4
 

FIGURE D19   Dynamic (Complex) Modulus of K6-29 FWD Station. 
      Case 1 and  Case 3 (LVDTs) 
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FIGURE D20    Dynamic (Complex) Modulus of K6-29 Fwd Station. 
       Case 2 and Case 4 (LVDTs) 
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 FIGURE D21   Dynamic (Complex) Modulus of K6-48 FWD Station. 
     Case 1 and 3  (LVDT-2) 
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 FIGURE D22   Dynamic (Complex) Modulus of K6-48 FWD Station.  
      Case 2 and 4  (LVDT 2) 
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FIGURE D23   Dynamic (Complex)  Modulus of Fwd Station K7-3 
      Case 2 And  Case 4 (LVDTs) 
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FIGURE C24   Dynamic (Complex) Modulus of K7-11 FWD Station. 
 Case 1 and  Case 3 (LVDTs) 
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FIGURE C25   Dynamic (Complex) Modulus of K7-11 FWD Station.  
    Case 2 and  Case 4 (LVDTs) 
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FIGURE C26   Dynamic (Complex)  Modulus of K7-15 FWD Station  
       Case 1 and  Case 3 (LVDTs) 
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FIGURE C27   Dynamic (Complex)  Modulus of K7-15 FWD Station  
       Case 2 and  Case 4 (LVDTS) 
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FIGURE C28   Dynamic (Complex) Modulus of K7-20 FWD Station  
      Case 1 and  Case 3 (LVDTs) 
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FIGURE C29   Dynamic (Complex)  Modulus of K7-20 FWD Station  
    Case 2 And  Case 4 (LVDTs) 
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FIGURE C30   Dynamic (Complex) Modulus of K7-31 FWD Station  
    Case 1 and  Case 3 (LVDTs) 
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FIGURE C31   Dynamic (Complex) Modulus of K7-31 FWD Station  
    Case 2 and  Case 4 (LVDTs) 
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FIGURE C32   Dynamic (Complex) Modulus of K7-31 FWD Station  
    Case 1 and  Case 3 (LVDT 2) 
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FIGURE C33   Dynamic (Complex) Modulus of K7-31 FWD Station 
    CASE 2 AND  CASE 4 (LVDT 2)  
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FIGURE C34   Dynamic (Complex) Modulus of K7-37 FWD Station  
       Case 1 and Case 3 (Average) 
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FIGURE C35   Dynamic (Complex) Modulus of K7-37 FWD Station  
    Case 2 and Case 4 (Average) 
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FIGURE C36   Dynamic (Complex) Modulus of K7-37 FWD Station  
    Case 1 and  Case 3 (LVDT 2) 
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FIGURE C37   Dynamic (Complex) Modulus of K7-37 FWD Station  
    Case 2 and Case 4 (LVDT 2) 
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FIGURE C38   Dynamic (Complex) Modulus of K7-37 FWD Station  
     Case 1 and  Case 3 (LVDTs) 
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FIGURE C39   Dynamic (Complex) Modulus of K7-37 FWD Station  
    Case 2 and Case 4 (LVDTs) 
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FIGURE C40   Dynamic (Complex) Modulus of K7-40 FWD Station  
    Case 1 and  Case 3 (Average) 
 
 



  

 

241

100

1000

10000

100000

0.1 1 10 100

FREQUENCY (Hz)

/E
*/

 (M
Pa

)

Test Temperature, degree C 21.1 29.4 37.8 43.3 54.4

 
FIGURE C41   Dynamic (Complex) Modulus of K7-40 FWD Station  
    Case 2 and  Case 4 (Average) 
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FIGURE C 42   Dynamic (Complex) Modulus of K7-40 FWD Station  
      Case 2 and  Case 4 (LVDTs) 
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FIGURE D43   Dynamic (Complex) Modulus of K7-40 FWD Station  
      Case 1 and  Case 3 (LVDTs) 
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D2  BACKCALCULATION  OF THE CREEP COMPLIANCE 
COEFFICIENTS  

 
 The program FREQSWP is used to backcalculate the creep compliance 

coefficients, which uses data from frequency sweep tests.  The input data to this program 

are the storage and loss compliances at  various frequencies which have been determined 

by the frequency sweep test data. The J1 and J2 are the real and imaginary part of the 

Creep Compliance obtained on the laboratory testing. 

 
TABLE D1  Measured and Predicted values of Creep Compliance of K6-1 FWD 

Station at 21.1 oC (70 oF) 
 

No Frequency J1 (1/MPa) J2 (1/MPa) 
  (Hz.) Measured Predicted Measured Predicted 
1 25 4.47E-05 3.27E-05 1.22E-05 1.25E-05 
2 10 4.22E-05 4.04E-05 2.09E-05 1.79E-05 
3 5 4.15E-05 4.83E-05 2.97E-05 2.34E-05 
4 1 7.27E-05 7.74E-05 4.22E-05 4.39E-05 
5 0.5 8.70E-05 9.67E-05 6.46E-05 5.74E-05 
6 0.1 1.47E-04 1.68E-04 1.06E-04 1.07E-04 

 
Backcalculated Creep Compliance Coefficients of K6-1 FWD Station at 21.1 oC 

Do D1 m SSE 
1.48E-05 1.76E-04 3.89E-01 2.18E-01 
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FIGURE D44   Comparison between the Measured and Predicted Values of Creep 

Compliance of K6-1 FWD Station at 21.1 oC 
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TABLE D2  Measured and Predicted Values of Creep Compliance of K6-1 FWD 
Station at 29.4 oC (85 oF) 

 
 

No Frequency J1 (1/MPa) J2 (1/MPa) 
  (Hz.) Measured Predicted Measured Predicted 
1 25 5.93E-05 4.96E-05 4.31E-05 3.67E-05 
2 10 6.56E-05 7.19E-05 5.87E-05 5.32E-05 
3 5 8.15E-05 9.52E-05 8.52E-05 7.04E-05 
4 1 1.93E-04 1.83E-04 1.24E-04 1.35E-04 
5 0.5 2.26E-04 2.42E-04 2.00E-04 1.79E-04 
6 0.1 4.14E-04 4.65E-04 3.37E-04 3.44E-04 

 
 
Backcalculated Creep Compliance Coefficients of K6-1 FWD Station at 29.4 oC 

Do D1 m SSE 
2.69E-11 5.40E-04 4.06E-01 1.68E-01 
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FIGURE D45   Comparison between the Measured and Predicted Values of  Creep   

Compliance of K6-1 FWD Station at 29.4 oC 
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TABLE D3  Measured and Predicted values of Creep Compliance of K6-1 FWD 
Station at 37.8 oC (100 oF) 

 
 

No Frequency J1 (1/MPa) J2 (1/MPa) 

  (Hz.) Measured Predicted Measured Predicted 

1 10 3.48E-04 3.27E-04 1.12E-04 1.20E-04 

2 5 4.09E-04 3.79E-04 1.72E-04 1.62E-04 

3 1 5.18E-04 5.80E-04 4.61E-04 3.23E-04 

4 0.5 7.20E-04 7.20E-04 4.80E-04 4.34E-04 

5 0.1 1.11E-03 1.26E-03 7.88E-04 8.67E-04 
 
 
Backcalculated Creep Compliance Coefficients of K6-1 FWD Station at 37.8 oC 

Do D1 m SSE 
1.77E-04 1.28E-03 4.29E-01 1.59E-01 
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FIGURE D46   Comparison between the Measured and Predicted Values of Creep   

Compliance of K6-1 FWD Station at 37.8 oC 
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TABLE D4   Measured and Predicted values of Creep Compliance of K6-1 FWD 
            Station at 43.3 oC (110 oF) 
 

No Frequency J1 (1/MPa) J2 (1/MPa) 

  (Hz.) Measured Predicted Measured Predicted 

1 25 3.90E-04 4.42E-04 6.27E-05 8.79E-05 

2 10 4.73E-04 4.95E-04 1.87E-04 1.30E-04 

3 5 5.58E-04 5.51E-04 2.70E-04 1.75E-04 

4 1 9.13E-04 7.69E-04 3.99E-04 3.49E-04 

5 0.5 1.14E-03 9.20E-04 5.68E-04 4.69E-04 

6 0.1 1.74E-03 1.50E-03 7.34E-04 9.34E-04 
 
 
Backcalculated Creep Compliance Coefficients of K6-1 FWD Station at 43.3 oC 

Do D1 m SSE 
3.31E-04 1.39E-03 4.28E-01 5.97E-01 
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FIGURE D47   Comparison between the Measured and Predicted Values of Creep  

Compliance of K6-1 FWD Station at 43.3 oC 
 
 
 



  

 

247

TABLE D5   Measured and Predicted values of Creep Compliance of K6-1 
FWD 

            Station at 54.4 oC (130 oF) 
 

No Frequency J1 (1/MPa) J2 (1/MPa) 

  (Hz.) Measured Predicted Measured Predicted 

1 25 8.32E-04 9.46E-04 6.59E-05 8.25E-05 

2 10 1.02E-03 9.93E-04 4.16E-04 1.33E-04 

3 5 1.22E-03 1.05E-03 6.20E-04 1.90E-04 

4 1 1.06E-03 1.28E-03 3.43E-04 4.39E-04 

5 0.5 2.12E-03 1.46E-03 1.01E-03 6.29E-04 

6 0.1 2.83E-03 2.23E-03 1.32E-03 1.45E-03 
 
 
Backcalculated Creep Compliance Coefficients of K6-1 FWD Station at 54.4 oC 

Do D1 m SSE 
8.68E-04 1.76E-03 5.19E-01 1.46E+00 

 
 
 

0E+00

1E-03

2E-03

3E-03

0E+00 1E-03 2E-03 3E-03

Ji Measured

Ji
 P

re
di

ct
ed

J 1 J 2
 

 
FIGURE D48   Comparison between the Measured and Predicted Values of  Creep  

Compliance of K6-1 FWD Station at 54.4 oC 
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TABLE D6   Measured and Predicted values of Creep Compliance of K6-4  
     FWD Station at 21.1 oC (70 oF) 
 

No Frequency J1 (1/MPa) J2 (1/MPa) 
  (Hz.) Measured Predicted Measured Predicted 
1 25 5.51E-05 6.30E-05 1.54E-05 1.96E-05 
2 10 7.46E-05 7.47E-05 3.26E-05 3.00E-05 
3 5 9.33E-05 8.74E-05 5.17E-05 4.13E-05 
4 1 1.69E-04 1.39E-04 8.37E-05 8.72E-05 
5 0.5 2.01E-04 1.76E-04 1.29E-04 1.20E-04 
6 0.1 3.58E-04 3.26E-04 2.25E-04 2.54E-04 

 
 
Backcalculated Creep Compliance Coefficients of K6-4 FWD Station at 21.1 oC 

Do D1 m SSE 
4.11E-05 3.47E-04 4.64E-01 2.22E-01 
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FIGURE D49   Comparison between the Measured and Predicted values of Creep 
Compliance of K6-4 FWD Station at 21.1 oC 
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TABLE D7   Measured and Predicted values of Creep Compliance of K6-4 FWD  
   Station at 29.4 oC (85 oF) 
 

No Frequency J1 (1/MPa) J2 (1/MPa) 
  (Hz.) Measured Predicted Measured Predicted 
1 25 8.23E-05 7.51E-05 2.15E-05 2.54E-05 
2 10 8.80E-05 8.99E-05 4.83E-05 3.98E-05 
3 5 9.64E-05 1.07E-04 7.16E-05 5.59E-05 
4 1 1.90E-04 1.76E-04 1.16E-04 1.23E-04 
5 0.5 2.24E-04 2.27E-04 1.87E-04 1.73E-04 
6 0.1 4.31E-04 4.41E-04 3.53E-04 3.80E-04 

 
 
Backcalculated Creep Compliance Coefficients of K6-4 FWD Station at 29.4 oC 

Do D1 m SSE 
4.89E-05 4.91E-04 4.90E-01 1.52E-01 
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FIGURE D50   Comparison between the Measured and Predicted values of Creep 
Compliance of K6-4 FWD Station at 29.4  oC 
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TABLE D8   Measured and Predicted values of Creep Compliance of K6-4 FWD  
   Station at 37.8 oC (100 oF) 
 

No Frequency J1 (1/MPa) J2 (1/MPa) 
  (Hz.) Measured Predicted Measured Predicted 
1 25 1.79E-04 1.79E-04 5.65E-05 7.43E-05 
2 10 2.32E-04 2.21E-04 1.73E-04 1.21E-04 
3 5 2.82E-04 2.70E-04 2.60E-04 1.75E-04 
4 1 3.98E-04 4.84E-04 5.82E-04 4.10E-04 
5 0.5 7.67E-04 6.50E-04 7.29E-04 5.93E-04 
6 0.1 1.37E-03 1.38E-03 1.11E-03 1.39E-03 

 
Backcalculated Creep Compliance Coefficients of K6-4 FWD Station at 37.8 oC  
 

Do D1 m SSE 
1.12E-04 1.66E-03 5.31E-01 5.61E-01 
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FIGURE D51   Comparison between the Measured and Predicted values of Creep 
Compliance of K6-4 FWD Station at 37.8  oC 
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TABLE D9   Measured and Predicted values of Creep Compliance of K6-4 FWD 
   Station at 43.3 oC (110 oF) 
 
 

No Frequency J1 (1/MPa) J2 (1/MPa) 
  (Hz.) Measured Predicted Measured Predicted 
1 25 2.78E-04 3.47E-04 3.31E-05 4.96E-05 
2 10 3.69E-04 3.74E-04 1.70E-04 8.29E-05 
3 5 4.74E-04 4.07E-04 2.68E-04 1.22E-04 
4 1 6.10E-04 5.55E-04 6.53E-04 3.03E-04 
5 0.5 1.03E-03 6.73E-04 6.08E-04 4.47E-04 
6 0.1 1.58E-03 1.21E-03 8.14E-04 1.10E-03 

 
 

Backcalculated Creep Compliance Coefficients of K6-4 FWD Station at 43.3 oC  
 

Do D1 m SSE 
3.06E-04 1.24E-03 5.62E-01 1.55E+00 
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FIGURE D52   Comparison between the Measured and Predicted values of Creep 
Compliance of K6-4 FWD Station at 43.3  oC 
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TABLE D10   Measured and Predicted values of Creep Compliance of K6-4 FWD  
     Station at 54.4 oC (130 oF) 
 
 

No Frequency J1 (1/MPa) J2 (1/MPa) 
 (Hz.) Measured Predicted Measured Predicted 

1 25 4.70E-04 4.81E-04 1.70E-04 2.16E-04 
2 10 7.00E-04 6.14E-04 4.70E-04 2.98E-04 
3 5 9.10E-04 7.48E-04 6.70E-04 3.79E-04 
4 1 1.00E-03 1.22E-03 1.10E-03 6.65E-04 
5 0.5 1.60E-03 1.51E-03 1.00E-03 8.47E-04 
6 0.1 2.00E-03 2.56E-03 1.30E-03 1.49E-03 

 
 
Backcalculated Creep Compliance Coefficients of K6-4 FWD Station at 54.4 oC 

Do D1 m SSE 
1.27E-04 2.72E-03 3.49E-01 7.72E-01 
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FIGURE D53   Comparison between the Measured and Predicted values of Creep 
Compliance of K6-4 FWD Station at 54.4 oC 
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TABLE D11   Measured and Predicted values of Creep Compliance of K6-11 
     FWD Station at 21.1 oC (70 oF) 

 
No Frequency J1 (1/MPa) J2 (1/MPa) 

  (Hz.) Measured Predicted Measured Predicted 
1 25 4.46E-05 4.07E-05 9.62E-06 1.16E-05 
2 10 4.51E-05 4.76E-05 2.14E-05 1.76E-05 
3 5 5.07E-05 5.52E-05 3.30E-05 2.40E-05 
4 1 9.15E-05 8.50E-05 4.46E-05 4.95E-05 
5 0.5 1.09E-04 1.06E-04 7.66E-05 6.76E-05 
6 0.1 1.92E-04 1.90E-04 1.27E-04 1.39E-04 

 
 
Backcalculated Creep Compliance Coefficients of K6-11 FWD Station at 21.1 oC 

Do D1 m SSE 
2.71E-05 1.97E-04 4.50E-01 2.10E-01 
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FIGURE D54   Comparison between the Measured and Predicted values of Creep 

Compliance of K6-11 FWD Station at 21.1 oC 
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TABLE D12   Measured and Predicted values of Creep Compliance of K6-11  
    FWD Station at 29.4 oC (85 oF) 

 
No Frequency J1 (1/MPa) J2 (1/MPa) 
  (Hz.) Measured Predicted Measured Predicted 
1 25 1.26E-04 1.39E-04 1.76E-05 2.32E-05 
2 10 1.41E-04 1.52E-04 5.05E-05 3.70E-05 
3 5 1.64E-04 1.67E-04 7.86E-05 5.27E-05 
4 1 2.83E-04 2.32E-04 1.05E-04 1.20E-04 
5 0.5 3.38E-04 2.82E-04 1.87E-04 1.71E-04 
6 0.1 6.12E-04 4.92E-04 3.46E-04 3.89E-04 

 
 

Backcalculated Creep Compliance Coefficients of K6-11 FWD Station at 29.4 oC 
Do D1 m SSE 

1.16E-04 4.81E-04 5.11E-01 4.40E-01 
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FIGURE D55   Comparison between the Measured and Predicted values of Creep 

Compliance of K6-11 FWD Station at 29.4 oC 
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TABLE D13   Measured and Predicted values of Creep Compliance of K6-11 
    FWD Station at 37.8 oC (100 oF) 

 
 

No Frequency J1 (1/MPa) J2 (1/MPa) 

  (Hz.) Measured Predicted Measured Predicted 

1 25 1.97E-04 2.26E-04 3.77E-05 5.36E-05 

2 10 2.46E-04 2.57E-04 1.08E-04 8.61E-05 

3 5 3.05E-04 2.92E-04 1.82E-04 1.23E-04 

4 1 5.34E-04 4.44E-04 3.39E-04 2.83E-04 

5 0.5 7.55E-04 5.60E-04 4.66E-04 4.05E-04 

6 0.1 1.38E-03 1.06E-03 7.27E-04 9.31E-04 
 
 

Backcalculated Creep Compliance Coefficients of K6-11 FWD Station at 37.8 oC 
Do D1 m SSE 

1.76E-04 1.14E-03 5.17E-01 6.20E-01 
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FIGURE D56   Comparison between the Measured and Predicted values of Creep 

Compliance of K6-11 FWD Station at 37.8  oC 
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TABLE D14   Measured and Predicted values of Creep Compliance of K6-11  
     FWD Station at 43.3 oC (110 oF) 
 

 
No Frequency J1 (1/MPa) J2 (1/MPa) 

  (Hz.) Measured Predicted Measured Predicted 

1 25 2.82E-04 3.12E-04 5.71E-05 8.15E-05 

2 10 3.59E-04 3.58E-04 2.12E-04 1.34E-04 

3 5 4.40E-04 4.11E-04 3.27E-04 1.95E-04 

4 1 6.54E-04 6.49E-04 7.54E-04 4.65E-04 

5 0.5 1.04E-03 8.35E-04 8.17E-04 6.77E-04 

6 0.1 1.70E-03 1.66E-03 1.25E-03 1.62E-03 
 
 

Backcalculated Creep Compliance Coefficients of K6-11 FWD Station at 43.3 oC 
Do D1 m SSE 

2.40E-04 1.88E-03 5.41E-01 7.98E-01 
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FIGURE D57   Comparison between the Measured and Predicted values of Creep 

Compliance of K6-11 FWD Station at 43.3  oC 
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TABLE D15   Measured and Predicted values of Creep Compliance of K6-11  
     FWD Station at 54.4 oC (130 oF) 

 
 

No Frequency J1 (1/MPa) J2 (1/MPa) 

  (Hz.) Measured Predicted Measured Predicted 

1 25 4.55E-04 5.00E-04 2.88E-04 2.44E-04 

2 10 6.33E-04 6.51E-04 5.16E-04 3.17E-04 

3 5 7.79E-04 7.95E-04 7.20E-04 3.88E-04 

4 1 1.28E-03 1.27E-03 5.60E-04 6.17E-04 

5 0.5 1.55E-03 1.55E-03 9.35E-04 7.54E-04 

6 0.1 1.92E-03 2.46E-03 1.05E-03 1.20E-03 
 
 

Backcalculated Creep Compliance Coefficients of K6-11 FWD Station at 54.4 oC 
Do D1 m SSE 

2.69E-11 2.66E-03 2.89E-01 5.43E-01 
 
 

0.0E+00

5.0E-04

1.0E-03

1.5E-03

2.0E-03

2.5E-03

0.0E+00 5.0E-04 1.0E-03 1.5E-03 2.0E-03 2.5E-03

Ji  Measured

Ji
 P

re
di

ct
ed

J 1 J 2
 

 
FIGURE D58   Comparison between the Measured and Predicted values of Creep 

Compliance of K6-11 FWD Station at 54.4  oC 
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TABLE D16   Measured and Predicted values of Creep Compliance of K6-23  
     FWD Station at 21.1 oC (70 oF) 

 
 

No Frequency J1 (1/MPa) J2 (1/MPa) 

  (Hz.) Measured Predicted Measured Predicted 

1 10 1.50E-04 1.29E-04 5.22E-05 5.22E-05 

2 5 1.65E-04 1.53E-04 7.35E-05 6.54E-05 

3 1 2.18E-04 2.33E-04 1.30E-04 1.10E-04 

4 0.5 2.56E-04 2.83E-04 1.48E-04 1.38E-04 

5 0.1 3.64E-04 4.52E-04 2.32E-04 2.32E-04 
 
 

Backcalculated Creep Compliance Coefficients of K6-23 FWD Station at 21.1 oC 

Do D1 m SSE 

3.56E-05 4.58E-04 3.24E-01 1.41E-01 
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FIGURE D59   Comparison between the Measured and Predicted values of Creep 
Compliance of K6-23 FWD Station at 21.1  oC 
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TABLE D17   Measured and Predicted values of Creep Compliance of K6-23  
                        FWD Station at 29.4 oC (85 oF) 

 
No Frequency J1 (1/MPa) J2 (1/MPa) 

  (Hz.) Measured Predicted Measured Predicted 

1 10 1.50E-04 1.50E-04 3.35E-05 3.65E-05 

2 5 1.64E-04 1.67E-04 5.47E-05 4.74E-05 

3 1 2.34E-04 2.25E-04 8.21E-05 8.70E-05 

4 0.5 2.67E-04 2.64E-04 1.25E-04 1.13E-04 

5 0.1 3.92E-04 4.04E-04 2.01E-04 2.08E-04 
 
 

Backcalculated Creep Compliance Coefficients of K6-23 FWD Station at 21.1 oC 

Do D1 m SSE 

9.64E-05 3.51E-04 3.78E-01 4.26E-02 
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FIGURE D60   Comparison between the Measured and Predicted values of Creep 
Compliance of K6-23 FWD Station at 29.4  oC 
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TABLE D18   Measured and Predicted values of Creep Compliance of K6-23  
     FWD Station at 37.8 oC (100 oF) 

 
 

No Frequency J1 (1/MPa) J2 (1/MPa) 

  (Hz.) Measured Predicted Measured Predicted 

1 10 4.35E-04 4.15E-04 9.74E-05 1.11E-04 

2 5 4.82E-04 4.63E-04 1.69E-04 1.49E-04 

3 1 6.18E-04 6.48E-04 4.16E-04 2.96E-04 

4 0.5 7.85E-04 7.76E-04 4.33E-04 3.98E-04 

5 0.1 1.12E-03 1.27E-03 7.15E-04 7.91E-04 
 
 

Backcalculated Creep Compliance Coefficients of K6-23 FWD Station at 37.8 oC 

Do D1 M SSE 

2.76E-04 1.18E-03 4.27E-01 1.58E-01 
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FIGURE D61   Comparison between the Measured and Predicted values of Creep 
Compliance of K6-23 FWD Station at 37.8  oC 
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TABLE D19   Measured and Predicted values of Creep Compliance of K6-23 
     FWD Station at 43.3 oC (110 oF) 

 
 

No Frequency J1 (1/MPa) J2 (1/MPa) 

  (Hz.) Measured Predicted Measured Predicted 

1 10 6.56E-04 6.42E-04 1.36E-04 1.58E-04 

2 5 7.45E-04 7.11E-04 2.34E-04 2.13E-04 

3 1 8.97E-04 9.76E-04 6.96E-04 4.26E-04 

4 0.5 1.22E-03 1.16E-03 6.28E-04 5.74E-04 

5 0.1 1.75E-03 1.87E-03 1.00E-03 1.15E-03 
 
 

Backcalculated Creep Compliance Coefficients of K6-23 FWD Station at 43.3 oC 

Do D1 m SSE 

4.45E-04 1.69E-03 4.31E-01 2.29E-01 
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FIGURE D62   Comparison between the Measured and Predicted Values of Creep 
Compliance of K6-23 FWD Station at 43.3  oC 
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TABLE D20 Measured and Predicted values of Creep Compliance of K6-23 FWD 
Station at 54.4 oC (130 oF) 

 
No Frequency J1 (1/MPa) J2 (1/MPa) 

  (Hz.) Measured Predicted Measured Predicted 

1 25 8.51E-04 9.32E-04 6.53E-05 9.19E-05 

2 10 9.24E-04 9.87E-04 3.39E-04 1.41E-04 

3 5 1.04E-03 1.05E-03 4.69E-04 1.96E-04 

4 1 1.49E-03 1.29E-03 5.95E-04 4.16E-04 

5 0.5 1.71E-03 1.47E-03 7.22E-04 5.75E-04 

6 0.1 2.29E-03 2.18E-03 9.46E-04 1.22E-03 
 
 
Backcalculated Creep Compliance Coefficients of K6-23 FWD Station at 54.4 oC 

Do D1 m SSE 

8.31E-04 1.65E-03 4.69E-01 1.12E+00 
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FIGURE D63   Comparison between the Measured and Predicted Values of Creep 

Compliance of K6-23 FWD Station at 54.4  oC 
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TABLE D21 Measured and Predicted values of Creep Compliance of K6-29 FWD 
Station at 21.1 oC (70 oF) 

 
No Frequency J1 (1/MPa) J2 (1/MPa) 

  (Hz.) Measured Predicted Measured Predicted 

1 10 7.80E-05 8.22E-05 1.00E-05 1.21E-05 

2 5 8.60E-05 8.73E-05 1.90E-05 1.65E-05 

3 1 1.10E-04 1.08E-04 5.00E-05 3.43E-05 

4 0.5 1.30E-04 1.23E-04 4.90E-05 4.69E-05 

5 0.1 1.90E-04 1.81E-04 8.50E-05 9.73E-05 
 
 

Backcalculated Creep Compliance Coefficients of K6-23 FWD Station at 54.4 oC 
 

Do D1 m SSE 

6.82E-05 1.36E-04 4.53E-01 1.91E-01 
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FIGURE D64   Comparison between the Measured and Predicted Values of Creep 

Compliance of K6-29 FWD Station at 21.1  oC 
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TABLE D22 Measured and Predicted values of Creep Compliance of K6-29 FWD 
Station at 29.4 oC (85 oF) 

 

No Frequency J1 (1/MPa) J2 (1/MPa) 

  (Hz.) Measured Predicted Measured Predicted 

1 10 1.23E-04 1.26E-04 2.74E-05 3.02E-05 

2 5 1.41E-04 1.39E-04 4.67E-05 4.31E-05 

3 1 1.98E-04 1.92E-04 1.07E-04 9.82E-05 

4 0.5 2.42E-04 2.32E-04 1.50E-04 1.40E-04 

5 0.1 3.76E-04 4.05E-04 3.00E-04 3.19E-04 
 
 
 
Backcalculated Creep Compliance Coefficients of K6-29 FWD Station at 29.4 oC 

Do D1 m SSE 

9.71E-05 3.94E-04 5.12E-01 4.21E-02 
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FIGURE D65   Comparison between the Measured and Predicted Values of Creep 
Compliance of K6-29 FWD Station at 29.4 oC 
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TABLE D23 Measured and Predicted values of Creep Compliance of K6-29 FWD 
Station at 37.8 oC (100 oF) 

 
No Frequency J1 (1/MPa) J2 (1/MPa) 

  (Hz.) Measured Predicted Measured Predicted 

1 25 2.14E-04 2.70E-04 1.40E-05 2.07E-05 

2 10 2.55E-04 2.80E-04 9.70E-05 3.78E-05 

3 5 3.09E-04 2.93E-04 1.49E-04 5.96E-05 

4 1 5.23E-04 3.60E-04 2.29E-04 1.72E-04 

5 0.5 6.44E-04 4.19E-04 3.44E-04 2.71E-04 

6 0.1 1.16E-03 7.23E-04 5.98E-04 7.82E-04 
 
 
 

Backcalculated Creep Compliance Coefficients of K6-29 FWD Station at 37.8 oC 

Do D1 m SSE 

2.58E-04 7.44E-04 6.58E-01 1.61E+00 
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FIGURE D66   Comparison between the Measured and Predicted Values of Creep 

Compliance of K6-29 FWD Station at 37.8 oC 
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TABLE D24 Measured and Predicted values of Creep Compliance of K6-29 FWD 
Station at 43.3 oC (110 oF) 

 
No Frequency J1 (1/MPa) J2 (1/MPa) 

  (Hz.) Measured Predicted Measured Predicted 

1 25 2.26E-04 2.96E-04 1.71E-05 2.53E-05 

2 10 2.91E-04 3.09E-04 1.07E-04 4.55E-05 

3 5 3.52E-04 3.25E-04 1.73E-04 7.08E-05 

4 1 6.31E-04 4.06E-04 2.23E-04 1.98E-04 

5 0.5 8.22E-04 4.76E-04 4.18E-04 3.09E-04 

6 0.1 1.51E-03 8.29E-04 6.66E-04 8.64E-04 
 
 

Backcalculated Creep Compliance Coefficients of K6-29 FWD Station at 43.3 oC 

Do D1 m SSE 

2.80E-04 8.46E-04 6.39E-01 1.69E+00 
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FIGURE D67   Comparison between the Measured and Predicted Values of Creep 

Compliance of K6-29 FWD Station at 43.3 oC 
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TABLE D25 Measured and Predicted values of Creep Compliance of K6-29 FWD 
Station at 54.4 oC (130 oF) 

 
No Frequency J1 (1/MPa) J2 (1/MPa) 

  (Hz.) Measured Predicted Measured Predicted 

1 25 8.77E-04 9.27E-04 1.41E-04 1.90E-04 

2 10 1.15E-03 1.04E-03 5.49E-04 3.04E-04 

3 5 1.41E-03 1.16E-03 8.60E-04 4.34E-04 

4 1 1.28E-03 1.69E-03 1.20E-03 9.92E-04 

5 0.5 2.84E-03 2.10E-03 1.73E-03 1.42E-03 

6 0.1 3.99E-03 3.85E-03 2.59E-03 3.24E-03 
 
 
Backcalculated Creep Compliance Coefficients of K6-29 FWD Station at 54.4 oC 

Do D1 m SSE 

7.46E-04 3.98E-03 5.14E-01 9.09E-01 
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FIGURE D68   Comparison between the Measured and Predicted Values of Creep 
Compliance of K6-29 FWD Station at 54.4 oC 
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TABLE D26 Measured and Predicted values of Creep Compliance of K6-48 FWD 
Station at 21.1 oC (70 oF) 

 
 

No Frequency J1 (1/MPa) J2 (1/MPa) 

  (Hz.) Measured Predicted Measured Predicted 

1 10 2.18E-04 2.22E-04 3.95E-05 4.31E-05 

2 5 2.41E-04 2.41E-04 5.96E-05 5.53E-05 

3 1 3.00E-04 3.09E-04 9.67E-05 9.86E-05 

4 0.5 3.71E-04 3.53E-04 1.46E-04 1.26E-04 

5 0.1 5.23E-04 5.10E-04 2.09E-04 2.25E-04 
 
 
Backcalculated Creep Compliance Coefficients of K6-48 FWD Station at 21.1 oC 

Do D1 m SSE 

1.53E-04 4.01E-04 3.59E-01 4.34E-02 
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FIGURE D69   Comparison between the Measured and Predicted Values of Creep 

Compliance of K6-48 FWD Station at 21.1 oC 
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TABLE D27 Measured and Predicted values of Creep Compliance of K6-48 FWD 
Station at 29.4 oC (85 oF) 

 
 

No Frequency J1 (1/MPa) J2 (1/MPa) 

  (Hz.) Measured Predicted Measured Predicted 

1 10 2.94E-04 2.93E-04 5.18E-05 6.31E-05 

2 5 3.29E-04 3.21E-04 1.03E-04 8.30E-05 

3 1 4.20E-04 4.24E-04 2.36E-04 1.57E-04 

4 0.5 5.05E-04 4.94E-04 2.36E-04 2.06E-04 

5 0.1 7.02E-04 7.50E-04 3.36E-04 3.90E-04 
 
 

Backcalculated Creep Compliance Coefficients of K6-48 FWD Station at 29.4 oC 

Do D1 m SSE 

2.05E-04 6.28E-04 3.96E-01 2.47E-01 
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FIGURE D70   Comparison between the Measured and Predicted Values of Creep 
Compliance of K6-48 FWD Station at 29.4 oC 
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TABLE D28 Measured and Predicted values of Creep Compliance of K6-48 
 FWD Station at 37.8 oC (100 oF) 

 
No Frequency J1 (1/MPa) J2 (1/MPa) 

  (Hz.) Measured Predicted Measured Predicted 

1 10 2.95E-04 2.91E-04 5.19E-05 6.29E-05 

2 5 3.22E-04 3.19E-04 1.01E-04 8.29E-05 

3 1 4.16E-04 4.22E-04 2.35E-04 1.58E-04 

4 0.5 5.05E-04 4.92E-04 2.36E-04 2.08E-04 

5 0.1 7.10E-04 7.50E-04 3.40E-04 3.94E-04 
 
 

Backcalculated Creep Compliance Coefficients of K6-48 FWD Station at 37.8 oC 

Do D1 m SSE 

2.04E-04 6.30E-04 3.99E-01 2.29E-01 
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FIGURE D71   Comparison between the Measured and Predicted Values of Creep 

Compliance of K6-48 FWD Station at 37.8 oC 
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TABLE D29    Measured and Predicted values of Creep Compliance of K6-48  
 FWD Station at 46.6 oC (115 oF) 

 
 

No Frequency J1 (1/MPa) J2 (1/MPa) 

  (Hz.) Measured Predicted Measured Predicted 

1 25 3.28E-04 3.69E-04 3.53E-05 5.00E-05 

2 10 3.72E-04 3.99E-04 1.31E-04 7.49E-05 

3 5 4.37E-04 4.31E-04 1.73E-04 1.02E-04 

4 1 6.75E-04 5.58E-04 2.70E-04 2.07E-04 

5 0.5 7.76E-04 6.47E-04 3.32E-04 2.81E-04 

6 0.1 1.08E-03 9.97E-04 4.47E-04 5.72E-04 
 
 

Backcalculated Creep Compliance Coefficients of K6-48 FWD Station at 37.8 oC 

Do D1 m SSE 

3.08E-04 8.23E-04 4.41E-01 7.68E-01 
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FIGURE D72   Comparison between the Measured and Predicted Values of Creep 

Compliance of K6-48 FWD Station at 46.6 oC 
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TABLE D30 Measured and Predicted values of Creep Compliance of K6-48  
  FWD Station at 54.4 oC (130 oF) 

 
 

No Frequency J1 (1/MPa) J2 (1/MPa) 

  (Hz.) Measured Predicted Measured Predicted 

1 25 1.81E-04 2.40E-04 3.32E-04 1.59E-04 

2 10 3.46E-04 3.38E-04 3.56E-04 2.23E-04 

3 5 4.99E-04 4.37E-04 4.70E-04 2.89E-04 

4 1 8.18E-04 7.95E-04 5.89E-04 5.26E-04 

5 0.5 9.97E-04 1.03E-03 7.74E-04 6.81E-04 

6 0.1 1.55E-03 1.87E-03 9.69E-04 1.24E-03 
 
 

Backcalculated Creep Compliance Coefficients of K6-48 FWD Station at 54.4 oC 

Do D1 m SSE 

2.69E-11 2.13E-03 3.72E-01 8.33E-01 
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FIGURE D73   Comparison between the Measured and Predicted Values of Creep 
Compliance of K6-48 FWD Station at 54.4 oC 
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Lane K7 
 
TABLE D31 Measured and Predicted values of Creep Compliance of K7-3 FWD 

Station at 21.1 oC (70 oF) 
 

No Frequency J1 (1/MPa) J2 (1/MPa) 

  (Hz.) Measured Predicted Measured Predicted 

1 10 1.29E-04 1.30E-04 2.01E-05 2.31E-05 

2 5 1.39E-04 1.40E-04 3.40E-05 3.04E-05 

3 1 1.77E-04 1.78E-04 7.17E-05 5.77E-05 

4 0.5 2.07E-04 2.03E-04 7.78E-05 7.60E-05 

5 0.1 2.99E-04 2.97E-04 1.31E-04 1.44E-04 
 
 
 

Backcalculated Creep Compliance Coefficients of K7-3 FWD Station at 21.1 oC 

Do D1 m SSE 

9.76E-05 2.31E-04 3.98E-01 8.31E-02 
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FIGURE D74   Comparison between the Measured and Predicted Values of Creep 

Compliance of K7-3 FWD Station at 21.1 oC 
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TABLE D31 Measured and Predicted values of Creep Compliance of K7-3 FWD 
Station at 29.4 oC (85 oF) 

 
 

No Frequency J1 (1/MPa) J2 (1/MPa) 

  (Hz.) Measured Predicted Measured Predicted 

1 25 1.70E-04 1.30E-04 3.63E-05 4.21E-05 

2 10 1.31E-04 1.53E-04 1.19E-04 7.05E-05 

3 5 2.08E-04 1.81E-04 1.54E-04 1.04E-04 

4 1 3.27E-04 3.06E-04 2.91E-04 2.57E-04 

5 0.5 3.17E-04 4.07E-04 3.31E-04 3.79E-04 
 
 
Backcalculated Creep Compliance Coefficients of K7-3 FWD Station at 29.4 oC 
 

Do D1 m SSE 

9.50E-05 1.05E-03 5.61E-01 5.23E-01 
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FIGURE D75   Comparison between the Measured and Predicted Values of Creep 
Compliance of K7-3 FWD Station at 29.4 oC 
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TABLE D31   Measured and Predicted values of Creep Compliance of K7-3 FWD 
Station at 37.8 oC (100 oF) 

 
 

No Frequency J1 (1/MPa) J2 (1/MPa) 
  (Hz.) Measured Predicted Measured Predicted 
1 25 2.81E-04 2.99E-04 4.09E-05 5.60E-05 
2 10 3.11E-04 3.31E-04 1.22E-04 8.91E-05 
3 5 3.63E-04 3.68E-04 1.91E-04 1.27E-04 
4 1 5.91E-04 5.24E-04 3.22E-04 2.87E-04 
5 0.5 7.39E-04 6.42E-04 4.60E-04 4.07E-04 
6 0.1 1.32E-03 1.14E-03 7.46E-04 9.21E-04 

 
 
 
Backcalculated Creep Compliance Coefficients of K7-3 FWD Station at 37.84 oC 
 

Do D1 m SSE 

2.44E-04 1.15E-03 5.07E-01 4.59E-01 
 

 

0.E+00

5.E-04

1.E-03

2.E-03

0.0E+00 5.0E-04 1.0E-03 1.5E-03

Ji  Measured

Ji
  P

re
di

ct
ed

J1 J2
 

 
FIGURE D76   Comparison between the Measured and Predicted Values of Creep 

Compliance of K7-3 FWD Station at 37.8 oC 
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TABLE D32   Measured and Predicted values of Creep Compliance of K7-3 FWD 
Station at 43.3 oC (110 oF) 

 
 

No Frequency J1 (1/MPa) J2 (1/MPa) 

  (Hz.) Measured Predicted Measured Predicted 

1 10 5.20E-04 5.11E-04 1.61E-04 1.87E-04 
2 5 6.10E-04 5.90E-04 2.88E-04 2.58E-04 
3 1 8.15E-04 9.11E-04 7.49E-04 5.44E-04 

4 0.5 1.24E-03 1.14E-03 8.30E-04 7.50E-04 

5 0.1 2.04E-03 2.07E-03 1.38E-03 1.58E-03 
 
 

Backcalculated Creep Compliance Coefficients of K7-3 FWD Station at 43.3 oC 
 

Do D1 m SSE 
3.01E-04 2.16E-03 4.64E-01 1.64E-01 
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FIGURE D77   Comparison between the Measured and Predicted Values of Creep 
Compliance of K7-3 FWD Station at 43.3 oC 
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TABLE D33     Measured and Predicted values of Creep Compliance of K7-3 FWD 
Station at 54.4 oC (130 oF) 

 
 

No Frequency J1 (1/MPa) J2 (1/MPa) 
  (Hz.) Measured Predicted Measured Predicted 
1 25 7.74E-04 8.85E-04 1.41E-04 2.00E-04 
2 10 9.58E-04 1.01E-03 4.94E-04 2.79E-04 
3 5 1.16E-03 1.13E-03 6.39E-04 3.59E-04 
4 1 1.85E-03 1.58E-03 6.61E-04 6.43E-04 
5 0.5 2.43E-03 1.86E-03 1.06E-03 8.28E-04 
6 0.1 3.43E-03 2.89E-03 1.17E-03 1.48E-03 

 
 

Backcalculated Creep Compliance Coefficients of K7-3 FWD Station at 54.4 oC 
 

Do D1 m SSE 
5.73E-04 2.61E-03 3.63E-01 8.02E-01
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FIGURE D78   Comparison between the Measured and Predicted Values of Creep 
Compliance of K7-3 FWD Station at 54.4 oC 
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TABLE D34   Measured and Predicted values of Creep Compliance of K7-11 
    FWD Station at 21.1 oC (70 oF) 

 
 
  

No Frequency J1 (1/MPa) J2 (1/MPa) 
  (Hz.) Measured Predicted Measured Predicted 
1 25 2.02E-05 1.55E-05 1.25E-05 1.16E-05 
2 10 2.16E-05 2.25E-05 1.85E-05 1.68E-05 
3 5 2.58E-05 2.99E-05 2.70E-05 2.23E-05 
4 1 5.43E-05 5.77E-05 4.29E-05 4.30E-05 
5 0.5 6.98E-05 7.65E-05 6.56E-05 5.70E-05 
6 0.1 1.30E-04 1.47E-04 1.07E-04 1.10E-04 

 
 

Backcalculated Creep Compliance Coefficients of K7-11 FWD Station at 21.1 oC 
 

Do D1 m SSE 
2.69E-11 1.72E-04 4.08E-01 1.74E-01
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FIGURE D79   Comparison between the Measured and Predicted Values of Creep 
Compliance of K7-11 FWD Station at 21.1 oC 
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TABLE D35   Measured and Predicted values of Creep Compliance of K7-11  
     FWD Station at 29.4 oC (85 oF) 

 
No Frequency J1 (1/MPa) J2 (1/MPa) 
  (Hz.) Measured Predicted Measured Predicted 
1 10 1.44E-04 1.32E-04 3.70E-05 3.97E-05 
2 5 1.63E-04 1.49E-04 6.52E-05 5.54E-05 
3 1 2.03E-04 2.18E-04 1.63E-04 1.20E-04 
4 0.5 2.61E-04 2.68E-04 1.82E-04 1.68E-04 
5 0.1 3.82E-04 4.76E-04 3.44E-04 3.64E-04 

 
 
 

Backcalculated Creep Compliance Coefficients of K7-11 FWD Station at 29.4 oC 
 

Do D1 m SSE 
9.01E-05 4.79E-04 4.81E-01 1.87E-01
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FIGURE D80   Comparison between the Measured and Predicted Values of Creep 
Compliance of K7-11 FWD Station at 29.4 oC 
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TABLE D36   Measured and Predicted values of Creep Compliance of K7-11  
    FWD Station at 37.8 oC (100 oF) 

 
No Frequency J1 (1/MPa) J2 (1/MPa) 
  (Hz.) Measured Predicted Measured Predicted 
1 25 1.40E-04 1.25E-04 3.70E-05 4.33E-05 
2 10 1.53E-04 1.50E-04 1.08E-04 7.11E-05 
3 5 1.92E-04 1.78E-04 1.58E-04 1.04E-04 
4 1 2.56E-04 3.04E-04 3.63E-04 2.48E-04 
5 0.5 3.96E-04 4.03E-04 4.35E-04 3.60E-04 
6 0.1 6.44E-04 8.43E-04 7.65E-04 8.62E-04 

 
  

Backcalculated Creep Compliance Coefficients of K7-11 FWD Station at 37.8 oC 
 

Do D1 m SSE 
8.74E-05 1.00E-03 5.42E-01 5.60E-01
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FIGURE D81   Comparison between the Measured and Predicted Values of Creep 
Compliance of K7-11 FWD Station at 37.8 oC 
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TABLE D37    Measured and Predicted values of Creep Compliance of K7-11  
     FWD Station at 43.3 oC (110 oF) 

 
No Frequency J1 (1/MPa) J2 (1/MPa) 
  (Hz.) Measured Predicted Measured Predicted 
1 25 2.94E-04 3.40E-04 3.85E-05 5.63E-05 
2 10 3.59E-04 3.71E-04 1.77E-04 9.62E-05 
3 5 4.59E-04 4.08E-04 2.72E-04 1.44E-04 
4 1 6.03E-04 5.80E-04 6.60E-04 3.69E-04 
5 0.5 9.60E-04 7.21E-04 6.98E-04 5.54E-04 
6 0.1 1.54E-03 1.38E-03 1.07E-03 1.42E-03 

 
  
 

Backcalculated Creep Compliance Coefficients of K7-11 FWD Station at 43.3 oC 
 

Do D1 m SSE 
    

2.97E-04 1.53E-03 5.84E-01 1.10E+00
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FIGURE D82   Comparison between the Measured and Predicted Values of Creep 
Compliance of K7-11 FWD Station at 43.3 oC 
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TABLE D38   Measured and Predicted values of Creep Compliance of K7-11 
     FWD Station at 54.4 oC (130 oF) 

 
No Frequency J1 (1/MPa) J2 (1/MPa) 
  (Hz.) Measured Predicted Measured Predicted 
1 25 7.68E-04 8.80E-04 7.79E-05 1.11E-04 
2 10 9.50E-04 9.43E-04 3.97E-04 1.78E-04 
3 5 1.13E-03 1.02E-03 5.66E-04 2.55E-04 
4 1 1.27E-03 1.33E-03 1.15E-03 5.87E-04 
5 0.5 2.00E-03 1.57E-03 1.01E-03 8.41E-04 
6 0.1 2.77E-03 2.60E-03 1.49E-03 1.94E-03 

 
  
 

Backcalculated Creep Compliance Coefficients of K7-11 FWD Station at 54.4 oC 
 

Do D1 m SSE 
    

7.75E-04 2.36E-03 5.18E-01 1.22E+00
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FIGURE D83   Comparison between the Measured and Predicted Values of Creep 
Compliance of K7-11 FWD Station at 54.4 oC 
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TABLE D39    Measured and Predicted values of Creep Compliance of K7-15  
      FWD Station at 21.1 oC (70 oF) 

 
No Frequency J1 (1/MPa) J2 (1/MPa) 
  (Hz.) Measured Predicted Measured Predicted 
1 25 7.94E-05 6.78E-05 1.52E-05 1.79E-05 
2 10 7.51E-05 7.87E-05 3.06E-05 2.58E-05 
3 5 8.51E-05 9.01E-05 4.45E-05 3.40E-05 
4 1 1.30E-04 1.32E-04 6.83E-05 6.46E-05 
5 0.5 1.56E-04 1.61E-04 8.76E-05 8.52E-05 
6 0.1 2.54E-04 2.67E-04 1.49E-04 1.62E-04 

 
 
 

Backcalculated Creep Compliance Coefficients of K7-15 FWD Station at 21.1 oC 
 

Do D1 m SSE 
4.31E-05 2.58E-04 3.99E-01 1.55E-01
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FIGURE D84   Comparison between the Measured and Predicted Values of   Creep 
Compliance of K7-15 FWD Station at 21.1 oC 
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TABLE D40   Measured and Predicted values of Creep Compliance of K7-15  
     FWD Station at 29.4 (85 oF) 

 
No Frequency J1 (1/MPa) J2 (1/MPa) 
  (Hz.) Measured Predicted Measured Predicted 
1 25 1.07E-04 9.88E-05 2.75E-05 3.29E-05 
2 10 1.09E-04 1.18E-04 6.04E-05 4.93E-05 
3 5 1.31E-04 1.40E-04 8.31E-05 6.69E-05 
4 1 2.38E-04 2.23E-04 1.25E-04 1.36E-04 
5 0.5 2.95E-04 2.82E-04 1.90E-04 1.85E-04 
6 0.1 5.42E-04 5.12E-04 3.52E-04 3.75E-04 

 
 

Backcalculated Creep Compliance Coefficients of K7-15 FWD Station at 29.4 oC 
 

Do D1 m SSE 
5.91E-05 5.41E-04 4.41E-01 1.51E-01
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FIGURE D85   Comparison between the Measured and Predicted Values of Creep 
Compliance of K7-15 FWD Station at 29.4 oC 
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TABLE D41   Measured and Predicted values of Creep Compliance of K7-15  
    FWD Station at 37.8 oC (100 oF) 

 
No Frequency J1 (1/MPa) J2 (1/MPa) 
  (Hz.) Measured Predicted Measured Predicted 
1 25 1.05E-04 1.04E-04 2.75E-05 3.41E-05 
2 10 1.10E-04 1.24E-04 9.56E-05 5.33E-05 
3 5 1.47E-04 1.46E-04 1.39E-04 7.46E-05 
4 1 2.55E-04 2.39E-04 1.25E-04 1.63E-04 
5 0.5 3.87E-04 3.07E-04 1.90E-04 2.29E-04 
6 0.1 7.75E-04 5.91E-04 6.64E-04 5.00E-04 

 
 

Backcalculated Creep Compliance Coefficients of K7-15 FWD Station at 37.8 oC 
 

Do D1 m SSE 
    

6.85E-05 6.51E-04 4.86E-01 7.87E-01
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FIGURE D86   Comparison between the Measured and Predicted Values of Creep 
Compliance of K7-15 FWD Station at 37.8 oC 
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TABLE D42   Measured and Predicted values of Creep Compliance of K7-15  
     FWD Station at 43.3 oC (110 oF) 

 
No Frequency J1 (1/MPa) J2 (1/MPa) 
  (Hz.) Measured Predicted Measured Predicted 
1 25 2.30E-04 2.37E-04 6.65E-05 8.79E-05 
2 10 2.79E-04 2.88E-04 1.78E-04 1.38E-04 
3 5 3.61E-04 3.45E-04 2.85E-04 1.95E-04 
4 1 6.24E-04 5.87E-04 6.27E-04 4.34E-04 
5 0.1 1.54E-03 1.52E-03 1.14E-03 1.36E-03 

 
 

Backcalculated Creep Compliance Coefficients of K7-15 FWD Station at 43.3 oC 
 

Do D1 m SSE 
    

1.47E-04 1.73E-03 4.96E-01 3.90E-01
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FIGURE D87   Comparison between the Measured and Predicted Values of Creep 
Compliance of K7-15 FWD Station at 43.3 oC 
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TABLE D43   Measured and Predicted values of Creep Compliance of K7-15 
    FWD Station at 54.4 oC (130 oF) 

 
No Frequency J1 (1/MPa) J2 (1/MPa) 
  (Hz.) Measured Predicted Measured Predicted 
1 25 3.42E-04 3.96E-04 2.88E-04 2.52E-04 
2 10 4.88E-04 5.51E-04 4.92E-04 3.50E-04 
3 5 6.91E-04 7.07E-04 7.03E-04 4.49E-04 
4 1 1.27E-03 1.26E-03 8.39E-04 8.02E-04 
5 0.5 1.82E-03 1.62E-03 1.23E-03 1.03E-03 
6 0.1 2.69E-03 2.90E-03 1.42E-03 1.84E-03 

 
 

Backcalculated Creep Compliance Coefficients of K7-15 FWD Station at 54.4 oC 
 

Do D1 m SSE 
2.69E-11 3.26E-03 3.60E-01 4.06E-01
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FIGURE D88   Comparison between the Measured and Predicted Values of Creep 
Compliance of K7-15 FWD Station at 54.4 oC 
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TABLE D44   Measured and Predicted values of Creep Compliance of K7-20  
     FWD Station at 21.1 oC (70 oF) 

 
No Frequency J1 (1/MPa) J2 (1/MPa) 
  (Hz.) Measured Predicted Measured Predicted 
1 25 4.28E-05 3.49E-05 1.26E-05 1.36E-05 
2 10 4.55E-05 4.32E-05 2.27E-05 1.95E-05 
3 5 4.68E-05 5.18E-05 3.22E-05 2.56E-05 
4 1 7.68E-05 8.36E-05 5.40E-05 4.82E-05 
5 0.5 9.64E-05 1.05E-04 6.92E-05 6.32E-05 
6 0.1 1.56E-04 1.83E-04 1.12E-04 1.19E-04 

 
 

Backcalculated Creep Compliance Coefficients of K7-20 FWD Station at 21.1 oC 
 

Do D1 m SSE 
1.57E-05 1.93E-04 3.93E-01 1.85E-01

 
 

 

0.0.E+00

1.0.E-04

2.0.E-04

0.0E+00 1.0E-04 2.0E-04

Ji  Measured

Ji
  P

re
di

ct
ed

J1 J2
 

FIGURE D89   Comparison between the Measured and Predicted Values of Creep 
Compliance of K7-20 FWD Station at 21.1 oC 
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TABLE D45   Measured and Predicted values of Creep Compliance of K7-20  
    FWD Station at 29.4 oC (85 oF) 

 
No Frequency J1 (1/MPa) J2 (1/MPa) 
  (Hz.) Measured Predicted Measured Predicted 
1 25 5.87E-05 5.30E-05 1.18E-05 1.47E-05 
2 10 6.31E-05 6.13E-05 3.63E-05 2.39E-05 
3 5 7.02E-05 7.10E-05 5.12E-05 3.44E-05 
4 1 1.00E-04 1.13E-04 1.09E-04 8.05E-05 
5 0.5 1.44E-04 1.46E-04 1.29E-04 1.16E-04 
6 0.1 2.50E-04 2.88E-04 2.33E-04 2.72E-04 

 
 

Backcalculated Creep Compliance Coefficients of K7-20 FWD Station at 29.4 oC 
 

Do D1 m SSE 
3.95E-05 3.25E-04 5.28E-01 4.43E-01
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FIGURE D90   Comparison between the Measured and Predicted Values of Creep 
Compliance of K7-20 FWD Station at 29.4 oC 
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TABLE D46   Measured and Predicted values of Creep Compliance of K7-20  
     FWD Station at 37.8 oC (100 oF) 

 
No Frequency J1 (1/MPa) J2 (1/MPa) 
  (Hz.) Measured Predicted Measured Predicted 
1 25 5.70E-05 4.83E-05 1.80E-05 2.44E-05 
2 10 5.24E-05 6.03E-05 5.99E-05 4.47E-05 
3 5 7.49E-05 7.56E-05 1.04E-04 7.07E-05 
4 1 1.45E-04 1.55E-04 2.89E-04 2.05E-04 
5 0.5 2.71E-04 2.25E-04 3.90E-04 3.24E-04 
6 0.1 6.38E-04 5.87E-04 7.32E-04 9.39E-04 

 
 

Backcalculated Creep Compliance Coefficients of K7-20 FWD Station at 37.8 oC 
 

Do D1 m SSE 
3.39E-05 8.89E-04 6.61E-01 5.71E-01
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FIGURE D91   Comparison between the Measured and Predicted Values of Creep 
Compliance of K7-20 FWD Station at 37.8 oC 
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TABLE D47   Measured and Predicted values of Creep Compliance of K7-20  
     FWD Station at 43.3 oC (110 oF) 

 
No Frequency J1 (1/MPa) J2 (1/MPa) 
  (Hz.) Measured Predicted Measured Predicted 
1 25 1.06E-04 9.68E-05 5.55E-05 6.20E-05 
2 10 1.33E-04 1.32E-04 1.21E-04 1.00E-04 
3 5 1.80E-04 1.73E-04 1.94E-04 1.44E-04 
4 1 2.62E-04 3.50E-04 4.22E-04 3.35E-04 
5 0.5 5.52E-04 4.86E-04 5.42E-04 4.81E-04 
6 0.1 1.01E-03 1.08E-03 9.61E-04 1.12E-03 

 
 

Backcalculated Creep Compliance Coefficients of K7-20 FWD Station at 43.3 oC 
 

Do D1 m SSE 
3.92E-05 1.35E-03 5.24E-01 3.32E-01
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FIGURE D92   Comparison between the Measured and Predicted Values of Creep 
Compliance of K7-20 FWD Station at 43.3 oC 



  

 

292

TABLE D48   Measured and Predicted values of Creep Compliance of K7-31   
    FWD Station at 21.1 oC (70 oF) 

 
No Frequency J1 (1/MPa) J2 (1/MPa) 
  (Hz.) Measured Predicted Measured Predicted 
1 25 7.11E-05 4.52E-05 2.10E-05 2.01E-05 
2 10 5.98E-05 5.76E-05 3.17E-05 2.76E-05 
3 5 5.92E-05 7.00E-05 4.35E-05 3.52E-05 
4 1 1.05E-04 1.13E-04 5.91E-05 6.19E-05 
5 0.5 1.23E-04 1.41E-04 8.78E-05 7.89E-05 
6 0.1 2.07E-04 2.39E-04 1.43E-04 1.39E-04 

 
 

Backcalculated Creep Compliance Coefficients of K7-31 FWD Station at 21.1 oC 
 

Do D1 m SSE 
1.25E-05 2.53E-04 3.50E-01 2.86E-01
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FIGURE D93   Comparison between the Measured and Predicted Values of Creep 
Compliance of K7-31 FWD Station at 21.1 oC 
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TABLE D49   Measured and Predicted values of Creep Compliance of K7-31  
     FWD Station at 29.4 oC (85 oF) 

 
No Frequency J1 (1/MPa) J2 (1/MPa) 
  (Hz.) Measured Predicted Measured Predicted 
1 25 1.08E-04 1.06E-04 1.95E-05 2.29E-05 
2 10 1.11E-04 1.20E-04 3.57E-05 3.43E-05 
3 5 1.32E-04 1.35E-04 6.23E-05 4.65E-05 
4 1 2.10E-04 1.93E-04 8.59E-05 9.43E-05 
5 0.5 2.47E-04 2.34E-04 1.43E-04 1.28E-04 
6 0.1 4.31E-04 3.93E-04 2.36E-04 2.59E-04 

 
 

Backcalculated Creep Compliance Coefficients of K7-31 FWD Station at 29.4 oC 
 

Do D1 m SSE 
    

7.86E-05 3.75E-04 4.39E-01 1.52E-01
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FIGURE D94   Comparison between the Measured and Predicted Values of Creep 
Compliance of K7-31 FWD Station at 29.4 oC 
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TABLE D50   Measured and Predicted values of Creep Compliance of K7-31  
       FWD Station at 37.8 oC (100 oF) 

 
No Frequency J1 (1/MPa) J2 (1/MPa) 
  (Hz.) Measured Predicted Measured Predicted 
1 10 1.79E-04 1.68E-04 5.98E-05 6.53E-05 
2 5 2.10E-04 1.95E-04 1.01E-04 9.19E-05 
3 1 2.66E-04 3.09E-04 2.75E-04 2.03E-04 
4 0.5 4.05E-04 3.94E-04 3.20E-04 2.86E-04 
5 0.1 6.89E-04 7.48E-04 5.65E-04 6.33E-04 

 
 

Backcalculated Creep Compliance Coefficients of K7-31 FWD Station at 37.8 oC 
 

Do D1 m SSE 
1.02E-04 8.12E-04 4.93E-01 1.53E-01
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FIGURE D95   Comparison between the Measured and Predicted Values of Creep 
Compliance of K7-31 FWD Station at 37.8 oC 
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TABLE D51   Measured and Predicted values of Creep Compliance of K7-31  
         FWD Station at 43.3 oC (110 oF) 

 
No Frequency J1 (1/MPa) J2 (1/MPa) 
  (Hz.) Measured Predicted Measured Predicted 
1 25 3.07E-04 3.85E-04 1.77E-05 2.59E-05 
2 10 3.79E-04 3.96E-04 1.66E-04 4.99E-05 
3 5 4.59E-04 4.12E-04 2.93E-04 8.18E-05 
4 1 5.20E-04 4.97E-04 6.32E-04 2.58E-04 
5 0.5 9.23E-04 5.76E-04 6.49E-04 4.23E-04 
6 0.1 1.51E-03 1.02E-03 1.01E-03 1.34E-03 

 
 

Backcalculated Creep Compliance Coefficients of K7-31 FWD Station at 43.3 oC 
 

Do D1 m SSE 
3.72E-04 1.17E-03 7.14E-01 2.13E+00
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FIGURE D96   Comparison between the Measured and Predicted Values of Creep 
Compliance of K7-31 FWD Station at 43.3 oC 
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TABLE D52   Measured and Predicted values of Creep Compliance of K7-31  
     FWD Station at 54.4 oC (130oF) 

 
No Frequency J1 (1/MPa) J2 (1/MPa) 
  (Hz.) Measured Predicted Measured Predicted 
1 25 2.77E-04 3.71E-04 3.89E-06 5.45E-06 
2 10 3.16E-04 3.71E-04 1.20E-04 1.35E-05 
3 5 3.89E-04 3.72E-04 2.12E-04 2.67E-05 
4 1 4.86E-04 3.74E-04 5.87E-04 1.31E-04 
5 0.5 7.63E-04 3.76E-04 6.62E-04 2.60E-04 
6 0.1 1.32E-03 3.95E-04 1.19E-03 1.28E-03 

 
 
 

Backcalculated Creep Compliance Coefficients of K7-31 FWD Station at 54.4 oC 
 

Do D1 m SSE 
3.71E-04 8.10E-04 9.88E-01 3.64E+00
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FIGURE D97   Comparison between the Measured and Predicted Values of Creep 
Compliance of K7-31 FWD Station at 54.4 oC 
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TABLE D53   Measured and Predicted values of Creep Compliance of K7-37  
     FWD Station at 21.1 oC (70oF) 
 

No Frequency J1 (1/MPa) J2 (1/MPa) 
  (Hz.) Measured Predicted Measured Predicted 
1 25 1.91E-05 1.44E-05 7.55E-06 7.02E-06 
2 10 2.07E-05 1.86E-05 1.27E-05 1.05E-05 
3 5 2.07E-05 2.32E-05 1.77E-05 1.42E-05 
4 1 3.39E-05 4.09E-05 3.09E-05 2.88E-05 
5 0.5 4.52E-05 5.33E-05 4.28E-05 3.91E-05 
6 0.1 8.74E-05 1.02E-04 7.90E-05 7.91E-05 

 
 
 

Backcalculated Creep Compliance Coefficients of K7-37 FWD Station at 21.1oC 
 

Do D1 m SSE 
    

5.90E-06 1.15E-04 4.39E-01 2.73E-01
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FIGURE D98   Comparison between the Measured and Predicted Values of Creep 
Compliance of K7-37 FWD Station at 21.1 oC 



  

 

298

TABLE D54   Measured and Predicted values of Creep Compliance of K7-37  
     FWD Station at 29.4 oC (85oF) 

 
No Frequency J1 (1/MPa) J2 (1/MPa) 
  (Hz.) Measured Predicted Measured Predicted 
1 25 5.22E-05 4.45E-05 1.50E-05 1.64E-05 
2 10 5.42E-05 5.43E-05 2.94E-05 2.51E-05 
3 5 5.79E-05 6.50E-05 4.18E-05 3.46E-05 
4 1 1.09E-04 1.08E-04 6.86E-05 7.29E-05 
5 0.5 1.29E-04 1.39E-04 1.14E-04 1.00E-04 
6 0.1 2.50E-04 2.64E-04 2.01E-04 2.12E-04 

 
 

Backcalculated Creep Compliance Coefficients of K7-37 FWD Station at 29.4 oC 
 

Do D1 m SSE 
    

2.60E-05 2.90E-04 4.63E-01 1.26E-01
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FIGURE D99   Comparison between the Measured and Predicted Values of Creep 
Compliance of K7-37 FWD Station at 29.4 oC 
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TABLE D55  Measured and Predicted values of Creep Compliance of K7-37  
                       FWD Station at 37.8 oC (100oF) 

 
No Frequency J1 (1/MPa) J2 (1/MPa) 
  (Hz.) Measured Predicted Measured Predicted 
1 10 2.01E-04 1.93E-04 7.64E-05 8.23E-05 
2 5 2.38E-04 2.28E-04 1.22E-04 1.15E-04 
3 1 3.39E-04 3.70E-04 3.13E-04 2.48E-04 
4 0.5 4.70E-04 4.74E-04 3.84E-04 3.45E-04 
5 0.1 8.36E-04 9.03E-04 6.75E-04 7.46E-04 

 
 

Backcalculated Creep Compliance Coefficients of K7-37 FWD Station at 37.8 oC 
 

Do D1 m SSE 
    

1.05E-04 9.87E-04 4.79E-01 9.33E-02
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FIGURE D100   Comparison between the Measured and Predicted Values of   Creep 
Compliance of K7-37 FWD Station at 37.8 oC 
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TABLE D56   Measured and Predicted values of Creep Compliance of K7-37  
     FWD Station at 43.3 oC (110 oF) 

 
No Frequency J1 (1/MPa) J2 (1/MPa) 
  (Hz.) Measured Predicted Measured Predicted 
1 25 1.83E-04 1.64E-04 2.71E-05 4.12E-05 
2 10 1.32E-04 1.86E-04 2.29E-04 7.00E-05 
3 5 2.98E-04 2.13E-04 2.06E-04 1.05E-04 
4 1 6.07E-04 3.38E-04 3.53E-04 2.65E-04 
5 0.5 7.78E-04 4.40E-04 5.00E-04 3.96E-04 
6 0.1 1.43E-03 9.15E-04 7.44E-04 1.00E-03 

 
 

Backcalculated Creep Compliance Coefficients of K7-37 FWD Station at 43.3 oC 
 

Do D1 m SSE 
    

1.31E-04 1.09E-03 5.78E-01 1.99E+00
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FIGURE D101   Comparison between the Measured and Predicted Values of 
      Creep Compliance of K7-37 FWD Station at 43.3 oC 
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TABLE D57   Measured and Predicted values of Creep Compliance of K7-37  
     FWD Station at 54.4 oC (130oF) 

 
No Frequency J1 (1/MPa) J2 (1/MPa) 
  (Hz.) Measured Predicted Measured Predicted 
1 25 5.63E-04 5.51E-04 1.41E-04 1.82E-04 
2 10 6.99E-04 6.60E-04 4.25E-04 2.70E-04 
3 5 8.97E-04 7.77E-04 6.07E-04 3.64E-04 
4 1 9.77E-04 1.23E-03 1.05E-03 7.30E-04 
5 0.5 1.74E-03 1.55E-03 1.18E-03 9.84E-04 
6 0.1 2.40E-03 2.77E-03 1.64E-03 1.97E-03 

 
 

Backcalculated Creep Compliance Coefficients of K7-37 FWD Station at 54.4 oC 
 

Do D1 m SSE 
    

3.25E-04 2.90E-03 4.32E-01 6.60E-01
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FIGURE D102   Comparison between the Measured and Predicted Values of 
      Creep Compliance of K7-37 FWD Station at 54.4 oC 
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TABLE D58    Measured and Predicted values of Creep Compliance of K7-40  
      FWD Station at 21.1 oC (70oF) 

 
No Frequency J1 (1/MPa) J2 (1/MPa) 
  (Hz.) Measured Predicted Measured Predicted 
1 10 1.73E-04 1.78E-04 4.12E-05 4.77E-05 
2 5 1.99E-04 2.00E-04 6.63E-05 6.14E-05 
3 1 2.75E-04 2.76E-04 1.39E-04 1.10E-04 
4 0.5 3.44E-04 3.25E-04 1.50E-04 1.42E-04 
5 0.1 5.15E-04 5.01E-04 2.28E-04 2.56E-04 

 
 

Backcalculated Creep Compliance Coefficients of K7-40 FWD Station at 21.1oC 
 

Do D1 m SSE 
1.05E-04 4.48E-04 3.65E-01 9.51E-02
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FIGURE D103   Comparison between the Measured and Predicted Values of 
                            Creep Compliance of K7-40 FWD Station at 21.1 oC 
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TABLE D59   Measured and Predicted values of Creep Compliance of K7-40  
     FWD Station at 29.4 oC (85 oF) 

 
No Frequency J1 (1/MPa) J2 (1/MPa) 
  (Hz.) Measured Predicted Measured Predicted 
1 25 1.88E-04 1.02E-04 4.69E-05 6.15E-05 
2 10 9.84E-05 1.40E-04 2.05E-04 8.66E-05 
3 5 2.34E-04 1.78E-04 1.47E-04 1.12E-04 
4 1 3.97E-04 3.17E-04 2.08E-04 2.04E-04 
5 0.5 4.69E-04 4.08E-04 2.82E-04 2.65E-04 
6 0.1 7.40E-04 7.36E-04 4.10E-04 4.82E-04 

 
 

Backcalculated Creep Compliance Coefficients of K7-40 FWD Station at 29.4 oC 
 

Do D1 m SSE 
9.09E-06 8.25E-04 3.73E-01 1.02E+00
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FIGURE D104   Comparison between the Measured and Predicted Values of 
                            Creep Compliance of K7-40 FWD Station at 29.4 oC 
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TABLE D60   Measured and Predicted values of Creep Compliance of K7-40  
     FWD Station at 37.8 oC (100 oF) 

 
No Frequency J1 (1/MPa) J2 (1/MPa) 
  (Hz.) Measured Predicted Measured Predicted 
1 10 1.35E-04 1.99E-04 4.34E-04 1.45E-04 
2 5 5.10E-04 2.62E-04 2.03E-04 1.92E-04 
3 1 6.65E-04 5.01E-04 5.01E-04 3.67E-04 
4 0.5 8.74E-04 6.62E-04 4.85E-04 4.85E-04 
5 0.1 1.29E-03 1.26E-03 7.03E-04 9.26E-04 

 
 

Backcalculated Creep Compliance Coefficients of K7-40 FWD Station at 37.8 oC 
 

Do D1 m SSE 
2.69E-11 1.47E-03 4.02E-01 1.20E+00
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FIGURE D105   Comparison between the Measured and Predicted Values of 
                            Creep Compliance of K7-40 FWD Station at 37.8 oC 
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TABLE D61   Measured and Predicted values of Creep Compliance of K7-40  
     FWD Station at 43.3 oC (110 oF) 

 
No Frequency J1 (1/MPa) J2 (1/MPa) 
  (Hz.) Measured Predicted Measured Predicted 
1 25 5.57E-04 6.82E-04 3.91E-05 5.66E-05 
2 10 6.63E-04 7.15E-04 2.21E-04 8.99E-05 
3 5 7.76E-04 7.52E-04 3.12E-04 1.28E-04 
4 1 1.18E-03 9.09E-04 4.28E-04 2.88E-04 
5 0.5 1.38E-03 1.03E-03 5.61E-04 4.08E-04 
6 0.1 1.88E-03 1.53E-03 6.91E-04 9.21E-04 

 
 

Backcalculated Creep Compliance Coefficients of K7-40 FWD Station at 43.3 oC 
 

Do D1 m SSE 
6.26E-04 1.15E-03 5.05E-01 1.40E+00
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FIGURE D105   Comparison between the Measured and Predicted Values of 
                            Creep Compliance of K7-40 FWD Station at 43.3 oC 
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TABLE D62   Measured and Predicted values of Creep Compliance of K7-40 
     FWD Station at 54.4 oC (130 oF) 

 
No Frequency J1 (1/MPa) J2 (1/MPa) 
  (Hz.) Measured Predicted Measured Predicted 
1 25 8.23E-04 1.01E-03 3.94E-05 5.53E-05 
2 10 9.99E-04 1.05E-03 3.35E-04 9.26E-05 
3 5 1.13E-03 1.08E-03 4.59E-04 1.37E-04 
4 1 1.44E-03 1.25E-03 7.80E-04 3.39E-04 
5 0.5 1.82E-03 1.38E-03 7.09E-04 5.00E-04 
6 0.1 2.34E-03 1.98E-03 9.36E-04 1.24E-03 

 
 

Backcalculated Creep Compliance Coefficients of K7-40 FWD Station at 54.4 oC 
 

Do D1 m SSE 
9.70E-04 1.38E-03 5.63E-01 1.85E+00
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FIGURE D106   Comparison between the Measured and Predicted Values of 
                            Creep Compliance of K7-40 FWD Station at 54.4 oC 
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APPENDIX E 

PLOTS OF DYNAMIC (COMPLEX) MODULUS VERSUS 

FREQUENCIES AT DIFFERENT TEST TEMPERATURES 
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USING CHEN EQUATION 
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 FIGURE D1   Corrected AC Moduli using Eq. 7.1 in the Pavement Group 1. 
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 FIGURE D2   Corrected AC Moduli Using Eq. 7.1 in the Pavement Group 2 
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 FIGURE D3   Corrected AC Moduli Using Eq. 7.1 in the Pavement Group 3. 
  
  
  

 

0

5000

10000

15000

20000

Feb
 01

May
 01

Ju
l 0

1

Aug
 01

Mar
 02

Ju
l 0

2
Oct 

02

Dec 
02

Apr
 03

Time

C
or

re
ct

ed
 A

C
 M

od
ul

us
 (M

Pa
)

K6 K7  
 FIGURE D4   Corrected AC Moduli Using Eq. 7.1 in the Pavement Group 4. 
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 FIGURE D5   Corrected AC Moduli Using Eq. 7.1 in the Pavement Group 5. 
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 FIGURE D6   Corrected AC Moduli Using Eq. 7.1 in the Pavement Group 6. 
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 FIGURE D7   Corrected AC Moduli Using Eq. 7.1 in the Pavement Group 7. 
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USING TX DOT EQUATION 
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 FIGURE D8   Corrected AC Moduli Using Eq. 7.2 in the Pavement Group 1. 
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 FIGURE D9   Corrected AC Moduli Using Eq. 7.2 in the Pavement Group 2. 
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 FIGURE D10   Corrected AC Moduli Using Eq. 7.2 in the Pavement Group 3. 
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 FIGURE D11   Corrected AC Moduli Using Eq. 7.2 in the Pavement Group 4. 
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 FIGURE D12   Corrected AC Moduli Using Eq. 7.2 in the Pavement Group 5. 
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 FIGURE D13   Corrected AC Moduli Using Eq. 7.2 in the Pavement Group 6. 
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 FIGURE D14   Corrected AC Moduli Using Eq. 7.2 in the Pavement Group 7. 
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