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ABSTRACT

Spontaneous Vortex Phase and Pinning in

Ferromagnetic-Superconducting Systems. (May 2004)

Mohammad Amin Kayali, M.S., Texas A&M University

Chair of Advisory Committee: Dr. Valery L. Pokrovsky

Heterogeneous ferromagnetic-superconducting systems such as a regular array

of ferromagnetic nano dots deposited on the top of a superconducting thin film have

attracted many research teams both experimental and theoretical. The interest in

these systems does not only stem from being good candidates for technological ap-

plications, but also because they represent a new class of physical systems where two

competing order parameters can coexist. This work focuses on the theoretical aspects

of these systems by studying the static and dynamics of few model systems. In the

first part, the static properties of a superconducting thin film interacting with a ferro-

magnetic texture are considered within the London approximation. In particular, the

ferromagnetic textures considered here are a circular dot of submicrometer size with

in-plane magnetization, an elliptical dot magnetized in the direction perpendicular

to the superconductor, and a ferromagnetic dot magnetized in the direction normal

to the superconducting film and containing non magnetic cavities. I also consider

the interaction of vortices in the superconductor with a ferromagnetic columnar de-

fect which penetrate the supercondcting film. In each case the vector potential and

magnetic field of the ferromagnet in the presence of the superconductor are calcu-

lated. Afterward the presence of vortices in the superconductor is assumed and the

energy of vortex-texture system is found. The pinning potential and force supplied by

the texture are then derived from the energy of interaction between the ferromagnet
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and superconductor. I show that if the magnetization of the ferromagnet exceeds

a critical value then vortices are spontaneously created in the ground state of the

system. Such spontaneous creation of vortices is possible mostly in a close vicinity of

the superconducting transition temperature Ts. For every case, the threshold value

of the magnetization at which vortices start to be spontaneously created in the SC

is calculated as a function of the parameters of the texture geometry. The phase

diagrams for transitions from vortexless regime to regimes with one or more vortices

are determined for all cases.

In the second problem, the transport properties of a ferromagnetic supercon-

ducting bilayer with alternating magnetization and vortex density are studied within

a phenomenological model. I show that pinning forces do not appear for continuous

distribution of vortices, so a discrete model for the bilayer system is constructed.

Afterward, I calculate the pinning forces acting on vortices and antivortices resulting

from highly inhomogeneous distribution of flux lines and prove that this system has

strong transport anisotropy. In the absence of random pinning, the system displays

a finite resistance for the current in the direction perpendicular to the domains while

its resistance vanishes for the parallel current. The transport anisotropy strongly de-

pends on temperature. I study this dependence and show that the ratio of parallel to

perpendicular critical current is largest close to the superconducting transition tem-

perature Ts and the vortex disappearance temperature Tv while it has a minimum in

between them.
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CHAPTER I

INTRODUCTION

Dissipation in type two superconductors (SC) is due to phase slippage, which may

arise due to the motion of vortices or the existence of phase-slip centers or lines. To en-

hance the critical current of a superconductor the motion of vortices must be stopped;

this occurs by what is known as vortex pinning. Therefore, it is very important both

theoretically and experimentally to understand the pinning mechanisms and how to

optimize pinning. In principle, most lattice defects create pinning potentials for flux

lines in superconductors. The defects are either native to the superconductor’s lattice

or artificially introduced. Artificial pinning sites such as random columnar defects

are typically created by heavy-ion irradiation [1]. The heavy-ion irradiation method

creates random pinning centers. Vortex pinning and transport properties of super-

conductors with random pinning centers were well studied and thoroughly reviewed

in [2]. It was shown later that flux pinning can be enhanced by employing a regular

array of defects in the superconductor. Magnetization, critical current and resistiv-

ity measurements performed on systems consisting of a superconductor covered by

a regular array of artificially created structural defects displayed commensurability

effects [3], [4] that were not observed in systems with random pinning. The com-

mensurability between the flux lattice and the defect array resulted in higher critical

currents. Of particular interest are the results of the experiment by Martinoli et.al [5]

who studied the transport properties of a SC film of periodically modulated thickness

and observed oscillations of the critical current as a function of the applied magnetic

field. It is worth mentioning that pinning in superconductors with artificial colum-

The journal model is Physical Review Letters.
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nar defects such as those created by the heavy-ion irradiation is due to the multiply

connected topology of the superconductor. The origin of pinning in superconductors

with multiply connected topologies pertains to the variations in the effective value of

the Ginzburg-Landau parameter κ = λ
ξ

in the neighborhood of the defect.

In recent years the interest in heterogeneous ferromagnetic-superconducting sys-

tems (HFSS) has grown rapidly due to the preliminary experimental data which

showed improved pinning strength in these systems. These systems typically consist

of a superconductor placed in close proximity with a ferromagnet (FM). A thin layer

of insulator oxide is sandwiched between the FM and SC to prevent proximity effects

and spin diffusion, which both tend to destroy superconductivity. The interest in

HFSS is motivated not only because of their technological importance but also for

being a new class of physical systems in which two competing order parameters may

coexist and possibly enhance one another. Several experimental groups [6], [7], [8],

[9], [10] have investigated pinning in HFSS and found appreciable increases in the

critical current. In most experiments, the superconductor is a continuous two dimen-

sional sheet covered by a regular array of ferromagnetic dots. Each dot has a radius

of the order of the SC penetration depth λ and is magnetized in a direction either

parallel or perpendicular to the SC. It is important to realize that pinning in HFSS

does not appear due to the multiply connected topology, as occurs when the defect

is established in the SC. It is rather due to the strongly inhomogeneous distribution

of the magnetic field generated by the magnetic structure.

In 1957, Ginzburg [11] argued that superconductivity and ferromagnetism may

coexist in systems of dimension D ≤ 2 due to the large critical field of low-dimensional

superconductors. However, proximity effects and spin diffusion pose serious problem

for the coexistence of the two phenomena. To solve this problem, Lyuksyutov and

Pokrovsky [12], [13] proposed to separate the ferromagnet and superconductor by
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inserting a thin layer of insulator oxide, which supresses proximity effects. The FM

and SC are now electronically separated; therefore, they interact solely via their mag-

netic fields without destroying one another’s order parameter. Different realizations

of HFSS were studied both experimentally and theoretically. Special consideration

was given to the system of a superconducting thin film covered by a regular array of

ferromagnetic nano-dots [6], [7], [8], [9], [10]. Such systems are usually prepared using

electron-beam lithography and lift-off techniques [14]. The dots are magnetized either

in the direction parallel or perpendicular to the SC film. These studies reported the

observation of commensurability effects in these systems. The essence of these effects

is that the dot array spontaneously creates vortices in the SC, which in turn will be

pinned by the dots. Commensurability effects appear when the density of vortices in

the SC is a fractional number of the density of dots in the FM.

Theoretically, many HFSS systems with different magnetization distributions

were studied [15], [16], [17], [18], [19], [20], [21], [22]. Almost a decade ago [17], Mar-

morkos et.al. studied the interaction between a ferromagnetic disk embedded in a

bulk superconductor and showed that the disk generates several vortices in the SC.

Their approach was to numerically solve the nonlinear Ginzburg-Landau equation

with appropriate boundary conditions after taking into account the magnetic vector

potential generated by the dot. In another work [21], Sasik and Hwa considered a

system consisting of a superconducting thin film covered by magnetic dots. They

assumed the dots to be magnetized in a direction perpendicular to the SC film. They

also simplified the problem by ignoring the real geometry of the dots by replacing

them by point dipoles. This is the main drawback of their work since the geometry

of the FM is of great importance in the study of the statics and dynamics of any

HFSS. They were able to show that, in the absence of an external magnetic field,

a spontaneous creation of superconducting vortices can take place if the stray mag-
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netic field generated by the dot exceeds the field necessary to create vortices in the

superconductor.

In [20], Erdin, et.al. studied the ground state of a ferromagnetic-superconducting

bilayer (FSB). They found that the homogeneous state, which is characterized by a

magnetization directed perpendicular to the FM, can be unstable with respect to the

creation of vortices in the SC. They showed that the weak interaction between the

created vortices makes the structure with alternating domains an energy favorable

ground state. They also considered the possibility of other structures, showing that

the structure with alternating stripe domains costs less energy than other structures.

Therefore, they speculated that a strong transport anisotropy can be viewed as an

indirect observation of the stripe domain structure in the FSB.

Motivated by the current theoretical and experimental interest in the static and

dynamical phases of the HFSS, I present theoretical studies of static and transport

properties of some HFSS. Chapter two is divided into five sections and is entirely

devoted to the general formulation and their static properties of HFSS. Section one

presents a general formulation for a system consisting of a SC film in close proximity

with a FM texture. Section two studies the interaction between a SC thin film and

a circular FM dot of radius R � ξ whose magnetization vector lies in its plane. I

calculate the magnetic vector potential and field generated by the dot in the presence

of the SC. Above a threshold value of the dot’s magnetization, the interaction between

the dot and the SC makes the spontaneous creation of vortex-antivortex pairs energy

favorable. The creation of one or more vortex-antivortex pairs is studied and their

equilibrium distribution is found.

In section three, I investigate the interaction between a SC thin film and an

elliptical FM dot whose magnetization is normal to the plane of the superconductor.

After finding the magnetic field and current distributions, I calculate the energy of
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interaction between the dot and the SC. Above the threshold value of the dot’s mag-

netization, spontaneous creation of vortices is energy favorable; therefore, I calculate

the phase diagram of the system. The effect of geometry and shape anisotropy on

the pinning potential and creation of vortices is considered by comparing the results

for the elliptical dot with those for a circular one. I show that elliptical dots are more

effective for pinning and are more likely to spontaneously create vortices in supercon-

ductors. The interaction of SC vortices with a FM annulus whose magnetization is

perpendicular to the plane of the superconductor is studied in section four. I calculate

the pinning forces exerted by the annulus on vortices in the superconductor. In equi-

librium, the vortex sits under the annular region on a circle of radius ρ0 that depends

on the radii and magnetization per unit area of the annulus, and on the SC pene-

tration depth λ. In section five I focus on pinning and spontaneous vortex creation

by a ferromagnetic rod which penetrates the superconductor. The pinning potential

when the rod magnetization is zero reduces to the value calculated by Mkrtchyan

and Schmidt [23], which states that the pinning force on the vortex vanishes if the

center of the vortex is trapped inside the columnar defect. However, for non-zero

magnetization the pinning potential is strongly enhanced and the pinning force does

not vanish anywhere near the rod. In the absence of externally induced vortices, the

FM rod could spontaneously create vortices in the SC when its magnetization is more

than a critical value.

Chapter three studies the transport properties of the FSB. Because pinning forces

do not appear in the continuous model developed in [20], a discrete model for the FSB

must be constructed. The interaction of the FM with the SC makes the pinning forces

acting on the vortices and antivortices in the direction parallel to the domain much

smaller than its value in the direction perpendicular to the domains. Therefore, the

critical current will depend on the angle at which the transport current is applied.
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I show that the system displays a finite resistance to the current when the current

is applied perpendicular to the domains and is superconducting when it is parallel.

I show that the transport anisotropy is strongest at temperatures close to the SC

transition temperature Ts and the vortex disappearance temperature Tv. Finally,

these results are summarized in chapter four and a glossary of acronyms is given in

chapter five.
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CHAPTER II

STATIC PROPERTIES OF HETEROGENEOUS

FERROMAGNETIC-SUPERCONDUCTING SYSTEMS

In this chapter I focus on the static properties of heterogeneous ferromagnetic super-

conducting systems. The inhomogeneous distribution of magnetization produces a

magnetic field in space which modifies the screening currents in the superconductor.

In turn the superconductor generates a magnetic field that interacts with the mag-

netic structure, so the problem must be solved self consistently. Here, I am mainly

consider systems for which the FM structure thickness and all other thicknesses are

much less than the penetration depth of the superconductor. Therefore, it is sufficient

to employ the London approximation to study the static properties of these systems.

After introducing the London approximation, I present studies of three model sys-

tems. In particular, I first study the static properties of a superconducting thin film

covered by a circular ferromagnetic dot whose magnetization is directed parallel to

the plane of the SC. In the second example, the dot is replaced by an elliptical fer-

romagnetic dot whose magnetization is directed along the normal to the SC film.

I study the static properties of this system and compare it to the case of circular

dot. I also study pinning and spontaneous vortex creation by an FM annulus on the

top of a SC film. Finally, I investigate the interaction between vortices in a SC film

with a ferromagnetic rod magnetized along its symmetry axis and perpendicularly

penetrating the superconductor.

A. London Approximation and HFSS

Let the SC thin film be in the xy-plane and an infinitely thin ferromagnetic texture

is placed on the top of it at a distance a0 � D ∼ ξ, where a0 is an atomic dimension
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and ξ is the SC coherence length. Thus the interaction between the ferromagnet

and superconductor occurs via their magnetic fields, the theory to calculate the total

magnetic field and screening currents is developed here. Let the magnetization distri-

bution of the FM texture be M(r). The total magnetic field B = Bs +Bm is derived

from the total vector potential A = As + Am, where the superscripts (s) and (m)

refer to the superconducting and ferromagnetic parts respectively. The total vector

potential is governed by Maxwell’s equation

∇× (∇× A) =
4π

c
(Js + Jm) (2.1)

and

Js =
nsh̄e

2ms

(∇ϕ − 4πe

hc
A) (2.2)

Jm = c∇× M. (2.3)

Here h̄ is Planck constant, c is the speed of light, ns is the superconducting electron

density, ms and e are their mass and charge respectively, and ϕ is the phase of the

SC order parameter. For an SC thin film of thickness ds, the effective penetration

depth λ is defined in terms of the London penetration depth λL as

λ =
λ2

L

ds

(2.4)

with

λL =

√

mec2

4πnse2
(2.5)

The presence of N -vortex in the superconductor, the phase gradient of the order
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parameter is

∇ϕ =
N
∑

i=1

νi
ẑ × (r − ri)

|r − ri|2
(2.6)

where νi and ρi are the vorticity and the location of the i-th vortex. Use of the

superposition principle permits separation of the vortex part of the vector potential

from that of the ferromagnet. The solution for the vortex part gives the Pearl solution

for the vortex vector potential [24],[25],[26]

Av(r − r0, z) =
φ0

2π

N
∑

i=1

νi
ẑ × (r − ri)

|r − ri|
∫ ∞

0

J1(q|r − ri|)e−q|z|

1 + 2λq
dq (2.7)

where q = |q| is the amplitude of the 2D wave vector. The FM part of the vector

potential is the solution of the following equation

∇× (∇× A) = −1

λ
Aδ(z) + 4π∇× [m(ρ)δ(z)] (2.8)

where m(ρ) is the two-dimensional magnetization of the texture.

The two-dimensional magnetization can be decomposed into three parts. The

first part is perpendicular to the SC film mz and the second part m|| is directed along

the radial vector ρ̂. The remaining part m⊥ is directed along the unit vector ρ̂ × ẑ

that is perpendicular to the plane spanned by ρ̂ and ẑ. The solution of Eq.(2.8) is

easily obtained using Fourier transform defined for any function f(x) as

f(x) =
1

(2π)3

∫

fke
−ık·xd3k (2.9)

where k = (q, kz) is the 3D wave vector and fk is the Fourier kernel. The solution of

(2.8) can be represented by its Fourier kernel components [16] as:

A
||
mk = −4πım⊥

q

kz

eıkzD (2.10)
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A⊥
mk = − a⊥

q

λk2
+

4πı(kzm
||
q − qmqz)

k2
eıkzD (2.11)

where amq is the Fourier transform of the vector potential at the SC film. Here

a||
mq = 0 while

a⊥
q = −4πλq(kzm

||
q − qmqz)

1 + 2λq
e−qD (2.12)

Note that A
||
mk does not contain any information about the superconductor, so

it is not affected by the presence of the superconductor in contrast to A⊥
mk. Now,

the total magnetic field and energy of the HFSS can be calculated. The magnetic

field’s components can be calculated from the vector potential A from its definition

B = ∇× A. This can be written in Fourier space as follows

Bz
mk = ıqA⊥

mk, B
||
mk = −ıkzA

⊥
mk, B⊥

mk = ıkzA
||
mk. (2.13)

The total energy of the HFSS is the sum of the vortex self energy Usv, the vortex-

vortex interaction Uvv, the energy of interaction between the ferromagnet and vortices

Umv and the magnet self interaction Umm. If there are N vortices in the superconduc-

tor, then their total vector potential is the superposition of their individual potentials.

This can be written in Fourier representation as follows

Avk =
−2ıφ0(ẑ × q̂)F (q)

k2(1 + 2λq)
(2.14)

where F (q) =
∑N

j=1 νje
ıqrj with rj is the position of the j-th vortex and νj is its

vorticity. The total energy of the HFSS can be written as

U =
∫

[

B2

8π
+

msnsv
2
s

2
− M · B

]

d3x (2.15)

where vs is the superconducting carrier velocity defined as
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vs =
h̄

2me

∇ϕ (2.16)

The terms in the square bracket are as follows: the first term is the magnetic

field energy, the second term is the kinetic energy due to the SC electrons and the

last term is the Zeeman interaction term. Using Maxwell’s equation ∇×B = (4π/c)J

with B = ∇×A, and integrating by parts then the magnetic energy can be rewritten

as

∫

B2

8π
d3x =

∫

J · A
2c

d3x (2.17)

This equation is gauge invariant because the total current is conserved (∇ · J = 0). I

have omitted a surface term which arises from integration by parts. This is possible

only because the vector potential and the currents decrease rapidly as r approaches

infinity. The part due to the magnetic texture may be transformed to

∫

Jm · A
2c

d3x =
1

2

∫

M · Bd3x (2.18)

Therefore, I rewrite (2.15) as

U =
∫

[

nsh̄
2

8ms

(∇ϕ)2 − nsh̄e

4msc
∇ϕ · A − M · B

2

]

d3x (2.19)

For the case when the SC and the FM thicknesses are infinitesimally small. Hence

the total energy given by (2.19) must be modified by taking the 3D density of su-

perconducting electrons in the SC film to be ns(r) = ns(ρ)δ(z) and the 3D mag-

netization to be expressed in terms of the 2D magnetization m(ρ) of the FM as

M(r) = m(ρ)δ(z − D). In this case, the vortex self energy and the vortex-vortex
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interaction can be written as:

Uv =
nsh̄

2

8ms

∫

∇ϕ−q · (∇ϕq − 2π

φ0

avq)
d2q

4π2
(2.20)

The interaction energy between superconducting vortices and ferromagnet is

Umv = − nsh̄e

4msc

∫

∇ϕ−q · amq

d2q

4π2
− 1

2

∫

m−q · bvq
d2q

4π2
(2.21)

The ferromagnet self interaction energy Umm is

Umm = −1

2

∫

m−q · bmq

d2q

4π2
(2.22)

where bmq and bvq used in Eq.(2.20)-(2.22) are the Fourier representation of the

magnetic fields generated by the FM and the vortex evaluated at the surface of the

superconductor. The total energy U is the sum U = Uv +Umv +Umm. This is a many

variable function with its variables being the locations of the N vortices. Therefore,

the distribution of vortices which minimizes the total energy of the system must be

found. In most cases the total energy of the system is a very complex function of

the locations of vortices. Hence the minimal energy configuration must be found

numerically.

B. In-Plane Magnetized Dot

Martin et.al. [6] studied the properties of an SC thin film covered by a triangular

array of submicrometer FM dots with in plane magnetization. They observed regular

structures in the resistivity curve when plotted as a function of the magnetic field.

They also reported the observation of resistivity minima at a constant field interval.

Their measurements indicate an enhanced vortex pinning due to the presence of the

dot array. In another experiment, [8] an array of ferromagnetic dots whose magneti-
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zation is parallel to the SC film is placed on the top of a superconducting film. These

measurements reflect a strong pinning of the flux lines by the dots. They also ob-

served that in the absence of applied magnetic field a coupled vortex-antivortex pair

appear under the dot with the vortex on one side of the dot and the antivortex on

the other. Next I study vortex pinning and spontaneous creation of vortex-antivortex

pairs theoretically. To study this system the problem is simplified by considering the

action of a single FM dot on the SC film.

Let the SC film lie in the xy-plane top of it, at a distance z = D, with an infinitely

thin FM dot whose radius is R and whose magnetization is pointing along the x-axis.

Hence the magnetization can be rewritten as M(r) = m0Θ(r−R)δ(z−D)x̂ where m0

is the two-dimensional magnetization of the dot, Θ(R − r) is the step function, and

δ(z − D) is Dirac delta function. To study the interaction between the dot and the

superconductor, I calculate the vector potential and magnetic field due to the dot in

the presence of the superconductor. The Fourier transform of the dot’s magnetization

is

Mk =
2πm0R

q
J1(qR)eıkzDx̂ (2.23)

where Jn(x) is the n-th order Bessel function. The magnetization (2.23) can be

decomposed into M⊥
k and M

||
k such as

M⊥
k = −2πm0R

q
J1(qR) sin(φq)e

ıkzD (2.24)

M
||
k =

2πm0R

q
J1(qR) cos(φq)e

ıkzD (2.25)

where φq is the azimuthal angle in the wave vector space spanned by (q, kz). Now,

with the results (2.24) and (2.25) combined with equations (2.10) and (2.11), the
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vector potential due to the dot in the presence of the superconductor is

A⊥
mk =

8π2m0R

k2
z + q2

J1(qR) cos(φq)

(

ıkze
ıkzD

q
+

e−qD

1 + 2λq

)

(2.26)

A
||
mk =

8π2ım0R

kzq
J1(qR) sin(φq)e

ıkzD (2.27)

The Fourier transform of the dot’s vector potential at the surface of the supercon-

ductor is

a⊥
mq = −8π2m0λR

1 + 2λq
J1(qR) cos(φq)e

−qD (2.28)

The magnetic field has three components B||, B⊥ and Bz; of particular interest to

us here are B|| and Bz. The inverse Fourier transforms of B
||
mk = −ıkzA

⊥
mk and

Bz
mk = ıqA⊥

mk are

Bz
m(ρ, φ, z) = 2πm0R cos(φ)

∫ ∞

0
qJ1(qR)J1(qρ) ×

(

e−q(|z|+D)

1 + 2λq
− sign(D − z)e−q|D−z|

)

dq (2.29)

Bρ
m(ρ, φ, z) = 2πm0R cos(φ)

∫ ∞

0
qJ1(qR)J0(qρ) ×

(

2δ(z − D) − qe−q|D−z| − qe−q(|z|+D)

1 + 2λq
sign(z)

)

(2.30)

where the sign(x) is +1 for x > 0 and −1 for x < 0. Note that Bρ
m and Bz

m both

have discontinuities at z = 0 and z = D. Therefore, extra care is needed to calculate

the field components at the SC surface.

Before discussion of the energy of the system I analyze the behavior of the mag-

netic field of the dot at the surface of the SC film. The magnetic field generated by

the magnetic dot in the absence of the superconductor is equivalent to the field of
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a ring of radius R with a cos(φ) magnetic charge distribution. The z-component of

the dot’s magnetic field vanishes at the center of the dot then it increases to reach

a maximum at ρ = R. At large distances ρ > R, it decays as 1/ρ3. The component

Bρ
m is maximum at ρ = 0. The magnetic field of the dot has all three components

but only Bz
m and Bρ

m are of interest for two reasons. First, Bφ
m does not contain any

information about the superconductor, it is exactly equal to its value in the absence

of the SC. Second, the vortex’s magnetic field has only Bρ
v and Bz

v components, so it

is not affected by Bφ
m.

Both Bz
m and Bρ

m have maxima at φ = 0 and minimum at φ = π. If flux lines

are to appear in the SC due to the field of the dot, then a vortex-antivortex pair

would appear with the vortex at some ρ = ρ0 and another at ρ = −ρ0, with ρ0 to be

determined.

The total energy for a system of magnetic dot with in-plane magnetization in-

teracting with N single quanta flux lines is

UN = Nε0 ln(
λ

ξ
) +

1

2

N
∑

i6=j

νiνjεvv(|ρi − ρj|) +
N
∑

i=1

νiεmv(ρi) (2.31)

where νi = +1 for a vortex and νi = −1 for antivortex while

ε0 =
φ2

0

16π2λ
(2.32)

Here εvv is the vortex-vortex interaction which can be expressed in terms of

Neumann’s function H0 and the Struve function Y0 [27] as

εvv(|ρi − ρj|) =
ε0

π

(

H0(
|ρi − ρj|

2λ
) − Y0(

|ρi − ρj|
2λ

)

)

(2.33)

The interaction energy between a flux line and the magnetic dot can be calculated

from (2.28) together with the phase gradient and magnetic field due to the flux line
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at ρi. It is

εmv(ρi) = −εmR cos(φi)
∫ ∞

0

J1(qR)J1(qρ0)

1 + 2λq
dq (2.34)

with εm is energy scale for the FM-SC interaction and is defined as

εm = m0φ0 (2.35)

If the SC has only one vortex-antivortex pair then it is logical to assume that

the vortex and antivortex will be located on the x-axis since the magnetic field is

strongest on the x-axis with respect to its angular distribution. Therefore, the case

when the vortex is at x = −ρ0 and the antivortex at x = +ρ0 is studied. The total

energy for a vortex-antivortex pair coupled to a magnetic dot is

EN=2 = 2ε0 ln(
λ

ξ
) − 4ε0λ

∫ ∞

0

J0(2qρ0)

1 + 2λq
dq

−2εmR
∫ ∞

0

J1(qR)J1(qρ0)

1 + 2λq
dq + E0 (2.36)

The first and second terms in (2.36) represent the energy of the flux lines without the

magnetic dot. The third term is the interaction energy between the flux lines and the

magnetic dot, and E0 is the magnetic dot self interaction energy. Now consider the

ratio δm between the two energy scale in the system

δm =
m0φ0

ε0

(2.37)

Note that the larger the values of δm are, the more favorable it is to have vortex-

antivortex pairs in the SC. Using (2.32) and putting m0 = nmdmgµBS then δm can

be written in terms of the characteristics quantities of the SC and FM films as follows

δm = gS
nmdm

ns(T )ds

(2.38)
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where g is Lande factor and muB = h̄e/2mec is Bohr’s magneton. Here S is the

elementary spin of the FM, while nm and ns are the electronic density for the FM

and SC respectively with dm the thickness of the FM film and similarly ds that for

the SC. Note that, close to the superconducting transition temperature Ts the SC

electrons density becomes very small making δm very large.

The energy (2.36) is numerically minimized with respect to ρ0 to find that EN=2

is a minimum at ρ0 = R. The presence of the vortex-antivortex pair changes the

energy of the system by an amount ∆1 given by

∆1 = 2ε0 ln(
λ

ξ
) − 4ε0λ

∫ ∞

0

J0(2qR)

1 + 2λq
dq − 2m0φ0R

∫ ∞

0

J1(qR)J1(qR)

1 + 2λq
dq (2.39)

The creation of a vortex-antivortex pair is energy favorable if the energy of the overall

system is lowered by such process. Let us redefine ∆1 by dividing both sides of (2.39)

by ε0 to obtain a dimensionless function of the two variables R/λ and δm. The curve

∆1 = 0 depicted in Fig.1 separates between a regime without magnetic flux in the SC

from another with one vortex-antivortex pair. The region above the curve represents

a phase with one vortex-antivortex pair while that under the curve refers to a system

without any flux line.

Next, I consider the creation of two vortex-antivortex pairs coupled to the FM

dot. In this case extra caution in handling the energy’s angular dependence must

be used. The results above show that the first pair appears with the vortex and

antivortex situated along the x-axis with their centers under the edge of the dot.

For two vortex-antivortex pairs, two vortices will appear on one side of the dot and

two antivortices will be on the other side. Moreover, because like vortices repel one

another, there are two possibilities. The first is that the two vortices will be on radial

line on one side of the dot on the x-axis, and antivortices on radial line on the other

side of the dot. The second is that the two vortices will be symmetrically off the
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Fig. 1. Phase diagram for one vortex-antivortex pair creation by a magnetic dot with

in-plane magnetization.

x-axis as shown in Fig.2.

To study the creation of two pairs, the flux form factor F (q) must be modified,

and then the energy of the system recalculated. For the purpose of calculating the

total energy of the system I assume that the center of each flux line is at ρ = ρ0 from

the origin chosen to be under the center of the dot. The energy of a magnetic dot

coupled to two vortex-antivortex pairs is not only dependent on ρ0 but also depends

on the angle between the flux line and the x-axis θ; therefore, the energy of the system

must be minimized with respect to both ρ0 and θ. The numerical simulations show

that ρ0 = R is still the minimum, so I set ρ0 equal to R and minimize the energy

with respect to θ. I find the minimum energy configuration occurs for ρ0 = R and

13◦ < θ < 17◦, as illustrated in Fig.3.
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Fig. 2. Illustration of two vortex-antivortex pairs in a superconducting thin film cou-

pled to a ferromagnetic dot with in-plane magnetization.

C. Elliptic Dot and Shape Anisotropy Effect on Pinning.

In this section, I present a theoretical study of the interaction between vortices in a

superconducting thin film and elliptic ferromagnetic dots (EMD). I will also study

the effect of shape anisotropy of the dot on pinning in this HFSS. The study of the

interaction between elliptic dots and superconductivity is interesting since its results

when the dot’s eccentricity E is zero, corresponding to those known results for circular

dots. Another interesting limit is when E → 1 which mimics a system of long magnetic

stripe domains interacting with an SC film.

To begin, let us consider a superconducting thin film of thickness ds, whose

coherence length is ξ and its penetration depth is λ in the xy-plane. We place on

the top of it at a distance D � λ an elliptical ferromagnetic dot of major axis R1

and minor axis R2. Let the dot magnetization M be directed along the z-axis, so the
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Fig. 3. The angular dependence of the energy of two vortex-antivortex pairs created

by a magnetic dot with in-plane magnetization.

magnetization distribution can be written as

M(x, y, z) = m0Θ(1 − x2

R2
1

− y2

R2
2

)δ(z − D)ẑ (2.40)

where m0, is the two-dimensional magnetization, Θ(r) is the step function and δ(r)

is Dirac delta function as before.

In the presence of the superconductor the magnetic vector potential Am of the

dot satisfies the London-Maxwell equation. Using the Coulomb gauge ∇ · Am = 0,

and the Fourier representation for Am, I find

Ãm(K) =
−8π2ım0R1R2J1 (G(kx, ky))

G(kx, ky) (k2
z + q2)

(

eıkzD − e−qD

1 + 2λq

)

ẑ × q (2.41)

where Ãm is the magnetic dot vector potential in Fourier representation and q =
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kxx̂ + kyŷ is Fourier wave vector in the plane of the SC. The function Jn(r) is the

n-th order Bessel Function, and G(kx, ky) =
√

R2
1k

2
x + R2

2k
2
y. By using B = ∇ × A,

the components of the dot’s magnetic field are given by

Bmz = m0R1R2

∫ qJ1(G(kx, ky))Z(kx, ky)

G(kx, ky)
e−ı(kxx+kyy)d2q (2.42)

Bmj = ım0R1R2

∫ kjJ1(G(kx, ky))W (kx, ky)

G(kx, ky)
e−ı(kxx+kyy)d2q (2.43)

where j = x, y, with Z(kx, ky) = e−q|z−D|− e−q(|z|+D)

1+2λq
, and W (kx, ky) = e−q|z−D|sign(z−

D) − e−q(|z|+D)

1+2λq
sign(z). The in-plane components of the EMD magnetic fields have a

jump at z = 0 which should be taken into account. The z-component of the dot’s

magnetic field is depicted in Fig.4. The magnetic field of the dot changes strongly

across the dot’s circumference due to large values of ∇ · M there.

If vortices are present in the SC film then the total magnetic field is a linear

superposition of the field from the EMD and that of the vortices. Recall that the

z-component of the magnetic field due to a singly quantized SC vortex centered at

the origin [24], [25], [26] reads

Bz
v(x, y, z) =

φ0

2π

∫ ∞

0

qJ0(q
√

x2 + y2)e−q|z|

1 + 2λq
dq (2.44)

Assume that there are an N spontaneously created vortex in the superconductor.

If N > 1 superconducting vortices the interaction of the vortices with the dot tries to

lower the energy of the system due to its attractive nature while it is increased by the

repulsive vortex-vortex interaction. If N vortices are coupled to the FM dot then I

can recast the energy E of the EMD-SC system using the identity
∫

d2x −→ 1
4π2

∫

d2k.

Then

E = Nε0ln(
λ

ξ
) + ε0λ

N
∑

i=1

N
∑

j 6=i

∫ ∞

0

J0(κ|ρi − ρj|)
1 + 2λκ

dκ
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Fig. 4. The magnetic field in units of 2m0

λ
measured along the semi major axis (solid

line) and semi-minor axis (dashed line) for EMD with R1 = 5 and R2 = 3

−m0φ0R1R2

π

N
∑

i=1

Γ(R1, R2, xi, yi) + Emm (2.45)

where κ has a dimension of inverse length and the function Γ(R1, R2, xi, yi) is defined

as

Γ(R1, R2, xi, yi) =
∫ J1(G(kx, ky))e

i(kxxi+kyyi)

G(kx, ky) (1 + 2λq)
d2q (2.46)

Vortex configurations for N = 1 and N = 2 are shown in Fig. 5 and Fig. 6. For

N = 1, the vortex appears under the center of the dot while for N = 2, vortices centers

are located on the semi-major axis at equal distances from the center of the dot to

minimize the total energy of the system. The degeneracy of the two vortex locations

in the case of circular dot on the top of the SC film is lifted by the shape anisotropy of
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Fig. 5. Energy profiles for N = 1 in the EMD-SC system. The EMD has major (minor)

axis R1 = 5λ(R2 = λ) and δm = 3.

the dot elliptic dot. The creation of vortex configurations with N > 2 requires larger

values of δm to overcome the Pearl energy and the repulsive vortex-vortex interaction.

Vortex arrangements of N > 2 depend on the ratio R2

R1
. For R2 ∼ λ, vortices would

line up forming a straight chain of vortices extending under the semi-major axis of

the dot. When R2 � λ, the arrangement of vortices becomes more complex. Energy

and vortex lattice structure for N � 1 can be found numerically by minimizing the

total energy of the system given by Eq.(2.45).

The energy of a single vortex depends on the eccentricity of the dot. To study

this dependence, the energy of a single SC vortex coupled to an FM dot of fixed R1
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Fig. 6. Energy profile for N = 2 in the EMD-SC system. The EMD has major (minor)

axis R1 = 5λ(R2 = λ) and δm = 5.

and variable R2 must be calculated. The energy dependence on R2 is represented by

the solid curve in Fig.7. This shows that the lowest energy for N = 1 configuration

is reached when R2 = R1. However, this does not imply that spontaneous creation

of superconducting vortices is more energy favorable if the dot is circular. This is

because the magnetic flux supplied by the dot is maximum when R1 = R2. To better

understand this, I compare the energy necessary to spontaneously create a single

vortex by an elliptic dot with fixed R1 and varying R2 to the energy of a vortex

created by a circular dot with the same per unit area magnetization m0 and radius

Rc =
√

R1R2. The magnetic flux due to both dots is equal since their areas are equal.
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The curves in Fig.7 shows that the creation of vortices by an elliptic dots is more

energy favorable than those created by circular ones and has the same magnetic flux.

The difference between the two curves is reminiscent of the shape anisotropy of the

FM dot.

Fig. 7. The solid line is energy of a single vortex in the presence of an elliptic dot

whose semi-major axis R1 = 5λ as a function of R2. The dashed line is the

energy of a single vortex created by a circular dot of radius Rc =
√

R1R2. In

both cases δm = 8

The appearance of a vortex under the dot changes the energy of the system by

an amount of ∆ = Usv + Uvv + Umv. A vortex appear when ∆ = 0. This criterion

produces a surface in 3D space parametrized by R1

λ
, R2

λ
. The surface ∆ = 0 separates

regimes with and without vortices. Phase transitions from N = 0 regime to N = 1

and N = 2 regimes are shown in Fig.8. Note that for strongly eccentric dot i.e.
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R2 � R1 the spontaneous creation of vortices requires large values of δm due to the

small stray field of the dot.

Fig. 8. The solid (dashed) curve separate the regime without vortices from the regimes

with N = 1 (N = 2) vortices in the SC for R1 = 5λ.

Now, consider a square array of identical elliptic FM dots on the top of a super-

conducting thin film. Let all dots have their semi-major axis aligned along the x-axis,

and let them be well separated so that the dipolar interaction between them can be

ignored. If δm is larger than a critical value then vortices appear under the dots.

Due to the conservation of topological charge, an equal number of antivortices will

appear in the regions between the dots. In the presence of the antivortices the total

energy of the system must include their interaction with the dot array and vortices

and other antivortices in the system. For a large enough array and a filling of one

vortex per dot, vortices appear under the centers of the dots while antivortices will
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appear at the centers of the unit cells. This is so only if finite size effects are ignored.

These effects violate the symmetry of the vortex lattice, thus causing a shift in the

locations of vortices and antivortices. Pinning forces acting on vortices are due to

their interaction with the FM dots array and the vortex-antivortex interaction. Since

the dots are well separated, the i-th vortex feels mostly the pinning potential created

by the dot above it, given by (2.45) as

Umv = −m0φ0R1R2

π
Γ(R1, R2, xi, yi) (2.47)

The pinning by antivortices is isotropic and regular and can be represented by a

two-dimensional washboard potential. The pinning force exerted by the FM dot on

a single vortex in the SC is derivable from Umv and its components are

Fj(xi, yi) = − ım0φ0R1R2

π
Ξj(R1, R2, xi, yi) (2.48)

where j = x, y. Here the function Ξj(R1, R2, x, y) is defined as

Ξj(R1, R2, x, y) =
∫ kjJ1(G(kx, ky))e

i(kxx+kyy)

G(kx, ky) (1 + 2λq)
d2q (2.49)

The pinning force exerted by the dot on a vortex in the SC can be calculated

numerically. The results are depicted in Fig.9.

The shape anisotropy of the dot manifests itself in the pinning potential Umv and

the pinning forces. Anisotropic pinning forces imply anisotropic transport properties

such as anisotropic critical current. In other words the critical current Jc for this

system may depend on the angle θ between the driving current and the semi-major

axis of the dots. It also must depend on δm and the eccentricity of the dots, so I

write Jc(θ). For fixed value of δm and R2

R1
, the strength of the transport anisotropy

can be measured through the ratio K1 =
Jc(θ=

π
2
)

Jc(θ=0)
. To detect the effect of the dot’s

shape anisotropy on the transport properties of the underlying superconductor, one
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Fig. 9. The components of the pinning force exerted by the dot on a vortex in the SC

for a dot of R1 = 5λ and R2 = 3λ.

can perform resistivity measurements while changing θ. For an array of dots that

are very eccentric, the measurements must reflect a decrease in the resistance of the

sample as θ is increased down from 0 up to π
2
. The full understanding of transport

properties and the effect of the dot’s shape anisotropy on vortex dynamics in this

system has not yet been studied.

D. Vortex Manipulation by Cavities in a Magnetic Dot

Consider a superconducting thin film of thickness ds � λ in the xy-plane. Above it,

a circular ferromagnetic dot of thickness dm � λ and radius R1 whose magnetization

points along the normal to the SC film is placed. Furthermore, assume that the dot

contains a cavity of radius R2 < R1 is at the center of the dot. Such an annular
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geometry can be realized as follows: (1) an FM dot of radius R1 and thickness D1

magnetized along the normal to the SC film is grown on the SC, and the dot is then

covered by a thin layer of insulator oxide. (2) A second FM dot of radius R2 < R1

and thickness D2 and opposite magnetization is grown on top of the insulating layer.

I assume that D1 + D2 ∼ ξ where ξ is the SC coherence length. Hence the

thickness of the annulus can be ignored in the calculation because the field of the

vortex does not change appreciably over a distance of the order of ξ. The FM and SC

are separated by a thin layer of insulator oxide of thickness D � λ. The magnetization

of the annulus can be written as

M(ρ, z) = m0Θ(R2 − ρ)Θ(ρ − R1)δ(z − D)ẑ (2.50)

where m0 is the magnetization per unit area. The overall system has an azimuthal

symmetry, in Coulomb gauge (∇·A = 0) direct integration gives the magnetic vector

potential

Am = 4πm0λϕ̂
∫ ∞

0
q
[R2J1(qR2) − R1J1(qR1)] J1(qρ)

1 + 2λq
e−q|z−D|dq (2.51)

The magnetic field produced by the annulus in the presence of the SC, by B = ∇·A,

is

Bρ
m = 4πm0λ

∫ ∞

0

q2 [R2J1(qR2) − R1J1(qR1)] J1(qρ)

1 + 2λq
e−q|z−D|dq (2.52)

Bz
m = 4πm0λ

∫ ∞

0

q2 [R2J1(qR2) − R1J1(qR1)] J0(qρ)

1 + 2λq
e−q|z−D|dq (2.53)

The total z-component of the magnetic field on the film is the sum of those

from the magnetic annulus and from the vortex. The z-component of the magnetic

field from the vortex behaves like 1
ρ2 at distances smaller than λ, and like 1

ρ3 at large
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distances. The behavior of the z-component of the annulus magnetic field is shown

in Fig.10. Let us assume that a vortex in the SC is located at point ρ0 interacting

Fig. 10. The z-component of the annulus magnetic field on the surface of the supercon-

ductor. The annulus has a radii (R1 = λ,R2 = 2λ) and the field is measured

in units of 4πm0

λ
.

with the annulus then the total energy of the system is

E = Nε0ln(
λ

ξ
) − ε0λ

N
∑

i=1

N
∑

j 6=i

∫ ∞

0

J0(q|ρi − ρj|)
1 + 2λq

dq

−εm

N
∑

i=1

∫ ∞

0

(R2J1(qR2) − R1J1(qR1)) J0(qρ0)

1 + 2λq
dq (2.54)

If δm > 1 then spontaneous creation of vortices is energy favorable. I numerically

integrate (2.54) for N = 1 and plot the energy as a function of ρ0. Clearly, the energy

has a minimum in the region under the annulus i.e. R1 < ρ0 < R2 as shown in Fig.11.
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Fig. 11. The energy in units of ε0 as a function of ρ0

λ
for the case when

n = 1, λ
ξ

= 10, R1 = λ,R2 = 2λ and δm = 10.

The azimuthal symmetry of the annulus leads to a continuous set of equivalent

locations for the vortex center along a circle of radius ρ0. The interaction between

the vortices and the magnetization is attractive and strongest in the region under the

annulus while the vortex-vortex interaction is repulsive and decays logarithmically

with the distance between two vortices if the distance between the two vortices is

larger than λ. Therefore, if there are N ≤ [2π ρ0

λ
] singly quantized vortices in the

superconductor then they will be uniformly distributed along the circumference of a

circle whose radius is ρ0. Otherwise, their exact distribution in the superconductor

must be determined by numerically minimizing the total energy of the system.

The degeneracy found for the location of the vortex center is a direct result of the

azimuthal symmetry of the annulus. Such a degeneracy can be eliminated by either
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moving the cavity from the center of the dot or introducing new cavities into the dot.

another opportunity is to use a non-circular annulus. Such modifications make the

ground state manifold discrete instead of continuous as shown in the circular annulus

case. Motivated by our work, Milosevic and Peeters [19] studied the dependence of

the dependence of the energy of the system on the location of the cavity in the dot. It

is found that when two identical cavities are brought together to form a figure eight

shaped cavity at the center of the dot, the system has exactly two equivalent ground

states. The probabilities are equal that the vortex is in either of these states. Such a

feature makes this system useful for quantum computing.

E. Interaction Between a Superconducting Vortex and a Ferromagnetic Rod

Previous studies focused on cases in which the dimensionality D of the FM was either

zero or two [1]-[22]. This corresponds to the action of a point dipole of a dot. To

date no study has considered the interaction of vortices in a superconducting thin

film with a ferromagnetic rod. The system I will study here consists of an SC thin

film which contains a hole of radius R1 pierced by a ferromagnetic columnar defect

of radius R2 and length L > 0, subject to the condition R1 − R2 ∼ ξ � λ. The rod

is uniformly magnetized in the direction perpendicular to the SC film, as shown in

Fig.12. In this work, I will ignore the difference between the radius of the rod and

that of the hole and put R1 = R2 = R < λ.

The magnetization of the rod can be expressed as

M(ρ, ϕ, z) = MΘ(R − ρ)Θ(
L

2
− |z|)z (2.55)

The magnetic field produced by the FM penetrates the superconductor modifying
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Fig. 12. A superconducting thin film pierced by a ferromagnetic nano rod of radius R,

length L and magnetization M .

its screening current distribution. Within the London approximation the FM-SC

system is described by the London-Maxwell equation. When Coulomb gauge (∇·A =

0) is employed the Fourier representation of the vector potential Am
k due to the FM

can be written as

Am
k =

16π2ıMRJ1(qR)

k2
z + q2





2 sinh( qL
4

)e−
qL

4

q(1 + 2λq)
− sin(kzL

2
)

kz



 ϕ̂q (2.56)

The magnetic field produced by the magnetic nano-rod in the presence of the SC film

can be calculated using Bm = ∇× Am. The components of the rod’s magnetic field

are

Bm
z = 8πMR

∫ ∞

0
J1(qR)J0(qρ)





π

2λ2q2
W (q, z, L) − sinh( qL

4
)e−q(|z|+L

4
)

1 + 2λq



 dq (2.57)
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Bm
ρ = 8πMR

∫ ∞

0
J1(qR)J1(qρ)





π

2λ2q2
W (q, z, L) − sinh( qL

4
)e−q(|z|+L

4
)

1 + 2λq



 dq (2.58)

where

W (q, z, L) = sign(L − 2z)

[

1 − cosh(
q(L − 2z)

2
) + sign(L − 2z) sinh(

q(L − 2z)

2
)

]

+ sign(L + 2z)

[

1 − cosh(
q(L + 2z)

2
) + sinh(

q|L + 2z|
2

)

]

(2.59)

However, I am interested in the value of the field in the plane of the superconductor,

the z component of the field reduces at the SC film to

Bm
z (ρ) = 8πMR

∫ ∞

0

qJ1(qR)J0(qρ)

1 + 2λq
(1 − e−

qL

2 )dq (2.60)

In the presence of a superconducting vortex, the total magnetic field at the surface of

the film is the sum of the field of the FM rod and the field of the vortex itself. The

z-component of the vortex magnetic field at the SC film surface is [24], [25], [26]

Bv
z (ρ) =

φ0

2πλ2

[

λ

2ρ
− π

8

(

H0(
ρ

2λ
) − N0(

ρ

2λ
)
)

]

(2.61)

where H0(x) and N0(x) are the zero order Struve and Neumann functions respectively

[27]. The interaction between a superconducting vortex and a non-magnetic columnar

defect was first considered by Mkrtchyan and Schmidt [23], and later by Buzdin et.al.

[28], [29], [30], [31], [32]. In these studies, it was shown that the pinning potential Up

created by a non magnetic columnar defect of radius R >
√

2ξ is

Up(ρ) =















−ε0 ln( R√
2ξ

), ρ < R

ε0 ln
[

1 −
( √

2R√
2ρ+ξ

)2
]

, R < ρ < λ

If the columnar defect is ferromagnetic then an extra contribution to the pin-

ning would appear due to the magnetic interaction between the superconductor and

ferromagnet. In the presence of N singly quantized vortices in the superconductor,
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the total energy of the system is made up of five different contributions and can be

written as

U = Usv + Uvv + Up + Umv + Umm (2.62)

where Usv is the energy of N non-interacting singly quantized vortices, Uvv is the

vortex-vortex interaction, Up is the pinning potential due to the hole without the

magnetic rod, Umv is the interaction energy between the FM and SC, and Umm is the

FM dot self interaction. In [16], it was shown that the total energy of the system can

be written as:

U =
∫

[

nsh̄
2

8me

(∇ϕ)2 − nsh̄e

4mec
(∇ϕ · A) − 1

2
M · B

]

d3x (2.63)

where ns is the three-dimensional superconducting electrons density and me is their

effective mass. h̄ and c are the Planck constant and the speed of light respectively.

The vectorial quantities A, and B are the total vector potential and magnetic field

due to the N SC-vortices and the ferromagnetic rod. The phase gradient of the SC

order parameter in the presence of N vortices is ∇ϕ =
∑N

n=1
(ρ−ρn)×ẑ
|ρ−ρn|2 , where ρn is the

location of the n-th vortex.

Unlike previous cases, here the energy in (2.63) is a sum of 3D integrals; however,

some of these integrals can be made 2D while the others must be performed in three

dimensions. In the presence of N > 1 superconducting vortices, the interaction of

the vortices with the rod tries to lower the energy of the system due to its attractive

nature whereas the energy is increased by the repulsive vortex-vortex interaction. The

total energy for a system of a superconducting vortex and a ferromagnetic columnar

defect is

U1(ρ) = ε0 ln(
λ

ξ
) + Up(ρ0) + Umm − 2εm

R

λ

∫ ∞

0

J0(qρ0)J1(qR)(1 − e−
qL

2 )

q(1 + 2λq)
dq (2.64)
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Here I employ the energy scale for the interaction between the FM and SC

ε̃m = Mφ0λ (2.65)

Note that ε̃m is now defined in terms of the 3D magnetization. The term Umm

is the self interaction of the FM rod. To simplify the calculations, I will limit the

discussion to the case when L → ∞. Numerical calculations show that the total

energy U1 has a minimum at ρ0 = 0, so the vortex center must be on the axis of the

rod.

Fig. 13. The total energy of the CD-SV system for λ = 1000nm, ξ = 10nm and the

radius R = 900nm.. The solid line is for the case when the CD is non-magnetic

while the dashed one is for ferromagnetic CD.

The various terms in Eq.(2.64) shows that if the magnetization of the rod exceeds
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a threshold value then the spontaneous creation of vortices becomes energy favorable.

The energy profile for a single vortex coupled to a columnar defect is shown in Fig.13.

The solid line represents the energy of the system for a non-magnetic defect and the

dashed line is for a ferromagnetic defect. Note that for a non-magnetic cavity, the

model of Mkrtchyan and Schmidt [23] leads to zero pinning force if ρ0 < R, whereas

in the present case the pinning potential is stronger and the pinning force does not

vanish if ρ0 < R. The pinning force exerted by the FM rod on a vortex in the SC

film at ρ0 is oriented along the radial direction and is given by

Fρ(ρ) = −∂Up(ρ)

∂ρ
− 2ε̃m

R

λ

∫ ∞

0

J1(qρ0)J1(qR)(1 − e−
qL

2 )

(1 + 2λq)
dq (2.66)

The spontaneous creation of a vortex in the SC changes the energy of the system

by ∆ = U − Umm. Therefore, if I set ∆ = 0 then I can find the threshold value

of the magnetization Fig.14 at which spontaneous vortex creation becomes energy

favorable. Taking R = 500 nm and λ = 1000 nm, I find that the threshold value of

magnetization is approximately M = 388 G. Configurations with a larger number of

vortices are found by minimizing the total energy of the system with respect to the

positions of vortices and antivortices. However, one should be cautious here because

the net flux through the SC film is not zero except when L → ∞, unlike the case

when the FM is two dimensional structure placed outside the SC. In the present case

the FM penetrates the SC despite the fact that the FM and SC are electronically

separated by a thin ring of radius R1 − R2; therefore, the flux neutrality principle

that was used for problems with 2D FM textures must be modified in cases like the

present case.

In this section, I studied the interaction between SC vortices and an FM rod

penetrating the plane of the SC. To study such interaction I extended the theory of

vortex interaction with non magnetic cavities to include the case when the cavity
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Fig. 14. The curve represents the threshold value of the magnetization of the rod in

units of M0 = φ0/πλ2.

is filled with ferromagnetic material. I calculated the pinning potential and force

supplied by the FM rod. I showed that if the FM rod magnetization exceeds a

critical value then vortices spontaneously appear in the ground state of the system.

The phase transition from vortexless phase to phase with one vortex is studied and

the threshold value of the magnetization is found as a function of the radius of the

rod.
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CHAPTER III

TRANSPORT IN FERROMAGNETIC-SUPERCONDUCTING BILAYERS

Recently, Erdin et.al.[20] studied the equilibrium structure of a FM-SC bilayer (FSB).

They have proved that it represents a two-dimensional periodic stripe domain struc-

ture consisting of two equivalent sub-lattices, in which both the magnetization mz(r)

and the vortex density nv(r) alternate. Thus, they predicted spontaneous violation

of the translational and rotational symmetry in the bilayer. In this chapter I study

the transport properties of the FSB. They are associated with the driving force act-

ing on the vortex lattice due to an external electric current. I show that the FSB

exhibits strong anisotropy of the transport properties: the bilayer may be supercon-

ducting for the current parallel to the domain walls, and resistive when the current

is perpendicular to them.

The force acting on a vortex from other vortices, which determines the value of

critical current, can be characterized as the periodic pinning. An extensive develop-

ment of theory and experiment related to the pinning and its influence on transport

in superconductors was discussed in an exhaustive review by Blatter et al. [2]. This

work differs from the studies considered in this review by two features. First, in the

preceding works the magnetic field was assumed to be constant in space, whereas in

the present problem the average magnetic field is zero, but is strongly inhomogeneous

in space. Therefore, in the present system equal numbers of vortices and antivortices

participate in the motion. Second, in these works the pinning force was assumed to be

random, whereas in this work the dominant pinning forces are periodic and regular.

Martinoli et al. [5] created artificially periodic pinning barriers in superconducting

films by modulating their thickness periodically. The main difference between their

modulated structure and the one considered in in this work is that the domains in the
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FSB are not confined to the crystal lattice and can move together with the vortices.

Periodic pinning forces in the direction parallel to the stripes do not appear in

continuously distributed vortices, their reappearance is associated with the discrete-

ness of the vortex lattice. Therefore, I need to modify the theory [20] to incorporate

the discreteness effects. Assume that the saturation magnetization per unit area of

the FM film is m and its width is L. The energy necessary to create a single Pearl

vortex [24] in the superconductor is εv0 = ε0 ln(λ
ξ
), It was shown in [20] that the

interaction between the superconducting vortices and the magnetization in the stripe

structure renormalizes the single-vortex energy to the value ε̃v = εv0 − mφ0 which

must be negative to allow development of the stripes. The density of the supercon-

ducting vortices increases when approaching the domain walls and in the continuous

approximation [20] it can be expressed as

nv(x) =
πm̃

Lφ0

1

sin(πx
L

)
(3.1)

where m̃ = m − εv0

φ0
is the renormalized magnetization of the FM stripe. and L is

the stripe domain width. The vortices spontaneously appear in the superconductor.

I assume that the vortices inside one stripe are arranged in parallel chains as in

Fig. 15. Each chain is periodic with the same lattice constant b along the chain,

whereas the distance ak between the k-th and the (k +1)-th chain depends on k. The

correspondence between this discrete arrangement and the continuous approximation

[20] is established by the requirement that the local vortex density nv(xk) calculated

in [20] must equal (bak)
−1. The coordinate xk is determined in terms of ak as a sum:

xk =
∑k−1

k′=0 ak′ . For definiteness I choose the origin at the center of the stripe. I

assume that the total number of the vortex chains 2N in a stripe is large. Then some

of them are located very close to the domain walls. Considering the vortex chain

nearest to the domain wall (with the index, N), I put nv(xN) = 1
baN

. On the other
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hand, xN = L − aN . Since aN

L
� 1, I find, b = φ0

m̃
. The total number of chains in a

stripe is 2N , where

N = b
∫ L−λ

0
nv(x)dx =

1

2
ln(

L

λ
) (3.2)

I must cut off the integration (and summation) at a distance ∼ λ from the domain

wall, where the continuum approximation breaks. Thus the minimum value of a is λ.

When transport current passes through the superconducting film, the vortices

start to move. To simplify the problem I assume that all vortices in each stripe move

together as well as all antivortices in the neighboring stripe do.
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Fig. 15. Schematic vortex distribution in the FM-SC bilayer. The sign ± refers to the

vorticity of the trapped flux.

I denote vortex and antivortex positions by r+ = (x+, y+) and r− = (x−, y−),

respectively. The forces acting on a moving vortex are the Magnus force fm, the
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friction force ff , and the periodic pinning force fp.The Magnus force is

fm = πnsh̄ds(vs − ṙ) × ẑ (3.3)

where ns is the superconducting electron density, vs is the velocity of the supercon-

ducting electron and ṙ is the vortex velocity. The viscous (friction) force is ff = −ηṙ

where η = φ0Hc2ds

ρnc2
is the Bardeen-Stephen drag coefficient [33], with Hc2 the upper

critical magnetic field, ρn the resistivity of the superconducting sample in the normal

state, and c is the speed of light.

The periodic pinning forces are due to the interaction of the vortex with the

pinning centers and the domain walls. In the FM-SC bilayer the pinning force is

due to the interaction of the domain walls with the vortices and antivortices and the

vortex-vortex interaction Uvv given by:

Uvv =
1

2

∫ ∫

nv(r)V (r − r′)nv(r
′)d2rd2r′ (3.4)

where V (r − r′) is the pair interaction between a vortex located at r and another at

r′. When |r − r′| � λ the pair interaction can be written as

V (r − r′) =
φ2

0

4π2

1

|r − r′| (3.5)

The interaction energy between two parallel chains located at xl and xl′ and vertically

shifted with respect to each other by an interval bs (s � 0), is

U(xl, xl′ , s) =
N0
∑

n,m=1

φ2
0

8π2
√

(xl − xl′)2 + (n − m − s)2b2
(3.6)

where N0 is the number of vortices or antivortices in a single chain. For infinite chains
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(N0 → ∞) Eq.(3.6) can be rewritten as

U(xl, xl′ , s) =
∞
∑

k=−∞

N0φ2
0

8π2
√

(xl − xl′)2 + (k − s)2b2
(3.7)

The sum in (3.7) can be calculated using the Poisson summation formula [27]. Since

the force is zero in the continuum approximation, it is possible to retain the low-

est non-zero harmonic in the Poisson summation. Thus, I arrive at the following

interaction energy of two chains:

U(xl, xl′ , s) =
N0φ

2
0

4π2b
cos(2πs)χll′ (3.8)

where χll′ = e−2π
|xl−x

l′ |

b . The distance between two chains |xl − xl′| exceeds or equals

λ, so χll′ ∼ χ = e−
2πλ

b . A typical value of χll′ is e−
δm
4π , so χ is very small near the

superconducting transition temperature and for thicker FM films.

I conclude that the amplitude of the periodic potential for displacements parallel

to the domains, in units of the vortex self energy scale ε0, is exponentially small near

the transition temperature. Relative displacements in perpendicular direction have

energy barrier ∼ ε0 even in the continuum approximation. I model the restoring

pinning forces by simple sine dependencies

fp
x = −f⊥ sin(

2π

a
(x+ − x−)) (3.9)

fp
y = −f|| sin(

2π

b
(y+ − y−)) (3.10)

where f⊥ ∼ ε0
a

and f|| ∼ ε0
b
e−

δm
4π � f⊥.

The equations of motion for the vortex and antivortex are derived from the

momentum conservation principle such that
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ff + fm + fp = 0 (3.11)

If the supercurrent is perpendicular to domains, the equations of motion for a

vortex and antivortex are:

ηẏ+ = F − F

vs

ẋ+ − f|| sin(
2π

b
(y+ − y−)) (3.12)

ηẋ+ =
F

vs

ẏ+ + f⊥ sin(
2π

a
(x+ − x−)) (3.13)

ηẏ− = −F +
F

vs

ẋ− + f|| sin(
2π

b
(y+ − y−)) (3.14)

ηẋ− = −F

vs

ẏ− − f⊥ sin(
2π

a
(x+ − x−)) (3.15)

where F = πnsh̄dsvs. If the current is smaller than a critical value Jc, then Eq.(3.12-

3.15) has a static solution

x+ = x− =
Fb

4πηvs

arcsin(
F

f||
) (3.16)

y+ = −y− =
b

4π
arcsin(

F

f||
) (3.17)

This is valid for F ≤ f||, and satisfies the condition that x± = y± = 0 when F = 0.

For F > f|| or, equivalently, if the current is larger than its critical value, the vortices

and antivortices begin to move. The solution of Eq.(3.12-3.15) for F > F|| reads:

x+ − x− = 0 (3.18)
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x+ + x− =
F

ηvs

(y+ − y−) (3.19)

y+ − y− =
b

π
arctan(

f||
F

+

√

1 −
f 2
||

F 2
tan(ω⊥

0 t)) (3.20)

y+ + y− = 0 (3.21)

where

0 1 2 3 4 5 6
ωt

-0
.2

0
0.

2
Y

+
/b

β=0.1
β=0.5
β=0.9

Fig. 16. The vortex displacement as a function of time in the overcritical regime. Time

is measured in units of 1
ω⊥

0
and y+ in units of b and χ = 10−4.

ω⊥
0 =

2πηv2
s

√

b2F 2 − χ2ε2
0

b2(F 2 + η2v2
s)

(3.22)

is the Josephson frequency. Thus the vortices and antivortices acquire the same

velocity components v+x = v−x in the direction of the current and opposite velocity

components v+y = −v−y in the direction perpendicular to the current. The domain
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walls do not interfere with such a motion if they move in the direction of the current

with the same velocity vdw = v+x = v−x as vortices and antivortices. Such a motion

is a Goldstone mode. The solution (3.18-3.21) displays an oscillatory motion of the

vortices and antivortices in the direction parallel to the domain walls, in addition to

their motion together with the domain walls along the direction of the current. Higher

harmonics of the vortex motion can be calculated analytically. The distribution of

vortices (antivortices) is inhomogeneous in the direction perpendicular to the domains.

The local electric field E due to the vortex motion is related to its time-average

velocity < v+ > [2] via

E = −qvφ0

c
nv(r)(< v+ > ×ẑ) (3.23)

Therefore, the local field produced by vortices in the direction parallel to the

domains is equal but opposite in sign to the one produced by antivortices, while the

local field produced by vortices and antivortices in the direction perpendicular to the

domains has both equal magnitude and sign. The time-average components of the

vortex (antivortex) velocity over a period T = 2π
ω⊥

0
are

< v+y > = ±
η
√

F 2 − f 2
||

(η2 + F 2

v2
s
)

(3.24)

< v+x > =
F < v+y >

ηvs

(3.25)

The time-averaged local field components are

Ex = −ηm̃

ac

√

F 2 − f 2
||

(F 2

v2
s

+ η2)
(3.26)

Ey = ∓ m̃F

avsc

√

F 2 − f 2
||

(F 2

v2
s

+ η2)
(3.27)
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The upper signs in Eq.(3.24) and Eq.(3.27) refer to the vortex velocity and field

for vortices along the domain while the lower sign refers to those for antivortices. A

non-zero average electric field due to all vortices and antivortices in the FSB appears

only in the direction perpendicular to the domains. The applied current J and Magnus

force F are related by

F =
φ0ds

c
J × ẑ (3.28)

The perpendicular critical current J⊥
c can be found by equating the Magnus force Fc

and the pinning force which gives F = ε0mχ
φ0

. Taking χ = 10−4−10−2, b = 10−4−10−5

cm, and ns = 1022 cm−3 yields J⊥
c ∼ 103−105 A/cm2. When the current flows parallel

to the stripes, the FM domain walls stay at rest while vortices and antivortices move

both parallel and perpendicular to the domains. The equations of motion in this

case are similar to their counterparts in the previous case with the exception that

the domain walls do not move. The solution of equations of motion for vortices

and antivortices shows that they move opposite to one another both in the x and y

directions. Their motion along x is oscillatory with fundamental frequency

ω
||
0 =

2πηv2
s

√

a2F 2 − ε2
0

a2(F 2 + η2v2
s)

(3.29)

The motion of vortices and antivortices in the parallel direction proceeds until

the distance between them becomes the half-lattice spacing b
2
. Once the vertical shift

between the vortices and antivortices reaches b
2
, their motion freezes. The parallel

critical current in this case is J ||
c = nsµB

2a
, the lattice spacing a is of the order of

λ ∼ 10−5−10−4 cm, hence the critical current J ||
c is of the order 107−108 A/cm2, which

is at least 102 times larger than the critical current for parallel current. Therefore,

the system may be superconducting for current parallel to the stripes, but exhibit
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finite resistance for perpendicular current.

The difference in the critical currents for parallel and perpendicular directions is

due to the exponential factor χ, which is small if b � λ. The anisotropy is pronounced

when δm is large, which can be achieved by using thicker FM layers and decreasing

the density of the superconducting electrons. The ratio δm is temperature-dependent

and eventually decreases when temperature decreases starting from the SC transition

temperature Ts. However, at the temperature of vortex disappearance Tv < Ts,

the value of the FM film renormalized magnetization m̃ becomes zero and χ again

becomes exponentially small. Thus anisotropy has a minimum between Tv and Ts.

Fig. 17. The ratio J ||
c /J⊥

c as a function of temperature with the temperature is in the

range Tv ≤ T ≤ Ts.

To study the dependence of the transport anisotropy on temperature T , I define
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the ratio Ψ of the parallel critical current J ||
c to the perpendicular current J⊥

c

Ψ =
φ0

m̃(T )aχ(T )
(3.30)

Recall that in 3D superconductor the electron density behaves with temperature

as ns(T ) = ns(T = 0)(1 − T 2/T 2
s ), while λL(T ) = λL(T = 0)(1 − T 2/T 2

s )−1/2 and

ξ(T ) = ξ(T = 0)(1 − T 2/T 2
s )−1/2. In 3D the Ginzburg-Landau parameter is inde-

pendent of temperature, so κ3D(T ) = κ3D(T = 0), but in thin films the effective

penetration depth is λ = λ2
L(T )/ds, so κ2D(T ) = κ2D(T = 0)(1 − T 2/T 2

s )−1/2. The

vortex disappearance temperature Tv depends on the 2D magnetization of the FM

film and is determined by setting m̃(T = Tv) = 0. The dependence of parallel to

perpendicular critical current on temperature is depicted in Fig.17.

Kopnin and Vinokur [34] considered a collection of superconducting grains with

the washboard pinning potential as a model for random pinning. They obtained a

similar result for vortex sliding in an external magnetic field with a supercurrent

applied. In contrast to their work (they considered vortices only), I consider vortices

and antivortices in a periodic pinning field and completely neglect the random pinning.

Now, I briefly discuss how the magnetic field generated by the supercurrent

changes the results obtained in this work. In [35] [36] it was shown that at sufficiently

small critical magnetic field the domains vanish. Therefore, in general, a magnetic

field suppresses both the anisotropy and periodic pinning at a critical field for which

domains disappear. At such a critical field only random pinning prevails. However,

the total current per unit length is proportional to the thickness of the SC film and

can be kept small.

In conclusion, I studied the transport properties of the FM-SC bilayer in a state

with stripe domains of alternating magnetization and vorticity. In the absence of a

driving force, the vortices and antivortices are arranged in a straight chain configu-
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ration. The force between two chains of vortices falls off exponentially as a function

of the distance separating the chains. I argued that, in the vicinity of the supercon-

ducting transition temperature Ts and the vortex disappearance temperature Tv, the

distances between chains becomes much larger than the distance between vortices in

the same chain. I solved the equations of motion for vortices and antivortices for

the driving current direction parallel and perpendicular to the domains. The paral-

lel critical current is much higher than the perpendicular one, at least in a vicinity

of the two transition temperatures. This strong transport anisotropy is due to the

fact that, for perpendicular current, the induced motion is a Goldstone mode spe-

cific to a system of mobile domains and vortices. I expect the ratio of the parallel

to perpendicular critical current to be in the range 102 ÷ 104 close to the supercon-

ducting transition temperature Ts and to the vortex disappearance temperature Tv.

The anisotropy decreases rapidly when the temperature goes from the ends of this

interval, reaching a minimum somewhere inside it. The anisotropy can be destroyed

by a rather weak magnetic field perpendicular to the bilayer. This anisotropic trans-

port behavior might serve as a diagnostic tool to discover spontaneous topological

structures in magnetic-superconducting systems.
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CHAPTER IV

CONCLUSION

This dissertation focuses on the statics and dynamics of the spontaneous vortex phase

in heterogeneous ferromagnetic-superconducting systems. In particular, it considers

the interaction between a superconducting thin film covered by ferromagnetic textures

such as a magnetic dot with in-plane magnetization, an elliptical magnetic dot, a

circular magnetic annulus and a finite ferromagnetic rod. For each case, I calculated

the magnetic field distributions, screening currents, and total energy of the system. It

also analyzes the pinning forces and studies the dynamical properties of ferromagnetic-

superconducting bilayers.

In chapter one a brief introduction is given. Chapter two is divided into five sec-

tions. The first section discusses the general formulation of HFSS within the London

approximation. Section two considers the interaction between an ferromagnetic dot

with in-plane magnetization placed on the of an SC thin film. The vector potential

and magnetic field produced by the FM were calculated. I calculated the total en-

ergy of the system and showed that the spontaneous creation of vortex-antivortex

pairs becomes energy favorable when the magnetization of the dot exceeds a thresh-

old value. The phase transitions from a fluxless regime to regimes with one or two

vortex-antivortex pairs were studied. In section three, I study the influence of the

dot’s geometry on the spontaneous vortex phase induced by the dot itself by consider-

ing the interaction of vortices in a thin SC film with an elliptical FM dot. I calculated

the magnetic fields, screening currents and energy of the system and studied phase

transitions from a phase without vortices to phases with one or more vortices. I com-

pared between the results for an elliptic dot with those derived for a circular dot that

has the same 2D-magnetization and the same area as its elliptic counterpart. It is
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shown that the elliptical dot is more efficient to induce a spontaneous vortex phase

in the superconductor.

The fourth section considers the interaction of vortices in a SC thin film with a

circular FM dot of radius R2 that has a hole of radius R1 at its center to form a circular

annulus. The magnetization of the annulus is assumed to be along the normal to SC

film. It was shown that spontaneous vortex creation in the superconductor becomes

energy favorable if the annulus’s magnetization exceeds a critical value. I calculated

the energy of a system of a vortex coupled to the annulus and showed that the

equilibrium position for the center of the vortex lies on a circle of radius R1 < ρ0 < R2.

The degeneracy of the of the vortex location can be eliminated by creating other holes

in the dot or moving the hole from the center of the dot. Identical holes located at

equal distance from the center of the dot generate identical pinning potentials for

the vortices in the SC. Such a setup could be used for quantum computing [19] in

a way similar to that discussed by Ioffe and Feigelman [37]. Another opportunity is

to use an elliptical annulus instead of circular one. In the case of elliptical annulus,

the circle of minimum energy configuration disappear and two minima point will

appear instead. The system of elliptical annulus is another possibility for quantum

computing setup. In section five, I studied the interaction between an FM columnar

defect penetrating an SC thin film. The interaction between the FM and SC vortices

strongly alters the pinning potential found by Mkrtchyan and Schmidt [23] in their

work on the interaction between vortices and non magnetic cavities in the SC. The

vortex is exactly pinned at the center of the rod. Spontaneous creation of vortices

by the rod is possible and the phase transition from the vortexless phase to another

with one vortex bound to the rod is studied numerically.

Chapter three studies the transport properties of ferromagnetic-superconducting

bilayers [38] assuming the stripe domain structure of alternating magnetization and
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vorticity. I analyzed pinning forces in this system and showed that the pinning force

along the domains is much less that the one perpendicular to the domains. The

parallel pinning forces are temperature dependent and they are small enough at tem-

peratures close to the SC transition temperature Ts. The critical current values for

two different directions for driving force either parallel or perpendicular to the do-

mains were calculated. A comparison between the critical current for parallel driving

and perpendicular driving showed that the system displays a finite resistance if the

current is perpendicular to the domains and it is superconducting for parallel cur-

rent. The dependence of the perpendicular to parallel critical current on temperature

is determined. The ratio of the parallel to perpendicular critical current becomes very

large in the vicinity of Ts and the vortex disappearance temperature Tv while it has

a minimum in the range between Ts and Tv.

The coexistence of ferromagnetism and superconductivity in HFSS offers a new

mechanism for vortex pinning. The origin of vortex pinning in the systems I con-

sidered here is the inhomogeneous distribution of fields. If the magnetization of the

texture is large enough then the strong interaction between the FM and the SC not

only can pin vortices but also spontaneously create them in the superconductor. The

interaction between the FM and SC is temperature dependent and it is strongest in

the vicinity of the SC transition temperature Ts. Pinning forces in ferromagnetic

superconducting bilayer are highly anisotropic, the anisotropy of pinning forces re-

flects itself in different critical current for different driving angle. Such anisotropic

transport properties may be used as a diagnostic tool to discover new topological

defects. I conclude that the coexistence of superconductivity and ferromagnetism

allows for stronger pinning of vortices in the superconductor; therefore, enhancing

the critical current of the superconductor. The geometry and magnetization distri-

bution of the FM characterize the properties of the static and dynamical phases of
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the superconductor.
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APPENDIX A

GLOSSARY OF ACRONYMS

CD: Columnar Defect.

EMD: Elliptical Magnetic Dot.

FM: Ferromagnet or Ferromagnetic.

FSB: Ferromagnetic Superconducting Bilayer.

HFSS: Heterogeneous Ferromagnetic Superconducting Systems.

SC: Superconductor or Superconducting

SV: Superconducting Vortex.
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