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ABSTRACT 
 
 

Evaluation of the Inter-relationships of Temperament, Stress Responsiveness and  
 

Immune Function in Beef Calves. (May 2006) 
 

Ryan Allan Oliphint, B.S., Texas Tech University 
 

Co-Chairs of Advisory Committee: Dr. T. H. Welsh, Jr.  
                                                        Dr. R. D. Randel 

 
 
 

 A series of in vivo and in vitro approaches were followed to assess the inter-

relationships of temperament, stress responsiveness and immune function in beef bulls 

and steers. In experiment one, Brahman bull calves were weaned at approximately six 

months of age when pen score and exit velocity were measured to sort calves into groups 

with extremes in temperament (calm n = 10 and temperamental n = 10). The calves were 

vaccinated on day 0 and 42 of the study with serial blood samples colleted for 11 weeks. 

Calm calves tended to have higher primary and secondary immune responses as 

indicated by increased serum concentrations of immunoglobulin G following Clostridial 

vaccination.  

 In vitro lymphocyte cultures were performed on day 0 and 42 to measure 

proliferation and IgM production. Calm calves had significantly higher proliferative 

responses on both day 0 and 42. Lymphocyte IgM production was significantly higher in 

calm calves on day 0 and tended to be higher on day 42 than temperamental calves.  

 In experiment two, weaned and yearling steers were arrayed by pen score and 

exit velocity, to assign steers to groups with extremes in temperament (trial 1: calm n = 7 
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and temperamental n = 5; trial 2: calm n = 5 and temperamental n = 5). In both trials, 

temperamental steers had higher proliferative responses than calm steers. 

Immunoglobulin M production did not differ in either trial.  

 The effects of stress responsiveness on animal performance and health are 

considerable because they affect the profitability of the cattle industry. Investigations 

into animal temperament can help cattle producers identify animals that may be more 

susceptible to decreased performance and immunosuppression. The effectiveness of 

vaccines given to calves is important in conferring immunity to common diseases at 

times when they are at a higher risk for infection. If we can identify temperamental 

animals that will not perform as well as their cohorts, management procedures can be 

altered to reduce the risks associated with decreased performance and morbidity.    
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INTRODUCTION 
 

 Cattlemen have been aware of the connections between animal behavior and 

animal performance for decades. It has been common knowledge that an animal’s 

behavior can indirectly affect several physiologic systems of economic significance. 

However, the intricacies of these relationships have been investigated only minimally. 

With more importance being placed on carcass quality and consumer demand, additional 

aspects of these relationships are being researched to determine specific markers of 

animal temperament that can be managed in order to deliver a more uniform and 

profitable product.  

Animal temperament, in normal production situations, has been described as the 

degree of fearfulness and reactivity to humans, as well as reactivity to strange, novel or 

threatening environments (Grandin, 1993; Murphy et al., 1994; Burrow, 1997). 

Temperament is a measure of many behavioral characteristics, exhibited by animals, 

which can be quantified by observation of a behavior departing from a normal, non-

threatening environment. Stressors have been described as environmental factors or 

conditions that can induce a physiological response (stress) in an animal. Stressors, such 

as standard management processes for handling cattle, can induce these responses 

making it important to understand their effects on cattle. Animals with extremes in  

temperament usually react differently to stressors. Specifically, calmer animals will have 

less of a stress response, whereas wilder animals predominately have a greater stress 
 
_______________ 
This thesis follows the style and form of the Journal of Animal Science. 
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response due to their excitability. These responses can be used as a measure of 

temperament and the level of fear or excitement experienced by the animal.  

The concentration of cortisol, a steroid produced by the adrenal gland, has long 

been a measure of stress responsiveness in people and in animals. Negative or 

undesirable temperaments have been associated with increased serum cortisol 

concentrations in cattle (Stahringer et al., 1990; Curley, 2006). Release of cortisol from 

the adrenal cortex is associated with increased stress stimuli and has been shown to have 

a significant negative impact on animal performance (Voisinet et al., 1997a), immunity 

(Fell et al., 1999), meat quality (Lacourt and Tarrant, 1985), and beef tenderness (King 

et al., 2006). For example, Brown-Borg et al. (1993) demonstrated that pigs with an 

elevated stress response to restraint had a 60% lower mitogen-induced lymphocyte 

proliferative response. Animals with impaired humoral mediated responses may have 

difficulty in providing a sufficient immune response when challenged with pathogens in 

production or feedlot situations. Greater rates of morbidity in cattle decrease: a) average 

daily gain (ADG), and b) carcass quality grade [which increases total cost of gain due to 

added labor, antibiotic costs, and smaller carcasses (Gardner et al., 1998, Smith, 1998, 

Baker, 2002)]. The proposed experiments, with recently weaned beef steers and bulls, 

will assess to what degree, if any, that animal temperament, stress responsiveness, and 

immune function are inter-related. The resultant data will provide insight into different 

ways cattle respond to stress and lead to improvement in animal welfare and health 

which consequently should increase efficiency of producing higher quality beef. 
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LITERATURE REVIEW 
 
 

Temperament in Beef Cattle 

Animal Temperament. Changes in the behavior of animals have been noted by 

humans since the domestication of wild animals several thousand years ago. The 

domestication process has led to a decreased appreciation of environmental influences 

on animals and an increased psychogenic tolerance of stressful stimuli (Hemmer, 1990). 

Put more simply, domestic animals evolved to tolerate human interaction and thus, their 

behavior patterns shifted. With these changes, there still remains a marked range of 

behaviors displayed by beef cattle, giving us the opportunity to make breeding decisions 

based on this potential selection differential.  

Scott and Fredericson (1951) characterized mouse behavior toward humans as 

savage, wild or tame. Tame behavior was referred to as the absence of conflict behavior, 

wild as the tendency to escape and savage as an aggressive or attacking behavior. These 

behavior differences have commonalities with different species, including cattle, making 

it possible to select animals with more desirable temperaments.  

Temperament has been used to describe many characteristics of cattle such as 

nervousness, skittishness, quietness, excitability, individuality, libido, constitution or 

emotionality of animals (Stricklin and Kautzscanavy, 1984). Although there has been 

confusion among researchers on a common definition of temperament, in beef 

production scenarios it refers to those characteristics encompassed as an animal’s 

reaction to standard animal handling practices. More specifically, an animal’s behavior 

is the product of its experience and environment. Novel or threatening situations could 
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cause the animal to display behaviors of self defense, fear, curiosity, etc. A more 

pronounced or exacerbated response is interpreted as an increased excitability or fear 

response. These behaviors would be indicative of a poor or undesirable temperament. It 

is important to understand the roles that animal temperament plays in beef production 

scenarios to better comprehend its effects on traits of importance to cattle producers. 

Temperament Assessment. In order to understand differences in cattle 

temperament, a system was needed to correlate a scale of measure to different 

temperaments. The first attempt to assess temperament was conducted by Tulloh (1961) 

who created a numerical scoring system to summarize an animal’s behavior. 

Specifically, observations were taken as the animal entered the chute, entered the head 

gate (bail), and while the animal was restrained in the head gate. The temperament 

scores taken while the animal was in the head gate were based on a scale of 1 to 6, with 

1 representing an animal that showed little movement and a calm disposition, to 6 

representing an animal that was aggressive and moved violently when restrained. In the 

same study, Tulloh (1961) also noted that contemporaries with lower chute scores had 

significantly higher body weights which led him to the notion that docile animals grew 

better than nervous or aggressive animals. Subsequent investigations refined Tulloh’s 

system, and devised new tests to assess temperament in different production situations.  

An approachability test (Murphey et al., 1980) was created to measure the 

proximity (in meters) that an observer could approach before the animal would move or 

react. Variations of this method using a scoring system (pen score) to measure an 

animal’s temperament when approached were developed to aid in the ease of 
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measurement. Many tests have been created and they have been termed differently over 

the past few decades, but many measure the same characteristics of cattle behavior. 

Examples include the approach/avoidance behavior test (Murphey et al., 1981), chute 

(crush) score (Vanderwert et al., 1985) and docility score (Le Neindre et al., 1995). 

These tests, while beneficial, are subjective, time consuming and often difficult to 

measure in normal production scenarios. In an effort to devise an easier system to 

measure temperament, it was noted by Burrow (1988) that cattle which remained calm 

while in the chute, exited at a different rate than some of their more aggressive 

contemporaries. This observation led to the employment of an electronic timing system 

to measure an animal’s velocity over a given distance (1.7 m). These exit velocities (EV) 

were found to be significantly correlated to flight distance scores, designating the fastest 

animals as those that were the least approachable in a pen or pasture. The resultant data 

showed that exit velocity was a useful method to measure temperament in cattle.   

 Heritability of Temperament. Many tests on the heritability of temperament have 

been conducted and reviewed by Burrow (1997). It was noted that although each of the 

various tests actually measure different behaviors, the effects of breed, sex, age and 

experience have not all been taken into account. However, the average estimates for 

heritability of temperament were 0.36 and 0.23 for unrestrained and restrained tests 

respectively. These estimates are lowly to moderately heritable, indicating that selection 

pressure can be applied to improve the trait.  

Temperament and Beef Production. There is a perception in the cattle industry 

that animals with poor temperament affect the profitability of the beef enterprises by 
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increasing production costs and decreasing performance (Burrow, 1997). Not only are 

cattle with poor or undesirable temperaments difficult and potentially dangerous to work 

with, the relationship with other traits makes it important to assess temperament to try to 

improve production efficiency. A study by Grandin (1993) showed that animals which 

become behaviorally agitated have consistent temperaments over time. Because of some 

variability in behaviors, temperament assessments should be made over multiple 

observations to provide a clearer picture. If there is consistency in temperament, then it 

is possible to relate differences in behavior to other production traits that are of 

economic importance to cattle producers. 

In feedlot situations, contact with humans occurs more frequently than it does for 

cattle in pasture conditions. Any differences in production traits, due to temperament, 

might be more pronounced as a result to an animal’s increased exposure with human 

handling. Voisinet et al. (1997a) reported that animals with the calmest temperaments 

had a significantly higher ADG than steers with the highest temperament scores. Across 

all breed types studied, there was a 0.15 kg/d difference in ADG. They concluded that 

the differences in ADG were a product of calm animals gaining more weight, not 

excitable animals gaining less. These findings were supported by Burrow and Dillon 

(1997) who reported that cattle with lower exit velocities had higher ADG and carcass 

weights. However, no differences were found in dressing percentage or bruising score.  

In order to identify animals more susceptible to yielding carcasses with poor 

meat quality (i.e., dark cutting and tough), an additional study was conducted by 

Voisinet et al. (1997b). They found that carcasses from animals with poor temperament 
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had a significantly higher proportion of borderline dark cutters, which in turn led to 

quality grade discounts. Warner-Bratzler shear force measurements also showed a 

significant difference in meat tenderness, with excitable animals yielding tougher meat. 

These deficiencies in performance and end-product quality are cost prohibitive and 

warrant further study into their causes. 

 
Stress in Beef Cattle 
 

Stress. There are many misconceptions about the nature and scope of stress. It 

was once thought, and perhaps still is today, that stress is mental strain, tension or 

anxiety, but research has taught us that stress is actually the body’s response to stimuli.  

It can be characterized as a series of events which begins with a stimulus (stressor) and 

causes a reaction of certain physiological events in the body (stress response) (Dhabhar 

and McEwen, 1997). The stressor can be either physical or psychological, and can lead 

to physiological changes in the body. There have been many attempts to define stress, 

but researchers today have yet to agree on one. Perhaps this is why Selye (1956) found it 

easier to define what stress is not, rather than limit it to an absolute. In defining an 

animal’s response to a stressful stimulus, Selye characterized the body’s response to the 

damage independent of the stressor itself. He termed the condition the “general 

adaptation syndrome” or GAS. It is in this state, or the body’s reaction to the stressor, 

that stress is manifested. The GAS consists of three stages: 1) the general alarm reaction 

by the organism, 2) the stage of resistance or adaptation, 3) the stage of exhaustion or 

loss of resistance. It was in this adaptation that Selye (1950) proposed that there was a 

general, nonspecific response by the body, independent of the nature of the stressor. He 
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found that this nonspecific response involved the autonomic nervous, neuroendocrine 

and the endocrine systems. This concept was later challenged by Mason (1968) and 

further explained by Pacak (1998) stating that neuroendocrine responses were specific to 

the type and magnitude of the stressor and that the measurement of a single biological 

response to that stressor fails to provide a complete physiological picture (Moberg, 

1987).  

Stress Physiology. In experiments with mice, Selye (1936) observed intense 

shrinkage of the thymus and lymph nodes, formation of gastric ulcers and an 

enlargement of the adrenal glands in alarmed mice. The enlargement of the adrenal 

glands was accompanied by the loss of cortical lipoids and chromaffin substance. 

Subsequent experiments involving adrenalectomy failed to produce similar results; 

however, when the same mice were treated with adrenal extracts, similar results to the 

alarm reaction were found (Selye 1956). This led him to believe that adrenal secretions 

were a necessary component of the GAS and therefore important in stress response. 

Kendall (1949) found that the steroid nature of the compounds isolated from the adrenal 

cortex, later termed corticosteroids, had a marked effect on mineral and water balance, 

but no effect on lipid or protein metabolism. However, he did know of other hormones 

that did have this effect and also “increased resistance to stress, toxic compounds and 

infections”.   

 Stress induced activation of the hypothalamic-pituitary adrenal (HPA) axis 

induces corticotrophin-releasing hormone (CRH) to be released from the hypothalamus  

which then releases adrenal corticotropin hormone (ACTH) from the adenohypophysis 
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(Vale et al., 1981). The primary targets for circulating concentrations of ACTH are the 

adrenal glands. The adrenal glands are bilaterally positioned at the superior poles of the 

kidneys. They are highly vascularized and contain morphologically distinct regions. It is 

divided into an inner, catecholamine producing region containing chromaffin tissue 

termed the medulla (Pohorecky and Wurtman, 1971), and an outer steroid producing 

region termed the cortex. The cortex is further divided into three distinct regions; the 

zona glomerulosa, fasciculata and reticularis. Cortisol (CS), or hydrocortisone, is the 

primary glucocorticoid involved in the stress response in humans and cattle, and is 

produced primarily in the zona fasciculata (Stachenko and Giroud, 1959). Cortisol’s 

presence at normal, basal concentrations, allows for normal expression of certain 

responses to stress. This was in contrast to Selye’s theory that glucocorticoid (GC) 

secretion was needed for the body to build a resistance to stress (Ingle, 1952). 

Implications of Stress. While the entire picture of cortisol’s effect during stress is 

unknown, it has important roles in carbohydrate, lipid and protein metabolism 

(Sapolsky, 2000). Mobilization of amino acids and fats from cellular stores for rapid 

energy availability are a result of increased cortisol concentrations. The mobilization of 

amino acids from cellular stores shows a shift in the partitioning of nutrients away from 

growth to cellular maintenance and energy usage (i.e., gluconeogenesis in the liver) in 

the presence of a stressor (Black et al., 1982). Glucocorticoids have been shown to 

increase protein degradation as evidenced by amino acid efflux from the muscle in a 

catabolic state (Wilmore and Shabert, 1998). While these effects are initiated by other 

hormones [catecholamines, growth hormone (GH), glucagon, etc.], cortisol helps to 
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mediate the metabolic effects of the stress response (Sapolsky, 2000). However, 

prolonged activation of the stress axis and consequent increased systemic cortisol 

concentrations have been shown to have a negative effect on average daily gain and 

protein/muscle accretion in cattle (Fell et al., 1999). These effects are mediated by loss 

of appetite and subsequent decreased feed intake following prolonged stress. Rather than 

enhancing the stress response, cortisol limits its magnitude (through its suppressive 

negative feedback actions) and contributes to recovery from it. But often times this 

occurs to the detriment of economically important traits such as performance and end-

carcass quality. 

 
Immune Function in Beef Cattle 
 

Immune System Overview. A complete overview of the immune system is beyond 

the focus of this discussion; however, a brief synopsis is provided with an emphasis on 

the role of glucocorticoids with respect to the immune system. The role of the immune 

system is to recognize organisms and molecules foreign to the body and provide a 

response to remove, destroy or neutralize them. The body has two different systems to 

accomplish this: the natural or innate system, and the acquired or adaptive system 

(Janeway and Travers, 1994). Both of these are necessary and they work in concert to 

defend the host against invading pathogens.  

The innate immune system is comprised of physical barriers to infection, normal 

microbial flora, soluble factors (maternal immunoglobulin G passed through placenta 

and complement), inflammatory responses and a host of different phagocytic cells. They 

have low specificity, diversity, and do not invoke a memory response. The molecules 
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responsible for the coordination and trafficking of immune cells and molecules 

throughout the body are a series of small proteins called cytokines. These proteins 

invoke a variety of responses from cells involved in immunity and inflammation (Akira 

et al., 1990). Conversely, acquired immunity is highly specific, diverse and has memory 

cells that provide a basis for the efficacy of vaccinations. The cells of this system are of 

a lymphoid lineage and are composed of B and T lymphocytes (Janeway and Travers, 

1994). During an active infection, circulating B cells are activated by helper T cells and 

antigen presenting cells (APC) during the acute phase response. These APCs stimulate 

CD4+ T cells to differentiate into Th1 and Th2 phenotypes depending on the antigen 

encountered (Yang et al., 2005). These helper T cells direct cytokine expression leading 

to a cascade of events to invoke many immunological responses to include: lymphocyte 

proliferation, macrophage activation, MHC expression, and immunoglobulin (Ig) class 

switching. The acute phase response is characterized by the production of pro-

inflammatory cytokines: interleukin (IL)-1, IL-6 and tumor necrosis factor (TNF)-α 

(Klasing 1988; Wherling et al., 1996). Tissue injury, inflammation, stress and acquired 

immune responses can activate the acute phase response which is viewed as a protective 

measure taken by the body to overcome infection.  

Immunity and Glucocorticoids. The many roles that stress hormones play in the 

immune system can be confusing, considering the fact that they can have both 

stimulatory and suppressive actions (Sapolsky, 2000). In the HPA cascade, Jain et al. 

(1991) and Pawlikowski (1988) demonstrated that CRH-induced cortisol release can 

decrease T cell proliferation and natural killer (NK) cell cytotoxicity. However, CRH 
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can also be an immune stimulant by directly enhancing B cell proliferation by increasing 

interleukin IL-2 receptor numbers (Singh, 1989). But, the overwhelming effects of GCs 

and GC-stimulating hormones on the immune system are their ability to inhibit 

synthesis, release, and/or efficacy of cytokines and other mediators that promote immune 

and inflammatory reactions (Brown et al., 1982). While the acute effects of cortisol may 

be beneficial in mediating the stress/inflammatory response, chronic, high doses can 

have adverse effects on many physiological systems.  

It was first suggested by Munck et al. (1984) that the role of adrenal steroids was 

to prevent the immune system from entering an autoimmune state caused by injury or 

infection. Immune system activation and regulation is controlled in part by cytokines. At 

the onset of infection or inflammation, pro-inflammatory cytokines act to control 

activation and differentiation of lymphocytes, lymphokine production as well as other 

non-immunological functions (Maizel et al., 1981). It was known that these effects were 

mediated by glucocorticoids, but the exact effects of cytokines on the pituitary-adrenal 

axis were not well understood. 

Besedovsky et al. (1986) found that the pro-inflammatory cytokine IL-1 worked 

in an immunoregulatory feedback circuit with the HPA axis. Other cytokines were found 

to have similar roles to IL-1 in stimulating ACTH expression in the anterior pituitary 

gland and subsequent increases in systemic cortisol concentrations. Lymphoid cells have 

receptors for GCs (Cake and Litwack, 1975) as well as many other hormones; however, 

they are expressed in different amounts, depending on cell type and state of activation 

(Landmann et al., 1989). This preferential expression shows that GCs can be targeted at 
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specific immune cells and at different stages of their activation. This becomes important 

in limiting immune responses during infection, but stress-induced increases in systemic 

cortisol can potentially limit the body’s effectiveness in fighting pathogens. The down-

regulatory effects of cortisol on lymphocyte proliferation and antibody response to 

challenge in rats were first noted by Joasoo and McKenzie (1976) and Solomon (1969). 

In addition, there was also a marked decrease in natural killer (NK) cell activity and 

decreased cytokine (IL-2) and cytokine receptor expression. IL-2 is an important 

cytokine in inducing proliferation of resting B cells and in vitro antibody secretion. To 

date, GCs have been shown to inhibit the cytokines IL-1α, 1β, 2, 3, 5, 6, 8, 12, 13, IFN-

γ, TNF-α, GM-CSF, MIP-1α as reviewed by Munck et al. (1984) and Sapolsky et al. 

(2000). The roles of GCs and the neuroimmunological relationships are tightly 

interwoven and further understanding of these relationships will help to reduce 

morbidity and mortality in the cattle industry and increase profitability. 
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Objectives 

In order to test if an inverse relationship exists between animal temperament and 

immune function in beef cattle, measurements such as exit velocity and pen score were 

used to relate animal temperament to immune responses in vitro and in vivo. 

Lymphocyte proliferative responses and immunoglobulin (IgM) production were 

measured (in vitro) to test if differences occur in animals with different temperaments. 

Response to weaning vaccinations (in vivo) were evaluated to test these same 

differences. 
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INFLUENCE OF TEMPERAMENT ON LYMPHOCYTE 

PROLIFERATION AND IMMUNIZATION RESPONSE OF 

WEANED BRAHMAN BULL CALVES 

 
Introduction 
 
 Psychoneuroimmunology is an emerging field in human medicine, and it deals 

with the connection between the mind and the immune system. More specifically, it 

deals with the physiological systems influenced by psychosocial events and behavior. Its 

importance is relevant to current beef cattle production in that their effects can have a 

strong influence on animal health and performance.  

 Animal temperament, an animal’s reactivity to human handling and common 

management practices, has become an area of recent research into its effects on stress 

responsiveness and areas of economic significance to cattle producers. Measures of 

animal temperament have been developed to identify cattle that respond differently to 

novel stimuli, leading researchers to determine how physiological responses affect 

systemic adrenal, somatotropic and immune responses.       

 Humoral immune responses to weaning vaccinations are vital in conferring 

immunity to pathogens encountered by cattle at times of increased susceptibility. 

Finding practical and efficient ways to identify cattle, which may be at a higher risk to 

profit, is important to the economics of the beef industry.   

This experiment was conducted to test multiple post-weaning measurements of 

temperament and stress responsiveness in Brahman bull calves. These tests were coupled 
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with testing in vitro immune responses, in vivo responses to weaning vaccinations and 

the effects of glucocorticoids on these immune parameters. Stocker growth rate and 

feedlot performance characteristics were also included.   

 
Materials and Methods 
 

Animals and Temperament Assessment. A contemporary group of spring born 

(2004) Brahman bull calves (n=45, weighing 190 ± 5.89 kg at weaning) were pastured 

with dams until weaning (day 0) at the Texas Agricultural Experiment Station, Overton. 

Temperament was assessed to sort the calves into good and bad temperament groups. 

After weaning, calves were chosen (calm = 10; temperamental = 10) for extremes in 

temperament based on EV and PS. From weaning until the conclusion of the vaccination 

trial, the calves had EVs taken at the beginning, middle and end of the trial. Calves were 

then placed on pasture for a five-month (12/04-5/05) stocker phase before being shipped 

to the feedyard at West Texas A&M University, Canyon for finishing.  

Weaning vaccinations of Fortress 8 (Pfizer, Exton, PA), Clostridial and Titanium 

5 (Diamond Animal Health, Des Moines, IA) respiratory complex were given on days 0 

and 42. Animals were kept in a pen (9x35 m), but were moved to small contemporary 

groups (n=4) to facilitate collection of blood samples. Each group of four contained two 

calves with good temperament, and two with bad temperament. Castration and 

dehorning were delayed until after the immune portion of this study to gain a more 

accurate picture of stress response. At the conclusion of the immune portion, calves were 

commingled and put on rye and ryegrass pasture for a stocker phase  

 



 17

 Data Collection. The immunological aspect of the project began at weaning (day 

0) and continued for 11 weeks. At day 0, the calves had one 10 mL tube of blood taken 

to harvest serum for cortisol quantification and immunoglobulin (IgG) response to the 

Clostridial vaccine. Serial blood samples (Figure 1) were taken for the duration of the  
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Figure 1. 
Vaccination and blood collection schedule for the Brahman bull calf immune trial  
(n = 20).  
 

trial with more frequent sampling (Figure 1) one week following weaning (day 0) and 

revaccination (day 42) to get a clearer picture of primary and secondary responses to the 

vaccine.  Two additional EDTA coated, 10 mL tubes of blood were collected at day 0 

and 42 for lymphocyte isolation and culture to test in vivo proliferative responses and 

IgM production.    

 Cortisol RIA. Systemic cortisol concentrations were determined from duplicate 

100 µL serum samples by a cortisol RIA (DSL-2100, Diagnostic Systems Laboratory, 

Webster, TX) antibody coated tube kit. Unknown cortisol concentrations were analyzed 
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using Assay Zap software (Biosoft, Cambridge, UK). The area under the response curve 

from day 0 through day 76 was determined utilizing a method described by Lay et al. 

(1996): AUC = Σ [({(CSn + CSn+d) / 2} · d)] where d is the time in days between 

CS samplings. The inter-assay CV was 8.4% and the intra-assay CV was 8.6%.   

Lymphocyte Isolation. Blood collected from 2, 10 mL EDTA tubes was pooled 

into a 50 ml conical tube and the volume was increased to 25 mL with Hank’s Balanced 

Salt Solution (HBSS) without Ca2+ or Mg2+ (Hyclone Inc., Logan, UT). The 

blood/HBSS solution was layered onto 15 mL Histopaque-1077 (Sigma-Aldrich, St. 

Louis, MO; specific density 1.077 g/mL) and centrifuged at 800 x g for 30 min. The 

buffy coat layer was removed and placed in a clean 50 mL tube and diluted up to 40 mL 

with HBSS. Cells were pelleted by centrifugation (400 x g for 15 min) and the 

supernatant was aspirated and discarded. To remove any red blood cell contamination, 

the pellet was washed with 5 mL of 0.2% NaCl solution and titrated for 1 min. Five mL 

of 1.6% NaCl solution was added to normalize osmolarity and HBSS was added up to 40 

mL total volume. The tube was centrifuged (400 x g for 10 min) to pellet the cells and 

the supernatant was aspirated. The pellet was re-suspended in 1 mL of media that 

consisted of:  DMEM F-12 HAM medium (Sigma-Aldrich, St. Louis, MO) with 15mM 

HEPES, pyridoxine and NaHCO3, 5% horse serum (Sigma-Aldrich, St. Louis, MO) that 

was heat inactivated at 56° for 1 hr and 0.45 micron sterile filtered, 1 % Penicillin-

Streptomycin, 1% L-Glutamine (Life Technologies, Grand Island, NY), 0.007% β-

mercaptoethanol (BioRad Laboratories, Hercules, CA). Media was sterile filtered 
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through a 0.22 micron filter. Suspended cells were kept on ice until concentrations could 

be determined. 

Cell Counts. Ten µL of cell suspension was diluted 1:5 with culture media and 

pipetted into a 2.5 mL microcentrifuge tube. When the cells were ready to be counted, 

the suspension was diluted 1:1 with Trypan Blue (Life Technologies Inc., Grand Island, 

NY). The cell suspension was added to a hemacytometer and counted two times using 

light microscopy to get an average count. The original cell suspension was then diluted 

with culture media to yield a final concentration of 2x106 cells/mL. Cells were kept on 

ice until pipetted onto culture plates. 

Cell Culture. Cell cultures were performed at the midpoint of the steers feeding 

period. Cultures were carried out on two (one for IgM and one for proliferation) 96 well 

plates allowing for: 4 animals on each plate, 8 rows of treatments (including zero 

control) and 3 repetitions of each treatment. Treatments consisted of the blastogenic 

mitogen Concanavlin (ConA, lot# 033K8936, Sigma-Aldrich, St. Louis, MO) beginning 

at 10 µg/mL, and serially diluted with culture media 1:1 to 0.16 µg/mL. Fifty µL of the 

treatments and cell suspension were added to the wells to yield a total volume of 100 µL 

and a final concentration of 1x105 cells/well. Incubation conditions were kept at 37o C, 

5% CO2, and 50% relative humidity for 72 hrs.  

Proliferation and IgM Analysis. ConA induced lymphocyte proliferation was 

measured by the CellTiter 96 cell proliferation assay (lot 191851, Promega, Madison, 

WI) after 72 hrs of incubation. IgM plates were frozen (-80o C) until assayed. ConA 

induced lymphocyte IgM production was measured by a bovine IgM ELISA 
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quantication kit (Bethyl Inc., Montgomery, TX). A checkerboard ELISA was used to 

determine sample dilution (1:1). Plates were read using a microplate spectrophotometer 

(Biotek Instruments, Inc., Winooski, VT) at 405 nm. 

IgG Analysis. Serial serum samples (diluted 1:10) were analyzed for vaccine 

specific IgG by a double sandwich, enzyme linked immunosorbant assay. The samples 

were diluted in phosphate buffered saline (PBS) containing 0.05% Tween-20 and 1.0% 

bovine serum albumin (BSA). Nunc immunoplates (Nalge Nunc International; Denver, 

CO) were incubated for one hr. on an orbital shaker with 100 µL/well of diluted Fortress 

8 vaccine (1:20 in 0.1 M Na2CO3, pH 8.2). Plates were washed three times with PBS 

containing 0.05% Tween (wash buffer). To prevent non-specific binding, 100 µL/well of 

PBS containing 0.05% BSA (blocking buffer) was added and the plates were incubated 

for 30 min. Plates were then washed three times with wash buffer, the standards and 

diluted samples added (100 µL/well), and the plates incubated for one hr. on an orbital 

shaker. Plates were washed four times with wash buffer and the detecting antibody 

(sheep anti-bovine IgG-Fc conjugated to horseradish peroxidase; diluted 1:1600 in 

sample diluent; Bethyl Laboratories; Montgomery, TX) was added. Plates were 

incubated for one hr. on an orbital shaker and then washed four times with the wash 

buffer. Enzyme-substrate buffer (2,2’-azino-bis[3-thylbenzthiazoline-6-sulfonic acid] + 

0.05% H2O2; pH 4.5; Sigma Chemical Co.; St. Louis, MO) was added (100 µL/well) and 

the plates were incubated in darkness for 10-15 min. Optical densities were read using a 

microplate spectrophotometer at 405 nm. Sample IgG concentrations were determined 

 



 21

by comparison to a standard curve generated from purified IgG (Bethyl Laboratories; 

Montgomery, TX. 

Statistical Analysis. Analysis of variance procedures for repeated measures were 

used (GLM of SAS) to determine differences in serum concentrations of cortisol and 

antibody profiles, temperament measures The GLM procedure and LSM were used to 

analyze temperament, ADG, avg. cortisol, in vitro proliferative response, antibody 

production, ED50 and AUC. 

 
Results and Discussion 
  
 Temperament and Growth. During the immunological aspect of the project, PS 

and EV were obtained at weaning (day 0) to assign bull calves into temperament groups. 

Pen score differed (P < 0.01) between C and T bull calves scoring 1.83 ± 0.31 and 3.70 ± 

0.31 respectively (Figure 2). Measures of PS taken at weaning were repeatable with T 

bulls (P > 0.33); however, midpoint measurements for C bulls were higher (P < 0.01) 

than their weaning measurement. This increase could be due to a number of 

environmental or managerial factors, but a similar increase was not seen in the T bulls, 

possibly due to T bulls already scoring close to the highest values on the scoring system. 

Final PS for C bulls did not differ (P > 0.15) from previous readings. Although the 

midpoint measurement was higher for C bulls, the overall effect of time in the model 

was not significant (P > 0.21), demonstrating that PS measurements were repeatable 

throughout the trial period. 

 Exit velocity differed (P < 0.01) between C and T bulls and averaged 1.36 ± 0.20 

m/s and 2.90 ± 0.20 m/s respectively (Figure 3). Temperamental bulls did not differ (P > 
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0.58) from weaning to midpoint, but did decrease (P < 0.04) in EV at the final 

measurement supporting the data of Curley (2004) stating that cattle can become 

acclimated to handling and therefore show less of a response to common cattle 

management procedures. Calm bulls showed a significant increase (P < 0.01) from 

weaning (0.77 ± 0.18 m/s) to midpoint (2.03 ± 0.29 m/s) and a decrease (P < 0.01) at the 

final observation (1.27 ± 0.25 m/s); however, the final observation was significantly 

higher than the weaning measurement. These differences can account for the effect of 

time (P < 0.01) in the model. The increases in EV seen at the midpoint correspond with 

the increased PS measurements taken at the same time. It could be suggested that calmer 

cattle are more susceptible to an increased temperament response than temperamental 

cattle due to the increases shown at the midpoint measurement. Although the increases 

may be larger, the means are still significantly higher in the T bulls and distinguishable 

between the groups at all measurement points. 
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Figure 2. 
Least-squares means for pen score evaluation for calm (n = 10) and temperamental (n = 
10) bulls at three measurement points. (Interaction Pr > F = 0.072) 
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Figure 3. 
Least-squares means for exit velocity for calm (n = 10) and temperamental (n = 10) bulls 
at three measurement points. (Interaction Pr > F = 0.010) 
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Table 1 shows the Pearson correlation coefficients between the measures of 

temperament and serum cortisol concentrations at the three measurement points. The 

initial measurements were used as the base of comparison to subsequent time points 

because they have been found to be indicative of subsequent measurements of 

temperament (Grandin, 1993; Fell et al., 1999; Curley, 2004). Weaning PS was highly 

correlated to midpoint EV (r = 0.78, P < 0.01), CS (r = 0.65, P < 0.01) and final EV (r = 

0.84, P < 0.01), CS (r = 0.79, P < 0.01). Similarly, initial EV was correlated to midpoint 

PS (r = 0.83, P < 0.01), CS (r = 0.69, P < 0.01) and final PS (r = 0.80, P < 0.01), CS              

(r = 0.62, P < 0.01). Initial CS concentrations were also highly correlated to midpoint 

EV (r = 0.69, P < 0.01) and final EV (r = 0.61, P < 0.01). These measures of animal 

temperament show a strong relationship to each other and can be used as a measure of 

stress responsiveness in cattle. The endocrine reactions associated with stress 

responsiveness can affect the somatotropic axis, making it important to investigate their 

effects on animal growth. In the vaccination trial, ADG (Figure 4) differed (P = 0.01)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 26

Table 1. 
Pearson correlation coefficients (and associated P values) of temperament measurements 
and cortisol. (n = 20) 
 

Measurements taken at Time 2 Time 3
Time 1 PS EV CS PS EV CS

Pen Score (PS) 0.91 0.78 0.65 0.90 0.84 0.79
P = <.01 <.01 <.01 <.01 <.01 <.01

Exit Velocity (EV) 0.83 0.60 0.69 0.80 0.79 0.62
<.01 0.01 <.01 <.01 <.01 <.01

Cortisol (CS) 0.60 0.69 0.53 0.68 0.61 0.57
0.01 <.01 0.02 <.01 <.01 0.01

Tempermant Assessment a 0.68 0.54 0.50 0.62 0.66 0.52
<.01 0.01 0.03 <.01 <.01 0.02

a Temperament groups (C and T) based on initial pen score and exit velocity
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Figure 4. 
Least-squares means for average daily gain at each evaluation phase of growth in 
Brahman bull calves. (Calm n = 10, Temperamental n = 10) 
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between C and T bulls and averaged 0.54 ± 0.04 kg/day and 0.39 ± 0.03 kg/day 

respectively. During the stocker phase, C bulls gained significantly more (P = 0.04) 

weight than T bulls averaging 0.66 ± 0.03 kg/day and 0.54 ± 0.04 kg/day respectively. 

During the feedlot phase, C bulls did not significantly out gain (P = 0.13) T bulls 

averaging 1.50 ± 0.07 kg/day and 1.35 ± 0.06 kg/day, respectively. Burrow and Dillon 

(1997) found that cattle ranked by EV had differences in ADG in feedlot situations with 

calm cattle gaining more weight (P < 0.05) per day than cattle with excitable 

temperaments. Voisinet et al. (1997a) reported similar results with Bos indicus crossed 

steers and heifers differing by 0.1 kg/day ADG. Although the feedlot ADG was not 

significantly different (possibly due to low n), the trend (+ 0.15 kg/day) fits previous 

literature and small differences in gain can have a significant economic impact when the 

cattle are sold.  

In Vitro Lymphocyte Proliferation. The In vitro lymphocyte culture on day 0 of 

the study (Figure 5), resulted in a ConA dose dependent (P < 0.01) increase in 

blastogenesis for both C and T bulls. There was a significant treatment effect (P < 0.05) 

with C bulls averaging a stimulation index (SI) of 3.13 ± 0.11 and T bulls 2.88 ± 0.12 

across all concentrations of ConA. As expected, the highest stimulatory effects were 

seen at 10 µg/mL of ConA (SI of 5.10 ± 0.25 and 4.87 ± 0.35 for C and T bulls 

respectively). There was not an interaction (P = 0.96) of treatment group and ConA 

showing that the differences in stimulation between groups did not differ among the 

increasing ConA concentrations. Similarly, on day 42 of the study (Figure 6), ConA 

produced a dose dependent (P < 0.01) increase in blastogenesis for both C and T bulls. 
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There was a significant treatment effect (P < 0.01) with C bulls averaging a SI of 2.75 ± 

0.09 and T bulls 2.40 ± 0.07 across all levels of ConA. The highest stimulatory effects 

were seen at 10 µg/mL of ConA (SI of 4.23 ± 0.15 and 3.45 ± 0.16 for C and T bulls 

respectively). There was a significant interaction (P < 0.01) between treatment group and 

ConA resulting in greater stimulatory effects for C bulls at increasing concentrations of 

ConA.  

Circulating CS concentrations on Day 0 tended to be different (P = 0.07) with C 

bulls averaging 4.82 ± 1.52 ng/mL and 9.02 ± 1.52 ng/mL for T bulls. It is possible that 

at the time of weaning, stress associated changes in immune function had yet to take 

suppressive actions on lymphocyte activation and cytosis. Dhabhar and McEwen (1997) 

suggested that the novel experience of weaning may have imposed an acute stressor that 

acted as an adaptive response to prepare the body for possible immunologic challenges. 

However, studies have shown that stress induced suppression of bovine lymphocytes can 

occur at as little as 5 minutes after exposure to the stressor (Blecha et al., 1983). 

Circulating CS concentrations on day 42 were significantly different (P < 0.05) with the 

C bulls averaging 6.39 ± 1.70 ng/mL vs. 12.26 ± 1.70 ng/mL for the T bulls. These 

results agree more closely with many published reports that an increased concentration 

of cortisol suppresses ConA-stimulated lymphocyte proliferation in different livestock 

species (Blecha et al., 1984; Coppinger et al., 1991). Beginning at 1.25 ng/mL of ConA, 

there was a 15% increase in proliferation for C bulls. This trend continued at each 

subsequent concentration of ConA up to 5 µg/mL, increasing to 20%, and then leveling 

off at a 23% enhancement in proliferation. These differences could be attributed to the  
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Figure 5. 
Day 0 lymphocyte proliferation for calm (n = 10) and temperamental (n = 10) bulls with ConA as the 
stimulatory mitogen. (Interaction Pr > F = 0.959)
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Figure 6. 
Day 42 lymphocyte proliferation for calm (n = 10) and temperamental (n = 10) bulls with ConA as the 
stimulatory mitogen. (Interaction Pr > F = 0.003)
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chronic stress of handling multiple times a week and the individual animal variation in  

adapting to stressful stimuli. The immnosuppressive effects of chronic stress may have 

affected lymphocyte function in the 6th week (day 42) of the study.    

Analysis of the ED50 for the proliferation curves on day 0 (Table 2) tended to be 

different (P < 0.10) with the C bulls averaging 0.97 ± 0.10 ng/mL of ConA and 1.62 ± 

0.31 ng/mL for the T bulls. An opposite effect occurred on day 42 with C bulls 

averaging higher, but not significantly (P = 0.16), than the T bulls with 1.07 ± 0.19 

ng/mL and 0.79 ± 0.12 ng/mL respectively. Relative sensitivities of lymphocytes to 

thymus dependent stimulatory mitogens are reliant on CD4+ T cell activation and IL 

ligand/receptor relationships (Wiegers et al., 2004). Many of these ligand/receptor 

relationships are influenced by glucocorticoids leading to an initial enhancement and an 

eventual suppression of immune function. As CD4+ T cell status was not assessed in this 

study, it may be more difficult to thoroughly consider their role in this experiment.  

 Strong correlation coefficients were not seen between ED50 and EV or CS   

(Table 3). The ED50 values were positively correlated with EV on day 0 (r = 0.33, P = 

0.159). However, an opposite relationship was noted on day 42 for ED50 and EV (r = -

0.39, P = 0.09). The ED50 values were negatively correlated to CS on day 0 and 42 (r = -

0.12, P = 0.62; r = -0.39, P < 0.10 respectively), but only the day 42 correlation tended to 

be significant. 
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Table 2. 
Least-squares means for ED50 ± SE (ng/mL) for day 0 and 42 lymphocyte cultures on 
calm (n = 10) and temperamental (n = 10) bulls.  

C T Pr >

ED50 day 0 0.97 ± 0.10 1.62 ± 0.31 0.09

ED50 day 42 1.07 ± 0.19 0.79 ± 0.12 0.16

ED50 = Effective dose required to provide half of stimulatroy effects observed
aC = calm, T = temperamental

Temperament Group
 F

a
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Table 3. 
Pearson correlation coefficients for EV, CS and ED50 in Brahman bull calves. (n = 20) 

Correlation Pr < |r|
ED50 day 0 / ED50 day 42 0.20 0.40

ED50 day 0 / EV day 0 0.33 0.16

ED50 day 0 / CS day 0 -0.12 0.62

ED50 day 42 / EV day 42 -0.39 0.09

ED50 day 42 / CS day 42 -0.39 0.09
EV = exit velocity, CS = Cortisol, ED50 = Effective dose of ConA 
required to provide half of stimulatory effects observed.

Variable Pairing
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In Vitro Lymphocyte IgM Production. ConA dose dependently increased 

production of IgM (P < 0.01) by the in vitro lymphocyte culture on day 0 of the study 

(Figure 7) for both the C and T bulls. A significant treatment effect (P < 0.01) was 

detected with C bulls averaging 208.80 ± 13.06 ng/mL and T bulls 156.54 ± 10.23 

ng/mL across all concentrations of ConA. As expected, the highest concentrations of 

IgM were induced by the highest dose (10 µg/mL) of ConA (351.24 ± 44.37 ng/mL and 

305.03 ± 36.89 ng/mL for C and T bulls respectively). Similar to the proliferation results 

on day 0, there was no interaction (P = 0.73) between treatment group and ConA. ConA 

produced dose-dependent increases (P < 0.01) in lymphocyte IgM production on day 42 

(Figure 8). The effect of treatment tended to be significant (P < 0.10) with C bulls 

averaging 241.64 ± 13.33 ng/mL and T bulls 224.30 ± 12.40 ng/mL across all 

concentrations of ConA. Lymphocytes from C bulls reached their highest IgM 

production at 10 µg/mL of ConA and T bulls at 1.25 µg/mL. Subsequent higher doses of 

ConA induced less of a response with a 22% decrease in T bulls. There was no observed 

interaction (P = 0.33) between C and T treatment groups. Day 42 IgM production was 

the only culture in this study in which cortisol was a significant covariate (P < 0.01). On 

day 0 cultures, C bulls IgM production was 52 % higher at 1.25 µg/mL of ConA. 

Subsequent higher doses of ConA provided sufficient stimulation for both treatment 

groups to lessen this difference, but even at 10 µg/mL of ConA, C bull’s lymphocytes 

produced 15% more IgM than T bull’s. It is conceivable that at lower levels of antigenic 

challenge, animals with better temperaments could better produce IgM to fight 

pathogens by opsonization or to have enhanced CD4+ T cell activation of naive B  



 

 

0

50

100

150

200

250

300

350

400

450

0 0.16 0.31 0.625 1.25 2.5 5 10
ConA (µg/mL)

Ig
M

 (n
g/

m
L)

Calm

Temperamental

 

Figure 7. 
Day 0 lymphocyte IgM production for calm (n = 10) and temperamental (n = 10) bulls with ConA as the 
stimulatory mitogen. (Interaction Pr > F = 0.734) 
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Figure 8. 
Day 42 lymphocyte IgM production for calm (n = 10) and temperamental (n = 10) bulls with ConA as the 
stimulatory mitogen. (Interaction Pr > F = 0.328) 
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lymphocytes. This was not the case with the day 42 cultures where we see larger 

differences at higher concentrations on ConA. Fell et al. (1999) reported serum IgM 

concentrations for calm and temperamental steers upon entry to a feedlot and found IgM 

was significantly higher (P < 0.05) in nervous steers. One limiting factor in analyzing 

this IgM data is that it is difficult to determine if the plasma B cells were secreting more 

IgM, or if there was more activation of naïve B cells by antigen presenting cells (APC) 

leading to increased plasma cell numbers. 

 Cortisol Analysis. Serum CS concentrations (Figure 9) were significantly 

different (P < 0.01) throughout the study. There was a significant (P < 0.01) effect of 

temperament group with the C bulls averaging 5.32 ± 1.08 ng/mL vs. 10.20 ± 1.08 

ng/mL for the T bulls. The interaction of treatment group and time tended to be 

significant (P = 0.10) showing differences in stress responsiveness over time between 

both groups. Put more clearly, all bulls were handled and managed in the same manner, 

allowing us to observe differences in the temperament groups CS profiles. Although 

there are differences in the CS profiles, similar, general trends can be seen between the 

two groups. Fell et al. (1999) reported similar results for nervous/temperamental cattle at 

weaning and at feedlot entry 6 months later. In the Fell et al. (1999) study, nervous cattle 

had significantly higher CS concentrations (P < 0.01) before and after weaning, and at 

feedlot entry (P <0.05). The data collected supports this previous research, stating that 

temperamental cattle have significantly higher serum CS concentrations at early stages 

of their production.  

 



 

 

39

AUC analysis for CS determined that C bulls had significantly lower (P < 0.01) 

CS concentrations over the length of the study. AUC measurements averaged 401.83 ± 

37.63 ng·d/mL and 799.36 ± 102.63 ng·d/mL for C and T bulls, respectively.  

Direct IgG Analysis. Serum concentrations of IgG (Figure 10) specific to the 

Clostridium vaccine used in this study were significantly increased (P < 0.01) from day 0 

across the length of the trial for both C and T bulls. There was no significant effect of 

temperament group (P = 0.11) with C bulls averaging a stimulation index (SI) of 7.12 ± 

0.96 and 4.96 ± 1.01 for T bulls across the entire length of the study. There was no 

interaction of temperament and time (P = 0.86) meaning differences observed within 

days remained significantly constant throughout the study. Vaccine antibody (Ab) was 

first increased (P < 0.01) on day 6 post-vaccination for both the C and T bulls. Peak 

primary response was reached on day 13 with C bulls averaging a 6.61 ± 1.02 fold 

increase vs. a 4.53 ± 1.08 fold increase for the T bulls. By day 42, the primary responses 

tended to differ (P < 0.10) with the C bulls averaging a SI of 6.57 ± 1.13 vs. 3.76 ± 1.19 

for the T bulls. On day 42, bulls were revaccinated. A significant (P < 0.01) secondary  

vaccination response was detected by day 49, where T bulls reached a peak response (SI 

= 9.43 ± 1.88 fold increase). By the end of the study, T bulls antibody levels had 

decreased (P < 0.05) to 6.30 ± 1.34 fold.  Secondary responses for C bulls peaked on day 

54 with a 11.49 ± 1.58 fold increase. By the end of the study, C bulls had not 

significantly decreased (P = 0.22) vs. day 42 SI, averaging a 9.84 ± 1.27 fold increase.   
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Figure 9. 
Least-squares means for cortisol concentrations for entire length of vaccination trial in calm (n = 10) and 
temperamental (n = 10) bull calves. (Interaction Pr > F = 0.10) Values within day differ (p < 0.05)   
*Values differ (p < 0.10)  **Values not significantly different   
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Feng et al. (1991) reported that stress may not only effect antibody production, 

but the seroconversion from IgM to other isotypes. Delayed seroconversion during 

pathogenic challenges may increase likelihood of morbidity, even in the presence of 

sufficient immune system activation. In addition to delayed seroconversion, stress may 

also have a direct effect on primary immune responses. These include T-lymphocyte 

clonal expansion and maturation, initial B-lymphocyte clonal expansion and IgM 

production and production of memory lymphocytes and plasma secreting B cells (Burns 

et al., 2003). Perhaps one of the most important implications is that stress may have its 

principal effects on the rate of antibody deterioration (Burns et al., 2002). The Burns et 

al. (2002) study reported that students experiencing high levels of life stress events were 

2.5 times more likely to have inadequate antibody titers than students with high levels of 

life stress events who were recently vaccinated. This study proposes a good model to test 

antibody deterioration in cattle with different levels of stress responsiveness.  
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Figure 10. 
Log transformed values of serum IgG concentrations after primary and secondary vaccinations in calm (n = 10) 
and temperamental (n = 9) bull calves. (Interaction  Pr > F = 0.86) Vaccinations at day 0 and 42. Actual 
stimulation indices reported in text. 
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Table 4. 
Pearson correlation coefficients for cortisol and serum concentrations of IgG at selected 
days post-vaccination. (n = 19) 

Variables Day 0 13 49 76

Cortisol AUC 0 -0.125 -0.145 -0.248 -0.301

Pr > |r| 0.610 0.554 0.306 0.210

IgG 13 - - 0.649 0.779

Pr > |r| - - < 0.005 < 0.001
Cortisol AUC = Area under curve across entire study

Serum IgG
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Table 4 presents Pearson correlation coefficients for CS and serum IgG 

concentrations on selected days. The correlations between the AUC analysis and serum 

IgG concentrations were not significant, but did reflect a relationship of negative trends. 

Peak IgG response on day 13 was highly correlated to secondary IgG responses on day 

49 (r = 0.65, P <0.01) and day 76 (r = 0.78, P < 0.01). This relationship shows that 

primary antibody responses are predictive of the degree and direction of secondary 

responses. Adrenalectomized mice given corticosterone injections failed to have a 

suppressed humoral response following induced stress (Esterling and Rabin, 1987). This 

leads us to conclude that there are other mediators of stress induced immunosuppression. 

Due to the mixed results reporting CS effects on response to vaccination, there is likely a 

more complex nature of the relationship between stress, CS and antibody response (Feng 

et al., 1991). 
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EVALUATION OF THE INTER-RELATIONSHIPS OF 

TEMPERAMENT, STRESS RESPONSIVENESS AND IMMUNE 

FUNCTION IN FEEDLOT CATTLE 

 
Introduction 
 
 Animal temperament has been implicated in negatively affecting animal and 

carcass performance (Gardner et al., 1998; Smith, 1998). The degree of excitability 

exhibited by cattle, when subjected to common handling procedures or novel situations, 

can be used as a measure of an animal’s reaction to perceived stressful stimuli. This 

reaction can be can, in part, be measured by changes in physiological measures of stress 

responsiveness. This experiment was conducted to test the relationship of temperament 

and stress responsiveness to immunological characteristics measured in vitro in weaned 

and yearling feedlot steers.  

Feedlot performance and carcass quality are directly affected by the health of 

cattle (Baker, 2002). It is important to be able to identify behavioral and physiological 

markers that influence the health of cattle to improve production efficiency. With current 

market competition with other meat livestock species, it is important to economically 

produce a high quality, retail product that stimulates consumer demand.     

 

 

 

 

 

 



 46

Trial 1 Materials and Methods 

Animals. A contemporary group of spring born (2003), Brahman and Bonsmara 

sired crossbred calves (n=60) were calved and pastured with dams at the Texas 

Agricultural Experiment Station, Overton until weaning.  Calves were weaned at seven to 

nine months of age (weighing 243.65 ± 9.93 kg) and stockered at Overton until 

approximately twelve months of age before being processed for shipment to the King 

Ranch South feedyard for finishing (700 km). Steers were fed to a fat thickness of 1.1 cm 

as determined by the feedyard manager. 

Temperament Assessment. Exit velocity (EV), chute score (CHUTE) and pen 

score (PS) were taken prior to shipment to sort cattle into calm (C) and temperamental 

(T) groups (calm n = 7, temperamental n = 5). EV was measured by electronically timing 

(FarmTek Inc., North Wylie, TX) an animal’s speed over a given distance (1.83 m) after 

exiting from restraint in a squeeze chute (Burrow et al., 1988). This measurement was 

taken at three time points: (1) pre-shipment to feedyard, (2) post-shipment and (3) mid-

feeding. Chute scoring (Grandin, 1993) was conducted by observing the calf unrestrained 

in the chute. Scoring was based on a 1 to 5 scale, with 1 representing a very calm animal, 

to a 5 representing and extremely violent animal. Pen scoring (Hammond et al., 1996) is a 

subjective measure which describes an animal’s calmness or aggressiveness in the 

presence of a human in the pen with them. A score of 1 would designate a steer that was 

calm and slow walking upon approach, and a 5 would be a steer running into fences and 

aggressively charging the scorer. All measurements were conducted by the same scorer to 

eliminate variation due to technician differences. Chute scores and pen scores were only 

conducted at pre-shipment in order to assign calves to a temperament group. Animals 
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(n=12) were selected based on these procedures from the larger group of 60 calves; 7 

with the best temperament, and 5 with the worst temperament to maximize extremes in 

order to determine differences in adrenal and immune function between the two groups.  

Blood Collection. Blood was collected at the three time points previously 

described to determine systemic cortisol and epinephrine concentrations. Blood was 

collected via caudal veni-puncture into a 10 mL additive free tube (BD, Franklin Lakes, 

NJ) and allowed to coagulate before being spun at 1984 x g, 4o C for 30 min. Serum for 

cortisol was harvested and aliquoted into 12x75 mm, polypropylene tubes and frozen at -

20o C until assayed. An additional 10 mL EDTA coated tube was used to harvest plasma 

which was stored at -80o C until assayed for epinephrine. At the expected midpoint of the 

feeding period, blood was drawn into two 10 mL EDTA treated tubes (BD, Franklin 

Lakes, NJ) and lymphocytes were isolated by density gradient centrifugation for 96-hr 

cell culture at Texas A&M University, Kingsville. Feeding midpoint was chosen to allow 

for acclimation to confined feeding, commingling, and to reduce the effects of shipping 

stress. 

Cortisol RIA. Serum cortisol (CS) concentrations were determined from duplicate 

samples using a single antibody RIA procedure adapted from Curley et al. (2004) using: 

anti-cortisol rabbit serum (Pantex, Div. of Bio-Analysis Inc., Santa Monica, CA, Cat. 

#P44) diluted 1:1500; standard curve solutions that were made by serial dilution (of 8000 

pg/100 µL to 3.9 pg/100 µL) of 4-pregnen-11β,17,21-triol-3,20-dione (Steraloids, Inc., 

Newport, RI, Cat #Q3); 3H radio-labeled hydrocortisone (1,2-3H, New England Nuclear, 

Boston, MA, Cat. #NET-185). Unknown CS concentrations were analyzed using Assay 
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Zap software (Biosoft, Cambridge, UK). The inter-assay CV was 11% and the intra-assay 

CV was 8.5%.  

Catecholamine EIA. Plasma epinephrine concentrations were determined from 

duplicate samples using an enzyme immunoassay (Bi-CAT EIA, Alpco, Windham, NH). 

Standard curve dilutions ranged from 256 to 0 ng/mL serial diluted 1:4 for epinephrine. 

The sensitivity for plasma derived epinephrine was 11 pg/mL. 

Lymphocyte Isolation. Blood collected from 2, 10 mL EDTA tubes were pooled 

into a 50 ml conical tube and the volume was increased to 25 mL with Hank’s Balanced 

Salt Solution (HBSS) without Ca2+ or Mg2+ (Hyclone Inc., Logan, UT). The 

blood/HBSS solution was layered onto 15 mL of Histopaque-1077 (Sigma-Aldrich, St. 

Louis, MO; specific density 1.077 g/mL) and centrifuged at 800 x g for 30 min. The 

buffy coat layer was removed and placed in a sterile 50 mL tube and diluted to 40 mL 

with HBSS. Cells were pelleted by centrifugation (400 x g for 15 min) and the 

supernatant was aspirated and discarded. To remove any red blood cell contamination, 

the pellet was washed with 5 mL of 0.2% NaCl solution and titrated for 1 min. Five mL 

of 1.6% NaCl solution was added to normalize osmolarity and HBSS was added up to 40 

mL total volume. The tube was centrifuged (400 x g for 10 min) to pellet the cells and the 

supernatant was aspirated. The pellet was re-suspended in 1 mL of media that consisted 

of:  DMEM F-12 HAM medium (Sigma-Aldrich, St. Louis, MO) with 15mM HEPES, 

pyridoxine and NaHCO3, 5% horse serum (Sigma-Aldrich, St. Louis, MO) that was heat 

inactivated at 56° for 1 hr and sterile-filtered (via 0.45 micron filter), 1 % Penicillin-

Streptomycin, 1% L-Glutamine (Life Technologies, Grand Island, NY), 0.007% β-

mercaptoethanol (BioRad Laboratories, Hercules, CA). Media was sterile-filtered 
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through a 0.22 micron filter. Suspended cells were kept on ice until concentrations could 

be determined and then plated into culture wells. 

Cell Counts. Isolated cells were counted using a Coulter particle counter (Coulter 

Corporation, Miami, FL). Twenty µL of cell suspension was added to 19.6 mL of Isoton 

II diluent and 0.38 ml Zap-OGlobin II Lytic reagent (Coulter Corporation, Miami, FL). 

Each sample was read three times and a mean was calculated to determine cell 

concentration. The 1 mL suspension was diluted with culture media to yield a 

concentration of 2x106 cells/mL. Cells were kept on ice until pipetted onto culture plates. 

Cell Culture. Cell cultures were performed at the midpoint of the steers feeding 

period. Cultures were carried out on two (one for IgM and one for proliferation) 96 well 

plates allowing for: 4 animals on each plate, 8 rows of treatments (including zero control) 

and 3 repetitions of each treatment. Treatments consisted of the blastogenic mitogen 

Concanavlin (ConA, lot# 033K8936, Sigma-Aldrich, St. Louis, MO) beginning at 5 

µg/mL, and serially diluted with culture media 1:1 to 0.08 µg/mL. Fifty µL of the 

treatments and cell suspension were added to the wells to yield a total volume of 100 µL 

and a final concentration of 1x105 cells/well. Incubation conditions were kept at 37o C, 

5% CO2, and 50% relative humidity for 96 hr.  

Proliferation and IgM Analysis. ConA (Sigma-Aldrich Co. St. Louis, MO) 

induced lymphocyte proliferation was measured by the CellTiter 96 cell proliferation 

assay (lot 191851, Promega, Madison, WI) after 96 hrs of incubation. IgM plates were 

frozen (-80o C) until assayed. ConA induced lymphocyte IgM production was measured 

by a bovine IgM ELISA quantication kit (Bethyl Inc., Montgomery, TX). A checkerboard 

ELISA was used to determine sample dilution (1:1). Proliferation and IgM culture plates 
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were read using a microplate spectrophotometer (Biotek Instruments, Inc., Winooski, 

VT) at 405 nm. 

Statistical Analysis. The GLM procedure LSM of SAS (SAS, 1985) was used to 

analyze temperament measurements, ADG, in vitro proliferation and IgM productions, 

and ED50 calculations. The mixed procedure of SAS was used to analyze EV and 

hormone profiles. All correlations were analyzed by the CORR procedure of SAS. 

 
Trial 2 Materials and Methods 
 

Animals. Steers used in this trial were fall born, Angus-sired steers (n=49) that 

were weaned at approximately seven to nine months of age at Brown Loam Experiment 

Station in Raymond, MS. One month post-weaning, these steers (weighing 275.28 ± 

12.99 kg) were shipped approximately 1,050 km to the King Ranch South feedyard for 

finishing. Steers were fed to a fat thickness of 1.1 cm as determined by the feedyard 

manager. 

Temperament Assessment. Exit velocity, CHUTE and PS were taken prior to 

shipment to sort cattle into C and T treatment groups (calm n= 5, temperamental n = 5). 

EV was measured by electronically timing an animal’s speed over a given distance (1.83 

m) after exiting from restraint in a squeeze chute (Burrow et al., 1988). This 

measurement was taken at four time points: (1) pre-shipment to feedyard, (2) post-

shipment and (3) mid-feeding. Chute scoring (Grandin, 1993) was conducted by 

observing the calf unrestrained in the chute. Scoring was based on a 1 to 5 scale, with 1 

representing a very calm animal, to a 5 representing and extremely violent animal. Pen 

scoring (Hammond et al., 1996) is a subjective measure which describes an animal’s 

calmness or aggressiveness in the presence of a human in the pen with them. A score of 1 
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would designate a steer that was calm and slow walking upon approach by the scorer and 

a 5 would be a steer running into fences and aggressively charging the scorer. All 

measurements were conducted by the same scorer to eliminate variation due to technician 

differences. Chute scores and pen scores were only conducted at pre-shipment in order to 

assign calves to a temperament group. Animals (n=10) were selected based on these 

procedures from the larger group of 49; 5 with the best temperament, and 5 with the 

worst temperament to maximize extremes in order to determine differences in adrenal 

and immune function between the two groups.  

Blood Collection. In addition to the three time points previously described, blood 

was collected at feeding finish to determine systemic cortisol and epinephrine 

concentrations. Blood was collected via caudal veni-puncture into a 10 mL additive free 

tube and allowed to coagulate before being spun at 1984 x g, 4o C for 30 min. Serum for 

cortisol was harvested and aliquoted into 12x75 mm, polypropylene tubes and frozen at -

20o C until assayed. An additional 10 mL EDTA coated tube was used to harvest plasma 

and stored at -80o C until assayed for epinephrine. At the expected midpoint of the 

feeding period, blood was drawn into two 10 mL EDTA treated tubes and lymphocytes 

were isolated by density gradient centrifugation for 96-hr cell culture. Feeding midpoint 

was chosen to allow for acclimation to confined feeding, commingling, and to reduce the 

effects of shipping stress. 

Cortisol RIA. Serum cortisol concentrations were determined from duplicate 

samples using a single antibody RIA procedure using: anti-cortisol rabbit serum diluted 

1:1500; standard curve solutions that were made by serial dilution (of 8000 pg/100 µL to 

3.9 pg/100 µL) of 4-pregnen-11β,17,21-triol-3,20-dione; 3H radio-labeled hydrocortisone. 
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Unknown CS concentrations were analyzed using Assay Zap software. The inter-assay 

CV was 11% and the intra-assay CV was 8.5%.  

Catecholamine EIA. Plasma epinephrine concentrations were determined from 

duplicate samples using an enzyme immunoassay. Standard curve dilutions ranged from 

256 to 0 ng/mL serial diluted 1:4 for epinephrine. The sensitivity for plasma derived 

epinephrine is 11 pg/mL. 

Lymphocyte Isolation. Blood collected from 2, 10 mL EDTA tubes were pooled 

into a 50 ml conical tube and the volume was increased to 25 mL with HBSS without 

Ca2+ or Mg2+. The blood/HBSS solution was layered onto 15 mL of Histopaque-1077 

and centrifuged at 800 x g for 30 min. The buffy coat layer was removed and placed in a 

sterile 50 mL tube and diluted to 40 mL with HBSS. Cells were pelleted by centrifugation 

(400 x g for 15 min) and the supernatant was aspirated and discarded. To remove any red 

blood cell contamination, the pellet was washed with 5 mL of 0.2% NaCl solution and 

titrated for 1 min. Five mL of 1.6% NaCl solution was added to normalize osmolarity and 

HBSS was added up to 40 mL total volume. The tube was centrifuged (400 x g for 10 

min) to pellet the cells and the supernatant was aspirated. The pellet was resuspended in 1 

mL of media that consisted of: DMEM F-12 HAM medium with 15mM HEPES, 

pyridoxine and NaHCO3, 5% horse serum that was heat inactivated at 56° for 1 hr and 

sterile-filtered (via a 0.45 micron filter), 1 % Penicillin-Streptomycin, 1% L-Glutamine, 

0.007% β-mercaptoethanol. Media was sterile-filtered through a 0.22 micron filter. 

Suspended cells were kept on ice until concentrations could be determined. 

Cell Counts. Isolated cells were counted using a Coulter particle counter. Twenty 

µL of cell suspension was added to 19.6 mL of Isoton II diluent and 0.38 ml Zap-
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OGlobin II Lytic reagent. Each sample was read three times and a mean was calculated to 

determine cell concentration. The 1 mL suspension was diluted with culture media to 

yield a concentration of 2x106 cells/mL. Cells were kept on ice until pipetted onto culture 

plates. 

Cell Culture. Cell cultures were performed at the midpoint of the steers feeding 

period. Cultures were carried out on two (one for IgM and one for proliferation) 96 well 

plates allowing for: 4 animals on each plate, 8 rows of treatments (including zero control) 

and 3 repetitions of each treatment. Treatments consisted of the blastogenic mitogen 

Concanavlin A beginning at 10 µg/mL, and serially diluted with culture media 1:1 to 0.16 

µg/mL. Fifty µL of the treatments and cell suspension were added to the wells to yield a 

total volume of 100 µL and a final concentration of 1x105 cells/well. Incubation 

conditions were kept at 37o C, 5% CO2, and 50% relative humidity for 96 hr.  

Proliferation and IgM Analysis. ConA induced lymphocyte proliferation was 

measured by the CellTiter 96 cell proliferation assay after 96 hr of incubation. IgM plates 

were frozen (-80o C) until assayed. ConA induced lymphocyte IgM production was 

measured by a bovine IgM ELISA quantication kit. A checkerboard ELISA was used to 

determine sample dilution (1:1). Both proliferation and IgM Plates were read using a 

microplate spectrophotometer  at 405 nm. 

Statistical Analysis. The GLM procedure LSM of SAS was used to analyze 

temperament measurements, ADG, In vitro proliferation and IgM productions, and ED50 

calculations. The mixed procedure of SAS was used to analyze EV and hormone profiles. 

All correlations were analyzed by the CORR procedure of SAS. 
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Trial 1 Results and Discussion  

Temperament and Growth. Prior to shipment to the feedyard, PS, CHUTE and EV 

were taken to assign steers into temperament groups (n = 12). CHUTE did not differ (P = 

0.78) between treatment groups. However, PS differed (p < 0.01) with calm (C) steers 

scoring an average of 1.14 ± 0.14 vs. 3.2 ± 0.20 for temperamental (T) steers. The EV 

model (Figure 11) tended to be different (P = 0.06) across the three evaluation points. 

There was a significant treatment effect (P < 0.01) of temperament with the C steers 

averaging 1.45 ± 0.14 m/s and 2.34 ± 0.16 m/s for the T steers. There was not a 

significant interaction (P = 0.35) between treatment group and time meaning that 

differences observed between the treatment groups remained similar across the evaluation 

period. Pre-shipment and post-shipment velocities were significantly different (P < 0.01), 

although midpoint velocities were not significantly different (P = 0.27) due to large 

standard errors (SE) observed at this time. Temperamental steers showed a downward 

trend across the three evaluation times. Calm steers EVs decreased at post-shipment, but 

showed a slight increase (0.35 ± 0.22 m/s) at feeding midpoint. The overall decrease 

could be attributed to acclimation to handling and the absence of shipping stress.  

Figure 12 shows the serum CS concentrations over the evaluation period. The 

effect of treatment group (P = 0.13), time (P = 0.61) and their interaction (P = 0.21) were 

not significant. Calm and Temperamental steers averaged 10.23 ± 1.52 ng/mL and 15.35 

± 2.01 ng/mL respectively over the evaluation period.  
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Figure 11. 
Least-squares means for exit velocity in trial 1, for calm (n = 7) and temperamental (n = 
5) steers at three measurement points. (Interaction Pr > F = 0.35) 
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Figure 12. 
Least-squares means for cortisol concentrations in trial 1, for calm (n = 7) and 
temperamental (n = 5) steers at three measurement points. (Interaction Pr > F = 0.21) 
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 ADG did not significantly differ (P = 0.25) between treatment groups with C 

steers gaining 1.98 ± 0.07 kg/day compared with 1.81 ± 0.13 kg/day for T steers. The 

difference is similar to findings that calm cattle have higher ADG than temperamental 

cattle (Fordyce and Goddard, 1984; Burrow and Dillon, 1997; Voisinet et al., 1997a). 

However, a significant difference was not detectable due to the low number of subjects 

used in this trial. Table 5 presents the Pearson correlation coefficients of temperament, 

CS and ADG. PS was highly correlated with pre EV (r = 0.83, P < 0.01) and post EV (r = 

0.85, P < 0.01), and somewhat correlated to midpoint EV (p = 0.46, P 0.13). Post-

shipment CS concentrations showed high correlations to post EV (r = 0.68, P = 0.01) and 

midpoint EV (r = 0.77, P = < 0.01). Other observations of temperament were less 

revealing as to their relationships with CS and temperament measures. ADG correlations 

were not significant with temperament measures and CS (not shown), but did show 

negative trends showing that ADG was negatively influenced by temperament and CS. 

 Plasma epinephrine (Epi) concentrations (Figure 13) were significant (P < 0.01) 

within the model. However, the effect of treatment group (P = 0.17) and the interaction of 

treatment group and time (P = 0.19) were not significant. The effect of time tended to be 

significant (P < 0.10) showing changes in adrenal medullary responsiveness at different 

evaluation points. At post-shipment, there was a significant increase (P < 0.05) in Epi 

concentrations in T steers (1020.02 ± 407.51 pg/mL). Calm steers showed a slight 

physiological, but statistically insignificant increase (370.97 ± 407.51 pg/mL, P = 0.39). 

The large SE in addition to the low degrees of freedom attribute to the wide range of 

values observed.     
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Table 5. 
Pearson correlation coefficients (and associated P values) for temperament measures, 
cortisol and average daily gain in trial 1. (n = 12) 

PS CHUTE Pre Post Midpoint ADG
PS - 0.12 -0.03 0.51 0.54 -0.25

P = |r| - 0.70 0.93 0.09 0.07 0.43
- - -0.18 -0.27 0.13 -0.14
- - 0.57 0.40 0.68 0.66

0.83 0.25 -0.19 0.34 0.37 -0.29
<.001 0.43 0.55 0.28 0.23 0.36
0.85 -0.07 0.05 0.68 0.57 -0.33

<.001 0.83 0.89 0.01 0.05 0.30
0.46 -0.09 0.56 0.77 0.29 -0.25
0.13 0.79 0.06 0.00 0.37 0.43

PS = Pen score, CHUTE = Chute score, Pre = Pre-shipment to feed yard
Post = Post-shipment to feed yard, Midpoint = Feeding midpoint, CS = Cortisol
ADG = Average daily gain

CS

CHUTE

Midpoint exit velocity

Post exit velocity

Pre exit velocity
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Figure 13. 
Least-squares means for plasma epinephrine concentrations in trial 1, for calm and 
temperamental steers at three measurement points. (Calm n = 5, temperamental n = 5; 
Interaction Pr > F = 0.19) 
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 In Vitro Lymphocyte Proliferation. The in vitro lymphocyte culture conducted at 

the feeding midpoint (Figure 14) in trial 1 produced a ConA dose dependent increase (P < 

0.01) in blastogenesis in both C and T steers. There was a significant treatment effect (P 

< 0.01) with C steers averaging a SI of 1.96 ± 0.10 and T steers 2.52 ± 0.21 across all 

concentrations of ConA. As expected, the highest stimulatory effects were seen at 5 

µg/mL of ConA (SI of 4.27 ± 0.31 and 5.46 ± 0.53 for C and T steers respectively). There 

was a significant interaction (P < 0.01) of treatment group and ConA showing that the 

differences between groups differed among increasing ConA concentrations. Significant 

lymphocyte proliferation was not seen until the 0.63 ng/mL concentration of ConA. 

Subsequent increasing doses of ConA showed a significant (P < 0.01) increase in 

proliferation. Temperamental steers had 1.1, 1.34 and 1.19 fold increases in proliferation 

at 1.25, 2.5 and 5 µg/mL of ConA, respectively. Serum concentrations of CS at the time 

of lymphocyte harvest and culture were not different (P = 0.16). The C steers averaged 

12.27 ± 1.86 ng/mL when the T steers averaged 16.65 ± 2.20 ng/mL. It does not seem 

that the CS or Epi concentrations (C = 191.02 ± 67.59 pg/mL, T =  136.25 ± 67.59 

pg/mL) affected the proliferative response. Contrary to our prior hypothesis, T steers 

proliferated significantly greater than C steers in this trial. Fell et al. (1999) reported no 

differences in ConA proliferative responses in post-shipment feedlot steers sorted by 

temperament, but no studies have been published showing increased proliferation in 

temperamental cattle.  
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 Figure 14. 
Feeding midpoint, in vitro lymphocyte proliferation in trial 1, for calm (n = 7) and temperamental (n = 5) steers with 
ConA as the stimulatory mitogen. (Interaction Pr > F = 0.007)
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 Figure 15. 

Feeding midpoint, in vitro lymphocyte IgM production in trial 1, for calm (n = 5) and temperamental (n = 2) steers with 
ConA as the stimulatory mitogen. (Interaction Pr > F =  0.57)
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 Analysis of the ED50 value for the proliferation curve was not significantly 

different (P = 0.97) with  C steers averaging 1.61 ± 0.24 ng/mL of ConA and 1.62 ± 0.36 

ng/mL for T steers. Pearson correlation coefficients were calculated for ED50 with pre-

shipment EV, pre-shipment CS and midpoint CS. None of the values showed strong 

relationships again probably due to the low number of observations used in the analysis. 

 In Vitro Lymphocyte IgM Production. The in vitro lymphocyte culture conducted 

at the feeding midpoint (Figure 15) in trial 1, produced a ConA dose-dependent increase 

in (P < 0.01) lymphocyte IgM production for both C and T steers. The effect of treatment 

(P = 0.42) and the interaction of treatment and ConA (P = 0.57) were not significant with 

C steers averaging 85.58 ± 15.31 ng/mL and 68.39 ± 18.63 ng/mL for T steers across all 

concentrations of ConA. The highest IgM production was seen at 5µg/mL of ConA in the 

C steers, and at 2.5 ng/mL in T steers. Large SE were observed due to technical 

difficulties in the assay, leading to the low numbers of subjects (calm n = 5, 

temperamental n = 2) used in the analysis.
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Trial 2 Results and Discussion 
 
 Temperament and Growth. Prior to shipment to the feedyard, PS, CHUTE and EV 

were taken to assign steers into temperament groups (n = 10). CHUTE did not differ (P = 

0.26) between treatment groups. However, PS differed (P < 0.01) with C steers scoring an 

average of 1.40 ± 0.25 and 3.8 ± 0.58 for T steers. The EV model was not significantly 

different (P = 0.438) across the three evaluation points (Figure 16). However, there was a 

significant temperament effect (P < 0.01) with C steers averaging 2.07 ± 0.20 m/s and 

3.28 ± 0.21 m/s for T steers. There was a significant treatment by time interaction (P < 

0.05) noting that the large differences (C = 1.65 ± 0.19 m/s and T = 4.01 ± 0.32 m/s) seen 

at the pre-shipment evaluation (basis for sorting for culture) were significantly reduced at 

subsequent observations. T steers showed a decrease (P < 0.01) from pre-shipment to 

feeding midpoint, while C steers remained statistically similar (P = 0.19) except for an 

expected slight increase (P = 0.18) at post shipment due to shipping stressors.  

 Figure 17 depicts the serum concentrations of CS over the evaluation period. The 

CS model was significantly different (P = 0.05) across the four evaluation points. There 

was a significant treatment (P < 0.05) and time (P < 0.05) effect with C steers averaging 

10.32 ± 1.58 ng/mL and 18.70 ± 1.63 ng/mL for T steers. There was not a difference (P = 

0.58) in the temperament by time interaction meaning treatment differences did not differ 

across all evaluation times. However, individual evaluations did differ at pre-shipment (P 

< 0.05) and at feeding midpoint (P < 0.05). Both groups had characteristic increases in 

circulating CS concentrations at post-shipment with C steers averaging an increase of 

5.97 ± 2.66 ng/mL and 5.39 ± 2.66 ng/mL increase in T steers. Subsequent  
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Figure 16. 
Least-squares means for exit velocity in trial 2, for calm (n = 5) and temperamental steers 
(n = 5) at four measurement points. (Interaction Pr > F = 0.03) 
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Figure 17. 
Least-squares means for serum concentrations of cortisol in trial 2, for calm (n = 5) and 
temperamental (n = 5) steers at four measurement points. (Interaction Pr > F = 0.58) 
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observations plateaued for C and T steers alike. Overall, the C steers had less of a CS 

response than the T steers. 

 Average daily gain did not differ (P = 0.68) between treatment groups with C 

steers gaining 1.69 ± 0.11 kg/day and 1.63 ± 0.08 kg/day for T steers. Table 6 presents 

the Pearson correlation coefficients of temperament, CS and ADG. PS was highly 

correlated (r = 0.72, P < 0.05) to pre-shipment EV, but not to post-shipment or feeding 

midpoint EV (r = 0.48, P = 0.16; r = 0.36, P = 0.30 respectively). Chute score was 

correlated to pre-shipment CS (r = 0.69, P < 0.05) and tended to be correlated to post-

shipment CS (r = 0.60, P < 0.10), but not to any measurement of EV. Pre-shipment EV 

was highly correlated to pre-shipment CS (r = 0.72, P < 0.05) and feeding midpoint CS (r 

= 0.74, P < 0.05) but not to any other measures. Post-shipment EV was only correlated to 

feeding finish CS (r = 0.76, P < 0.05), but not to any other measure of CS. Feeding 

midpoint EV was highly correlated to feeding midpoint CS (r = 0.78, P < 0.01) and 

tended to be correlated to post-shipment CS (r = 0.58, P < 0.10) and feeding finish CS (r 

= 0.56, P < 0.10). Average daily gain was not significantly correlated to any measure of 

temperament, which is consistent with the measured similarities of ADG throughout the 

feeding period. It is difficult to infer general trends in the data due to inconsistency of 

many of the variables measured in this trial.  

 Plasma concentrations of Epi for the four evaluation points is illustrated in Figure 

18. The Epi model was significantly different (P < 0.05) across the four evaluation points.  
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There were significant effects of temperament group (P < 0.01) and time (P < 0.05) with 

C steers averaging 288.64 ± 92.55 pg/mL, whereas the T steers averaged 1305.92 ± 

188.84 pg/mL. There tended to be a significant interaction (P < 0.10) between 

temperament and time with the T steers Epi concentrations approaching the C steers at 

feeding midpoint and feeding finish. The C steers Epi concentrations did not differ (P = 

0.25) across the four evaluation times. Temperamental steers Epi concentrations 

increased by 871.78 ± 429.43 pg/mL from pre-shipment to post-shipment, but only 

showed a tendency (P < 0.10) to increase due to the large SE. Subsequent observations of 

the T steers showed a 486.90 ± 371.44 pg/mL decrease (P = 0.23) at feeding midpoint 

and a 887.54 ± 304.09 pg/mL decrease (P < 0.05) at the feeding endpoint. Cattle have 

been shown to become accustomed to routine handling (Hearnshaw et al., 1979). 

Therefore, acclimation to commingling and novel surroundings could explain these large 

decreases in plasma Epi concentrations.



69

 
 
 

 
 
 
Table 6. 

 Pearson correlation coefficients (and associated P values) for temperament measures, cortisol and average daily gain  

PS CHUTE Pre Post Midpoint Finish ADG
PS - 0.55 0.49 0.19 0.42 0.44 0.05
P = - 0.10 0.15 0.59 0.23 0.21 0.89

CHUTE - - 0.69 0.60 0.33 0.12 0.00
- - 0.03 0.07 0.35 0.74 1.00

Pre exit velocity 0.72 0.39 0.72 0.32 0.74 0.46 0.18
0.02 0.27 0.02 0.37 0.02 0.18 0.63

Post exit velocity 0.48 0.31 0.34 0.34 0.27 0.76 0.08
0.16 0.38 0.34 0.34 0.46 0.01 0.83

Midpoint exit velocity 0.36 0.25 0.42 0.58 0.78 0.56 0.34
0.30 0.48 0.22 0.08 0.01 0.09 0.34

PS = P
Pos
F

en score, CHUTE = Chute score, Pre = Pre-shipment to feed yard
t = Post-shipment to feed yard, Midpoint = Feeding midpoint, CS = Cortisol

inish = End of feeding period, ADG = Average daily gain

CS

in trial 2. (n = 10) 
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Figure 18. 
Least-squares means for plasma epinephrine concentrations in trial 2, for calm (n = 5) 
and temperamental (n = 5) steers at four measurement points. (Interaction Pr > F =  0.08)
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 In Vitro Lymphocyte Proliferation. The in vitro lymphocyte culture conducted at 

the feeding midpoint (Figure 19) in trial 2, produced a ConA dose dependent increase (P 

< 0.01) in blastogenesis in both the C and T steers. There was a significant temperament 

effect (P < 0.01) with the C steers averaging a SI of 1.45 ± 0.05 and 1.60 ± 0.06 for the T 

steers across all concentrations of ConA. The highest stimulatory effects were seen 

10µg/mL for the C steers (SI of 2.05 ± 0.07) and at 5 µg/mL (SI of 2.10 ± 0.13) for T 

steers. There was no significant interaction (P = 0.18) of treatment group and ConA 

showing that the differences between groups did not change at subsequent concentrations 

of ConA. Significant proliferation was not seen in the C steers (P < 0.01) until 1.25 

µg/mL; however, the T lymphocytes significantly (P < 0.05) proliferated at 0.31 µg/mL 

of ConA. The sensitivity of the T steers lymphocytes could be in part to the high levels of 

catecholamines observed at time of culture. Catecholamines have been shown to activate 

different lymphocyte subsets and cytokines needed for proliferation in times of acute 

stress (Dhabhar, 2000). Cortisol was significant (P < 0.01) as a covariate in this model 

but its usefulness in explaining the differences seen in this culture is in question.  
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        Figure 19. 
Feeding midpoint, in vitro lymphocyte proliferation in trial 2, for calm (n = 5) and temperamental (n = 5) steers with 
ConA as the stimulatory mitogen. (Interaction Pr > F = 0.18)  
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Figure 20. 
Feeding midpoint, in vitro lymphocyte IgM production in trial 2, for calm (n = 5) and temperamental (n = 5) steers with 
ConA as the stimulatory mitogen. (Interaction Pr > F = 0.44). 
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Analysis of the ED50 for the proliferation curve was not significantly different (P 

= 0.50) with C steers averaging 2.41 ± 0.79 ng/mL of ConA and 1.68 ± 0.67 ng/mL for T 

steers. Pearson correlation coefficients were conducted for ED50 with pre-shipment EV, 

CS and feeding midpoint. None of these values showed strong relationships possibly due 

to the low number of observations used in the analysis. 

 In Vitro Lymphocyte IgM Production. The In vitro lymphocyte culture conducted 

at the feeding midpoint (Figure 20) in trial 2, produced a ConA dose dependent increase 

(P < 0.01) in lymphocyte IgM production for both C and T steers. The effect of treatment 

(P = 0.72) and the interaction of treatment and ConA (P = 0.44) was not significant with 

C steers averaging 367.62 ± 35.11 ng/mL and 351.79 ± 43.85 ng/mL of IgM for T steers 

across all concentrations of ConA. The highest IgM production was seen at 10 µg/mL of 

ConA in the C steers, and at 5 µg/mL in T steers. Significant increases (P < 0.01) in IgM 

production were not seen until 1.25 µg/mL of ConA in both C and T steers. C steers 

showed a significant increase (P < 0.01) in IgM from 1.25 to 2.5 µg/mL of ConA. C 

steers increased 323.29 ng/mL in the period and then plateaued. Conversely, T steers 

increased by 602.41 ng of IgM stepwise between 1.25 and 10 µg/mL of ConA. However, 

due to large SEs observed at higher concentrations of ConA, treatment differences only 

tended to be different (P = 0.06). 
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GENERAL CONCLUSIONS AND IMPLICATIONS 
 
 

 There are observed behavioral differences in cattle that can be characterized by 

measures of temperament (exit velocity, chute and pen score). Temperament differences 

identified at weaning were still evident through different commercial cattle production 

phases. Differences in stress responsiveness, and their effects on physiological systems, 

can be ascertained by these measurements of temperament. While the scope of the effects 

of stress responsiveness can not be fully characterized by examining hormone 

concentrations or in vitro effects alone, they do give helpful insight into the complexities 

of their effects on body systems. Animals identified as temperamental were generally 

associated with higher serum cortisol and epinephrine concentrations. Increased serum 

cortisol concentrations were also associated with lower average daily gains. During sub-

clinical infections, immune system activation can lead to inflammatory conditions 

(mediated by cytokines and acute phase proteins) that affect appetite and nutrient 

utilization. Cortisol plays a complex role in containing immune responses and has been 

implicated in immunosuppression. These effects of stress responsiveness can decrease 

efficiency of gain and carcass quality leading to profit loss. 

 Weaning vaccinations are critical in conferring immunity to calves at times in 

their production when they are more susceptible to disease. Calm cattle had a higher 

Clostridial antibody concentration at the end of the study than temperamental cattle. The 

effects of glucocorticoids on antibody population maintenance are beginning to be 

studied, but this research substantiates previous research in human medicine that stress 

events can alter antibody numbers over time. In an integrated immune response, the long 

term maintenance of serum antibody levels is dependent on the survival of a memory B 
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lymphocyte pool and germinal center follicle production of antigen specific plasma cells. 

These memory lymphocytes, as well as immature thymocytes, can be induced into pre-

programmed cell death cycle, apoptosis, by glucocorticoids. In addition, genes that 

protect against apoptosis, can be suppressed by glucocorticoids in immature B 

lymphocytes. These mechanisms are involved in sustaining a sufficient vaccination 

response, which is needed to confer immunity in cattle to common pathogens which are 

encountered in beef production.  

If groups of cattle can be identified as having a higher risk of infection or altered 

immune responses, management practices can be altered to reduce risk associated with 

cattle morbidity and mortality. Additional research is needed to further investigate 

vaccination responses in cattle with different temperaments to more effectively manage 

weaning practices and pre-conditioning programs. 
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