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ABSTRACT 

Differences in Growth and Toxicity of Karenia. (May 2006) 

Tatum Elizabeth Neely, B.S., University of North Carolina-Wilmington 

Chair of Advisory Committee: Dr. Lisa Campbell 

Harmful algal blooms (HABs) in the Gulf of Mexico are primarily caused by 

dense aggregations of the dinoflagellate species, Karenia brevis.  Karenia brevis 

produces a highly toxic neurotoxin, brevetoxin which has been shown to cause 

Neurotoxic Shellfish Poisoning (NSP) and respiratory distress in humans in 

addition to a wide range of negative impacts upon natural ecosystems.  Karenia 

mikimotoi is a co-existing species present during K. brevis blooms.  K. mikimotoi 

has caused major HAB events in other parts of the ocean, but has not been 

recognized as a major contributor to toxicity of blooms in the Gulf of Mexico. 

 K. brevis and K. mikimotoi have both been associated with the presence 

of unidentified hemolytic toxins.  Production of hemolysins has not previously 

been investigated for either species to date in the Gulf of Mexico.  Presence of 

hemolysins may affect toxicity and the overall impact of HABs.  Therefore, 

detection of hemolysins is imperative for accurate identification of potential 

harmful impacts of such blooms. The primary goal of this research is to define 

whether either species is capable of producing hemolytic activity independent of 

brevetoxin activity; and to identify if there is significant differentiation between a 

variety of clonal isolates regarding toxicity and growth rate when subjected to 

variable experimental conditions. 
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CHAPTER I 

INTRODUCTION:     HARMFUL ALGAL BLOOMS IN  

THE GULF OF MEXICO 

 

Karenia brevis 

Phytoplankton blooms provide an essential source of nutrition for a 

variety of marine filter feeding organisms.  Several species however have been 

shown to cause substantial damage to natural resources.   In the Gulf of Mexico 

approximately 44 species of phytoplankton have been identified as either 

harmful, nuisance or toxic (Steidinger and Penta, 1999).  Harmful algal blooms 

(HABs) occur when these species grow significantly above natural background 

levels and negatively impact natural resources and/or humans.  HABs in the Gulf 

of Mexico have caused massive mortality in finfish, contamination of local 

shellfish stocks, death of marine mammals and seabirds, and include shellfish 

poisoning and respiratory distress in humans (Table 1).  Fifty million dollars is a 

conservative estimate of the annual economic loss to tourism, coastal 

recreational and commercial fisheries in the United States as a consequence of 

HAB events (Evans and Jones, 2001) .1 

.  

 

 

 

 

 

 

 
                                                 
This thesis follows the format of Harmful Algae. 
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Table 1.  Frequently occurring HAB species in the Gulf of Mexico and impact of respective 
blooms. 

 

Species Associated Toxins 

Alexandrium monilatum PSP* Saxitoxin and Hemolysins 

Chattonella subsalsa NSP*, Fish kills Brevetoxin 

Dinophysis spp. DSP* Okadaic Acid 

Gambierdiscus toxicus CFP* Ciguatera 

Karenia brevis NSP, Respiratory distress, 
Fish kills Brevetoxin 

Karenia mikimotoi Fish kills Cytotoxins and Hemolysins 

Karenia pulchellum NSP Brevetoxin 

Prorocentrum spp. DSP, CFP Okadaic Acid 

Psuedo-Nitzchia spp. ASP* Domoic Acid 
 

*PSP = Paralytic Shellfish Poisoning; NSP = Neurotoxic Shellfish Poisoning;  
DSP = Diuretic Shellfish Poisoning; CFP = Ciguatera Fish Poisoning.   
 

 

 

Karenia brevis, formerly Ptychodiscus brevis (Steidinger, 1979) and 

Gymnodinium breve (Daugbjerg, et al. 2000), is a dinoflagellate which occurs at 

background levels of approximately 1 to 10 cells L-1 in the Gulf of Mexico 

(Geesey and Tester, 1993).  K. brevis blooms occur annually off the western 

coast of Florida and more recently with increasing frequency along the coasts of 

Texas and eastern Mexico (Villareal et al., 2001; Mee et al., 1986).  Initiating 

mechanisms of these blooms are not yet conclusive but several hypotheses 

include: fluctuation in salinity or nutrient concentration, wind and current 

direction, atmospheric input of Sahara dust, bacterial interactions, as well as 

anthropogenic influences such as increased coastal development and elevated 

nutrient runoff (Epstein, 1998; Tester and Steidinger, 1997; Ishida et al., 1996; 
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Cortes-Altamirano et al., 1995; Kin-Chung and Hodgkiss, 1991; Morris et al., 

1991; Tester et al., 1991;   Smayda and White, 1990).   

During episodic K. brevis blooms, cell concentrations can reach upwards 

of 106 cells mL-1 causing dark green to brown water discoloration (Geesey & 

Tester, 1993).  Blooms have been linked with massive fish kills, marine mammal 

deaths, contamination of shellfish beds and respiratory distress and Neurotoxic 

Shellfish Poisoning (NSP) in humans (reviewed in Kirkpatrick et al., 2004).  A 

variety of natural compounds have been isolated from K. brevis blooms including 

the potent neurotoxin brevetoxin, identified as the most toxic marine biotoxin in 

the Gulf of Mexico to date (Mazumder et al., 1997; Baden and Trainer, 1993).  

K. brevis has been shown to produce up to 14 derivatives of brevetoxin, 

each with variable toxicity and retention time in the water column (Bourdelais et 

al., 2005).  Brevetoxin is a lipid soluble, cyclic polyether which selectively binds 

to receptor site 5 of voltage-gated Na+ channels.  Upon binding brevetoxin 

inhibits inactivation, locking Na+ channels open and allows the unregulated influx 

of ions into the cell, resulting in cell lysis and death (Purkerson et al., 1999; 

Baden, 1983).   

Brevetoxin can affect a wide range of marine organisms.  In finfish, 

brevetoxin affects the central nervous system, causing lack of muscle 

coordination and eventual respiratory failure and death (Kennedy et al., 1992).  

Deaths of bottlenose dolphin, endangered Florida manatees and sea turtles 

have been linked to prolonged exposure to aerosolized brevetoxin and ingestion 

of contaminated water or vegetation (Bossart et al., 1998; Trainer and Baden, 

1999).  Brevetoxin is bioaccumulated in filter feeding shellfish and benthic fauna.  

Upon consumption of shellfish, higher trophic levels are then exposed to much 

higher toxin concentrations (Cummins et al., 1971; Sakamoto et al., 1987.)   

Human consumption of contaminated shellfish can result in Neurotoxic 

Shellfish Poisoning.  Symptoms of NSP include nausea, diarrhea, hot and cold 

reversal and cramping.  Respiratory distress, asthmatic symptoms and skin 
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irritation occur following contact with aerosolized toxin along beaches during 

blooms (Asai et al., 1984; Baden et al., 1995; Fleming and Baden, 1988).   

Historically K. brevis blooms were believed to be monospecific  

(Buskey et al.,1996; Steidinger and Penta,1999).  Recent studies however, have 

shown several morphologically similar dinoflagellate species of unknown toxicity 

frequently co-occur with K. brevis during blooms (Haywood et al., 1996).  If 

bloom dynamics have a higher complexity than originally observed, the 

implication is that bloom toxicity may fluctuate with species composition.  

 

 

Karenia mikimotoi 

 

Karenia mikimotoi is one particular species most frequently associated 

with K. brevis (Steidinger et al., 1998; Parrish et al., 1997; Kirkpatrick et al., 

2004; Mayali and Doucette, 2002; Mazumder et al., 1997; Baden and Trainer, 

1993).  Morphological similarities between K. brevis and K. mikimotoi make 

microscopic identification extremely difficult, often resulting in the 

misidentification of species (Steidinger et al., 1998).  

In contrast to K. brevis which is restricted to the Gulf of Mexico, K. 

mikimotoi occurs in temperate oceans worldwide.  K. mikimotoi is not known to 

produce brevetoxin, but has been linked with fish kills in native populations and 

aquaculture farms off the coasts of New Zealand, Korea, Scotland and Australia 

(Arzul et al., 1994; Seki et al., 1995; Yamasaki et al., 2004; Zingone et al., 

2000).  Mortality of shellfish and benthic marine fauna has additionally been 

linked with K. mikimotoi (Dragunow et al., 2005).  

Studies show K. mikimotoi produces toxic glycolipids along with a suite of 

other unidentified compounds (Yamamoto et al., 1990; Parrish et al., 1997).  

Uncharacterized hemolysins from K. mikimotoi blooms have caused extensive 
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damage to gill epithelia of finfish and can lead to mortality of a variety of benthic 

invertebrates (Seki et al., 1995; Yamasaki et al., 2004).  Even though  

K. mikimotoi frequently coincides with K. brevis, it has not been recognized as a 

primary contributor in overall toxicity of blooms in the Gulf of Mexico (Kirkpatrick 

et al., 2004). 

 

 

Harmful Bloom Monitoring 

 

Current HAB monitoring within the Gulf of Mexico is primarily focused on 

detection of brevetoxin.  In Florida where blooms occur almost annually, weekly 

regulatory cell counts are conducted along the western coast by the Florida 

Marine Research Institute (Kirkpatrick et al., 2004).  In Texas, blooms have not 

historically been observed with such a high frequency, and therefore cell counts 

are generally conducted only after fish kills have been reported (Texas Parks & 

Wildlife Department; TPWD).  Fish kills are generally observed when cell 

concentrations exceed 5,000 to 10,000 cells L-1 (www.floridamarine.org), levels 

which greatly inhibit the possibility for preventative measures.     

When cell counts from western Florida exceed 5,000 cells L-1 within close 

proximity to shellfish beds, all shellfish harvesting is prohibited.  Brevetoxin 

concentration in shellfish meat is then analyzed using the American Public 

Health Association (APHA, 1985) mouse bioassay protocol.  Concentration 

levels which exceed 0.17 mg kg-1 body weight, will sustain harvesting closure 

until concentration levels drop below these set limits for a period of two weeks 

(Viviani, 1992; Park, 1995; Baden, 1983; Baden et al., 1995; ILO, 1984).   

There are several complications with the mouse bioassay including 

expense, accurate administration of dosage and the frequent unreliability of 

results (Trainer and Poli, 2000).  In attempts to more accurately define toxicity 

levels, optimized testing methods have since been introduced.  Tests which 
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specifically target the detection of brevetoxin include a competitive ELISA 

(Bourdelais et al., 2000), the radioimmunoassay (RIA), neuroblastoma 

cytotoxicity assay and chemical analysis using High Performance Liquid 

Chromatography (HPLC) (Trainer and Poli, 2000).  Methods which are highly 

sensitive to brevetoxin may exclude detection of additional harmful compounds, 

and ultimately may result in underestimating total bloom toxicity.    

 

 

Unidentified Toxic Compounds 

 

 Several fish kills off the Texas coast have coincided with low  

K. brevis cell counts and/or low brevetoxin concentration in shellfish tissue 

(Villareal et al., 2001; TPWD data). The high toxicity of these particular incidents 

suggests the presence of unidentified toxins which may have been overlooked 

by current methodology (TPWD data; Steidinger et al., 1998).  Algicides and 

cardiotoxic anti-cholinesterases have been linked to recent Gulf of Mexico 

blooms and large fish kills (e.g, Mayali and Doucette, 2002; Mazumder et al., 

1997; Baden and Trainer, 1993).  Many of these compounds have unknown 

toxicities and environmental impacts have not yet been fully assessed 

(Steidinger and Penta, 1999).    

Hemolysins from K. mikimotoi blooms were shown to rupture gill epithelia 

in finfish stocks (Kennedy et al., 1992).  Damaged gill tissue can cause severe 

respiratory distress and lead to bacterial infections, both of which are leading 

causes of fatality during blooms (Kennedy et al., 1992).  Unsaturated glycolipids 

have been isolated from laboratory cultures of  

K. mikimotoi and were shown to cause hemolysis of horse and tilapia 

erythrocytes (Parrish et al., 1997).   

Several morphologically similar species are additionally known to produce 

a variety of harmfully active compounds.  Off the coast of New Zealand in 1994, 
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a bloom of K. mikimotoi-like cells caused widespread fish kills.  Shellfish extracts 

were subsequently found to be highly toxic to mice when injected 

intraperitoneally (MacKenzie et al., 1996).  Upon further investigation a new 

species Karenia selliformis, was identified as the causative agent (Haywood et 

al., 2004).   

A new toxin gymnodimine was identified from cultures of K. selliformis 

isolated from the 1994 bloom (Seki et al., 1995).  While gymnodimine was 

classified as a neurotoxin, it did not elicit symptoms or dose responses similar to 

other known marine toxins; nor cause mortality when orally administered, and 

was not detectable from NSP tests (MacKenzie et al., 1996).  Gymnodimine did 

however cause mortality in fish bioassays at levels of 0.1 ppm and residual toxin 

was found in the water column days after bloom degeneration (Seki et al., 1995).  

The effects of gymnodimine on human health are still under investigation 

(Haywood et al., 2004).     

Since the New Zealand bloom, K. selliformis has been identified in the 

Gulf of Mexico and now is also known to co-occur with K. brevis (Dr. A. 

Haywood, pers. comm., 2005).  The discovery of gymnodimine provides further 

evidence of the threat of newly emerging harmful compounds which may be 

overlooked with traditional monitoring protocols (Seki et al., 1995; Zingone and 

Enevoldsen, 2000).   

 

 

Challenges in HAB Monitoring 

 

Presently, HAB monitoring is complicated by a variety of factors which 

make accurate toxicity assessment exceedingly difficult.  Foremost, 

concentration levels of K. brevis cannot be directly correlated to brevetoxin 

concentration (Kirkpatrick et al., 2004; Baden et al., 1995; Baden and Trainer, 

1993).  Brevetoxin levels can fluctuate according to stages of bloom 
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development in addition to changes in environmental conditions (Scholin et al., 

1999; Baden and Tomas, 1988).  Therefore regulatory cell counts, while 

beneficial in detecting presence of blooms, unfortunately alone do not provide 

accurate toxicity analysis.  In addition, brevetoxin is a particularly complex 

compound, with 14 recently identified derivatives (Bourdelais et al., 2005).  

Fernandez et al. (2003) illustrated the high variability of potency between 

congeners of the same toxin family.  As individual brevetoxin derivatives are 

found in a range of concentrations and vary under given conditions; the overall 

concentration of a particular derivative will therefore impact toxicity levels 

(Baden et al., 2005).   

More recently, population dynamics of blooms are becoming increasingly 

imperative in defining toxicity.  The co-occurrence of harmful species creates a 

unique challenge in HAB management (Zingone and Enevoldsen, 2000).  

Potential emergence of new toxins may result from inter/intraspecific competition 

and/or synergy between compounds (Mayali and Doucette, 2002; Haywood et 

al., 2004).   If current monitoring continues to rely primarily upon the detection of 

a narrow range of compounds (Baden and Trainer, 1993; Casper et al., 2004; 

Fleming et al., 1988), there is the potential for miscalculation of total toxicity by 

ignoring the presence of other potentially harmful compounds (Park et al., 1995; 

Zingone and Enevoldsen, 2000). 

Recent discoveries of new HAB species and toxins including 

gymnodimine, hemolytic amphidinol analogs and ichthyotoxins, combined with 

increase in frequency and duration of blooms, establishes the need for further 

development of methods to universally screen for the presence of a wide variety 

of toxins (Echigoya, et al., 2005; Yang et al., 2001; Zingone and Enevoldsen, 

2000; Smayda and White, 1990; Rossini, 2005; Van Dolah, 2000).  The 

importance of accurately quantifying bloom toxicity is essential in defining 

potential emerging risks to marine organism and human health (Smayda and 

White, 1990; Zingone and Enevoldsen, 2000).  
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Goals of Research 

 

The goals of this study were to 1) develop a sensitive, reliable and 

inexpensive method to test whether Gulf of Mexico Karenia isolates are capable 

of producing hemolytic compounds in addition to brevetoxin; 2) determine the 

toxicity of Karenia clones isolated from selected blooms in the Gulf of Mexico 

using a new assay for hemolytic activity; and 3) assess whether changes in 

salinity or temperature affect growth rate or toxicity in Karenia.  The results from 

this project were used to test the following hypotheses.  

 

 Hypothesis 1:  K. brevis and K. mikimotoi produce one or more hemolytic 

compounds  

Null hypothesis:  There is no production of hemolytic compounds by either 

Karenia species as detectable using the Red Drum bioassay. 

 

Hypothesis 2:  Distinct clonal isolates of K. brevis and K. mikimotoi have variable 

levels of toxin production 

Null hypothesis:  Hemolytic activity is the same among all clonal isolates.   

 

Initial growth rates were assessed from Karenia clones grown within a 

matrix of three salinities and three temperatures to provide evidence of clonal 

diversity.  Differences in growth rate provided further evidence of variability in 

toxin production (Wang and Hsieh, 2004).  Toxicity was then assessed with a 

modified bioassay using Red drum (Sciaenops ocellatus) erythrocytes to detect 

hemolytic activity in crude algal pellets collected at specific temperature and 

salinity.  Conclusively these results will either support the hypothesis that there 

is considerable variation in growth and toxicity of Karenia in the Gulf of Mexico; 

or support the null hypothesis that there are not observable differences among 

individual Karenia clones.   
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Results will provide further evidence that changes in population dynamics 

as a result of environmental conditions can have a measurable impact in overall 

bloom toxicity.  Since hemolytic activity is not currently incorporated into current 

HAB monitoring, determination of activity levels from monoclonal algal cultures 

will help to enhance understanding of the toxic impact of particular species.    

By defining differences among various clonal isolates, these results will 

expand upon previous studies conducted by Baden and Tomas (1988) which 

show differences in brevetoxin production among six K. brevis clones isolated 

from Florida coast blooms.  Overall, these results will both enhance 

understanding of toxin variability within a single clone when subjected to 

changing environmental conditions, and help elucidate potential variation among 

geographically distinct clones.
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CHAPTER II 

MATERIALS AND METHODS 

 

Karenia Clones 

 

A total of twelve Karenia clones isolated from various geographical 

regions in the Gulf of Mexico and one clone from the coast of England were 

used in growth rate experiments (Table 2).  Eight clones of K. brevis included 

five clones from a Brownsville, Texas bloom in 1999 (SP1, SP2, SP3, TxB3 and 

TxB4) and three clones obtained from the Provasoli-Guillard National Center for 

Culture of Marine Phytoplankton (CCMP 718, CCMP 2228 and CCMP 2229).  

All K. brevis CCMP clones were originally isolated from various blooms off the 

western coast of Florida.  CCMP 718, the classic Wilson’s clone isolated in 

1953, has been the primary clone in K. brevis research for over 50 years.  

CCMP 2228 was isolated off Sarasota in 2001 and CCMP 2229 was isolated 

from Manasota Key in 2001 (www.ccmp.bigelow.org).    

Five clones of K. mikimotoi included: three clones from a Corpus Christi 

bloom in 2002 (B1, C5 and C9), one Florida clone (NOAA2) isolated off 

Sarasota in 2001 and one clone from the coast of England in 1980  

(CCMP 429).     
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Table 2.  Karenia clones selected for growth rate and toxin comparison. 

 

Species Strain Source 

Karenia brevis CCMP 718 

 
Florida, 1953 

Wilson 
 

K. brevis CCMP 2228 Florida, 2001 
C. Higham-Mote Marine Lab 

K. brevis CCMP 2229 
 

Florida, 2001 
C. Higham-Mote Marine Lab 

K. brevis SP1 

 
Texas, 1999 

T. Villareal - UTMSI 
 

K. brevis SP2 
Texas, 1999 

T. Villareal - UTMSI 
 

K. brevis SP3 
Texas, 1999 

T. Villareal - UTMSI 
 

K. brevis TxB3 
Texas, 1999 

K. Steidinger - FMRI 
 

K. brevis TxB4 
Texas, 1999 

K. Steidinger - FMRI 
 

Karenia mikimotoi CCMP 429 
England, 1980 

D.Harbor 
 

K. mikimotoi B1 
Texas, 2002 

L. Campbell - TAMU 
 

K. mikimotoi C5 
Texas, 2002 

L. Campbell - TAMU 
 

K. mikimotoi C9 Texas, 2002 
L. Campbell - TAMU 

K. mikimotoi NOAA2 
 

Florida, 1999 
NOAA Laboratory 
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 All clones were grown in enriched natural seawater at a salinity of 35.  

Seawater was collected on an incoming tide from the University of Texas Marine 

Science Institute’s pier in Port Aransas, TX and kept in the dark at 4° C prior to 

use.  Seawater was then filtered using 0.2 µm Supor® filters and autoclaved for 

sterility. To prepare L1 growth medium, sterile filtered nutrients were added to 

seawater to provide constant nutrient availability during experimentation 

(Guillard & Hargraves, 1993).   

 

 

Growth Rate Experiments 

 

All clones were maintained under light levels of 70 µEin m-2 sec-1 over a 

12:12 hour light: dark cycle throughout experimentation with Phillips® Cool 

White bulbs.  All stock cultures were maintained at 20° C.  Experimental cultures 

grown at 20° C were then acclimated to temperatures of 22 and 25° C over a 

minimum period of ten generations between acclimation.  Once acclimated to 

temperature variables, salinity range was altered from 35 to 27 with addition of 

appropriate amounts of sterile MilliQ® water.  Each decrease in salinity was 

additionally maintained for ten generations for acclimation.   

All clones were grown to approximately 103 - 104 cells mL-1 before start of 

each experiment (in Tube 1).  Triplicate 50 mL glass Pyrex® tubes (Tubes A, B 

and C) were pre-filled with 40 mL of L1 medium at experimental salinity.  Tubes 

A, B and C were then inoculated with ~2 mL of well-mixed culture from Tube 1.  

Directly following inoculation, in vivo chlorophyll a fluorescence readings were 

measured with a Turner Model 700 Fluorometer.  Prior experimentation has 

shown a linear relationship in chlorophyll a fluorescence and cell counts with 

Sedgwick-Rafter chambers over the range of cell concentrations used in 

experiments (Figure 1).  
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Figure 1.  Linear correlation between chlorophyll a fluorescence and increasing 

Karenia cell concentrations. (Turner 700 Fluorometer) 

 
 
 

Tubes A, B and C were gently mixed before taking triplicate fluorescence 

readings per tube.  Tubes were then placed into incubators and maintained at 

experimental temperature with fluorometric readings taken at intervals of 24 

hours.  Experiments continued until cultures reached late exponential phase and 

sustained stationary growth for a minimum of two days (Figure 2). 

Upon termination of growth experiments, replicate tubes were gently 

combined in a 200 mL flask and final cell density determined.  Flasks were then 

divided into four, 50 mL centrifuge tubes and centrifuged at 4º C, 3200 g for  

15 min.  Replicate cell pellets were then transferred to 1.5 mL microcentrifuge 

tubes and centrifuged again at 3200 g for 15 min.  Cell pellets were then washed 

in buffer solution (150 mM NaCl, 3.2 mM KCl, 1.25 mM MgSO4, 3.75 mM CaCl2, 

and 12.2 mM TRIS base; pH adjusted to 7.4 with HCl) twice to dispose of any 

cellular debris associated with cell pellet. Cell lysis did not occur during washing, 

as confirmed by microscopic examination of pellets.  Washing was preformed to 

reduce presence of extracellular compounds which could potentially bias results. 
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Figure 2.  Daily growth measurements.  (Log phase of growth exhibited on days 4-
6 and stationary phase evident after day 6).    

 

 

Final cell counts were typically between 1-6 x 106 cells mL-1.  Dilution of 

cell pellets with buffer solution yielded 1-5 x 105 cells mL-1 for toxicity assays.  

Pellets were concentrated by centrifugation, buffer removed by aspiration and 

replicate aliquots of identical cell density stored at -80º C up to 3 months for 

toxicity assessment.   

Studies by Gentien and Arzul (1990) have shown natural variability in 

brevetoxin concentration of Karenia cultures after 18-20 days, resulting in 

artificial variability in toxicity.  To avoid similar variation in hemolytic activity, all 

cell pellets were collected within 15-17 days of initial inoculation.        
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Red Drum Erythrocyte Lysis Assay (RDA) 

 

 Red drum (Sciaenops ocellatus) were obtained from SeaCenter 

Aquaculture Facility in Lake Jackson, TX.  Individuals between 1-3 kg were 

carefully handled and 5-10 mL of whole blood was extracted from the caudal 

vein using 22 cc syringes pre-loaded with 50 IU of sodium heparin diluted in 

RPMI 1640 (both Sigma Scientific) according to procedures outlined in Stoskopf 

(1993).  RPMI 1640 media was used in an effort to reduce osmotic shock of 

blood cells and to decrease the possibility of lysis during collection and 

transport.  No Red drum were killed during sampling and all were directly 

returned to ponds to minimize shock.   

Whole blood collected in syringes was then dispensed into 200 mL tissue 

culture flasks and kept on ice for direct transport to laboratory.  Red blood cells 

(RBCs) were separated from blood serum with gentle centrifugation at 800 g and 

then diluted to 1-5 x 106 cells mL-1 in RPMI 1640 media with 50 IU of heparin to 

prevent coagulation.  Previous attempts using only 22.5 IU proved insufficient in 

preventing clotting.  RBCs were kept at 4º C and resuspended with daily gentle 

rolling of containers.    

Frozen algal pellets were thawed and resuspended to appropriate  

(1-5 x 105 cells mL-1) concentration in buffer solution prior to assay.  Crude 

extracts were prepared with 30 sec / 30 sec / 60 sec pulses with a wand 

sonicator at 50% amplitude to ensure full lysis of algal cells.  Crude extracts 

were kept in light-tight boxes at -20º C and used within 48 hours to minimize loss 

of activity over time.  Studies suggest degradation in activity may result from 

exposure to direct light (Eschbach et al., 2001 Edvardsen et al., 1990), and 

therefore all assay procedures were conducted under dimmed light settings.  

For control purposes, cultures of Dunaliella tertiolecta and Chattonella 

subsalsa were grown at 20° C in f/2 medium (Guillard and Hargraves, 1993). 

Dunaliella, a non-toxic chlorophyte provided a negative control, while 
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Chattonella, an estuarine species noted to produce hemolytic toxins, served as a 

positive control.  Cultures were centrifuged after 15-17 days and concentrations 

adjusted to 1 x 105 cells mL-1.   

Clean 96-welled V-bottom plates (Evergreen Scientific) were pre-filled 

with 50 µL of assay buffer.  Fifty µL of crude algal extract was then added in 

triplicate to top wells and serially diluted two-fold down the plate using a multi-

channel pipette.  Concentration of algal cells ranged from 105 cells mL-1 in top 

wells down to 103 cells mL-1.  This was in an attempt to observe range in activity 

dependant upon cell concentration.  

Fifty µL of erythrocyte solution (1-5 x 106 cells mL-1 washed in buffer 

solution immediately prior to assay) was then added to all wells.  Plates were 

covered and incubated in complete darkness for 10 h at 25o C.  For 

standardization a known hemolytic agent, Saponin (Sigma), was used at 

concentrations of 2 µg mL -1 and serially diluted along with crude extracts in 

each assay.  Wells inoculated solely with buffer solution served as negative 

controls and positive controls of fully lysed erythrocytes at identical 

concentration as unknowns (1-5 x 106 cells mL-1) (Figure 3).
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Figure 3.  Linear correlation between increasing concentration of Red drum 

erythrocytes and absorbance (405 nm).  Detection limits were 1 x 102 cells mL-1. 

 

 

After incubation, plates were centrifuged at 3600 g for 15 min.  Seventy-

five µL of supernatant was then gently pipetted from all wells and transferred 

into corresponding wells of a clean, flat bottom 96-welled plate (Evergreen 

Scientific).  Transfer plates were read with a SpectraMax 190 plate reader 

(Molecular Devices, Sunnyvale, CA) at 405, 455, and 519 nm to determine 

optimal wavelength.  Hemoglobin absorption was highest at 405 nm and 

significantly lower at other wavelengths (data not shown).  Crude algal extracts 

read at three wavelengths showed lowest absorption at 405 nm, presenting no 

interference with hemoglobin absorption.  405 nm was determined an optimal 

wavelength as this provided highest sensitivity for detection of hemoglobin and 

therefore hemolytic activity.  Plate reader results were exported into Microsoft 

Excel for all data analyses.  
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Time Course Experiments 

 

Time course experiments were conducted using the two clones with the 

highest and lowest activities based on results of the Red drum assay.  Isolates 

were grown up to 50 mL cultures at experimental salinity and 25° C.  Four, 200 

mL glass flasks per isolate were filled with 150 mL of L1 medium at appropriate 

salinity.  10 mL taken from a dense 50 mL culture was inoculated into each of 

the four flasks.  Flasks were then labeled with incubation times of 4, 6, 8 or 10 

days and placed in incubator.  All flasks were exposed to 70±5 µEin m-2 sec-1 

over a 12:12 hour light: dark cycle using Phillips® Cool White bulbs.   

 Flasks were removed at 4, 6, 8 and 10 days and cell pellets harvested by 

centrifugation (3200 g / 15 min).  A total of three replicate pellets per clone and 

condition were then stored at -80° C.  Toxicity levels were determined with the 

Red drum assay to reflect hemolytic activity as a function of time in culture.  

 

 

Gambusia Bioassay 

  

The mosquito fish Gambusia affinis, was used to determine whole fish 

toxicity of crude extracts for further confirmation of toxicity as established by the 

Red drum bioassay.  Standard LD50 for Gambusia assays are typically 

0.01 µg pure compound L-1 (ILO, 1984).  Due to unknown concentration of 

specific hemolytic compounds, positive results were determined with endpoint 

mortality within 1 h.       

Small mosquito fish were maintained in 5 gallon aquariums kept at room 

temperature.  Bioassays were run in 200 mL of sterile filtered ocean water 

adjusted to a salinity of 5 by addition of sterile MilliQ® water, in four plastic  

500 mL beakers.  Crude algal extracts were then diluted into beakers 

representative of cell concentration of 104, 103, 102 and 10 cells mL-1 (conducted 
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under dimmed light conditions).  Triplicate mosquito fish were added to each 

experimental dilution and incubated for a total of 1 h. 

 

 

Data Analysis 

  

Averaged triplicate daily fluorescence (n=3) was plotted onto log graphs.  

Growth rates (d-1) were determined from regressions of natural log of 

fluorescence data vs time (Figure 2).  Significant differences among clones were 

calculated from growth rates using Wilcoxon tests and paired t-tests.     

 Toxicity results from the Red drum assay were averaged (n=3) from 

crude extract activity and corrected by subtracting negative background (buffer 

absorbance only).  Activity for each Karenia clone was defined as a percentage 

of Saponin standards.  

 Statistical analysis was performed using SysStat 8.0.  All data was log 

transformed and used in paired t-test analysis for determination of significant 

differences among growth rates and in toxicity of pairs.  Non-parametric analysis 

using Wilcoxon tests were used to determine differences among all groups.   
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CHAPTER III 

RESULTS 

 

Growth Rate Results 

  

Differences in growth among Karenia clones were determined by 

comparison of individual intrinsic growth rate (d-1).  Comparisons examined 

differences among clones from distinct geographic regions (Florida vs. Texas 

clones) as well as interspecific differences (K. brevis vs. K. mikimotoi).  

(Complete set of experimental results are provided in Appendix A).  Growth rate 

as a function of temperature and salinity was first compared among K. brevis 

clones from within similar geographic regions.  

 

 

Results for Florida K. brevis Clones 

 

Growth exhibited by the Wilson’s clone (CCMP 718) was used as a 

reference point to previously published studies (Baden and Tomas, 1988).   

Reported growth of CCMP 718 ranged from 0.2 to 1.0 d-1 (Aldrich and Wilson, 

1968; Shanley and Vargo, 1993). CCMP 718 was among the slowest growing 

clones over all experimental conditions with lowest rate measured at 0.11 d-1 

(20° C, salinity 27). 
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      20         22   25 
          Temperature ( °C ) 

Figure 4. Growth rates of Florida Karenia clones grown at salinity of 27 and 

variable temperature.  

 

 

Growth experiments were difficult at best with CCMP 718 as this clone 

was easily stressed from daily mixing and routinely crashed during first days of 

experiments.  Cultures were also prone to failure when cell densities exceeded  

6 x 104 cells mL-1, requiring close monitoring to simply maintain cultures.  Due to 

these difficulties, CCMP 718 was the sole K. brevis clone in which data points 

could not be attained for a full matrix of salinity and temperature variables. 

In comparison to CCMP 718, CCMP 2228 was not as easily stressed 

during experimentation.  CCMP 2228 exhibited optimal growth of 0.37 d-1 at  

20° C and a salinity of 35 (Appendix A) and lowest growth at 0.18 d-1 at 25° C 

and a salinity of 27.  Growth trends observed in CCMP 2228 for all three 

temperatures show slightly increased growth with increased salinity.  Statistically 

the greatest difference in growth between salinities was observed at 20° C and 

were not as apparent at higher temperatures (Appendix A) (p = 0.03).   
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The last Florida K. brevis clone CCMP 2229, attained the greatest cell 

density of all K. brevis clonal cultures (up to 5 x 105 cells mL-1).  Optimal growth 

of CCMP 2229 was similar to other Florida clones at 0.32 d-1(Figure 4).  

Temperature did not significantly affect CCMP 2229 (p < 0.01), but increased 

salinity improved growth from 0.27 d-1 to 0.32 d-1. 

Overall similar optimal growth rates were observed between Florida 

clones CCMP 2228 and CCMP 2229.  Salinity changes seemed to elicit the 

highest degree of variability in growth among clones instead of temperature 

change. 

 

 

Results of Texas K. brevis Clones 

  

All experimental Texas K. brevis clones originated from a single bloom 

event. This provided a unique opportunity for comparison.  Significant 

differences in growth among the Texas clones provided solid support for 

differences among Karenia clones within similar geographical locations.    

As observed among the Florida clones, SP1 clones also had a limited 

range in growth during experimental procedures (Figure 5).  SP1 was easily 

stressed from daily mixing in tubes, and like CCMP 718 was subject to frequent 

culture failure during experimentation.  Growth was so significantly reduced at 

20° C, that rates could not be calculated due to extended lag phase and 

absence of logarithmic growth at this temperature variable.  Both CCMP 718 and 

SP1 clones succumbed under suboptimal temperature conditions, suggesting 

that temperature is a limiting factor in growth.  
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SP1 favorably responded to increased temperature and optimal growth 

was observed at 0.34 d-1 at 25° C.  At both 22 and 25° C, increased salinity 

favored highest growth rates in SP1 (Appendix A).  Growth was almost identical 

in SP1 cultures grown at salinities of 27 in both temperatures (0.18d-1) and 

increased significantly when salinity was increased to 35 (p =< 0.001).   

A dramatically different trend was observed in SP2 clones which favored 

lowered temperatures and significantly improved at mid salinity variables  

(p =< 0.01). The most significant differences in growth of SP2 were observed 

with fluctuation in salinity (p =< 0.001).  SP2 responded negatively to increased 

salinity, dropping from 0.52 d-1 to only 0.17 d-1 (salinity of 27 vs 35).        

 In SP3 clones, a greater tolerance level to a wide variety of experimental 

variables was evident (Appendix A).  SP3 could be maintained at all conditions 

with only a slight but insignificant decrease in averaged growth at increased 

salinity.  Optimal growth was similar to previous clones at 0.37 d-1.  Greatest 

difference in growth was observed between SP3 cultures at 20° C with change 

in salinity.  Growth significantly dropped from 0.36 to 0.17 d-1 when salinity was 

increased from 27 to 35 (20° C).     
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   5 A 

  20    22   25 

  Temperature ( C ) 
 

    5 B 

   20   22    25 

    Temperature ( C ) 

 

Figure 5.  Growth rate for Texas K. brevis clones grown at A) Salinity of 27 (with 

variable temperature) and B) Salinity of 35 (variable temperature). 
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 Optimal growth in TxB3 clones was 0.37 d-1 at low temperature and high 

salinity.  On average, TxB3 favored mid salinity (Appendix A), growing at a 

steady rate of 0.33 d-1 at all three temperatures at a salinity of 30.  Salinity also 

significantly impacted growth in TxB4 clones (p =< 0.01). Growth in TxB4 

increased from 0.16 to 0.36 d-1 with an increase in salinity from 27 to 35.  

Temperature did not appear to have an impact on growth in TxB4 (Appendix A, 

Figure 5). 

 
 
 
Results for K. mikimotoi Clones 

 

Texas K. mikimotoi clone C5 grew consistently over the range of 

experimental temperatures, with most favorable growth observed at lower 

salinities (0.27 d-1).  Growth in C5 significantly decreased with increasing salinity 

(p =< 0.001), slowing from 0.30 to only 0.15 d-1 as salinity increased from 27 to 

35 (25° C). 

 Most favorable growth in C9 was observed at highest salinity and 

temperature (0.55 d-1). Optimal growth of C9 was significantly higher than C5 (p 

=< 0.01).  Growth in C9 was significantly affected by variation in salinity; growth 

rate increased from 0.14 d-1 at low salinity increased to 0.55 d-1 at salinities of 

35.   

 The highest growth rate among all five K. mikimotoi clones was observed 

in Texas B1 clone (0.61 d-1) at 25° C and a salinity of 35. The B1 clone exhibited 

a wide range in growth over varying experimental conditions                          

(0.10 d-1 to 0.61 d-1).  There was a significant difference in growth observed at 

high and low salinity; growth rate increased from 0.36 to 0.61 d-1 as salinity 

increased from 27 to 35.    

 NOAA2 was the only Florida K. mikimotoi clone available for comparison 

with Texas K. mikimotoi.  Highest growth in NOAA2 (0.46 d-1) was measured at 
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high salinity and low temperatures.  Growth in NOAA2 was significantly 

impacted by changes in salinity, ranging from 0.31 to 0.46 d-1 as salinity 

decreased from 35 to 27 (p =< 0.01).   

 CCMP 429 was a difficult clone to acclimate to laboratory conditions.  

CCMP 429 originally isolated from cold temperatures in the English Channel, 

had been grown in K media which differs slightly from L1 (Guillard and 

Hargraves, 1993).   Once CCMP 429 was established in a separate incubator at 

17° C, it was then slowly acclimated to 20 and 22° C for growth rate analysis.  

Ultimately CCMP 429 could not be acclimated to 25° C.  Optimal growth in 

CCMP 429 of 0.25 d-1 was observed at 22° C and a salinity of 35.  Interestingly, 

lowest growth was observed at 17° C (0.08 d-1).  

On average, K. mikimotoi was a dynamic species with the ability to 

tolerate a wide range in salinity and temperature (Figure 6).  K. mikimotoi was 

frequently observed to attain cell densities of over 3 x 106 cells mL-1.   

 

        27   30     35 
            Salinity 
Figure 6.  Growth rate (d-1) for Texas K. mikimotoi clones grown over variable salinity at 

constant temperature of 25o C. 
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Comparison of Texas vs. Florida Clones 

 

Texas K. brevis clones grew optimally over a wider range of salinity and 

temperature compared with Florida K. brevis clones.  Texas K. brevis clones 

also exhibited higher average growth rates compared to Florida K. brevis.  In 

Texas SP3 clone, the lowest observed growth rate was equivalent to highest 

observed growth rate of Florida Wilson’s clone, CCMP 718.  

 

 

 

Red Drum Assay Results 

  

The Red drum erythrocyte assay was capable of detecting a wide variety 

of hemolytic activity among Karenia clones. Toxicity results averaged (n=3) from 

crude extract activity was defined as a percentage of Saponin standard.  Highest 

hemolytic activity recorded among all Karenia clones was 85% of Saponin 

activity.  Lowest observable activity was 12% of standard.   

Saponin standards were run at concentrations of 2 mg mL-1.  100% 

hemolysis was observed at concentrations of 4.5 µg mL-1 with lowest detectable 

activity observed at 1 µg mL-1.  Using averaged (n=3) absorption values from 

100% lysis via Saponin, all subsequent hemolytic results were standardized to 

reflect percentages of Saponin activity.       
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Preliminary Assay Results 

 

Preliminary assays run with brevetoxin standard PbTx-3 (CalBioChem), 

confirmed that brevetoxin did not cause hemolysis in RBCs above background 

levels.  PbTx-3 is the most common occurring brevetoxin derivative in Gulf of 

Mexico blooms and is regarded as the most highly toxic (Baden et al., 1995) 

Negative results with PbTx-3 show brevetoxin production in cultures does not 

affect hemolytic assay results.   

 To determine optimal incubation times, time course experiments were 

conducted to measure activity after 4, 10, 24 and 48 h incubations.  Activity was 

examined in K. mikimotoi clone B1 and in K. brevis clone SP2.  Short (4 h) 

incubations were not sufficient to detect the full range in activity. Ten hour 

incubations did not vary significantly from activity observed at 24 h (Figure 7).  A 

slight decline in activity was observed from 24 to 48 h.  Ten hour incubations 

were selected as optimal for detecting full activity in crude extracts (Figure 7).  

Hemolytic activity for all Karenia isolates was first examined in crude extracts 

from cultures grown at 25° C to determine if there were significant differences. 
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 7 A   

 

              7 B 
Figure 7.  Time course incubation experiments of B1 (A) and SP2 (B).  (Results are 

averaged hemolytic activity (n=3) at set times of 4 – 48 hours.)     
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Hemolytic Results of K. brevis 

 

Hemolytic results for CCMP 718 ranged from 25 to 28% hemolysis from 

high to low salinity (25° C) (Figure 8).  There was no statistical difference in 

activity between conditions (t = 0.38, p = 0.72).  Growth rates and initial assay 

results indicate there was not significant variation in toxicity in CCMP 718 due to 

changes in salinity or temperature.  No further toxicity assays were conducted as 

a result.   

No significant difference was observed in activity with variable salinity or 

temperature in CCMP 2228 (p = 0.03).  Activity in CCMP 2228 at 25° C 

averaged 44 to 46% with a slight decrease in activity from a salinity of 35 to 27.  

At 20° C activity did not significantly change averaging 41 to 43% hemolysis 

between high and low salinity (p < 0.001). 

Hemolytic activity in CCMP 2229 averaged 60% at both high and low 

salinity (25° C).  Highest activity in CCMP 2229 of 64% was exhibited in cultures 

grown in a salinity of 30, which was not significantly different with changes in 

salinity (t = 0.28, p = 0.79).   

For Texas K. brevis clones, a wide range in activity was observed as 

individual clones were subjected to variable conditions.  SP3 clones were the 

most prominent example with activity dropping significantly from 77 to 30% with 

a decrease in salinity from 30 to 27.  Other Texas clones also exhibited a wide 

range in activity compared among each when grown within the same 

experimental conditions.  Activity observed in SP3 at 25° C at 77% was more 

than two fold higher than activity of SP2 at the same temperature at activity less 

than 12% (Appendix B).   

SP1 clones did not produce significantly different activity over variable 

salinity conditions (p =< 0.001).  SP1 did significantly vary from Florida clones 

grown at identical conditions however.  
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In general, activity in SP2 clones decreased with increased salinity.  

Significant range in activity from 12 to 43% was observed with increase in 

salinity from 27 to 35 (25° C, p =< 0.001).  Experiments conducted at 20° C did 

not show such strong trends as noticed in SP2 at 25° C as activity only varied 

from 20 to 23% with decrease in salinity.   

SP3 clones exhibited the widest range in hemolytic activity among all  

K. brevis clones.  A significant increase in activity from 25 to 78% was observed 

in clones grown in salinities from of low to mid salinity.  Comparison between 

highest and lowest temperatures ranged from 32 to 42%.  Overall, significant 

differences were observed in SP3 activity between all three salinities (p =< 

0.001).  

TxB3 similarly showed increased activity at mid salinities ranging from 33 

to 59% from low to mid-salinity, and then dropped to 21% at highest salinity.  

These results were significant enough to continue assays at 20° C, where 

activity was similar observed at 25° C.  TxB3 produced 32% activity at low 

salinity and increased to 43% at mid salinity before dropping once more to 30% 

with highest salinity.   

TxB4 activity at 25° C ranged from 32 to 55% with decrease in salinity 

from 35 to 27, a significant difference (p =< 0.001).  In 20° C, TxB4 was 

significantly more active salinity of 27 (39%) than higher salinity of 35 (28%,  

p =< 0.001).  Overall, TxB4 increased toxicity as salinity decreased. 
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           27         30      35 
       Salinity 
 

Figure 8.  Hemolytic activities of K. brevis isolates over variable salinity (25° C). 

 
 

 
Hemolytic Results of K. mikimotoi 

 

On average hemolytic activity in K. mikimotoi was slightly higher than observed 

in K. brevis (46% versus 41%).   Greatest differences between species were 

evident in cultures grown at salinities of 30 even throughout all temperature 

variables.  Highest activity in K. mikimotoi clones was observed in B1 at 85% (35 

salinity, 25° C) (Figure 9).  Lowest activity was found in NOAA2 of only 18% (27 

salinity).   NOAA2 did increase to 40-42% with increased salinity at both 20 

and25° C (Appendix B).   
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Figure 9. Hemolytic activity of K. mikimotoi clonal isolates grown at a salinity of 27 

(25°°°° C). 

 

 

CCMP 429 could not tolerate salinity over 30 nor temperature exceeding 

22° C.  Throughout the limited range of growth conditions in CCMP 429, 

hemolysis activity remained relatively constant from 32 to 35% (Appendix B).  

At 25° C similar trends were observed between Texas K. mikimotoi 

clones C5 and C9.  C9 clones had significantly lower activity (57%) at low 

salinity which increased to 62% at salinity of 35.  Increase in activity with 

increased salinity was also observed in C9 clones grown at low temperature, 

ranging from 56 to 60% (p =< 0.001).  C5 clones also increased in activity with 

increased salinity ranging from 57 to 60%.   

B1 clones displayed the highest hemolytic activity among all Karenia 

clonal isolates.  At 25° C, activity was 51% (salinity 27) and increased to 85% 

with increased salinity (35) (Appendix B).  The difference in activity among 

salinities at 25° C was statistically significant, but was not as varied when 

compared at 20° C.
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Florida       Texas 
Figure 10.  Hemolytic activities of K. brevis at 25° C and salinity of 30.  (Florida  

clones are in blue, and Texas clones in green). 

 

 

Toxicity over Time in Culture 

 

To examine hemolytic activity of K. mikimotoi and K. brevis as cultures 

aged from time of inoculation, two clones of each species with the highest (B1 

and SP3) and lowest activity (NOAA2 and SP2) were compared.  All cultures 

were grown at 25° C and salinity of 30.  At 4 days, B1 was the only clone which 

showed detectable activity at 32% (Figure 10, n=3). By 6 days, activity for B1 

increased two-fold (64%), and activity was first evident for the other three strains.  

At 8 days, activity continued to increase for all strains.  Finally at 10 days, 

hemolytic activity of B1 continued to increase (80%), but activity in the other 

three strains appeared to have leveled off.  Activity for NOAA2 was 10%, SP2 

was 20%, and SP3 was 67% (Figure 11). 
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Figure 11.  Time course of hemolytic activity in cultures of K. brevis (SP2 and SP3) and K. 

mikimotoi (B1 and NOAA2).  

 

 

Gambusia Bioassay  

  

All clones which exhibited hemolytic activity at salinity of 30 and 25° C 

were selected for the Gambusia bioassay.  Florida K. brevis clones were all 

found to cause death usually within 10-15 min.  Texas K. brevis clones caused 

death on average between 15-20 min.  K. mikimotoi clones caused death with 

averages closer to 30-45 min., with the exception of CCMP 429 which was not 

found to cause death at any concentration within 1 h.  All other clones were 

shown to cause death at cell concentrations as low as 5 x 103 cells mL-1.        
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CHAPTER IV  

DISCUSSION 

 

Implications of Growth Rate Results  

 

Results confirm previous observations of variability in growth rate among 

clones when grown under identical conditions (Aldrich and Wilson, 1960; Shanley 

and Vargo, 1993; Loret et al., 2002).  Several experiments were repeated within 

this study for all experimental isolates over a two year span, with repeated results 

reliably within standard margin of error (CV < 0.05). This further demonstrated 

how growth rate can be a distinctive characteristic of particular clonal isolates 

within a set range of variables. If reported growth characteristics of the Wilson’s 

clone have not significantly shifted in 50 years of culture, comparisons in growth 

rate could offer a valid factor in assessing variability among Karenia clones.  

Growth rates have been calculated using both direct cell counts and/or 

fluorescence measurements which can lead to discrepancies in reported growth 

rates.  Fluorometric observation may ultimately underestimate total growth rates 

compared with direct cell counts, but offers a faster method in observing 

differences among strains with experiments conducted at multiple variables. 

Growth results indicate individual Karenia clones are likely to have 

variable tolerances to changing environmental conditions.  Among all Karenia 

clones examined, K. mikimotoi was able to grow at the widest range in salinity 

and temperature.  Most K. mikimotoi clones were able to adapt to all conditions 

with the exception of CCMP 429.  

Conversely, experiments with K. brevis indicated a more restricted range 

in growth conditions, with a majority of clones demonstrating stenohaline 

preference.  On average, temperature did not seem to impact growth as 

significantly as salinity in most K. brevis clones.   
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K. brevis required longer acclimation period between conditions than K. 

mikimotoi before detectable (~1 x 103 cells mL-1) cell density could be observed 

and growth experiments conducted (data not shown).  K. mikimotoi clones 

generally could be expanded more rapidly with less lag time in growth when 

exposed to new conditions.   

Given the high variability in estuaries and coastal waters in which Karenia 

blooms are frequently found, salinity and temperature may be important limiting 

factors in determining bloom and population dynamics.  Genetically diverse 

phytoplankton blooms exposed to rapid environmental shifts, could potentially 

respond with the propagation of one species over the other (Steidinger and 

Penta, 1999).  Enhanced phytoplankton biomass has frequently occurred along 

regions of strong environmental gradients.  Our results further demonstrate 

salinity as a strong limiting factor in the geographic distribution of K. brevis.  

These results provide evidence to suggest that changes in salinity may ultimately 

shift phytoplankton populations from less tolerable K. brevis clones towards more 

quickly adaptable K. mikimotoi clones.   

 This hypothesis is further supported by the geographic distribution of both 

species.  Currently K. brevis is only known to occur in the Gulf of Mexico 

(Steidinger and Penta, 1999; Geesey and Tester, 1993).  K. mikimotoi, however, 

is known worldwide and is reported from regions with a wide range of salinity, 

temperature and nutrient concentrations (Haywood et al., 1996; Haywood et al, 

2004; ILO, 1984; Ishida et al., 1996; Kin-Chung et al., 1991).  Growth rate results 

from this study lend further evidence to suggest K. mikimotoi may be a more 

highly dynamic species than K. brevis, particularly in its ability to adapt to 

fluctuation in salinity or temperature. 

 

 

Validity of Red Drum Assay 

 

The purpose in developing an erythrocyte bioassay was the need for a 

simple, rapid and inexpensive method to use as a preliminary screen for 
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hemolytic activity among various clonal isolates.  The advantage in using fish 

erythrocytes was of an environmentally relevant method with the capability of 

screening a wide range of activity levels.  Bioassays are particularly 

advantageous as they are capable of detecting unknown and poorly defined 

compounds.  Using the Red drum assay, we were able to detect hemolytic 

activity induced by Karenia cultures down to levels of 1 x 103 cells mL-1.  The Red 

drum assay was thus determined to be a valid method in identifying the presence 

of hemolytic activity of crude algal extracts.   

Red drum RBCs were found to have high sensitivity to Saponin, a widely 

used standard hemolytic compound.  Sensitivity of Red drum RBCs to Saponin 

was detectible over a measurable range in concentrations.  This allowed for more 

sensitive comparisons to be made between clonal isolates relative to Saponin 

standards.  

Control experiments with Dunaliella and Chattonella cultures further 

demonstrate the applicability of the Red drum assay.  As expected, no hemolysis 

was induced by the non-toxic Dunaliella, nor was there any interference in 

absorption.  Chattonella was used to provide a positive control to ensure 

hemolytic activity was detectable (Yamamoto and Tanaka, 1990; Haque and 

Onoue, 2002).  Chattonella was found to induce 52% hemolysis of RBCs.  These 

results supported the applicability of the Red drum assay as a valid procedure for 

a variety of HAB species. 

 

 

Implications of Hemolytic Activity 

 

Based on the Red drum assay, both Karenia species produce detectible 

levels of hemolytic activity.  Activity among Karenia clones ranged from 11 to 

85%.  On average K. brevis induced less hemolysis compared with K. mikimotoi 

clones.  Activity in K. brevis ranged from 11 to 77%.  K. mikimotoi clones 

frequently induced hemolysis well above 50% and were responsible for highest 

detected activity of over 80%.  
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Growth conditions, particularly salinity of medium, had significant effects 

on hemolytic activity in both K. brevis and K. mikimotoi.  Previous studies 

conducted with Alexandrium spp. also indicated PSP toxicity levels fluctuated 

with salinity changes (Frangopulos, et al., 2004; Anderson 1990).  Lowest growth 

rates in Alexandrium were found to correlate with decreased salinity and 

increased toxicity (Hamasaki, et al., 2001).  Our results for hemolytic activity 

indicate SP2 follows a similar trend of increased toxicity at lower growth 

rates.SP2 may produce higher levels of hemolytic toxin as a stress response as 

indicated by decreased growth.  Conversely, increased growth rate in TxB3 and 

TxB4 coincided with increased hemolytic activity.  Both TxB3 and TxB4 were 

significantly more toxic at higher salinities when compared with lower salinities (p 

=< 0.001); a unique response compared with other clonal isolates with the 

exception of B1.  

Wright and Cembella (1998) comment on the significant variation in total 

cellular toxin content among monoclonal cultures, and suggest increased toxicity 

may be a direct result of stress due to environmental conditions.  Our results 

offer further support that toxin variability may result from environmental 

fluctuation.  Salinity change in particular was found to enhance toxicity in several 

K. brevis and K. mikimotoi clones.   

There have been several studies which have indicated variability of 

brevetoxin production among Karenia isolates.  Baden and Tomas (1988) were 

among the first to report substantial differences in brevetoxin profiles among six 

clonal Karenia isolates from Florida.  Loret et al. (2002) reported similar 

differences in brevetoxin production among three Karenia isolates from the 

Texas coast. Attempts were made to incorporate as many different Karenia 

clones from the Gulf of Mexico as possible.  By examining toxicity of clonal 

isolates taken from a single bloom off Texas, we were able to conclude there are 

significant differences among strains within a single bloom event.   

In addition to comparisons among thirteen different clonal isolates, this 

study also provides results to reflect variation within a single clone when 

subjected to a range of environmental variables.  These results show both 
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presence and variation of hemolytic activity in addition to brevetoxin, and can 

further aid in defining variability of total toxicity.  Overall toxicity of a particular 

clone including assessment of both brevetoxin and hemolysin concentrations, 

may be significantly higher than a single-target toxin bioassay would reflect.  

Therefore the potential for hemolysin contribution in overall bloom toxicity is an 

important factor which should be included in future studies and bloom 

assessment.              

 The surprising results of K. mikimotoi inducing higher hemolysis than  

K. brevis has many implications.  Since little is known regarding K. mikimotoi 

toxicity in the Gulf of Mexico, its contribution to overall bloom toxicity is not 

currently addressed in most monitoring programs.  These results show both the 

ability of K. mikimotoi to tolerate much wider variation in environmental 

conditions, and to produce higher levels of hemolytic compounds compared with 

K. brevis.    

 K. mikimotoi clones NOAA2, C5 and B1 all exhibited increased hemolytic 

activity following increase in salinity.  K. mikimotoi clones show a wide variety of 

trends in toxicity according to results of the Red drum assay.  C9 was the only 

clone in which increased activity was exhibited at lower salinity.  While CCMP 

429 remained stable over changes in salinity, toxin production increased with 

increase in temperature.  An inverse relationship was discovered between growth 

rate and toxin production most K. mikimotoi isolates except for B1.  At high 

salinity, increased growth rate in B1 was accompanied by increased toxicity.  B1 

was additionally unique as it was found to induce the highest level of hemolytic 

activity among all Karenia clones.   

  Experiments conducted with two most highly active Karenia isolates B1 

and CCMP 2229, concluded that levels of toxicity peaked in K. brevis (CCMP 

2229) flasks at lower cell density and overall toxicity than K. mikimotoi (B1).  This 

was consistent with the observation that K. mikimotoi could sustain dense 

cultures for longer periods of time.  Increased biomass could potentially 

concentrate progressively higher toxin levels than K. brevis flasks which rapidly 

declined after surpassing particular levels in cell density. 
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Accurate detection of species abundance and respective toxin 

concentration is essential in monitoring HABs in the Gulf of Mexico (Wang et al., 

2004).  Population dynamics in taxonomically diverse blooms may potentially 

shift following environmental fluctuation.  Synergism of toxic effects could also 

occur with presence of multiple toxins during blooms, which may be overlooked 

by more highly specified assays (Haywood et al., 2004).  Overall, this research 

has demonstrated that K. mikimotoi is a toxic species in the Gulf of Mexico and 

its presence during “red tide” blooms is an essential component of the resulting 

toxicity.  Further studies are needed to investigate the propagation of toxicity to 

higher trophic levels.     
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

 

Summary 

 In summary we found that there are significant differences observed in 

growth rates among clonal isolates of Karenia.  There can additionally be 

significant differences in growth within a single clone when subjected to variable 

experimental conditions.   

We found that the Red drum Assay is a valid assessment of presence of 

hemolytic compounds which is not sensitive to the presence of brevetoxin 

compounds.  We found both species of Karenia capable of producing detectable 

levels of hemolytic activity.  There were some observable differences in 

hemolytic activity when compared among clonal isolates collected from a single 

Texas HAB event.  We were not however able to determine if there was a 

significant difference in hemolytic activity compared between Florida and Texas 

isolates, as clonal isolates varied too greatly in overall time in culture.    

 

 

Conclusions 

 

These results support the hypothesis that both K. brevis and K. mikimotoi 

produce hemolytic compounds which may contribute to overall toxicity of blooms 

in the Gulf of Mexico.  Comparisons among twelve different Karenia isolates from 

various geographical areas throughout the Gulf of Mexico show significant 

differences in both growth rate and hemolytic activity.  This supports the 

hypothesis that Karenia is a widely diverse genus and differences can be 

detected from individual clonal isolates from various bloom events.   By testing 

the effects of salinity and temperature upon growth and toxicity in Karenia, we 

have provided further evidence that environmental factors can affect population 

dynamics and toxicity of blooms.   
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With development and use of the Red drum erythrocyte assay, we were 

able to examine differences in Karenia beyond variable growth and brevetoxin 

production to the additional variability of hemolytic activity among isolates.  This 

research helps to define overall variability within the Karenia genus.  Karenia is 

therefore further represented as a genus which requires additional study to 

achieve a better understanding of the dynamics of harmful algal blooms in the 

Gulf of Mexico. 
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APPENDIX A 
  
Growth rate data of all Karenia clonal isolates for each experimental condition.  
(ng = no growth observed at this condition; nd = no data could be determined) 
 

Strain Temperature Salinity Growth St.dev 
718 17 27 ng   

    30 ng   
    35 ng   
  20 27 0.11 0 
    30 0.17 0.01 
    35 nd   
  22 27 nd   
    30 nd   
    35 nd   
  25 27 0.16 0.01  
    30 nd   
    35 nd   

2228 17 27 ng   
    30 ng   
    35 ng    
  20 27 0.2 0.03 
    30 0.17 0 
    35 0.37 0.05 
  22 27 0.27 0 
    30 0.19 0.02 
    35 0.26 0.01 
  25 27 0.18 0.01 
    30 0.21 0 
    35 0.21 0.03 

2229 17 27 ng   
    30 ng   
    35 ng   
  20 27 0.28 0 
    30 0.32 0.04 
    35 0.32 0.01 
  22 27 0.22 0.02 
    30 0.24 0.04 
    35 0.19 0.01 
  25 27 0.26 0.02 
    30 0.27 0.07 
    35 0.29 0.01 
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Strain Temperature Salinity Growth St.dev 
SP1 17 27 ng   

    30 ng   
    35 ng   
  20 27 nd   
    30 nd   
    35 nd   
  22 27 0.18 0.01 
    30 0.15 0.06 
    35 0.24 0 
  25 27 0.18 0.05 
    30 0.19 0 
    35 0.34 0.02 

SP2 17 27 nd   
    30 nd   
    35 nd   
  20 27 0.35 0.06 
    30 0.27 0.01 
    35 nd   
  22 27 0.52 0.01 
    30 0.3 0.02 
    35 0.17 0.02 
  25 27 0.16 0.02 
    30 0.18 0.09 
    35 0.16 0.01 

SP3 17 27 nd   
    30 nd   
    35 nd   
  20 27 0.36 0.01 
    30 0.36 0.04 
    35 0.17 0.03 
  22 27 0.27 0.03 
    30 0.32 0 
    35 0.16 0.02 
  25 27 0.3 0.01 
    30 0.37 0.08 
    35 0.23 0.04 
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Strain Temperature Salinity Growth St.dev 
TxB3 17 27  nd   

    30  nd   
    35  nd   
  20 27 0.3 0.03 
    30 0.33 0.02 
    35 0.37 0.01 
  22 27 0.26 0.04 
    30 0.33 0.06 
    35 0.18 0 
  25 27 0.25 0.04 
    30 0.33 0.03 
    35 0.19 0.01 

TxB4 17 27  nd   
    30  nd   
    35  nd   
  20 27 0.19 0.03 
    30 0.31 0.01 
    35 0.34 0.01 
  22 27 0.29 0 
    30 0.3 0 
    35 0.3 0.01 
  25 27 0.16 0.01 
    30 0.28 0.01 
    35 0.36 0.05 

NOAA2 17 27 ng   
    30 ng   
    35 ng   
  20 27  nd   
    30  nd   
    35  nd   
  22 27  nd   
    30  nd   
    35  nd   
  25 27 0.46 0.02 
    30 0.38 0.02 
    35 0.31 0.01 

 
 
 
 
 
 
 
 
 
 
 



 54 

Strain Temperature Salinity Growth St.dev 
429 17 27 0.08 0 

    30  nd   
    35  nd   
  20 27 0.14 0 
    30  nd   
    35  nd   
  22 27 nd   
    30  nd   
    35  0.25 0.01  
  25 27 ng    
    30 ng    
    35 ng    

C5 17 27 nd   
    30 nd   
    35 nd   
  20 27 0.28 0.01 
    30 0.22 0.02 
    35 0.2 0.01 
  22 27 0.23 0.01 
    30 0.17 0.01 
    35 0.15 0 
  25 27 0.3 0.01 
    30 0.22 0.01 
    35 0.15 0 

C9 17 27 nd   
    30 nd   
    35 nd   
  20 27 0.44 0.02 
    30 0.22 0 
    35 0.34 0.01 
  22 27 0.22 0.01 
    30 0.22 0.01 
    35 0.38 0.02 
  25 27 0.15 0 
    30 0.31 0.02 
    35 0.55 0.01 
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APPENDIX B 
  
Hemolytic activities of Karenia clonal isolates grown under a range of 
temperatures and salinities (n=3). 
 

Strain Temperature Salinity 
Hem. 

Activity SD Gambusia 
718 20 27 27% 0.104 + 

   30 26% 0.009 + 
   35 24% 0.03 + 
  25 27 28% 0.034 + 
   30 24% 0.018 + 
   35 25% 0.006 + 

2228 20 27 43% 0.004 + 
   30 42% 0.003 + 
   35 41% 0.013 + 
  25 27 46% 0.008 + 
   30 45% 0.01 + 
   35 44% 0.008 + 

2229 25 27 61% 0.087 + 
   30 64% 0.008 + 
   35 59% 0.007 + 

SP1 25 27 25% 0.007 + 
   30 26% 0.009 + 
   35 25% 0.016 + 

SP2 20 27 23% 0.007 + 
   30 23% 0.029 + 
   35 20% 0.013 + 
  25 27 43% 0.002 + 
   30 24% 0.005 + 
   35 12% 0.003 + 

SP3 20 27 30% 0.007 + 
   30 38% 0.009 + 
   35 32% 0.007 + 
  25 27 31% 0.012 + 
   30 77% 0.048 + 
    35 42% 0.035 + 
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Strain Temperature Salinity 
Hem. 

Activity SD Gambusia 
TxB3 20 27 32% 0.007 + 

   30 43% 0.026 + 
   35 29% 0.042 + 
  25 27 33% 0.004 + 
   30 59% 0.016 + 
   35 21% 0.01 + 

TxB4 20 27 39% 0.048 + 
   30 33% 0.008 + 
   35 27% 0.02 + 
  25 27 55% 0.01 + 
   30 54% 0.005 + 
   35 32% 0.023 + 

NOAA2 20 27 19% 0.016 - 
   30 39% 0.018 + 
   35 40% 0.01 + 
  25 27 18% 0.003 - 
   30 37% 0.01 + 
   35 42% 0.006 + 

429 17 27 32% 0.011 - 
   30 32% 0.006 - 
  20 27 35% 0.007 + 
   30 32% 0.002 + 

C5 20 27 57% 0.011 + 
   30 58% 0.007 + 
   35 60% 0.02 + 
  25 27 57% 0.02 + 
   30 59% 0.015 + 
    35 62% 0.01 + 
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Strain Temperature Salinity 
Hem. 

Activity SD Gambusia 
C9 20 27 29% 0.078 - 
   30 38% 0.007 + 
   35 44% 0.003 + 
  25 27 42% 0.003 + 
   30 32% 0.006 + 
   35 23% 0.006 + 

B1 20 27 37% 0.015 + 
   30 32% 0.116 - 
   35 38% 0.003 + 
  25 27 51% 0.007 + 
   30 80% 0.01 + 
    35 85% 0.028 + 
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