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ABSTRACT 
 

 

Experimental Measurement of Phase Averaged Wall-Pressure Distributions for a 25% 

Eccentric Whirling Annular Seal. (May 2006) 

Domenic Cusano, B.S., Texas A&M University 

Chair of Advisory Committee: Dr. Gerald L. Morrison 

 

Instantaneous wall-pressure data were recorded for a 25% eccentric whirling annular seal 

for rotor speeds of 1800RPM and 3600RPM, axial Reynolds numbers of 24000 and 

12000, and whirl ratios of 0.1-1.0 following the procedure set forth by Winslow (1994), 

Robic (1999) and Suryanarayanan (2003).  Overall, the phase averaged wall-pressure 

distributions were consistent with previous results.  The “switch” in the pressure 

distribution measured by Suryanarayanan (2003) and Robic (1999) from pressure to 

suction between the seal entrance and exit occurs at and above a whirl ratio of 0.7 for 

1800RPM and 0.4 for 3600RPM.  For both rotor speeds, decreasing the flow rate by one-

half also decreases the wall pressure fluctuation distributions by one-half.  For whirl 

ratios less than 0.5, the phase averaged pressure field was relatively constant which leads 

to minimal forces being imparted on the rotor by the fluid in the annulus.  Talyor-Gortler 

vortices are measured for 1800RPM and Re=24000 at whirl ratios 0.1 and 0.3-0.7.  As 

the whirl ratio increases past 0.5, longitudinal vortices begin to emerge in the pressure 

contours and skew axially with 180° shifts occurring when the Taylor-Reynolds ratio is 

large enough.  Longitudinal vortices were measured for both rotor speeds when the 

whirling motion is greater than 1400RPM for Re=12000 and greater than 1600RPM for 

Re=24000.  Attempts were made to apply Childs (1983) procedure for finding the 

rotordynamic coefficients of annular seals; however, the seal moves in a non-circular 

orbit about the seal’s center so Childs analysis cannot be applied. 
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NOMENCLATURE 
 

 

c  - Clearance (1.27mm) 

cC ~,~  - Dimensionless direct and cross-coupled damping coefficients 

R
cPCP µω6

2*

=  - Sommerfeld journal bearing pressure coefficient 

iC  - Percent of one complete whirl cycle 

E  - Young’s modulus 

xF  - Reaction-force (x-direction) acting on rotor 

yF  - Reaction-force (y-direction) acting on rotor 

kK ~,~  - Dimensionless direct and cross-coupled stiffness coefficients 

L  - Seal length (35.56mm) 

on = 0.079 - Coefficient from Hirs’ (1973) turbulence equations 

om = -0.25 - Coefficient from Hirs’ (1973) turbulence equations 

mM ~,~  - Dimensionless direct and cross-coupled mass coefficients 
*P  - AC pressure 
*

meanP  - DC mean pressure 

P  - Phase averaged pressure 

outin PP ,  - Inlet and outlet phase averaged pressures 

P  - Mean pressure 

P∆  - Seal differential pressure 

Q  - Flow rate through seal (L/s) 

R  - Seal radius (164mm) 

cRo ε=  - Amplitude of seal harmonic motion 

µ
ρVc2Re = - Axial Reynolds number 

V
LT =  - Transit time of fluid element proceeding through seal 

 



xi 

t  - Time 

Dc
cWTa sh

2
µρ

=  - Taylor number  

V  - Mean axial velocity (m/s) 

shW - Rotor surface velocity (m/s) 

Z  - Downstream distance from seal inlet 

α  - Coefficient of thermal expansion 

β - Whirl ratio  

ε  - Dimensionless eccentricity ratio 

ρ  - Density of water (kg/m3) 

λ  - Friction-loss coefficient from Childs (1983) 

ultσ  - Ultimate strength 

ω  - Rotor angular speed (rad/s) 

Ω  - Whirl angular speed (rad/sec) 

smkg ⋅= − /10*84.7 4µ  - Absolute viscosity 

ν - Kinematic viscosity 
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INTRODUCTION 

 

 

The purpose of seals in Turbomachinery design is to prevent, or minimize, leakage from 

a region of high pressure to a region of lower pressure.  The two basic types of seals 

which are studied extensively are smooth and labyrinth annular seals.  Labyrinth seals are 

characterized by a series of thick grooves cut into the circumference of the seal whereas 

smooth annular seals are characterized by a smooth surface around the circumference.  

While surface treatments for annular seals are available, the smooth annular seal is 

studied in this analysis. 

 

Instabilities of rotors can occur due to mechanical wear, improper balancing of 

components, or failing to comply with design speeds.  A phenomenon specific to design 

speeds is whirl instability.  Whirl instability occurs when the rotor deviates from journal 

bearing operation and begins to oscillate within the stator housing in a periodic orbit.  

Newkirk and Taylor (1925) were the first to study the phenomenon, and found that the 

rotor begins uncontrolled oscillations within the stator when the rotor speed reaches twice 

the critical speed.  The critical speed occurs when the rotor operating speed matches that 

of the damped natural frequency and is characterized by heavy rotor vibrations. 

 

The hydrodynamic forces within a whirling (‘whipping’) annular seal are unique.  

Previous investigations by Winslow (1994), Robic (1999), and Suryanarayanan (2003) 

experimentally measured the wall pressure distribution along an annular seal.  The most 

significant finding is that the pressure distribution switches position from the upstream 

seal inlet to the downstream seal exit under certain operating conditions.  Measurements 

of the phase averaged pressure distribution along the length of the seal give an idea as to 

what forces are inherent on the rotor at different whirl ratios (whirling speeds). 

The purpose of this project is to investigate the effect of whirl ratio on the pressure 

distribution within an annular seal and to find the effect, if any, on the rotordynamic

_______ 
This thesis follows the style and format of Journal of Turbomachinery. 
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coefficients due to whirl ratio for two shaft speeds and flow rates.  The objectives of this 

investigation are to: 

1. Measure the stator wall pressure inside a dynamically eccentric whirling annular 

seal 

2. Obtain phase averaged wall-pressure distributions inside the seal for whirl ratios 

0.1-1.0 in 0.1 increments for 1800rpm and 3600rpm at Re=12,000 and 24,000. 

3. Plot phase averaged pressure distributions and create carpet plots for percent 

cycle and downstream position. 

4. Integrate pressure distributions to determine the force exerted on rotor as a 

function of whirl ratio 

5. Obtain rotordynamic coefficients as a function of operating conditions. 

 

If there is an effect of operating conditions on the rotordynamic coefficients of turbulent 

annular seals, the author hopes that this paper will serve to assist in re-linking 

experiments and numerical solutions for whirling annular seals. 
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LITERATURE REVIEW 

 

 

Newkirk and Taylor (1925) referred to the action of whirl instabilities as “oil whip,” due 

to the apparent dependence of oil film forces in contributing to the whipping of the shaft 

at rotor speeds over twice the critical speed.  Using multiple arrangements and bearing 

weights to change critical rotor speeds, Newkirk and Taylor measured the motion of a 

rotor tip and found that violent whipping, or whirling, occurred at speeds around twice 

the critical.  It was also discovered that the whirling motion occurred in the same 

direction as the rotor motion.  Newkirk and Taylor accidentally discovered that oil film 

forces were a large contributor to oil whip since the whipping would stop immediately 

when the oil supply to the bearing was shut off and could be brought back to full 

amplitude by turning on the oil supply again.  The overall recommendations by Newkirk 

and Taylor to prevent oil whip is to (1) shut off oil to the bearing, (2) steadying the shaft 

with additional weight, (3) misalign the bearings, (4) keeping operating speeds below 

twice the critical, (5) use of friction-damped bearings, and (6) avoiding very light bearing 

loading pressures. 

 

Future investigations into the onset of whirl instabilities began as a problem of 

understanding first, the forces imparted on the rotor to grasp ranges of stable and unstable 

operation, then second, the effect of fluid flow interactions with the rotor.  Therefore, 

most of the first published accounts after Newkirk and Taylor focus on understanding 

both fluid flows inside the seal as well as the effect of the flow field on the rotordynamic 

characteristics of the rotor system.  It is for this reason that the remaining publications are 

divided into primarily fluid flow investigations and rotordynamic characteristic 

investigations; even though the problem of whirl instabilities is a combination of the two. 

 

Fluid Flow Investigations 

DiPrima and Stuart (1972) derived the Sommerfeld Journal Bearing Pressure Distribution 

equation from the Navier-Stokes equations and attempted to calculate curvature and 
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inertial corrections for flow in a journal bearing.  It was found that viscous terms do not 

contribute to the normal stress but does contribute to shear stress.  As a consequence of 

the inertial correction factor, the shaft center will not be oriented in a horizontal line as 

predicted by the Sommerfeld Pressure Distribution.  DiPrima and Stuart attribute this to 

an additional force perpendicular to the Sommerfeld field force due to the inertial 

correction factor.  Finally, the curvature correction gives a small correction to the 

Sommerfeld pressure distribution but the significance of the curvature is dependent on 

the eccentricity of the annulus. 

 

Hirs (1973) developed a bulk-flow model for turbulent flow in lubricant films interposed 

between smooth surfaces.  To model fluid flow between concentric cylinders, no 

knowledge of the flow velocity profiles are needed to derive the empirical constants; only  

bulk-flow measurements.  When compared to mixing length and law-of-wall theories, 

Hirs found that his bulk-flow model agrees with law-of-wall theory for turbulent flow in 

bearing films at greater Reynolds numbers with marginal to improved utilization in lower 

Reynolds number conditions (Hirs does not give magnitudes for what is considered 

greater/lower Reynolds numbers).   

 

Brennen (1976) investigated the lack of information on the nature of flow and forces in 

an annulus between coaxially cylinders where either or both are performing whirling 

motions.  Brennens’ paper was the first to analytically determine the dependence of whirl 

motion on flow conditions.  Interactions between the fluid lubricant and the rotor is a 

function of the whirl deflection of the intermediate casing, which Brennen notes, is in 

turn a function of the forces imparted by the fluid motions in the outer annulus.  Brennen 

suggests the possibility of whirl instabilities at sub-synchronous frequencies and that for 

high flow Reynolds flow the mean flow will become unstable to Taylor vortices above a 

critical Taylor number. 

 

Recent research into the flow fields inside eccentric and whirling annular seals began 

when Johnson (1989) and Morrison et. al (1994) developed a pioneering laser 

measurement system at the Turbomachinery Laboratory at Texas A&M University.  
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Johnson performed detailed flow measurements for both smooth and labyrinth annular 

seals.  It was found that there is a small entrance region where the radial velocity decays 

from 0.08U to zero in the first x/c=1 of the seal.  This effect, later confirmed by Thames 

(1992) and reported by Morrison et. al, was concluded to be a contribution of vena 

contracta.  Thames also confirmed the recirculation zone (‘saddle back’ effect) 

discovered by Johnson, with measurements of the peak axial velocity; the peak axial 

velocity that was located on the suction side of the clearance at the seal inlet rotated 

around to the pressure side of the clearance at the seal exit.   

 

Das (1993) was the first researcher to investigate modified eccentricities with the 

Turbomachinery Laboratory test-rig.  Where previous research by Johnson and Thames 

investigated synchronous whirl at 50% eccentricity, Das operated at a 10% eccentricity.  

The saddle-back effect was not as large in the 10% eccentricity case as it had been in the 

50% eccentric case and was attributed to the seal clearance of the rotor.  Das concluded 

that the diminished effect of the rotor eccentricity develop earlier for small eccentricities 

due to a lower amount of pre-swirl.   

 

Winslow (1994) and Morrison and Winslow (1995) experimentally measured the 

dynamic pressure and shear stress on the stator wall for 0, 10, and 50% eccentric annular 

seals and found that in the case of lower eccentricities, such as in Das’ analysis, there are 

small entrance and exit affects whereas in the case of higher eccentricities, such as in 

Thames’ analysis, there is a marked peak in the mean pressure followed by a gradual 

decay until near the seal exit where the pressures begin to increase again.  Contour and 

carpet plots of the phase averaged fluctuations show that the highest entrance pressure 

reside on the pressure side of the seal and the lowest pressures reside on the suction side; 

but that at the exit these pressure regions are reversed.  The largest degree of migration 

occurs in the higher eccentric cases and it was found that the pressure migration is 

independent of the test flow and rotor conditions.  Finally, Winslow and Morrison found 

that shear stress does not contribute to conditions at the wall of the stator thereby 

invalidating the assumption that the axial velocity is a maximum at the maximum 

clearance location. 
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Robic (1999) experimentally and numerically measured the effect of pre-swirl on the 

pressure distribution in whirling annular seals.  Robic found that an increase in the 

Reynolds number for a given Taylor number tends to reduce the effect of pre-swirl and 

that for negative or no pre-swirl, the overall moment tends to rotate the rotor thereby 

closing off the exit flow and opening the entrance on the right side of the minimum 

clearance. 

 

Finally, Suyanaranyanan (2003) experimentally measured the effect of whirl ratio for a 

50% smooth annular seal and experimentally measured the wall pressure distribution for 

a 50% eccentric annular seal for both positive and negative whirl ratios.  The ‘saddle 

back’ effect noted in the research of Johnson, Thames, Das, Winslow, and Robic, was 

found to switch sides from the ‘pressure side’ to the ‘suction side’ at a whirl ratio of 0.8 

and 0.9 for positive whirl ratios and between -0.7 to -1.0 for negative whirl ratios.   

 

Rotordynamic Characteristics Investigations 

Hori (1959) experimentally recorded and numerically calculated differences in amplitude 

between small and large vibrations by changing the shaft loads and compared the results 

to those of articles published since 1925.  Hori treated oil whip as more a problem of 

dynamical stability of a rotor and in his numerical analysis assumed that the suction side 

of the journal bearing was zero, instead of negative.  Hori theoretically calculated the 

pressure distribution within a journal bearing and found that the equilibrium position 

changes with increasing speed.  Furthermore, Hori also discussed stability in terms of 

small and large rotor vibrations.  Hori found that for small vibrations the rotor is always 

stable if the journal displacement is 80% of the radial clearance or if the vertical 

displacement is less than 50% of the clearance.  And that for large rotor vibrations, the 

frequency of rotation can reach the natural frequency of the rotating shaft if the rotor 

speed reaches twice the critical speed.  In the end, Hori found that stabilization occurs 

when either the eccentricity is increased (by using shorter bearings and less viscous 

lubricants) or when the oil force in increased (by using longer bearings or more viscous 
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lubricants).  Hori notes that this is in direct opposition to each other but does not give his 

reasoning behind this occurrence. 

 

Fritz (1970) continued upon the experiments of Hori by investigating the hydrodynamic 

mass and damping effects of a liquid in a thin annulus surrounding a vertically oriented 

rotor assembly.  Data on the hydrodynamic mass, fluid damping and stability limit for 

synchronous whirl where computed and measured.  Dynamic stability was analytically 

determined to be met if the rotor speed is less than twice the critical speed. 

 

Lund and Saibel (1967) solved the nonlinear equations of the hydrodynamic force by an 

averaging method not previously used in journal bearing analysis.  Lund and Saibel 

theoretically calculated the conditions for whirl to occur and explored the hypothesis that 

journal orbits have stable, finite bounds by analyzing a rotor supported in plain 

cylindrical journal bearings.  And though hydrodynamic forces had been thought to 

contribute to rotor stabilization, Lund and Saibel found that hydrodynamic forces cannot 

stabilize the rotor expect in a narrow range around the threshold speed.  Lund and Saibel 

recommend against designing above speeds where oil whip occurs, due to the erratic and 

uncertain nature of oil whip orbits. 

 

Black (1969) developed a linearized theory for plain seals with inclusion of squeeze 

forces so that damping and stiffening actions could be estimated.  Black concluded that 

the damping forces associated with squeeze actions are large and that for seals where the 

seal length to clearance ratio is large that inertial forces may cause negative stiffnesses.  

And that hydraulic whip instability at high speeds may result from the rotation of fluid 

within the seal. 

 

Allaire et al. (1977) extended previous theories of short plain centered seals to large 

eccentricies and included surface roughness effects in their analysis.  A “Bernoulli” effect 

is found to occur when the shaft is eccentric in the seal creating a hydrodynamic force in 

the direction opposite to the shaft eccentricity.  Allaire et al. found that stiffness and 

damping are strong functions of eccentricity and that for high Reynolds numbers, the 
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Bernoulli affect becomes stronger and the load capacity increases due to the higher 

pressure gradients around the seal. 

 

Childs (1983) analytically determined a way to solve for rotordynamic coefficients of 

high-pressure annular seals with correction coefficients for inlet swirl conditions with 

expression derived to refine dynamic coefficients for high-pressure annular seals and 

inter-stage seals used in multi-stage centrifugal pumps.  Using Hirs (1973) bulk-flow 

equations as a basis, Childs developed rotordynamic coefficients that incorporated all of 

the previous developments into understanding rotordynamic coefficients for seals where 

small circular motions about a centered position occur.  Childs’ analysis was presented in 

two parts: first, solutions for the influence of inlet swirl with comparisons between 

rotordynamic coefficients derived from Hirs’ model and previous results and second, a 

development of a finite-length solution procedure for perturbation equations.  Child 

found that inlet swirl reduces the cross-coupled coefficients and therefore is required to 

obtain an accurate prediction of rotordynamic stability and response characteristics.  

Therefore, Childs demonstrates that the inlet swirl and inertia terms, ignored in Reynold-

equation approaches, is essential for prediction of cross-coupled stiffness and direct 

damping terms. 
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EXPERIMENTAL FACILITY 

 

 

The experimental facility is divided into four systems: 

1. Water supply system 

2. Seal-Motor Rig test section 

3. Instrumentation and Computation 

4. Eccentricity and whirl setting unit 

 

Water Supply System 

Water is supplied to the test section by a 10 HP ITT 734 Plus centrifugal pump (Figure 

A1) which is supplied by a 19m3 tank.  Water is pumped at 600±30kPa (90±2psi) to the 

test section and, to prevent cavitation, the upstream pressure is maintained at 138kPa 

(20psi).  Both the supply tank and the centrifugal supply pump are located outside of the 

test facility; see Figure A2.  The water temperature is maintained at 30.5±4°C by a 75kW 

heat exchanger to insure that the thermal expansion of the annular seal stays within 

limits.  The water entering the test section is filtered twice; once by a 10µ filter and again 

by a wire mesh directly upstream of the seal.  Similar to the centrifugal pump and water 

supply tank, the heat exchanger and water filter are located outside of the test facility; see 

Figure A3.  The water flow rate is measured by a 0.25% accurate turbine flow meter 

which has a linear range of measurement between 1.6L/s and 14.2L/s (0.42 to 3.75 gal/s).  

To modify and monitor the flow rate from the control room, a Masoneilan valve was 

installed on the water input line; see Figure A4.  Low pressure compressed air is supplied 

to the Masoneilan valve from a connection in the test cell.  Modifications were made to 

the Masoneilan control aperture to assure that the desired flow rates could be attained. 

 

Seal-Motor Rig Test Section 

The seal-motor rig test section (Figure A5) can be further divided into two subsystems: 

the test section and the oil supply system.  Each subsystem has a specific function related 
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to the operation of the seal-motor test rig.  The oil system is used to lubricate and cool the 

rotor bearings while the test section is where the pressure measurements occur. 

 

The test section is comprised of two parts: the inlet and the stator-rotor sections; see 

Figure A6.  Water flows from the first section to the second section through a stainless 

steel plate where the flow is straightened before entering the test section.  The rotor is 

mounted to an overhung shaft of 50.88mm diameter.  A 37kW variable speed motor 

rotates the rotor to a maximum speed of 5300rpm (Figure A7) and is controlled by an 

Eaton Dynamatic variable frequency drive.  The annular seal is attached to the rotor and 

has an outer diameter of 164.1mm.   

 

The clearance, c, is 1.27mm (0.05in) and is the same for all test conditions.  The seal 

(D=163mm, L=35.6mm) can be modified to test different eccentricities as needed.  For 

this experiment, the eccentricity is set to 25% or 0.318mm (0.0125in) of the clearance.  

The annular seal is made of acrylic and has the following properties (Johnson, 1989): 

Young’s Modulus, E=1.24x1010 Pa 

Density, ρ=913 kg/m3

Ultimate Strength, σult=9.507x1010 Pa 

Coefficient of Thermal Expansion, α=41x10-6 m/m°C 

Das (1993) estimated the mechanical growth of the seal at 3600 RPM using a hoop stress 

analysis to be 3% of the clearance (0.0386mm) and the thermal growth to be 4% of the 

clearance (0.006 mm/°C) for the water temperature window (30.5±4°C). 

 

For lubrication, synthetic grade 10W40 motor oil is supplied to the seal bearings by a ½ 

HP oil pump (Figure A8) which also serves as the driving mechanism behind pumping oil 

through a tube-in-shell heat exchanger; see Figure A9.  Faucet water is used to maintain 

the oil temperature below 160°F.  With the use of full synthetic 10W40 motor oil, 

adequate protection is provided to an oil temperature of 160°F.  In previous experiments 

with this oil system, the seal rig was provided higher pressures and flow rates than were 

required.  This caused an overpressure inside the bearing housing and subsequent leakage 

around the drive shaft seal.  A back-pressure regulator, an optical spin gage, and a re-
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routing of the oil lines reduced the supply pressure and volumetric flow rate resulting in 

oil leakage becoming non-existent; see Figure A10.  During testing, the oil temperature 

exiting the bearing housing maintained an equilibrium temperature range of 110-120°F 

and 135-143°F during 1800 and 3600 RPM testing, respectively. 

 

Instrumentation and Computation 

For the current arrangement, ten variables are simultaneously recorded: four stator wall 

pressures measured by Kulite Pressure transducers, the location of the seal within the 

stator measured with two proximeter probes, upstream pressure and pressure drop across 

the seal using two Rosemont pressure transducers, and optical once per revolution 

sensors to measure the frequency of revolution of the rotor and whirl camshaft. 

 

Four Kulite pressure transducers with a sensitivity ranging from 0.745mV/psig to 

0.762mV/psig are mounted to brass blocks specifically designed for the purpose; see 

Figure A11.  Each brass block has the same basic configuration with various numbers of 

threaded counter bored holes for the Kulite transducers to fasten.  Spacing of these holes 

depends on each block and results in an overall picture of the pressure field as a function 

of downstream position (Table A1).  At the base of each counter bored hole, a smaller 

0.4mm-diameter pinhole tap allows the Kulite transducer to measure the pressure at each 

downstream position (z/L).  Omni-Amp II DC-Signal Amplifiers are used to add a gain 

of 10 onto the DC output of the Kulite transducers (Figure A12). 

 

Olivero-Bailey et al (1993) measured pressure fluctuations with piezoresistive pressure 

transducers and found that they are effective in measuring high-frequency signals, similar 

to frequency fluctuations found in turbulent boundary layers.  Olivero-Bailey et al 

utilized flush mounted pinhole piezoresistive Kulite pressure transducers of diameter 

0.3mm.  Nunes (1993) compared results from flush mounted brass plug system and a 

Scani-valve pressure taps and found that the Scani-valve system is unsuitable for 

measuring transient wall pressure.   
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Two Rosemont pressure transducers are used to measure the upstream pressure and the 

pressure drop across the seal rig using existing pressure taps previously used with a 

Scani-valve system.  With the addition of the Rosemont pressure transducers, the gage 

pressure upstream of the annular seal and a corresponding pressure drop are recorded and 

can be used for non-dimensionalization if necessary. 

 

Voltage data from instrumentation devices are recorded by a 16-bit Measurement 

Computing PCIM-DAS1602/16 A/D converter which increased the number of 

simultaneously sampled channels to sixteen compared; compared to four in the previous 

8-bit system.  If additional amplification is necessary, the A/D converter is capable of 

sixteen gain combinations from 1 to 880.  With the use of a commercial software code 

Softwire, each channel is sampled simultaneously.  Softwire has a maximum channel 

sampling frequency of 100,000 Hz, which is divided equally among active channels.  

Therefore, the maximum sampling rate on each channel during measurements is 

approximately 9,000 Hz. 

 

To summarize, each channel measures a specific parameter: 

Channel 0: Once per revolution pickup of whirl camshaft [trigger]; 

Channel 1: Kulite Pressure Transducer #96; 

Channel 2: Kulite Pressure Transducer #97; 

Channel 3: Kulite Pressure Transducer #98; 

Channel 4: Kulite Pressure Transducer #99; 

Channel 5: ‘Left’ Proximeter Probe; 

Channel 6: ‘Right’ Proximeter Probe; 

Channel 7: Once per revolution motor pickup; 

Channel 8: Dead – not used; 

Channel 9: Rosemont ∆P; and 

Channel 10: Rosemont P. 

 

Ensemble averaging is used to cancel out small scale turbulence and noise in the recorded 

pressures (channels 1 to 4).  When the Reynolds number of a flow rises above the onset 
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of transitional flow and reaches turbulent flow, pressure measurements become unstable 

and fluctuate about a mean value.  With the use of MatLab, over 300,000 samples per 

channel can be averaged and analyzed.  The only limiting function is the amount of cache 

memory available, the processor speed, and the available time for data processing. 

 

Eccentricity and Whirl Setting Unit 

The test-rig at the Turbomachinery Laboratory was developed and built by Johnson 

(1989) first to measure the flow field within annular seals with a 3-D LDA system and 

was then was modified by Winslow (1994) to measure dynamic wall-pressure and shear 

stress distributions on the stator wall.  Suryanarayanan (2003) modified the facility to 

allow the stator to orbit at various whirl ratios; see Figure A13.  The eccentricity and 

whirl setting unit is made up of the following components (the number in parenthesis is 

the number of these components necessary): 

• Whirl Shaft (2) 

• Whirl Camshaft (2) 

• Pillow Block (2) 

• Whirl Camshaft Housing (2) 

• Modified Stator (1) 

• Modified Housing (1) 

• Plunger (2) 

AutoCAD drawings for the components of the eccentricity and whirl setting unit can be 

found in Appendix D (Figures D1-8) 

 

The major change made to the facility between the works of Johnson and Winslow was 

the removal of the quartz viewing window.  Four brass blocks were constructed to fit 

within the trapezoidal “viewing” window and were machined to allow for the use of 

flush-mounted piezeoresistive pressure transducers (Kulites).  Each of the four blocks can 

be oriented in two ways, top up (Top) and bottom up (Bottom).  This allows for greater 

coverage of the stator wall, because only four downstream pressure tap measurements 

can be made at one time.   
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A Scanivalve system was also installed which was used by Suryanranan (2003).  The 

three major changes made to the seal test section after the work of Suryanarayanan are 

listed below: 

• Exclusive use of piezoresistive pressure transducers 

• Implementation of two proximeter probes to monitor seal eccentricity and whirl orbit 

• Exchange of a 16-bit sixteen-channel A/D Converter for the previous 8-bit four-

channel converter used by Suryanarayanan, Winslow, and Robic 

• Development of MatLab programs to process raw data. 
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EXPERIMENTAL PROCEDURE 

 

 

The experimental procedure can be divided into two steps: measurement and 

computation.  The computational step can be completed during measurements or after 

measurements have been completed. 

 

Measurements 

The Kulite pressure transducers are calibrated with a pneumatic dead weight tester.  The 

flow rate is set within 4.86±0.5 l/s for flow rates corresponding to Re=24000 (149.6 Hz) 

and 12000 (74.8 Hz).  Water temperature must be maintained at 30.5±4 C (86.7±7°F) to 

maintain a constant Reynolds number, seal clearance, water density and water viscosity 

among all test runs of similar conditions.  A 75kW (0.256 MMBtu/hr) heat exchanger 

outside the test-cell facility is used when necessary to keep the water temperature within 

limits.  The seal is set for 25% eccentricity using the procedure set forth by 

Suryanarayanan (2003).  A circular orbit is maintained if the phase between the two cams 

is 90 degrees.  This orbit can be confirmed with the two proximeter probes.  There are 

two whirl pulleys that are used; a 1:1 pulley for whirl ratios of 0 to 1.0 for 1800RPM and 

0 to 0.5 for 3600RPM and a 2:1 pulley for whirl ratios of 0.6 to 1.0 for 3600RPM.  It is 

recommended that all data runs be completed for one pulley ratio before another is put 

into place.  The whirl ratio can be set by modifying the whirl motor speed.  A brass block 

is placed into the test section and secured with four brass screws.  The Kulite pressure 

transducers are screwed into the counter bored holes of the brass block and are used to 

measure the instantaneous wall pressures at specific downstream locations.  This 

procedure is repeated for each of the seven block orientations, two flow rates, and two 

rotor speeds. 

 

To eliminate trapped air within the seal-rig, the Kulite transducers must be bled of air 

before runs can commence.  The main chamber of the seal-rig is also bled of air.  Air 

must be bled from the seal-rig EVERY time the chamber is emptied of water or when 
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measurements continue after the test rig has been shutdown for an extended period of 

time.  Safety against cavitation occurs when the pressure within the test-rig is above 

138kPa (20psi). 

 

The goal of this experiment is to obtain mean pressure readings and phase-averaged wall 

pressure readings for each downstream axial position.  Rotordynamic coefficients are 

obtained by integrating the phase-averaged pressure distributions and plotting the results 

as a function of whirl ratio. 

 

Computations 

Phase Averaged Wall-Pressure Distributions 

Ensemble, or phase, averaging is used to cancel out small scale turbulence and noise of 

instantaneous pressure measurements.  The turbulence within the annular seal is a 

consequence of transitional flow.  Pressure measurements made at the wall fluctuate 

about a mean value.  The purpose of phase averaging is to rid the wall pressure data of 

turbulent fluctuations so that only the mean pressure at the wall is used for analysis.  In 

the case of rotating components, phase averaging can calculate the mean pressure at 

specific rotor angular positions around the circumference of the seal with the use of a 

trigger.  For this experiment, the trigger is a once per revolution optical gage (Channel 0).  

A peak in voltage from the once per revolution channel is used as the trigger to start 

phase averaging.  This insures that similar points around the circumference are compared 

and averaged. 

 

Data is saved (or transferred) to a computer with MatLab installed.  The experimenter 

must then determine if the data is static or dynamic in nature.  Dynamic whirl occurs 

when the whirl motor and pulley system are responsible for movement of the camshaft.  

Static whirl occurs when the whirl motor and pulley system are not used for movement 

and the operator must move the camshaft by hand.  It is possible to have upwards of 360 

(1 sample per degree) different data files for one condition of rotor speed, flow rate, and 
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block orientation when measuring static whirl but for the case of this experiment only 72 

data points (1 sample per 5 degrees) were taken around the seal circumference. 

 

 When computation is necessary, MatLab is used to process the raw data into manageable 

forms for Tecplot.  MatLab m-files are utilized for programming code to calculate values 

from calibration data, organize the raw data into phase cycles, and finally output text files 

which are plotted in Tecplot.  Before beginning any data processing, it is important to 

insure that the proper directories are referenced within the MatLab m-files; otherwise, the 

program will not yield any results.  It is useful to keep all raw data in a single folder that 

can be referenced as the current directory (cd ‘directory’).  If no current directory is 

given, MatLab looks for files to load in the directory that the MatLab program is saved.  

Files from this experiment were saved within two directories: E:\3600data and 

E:\1800data for 3600RPM and 1800RPM data sets, respectively.  Additional folders 

contained within these directories further divides the data into an organized matrix, but it 

is not necessary to divide raw data for proper functionality.  All that is necessary is to 

insure that MatLab ‘looks’ in the right place to find the raw data. 

 

MatLab offers a wide range of toolboxes and commands that assist in programming for 

engineering and mathematical purposes.  The most useful purpose of MatLab is that 

mathematical programs and subroutines can be written easily for a variety of data 

calculations.  In this experiment, MatLab is used to: 

1. Identify cycles and count the number of samples per cycle 

2. Organize data into matrices by which phase averaging can occur 

3. Calculate pressures and positions with use of calibration equations 

4. Calculate the phase averaged wall-pressure distributions, mean downstream 

pressures, and component forces of the seal 

5. Collect data into text files which can be plotted with Tecplot 
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Contours.m is modified to include desired text files to be ensemble averaged for 

conditions of dynamic whirl.  Contours.m is comprised of two internal programs, 

Cycles.m and Values.m, which should be checked for consistency before computing 

results.  Cycles.m is a subroutine which uses a trigger (Channel 0) to divide the text file 

into cycles to be phase averaged.  Values.m is a subroutine which takes values from 

Cycles.m and applies the calibration numbers to the voltage data and defines additional 

variables for the Sommerfeld Journal Coeffficients.  Values.m should be checked for 

consitency with calibration equations before running; however as of this time multiple 

calibration curves cannot be supported.  Only one set of calibration numbers for each port 

is supported at this time.  Users should also check the Sommerfeld Journal Bearing 

equation constants to ensure that the proper radius, clearance, viscosity, and rotor speed 

will be used in the calculation of the pressure coefficient (Cp).  Each file is loaded into the 

MatLab workspace by Contours.m where the Cycles.m and Values.m subroutines are 

carried out.  Then all the data for each test run is saved separately as a MatLab workspace 

file (.mat) so that data for mean pressures, positions, and percentage cycle can be loaded 

for future calculations.  Finally, Individuals.m outputs text files for each condition of 

dynamic whirl, so that a Tecplot carpet plot can be created; however Individuals.m must 

be modified to load MatLab workspace files (.mat) for particular whirl frequencies and 

flow rates.  In other words, Individuals.m tabulates and saves variables from each block 

orientation for a specific whirl ratio, flow rate, rotor speed combination.  For example, 

when all the data for Re=24000, Ta=3300, and β=0.3 have been collected from the seven 

block orientations; Individuals.m is used to collect the data from each test run.  In all, 

there are 40 different combinations (Figures B1-40) for dynamic whirl. 

 

Rotordynamic Coefficients 

The rotordynamic coefficients are calculated for each operating condition by curve fitting 

the equations defined by Childs (1983) with the x- and y-component forces on the rotor 

seal.  The component forces are found by integrating the phase averaged pressure 

distributions.  Coefficient1.m and Coefficients2.m are used in conjunction with Rotor.m 

to determine the relevant data for each port, find the component force per unit 

circumference, then find the overall component forces with data for the downstream 
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positions.  Integration for the rotordynamic coefficients it not a full integration but 

instead is a summation of the components of the pressures about the seal.  The numbers 

which MatLab calculates are input into Excel where the forces are formatted to fit within 

the parameters defined by Childs. 
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RESULTS AND DISCUSSION 

 

 

Phase Averaged Wall-Pressure Distributions 

The classical equation for journal bearings is the Sommerfeld equation.  For the purposes 

of comparison, a non-dimensional pressure coefficient in the form of Sommerfelds’ 

classic equation is used. 

2

2*

6 R
cPCP µω

=  

The difference between the phase averaged pressure and overall mean pressure 

characterizes the amount of deviation of each point around the circumference of the seal 

from the mean pressure at each downstream position. 

PPP −=*  

Each circumferential position has a particular value for *P  from the formula above.  

First, the mean pressure ( )P  for each axial position is calculated by taking the mean of all 

the data taken by each Kulite pressure transducer at the specified running conditions.  

Then, MatLab calculates the phase averaged pressure ( )P  for each circumferential 

position at each axial position.  *P  is then calculated as the difference of the phase 

averaged pressure and the mean pressure which account for deviations from the mean 

pressure at each circumferential position. 

 

Rotordynamic Coefficients 

The procedure for calculating the rotordynamic coefficients for each rotor speed and flow 

rate combination is outlined in Childs’ (1983) analysis of turbulent seals and is based on 

Hirs’ Lubrication Equation.  The phase averaged pressure distribution at discrete points 

along the seals’ circumference and downstream seal position are measured, so the forces 

on the rotor in the x- and y-directions (origin at rotor/stator center when eccentricity is 

zero) are calculated by evaluating: 

∫−= AdpF
vr
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The x- and y-components of the force on the rotor can therefore be calculated using: 

∫ ∫−=
π
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The seal geometry dictates the bounds of the integration to find the component forces.  

Since the pressure data are recorded at discrete spatial locations, the integrals become 

summations of equal arc length of the circumference and equal divisions of the distances 

between pressure tap locations. 
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The rotordynamic coefficients ( )mMcCkK ~,~,~,~,~,~  are calculated by plotting the 

coefficients of force (right-hand side of the following equations) with respect to whirl 

ratio and finding the least squared curve fit: 
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The friction-loss coefficient (λ ) in the previous equations is defined as: 
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But can be reduced to available variables: 
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Effects of Whirl Ratio, Taylor Number, and Reynolds Number on the Phase 

Averaged Pressure Distributions 

The contour plots for the phase averaged wall-pressure distributions for Ta=3300 and 

Ta=6600 are discussed in the following section.  Whirl ratios of 0.1 to 1.0 were measured 

for flow rates corresponding to Re=24000 and Re=12000 and an eccentricity ratio of 

25%.  Previous research by Johnson, Robic, and Suryanarayanan tested 50% eccentricity 

but comparisons will be made to their measurements.  Positive whirl occurs when the 

rotor and seal rotate in the same direction.  The contours are presented as functions of the 

Coefficient of Pressure (Cp) which is derived as a variation of the Sommerfeld Journal 

Bearing equation.  The remaining axes, shown as % cycle and z/L, represent the 

percentage cycle and normalized downstream position for the annular seal; where 0% 

cycle represents the maximum clearance location and 50% cycle represents the minimum 

clearance location.  The “pressure” side of the seal occurs within the range of 0-50% 

cycle as the clearance decreases and the mean pressures increase along the circumference 

of the seal.  The “suction” side of the seal occurs within the range of 50-100% cycle as 

the clearance increases and the mean pressures decrease along the circumference of the 

seal.  The phase averaged wall-pressure distributions aid in understanding the complex 

fluid motions within the seal.  All flow conditions were conducted with zero pre-swirl. 

 

Ta=3300, Re=24000, ε=25%, β=0.1 to 1.0 

Figures B1-19 (odd) show the phase averaged wall-pressure distributions for a rotor 

speed of 1800RPM and a flow rate of 4.86 L/s; corresponding to a Ta=3300 and a 

Re=24000.  Similar flow conditions were reported by Suryanarayanan (2003) but for 

ε=50%.  When the whirl ratio is 0.1, the pressure distribution is marked by azimuthial 

pressure bands axially spaced z/L=0.175 apart with measured pressures ranging from 

±2.5.  The pressure bands continue to grow in size and remain equally spaced axially as 

the whirl ratio increases to 0.8.  When the whirl ratio reaches 0.8 the pressure bands lose 

dominance to axial striations.  San Andrés (2000) notes that centrifugal instabilities 

similar to that recorded are characterized by Taylor-Gortler vortices in which circular 

flows perpendicular to the transit velocity occur within the flow annulus.  It is 

hypothesized that for β>0.7, the average circumferential velocity, and circumferential 
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Reynolds number, increases due to the inner rotor pushing fluid particles which 

effectively increase the Taylor number above the Taylor-Gortler instability range.  Flow 

disturbances similar to the measured azimuthial pressure bands were recorded by 

Suryanarayanan.  Increasing whirl caused the vortices to disappear for β=0.2, however 

reappear at β=0.3.  When the vortices reappear at a whirl ratio of 0.3 the number of 

pressure disturbances decreases axially as the vortices grow and move about the 

circumference of the seal.  The azimuthal movement of the vortices at β=0.3 shows that 

the whirling of the seal begins to effect the downstream motion of the fluid and that 

circulation might be occurring along the circumference of the seal.  As the whirl ratio 

increases above 0.3, the size of the vortices continues to increase and move about the 

circumference of the seal.  San Andrés notes that Taylor-Gortler vortices are functions of 

the Taylor number and Reynolds number; however it appears that the whirl ratio does 

have an affect.  The switch in pressure distribution at the seal exit appears to occur above 

β=0.7, which is similar to that reported by Suryanarayanan (2003) and Robic (1999).  

The maximum variation in pressure occurs when β>0.7 and ranges between ±3.  When 

the whirl ratio reaches 0.9, axial striations begin to emerge along the 50% cycle position.  

These might be a manifestation of the phenomenon measured by Robic which were 

attributed to longitudinal vortices and conical motions about the seal center. 

 

Table B1 shows the axial pressure drop across the seal for conditions of whirl from 0.1-

1.0 for Ta=3300 and Re=24000.  The disappearance of the azimuthial pressure bands at 

β=0.2 is accompanied by a 4% increase in the pressure drop across the seal from β=0.1.  

When the azimuthial pressure bands return at β=0.3 the pressure drop decreases by 8% 

from β=0.2.  The axial pressure difference remains stable until the switch in the pressure 

distribution occurs at β=0.8 at which point the pressure difference increases by 7%.  With 

further increases in the whirl ratio the axial pressure difference continues to increase.  It 

appears that the azimuthial pressure bands act to lower the pressure drop while more 

developed flow conditions seen at whirl ratios greater than β=0.8 act to increase the seal 

pressure drop. 
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Figure B41 shows the seal orbit for Ta=3300 and Re=24000.  The orbit follows a similar 

path for whirl ratios 0.1-1.0 ranging between ±0.01in but the orbits do not match up 

exactly.  From the graph, it appears that the orbits begin to change as the whirl ratio 

increases from 0.1 to 1.0.  This might be due to an inertial effect of the modified stator 

(Figure D6) and plunger (Figure D8). 

 

Ta=3300, Re=12000, ε=25%, β=0.1 to 1.0 

Figures B2-20 (even) show the phase averaged wall-pressure distributions for a rotor 

speed of 1800RPM and a flow rate of 2.43 L/s; corresponding to  Ta=3300 and a 

Re=12000.  The pressure distributions for the Re=12000 case are very similar in structure 

to that of the Re=24000 case; however the azimuthial pressure bands so prevalent in 

Figures B1-19 (odd) are not as pronounced.  Taylor-Gortler vortices are already known to 

be functions of the Reynolds and Taylor number; however, as previously mentioned the 

whirl ratio has a significant affect.  The pressure distributions remain relatively constant 

until the pressure distribution flips at β=0.7 (Figure B14), at which point the pressure 

distribution for the Re=12000 case looks almost identical to that of the Re=24000 case 

expect for the difference in magnitude.  Peak pressure measured ranges between ±1.5 for 

all whirl ratios.  The axial striations noticed in the Re=24000 case are more prevalent in 

the Re=12000 case.  As the whirl ratio increases from 0.9 and 1.0 the region of maximum 

pressure begins to grow along the entire axial length of the seal about the location of 

minimum clearance.  The Taylor-Reynolds effect mentioned by San Andrés accounts for 

the dynamic appearance of these striations at Re=12000.  When the Reynolds number is 

low there is less flow energy to flush pressure disturbances from the seal annulus.  

Similar striations can be seen in the low pressure region between z/L=0.6 and 1.0.  It 

appears as if the striations measured are similar to a breaking wave pattern seen on free 

surfaces where the fluid within the seal is being pushed azimuthally by the inner cylinder 

faster than it can transit through the seal axially.  When considering the plots for 

Ta=3300, Ra=12000 and Re=24000, it appears that there might be a quantifiable number 

made up of the Taylor number and the whirl ratio which characterizes the appearance of 

these pressure bands.  The Reynolds number seems to have only an effect on the 

magnitude of the pressure striations (Figures B19 and B20). 
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The axial pressure differences for Ta=3300 and Re=12000 can be found in Table B1 of 

Appendix B.  The relatively constant pressure distributions for whirl ratios 0.1-0.7 leads 

to mean pressure distributions which do not fluctuate more than 5%.  When the 

appearance of axial striations is measured at β=0.8, the axial pressure difference increases 

by 10% from β=0.7.  Further increases in the whirl ratio lead to increases of 16% and 

11% for β=0.9 and β=1.0, respectively.  For the case of Re=12000 mean pressure 

differences range between 56-65% less than that of similar whirl ratios for Re=24000. 

 

Figure B42 shows the whirl orbit for Ta=3300 and Re=12000.  The orbit for the seal is 

relatively constant with some deviation by the whirl cases higher than β=0.7.  The orbits 

for the Re=12000 are very similar in size and character to the orbits for Re=24000.  

 

Ta=6600, Re=24000, ε=25%, β=0.1 to 1.0 

Figures B21-B39 (odd) show the phase averaged wall-pressure distributions for a rotor 

speed of 3600RPM and a flow rate corresponding to a Re=24000 and Ta=6600.  The 

major difference between the plots of Re=24000 and Re=12000 for Ta=6600 is the 

difference in magnitude.  The azimuthial pressure bands observed in the Ta=3300 

(1800RPM) case is not as pronounced for the Ta=6600 cases.  The Taylor-Gortler 

vortices do not appear in Figures B21-B39 (odd), probably due to the fact that the Taylor 

number is above the range where these vortices occur.  The phase averaged wall-pressure 

measurements are relatively uniform until a whirl ratio of 0.4; indicating minimal forces 

exerted by the fluid upon the rotor.  At β=0.5, the axial pressure striations noted by Robic 

to be longitudinal pressure bands begin to emerge.  These bands grow in magnitude as the 

whirl ratio increases to 1.0 while it appears that the bands migrate from 60% cycle to 

30% cycle as the whirl ratio is increased from β=0.5 to β=1.0.  A large pressure region at 

80% for β=0.7 which grows and ebbs as the whirl ratio increases to β=1.0 appears to be 

multiple stacked pressure striations.  In other words, the high pressure region at β=1.0 is 

constructed of overlapping axial striations.  A low pressure region of similar axial and 

azimuthial size was also recorded 50% cycle ahead of each high pressure region.  The 

low pressure regions are suction zones where the inner cylinder pulls on fluid particles.  
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However, the low pressure regions are not characterized by pressure striations.  The 

maximum pressure differences occur when the whirl ratio reaches 0.7.  At this point, the 

measured pressures range around ±6.  The switch in pressure between the seal inlet and 

exit occurs above β=0.5.  This is similar to the measurements of Suryanarayanan; 

however the research for Suryanarayanan stops at a whirl ratio of 0.5. 

 

The axial pressure drop can be found in Table B1 for Ta=6600 and Re=24000.  The lack 

of azimuthial pressure bands again acts to decrease fluctuations in the seal pressure drop 

to less than 1% for whirl ratios below 0.5.  Upon the emergence of axial pressure 

striations, the pressure drop increases by 8% and continues to increase by approximately 

10% for each increase of 0.1 in whirl ratio.  Similar to the cases of Re=24000 and 

Re=12000 for Ta=3300, the appearance of axial pressure striations increases the 

measured pressure differential across the seal and the growth of the axial striations 

accompanies a further increase in the seal pressure drop.  When the whirl ratio reaches 

1.0, however, the pressure difference across the seal drops by 12% from β=0.9 as the 

regions of high and low pressure dissipate and decrease in size by approximately 50% 

which could be a function of the orbit change of the seal. 

 

The seal orbit is presented in Figure B43 for Ta=6600 and Re=24000.  Previous research 

with this set-up, conducted by Suryanarayanan, only measured flow fields for whirl ratios 

up to β=0.5 for Ta=6600.  The measurements for β>0.6 are new with this test set-up and 

it appears that the whirl and eccentricity setting unit encounters problems when 

measuring flow fields of high whirl ratios.  The orbit becomes large and disfigured when 

compared to that of β≤0.5.  As mentioned previously, this might be an effect of inertial 

forces of the modified stator or could be the tension belt stretching and changing the 

phase between the plungers.  The static eccentricities were checked to verify that the 

mechanical components had not slipped.  Therefore, the orbit variation is due to the 

dynamics of the shaker mechanism, the flow field, or a combination of the two.  The 

irregular orbits might also be a manifestation of the phase averaging method.  For the 

cases of Ta=3300, the seal is traveling at a velocity in which the seal position measured is 

very similar for each point around the circumference.  Figure B43 shows that the whirl 
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orbit up to β=0.5 is regular and elliptical like that of Ta=3300 for Ta=6600.  However, 

when the whirl ratio increases to 0.6, the measured seal positions are not similar around 

the circumference.  Therefore, a more discreet set of data is being phase averaged.  In 

other words, when the Taylor number is low the seal is traveling about the seal slow 

enough that when measurements are taken at each position around the seal circumference 

similar values for the seal position are being measured for each cycle of the phase 

averaging.  When the Taylor number increases to 6600 and the whirl ratio is greater than 

0.5, the measured seal position for each cycle of the phase average is more random and 

therefore a larger deviation between cycles for the seal position is measured.  These 

deviations in seal position, when averaged, give an orbit that is not similar to that of 

Ta=3300. 

 

Ta=6600, Re=12000, ε=25%, β=0.1 to 1.0 

Figures B22-40 (even) show the phase averaged pressure distribution for Re=12000 for 

the case of 3600RPM.  When looking at the plots as a whole it is noticed again that the 

only difference between the Re=24000 and Re=12000 cases is a difference in magnitude.  

Large regions of high and low pressure at the seal exit are recorded.  These regions grow 

in magnitude and circumferential size as the whirl ratio increases from 0.2 to 0.5.  The 

axial striations observed in the Ta=3300 case for Re=12000 start to emerge at a whirl 

ratio of 0.5, but dissipate at a whirl ratio of 0.6.  These striations appear again as the whirl 

ratio increases to 0.7 and continue to grow along the axial length of the seal as the whirl 

ratio increases to 1.0.  In contrast to Ta=3300, the striations do not remain at the same 

position on the seal throughout their appearances; instead migrate from a position of 55% 

cycle to 35-40% cycle as the whirl ratio increases above 0.6.  However, in the case of 

Ta=6600 the axial pressure bands begin to drift apart as the whirl ratio increases to 1.0.  

This affect is more noticeable for the Re=12000 case than for the Re=24000 case.  The 

switch in the pressure and suction zones occurs earlier for the Ta=6600 cases as the 

regions of high and low pressure begin migrating about the circumference of the seal at 

lower relative whirl ratios.  When the whirl ratio reaches 0.5, the switch of the pressure 

side and suction side is completed and remains as the whirl ratio continues to increase to 

1.0. 
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Values for the axial pressure drop across the seal is tabulated in Table B1 for Ta=6600 

and Re=12000.  Similar to the case of Re=24000 and Ta=6600, the axial pressure drop 

remains constant throughout the range of whirl ratios 0.1-0.3.  Upon the appearance of 

axial striations, the axial pressure distribution increases by 17% as the whirl ratio 

increases from 0.3 to 0.4.  An increase of 43% occurs in the seal pressure drop at β=0.7 

which is followed by a 37% decrease.  And as the whirl ratio increases from 0.8 to 1.0 the 

pressure drop continues to increase and decrease by 39% and 18%, respectively.  Similar 

to Ta=6600 and Re=24000, the seal pressure difference drop decreases as regions of high 

and low pressure decrease in size by approximately 50% when the whirl ratio increases 

from 0.9 to 1.0. 

 

Figure B44 shows the seal orbit for Ta=6600 and Re=12000.  The orbits for Re=12000 

are similar to that of Re=24000 for Ta=6600.  The orbits start tight and uniform up to a 

whirl ratio of 0.5 after which the orbit changes significantly.  This is the first time that 

whirl orbits were measured with a proximeter probe and it appears that β=0.5 is the upper 

limit for consistent whirl orbits without modifications to the eccentricity and whirl setting 

unit. 

 

The pressure contours vary in magnitude for Ta=3300 and Ta=6600 between ±3 and ±6, 

respectively.  The greatest pressure measurements occur when the whirl ratio is 1.0 for all 

Taylor number and Reynolds number combinations.  The largest pressure contour occurs 

when the Taylor Reynolds ratio is 3.63 for Ta=6600 and 7.273 for Ta=3300 or when the 

Reynolds number is 24000 for β=1.0. 

 

Effects on Childs Rotordynamic Coefficients’ due to Reynolds Number and Taylor 

Number 

The least squared fit for the rotordynamic coefficients varied depending on the calculated 

force coefficient and the operating conditions.  Most curve fits had correlation 

coefficients greater than 0.6, however the curve fits for conditions relating to the x-

component force for Ta=3300 Re=24000 and Ta=6600 Re=12000 as well as the 
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condition relating to the y-component force for Ta=3300 Re=12000 did not.  Overall, the 

calculated forces were random up to β<0.5 due to wall-pressure distributions which are 

relatively flat and have no defined structure (Figures C1-C7 odd).  The procedure defined 

by Childs (1983) to determine the rotordynamic coefficients is only valid for small 

circular motions about the seal center and in the case of this experiment, the whirl orbits 

are neither.  The seal orbits are elliptical for all test cases (Figures B41-B44) with large 

oscillations in the whirl orbit at Ta=6600 (Figures B43 and B44) most prevalent when the 

whirl ratio increases above 0.5.  Due to the non-circular orbit, Childs (1983) analysis 

cannot be used to find the rotordynamic coefficients at this time.  Steps must be taken to 

ensure that the measured pressure field occurs within a whirling seal where small 

oscillations occur about the seal center; otherwise Childs analysis is not valid and will not 

obtain meaningful results.     
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CONCLUSION 

 

 

This work presents an effort to explore the effect of whirl ratio, Taylor number, and 

Reynolds number on the phase averaged wall-pressure distributions and rotordynamic 

coefficients for a 25% eccentric whirling annular seal.  The test section was designed first 

for stationary flow conditions then further modified to simulate fractional whirl ratios.  

Testing was performed at Re=24000 and Re=12000 for Ta=3300 and Ta=6600.  Positive 

whirl ratios (0-1.0) were tested.  Measurements were made by piezoresistive pressure 

transducers and the results were calculated by MatLab.  

 

Figures B1-B40 show the phase averaged wall-pressure distributions for Ta=3300 and 

Ta=6600.  Two flow rates were measured for whirl ratios 0.1-1.0.  The phase averaged 

wall-pressure distribution for Ta=3300 and Re=24000 show signs of Taylor-Gortler 

vortices from a whirl ratio of 0.1 to 0.7.  The vortices grow in size and azimuthally move 

around the seal with increasing whirl ratio.  When the whirl ratio reaches a point where 

the annular seal is rotating at 1800RPM, the Taylor-Gortler vortices disappear and 

longitudinal vortices appear in the pressure distribution.  It is believed that the whirl ratio 

and flow rate plays a role in determining the appearance of Taylor-Gortler vortices or 

longitudinal vortices and can be quantified as combination of the Taylor number, whirl 

ratio and Reynolds number.  The maximum pressures measured for Ta=3300 occurs at a 

whirl ratio of 1.0 for both Re=24000 and Re=12000; ±3 and ±1.5, respectively. 

 

The phase averaged wall-pressures for Ta=6600 did not yield measurements of Taylor-

Gortler vortices for whirl ratios 0-0.4 which were as pronounced as in the Ta=3300 case, 

however the appearance of longitudinal vortices did appear at β=0.5, or when the whirl 

speed reached 1800RPM.  The longitudinal vortices moved about the seal as the whirl 

ratio increased further; changing azimuthally by 30-35% of a cycle.  The pressure 

distributions showed the same dependence on Reynolds number where the pressure 

fluctuations for Re=12000 and Re=24000 were exactly half of each other; ranging from 

±3 and ±1.5 for β≤0.4 and ±6 and ±3 for Re=24000 and Re=12000, respectively.  The 
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“switch” in the pressure distribution whereby the pressure and suction sides of the seal 

flip from the seal entrance to seal exit occurred at β=0.7 for Ta=3300 and β=0.4 for 

Ta=6600, this concurred with previous investigations. 

 

Future investigations should be focused towards determining the best way to obtain 

reliable fits for the rotordynamic coefficients including analysis for non-circular orbits 

and how to obtain circular orbits in the test facility.  The mechanisms behind Taylor-

Gortler and longitudinal vortices can also be investigated for whirling annular seals 

through CFD modeling of the seal annulus and measurements of the wall-pressure 

distributions for additional Taylor numbers and Reynolds number combinations.  

Simulations can aide in determining the role of Taylor number, Reynolds number, and 

whirl ratio in the appearance of Taylor-Gortler and longitudinal vortices without the high 

cost of physical experimentation.  Finally, determining a way to use programs developed 

in MatLab to instantaneously plot the normalized mean pressure distributions, phase 

averaged wall-pressure distributions and rotordynamic coefficients would be a 

challenging goal for future study. 
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APPENDIX A 

 

TEST SECTION DIAGRAMS AND PHOTOS OF TEST FACILITY 
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Figure A1: ITT 734 Plus Centrifugal Pump with Protective Shielding 

 
 
 

 
Figure A2: Supply Tank, Water Filter, and Centrifugal Pump 
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Figure A3: Heat Exchanger and Water Filter 

 
 
 

 
Figure A4: Masonelian Valve 
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Figure A5: Overall Exterior View of Seal Rig Test Section 

 
 
 

 
Figure A6: Cross Sectional View of Seal Test-Rig 
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Figure A7: Seal Rig Motor 

 
 
 

 
Figure A8: 1/2 HP Oil Circulation Pump 
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Figure A9: Oil Cooling and Circulation System 

 
 
 

 
Figure A10: Back-Pressure Regulator and Optical Spin Gauge 
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Figure A11: Piezoresistive Pressure Transducer Mounting Brass Block 

 
 
 

 
Figure A12: Instrumentation for Data Collection 
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Figure A13: AutoCAD Sketch of Test Rig with Whirl Set-up 

 
 
 

Table A1: Axial Downstream Positions of Kulite Transducers on the Brass Block 
Kulite Positions (z/L) 

  A B C D 
-0.29429 -0.23429 -0.12429 -0.07643 
0.035714 0.095 0.224286 0.286429 
0.407143 0.815714 0.573571 0.635714 T

op
 

0.767857  0.925714 0.979286 
      

0.033571 -0.01714  -0.17857 
0.390714 0.705  0.163571 
0.764286 1.033571  0.512857 

B
ot

to
m

 

1.087857   0.87 
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APPENDIX B 

 

PHASE AVERAGED WALL-PRESSURE DISTRIBUTIONS AND WHIRL 

ORBITS 
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Figure B1: Phase Averaged Pressure (Cp) 

Re=24000, ε=25%, Ta=3300, β=0.1 
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Figure B2: Phase Averaged Pressure (Cp), 

Re=12000, ε=25%, Ta=3300, β=0.1 
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Figure B3: Phase Averaged Pressure (Cp), 

Re=24000, ε=25%, Ta=3300, β=0.2 
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Figure B4: Phase Averaged Pressure (Cp), 

Re=12000, ε=25%, Ta=3300, β=0.2
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Figure B5: Phase Averaged Pressure (Cp), 

Re=24000, ε=25%, Ta=3300, β=0.3 
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Figure B6: Phase Averaged Pressure (Cp), 

Re=12000, ε=25%, Ta=3300, β=0.3 
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Figure B7: Phase Averaged Pressure (Cp), 

Re=24000, ε=25%, Ta=3300, β=0.4 
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Figure B8: Phase Averaged Pressure (Cp), 

Re=12000, ε=25%, Ta=3300, β=0.4 
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Figure B9: Phase Averaged Pressure (Cp), 

Re=24000, ε=25%, Ta=3300, β=0.5 
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Figure B10: Phase Averaged Pressure 

(CP), Re=12000, ε=25%, Ta=3300, β=0.5 
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Figure B11: Phase Averaged Pressure 

(Cp), Re=24000, ε=25%, Ta=3300, β=0.6 
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Figure B12: Phase Averaged Pressure 

(Cp), Re=12000, ε=25%, Ta=3300, β=0.6 
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Figure B13: Phase Averaged Pressure 

(Cp), Re=24000, ε=25%, Ta=3300, β=0.7 
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Figure B14: Phase Averaged Pressure 

(Cp), Re=12000, ε=25%, Ta=3300, β=0.7 
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Figure B15: Phase Averaged Pressure 

(Cp), Re=24000, ε=25%, Ta=3300, β=0.8 
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Figure B16: Phase Averaged Pressure 

(Cp), Re=12000, ε=25%, Ta=3300, β=0.8 
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Figure B17: Phase Averaged Pressure 

(Cp), Re=24000, ε=25%, Ta=3300, β=0.9 
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Figure B18: Phase Averaged Pressure 

(Cp), Re=12000, ε=25%, Ta=3300, β=0.9 
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Figure B19: Phase Averaged Pressure 

(Cp), Re=24000, ε=25%, Ta=3300, β=1.0 
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Figure B20: Phase Averaged Pressure 

(Cp), Re=12000, ε=25%, Ta=3300, β=1.0



50 

 

% Cycle

z/
L

0 0.2 0.4 0.6 0.8 1

-0.2

0

0.2

0.4

0.6

0.8

1 C_p

3
2.5
2
1.5
1
0.5
0

-0.5
-1
-1.5
-2
-2.5
-3

 
Figure B21: Phase Averaged Pressure 

(Cp), Re=24000, ε=25%, Ta=6600, β=0.1 
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Figure B22: Phase Averaged Pressure 

(Cp), Re=12000, ε=25%, Ta=6600, β=0.1 
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Figure B23: Phase Averaged Pressure 

(Cp), Re=24000, ε=25%, Ta=6600, β=0.2 
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Figure B24: Phase Averaged Pressure 

(Cp), Re=12000, ε=25%, Ta=6600, β=0.2 
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Figure B25: Phase Averaged Pressure 

(Cp), Re=24000, ε=25%, Ta=6600, β=0.3 
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Figure B26: Phase Averaged Pressure 

(Cp), Re=12000, ε=25%, Ta=6600, β=0.3 
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Figure B27: Phase Averaged Pressure 

(Cp), Re=24000, ε=25%, Ta=6600, β=0.4 
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Figure B28: Phase Averaged Pressure 

(Cp), Re=12000, ε=25%, Ta=6600, β=0.4 
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Figure B29: Phase Averaged Pressure 

(Cp), Re=24000, ε=25%, Ta=6600, β=0.5 
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Figure B30: Phase Averaged Pressure 

(Cp), Re=12000, ε=25%, Ta=6600, β=0.5 
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Figure B31: Phase Averaged Pressure 

(Cp), Re=24000, ε=25%, Ta=6600, β=0.6 
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Figure B32: Phase Averaged Pressure 

(Cp), Re=12000, ε=25%, Ta=6600, β=0.6 
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Figure B33: Phase Averaged Pressure 

(Cp), Re=24000, e=25%, Ta=6600, β=0.7 
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Figure B34: Phase Averaged Pressure 

(Cp), Re=12000, ε=25%, Ta=6600, β=0.7 
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Figure B35: Phase Averaged Pressure 

(Cp), Re=24000, ε=25%, Ta=6600, β=0.8 
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Figure B36: Phase Averaged Pressure 

(Cp), Re=12000, ε=25%, Ta=6600, β=0.8 
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Figure B37: Phase Averaged Pressure 

(Cp), Re=24000, ε=25%, Ta=6600, β=0.9 
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Figure B38: Phase Averaged Pressure 

(Cp), Re=12000, ε=25%, Ta=6600, β=0.9 
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Figure B39: Phase Averaged Pressure 

(Cp), Re=24000, ε=25%, Ta=6600, β=1.0 
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Figure B40: Phase Averaged Pressure 

(Cp), Re=12000, ε=25%, Ta=6600, β=1.0 
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Figure B41: Seal Orbit in mils 

(Ta=3300, Re=24000) 

 
Figure B42: Seal Orbit in mils 

(Ta=3300, Re=12000) 
 
 
 

 
Figure B43: Seal Orbit in mils 

(Ta=6600, Re=24000) 

 
 
 

 
Figure B44: Seal Orbit in mils 

(Ta=6600, Re=12000)
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Table B1: Pressure Drop across Seal [psi] 

 Operating Conditions 
Whirl 
Ratio 

1800RPM 
Re=24000 

1800RPM 
Re=12000 

3600RPM 
Re=24000 

3600RPM 
Re=12000 

0.1 4.4798 1.5965 6.9741 2.2486 
0.2 4.6551 1.6399 7.0035 2.3702 
0.3 4.3211 1.6363 6.9073 2.5845 
0.4 4.3499 1.5924 7.1049 2.9380 
0.5 4.2599 1.5366 7.6940 3.4459 
0.6 4.2022 1.4839 7.9956 3.6662 
0.7 4.1693 1.4677 9.0794 5.2440 
0.8 4.4699 1.6092 10.5021 3.3077 
0.9 4.5367 1.8714 11.1691 4.5827 
1.0 4.7470 2.0829 9.7448 3.7275 
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APPENDIX C 

 

ROTORDYNAMIC FORCE COEFFICIENT PLOTS
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Figure C1: Rotordynamic Coefficient 

of Force; 0.1 ≤ β ≤ 1.0 (Ta=3300, 
Re=24000) 

 
 

 
Figure C2: Rotordynamic Coefficient 
of Force; β ≥ 0.6 (Ta=3300, Re=24000) 
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Figure C3: Rotordynamic Coefficient 

of Force; 0.1 ≤ β ≤ 1.0 (Ta=3300, 
Re=12000) 

 
 
 
 
 

 
Figure C4: Rotordynamic Coefficient 
of Force; β ≥ 0.8 (Ta=3300, Re=12000) 
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Figure C5: Rotordynamic Coefficient 

of Force; 0.1 ≤ β ≤ 1.0 (Ta=6600, 
Re=24000) 

 
 

 
Figure C6: Rotordynamic Coefficient 
of Force; β ≥ 0.6 (Ta=6600, Re=24000) 
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Figure C7: Rotordynamic Coefficient 

of Force; 0.1 ≤ β ≤ 1.0 (Ta=6600, 
Re=12000) 

 
 
 
 
 

 
Figure C8: Rotordynamic Coefficient 
of Force; β ≥ 0.6 (Ta=6600, Re=12000) 
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APPENDIX D 

 

AUTOCAD DRAWINGS OF WHIRL AND ECCENTRICITY SETTING UNIT 
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Figure D1: Whirl Shaft 
 
 
 

 

Figure D2: Proximity Probe Adaptor 
 
 
 

 

Figure D3: Whirl Cam 
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Figure D4: Pillow Block 
 
 
 

 

Figure D5: Cam Housing 
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Figure D6: Modified Stator 
 
 
 

 

Figure D7: Modified Housing 
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Figure D8: Plunger 



65 

 

VITA 

 

Name:   Domenic Cusano 

Address: IRC North America LP, 10497 Town & Country Way Suite 800, 

Houston, TX  77024 

Email Address: cusano13@yahoo.com 

Education: B.S., Mechanical Engineering, Texas A&M University, College 

Station, May 2004 


	INTRODUCTION
	LITERATURE REVIEW
	Fluid Flow Investigations
	Rotordynamic Characteristics Investigations

	EXPERIMENTAL FACILITY
	Water Supply System
	Seal-Motor Rig Test Section
	Instrumentation and Computation
	Eccentricity and Whirl Setting Unit

	EXPERIMENTAL PROCEDURE
	Measurements
	Computations
	Phase Averaged Wall-Pressure Distributions
	Rotordynamic Coefficients


	RESULTS AND DISCUSSION
	Phase Averaged Wall-Pressure Distributions
	Rotordynamic Coefficients
	Effects of Whirl Ratio, Taylor Number, and Reynolds Number o
	Effects on Childs Rotordynamic Coefficients’ due to Reynolds


	CONCLUSION
	REFERENCES
	APPENDICES
	VITA



