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ABSTRACT 

 
Optimal Dimensionless Design and Analysis of Jet Ejectors as Compressors and Thrust 

Augmenters. (May 2006) 

Ganesh Mohan, B.Tech, Indian Institute of Technology Madras, India 

Co-Chairs of Advisory Committee: Dr. Othon K. Rediniotis 
                                        Dr. Luis San Andres 

 
 
 

A jet ejector may be used as a compressor or to enhance thrust of watercraft or aircraft. 

Optimization of jet ejectors as compressors and thrust augmenters was conducted using 

the software GAMBIT (Computer Aided Engineering (CAE) tool for geometry and 

mesh generation) and FLUENT (Computational Fluid Dynamics (CFD) solver kit). 

Scripting languages PYTHON and SCHEME were used to automate this process.  

The CFD model employed 2D axis symmetric, steady-state flow using the ε−k  

method (including wall functions) to model turbulence. Initially, non-dimensionalization 

of the jet ejector as a gas compressor was performed with respect to scale, fluid, and 

operating pressure. Surprisingly, rather than the conventional parameters like Mach or 

Re number, the results showed a completely new parameter (christenedGM - Gauge 

Mach) that when kept constant will result in non-dimensionalization. 

Non-dimensionalization of a jet ejector for watercraft propulsion was conducted 

using 2D axis symmetric, steady-state flow modeling using the ε−k method (including 

wall functions).  It showed consistent results for the same velocity ratio ( r ) of nozzle 

velocity to free-stream velocity for different scales, fluids, and ambient pressures. 
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Optimization studies showed that there is an increase in thrust of ~5% when 

r ≈10. The increase is more for larger r  values. Beyond r ≈15, where the percentage 

increase in thrust reaches 15%, there is not much appreciable change in thrust. At r ≈65, 

the thrust enhancement peaks at ~25%, but this large r is not practical. 
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NOMENCLATURE 

 
             Non-dimensional pressure at any non-dimensional location on the jet ejector pC

                  (dimensionless) 

              Static pressure at any non-dimensional location on the jet ejector (Pa) sP

              Static pressure at outlet of jet ejector (Pa) oP

 pρ             Average density of propelled flow at inlet (kg/m 3 ) 

              Average velocity of propelled flow at inlet (m/s) pv

 X              Non-dimensional x-axis (dimensionless)    

 x               Real x-axis (m) 

               Length of jet ejector (m) L

mGM         GM for motive flow at nozzle of jet ejector (atm) 

msP             Static pressure of motive flow at nozzle (Pa) 

mM            Mach number of motive flow at nozzle (dimensionless) 

pGM          GM for propelled flow at inlet of jet ejector (atm) 

psP              Static pressure for propelled flow at inlet (Pa) 

pM             Mach number of propelled flow at inlet (dimensionless) 

             Diameter of propelled flow (m) pD

             Diameter of nozzle of the jet ejector (m) nD

              Diameter of the throat of jet ejector (m) tD

   



  xv

              Diameter of the outlet of the jet ejector (m) oD

              Position of the throat and nozzle of the jet ejector (m) tX

            Momentum of nozzle (N) nM

              Velocity of nozzle (m/s) nV

 ρ              Density of fluid (kg/m )       3

             Area of cross section of nozzle = (m ) nA 4/2
nDπ 2

             Static pressure of nozzle (Pa) nP

           Net force acting on a free body diagram (N) netF

           Net force acting on the outer wall of the nozzle in the direction of thrust (N) woF

           Net force acting on the inner wall of the nozzle in the direction of thrust (N) wiF

            Total force acting on the outer wall of the nozzle in positive x-direction (N) wF

 1T             Thrust of the nozzle jet without the ejector shroud (N) 

 T              Thrust of the nozzle jet with the ejector shroud around it (N) 

             Net thrust acting on the walls of the ejector shroud (N) nT

            Total thrust from the surfaces of Jet ejector (inner-outer walls, nozzle wall) (N) sT

 DC           Coefficient of drag for the outer surface of the nozzle ~ 0.04 for a smooth 

                 surface (dimensionless) 

stP             Static pressure at any given location in the flow domain (Pa) 

P∞             Ambient pressure for the flow domain (Pa) 

P              Power of the nozzle jet (W) 

   



  xvi

.
m              Mass flow rate of nozzle jet (kg/s) 

v               Velocity of nozzle jet (m/s) 

pA             Area of the propeller equivalent to cross-sectional area of nozzle (m ) 2

 

 

 

   



  1

INTRODUCTION 

General 

A jet ejector is a fluid dynamic pump. It pumps a low-energy secondary fluid using the 

kinetic energy of the primary stream. The pumping is done with no moving parts. Jet 

ejectors have been used in the past century as pumps, compressors, or thrust enhancers. 

Although this technology is old, it is still being pursued with the latest advanced tools to 

improve its performance, of which the most powerful tool is CFD. With more and more 

powerful supercomputers available at relatively economical costs, universities can afford 

them allowing researchers to perform numerical experiments (as they are popularly 

known) at a significant savings of energy, time, and cost compared to physical 

experiments. Many thousands of research papers (journals and conferences) have been 

published in the past two decades using CFD to substitute for the cost of inefficient 

wind-tunnel experiments.  Lately, popular CFD softwares like FLUENT, CFX, and 

STAR-CD have simplified research by replacing the lengthy numerical codes for 

performing robust numerical experiments on a computer screen.   

Although jet ejectors have been applied as thrust enhancers, they have mostly 

been restricted to aircrafts and rockets. They have not been used as thrust boosters for 

watercraft, like cargo ships, oil tankers, submarines, boats, jet skis or powered surf 

boards.  

_____________ 

This thesis follows the style of ASME Journal of Energy Resources Technology. 

   



  2

Any breakthrough made in this field would replace conventional, low-efficiency 

propulsion systems. Hence, with this motive, we decided to take up this challenge. And, 

because water-tunnel experiments are expensive and time consuming, we pursued a 

complete CFD analysis to find the optimal design that would serve this purpose.   

Because dimensionless analysis is the most powerful technique to reduce 

duplication or repetition of efforts to find the optimal design, we perform the analysis for 

jet ejectors used as both compressors and thrust augmenters. For compressors, the flow 

was compressible gas, whereas for thrust augmenters, it was incompressible liquid 

water.  Here we were more interested in the optimal design for augmenting thrusts for 

watercraft. The compressor design was emphasized by Somsak Watanavanavet [1]. The 

dimensionless analysis of compressors reported here can be used by future researchers to 

speed optimization processes for obtaining maximum efficiency. 

 

Literature survey 

Jet ejectors can potentially be used as thrust augmenters in an aerodynamic lifting body 

to create external characteristics that greatly augment aerodynamic lift [2-3]. Ejectors 

have been used on aircraft engines to increase the thrust of a primary propulsive nozzle, 

but also to mix the high-temperature exhaust flow with ambient air to provide lower jet 

noise and plume radiation [4, 5].  

Later researchers identified many possible ways to improve the thrust and 

pumping efficiency. For example, Walter et al. used forced mixer lobes in jet ejector 

designs [6].  
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With advances in science and technology, many new areas were identified for 

their application. Jet ejectors have been used in air-conditioning systems [7], absorption 

systems [8], and also as a heat sink for high-power dissipation electronics [9].  

Although there have been design optimization studies of jet ejectors for rocket-

based systems or compressors [10], there is almost no literature report that shows the use 

of CFD package like FLUENT to completely explore all possible shapes of jet ejectors 

to find the optimal shape that would give maximum thrust for watercraft, like cargo 

ships, submarines, oil tankers, jet skis, or powered surfboards.  

Unfortunately, there is no literature available for the application of jet ejectors as 

thrust boosters for watercraft. This drives us to make a fresh beginning in this field, 

which has remained untapped so far. With no background research materials available, 

we started by performing numerical experiments. We decided to non-dimensionalize and 

find an optimal shape that enhances thrust. Then, we compared the results with 

conventional propulsion systems available for watercraft. 
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JET EJECTOR AS A COMPRESSOR  

General 

This section discusses the details of the design, case setup, and procedures of jet ejector 

used as a compressor.  

 

Design 

A jet ejector, as described in the introductory section, consists of a nozzle placed at the 

center (usually near the throat) of the ejector shroud. Our jet ejector is shown in Figure 

1, Appendix A. 

Figure 1, Appendix A, shows how a jet ejector can be used as a compressor. 

Here, the fluid (air) is propelled through the inlet diameter or propelled diameter ( ) 

with the dragging force exerted by fluid (air) coming out of the nozzle of diameter  

placed at the center of the throat of diameter . Through this process, the fluid is 

compressed and exits through outlet diameter . 

pD

nD

tD

oD

 

Case setup and procedure 

CFD analysis of a jet ejector as compressor can be performed using GAMBIT and 

FLUENT software with 2D axis symmetric, steady-state flow modeling using the ε−k  

method (including wall functions) to model turbulence.  Figure 2, Appendix A, shows 
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how the 2D axis symmetric design looks. For effective simulation in FLUENT, with 

pressure inlet/pressure outlet boundary conditions, the outlet diameter expands into an 

infinite volume (with diameter approximately 2 times the length of jet ejector).  
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DIMENSIONLESS ANALYSIS OF JET EJECTOR AS COMPRESSOR 

General 

This section discusses dimensionless analysis of a jet ejector used as a compressor. It 

shows the definition and analysis of various parameters used for the analysis, including a 

noble parameter which is newly christened as GM (Gauge Mach). Our objective is to 

find a parameter (e.g., Re, Mach) – which when kept constant irrespective of changes in 

scale (e.g., 1×, 1.5×, 2×), fluid (e.g., air, steam, nitrogen), and operating pressure (e.g., 

0.1…1…10 atm) – will ensure the same non-dimensional pressure ( ) at any non-

dimensional location on the jet ejector. In this way, one can eliminate infinite numbers 

of cases and thereby save time and money, before getting into the actual optimization. 

pC

 

Definitions 

1. Non-dimensional pressure 

Non-dimensional pressure is defined as the increase in static pressure at any non-

dimensional location on the jet ejector over the static pressure at the outlet, non-

dimensionalized by the dynamic pressure at the propelled inlet. 

2

2
1

pp

os
p

v

PPC
ρ

−
=                                                                                                        (1) 
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2. Non-dimensional x-axis 

The x-axis is non-dimensionalized with respect to the total length (L) of the jet ejector. 

Figure 3, Appendix A, gives a sketch of compressor design. Hence, the non-

dimensionalized x-axis is defined as 

L
xX =                                                                                                                   (2) 

 

3. Noble parameter, GM 

GM – Newly christened as Gauge Mach, a noble parameter that works for our analysis 

mmsm MPGM =                                                                                                      (3) 

Similarly,   

ppsp MPGM =                                                                                                       (4) 

mGM  and  are the parameters – if when kept constant irrespective of changes in 

scale, fluid, or operating pressure for a given geometrical shape of jet ejector – ensures 

the same non-dimensional pressure  at any non-dimensional location X. 

pGM

pC

 

Analysis 

To arrive at a parameter that influences non-dimensional analysis, we need to play with 

the variables one at a time. Hence, we do the following. 
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1. Different scales of jet ejector with same Mach number 

Table 1, Appendix B, shows data of cases having the same fluid (air) and operating 

pressure (1 atm), but with varying scales (1×, 1.5× and 2×) of the jet ejector for the same 

Mach number of both motive and propelled flow. Mach number is considered because 

these are compressible flows. For our convenience Cp is compared along the walls of the 

jet ejector. Figure 4, Appendix A, shows that for the same Mach number or GM value of 

both motive and propelled flow, non-dimensional pressure, Cp remains same 

irrespective of change in scale.  

Table 2, Appendix B, and Figure 5, Appendix A, provide another example with a 

different Mach and GM values, but with similar conditions. Figure 5, Appendix A, once 

again proves that for the same Mach number or GM value of both motive and propelled 

flow, non-dimensional pressure Cp remains same irrespective of change in scale of jet 

ejector. 

 

2. Different fluids with same Mach number 

Table 3, Appendix B, shows changes in only the fluid (air, steam) while fixing the other 

parameters (scale =1×, operating pressure =1 atm) but with the same Mach number. 

Figure 6, Appendix A, proves that if the Mach or GM value is kept constant, Cp remains 

constant irrespective of change in fluid for a fixed scale and operating pressure. 

Table 4, Appendix B, shows another example with different Mach and GM 

values, but with similar conditions as above. Figure 7, Appendix A, once again proves 
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that if Mach or GM value is kept constant, Cp remains constant irrespective of change in 

fluid for a fixed scale and operating pressure. 

 

3. Different operating pressures with same Mach number 

Table 5, Appendix B, shows the effect of different operating pressures if we keep the 

scale (1×), fluid (air), and Mach number the same. Note that the GM values for these 

cases are totally different from each other. Figure 8, Appendix A, indicates that for the 

same Mach number, Cp does not remain the same for different operating pressures with 

other parameters remaining same. We can also notice that GM values are also different 

for these cases. So, let us try with same GM values at motive and propelled, but for 

different operating pressures with everything else remaining the same. 

 

4. Different operating pressures with same GM values 

Table 6, Appendix B, shows results with different Mach numbers for different operating 

pressures. We find that the GM values once again remain the same. Figure 9, Appendix 

A, shows that when GM values are maintained constant, the Cp values also remain the 

same. The difference at the center of the plot can be attributed to the accuracy of the 

model (course mesh).  

Let us consider another example and at different operating pressure ranges (Table 

7, Appendix B). Here once again, we find that for the same GM value, Figure 10, 
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Appendix A, shows that the Cp remains the same irrespective of change in operating 

pressure. 

 

5. Combination of all three (scale, fluid and operating pressure) for same GM 

values 

Table 8, Appendix B, shows what happens if all three variations (fluid, scale, and 

operating pressure) are combined in one analysis with GM being constant for all at 

motive and propelled flow. Figure 11, Appendix A, again confirms that GM is the only 

valid parameter for non-dimensional analysis of jet ejectors. The small differences in 

Figure 11, Appendix A, are due to numerical error introduced by a coarse mesh. 

Table 9, Appendix B, shows another example with the same GM value, but with 

all other parameters (scale, fluid and operating pressure) being different from the 

previous example. Figure 12, Appendix A, again confirms that when GM is kept 

constant, irrespective of other parameters, Cp remains the same. 

 

Conclusion 

For a given geometrical shape of jet ejector and for given values of GM for both 

propelled and motive flow, then the non-dimensional pressure (Cp) at any non-

dimensional location on the jet ejector remains constant irrespective of scale, fluid, or 

operating pressure. 
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JET EJECTOR AS PROPELLERS 

General 

This section discusses the details of the design, case setup, and procedures of jet ejector 

used as a propeller. 

 

Computational setup and procedure 

Because jet ejectors are axis-symmetric in flow properties, 2D axis-symmetric flow 

modeling has been used. Figure 13, Appendix A, is a schematic of the 2D axis-

symmetric jet ejector model used in our numerical experiments to find the optimum 

shape that maximizes efficiency.  

The jet ejector was meshed in a huge rectangular box in the computational 

domain to perform the 2D axis-symmetric flow simulations using CFD software, 

FLUENT. The geometry meshed in GAMBIT is as shown in Figures 14 & 15, Appendix 

A.  

The boundary conditions as given in FLUENT for this computational domain are 

as follows 

1) Pressure inlet at domain inlet 

2) Pressure outlet at domain outlet 

3) Velocity inlet at the nozzle 
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With the given boundary conditions, an ambient static pressure of 101325 Pa is 

maintained in the computational domain for all the cases set for finding the optimum; 

hence, the static pressure at the nozzle obtained after the simulations will be relative to 

the ambient pressure.  

It was found that convergence is attained soon after 1000 iterations for all cases 

solved using the  method having incompressible flow. It takes almost 2–3 hours of 

computational time in a supercomputer. The mesh was maintained fine with 

approximately 400,000 cells spanning the 2D domain. 

k−∈

 

Rapid creation of cases using journal files (PYTHON) in GAMBIT 

GAMBIT was used to create the geometry and mesh it finely. The process is tedious if 

we have to do it for hundreds of geometries with different dimensions. Journal files 

overcome this tedium. A journal file records every step when creating and meshing 

geometry in GAMBIT. Hence, we can take advantage of this phenomenon by creating a 

clean journal file that only has those dimensions of the geometry to be entered in 

respective command lines. But, it cannot have a well-defined curve connecting those 

dimensions. We connect those nodes to be smooth and pleasant to the naked eye. But, 

we assume that the smoothness is not going to affect the optimized geometry. The 

difference is that we will get an optimized geometry that shows lower increase in thrust 

than possible. In the end, we can rectify that by introducing smoothness in the surface of 

optimized geometry obtained. For our reference, let us name the approximate shape that 
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we form connecting those nodes as the standard shape. The journal file in Appendix C 

was created for this purpose.  

The journal file in Appendix C has comment lines with formulas that are 

numbered from 1 to 17 are to be calculated every time we create a new GAMBIT file; 

hence, there was a special Excel file created for this purpose. With this, the operational 

time drastically reduced when creating a case. There were about 5000 cases created for 

the optimization, of which only about 500 were useful. The journal file saved a great 

deal of time. 
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DIMENSIONLESS ANALYSIS AND OPTIMIZATION OF JET EJECTOR USED 

AS A PROPELLER 

General 

Non-dimensionalization is a very powerful tool for saving time.  This section discusses 

definition, dimensionless analysis, and optimization of jet ejector as a propeller. Out of 

six dimensions that define the jet ejector, we set the length 1L = . This reduces the 

number to five. This can also be interpreted as non-dimensionalizing the dimensional 

variables with respect to . This is done by dividing all other variables by  except 

and , which are divided by .   

L 2L

tX L L

These five non-dimensional variables are varied within physical limits in 

different combinations to determine the optimum geometry with the maximum increase 

in thrust.  

 

Definition 

The thrust of the nozzle jet without the ejector shroud (Figure 16, Appendix A), follows:  

21 5.0 fsnDnn VACVMT ρ−=                                                                                     (5) 

The thrust of the nozzle jet with the ejector shroud around it (Figure 17, Appendix A), 

follows: 

snnnn TAPVMT ++=                                                                                            (6) 
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The increased thrust from adding the shroud follows: 

Increase in thrust (%) = 1

1)(100
T

TT −                                                                   (7) 

 

Derivation of thrust equations 

The thrust acting on the nozzle without any ejector shroud around it (Figure 16, 

Appendix A) is equivalent to the net force acting on the nozzle. 

nnwiwonet VMFFF ++=                                                                                         (8) 

But,  

woF = Pressure force + Drag force 

                                                                                        (9) 25.0 fsnDnn VACAP ρ−−=

Also,  

wiF = Pressure force 

                                                                                                                (10) nn AP=

Substituting Equations 9 and 10 into Equation 8 gives 

25.0 fsnDnnnet VACVMF ρ−=                                                                                 (11) 

Or, 

21 5.0 fsnDnnnet VACVMFT ρ−==                                                                         (12) 
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Figure 17, Appendix A, shows the free body diagram of nozzle with an ejector shroud 

around it. For this set up, the thrust force acting on the combination is derived as 

follows: 

nnnwiwonet TVMFFF +++=                                                                                (13) 

But,  

wwo FF −=                                                                                                            (14) 

And,  

nnwi APF =                                                                                                           (15) 

Substituting Equations 14 and 15 into Equation 13 gives 

snnnnwnnnnnnet TAPVMFTAPVMF ++=−++= )(                                            (16) 

Or, 

snnnnnet TAPVMFT ++==                                                                                (17) 

 

Optimization 

Optimization was done by running cases with many sensible combinations of 

dimensions of the jet ejector having different combinations of velocity ratio (r= / ). 

From Figures 21, 22 and 23, Appendix A, we find that for a given velocity ratio (r = 10) 

and other parameters remaining same, the percentage increase in thrust remains the same 

nV fsV
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irrespective of change in free stream velocity ( = 6, 10 and 15 m/s). All the graphs 

indicate the plot of percentage increase in thrust vs. one non-dimensional parameter 

keeping other parameters as constants. These constants were chosen after various crude 

trial-and-error runs that indicated this combination to be approximately close to the 

optimum.  

fsV

Figures 21 to 28, Appendix A, show the plots of percentage increase in thrust 

versus /2L and /2L keeping other parameters constant for all velocity ratios. There 

is a maximum increase in thrust for /2L = 0.1 and /2L = 0.12.  To find the highest 

percentage increase in thrust, we vary /2L and /L, keeping other parameters 

constant for a constant and Re  (Reynolds number of nozzle).  From Figure 29, 

Appendix A, we find that /2L = 0.01 gives the maximum increase in thrust.  Figure 

30, Appendix A, indicates that for /L = 0.5 and for optimized /2L = 0.12, /2L = 

0.1 and /2L = 0.01 keeping other parameters constant, the thrust increases its 

maximum percentage.  

tD oD

oD tD

nD tX

fsV nD

nD

tX tD oD

nD

This observation drives us to the fact that /2L must be the mid-point of the 

straight line joining /2L = 0.15, and /2L = 0.1, because /L = 0.5 is also the 

location of the throat. Hence, /2L = 0.125 instead of 0.12, because it is closer. So, 

after we redo the calculation for /2L = 0.125, Figure 31, Appendix A, confirms once 

again that /2L = 0.01 indicates the maximum increase in thrust. Also from Figure 32, 

tD

pD oD tX

tD

tD

nD
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Appendix A, we observe that for /L = 0.5 or having a straight line just connecting the 

propelled and outlet diameter of the shroud, there is a maximum increase in thrust. 

Hence, our assumption of /2L = 0.125 is justified. So, the optimized geometry of the 

jet ejector (in our first series of iterations) that gives us the maximum increase in thrust 

for any combination of velocity of the vehicle and the Reynolds number of the nozzle is 

given in Table 10, Appendix B.  

tX

tD

For the above dimensions, the internal shape of the shroud should be a straight 

line. But, the external shape can be changed to find the optimal one. We tried all 2D 

NACA profiles of airfoil like NACA 0012, 0015 (e.g., Figures 18 and 19, Appendix A). 

Of these, 0018, 0021 show the least drag for the same design parameters. We also tried a 

flat profile (e.g., Figure 20, Appendix A) forming both internal and external surfaces for 

the shroud. Table 11, Appendix B, compares all these for a free stream velocity of 2 m/s 

and nozzle velocity of 125 m/s (or Re = 2.49 × 10 ). 6

Hence, a simple flat profile for both internal and external surface of the shroud of 

the jet ejector gives the maximum increase in thrust. The optimized geometric profile is 

shown in Figure 20, Appendix A. This thrust increase of about 23.43% is the maximum 

possible for this combination of free-stream and nozzle velocities. In terms of velocity 

ratio, we find that r = 62.5 is the best, which is too high to be efficiently implemented in 

practice.  

Hence, to find a range of optimized geometries that have achievable velocity 

ratios (r); we simulated a number of cases varying /2L and /L with all other nD tX
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parameters being constant. The percentage increases in thrust are shown in Figures 35 to 

40, Appendix A.  These plots indicate that for r < 25, the percentage increase in thrust 

reaches a maximum of only ~16%. Because, velocity ratios of r > 2 are the least 

efficient, the results are not that promising to have any practical significance. To finalize 

our conclusions, these results are compared with conventional engines in the last section.  

The entire optimization was done assuming /2L = 0.15 to be the exact 

optimized non-dimensional parameter. Table 12, Appendix B, shows the percentage 

increase in thrust for velocity ratio of r = 15 for /2L = 0.1 and 0.2 in the range of 

other non-dimensional parameters that would verify our assumption. 

pD

pD

Table 13, Appendix B, shows the combination of non-dimensional parameters 

for r = 15 and /2L that gives a maximum percentage increase of 10.13%, which is 

greater than the maximum percentage increases of 6.25% for /2L = 0.1 and 9.26% for 

/2L = 0.2. This verifies our assumption of /2L = 0.15 is the best non-dimensional 

number around the optimum region. 

pD

pD

pD pD

 

Dimensionless analysis of optimized geometry of jet ejector 

The most important entity in any dimensionless analysis is the non-dimensional 

pressure. Here it is defined as the increase in static pressure at any non-dimensional 

location on the jet ejector over the ambient pressure of the system, non-dimensionalized 

by the dynamic pressure of the free stream. 
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25.0 fs

st
p V

PPC
ρ

∞−
=                                                                                                      (18) 

This optimized geometry (Table 10, Appendix B) is non-dimensionalized such that for 

different scales, fluids, and ambient pressures, the non-dimensional pressure PC  at any 

given non-dimensional location remains the same. 

From Figures 33 and 34, Appendix A, we find that the PC  plots match exactly 

for inner and outer surfaces of the jet ejector shroud. This proves that, irrespective of 

scale or fluid, or ambient pressure, the optimized geometry remains the same. Also the 

percentage increase in thrust remains the same for all of them (Tables 14 and 15, 

Appendix B). 

 

 

 

 

 

 

 

 

 

   



  21

DISCUSSIONS AND CONCLUSIONS 

General 

The optimized results are analyzed for their relevance in practical applications by 

comparing with a super tanker at one extent and a jet ski at the other. 

 

Supertanker 

Supertankers have an average propeller power of 20 MW (~28,000 SHP). Their average 

propeller diameter is about 6 m (~20 ft) and they cruise at average speeds of 7.5 m/s 

(~14.5 knots). Let us assume 100% efficiency for the nozzle. For these specifications, 

the following variables are calculated. 

5.7=fsV m/s 

4

2
p

D
Ap π=  

     
4

(6m)2

π=  = 28.274 m  2

32
.

2
1

2
1 vAvmP pρ==  

3
2

3

3

2
6

3

)m274.28)(
m
kg2.998(

)
s

kgm1020(22 ×
==

pA
Pv

ρ
 

   = 11.235 m/s 
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Hence, if the propeller is replaced by a nozzle of same diameter then,  

235.11== vVn m/s 

5.1498.1
7.5m/s

m/s235.11
≅===

fs

n

V
Vr  

Because, the optimization results show decrease in thrust for r <= 5 (Figure 35, 

Appendix A), jet ejectors cannot be applied to watercraft like supertankers.  

Now, to consider the other extreme scale in watercraft, a jet ski is the best bet. 

 

Jet ski 

Jet skis have an average power of 0.15 MW (~200 BHP). They have an average nozzle 

diameter of about 0.075 m (~3 inch) and they cruise at average speeds of 30 m/s (~65 

mph). Let us again assume 100% efficiency for the nozzle. For these specifications, the 

following variables are calculated. 

30=fsV m/s 

4

2
p

D
Ap π=  

     
4

(0.075m)2

π=  = 0.004418 m  2

32
.

2
1

2
1 vAvmP pρ==  
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3
2

3

3

2
6

3

)m004418.0)(
m
kg2.998(

)
s

kgm1015.0(22 ×
==

pA
Pv

ρ
 

   = 40.82 m/s 

Or, 

82.40== vVn m/s 

36.1
30m/s
0.82m/s4

===
fs

n

V
Vr  

Again, the velocity ratio r is much less than 5. Unfortunately, this indicates that jet 

ejectors cannot be applied to watercraft. The addition of an ejector shroud will reduce 

the thrust and thereby reduce the efficiency. 

 

Conclusion 

Jet ejectors are not the solution for improving thrusts in watercraft. The possibility is 

completely ruled out on the basis that jet ejectors provide an increase in thrust only 

beyond a velocity ratio r of 10 or more (Figures 36 to 40, Appendix A). But, because all 

watercraft ranging from high-speed jet skis to high-powered supertankers have velocity 

ratios less than 2. Adding jet ejectors would only reduce the thrust already attained, and 

thereby reduce the efficiency. Hence, our objective of finding thrust enhancement using 

jet ejectors unfortunately has given results that have no practical significance. Hence, it 
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can be concluded with our analysis that jet ejectors are not the solution for getting 

additional thrust enhancements for watercraft.  
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APPENDIX A 

FIGURES 
 
 

 

 

 

Figure 1: Sketch of jet ejector as a compressor. 
 
 
 
 

             

Figure 2: 2D axis symmetric mesh design of a compressor. 
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Figure 3: Sketch of the compressor design. 
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Figure 4: C  along the walls of the jet ejector for cases discussed in Table 1, 
Appendix B. 
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Figure 5:  along the walls of the jet ejector for cases discussed in Table 2, 
Appendix B. 
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Figure 6:  along the walls of the jet ejector for cases discussed in Table 3, 
Appendix B. 
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Figure 7:  along the walls of the jet ejector for cases discussed in Table 4, 
Appendix B. 
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Figure 8:  along the walls of the jet ejector for cases discussed in Table 5, 
Appendix B. 
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Figure 9:  along the walls of the jet ejector for cases discussed in Table 6, 
Appendix B. 
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Figure 10:  along the walls of the jet ejector for cases discussed in Table 7, 
Appendix B. 
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Figure 11:  along the walls of the jet ejector for cases discussed in Table 8, 
Appendix B. 
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Figure 12:  along the walls of the jet ejector for cases discussed in Table 9, 
Appendix B. 
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Figure 13: Jet ejector – axis symmetric model. 
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Figure 14: Jet ejector geometry meshed with rectangular domain in GAMBIT. 
 

 

Figure 15: Zoomed image of Figure 14. 
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Figure 16: Free body diagram of nozzle without ejector around it. 
 
 
 
 

 

 

Figure 17: Free body diagram of nozzle with ejector shroud around it. 
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Figure 18: Jet ejector with NACA 0015 external profile meshed in GAMBIT. 
 
 

 

Figure 19: Zoomed image of Figure 18. 
 
 
 

 

Figure 20: Axis symmetric profile of the optimized geometry. 
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Figure 21: Percentage increase in thrust Vs /2L for /2L = 0.025, /L = 0.4, 
/2L = 0.15, r = 10, = 6 m/s. 
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Figure 22: Percentage increase in thrust Vs /2L for /2L = 0.025, /L = 0.4, 
/2L = 0.15, r = 10,  = 10 m/s. 
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Figure 23: Percentage increase in thrust Vs /2L for /2L = 0.025, /L = 0.4, 
/2L = 0.15, r = 10,  = 15 m/s. 
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Figure 24: Percentage increase in thrust Vs /2L for /2L = 0.025, /L = 0.4, 
/2L = 0.15, r = 15. 
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Figure 25: Percentage increase in thrust Vs /2L for /2L = 0.025, /L = 0.4, 
/2L = 0.15, r = 50/3. 
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Figure 26: Percentage increase in thrust Vs /2L for /2L = 0.025, /L = 0.4, 
/2L = 0.15, r = 70/3. 
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Figure 27: Percentage increase in thrust Vs /2L for /2L = 0.025, /L = 0.4, 
/2L = 0.15, r = 25. 
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Figure 28: Percentage increase in thrust Vs /2L for /2L = 0.025, /L = 0.4, 
/2L = 0.15, r = 40. 
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Figure 29: Percentage increase in thrust Vs /2L for /L = 0.4, /2L = 0.15, 
/2L = 0.12, /2L = 0.1,  = 2 m/s & Re  = 2.49E+06. 
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Figure 30: Percentage increase in thrust Vs /L for /2L = 0.01, /2L = 0.15, 
/2L = 0.12, /2L = 0.1,  = 2 m/s & Re  = 2.49E+06. 
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Figure 31: Percentage increase in thrust Vs /2L for /L = 0.4, /2L = 0.15, 
/2L = 0.125, /2L = 0.1 &  = 2 m/s. 
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Figure 32: Percentage increase in thrust Vs /L for /2L = 0.01, /2L = 0.15, 
/2L = 0.125, /2L = 0.1 &  = 2 m/s. 
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Figure 33:  of inner wall Vs non-dim X. pC
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Figure 34:  of outer wall Vs non-dim X. pC
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Figure 35: Percentage increase in thrust Vs /L for /2L = 0.15, /2L = 0.12, 
/2L = 0.1 & r = 5. 
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Figure 36: Percentage increase in thrust Vs /L for /2L = 0.15, /2L = 0.12, 
/2L = 0.1 & r = 10. 
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Figure 37: Percentage increase in thrust Vs /L for /2L = 0.15, /2L = 0.12, 
/2L = 0.1 & r = 15. 
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Figure 38: Percentage increase in thrust Vs /2L = 0.15, /2L = 0.12, /2L = 
0.1 & r = 20. 
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Figure 39: Percentage increase in thrust Vs /L for /2L = 0.15, /2L = 0.12, 
/2L = 0.1 & r = 25. 
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Figure 40: Percentage increase in thrust Vs /L for /2L = 0.15, /2L = 0.12, 
/2L = 0.1 & r = 30. 
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APPENDIX B 
 

TABLES 
 

Table 1: Same fluid and operating pressure with different scales for same Mach 
numbers & GM values. 

 

Fluid scale psP  oP  msP  mM  pM  mGM  pGM  

Air 1× 101308.9 101325 101515.9 0.8513 0.01509 0.852908 0.01509 

air 1.5× 101308 101325 101435.4 0.85258 0.015492 0.853512 0.01549 

air 2× 101307.5 101325 101394.8 0.85253 0.015698 0.853121 0.01569 

 
 

Table 2: Different Mach and GM values for similar conditions in Table 1. 
 

Fluid scale psP  oP  msP  mM  pM  mGM  pGM  

air 1× 100974.7 101325 101612.3 1.30051 0.018911 1.304201 0.01885 

air 1.5× 100973.8 101325 101601.7 1.30054 0.019272 1.304087 0.01921 

air 2× 100973.4 101325 101596.8 1.30055 0.019424 1.304035 0.01936 

 

Table 3: Different fluids with other parameters remaining same. 
 

Fluid scale psP  oP  msP  mM  pM  mGM  pGM  

air 1× 101308.9 101325 101515.9 0.8513 0.01509 0.852908 0.01509 

steam 1× 101308.7 101325 101529.4 0.88354 0.015732 0.885324 0.01573 
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Table 4: Different Mach and GM values for similar conditions in Table 3. 
 

Fluid scale psP  oP  msP  mM  pM  mGM  pGM  

Air 1× 100974.7 101325 101612.3 1.30051 0.018911 1.304201 0.01885 

steam 1× 100975 101325 101604.9 1.35039 0.019547 1.354118 0.01948 

 
 

Table 5: Different operating pressures with same scale, fluid, and Mach no. 
 

Fluid scale psP  oP  msP  mM  pM  mGM  pGM  

air 1× 10153.18 10132.5 10227.68 0.78842 0.013903 0.079583 0.00139 

air 1× 50610.96 50662.7 50760.31 0.79338 0.013945 0.397454 0.00697 

air 1× 101177.8 101325 101399.9 0.79417 0.013951 0.794761 0.01393 

air 1× 505565.1 506627 506357.6 0.79503 0.01396 3.973076 0.06966 

air 1× 1010933 1013253 1012449 0.79522 0.013963 7.945888 0.13931 

 
 
 

Table 6: Different Mach no. and operating pressures with same scale and fluid. 
 

Fluid scale psP  oP  msP  mM  pM  mGM  pGM  

air 1× 10092.42 10132.6 10176.92 1.55087 0.022446 0.155767 0.00224 

air 1× 50654.8 50662.5 50700.01 0.3089 0.004473 0.154566 0.00224 

air 1× 101321.1 101325 101343.8 0.15562 0.002236 0.155647 0.00224 

 
 

   



  63

Table 7: Different Mach no., GM values and operating pressures with same scale 
and fluid. 

 

Fluid scale psP  oP  msP  mM  pM  mGM  pGM  

air 1× 506486.5 506625 506537.2 0.33372 0.005992 1.66829 0.02995 

air 1× 1013179 1013250 101320.6 0.1682 0.002995 1.681967 0.02995 

 

Table 8: Different scale, fluid, operating pressure and Mach no. for ≈ 0.22 
and ≈ 0.0032. 

mGM

pGM
 

Fluid scale psP  oP  msP  mM  pM  mGM  pGM  

Symbol 
on 

Figure 
11 

air 1× 25285.24 25331.3 25503.06 0.87127 0.012617 0.219294 0.00315 1 

Steam 1.5× 75975.15 75993.8 76020.73 0.30384 0.004349 0.227962 0.00326 2 

2N  2× 227974.2 227981 227988.3 0.09729 0.001401 0.218904 0.00315 3 

 

Table 9: Different scale, fluid, operating pressure and Mach no. for ≈ 1.2 and 
≈ 0.02. 

mGM

pGM
 

Fluid scale psP  oP  msP  mM  pM  mGM  pGM  Symbol on 
Figure 12 

2N  1× 1013208 1013250 1013248 0.11989 0.001983 1.198887 0.01983 a 

air 1.5× 506535.2 506625 506607.4 0.24002 0.003982 1.200062 0.01991 b 

stea
m 2× 100823.4 101326 101554.4 1.24368 0.020786 1.246498 0.02068 c 
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Table 10: Optimized dimensionless quantities in first iteration. 

 
nD /2L tX /L pD /2L tD /2L oD /2L 

0.01 0.5 0.15 0.125 0.1 

 
 

Table 11: Comparison of percentage increase in thrust for various external profiles. 
 

Profile Increase in thrust (%)

Standard 22.888 

Flat 23.429 

NACA 0012 20.697 

NACA 0015 20.152 

NACA 0018 19.753 

NACA 0021 19.282 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

   



  65

 
Table 12: Percentage increase in thrust for velocity ratio of r = 15, /2L = 0.1 and 

0.2 
pD

 

nD /2L tX /L pD /2L tD /2L oD /2L 
Increase in thrust 

(%) 
0.01 0.3 0.1 0.07 0.07 -4.0765 
0.01 0.4 0.1 0.07 0.07 -2.3826 
0.01 0.5 0.1 0.07 0.07 -2.4802 
0.02 0.3 0.1 0.07 0.07 4.4273 
0.02 0.4 0.1 0.07 0.07 5.6878 
0.02 0.5 0.1 0.07 0.07 6.2502 
0.02 0.6 0.1 0.07 0.07 0.2129 
0.03 0.3 0.1 0.07 0.07 1.7684 
0.03 0.4 0.1 0.07 0.07 2.3435 
0.03 0.5 0.1 0.07 0.07 3.4878 
0.03 0.6 0.1 0.07 0.07 -0.055 
0.01 0.3 0.2 0.15 0.12 -31.322 
0.01 0.4 0.2 0.15 0.12 -43.008 
0.01 0.5 0.2 0.15 0.12 -43.36 
0.02 0.2 0.2 0.15 0.12 3.83 
0.02 0.3 0.2 0.15 0.12 6.6776 
0.02 0.4 0.2 0.15 0.12 -2.7096 
0.02 0.5 0.2 0.15 0.12 -10.749 
0.03 0.1 0.2 0.15 0.12 4.2681 
0.03 0.2 0.2 0.15 0.12 9.2637 
0.03 0.3 0.2 0.15 0.12 7.7352 
0.03 0.4 0.2 0.15 0.12 4.2842 
0.03 0.5 0.2 0.15 0.12 -2.7748 

 
 
 
 
 
 
 

   



  66

 
Table 13: Percentage increase in thrust for velocity ratio of r = 15 and /2L = 0.15 pD

 

nD /2L tX /L pD /2L tD /2L oD /2L 
Increase in thrust 

(%) 
0.035 0.45 0.15 0.12 0.1 10.126 

 
 

Table 14: Combinations of scale, fluid and ambient pressure used for analysis. 
 

No Scale Fluid ∞P (atm) ρ (kg/m 3 ) µ (kg/ms ) 

1 1× Water 101325 998.2 0.001 

2 1.5× Water 101325 998.2 0.001 

3 2× Water 101325 998.2 0.001 

4 1× Turpentine 101325 855 0.0015 

5 1× Toluene 101325 866 0.0006 

6 1× Water 202650 998.2 0.001 

7 1× Water 506625 998.2 0.001 
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Table 15: Comparison of percentage increase in thrust for these combinations. 

 
No T (N) T 1 (N) Increase in thrust (%)

1 6046 4899 23.43 

2 6041 4899 23.33 

3 6041 4899 23.32 

4 15504 12570 23.34 

5 2377 1927 23.34 

6 6041 4899 23.32 

7 6038 4899 23.25 
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APPENDIX C  

JOURNAL FILE 
 

solver select "FLUENT 5/6" 

/ y = 0.5*  ---------------------------------------------- 1 pD

vertex create coordinates 0 100 0 

/ x = 0.3*  and y = 0.35* +0.15* --------------- 2 tX pD tD

vertex create coordinates 240 85 0 

/ y = 0.5*  ---------------------------------------------- 3 oD

vertex create coordinates 1000 70 0 

/ x = 0.15*  and y = 0.4* +0.1*  --------------- 4 tX pD tD

vertex create coordinates 120 90 0 

/ x = -0.5*  ----------------------------------------- 5 tX nD

vertex create coordinates 796 0 0 

/ x = -0.5*  and y = 0.5*  --------------------- 6 tX nD nD

vertex create coordinates 796 4 0 

/ x =  and y = 0.5*  ------------------------------- 7 tX nD

vertex create coordinates 800 4 0 
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/ x =  -------------------------------------------------- 8 tX

vertex create coordinates 800 0 0 

vertex create coordinates -1000 0 0 

vertex create coordinates -1000 1000 0 

vertex create coordinates 2000 1000 0 

vertex create coordinates 2000 0 0 

vertex create coordinates 0 0 0 

vertex create coordinates 1000 0 0 

/ x = -45 and y =  ------------------------------- 9 tX nD

vertex create coordinates 755 8 0 

/ x = +60 and y =  ----------------------------- 10 tX nD

vertex create coordinates 860 8 0 

/ x = +60 ------------------------------------------- 11 tX

vertex create coordinates 860 0 0 

/ x = -45 ------------------------------------------ 12 tX

vertex create coordinates 755 0 0 

vertex create coordinates 1500 0 0 

vertex create coordinates -500 0 0 
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vertex create coordinates -500 500 0 

vertex create coordinates 1500 500 0 

vertex create coordinates -100 0 0 

vertex create coordinates 1100 0 0 

vertex create coordinates 1100 250 0 

vertex create coordinates -100 250 0 

/ x =  and y = 0.5*  --------------------------- 13 tX tD

vertex create coordinates 800 50 0 

/ x = 50 and y =  + 55 ------------------------- 14 pD

vertex create coordinates 50 155 0 

/ x = 100 and y =  + 70 ----------------------- 15 pD

vertex create coordinates 100 170 0 

/ x = 200 and y =  + 65 ---------------------- 16 pD

vertex create coordinates 200 165 0 

edge create straight "vertex.10" "vertex.9" 

edge create straight "vertex.9" "vertex.5" 

edge create straight "vertex.5" "vertex.6" 

edge create straight "vertex.6" "vertex.7" 
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edge create straight "vertex.7" "vertex.8" 

edge create straight "vertex.8" "vertex.12" 

edge create straight "vertex.12" "vertex.11" 

edge create straight "vertex.10" "vertex.11" 

edge create nurbs "vertex.2" "vertex.4" "vertex.1" "vertex.28" "vertex.29" \ 

  "vertex.30" "vertex.3" interpolate 

edge create straight "vertex.2" "vertex.27" 

edge create straight "vertex.27" "vertex.3" 

edge split "edge.9" vertex "vertex.1" connected 

vertex delete "vertex.4" "vertex.28" "vertex.29" "vertex.30" 

edge split "edge.2" vertex "vertex.13" connected 

edge split "edge.6" vertex "vertex.14" connected 

edge create straight "vertex.1" "vertex.13" 

edge create straight "vertex.3" "vertex.14" 

edge split "edge.13" vertex "vertex.18" connected 

edge split "edge.6" vertex "vertex.17" connected 

edge create straight "vertex.18" "vertex.15" 

edge create straight "vertex.15" "vertex.16" 
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edge create straight "vertex.16" "vertex.17" 

edge split "edge.2" vertex "vertex.20" connected 

edge split "edge.14" vertex "vertex.19" connected 

edge create straight "vertex.20" "vertex.21" 

edge create straight "vertex.21" "vertex.22" 

edge create straight "vertex.22" "vertex.19" 

edge split "edge.22" vertex "vertex.23" connected 

edge split "edge.14" vertex "vertex.24" connected 

edge create straight "vertex.23" "vertex.26" 

edge create straight "vertex.26" "vertex.25" 

edge create straight "vertex.25" "vertex.24" 

/ y = 0.5*  -------------------------------------------- 17 pD

vertex create coordinates -50 100 0 

vertex create coordinates -50 0 0 

edge create straight "vertex.1" "vertex.28" 

edge create straight "vertex.28" "vertex.29" 

edge split "edge.27" vertex "vertex.29" connected 

edge delete "edge.15" lowertopology 
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physics create "Domain Inlet" btype "VELOCITY_INLET" edge "edge.1" 

physics create "Domain Outlet" btype "OUTFLOW" edge "edge.7" 

physics create "Jet Inlet" btype "INTERIOR" edge "edge.33" "edge.32" 

physics create "Jet outlet" btype "INTERIOR" edge "edge.16" 

physics create "Nozzle" btype "VELOCITY_INLET" edge "edge.5" 

physics create "Axis" btype "AXIS" edge "edge.2" "edge.13" "edge.6" "edge.14" \ 

  "edge.17" "edge.18" "edge.22" "edge.27" "edge.28" "edge.23" "edge.34" 

physics create "Jet outer surface" btype "WALL" edge "edge.12" 

physics create "Jet inner surface" btype "WALL" edge "edge.9" "edge.10" \ 

  "edge.11" 

physics create "Nozzle wall" btype "WALL" edge "edge.3" "edge.4" 

physics create "Domain Boundary" btype "SYMMETRY" edge "edge.8" 

face create "Jet Core" wireframe "edge.17" "edge.3" "edge.4" "edge.5" \ 

  "edge.6" "edge.21" "edge.20" "edge.19" real 

face create "Jet inner" wireframe "edge.13" "edge.34" "edge.33" "edge.32" \ 

  "edge.9" "edge.10" "edge.11" "edge.16" "edge.18" "edge.21" "edge.20" \ 

  "edge.19" real 

face create "Jet outer 0" wireframe "edge.32" "edge.33" "edge.27" "edge.29" \ 
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  "edge.30" "edge.31" "edge.14" "edge.16" "edge.12" real 

face create "Jet outer 1" wireframe "edge.29" "edge.22" "edge.24" "edge.25" \ 

  "edge.26" "edge.28" "edge.30" "edge.31" real 

face create "Jet outer 2" wireframe "edge.24" "edge.2" "edge.1" "edge.8" \ 

  "edge.7" "edge.23" "edge.26" "edge.25" real 

physics create "Fluid Medium" ctype "FLUID" face "Jet Core" "Jet outer 1" \ 

  "Jet outer 2" "Jet outer 0" "Jet inner" 

undo begingroup 

edge picklink "edge.3" 

edge mesh "edge.3" successive ratio1 1 intervals 24 

undo endgroup 

undo begingroup 

edge picklink "edge.4" 

edge mesh "edge.4" successive ratio1 1 intervals 24 

undo endgroup 

undo begingroup 

edge picklink "edge.5" 

edge mesh "edge.5" successive ratio1 1 intervals 24 
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undo endgroup 

undo begingroup 

edge modify "edge.17" backward 

edge picklink "edge.17" 

edge mesh "edge.17" successive ratio1 1.02 size 0.5 

undo endgroup 

undo begingroup 

edge picklink "edge.6" 

edge mesh "edge.6" successive ratio1 1.015 size 0.55 

undo endgroup 

face mesh "Jet Core" triangle size 1 

face mesh "Jet inner" triangle size 1.5 

undo begingroup 

edge picklink "edge.12" 

edge mesh "edge.12" successive ratio1 1 size 1.5 

undo endgroup 

undo begingroup 

edge picklink "edge.14" 
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edge mesh "edge.14" successive ratio1 1.04 size 5 

undo endgroup 

undo begingroup 

edge modify "edge.27" backward 

edge picklink "edge.27" 

edge mesh "edge.27" successive ratio1 1.04 size 5 

undo endgroup 

face mesh "Jet outer 0" triangle size 10 

face mesh "Jet outer 1" triangle size 10 

face mesh "Jet outer 2" triangle size 10 

export Fluent5 "xb6.msh" nozval 
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