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ABSTRACT 

 
Nonlinearity and Noise Modeling of Operational Transconductance Amplifiers 

for Continuous Time Analog Filters. (May 2005) 

Arun Ramachandran, B.En., Birla Institute of Technology and Science-Pilani, India; 

M.S., Birla Institute of Technology and Science-Pilani, India 

Chair of Advisory Committee: Dr. Edgar Sánchez-Sinencio 

 

A general framework for performance optimization of continuous-time OTA-C 

(Operational Transconductance Amplifier-Capacitor) filters is proposed. Efficient 

procedures for evaluating nonlinear distortion and noise valid for any filter of arbitrary 

order are developed based on the matrix description of a general OTA-C filter model . 

Since these procedures use OTA macromodels, they can be used  to obtain the results 

significantly faster than transistor-level simulation. In the case of transient analysis, the 

speed-up may be as much as three orders of magnitude without almost no loss of 

accuracy. This makes it possible to carry out direct numerical optimization of OTA-C 

filters with respect to important characteristics such as noise performance, THD, IM3, 

DR or SNR. On the other hand, the general OTA-C filter model allows us to apply 

matrix transforms that manipulate (rescale) filter element values and/or change topology 

without changing its transfer function. The above features are a basis to build automated 

optimization procedures for OTA-C filters. In particular, a systematic optimization 

procedure using equivalence transformations is proposed. The research also proposes 

suitable software implementations of the optimization process. The first part of the 

research proposes a general performance optimization procedure and to verify the 

process two application type examples are mentioned. An application example of the 

proposed approach to optimal block sequencing and gain distribution of 8th order 

cascade Butterworth filter (for two variants of OTA topologies) is given. Secondly the 

modeling tool is used to select the best suitable topology for a 5th order Bessel Low Pass 

Filter. Theoretical results are verified by comparing to transistor-level simulation with 
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CADENCE. For the purpose of verification, the filters have also been fabricated in 

standard 0.5µm CMOS process.  

The second part of the research proposes a new linearization technique to 

improve the linearity of an OTA using an Active Error Feedforward technique. Most 

present day applications require very high linear circuits combined with low noise and 

low power consumption. An OTA based biquad filter has also been fabricated in 0.35µm 

CMOS process. The measurement results for the filter and the stand alone OTA have 

been discussed. The research focuses on these issues.  
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CHAPTER I 

INTRODUCTION 

 

1.1. Motivation and Background  

Real-world signals contain both wanted and unwanted information. Therefore, some 

kind of electronic signal filtering technique must separate the two before processing and 

analysis can begin. Every electronic design project produces signals that require 

electronic signal filtering, processing, or amplification, from simple gain to the most 

complex digital-signal processing (DSP). As mentioned, in any system that interfaces 

with the real world, the quantity to be measured and later processed is always 

contaminated with noise and interferes. A filter is usually used in order to eliminate the 

unwanted noise and reject the surrounding interferes. Although we are living in a digital 

age, any system that interfaces with the real world, i.e., the analog world, will find use 

for continuous-time filters.  

Some of the common applications of filters are in communication systems [1]-

[3], bio-medical systems [4] etc, where it is essential to eliminate or separate the useful 

information from the noise signals. A typical digital processing system is shown in Fig. 

1.1. The physical quantity to be processed is converted to an electrical signal (current or 

voltage) via a transducer. This signal is then converted to a digital signal via an analog to 

digital converter (ADC) for further processing by the digital signal processor (DSP). The 

physical quantity, which is measured, is mixed with the noise signals present inherent in 

the environment, noise from the transducer circuits etc. These noise signals have some 

high frequency components. According to Nyquist theory and to avoid aliasing, the input 

signal must be band-limited before the analog to digital (A/D) conversion.  

 

__________________ 

This thesis follows the style and format of IEEE Journal of Solid-State Circuits. 
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This is achieved by a low-pass filter (anti-aliasing filter) that limits the 

bandwidth of the signal to half the sampling rate of the ADC. The processed digital 

signal coming out of the DSP is converted back to an analog signal via a low-pass 

reconstruction filter. Both the anti-aliasing filter and the reconstruction filter are analog 

filters operating in continuous-time. 

 

 

Transducer
Anti-

Aliasing
Filter

ADC DSP Reconstruction
Filter

DIGITAL PROCESSESANALOG PROCESSES ANALOG O/P

Physical
Quantity

Voltage/
Current

Output
Quantity

Digital Filter Optional

 
Fig. 1.1. A typical digital processing system 

 

 

The filter circuit used in any application can be of three different types depending 

on the type of signals handled. The general types of filters used in most applications are 

digital filters, continuous-time filters (Analog) and sampled-data filters.  

 

1.1.1 Digital Filters 

A digital filter [5] uses a digital processor to perform numerical calculations on 

sampled values of the signal. The processor may be a general-purpose computer such as 

a PC, or a specialized DSP chip. The analog input signal must first be sampled and 

digitized using an ADC. The resulting binary numbers, representing successive sampled 

values of the input signal, are transferred to the processor, which carries out numerical 

calculations on them. These calculations typically involve multiplying the input values 

by constants and adding the products together. If necessary, the results of these 

calculations, which now represent sampled values of the filtered signal, are output 

through a DAC (digital to analog converter) to convert the signal back to analog form. In 
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a digital filter, the signal is always represented by a sequence of numbers, rather than a 

voltage or current. Fig. 1.2 shows the basic setup of such a system. Fig. 1.2 combines the 

anti-aliasing filter and ADC together and the reconstruction filter with that of the DAC 

to focus more on the digital filtering block. 

 

 

AntiAliasing Filter Reconstruction Filter

 
Fig. 1.2. A typical digital filtering example 

 

 

1.1.2 Sampled-Data Filters 

Sampled-data filters do not work with the digital representation of the signal 

samples, as digital filters do, they rather operate on samples of the signal itself. But both 

the digital filters and sampled-data filters are characterized in the Z-domain. Thus these 

filters are discontinuous in time but continuous in processed data values. The best-

known example of such an approach is that of switched-capacitor (SC) filters. An SC 

filter is a continuous-amplitude, sampled-data system. This means that the amplitude of 

the signals can assume any value within the possible range in a continuous manner. On 

the other hand, these values are assumed at certain time instants and then they are held 

for the entire sampling period. Thus, the resulting waveforms are not continuous in time 

but look like a staircase. Fig. 1.3 describes how an input continuous time signal can be 

sampled. The sampling operation extracts from the continuous-time waveform the values 

of the input signal at the instant n·Ts (n = 1,2,3, …), where Ts is the sampling period (Ts 

= 1/Fs). 
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Fig. 1.3. Sampling of a continuous time waveform 

 

 

The switched capacitor filter can be used in an application [6]-[7] similar to those 

shown in Fig. 1.1 and 1.2. Fig. 1.4 shows the usage of SC filter in the standard 

application example. Due to the sampling operation involved, continuous-time (CT) 

anti-aliasing filter and reconstruction (smoothing) filter are still needed in those kinds of 

switched-capacitor systems. However these CT filters are not required to have a high 

accuracy. 

 

 

 
Fig. 1.4. A switched-capacitor (SC) filter application 
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1.1.3 Continuous Time Filters 

An analog filter is any filter, which operates on continuous-time signals. In 

particular, Linear Time Invariant (LTI) analog filters can be characterized by their 

(continuous) differential equation. Instead of a difference equation as in digital and SC 

filters, analog filters are described by a differential equation. Instead of using the z 

transform to compute the transfer function, CT systems use the Laplace transform. In the 

real world, analog filters are usually electrical models, or “analogues'', of mechanical 

systems working in continuous time. If the physical system is linear and time-invariant 

(LTI) (e.g. consisting of elastic springs and masses which are constant over time), an 

LTI analog filter can be used to model it. Before the widespread use of digital 

computers, physical systems were simulated on so-called ``analog computers.'' An 

analog computer was much like an analog synthesizer providing modular building-

blocks (``integrators'') that could be patched together to build models of dynamic 

systems.  

Filters can be also categorized according to the relative size (depending on the 

frequency of operation) of the elements used with respect to the wavelength of the signal 

into two categories: Distributed [8] and Non-distributed filters. In a non-distributed [9] 

(lumped) filter, the physical dimensions of the used elements (resistance, inductance, or 

capacitance) are negligible compared to the wavelength of the fields associated with the 

signal. Thus they are considered as simple elements concentrated within the boundaries 

of the corresponding physical element. This is in contrast to the distributed filter, in 

which the physical elements have dimensions comparable to the wavelength of the fields 

associated with the signal and hence it is represented by a combination of physical 

elements. 

 

1.2. Continuous Time Analog Filters 

The main focus of this research is the design issues of continuous-time integrated 

filters. High frequency continuous-time filters have been widely used, in recent years for 

various applications, especially for medium dynamic range applications, in cases where 
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high speed and/or low power dissipation are needed. Those applications, as shown in 

Fig. 1.5, include video signal processing [10], hard-disk drive read channels [11], loop 

filters for phase-locked loops [12], and radio frequency wireless communication systems 

[13]. The low frequency applications include those filters used in the bio-medical 

applications [14] like Hearing-Aid etc. and also the filters used for seismic systems [15]. 

 

 

 
Fig. 1.5. Wide range of filter applications 

 

 

Using digital filters is not feasible for high frequency applications because they 

are very power hungry at high frequencies, i.e., power=fclockV2
DD/2. Although switched 

capacitor filters can have good linearity and dynamic range properties, they are not 

suitable for those kinds of applications either. This is mainly due to their limited ability 

to process high frequency signals due to the sampling operation. The sampling frequency 

should be chosen larger than the filter bandwidth to avoid inaccurate filter frequency 

response. That requires the use of operational amplifiers (OpAmps) with very wide 

bandwidths, to provide proper settling, demanding large currents; it is required that the 

unity gain frequency of the used operational amplifier be at least five times larger than 

the clock frequency used. Another bottleneck is the inability of real switches to operate 

at high frequency and at low voltages. Thus continuous-time filters became the only 
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option in these types of applications. Continuous-time filters include two main 

categories: Passive filters and Active filters. A passive filter has all of its elements 

passive. Therefore, a passive filter may include among its elements resistors, capacitors, 

inductors and transformers. If the elements of the filter include amplifiers or negative 

resistances, this is called active. 

 

1.2.1. Passive Filters 

The passive filters are those, which do not employ active blocks like the 

OpAmps, OTA and other active blocks. They are built using passive elements like 

resistors, capacitors and inductors. They include three main topologies: RLC filters [16], 

Surface acoustic filters [17-18], and MEMS filters [19].  

 

1.2.1.1.  RLC Filters 

Classic RLC filters built with resistors, inductors, and capacitors are still much in 

use in today’s systems. They were first used to meet the needs of the early voice 

applications from the early 1920s. Although high performance on-chip resistors and 

capacitors can be fabricated in one or more forms in all IC processes, the performance of 

on-chip inductors is still unsatisfactory in silicon processes. Furthermore for low 

frequency applications, the area of the on-chip inductor is prohibitive. This renders RLC 

filters unsuitable for implementation in an integrated form in silicon technologies. 

 

 

 
Fig. 1.6. A classical second order low pass RLC filter 
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Fig. 1.6 shows a classical example of a second order low pass RLC filter. 

Equation (1.1) gives the basic transfer function of the simple RLC filter. The terms 0 is 

the filter's characteristic frequency and Q is the quality factor of the second order low 

pass filter and they are equal to 0
2 = 1/LC and Q = 0L/R. The inductors used in the 

passive circuits are lossy in nature. The quality factor of an inductor is limited by 

resistive losses in metal traces, and by induced currents in both metal strips and lossy Si 

substrate.  

   

1.2.1.2. Surface Acoustic Filters 

Surface acoustic wave (SAW) filters are applied extensively in today’s 

communication equipment [17]. These high performance components have reached a 

key position in current communication technology assisting the efforts to increase the 

spectral efficiency of limited frequency bands for higher bit rates. A SAW filter consists 

of a piezoelectric substrate with metallic structures, such as inter-digital transducers 

(IDTs) and reflection or coupling gratings deposited on its plain-polished surface. It is 

based on propagating and/or standing micro-acoustic waves. Triggered by the 

piezoelectric effect, a microwave input signal at the transmitting IDT stimulates a micro-

acoustic wave that propagates along the surface of the elastic solid [18]. The associated 

particle displacement of this SAW is bounded in the vicinity of the surface only. Vice 

versa, a SAW generates an electric charge distribution at the receiving IDT, causing a 

microwave electrical output signal to occur. SAW technology has evolved to the GHz 

range in recent years and now routinely covers the frequency range up to 3GHz. This 

frequency band is used as carrier frequency for many new wireless communication and 

sensor applications.  SAW filters are not suitable for monolithic implementation and are 

usually implemented off-chip since silicon is not a piezoelectric material. Fig. 1.7 shows 

a simple transversal SAW filter configuration. 
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Fig. 1.7. Simple transversal SAW filter (Source: Triquint Semiconductor) 

 

 

In its simplest form, a transversal SAW filter consists of two transducers with 

inter-digital arrays of thin metal electrodes deposited on a highly polished piezoelectric 

substrate such as Quartz or Lithium Niobate (Fig. 1.7). The electrodes that comprise 

these arrays alternate polarities so that an RF signal voltage of the proper frequency 

applied across them causes the surface of the crystal to expand and contract. This 

generates the Raleigh wave, or surface wave, as it is more commonly called. A Typical 

SAW filter’s frequency of operations includes 0-250MHz. SAW filters finds its 

applications in most of the communication systems. They are also mostly compact 

devices. 

 

1.2.1.3. MEMS Filters   

 Micro-Electro-Mechanical Systems (MEMS) [19] are integrated circuit (IC) 

devices or systems that combine both electrical and mechanical components. MEMS are 

fabricated using typical IC batch-processing techniques with characteristic sizes ranging 

from nanometers to millimeters. RF MEMS are micro-electromechanical systems that 

interact with a radio frequency (RF) signal [20]. The integration/implementation of RF 

MEMS provides engineers with an additional integration option for better performance, 

smaller size, and lower cost in their designs. RF MEMS provide microwave and RF 

engineers with low insertion loss, high Q, small size, very low current consumption, and 

potentially low cost options to solving their design problems. The low insertion loss is 
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obtained by replacing the moderate losses associated with semiconductors with lower 

metallic losses. Cost and size reduction is the result of utilizing semiconductor batch-

processing techniques in RF MEMS manufacturing. Like existing semiconductor 

devices, the RF MEMS circuitry must be protected from the environment. But unlike 

semiconductors, the environmental protection is required due to either the mechanical 

movement and/or the mechanical fragility of the parts. 

 Some of the RF MEMS application devices belong to the general class of static 

devices, which includes transmission lines and resonators; active devices, such as 

switches and variable capacitors; and circuits, such as oscillators (fixed frequency and 

voltage controlled), and tunable filters.  

 Resonators (Filters) are a basic building block in frequency selective systems. 

Due to the diverse technologies involved and the low insertion loss associated with 

MEMS technology, several different resonator types exist. There are three types of 

resonant structures, demonstrated over widely different frequency ranges, mechanical 

(300 KHz to 100 MHz), cavity (greater than 20 GHz), and piezoelectric film (1.5 to 7.5 

GHz) resonators. 

 

1.2.2. Active Filters   

Active filters are ubiquitous in electronic design today, performing signal-

frequency manipulation and conditioning for audio, IF (intermediate frequency), and 

digital-signal processing. The success of active filters is due primarily to integration 

capability and the extensive body of theoretical knowledge. Although DSPs can 

outperform active filters in dynamic range, active filters can achieve good performance 

with significantly lower power demands. 

Active filters [21] also use resistors and capacitors, but active devices capable of 

producing power gain replace the inductors. These devices can range from single 

transistors to integrated circuit (IC) -controlled sources such as the operational amplifier 

(OPAMP), and simpler devices, such as the operational transconductance amplifier 

(OTA) [22], the generalized impedance converter [23] (GIC), and the frequency-
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dependent negative resistor [24] (FDNR). The general class of active filters includes the 

Active-RC filters, MOSFET-C, OTA-C, and Current mode types of filters.  

 

1.2.2.1. Active-RC Filters 

Despite the availability of active-filter ICs, most engineers still resort to RC 

(resistor/capacitor) active implementations consisting of operational amplifiers 

(OpAmp), resistors, and capacitors. Indeed, the popularity of RC active filters has not 

diminished since their heyday in the 1970s. They offer the opportunity to integrate 

complex filters on-chip, and do not have the problems that the relatively bulky, lossy, 

and expensive inductors bring in particular their stray magnetic fields that can provide 

unwanted coupling in a circuit or system.   

Fig. 1.8 shows the simplest form of active-RC architectures, the Sallen and Key 

[25] circuit (which uses a voltage amplifier, resistors, and capacitors). It has been around 

for a long time, yet research into active-RC filters still proceeds after all that time. Sallen 

and Key types of filters are mainly used for designing high Q ( )
1 2 1 2

1 1 2
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C R R
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 filters. 

Larger Qs are attainable by using a positive feedback amplifier. If the positive feedback 

is controlled—localized to the cut-off frequency of the filter—almost any Q can be 

realized, limited mainly by the physical constraints of the power supply and component 

tolerances. Fig. 1.8 shows a unity gain amplifier used in this manner. Capacitor C2, no 

longer connected to ground, provides a positive feedback path. 

 

 

 
Fig. 1.8. Unity gain Sallen and Key low pass filter 
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OpAmps (active block represented by the triangular block in Fig. 1.8) are often 

the most critical elements in any RC-active-filter design and deserve much attention. 

Voltage-feedback OpAmps are still the mainstay of RC active filters, but current-

feedback topologies [26] offer gain that's independent of bandwidth, as well as good 

current outputs at high frequencies. With more designs concentrating on portable 

systems, low-voltage CMOS op amps offer rail-to-rail  [27]-[28] voltage-handling 

capability down to power supply voltages of 3V or less. 

Active-RC filters have been widely used in various low frequency applications in 

telecommunication networks, signal processing circuits, communication systems, 

control, and instrumentation systems. However, they cannot work at higher frequencies 

due to OpAmp frequency limitations, i.e. higher order poles are created which needs to 

be compensated, and are not suitable for full integration if large resistors are required. 

They are also not electronically tunable and usually have complex structures. The most 

successful approach to overcome these drawbacks is to replace the conventional OpAmp 

in active-RC filters by an OTA giving rise to OTA-C filters.  

 

1.2.2.2. OTA-C Filters 

Programmable high-frequency active filters can be achieved by incorporating the 

Operational Transconductance Amplifier-Capacitor filters (OTA-C). OTA-C filters also 

have simple structures, and can operate up to several hundreds of MHz. In recent years 

OTA-based high frequency integrated circuits, filters and systems have been widely 

investigated [22]. This is due to their simplicity, electronic tunability, and suitability for 

high frequency operation due to open loop configuration.  

The OTA has been implemented widely in CMOS and bipolar and also in 

BiCMOS and GaAs technologies. The typical values of transconductances are in the 

range of tens to hundreds of µS in CMOS and up to mS in bipolar technology. The 

CMOS OTA, for example, can work typically in the frequency range of 50MHz to 

several 100MHz. Linearization techniques [29]-[30] make the OTA able to handle input 

signals of the order of nearly volts with nonlinearities of a fraction of one percent.  
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Although OTA-C filters have the potential to operate at relatively high 

frequencies (MHz range), the linear signal range of the used transconductance limits the 

dynamic range. Also the OTA-C filters become very power hungry at GHz range.  

This research focuses on the modeling of these OTA blocks, designing new 

highly linear OTA blocks for continuous time analog filters. Chapters II and III describe 

the OTA in detail. Several design issues of the OTA-C filters are also discussed.  
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Fig. 1.9. Simple low pass OTA-C filter with a fixed pole and adjustable gain 

 

 

Fig. 1.9 shows a typical example of a simple first order OTA-C circuit with a 

fixed pole, depending on the values of R and C, and an adjustable gain (adjusted using 

the transconductance gm of the OTA.  

 

1.2.2.3. MOSFET-C Filters 

 Today among some of the most proven reliable filter structures are a class called 

MOSFET-C filters. The MOSFET-C method follows the standard OpAmp based active 

filter techniques as mentioned in the previous section. The main difference is that the 

method replaces the resistors used in the conventional active RC integrating and 

summing circuitry by MOSFET devices based in the triode region (linear/ohmic region), 

where the MOS device acts as a linear resistor.  
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1.2.2.4. Current Mode Filters 

 Most of the techniques mentioned in the previous sections were all voltage mode 

filters where the input is a voltage variable and the output is either voltage or current. 

The class of active filters whose inputs are mainly current variables are called 

collectively as Current Mode filters. For the fully current mode filters [31] the inputs and 

the outputs are current forms. Fig. 1.10 shows the current mode form of the first order 

filter whose voltage mode is shown in Fig. 1.9. 
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Fig. 1.10. Voltage mode to current mode transformation 

 

 

 
Fig. 1.11. Non-inverting current mode integrator 

 

 

 The most primitive form of the transconductance mode architecture is that of a 

simple inverting transistor. A simple MOS transistor (a NMOS for e.g.) produces a drain 

currents Ids corresponding to the voltage input and also its transconductance gm 
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parameter.  A current amplifier can be implemented using a simple current mirror. Fig 

1.11 shows a simple non-inverting integrator in the current mode operation. 

 The performance comparisons between the voltage mode and current mode 

almost yield the same response. This might be due to inherent transconductance-mode of 

both the types. There are however few differences depending on the type of circuit 

design. In most of the papers proposing very fast current-mode circuits, open-loop 

current amplifiers are compared to results obtained with closed-loop voltage amplifiers 

[31]. Many of the amplifiers derived with a current-mode approach base on current 

mirrors and provide a specific, low gain without feedback around the amplifier. The 

typical low-gain voltage amplifier uses feedback around a high-gain amplifier. This 

feedback stabilizes the gain and reduces harmonic distortion, it also improves the 

terminal impedances of the amplifier.  

 The voltage-mode filter has ideally a high-impedance output and the current-

mode filter has a high-impedance input. Therefore, on a real IC, the voltage mode circuit 

might need an output buffer, since a resistive load connected to the output node would 

otherwise change the transfer function, and the current-mode circuit might need an input 

buffer, since the input nodes must be driven by a high-resistance device. However, the 

noise of the current buffer is filtered, but not the noise of the voltage buffer, and the 

performance difference between the two filters is reduced to the performance difference 

between the circuits used to insert signals into the feedback loop and extract signals from 

it. The resulting performance difference is certainly small, and it is not a question of 

signal representation, but of transistor-level design. 

 Some of the research works indicates that the current-mode circuits are 

considered to be faster than voltage-mode circuits: although both would be similarly 

good from an ideal point of view. In general the advantages of current-mode circuits that 

are often cited in the literature, like a potential for reaching higher frequencies, lower 

power consumption, and smaller chip area, are in fact real, but the reason is not 

technical, and has nothing to do with choosing voltages or currents to represent signals. 
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The reasons for the difference are mainly the design preferences of the proponents of the 

current-mode approach. 

 Tables.1.1 and 1.2 show a comparison of the various filter types. 

 

 

Table 1.1. Comparison of Filter Categories 

Parameter Digital Sampled-data Continuous-time 

Time samples Discrete Discrete Continuous 

Data samples Discrete Continuous Continuous 

Need anti-aliasing 

and reconstruction 

Yes Yes No 

Mathematical 

Description 

Z-transform Z-transform S-transform 

(Laplace) 

 

 

Table 1.2. Comparison of the Continuous Time Filter Types 

Active  Parameter 

Active-RC OTA-C 

Passive RLC 

Frequency of Operation Upto a few 100of MHz Upto GHz Upto a few MHz 

Block OpAmp OTA R, L and C 

Limitations Power consumption  

OpAmp has frequency 

Limitations 

Tunability 

Linearity 

Power 

Noise 

Tuning 

Bulky inductors for 

higher frequencies 

Area Less Less Very large 

Silicon Integration Easy Easy Difficult 
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1.3. Filter Design Procedure 

The design of a filter (be it continuous time, digital or sampled-data) involves a 

series of steps, which will end up in the final filter design to meet the required 

application. Depending on the application, the specifications of the filter needs to 

mentioned clearly. There are various ways of approaching the design procedure to 

achieve the specifications. To select the best approach depends on the choice of the 

appropriate system transfer function, which will satisfy the specifications. This process 

involves choosing the right approximation technique. With the filter transfer function 

chosen the next would be to choose the class of the filter type which needs to be used, be 

it Active-RC, OTA-C, MOSFET-C etc. Depending on the order of the filter chosen, 

possible filter implementations needs to be considered like the cascade [32], leap-frog 

[33], follow the leader feedback, multiple feedback loop [34] etc, if the order is more 

than 2. If the order is 2, the filter can be a simple biquad. The next step would be to 

define the passive element values and also the specifications of the active block in the 

circuit. Designing of the active block to match the specifications follows this step. The 

final step is to verify the complete filter functionality. Fig. 1.12 gives the data flow 

diagram for the continuous time filter design. Each of the steps are explained in detail in 

the following sub-sections. 
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Fig. 1.12. Data flow for continuous time filter design procedure 
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1.3.1. Filter Specifications  

 Each application requires some specifications, which may be based on the 

magnitude, phase, and group delay specifications.  Some of the filter specifications are 

explained in brief. 

Magnitude Response: Magnitude Response is defined as the ratio of the output 

amplitude to the input amplitude versus frequency and is usually plotted on a log/log 

scale. Some of the magnitude specifications are maximum attenuation in the pass band, 

minimum attenuation in the stop band, the maximum allowable ripple etc. 

Frequency Response: Along with the magnitude specifications are the frequency 

specifications. The frequency limit till which the filters need to perform is an important 

measure. A commonly used term is the “Corner” frequency, or the “3dB” frequency. It is 

defined as the frequency at which the magnitude response drops by 3dB from its desired 

level, in the case of low pass or high pass filter. The range of frequencies till this level 

would be termed as the pass band and the range of frequencies above/below, which the 

signal is totally attenuated, is termed as the stop band. In the case of band-pass filters or 

band-reject filters, the important specification is the center frequency and the bandwidth 

within which the signal is contained. Other frequency and magnitude related 

specification includes “Quality factor Q” of the filter, which is related to peaking factor 

around the corner frequency.  

Phase Response/Group Delay Response: All non-ideal filters introduce a time 

delay between the filter input and output terminals. This delay can be represented as a 

phase shift if a sine wave is passed through the filter. The extent of phase shift depends 

on the filter's transfer function. For most filter shapes, the amount of phase shift changes 

with the input signal frequency. The normal way of representing this change in phase is 

through the concept of Group Delay, the derivative of the phase shift through the filter 

with respect to frequency. 

Some of the other specifications of the filter which are not directly involved in 

choosing the filter transfer function, but are very critical factors are, Noise performance 

related to signal to noise ratio (SNR), Linearity performance defined using a term called 



  20   

“Total Harmonic Distortion (THD)” and dynamic range, power consumption etc. These 

issues are dealt in detail in chapters II and III.  

 

1.3.2. The Approximation Problem 

Solution of the approximation problem [35] is a major step in the design 

procedure of a filter. It is through the solution of this problem that the filter designer 

determines the filter function, the response that satisfies the above mentioned 

specifications. In practice, the specifications of a low pass filter are often given in terms 

of the cutoff frequency the maximum allowable deviation (error) in the passband, the 

stop band edge frequency, and the minimum attenuation in the stop band. In general, 

from those specifications, one is able to draw a frequency response magnitude plot. This 

plot can be approximated by a function that is then implemented using a low pass filter. 

The approximation problem has been solved mathematically in various ways. 

Some of the best-known and most popular lows pass functions in the frequency domain 

for magnitude responses are: Butterworth, Chebyschev, Elliptic functions, Equal ripple 

delay and Bessel-Thomson function for phase response. With the aid of any of the 

computer programs that are available nowadays, such as Fiesta-II [35], one can obtain 

the appropriate approximating function for any particular specifications. Then, since 

these basic functions are low pass, a suitable frequency transformation is applied in 

order to obtain high pass, band pass, or band stop filters according to the requirement. 

 

1.3.3. Filter Class 

 The next step in the filter design process is the selection of the appropriate filter 

classes i.e. the type of filter to be used, be it active-RC, OTA-C or MOSFET-C. This has 

been described in detail in the previous section. The best class of filter is chosen 

depending on the application. OTA-C is chosen for high frequency applications. Active-

RC is chosen if the application has stringent noise and Signal to noise requirements etc. 

This thesis focuses on the application and usage of OTA-C filters for continuous time 
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analog applications. The specifications of the active and passive components of the filter 

are mentioned in the forth-coming sections.  

 

1.3.4. Filter Topology  

The filter transfer function obtained from the approximation used, indicates the 

order of the filter required to meet the filter specifications. In cases, where the order of 

the filter is 2, a simple biquad (a second order filter) can be used to achieve the response. 

In most cases, the selectivity that is provided by a second order filter is not sufficient. 

Higher order filters are needed in order to satisfy the tough selectivity requirements in 

telecommunication systems, and many other applications. There are two main 

approaches to realize a high order filter; (1) to cascade second order stages without 

feedback (Cascade) [32] or through the application of negative feedback [34] (multiple-

loop feedback MLF), and (2) simulation of passive LC ladder filters [36]. Selection of 

the filter topology would depend on some of issues like sensitivity and area available. 

Some of the filter topologies may not require many active elements; hence the effective 

silicon area and power can be reduced. Some of the known filter topologies are 

discussed below.  

 

1.3.4.1. Cascade Topology  

In this approach biquadratic second order sections are cascaded and the high 

order function is realized as the product of biquadratic factors. These sections are simply 

cascaded by connecting the output of each section to the input of the following one. This 

method has the advantage of simplicity in designing the filter, provided that the output of 

each section is very low impedance or the input of each section is very high impedance. 

Fig. 1.13a shows a simple biquad OTA-C filter and Fig. 1.13b shows a 5th order Bessel 

OTA-C filter designed by cascading two biquads and a first order filter. 
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Fig. 1.13a. OTA-C biquad section 

 

 

 
Fig. 1.13b. 5th order Bessel OTA-C filter (cascade 2:2:1) 

 

 

In the above approach there is no feedback between the biquadratic sections. 

However the second class of cascading techniques involves feedback across the 

biquadratic sections. In this approach multiple feedback is applied in a cascade 

connection of biquadratic sections. This leads to a better sensitivity performance of the 

overall circuit compared to the corresponding circuit obtained using the Cascade 

approach. This approach has two general topologies: the leapfrog topology [33], and the 

summed-feedback topology [34]. 
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1.3.4.2. Leapfrog Topology 

The leapfrog (LF) configuration is shown in Fig. 1.14. Each of the boxes named 

Ti realizes a second order losssless filter transfer function (biquad) except for the 

terminations at the input and output. The feedback loop always comprises of two 

sections; thus, inverting and non-inverting sections must alternate to keep the loop gains 

negative and the loops stable [33]. If the circuit is derived from a resistively terminated 

lossless ladder filter, as is normally the case, T1 and Tn are lossy and all the internal 

sections are lossless. A lossless block implies a function Ti with infinite Q, which may 

not be stable by itself, but the overall feedback connection guarantees stability. This 

topology is useful in the functional simulation of LC ladder filter. 

 

 

 
Fig. 1.14. Leapfrog topology 

 

 

1.3.4.3. Summed-feedback Topology 

The summed-feedback topology [34], as shown in Fig. 1.15, is not suitable for 

realizing any finite transmission zeros. To overcome this problem, one of two techniques 

can be used: (1) the multiple-or distributed-input technique, in which the input signal is 

also fed to the input of all cascading sections, or (2) the summation of the input signal 

and the output signals from all cascaded sections. 
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Fig. 1.15. Summed-feedback topology 

 

 

There are three other design methods based on that topology: the primary-

resonator block (PRB) [14] where all the used Ti stages are identical, the follow-the-

leader feedback (FLF) [37], and the shifted-companion form (SCF) [38]. Both the FLF 

and SCF methods are generalizations of the PRB method. The general block diagram of 

FLF [37] method is shown in Fig. 1.16. In this case, Ti can be first order low pass or high 

pass functions or alternatively second order biquadratic sections. The summation of the 

feedback voltages is responsible for the realization of the poles of the function, while the 

second summation is required for the realization of any finite transmission zeros. 

  

 

 
Fig. 1.16. Follow-the-leader feedback (FLF) topology 
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1.3.4.4. LC Ladder Simulation 

Simulating either functionally or using active elements to implement the 

inductances of the ladder can achieve simulation of passive resistively terminated 

lossless ladder networks. Functional simulation [36] is implemented by realizing the 

currents and node voltages in the ladder. The LC ladder simulation method is attractive, 

because it leads to active filters of lower sensitivities the other two approaches, i.e., 

Cascade and multiple loop feedbacks. 

 Table 1.3 gives an overall comparison of the various filter topologies.  

 

 

Table 1.3. Comparison of Filter Topologies 

Type Approach Sensitivity Design  

Cascade Biquadratic sections 

are cascaded 

Bad Simple and easily 

tunable 

Multiple-loop 

feedback 

Multiple feedback is 

applied in cascade 

of  biquadratic 

sections 

Good Complex 

More critical nodes 

due to feedback 

LC ladder 

simulation 

Simulation of 

passive lossless 

ladder networks 

Best Simple 

 

 

1.4. Active Blocks Design Considerations 

The next step, having defined the class and topology is the specification of the 

active and passive elements used in the filter design. The passive elements are chosen to 

minimize area consumed in actual silicon and other parasitics introduced. The active 

block needs further investigation. Some of the commonly mentioned active block 
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specifications for the case of an Active-RC filter are DC gain, output resistance, gain 

bandwidth product for the OpAmp used. The specifications for the case of OTA-C filters 

are the transconductance ( gm )of the OTA, bandwidth, linearity, noise performance of 

the OTA etc. Apart from the specifications particular for the active block in the filter 

design, there are some performance criteria specific for the filter applications. Some 

typical analog filter performance criteria are transfer function accuracy, linearity, noise 

performance, power consumption, and silicon area.  

 

1.4.1. Noise 

  Noise (created by both passive and semiconductor devices), unwanted signal, is 

present at the output of any filter. In most cases, later filter stages remove stop-band 

noise from earlier stages, but they leave noise in the pass-band unaffected. High-Q filter 

stages amplify noise near their corner frequencies. In an active filter, for example, the 

noise spectrum in the stop-band is usually flat and low level, resulting largely from the 

output amplifier. At the low-frequency end of the pass-band, the noise spectrum is also 

flat, but with a magnitude two to four times the level of the stop-band noise. Near the 

corner frequency, noise levels peak at magnitudes that depend on the filter's transfer 

function. The importance of noise will depend on the system bandwidth and the level of 

signals passing through the filter [17]. The noise in analog integrated circuits in general 

can be of two major types. They are: 

Flicker Noise: The interface between the gate oxide and the silicon substrate in a 

MOSFET entails an interesting phenomenon. Since the Silicon crystal reaches an end at 

this interface, many dangling bonds appear giving rise to extra energy states. As charge 

carriers move at the interface, some are randomly trapped and later released by such 

energy states, introducing flicker noise in the drain current. In addition to trapping, 

several other mechanisms are believed to generate flicker noise. The flicker noise cannot 

be predicted easily. Depending on the cleanliness of the oxide-Silicon interface, flicker 

noise may assume considerably different values. The flicker noise in general is modeled 

as a voltage source in series with the gate and given by equation (1.2), 
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2

ox

K 1
Vn C WL f

= ×  
(1.2) 

 where K is a process dependant constant on the order of 10-25 V2F, Cox  is the gate oxide 

capacitance, W and L are the device dimensions, f is the frequency. The noise spectral 

density is inversely proportional to the frequency. Hence it is seen to be dominating in 

the lower frequency zone and almost negligible for high frequency applications. 

Thermal Noise: The random motion of electrons in the conductor introduces 

fluctuations in the voltage measured across the conductor even if the average current is 

zero. The noise spectrum is proportional to absolute temperature. The thermal noise 

spectrum for the case of a resistor is given by equation (1.3).  
2
nV 4kTR=  (1.3) 

The thermal noise of a resistor R can be modeled by a series voltage source with 

one sided spectral density as shown in (1.3). It is expressed in terms of V2/Hz. As can be 

observed from the equation, this is a flat spectrum, also called the white spectrum. MOS 

transistors also exhibit thermal noise. The most significant source is the noise generated 

in the channel. It is proved that for the long-channel MOS devices operating in 

saturation, the channel noise can be modeled by a current source between the drain and 

the source terminals with a spectral density as shown in (1.4). 

2
m

2 2
m o

2
I 4kT g ,n 3
V 4kT g rn

= γ γ =

= γ ×
 

(1.4a) 

(1.4b) 

      It can also be represented by a voltage source at the output by multiplying the 

current with the output resistance of the MOS device r2
o. More analysis of the noise in 

MOS devices and in OTA-C filters are discussed in the following chapters.  

 

1.4.2. Non-Linearity  

 Nonlinearity is the behavior of a circuit, particularly an amplifier, in which the 

output signal strength does not vary in direct proportion to the input signal strength. The 
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large signal analysis of most of the single stage and differential amplifiers exhibit a 

nonlinear input/output characteristic as shown in Fig. 1.17. 

 

 

 
Fig. 1.17. Input/output characteristic of a nonlinear system 

 

 

Depicted in Fig. 1.17. such a characteristic deviates from the ideal straight line as 

the input swing increases. The output variations become heavily nonlinear as the input 

level increases [39]. This variation is due to the nonlinearities introduced in the system. 

For a simple differential pair, the gain of the input stage relies on the input 

transconductance, gm, which is dependent on the input signal variations, Vgs. As this term 

increases more nonlinearity is introduced. The means of reducing the nonlinearities 

would involve reducing the dependence of the gm on the input voltage signal at the gate. 

These techniques are dealt in detail in chapter III. A brief introduction to nonlinearity is 

given below. 

Consider a nonlinear system [40] described by the following equation: 

)t(x)t(x)t(x)t(y 3
3

2
210 α+α+α+α=  (1.5) 

where y(t) and x(t) is the ouput and input of the system respectively. Assume 

)cos()( tAtx ω= , then from equation (1.1), 
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(1.6b) 

In equation (1.6b) the term with the input frequency is called the fundamental 

and the higher order terms the harmonics. Harmonic distortion factors (HDi) provide a 

measure for the dostortion introduced by each harmonic for a given input signal level 

(using a single tone at a given frequency). HDi is defined as the ratio of the output signal 

level of the ith harmonic to that of the fundamental. The THD is the geometric mean of 

the distortion factors. The second harmonic distortion HD2, the third harmonic distortion 

HD3, and the total harmonic distortion THD are defined as (assuming α1A>>3α3A3/4), 

1

2
2 2

A
HD

α
α

=  
 

(1.7a) 

1

2
3

3 4
A

HD
α

α
=  

 

(1.7b) 
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2
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2 +++=   

(1.7c) 

For fully differential systems, even harmonics will vanish and only odd 

harmonics remain. In reality, however, mismatches corrupt the symmetry, yielding finite 

even order harmonics. In a fully differential system with ε% mismatch and from 

equation (1.7a), HD2 is given by: 

1

2
2 2α

αε A
HD =  

 

(1.8) 

 More analysis of the non-linearity in analog circuits is discussed in chapters II 

and III. Some of the other design constraints include Dynamic range, which is related to 

the non-linearity and also the minimum noise permissible in the system. Dynamic range 

is defined as the range of desirable signal power levels over which the hardware will 
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operate successfully. Noise, signal compression, and interfering signals and their power 

levels limit it. 

 The other related constraints are Speed, Power dissipation, Voltage swings, 

Input/Output impedances and Supply voltages. Most of the present day applications 

demand high speed. They expect the circuit to act very fast to the input signal. Speed has 

its own tradeoffs with the circuit topology and other frequency dependant parameters. 

Most of the applications focuses on portability, long life etc. Thus they have a major 

stress on the power dissipated in the circuitry. Also technology advances fast enough to 

meet the demands of the electronics industry, hence this reduces the effective voltage 

supply (power supply). The input/output impedances determine how the circuit interacts 

with the preceding and subsequent stages. Some applications like the VDSL, ADSL for 

base band communication systems require the input voltage to swing from rail-to-rails 

(from Vdd to the Gnd). This requires a serious examination of the circuit design, cause 

the output stages of the circuit should allow such voltage swings. Also the input stage 

should be linear enough to handle such wide variations. In practice, most of these 

parameters trade with each other making the design a multi-dimensional optimization 

problem. Illustrated in the “Analog Design Octagon” in Fig. 1.18, such trade-offs present 

many challenges in the design of high performance amplifiers, requiring intuition and 

experience to achieve at an acceptable compromise. 
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Fig. 1.18. Analog design octagon showing the relation between various parameters 

 

 

1.5. Organization  

 The thesis mainly concentrates on the design issues of the OTA-C filter class for 

continuous time filters. It has several reasons as mentioned in the previous sections and 

also in the following chapters. The implementation of fully integrated, high-selectivity 

filters operating at tens to hundreds of MHz provides benefits for wireless transceiver 

design, including chip area economy and cost reduction. The main disadvantages of on-

chip active filter implementations when compared to off-chip passives include increased 

power dissipation, deterioration in the available dynamic range with increasing Q, and Q 

and resonant frequency integrity (because of process variations, temperature drifts, and 

aging). The Operational Transcondutance Amplifier-Capacitor (OTA-C) technique is a 

popular technique for implementing high-speed continuous time filters [22] and is 

widely used in many industrial applications. [1]-[3] 

 Chapter I gives a very brief introduction of the basic filter types, topologies, 

design considerations etc. Chapter II introduces the general class of the Operational 

Transconductance Amplifiers (OTA), their modes of operation, their different types 

(voltage mode, current mode), various applications like the summer, integrator, negative 

resistor etc. More focus in given on the integrators or the OTA-C filters. The various 
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types of filters (first order, second order, higher order) are introduced. Two of the main 

design considerations linearity and noise is given more importance. The basic modeling 

of these two parameters are considered. A general framework to describe an OTA-C 

filter using matrix method is introduced and explained. Using this matrix descriptions, 

the non-linearity and noise of any general order OTA-C filter is determined. The process 

is explained in detail with elaborate examples (theoretical, simulated and experimental 

results). Using these techniques the performance optimization of a general order cascade 

filter is explained. The example of the performance optimization of a 8th order 

Butterworth low pass filter in cascade realization is mentioned. The chief parameters 

optimized are the non-linearity (in terms of THD), noise and the dynamic range. 

Because OTA-C filters are based on integrators built from an open-loop 

transconductance amplifier driving a capacitor, they are typically very fast but have 

limited linear dynamic range. Linearization techniques that reduce distortion levels can 

be used, but often lead to a compromise between speed, dynamic range, and power 

consumption. Chapter III deals with the standard linearization techniques available in 

literature. It introduces to most of the existing techniques to reduce the distortion. 

Chapter III also proposes two new techniques for improving the linearity of the circuit. 

The first one being the combination of capacitor division, source degeneration and 

complimentary input pair OTA for the applications like the VDSL [41] and ADSL [42]. 

Secondly, a highly linear operational transconductance amplifier (OTA) based on an 

active-error feed forward linearization scheme is proposed. Feedforward linearization is 

widely used to reduce nonlinear distortion in amplifiers. The proposed technique gives 

effective linearization, facilitates the  implementation of  the OTA circuit which has 

extremely low power consumption, extended linear range of operation, as well as good 

transconductance tuning capability. Moreover, the effective excess phase compensation 

can be easily applied, which makes the circuit suitable for high-frequency applications. 

The work also aims in verifying the above-mentioned advantages of the OTA on silicon. 

The theoretical results mentioned about the OTA are also verified with those of silicon 

measured values to have a proof of concept. 
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Finally, Chapter IV summarizes the main contributions of this research work. 

Discussion of different design considerations and trade-offs: high frequency, low 

voltage, power consumption, linearity, noise is dealt with as we advance through the 

thesis in the following chapters. 
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CHAPTER II 

NONLINEARITY AND NOISE MODELING OF OTA-C FILTERS* 

 

2.1. Motivation and Background  

Continuous-time analog filters [22] and equalizers [43] based on transconductance 

amplifiers and capacitors (OTA-C filters) are suitable solutions for various voltage-mode 

and current-mode signal-processing tasks over wide frequency ranges when compared to 

the Active-RC counterpart.  The Active-RC filters have been widely used in various low 

frequency applications in telecommunication networks, signal processing circuits, 

communication systems, control, and instrumentation systems for a long time. However, 

active RC filters cannot easily work at higher frequencies (over 200kHz) due to OpAmp 

frequency limitations and are not suitable for full integration. They are also not 

electronically tunable and usually have complex structures. The most successful 

approach is to use the operational transconductance amplifier (OTA) to replace the 

conventional integrator in active RC filters. In recent years OTA-based high frequency 

integrated circuits, filters and systems have been widely investigated [44]-[45]. 

Many synthesis and design methods for different types and architectures of the 

OTA-C class of filters have been reported [44]-[51]. In recent years, continuous-time 

OTA-C filters, often realized as integrated circuits (ICs), have received considerable 

attention in various applications, such as hard-disc drives [2], video filters, wireless 

communications [3], computer systems, biomedical circuits [4], and control and 

instrumentation systems [52]-[53]. 

The main attractions of these filters is their excellent high-frequency 

performance, but many of their other properties still need improving, among them are 

                                                 
* © 2004 IEEE. Reprinted, with permission, from  “Dynamic Range, Noise and Linearity Optimization of 
Continuous Time OTA-C Filters” by S.Koziel, A.Ramachandran, S.Szczepanski, E. Sánchez-Sinencio, 
Dec 2004, Proc. of Int. Conf. Electron. Circuits, Syst., ICECS 2004.  
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operation at reduced supply voltages and power consumption, less dependence on 

parasitic effects, lower noise level, better linearity and wider dynamic range [54]-[63]. 

In this chapter, the focus is on the noise in OTA-C filters where, it is important to 

have available efficient tools for nonlinear distortion and noise analysis, in particular, 

tools that can be embedded into computer-aided filter-design systems. The main 

requirements for such tools are that they have to be general (so that the same evaluation 

formulas and software packages can be used to handle all possible filter topologies) and 

fast enough to be integrated with numerical optimization algorithms. 

 In the model presented, both requirements are satisfied due to deriving the 

analysis tools and evaluation formulas from the general OTA-C filter model [49] that 

uses nonlinear OTA macromodels. The model proposed allows the designer to obtain the 

results significantly faster than transistor-level simulation. In case of transient analysis, 

the speed-up may be as much as three orders of magnitude without almost no loss of 

accuracy. This makes it possible to carry out direct numerical optimization of OTA-C 

filters with respect of important characteristics including noise performance, nonlinear 

distortion and dynamic range. On the other hand, the general OTA-C filter model allows 

us to apply matrix transforms that manipulate (rescale) filter and/or change topology 

without changing its transfer function. The above features are a basis to build automated 

optimization procedures for OTA-C filters. In particular, a systematic optimization 

procedure using equivalence transformations is presented. 

 

2.1.1. Transconductor Amplifier  

An ideal operational transconductance amplifier is a voltage-controlled current 

source, with infinite input and output impedances and constant transconductance. The 

OTA has two attractive features: changing the external dc bias current or voltage can 

control its tranconductance, and it can work at high frequencies. Fig. 2.1a shows a 

general model of the transconductor cell and Fig. 2.1b shows the simple NMOS 

transistor as the simplest transconductor cell.  
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Vin Iout

(a) (b)  
Fig. 2.1. (a) Transconductor cell (b) Simple MOS transconductor cell 

 

 

 A brief overview of the physics involved in the operation of a transconductor cell 

is given below. The current-voltage relation given by equation (2.1) governs a MOS 

transistor in the saturation region, neglecting λ effects. The model’s output current Iout 

= iD,  is the total  

2
tGSoxD )Vv(

L
W

C
2
1

i −µ=  
 

(2.1) 

drain current , which includes the DC and the ac small signal current. The input voltage 

Vin = vGS , also includes the DC voltage (VGS) and the ac component (vgs). The 

remaining terms are µ: the carrier mobility, Cox: the oxide capacitance per unit area of 

the channel, Vt: the threshold voltage, W and L are the width and length of the channel. 

The derivative of (2.1), leads to a first order relation between current and voltage, as 

shown in (2.2a) , (2.2b) and (2.3). 
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(2.2a) 

 

(2.2b) 

gsmd vgi =  (2.3a) 

 

  The term gm is called the transconductance and hence the name transconductor 

amplifier. Alternate forms of (2.2) establish the relation between the device dimensions, 

the bias current and the transconductance value. The transconductance can be adjusted 

by the width to length ratio, W/L, of the gate and is proportional to the square root of the 

bias current ID. The unit of transconductance is Siemens (S).  



  37   

Vin
Iout

gmV1Ri Ci

V1

CoRo Vout

 
Fig. 2.2. Macromodel of transconductor cell in Fig. 2.1b 

 

 

Macromodels are simplified circuit descriptions whose behavior resembles very 

closely that of a transistor level circuit, but use less and simpler components [44]. The 

macro model of the transconductor cell shown in Fig. 2.1b is shown in Fig. 2.2. The 

input impedance represented by Ri is ideally infinity as the input is open at DC. The 

output resistance Ro can be defined as the ratio of the early voltage, VA, and the bias 

current, ID.   

D

A

o
o I

V
g
1

R ==  
(2.3b) 

The input capacitance in saturation region of operation, Ci, is approximately 

given as ¾th of WLCox product, where Cox is the gate oxide capacitance per unit area. 

The output capacitance Co depends on the device size, connections, and layout and is 

usually is of the order of 0.01pF or less.  

  There are various single input implementations of the OTA based on the model 

discussed in this section. Fig. 2.3 shows some of the single input implementations. A 

detailed discussion of these structures is not the current focus of the research. In all the 

cases mentioned in Fig. 2.3, the transconductor is a function of the bias current Ibias (i.e. 

gm=f (Ibias ) and the exact relation is a function of the transistor region of operation (refer 

to Tables 2.1 and 2.2). 
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Table 2.1. Transconductance for Various Modes of Operation 

Parameter/Region Of Operation Gm 

Saturation (MOS) ( ) Doxn ILWC2µ  

Ohmic (MOS) ( ) DSoxn VLWCµ  

Sub-threshold (MOS) 
DI

nkT
q  

Bipolar 

T

C
V
I
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Vin M1

Io

Ibias
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(a) (b) (c) (d) (e)  
Fig. 2.3. Single input transconductor implementations: (a) Simple negative, (b) Cascode, 

(c) Enhanced, (d) Folded-cascode, (e) Simple positive transconductors 

 

 

The single input transconductor has some applications. However their linearity 

performance is not good. Most of the OTA-C filters utilize the differential 

transconductor, or differential OTA without two inputs, a negative and a positive one. 

The differential OTA can have a single ended output (one output) or a differential output 

(a positive and negative one). Also the implementation can be fully differential or 

pseudo-differential. Their differences and implementations are discussed in the coming 

sections. 
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Table 2.2. Properties of Simple (Single Input/Single Output) Transconductors 

Structure /Figure Gm Rout Min VDD* 

Simple 2.3(a)  1mg  1dsg1  
biasV

k
I2

I,sat
B +  

Cascode 2.3(b) 1mg  

2ds1ds

2m
g*g

g
 ( ) biasV

k
I2

m1 I,sat
B ++  

Enhanced 2.3(c) 1mg  

2ds1ds

2m
g*g

gA
 ( ) biasV

k
I2

m1 I,sat
B ++  

Folded-Cascode 

2.3(d) 
1mg  

2ds1ds

2m
g*g

g
 

biasVV
k
I2

I,satTP
B ++  

* The bottom devices of the cascode pairs have an aspect ratio of (W/L )1/(W/L)2=m2. k is a 

technological parameter determined by the mobility, and the gate oxide; Vsat,Ibias is the saturation 

voltage for the Ibias current source.  

 

 

2.1.2. Differential Input Operational Transconductor Amplifiers   

There are two possible realizations of transconductance amplifiers, the bipolar 

implementation and the MOS implementation. This research thesis focuses on the MOS 

implementations of the transconductance amplifiers.  The simplest MOS implementation 

was described in the previous section. An extended form of the transconductor cell is the 

Operational Transconductance Amplifiers also known as OTA. An OTA is a voltage 

controlled current source, more specifically the term “operational" comes from the fact 

that it takes the difference of two voltages as the input for the current conversion.  

The ideal OTA is a differential-input voltage-controlled current source 

(DVCCS). Its symbol is shown in Fig. 2.4a, and its operation is defined by the following 

equation (2.4). Both voltages V1 and V2 are with reference to ground. The equivalent 

circuit of the ideal OTA is shown in Fig. 2.4b. 

( )21mout VVgI −=   (2.4) 
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Fig. 2.4. (a) OTA symbol, (b) Ideal equivalent circuit 

 

 

 From the symbolic representation, the input and the output of the OTA are 

voltage and current respectively. The OTA is often used in open- loop applications and 

the transconductance parameter gm is the gain of the OTA.  The ideal OTA macromodel 

has infinite input and output impedances and the transconductance gm is frequency 

independent. However in most circuit implementations a real macromodel including the 

non-idealities should be take into consideration. It is shown in Fig. 2.4, that the 

transconductance of the differential OTA is a function of the bias current (Ibias). If the 

input differential transistors are in the saturation region the transconductance gm is 

proportional to the root of the bias current and if the transistors are in the weak inversion 

region the transconductance is directly proportional to the bias current. (refer Table 2.1) 

 As mentioned earlier, a differential input OTA can be have a single ended output 

or a differential output. They can also fully differential or pseudo-differential. Fig. 2.5 

shows a simple single ended differential OTA (a) and a conventional fully differential 

OTA (b). The symbols for the same are also shown. Transistors M1 and M2 forms the 

input differential pair and M3/ M4 in Fig. 2.5a forms the current mirror. In both the forms 

of the differential OTA there exists a tail current source (Itail). Most of the present day 

continuous time filter applications require the differential output for differential signal 

processing. Hence the fully differential version (Fig. 2.5b) is of more importance.   
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Fig. 2.5. (a) Single ended differential OTA, (b) conventional fully differential OTA 

 

 

Some of the features of the fully differential version are: (1) It has a reasonable 

common mode gain, (2) The linearity of the input pair is better than the single input 

transconductor, cause the even order harmonics are cancelled out due to the differential 

signaling, (3) It has a reasonable power supply rejection ratio (PSRR), which is the 

ability of the circuit to be resistant to variations in the power supplies, (4) However the 

linear input range is limited due to the presence of the tail current source also (5) It has a 

limited tuning range. (Appendix B discusses the limitation of tuning range in MOS 

devices operating in saturation region). 

 Another variation of the differential input/output OTA is the pseudo-differential 

OTA. Fig. 2.6 shows a simple pseudo-differential OTA.  The main visible difference 

between the fully differential and its pseudo differential counterpart is the absence of the 

tail current source. This would help in improving the linear input range (wider common 

mode input range) and also makes the circuit suitable to work for low voltage 

applications. The major drawbacks of the circuit is the requirement of a strong and fast 
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common mode feedback circuit to (1) Fix common mode output voltage, (2) Suppress 

common mode signals. The circuit also has a poor PSRR and a poor common mode gain.  

 Design of the common mode feedback loops or improving the circuit parameters 

is beyond the scope of this chapter. This chapter focuses on creating a valid model for 

the OTA-C filter that utilizes the OTA blocks, which are mentioned above. The voltage 

Vbias is derived from a common mode feedback control loop and it is used to fix the 

output common mode voltage.  
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Fig. 2.6. A simple pseudo-differential OTA 

 

 

Fig. 2.7 shows the concept of the common mode feedback (CMFB) circuits. A 

CMFB circuit is classically performed by means of an additional loop as shown in Fig. 

2.7.  The output common-mode level (VCM) is sensed using a common-mode detector, 

i.e., VCM = (vOUT
+ + vOUT

-)/2. It is then compared with the reference voltage VREF, and an 

error-correcting signal is injected to the biasing circuitry of the OTA. The CMFB loop 

has to be designed carefully to avoid potential stability problems. This increases the 

complexity of the design, the power consumption, and the silicon area used. The 
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frequency response of the differential path is often affected due to the added parasitic 

components involved in conventional CMFB schemes.  
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Fig. 2.7. Conventional common mode feedback (CMFB) loop 

 

 

2.1.2.1. Macromodel of the OTA 

A macromodel for the differential input OTA is presented in Fig. 2.8. The macro 

model [44] takes into account the frequency dependence of the transconductance 

parameter gm. The linear transconductance can be represented by gm.  In all cases the 

transconductance is not the linear one. Hence there is a need to also consider the non 

linear effects of the transconductance term. The term Gm in the Fig. 2.8 exhibits the non-

linear dependence of id on Vd  as shown in equation set (2.5). 
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 It does not neglect the input and output impendence which would ideally be 

taken as infinity. The transconductance gm is frequency dependant and is approximated 

with one dominant pole, which is represented as ωp. The constant DC related 

transconductance term is represented by gmo . Equation (2.5e) shows the frequency 

dependence of the transconductance term. The input capacitor Cp includes the input 

parasitic capacitances at the gate of the input differential transistor (which includes the 

gate to source capacitor Cgs, gate to drain capacitor Cgd). 
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Fig. 2.8. Non-linear OTA macro model 
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(2.5e) 

Also, the phase model is often used, which is described as follows: where Φ = ω� 

is the phase delay with � = 1/�p giving the time delay. This can also be termed as excess 

phase, which is the difference between the actual phase and the minimum phase, the 

phase shift in excess of the minimum phase shift. 

( ) φ−=ω j
mom egjg  (2.5f) 

The input impedance can be modeled by connecting a resistance Ri in parallel 

with a capacitance Ci from each input terminal of the ideal OTA to ground and a 

capacitance Cin in parallel with a resistance Rin between the input terminals. When one of 

the input terminals is grounded the input impedance is simplified being the parallel 
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combination of the resistances Ri, Rin and the capacitance Ci + Cin. In most cases like the 

one shown in Fig. 2.8 the resistors Ri and Rin are taken to be infinity and the capacitor Ci 

is negligible. The OTA output impedance is modeled by the parallel combination of a 

resistance Rout and a capacitance Cout connected between the OTA output terminal and 

the ground. There are secondary and other non-idealities that contribute to the non-linear 

behavior of the transconductance. The modeling tool should consider all these non-

idealities. In spite of all these imperfections, though, careful design can minimize their 

effect on the available bandwidth, which remains much higher than that of an OpAmp. 

This makes OTAs very useful for the design of active filters at high frequencies. 

 The macro-model of the OTA presented in Fig. 2.8 also includes the noise 

components. The noise produced by the entire OTA circuit can be modeled as an input 

voltage source defined by a noise spectral density Sn(f). This overall macromodel of the 

OTA is used extensively in this research thesis. 

 

2.1.3. Simple Applications of OTA  

The differential OTA can be used for various applications like simple resistor 

implementation, an amplifier, a voltage variable resistor, an integrator etc. These blocks 

[54] are explained in brief below. The single ended version of the OTA is shown in all 

cases.  

 

2.1.3.1. Voltage Amplifier / Integrator  

 Inverting and non-inverting voltage amplification and also integration can be 

achieved using an OTA. Fig. 2.9 shows the simple OTA with a load . If ZL is a passive 

resistor RL, then the structure behaves like a voltage amplifier and depending on the 

polarity of the input the voltage amplifier could be a positive or negative one. Any 

desired gain can be achieved by a proper choice of gm and RL. It should be noted that the 

output voltage Vo is obtained from a source with output impedance equal to RL.  
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ZL
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Vi  
Fig. 2.9. OTA with load 

 

 

If the load is a capacitor C, the structure behaves like a first order integrator. The 

integrator is also discussed in detail in the following sections. Zero output impedance 

can be achieved only if a buffer or voltage follower follows such circuits. 

 

2.1.3.2. Voltage Variable Resistor  

 A grounded voltage-variable resistor can be easily obtained using the ideal OTA 

as shown in Fig. 2.10. Since Io = –Ii, 

mim
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o
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i

i
i g

1
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V
I
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Z ==
−

==  
 (2.6) 
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Fig. 2.10. Grounded voltage variable resistor 

 

 

 Using two such arrangements cross-connected in parallel, a floating VVR can be 

obtained. On the other hand, if in Fig. 2.10 the input terminals are interchanged, the 
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input resistance will be 1/gm. Thus, using OTAs, both positive and negative resistors 

become available without actually having to build them on the chip. These, coupled with 

capacitors, lead to the creation of the so-called active-C filters 

 

2.1.3.3. Voltage Summation  

Voltage summation can be obtained using OTAs, which in effect translate 

voltages to currents. These are easily summed as shown in Fig. 2.11 for two voltages V1 

and V2. it is clear that from (2.7), (2.8) and (2.9), Vo is a function of V1 and V2. By 

adjusting the values of the transconductances, a voltage summer can be obtained. By 

changing the grounded input of one of the input OTAs, voltage subtraction can be 

achieved. These operations are useful for the realization of transfer functions. 

0III o2o1o =++   (2.7) 

0VgVgVg omo22m11m =−+   (2.8) 

2
mo

2m
1

mo

1m
o V

g
g

V
g
g

V +=  
 (2.9) 

 

 

gm1

V1 +
-

Io1

Io2
gm2

V2 +
-

gmo
+

- Io Vo

 
Fig. 2.11. Voltage summation 
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2.1.3.4. Integrator  

The operation of integration can be achieved very conveniently using the OTA as 

is shown in Fig. 2.12. Clearly, It follows that both inverting and noninverting integration 

is easily achieved.  

( )21
mo

o VV
sC
g

sC
I

V −==  
(2.10) 
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-
C

Vo
V2

Io

 
Fig. 2.12. First order integrator 

 

 

Of course, in all cases, the output impedance of the circuit is nonzero. If a 

resistor is connected in parallel with C in Fig. 2.12, the integration will become lossy. 

On the other hand, connecting the circuit in Fig. 2.10 at the output of that in Fig. 2.12, 

the integration becomes both lossy and adjustable.  
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Fig. 2.13. Integrator with (a) floating capacitors, (b) grounded capacitors 
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Fig. 2.13 shows the fully differential version of the OTA integrator. The 

capacitors can be floating between the two outputs or grounded from each of the outputs 

to ground. Note that the grounded realization required 4 times the area for a single 

floating capacitor.  There are other parasitic capacitors associated with the general OTA-

C structure, Fig. 2.14 shows the parasitic capacitors. The transfer function, equation 

(2.10), is sensitive to unavoidable parasitic capacitors as well as to the OTA output 

conductance go. Observe from Fig. 2.14 that the output conductance is in parallel with 

the integrating capacitor C, and that the output capacitances Co from the positive and 

negative output nodes of the OTA circuitry to ground add to the value of C. 

Furthermore, in IC technology floating capacitors have a substantial parasitic 

capacitance Cs (about 10% of the value of C) from the bottom plate to the substrate, i.e., 

to ac ground. To maintain symmetry, the integrating capacitor can be split into two 

halves connected such that the parasitic bottom plate capacitors 0.5Cs appear at the two 

OTA outputs. 

 

 

Vin+ Vo+

Vin-

Vo-
Co

1/2Cgm

-

+
+

-

Co

go 1/2C

1/2Cs

1/2Cs

 
Fig. 2.14. Parasitic capacitors associated with OTA-C structure 

 

 

 Taking the parasitics into consideration, evidently, the integrator realizes (2.11), 
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that is it becomes lossy with a finite integrator quality factor, equation (2.12), and an 

effective integrating capacitor Cint, as shown in (2.13). 

o

int
int g

C
Q

ω=  
(2.12) 

�
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�
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� ++= o
s

int C
2

C
2
1

CC  
(2.13) 

 To give a numerical example for the effect of the parasitic capacitances, consider 

the output capacitance Co of 0.15pF for an actual load capacitance of C=1pF. The value 

of Cs can be considered to be around 0.1pF. Thus due to the parasitic effects the total 

load capacitance is now around 1.1pF according to (2.13). For an output conductance 

around a few micro mhos, there will be a finite integrator quality factor introduced. 

To maintain the correct integration constant as nominally designed, the circuit 

capacitor C should be predistorted to reflect the parasitics appearing at the integration 

nodes. The parasitics should be estimated as best as possible, for example from a layout 

process file, and their values subtracted from the nominal value of C in the final layout. 

 If grounded capacitors are used, the bottom plate should, of course, be connected 

to ground so that the substrate capacitances are connected between ground and the power 

supply. Thus, they are shorted out for the signals and play no role. Observe that the 

presence of parasitic capacitors tends to limit the high-frequency performance of these 

filters because high frequency filters require large time constants, gm/C, i.e., small 

capacitors. The smallest capacitor C, however, must obviously be larger than the sum of 

all parasitics connected at the integrator output nodes to be able to absorb these 

parasitics. Because the values of the parasitic capacitors can generally only be estimated, 

one typically chooses C to be at least three to five times larger than the expected 

parasitics to maintain some predictability in the design. The reader will notice that 

integrators with grounded capacitors have a small advantage in high-frequency circuits 

where parasitic capacitors become large relative to C. 
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2.1.4. Non Idealities of OTA 

 There are many non-idealities to the design of an OTA-C filter, which includes 

the OTA as the basic active block. They include non-linearity of the input differential 

pair, mismatch between devices, offsets (systematic and random), capacitor non-

linearities, noise from the circuit. However the non-ideal behavior of the circuit to 

mismatch, offsets can be reduced by effective layout techniques and also some design 

techniques and they are beyond the scope of this research. A brief overview is given 

regarding the non-linearities from the circuit and also the capacitor.  

The effects of noise were already mentioned in the first chapter. Every active block is 

going to contribute to the output noise current in some form or the other. So do the 

resistive components. However a complete modeling tool should consider the noise 

injected by all components to its output.  

 

2.1.4.1. Non-Linearity of the OTA 

 Basics of non-linearity of any circuit were introduced in the previous chapter. 

Every OTA used in the design of various blocks are differential in nature. They have a 

positive and a negative input counterpart. The simplest OTA introduced in the previous 

section is that of a simple differential pair with a tail current source. The input is a 

voltage variable and the output is current. The transconductance of the input transistor 

causes this conversion. The dependencies of the transconductance term on the input gate 

to source voltage, VGS, of the transistors leads to the non-linear behavior of these circuits. 

A thorough study of non-linearities in differential circuits and their minimization is 

studied in the next chapter.  

 

2.1.4.2. Capacitor Non-Linearity 

 The charge stored in the capacitor is a function of the value of the capacitance 

and is proportional to the voltage across it (i.e. Q=CV). The voltage dependencies of the 

capacitance could lead to non-linearities due to the capacitor [55]. This effects mostly 
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the switched capacitor circuits cause the main non-linear blocks would be the 

capacitance in those cases. 

 There are some modeling techniques to model the non-linearities of the OTA, 

[64-67] analyzing the frequency dependencies of the non-linear terms. Some of the 

known methods existing in the literature are Volterra series [68] of modeling of the non-

linear behavior of analog integrated circuits and the Harmonic injection [69] method of 

analyzing non-linearities. The Volterra series method is very complex and it combines 

the theory of convolution and Taylor series expansion to describe a non-linear system 

with memory. The Volterra series expansion is a powerful yet complicated method since 

it involves breaking the non-linear system down into infinite parallel subsystems ranging 

from a linear subsystem, a quadratic subsystem, a cubic subsystem to an infinite-order 

subsystem. It is also limited to the modeling of weak non-linearities. The Harmonic 

injection method is a simpler method when compared to the Volterra series expansion 

method. It is used to describe the non-linear behavior of an analog circuit by analyzing 

every non-linear system as a linear system plus some weak nonlinearities. The weak 

nonlinearities at the input are considered as harmonics injected into the linear system. 

This method is also however restricted to weak non-linearities. 

 This thesis proposes a more intense and comprehensive way to model the non-

linearities of the OTA used in the general order OTA-C filters. It is not restricted to the 

weak non-linearities. It is a very fast and simple approach. It is based on the matrix 

description of the general OTA-C filter. The following sections present the modeling 

tool in detail. Appendix A also shows the software tool created based on the modeling 

process.  
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2.2.  Proposed Generalized Non-Linearity and Noise Modeling Approach 

 The proposed non-linearity and noise-modeling tool is explained in the following 

sections. 

 

2.2.1. A General Structure of a Gm-C (OTA-C) Filter   

 Consider the general structure of a voltage-mode Gm-C filter in Fig. 2.15. The 

current-mode counterpart can be obtained by inverting all transconductors and 

interchanging input and output of the filter [64]. The structure in Fig. 2.15 contains n 

internal nodes labeled xi; i=1,2,3…n: n input transconductors Gmbi, a set of internal 

feedback and feedforward transconductors, Gmij , an output summer consisting of 

transconductors ciGm and −Gm as well as a feedforward transconductor from input to 

output, dGm. The transconductors form the active network, while the capacitors Cbi, 

i=1,2,3….,n and Cij (1 ≤ i, j ≤ n) form the passive network. Of course, Cij =Cji. It is 

readily seen that any Gm-C filter can be obtained as a special case of the general 

structure in Fig. 2.15 by setting the appropriate elements to zero. Note that n is not 

necessarily equal to the degree of the filter transfer function. 

 To derive an analytical description of the structure in Fig. 2.15, the voltage-to 

voltage transfer function Hv(s) of the filter in voltage mode can be calculated and shown 

that it is the same as the current-to-current transfer function Hc(s) when the circuit 

operates in current-mode. For simplicity, the voltage at the ith node xi can be denoted 

also by xi. In the Laplace domain, the voltage-mode Gm-C filter in Fig. 2.15 can be 

described by the matrix equations (2.14) and (2.15). 
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Fig. 2.15. The general structure of a voltage mode Gm-C filter (Source: [50]) 
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and  

[ ] i

n

1

n1o du
x

x

ccu +
�
�
�

�

	








�

�

= ��  

 

(2.15) 

where ui, uo are the input and output voltages, respectively. The vector on the right-hand 

side of  (2.14) can be written in the form, as shown in (2.16). 
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To achieve more compact notation, some general matrices are introduced, like the Tc, G 

and Cc as shown in (2.17a), (2.17b), (2.17c) respectively.  

�
�
�

�

	








�

�

=

�
�
�
�
�
�
�

�

	
















�

�

−−

−−

−−

=







=

=

=

n

1

n
1j njn2n1

n2
n

2j j212

n112
n

1j j1

c
x

x

X,

CCC

CCC

CCC

T �

�

����

�

�

 

 

(2.17a) 

[ ]n1c

mnn2mn1mn

n2m22m21m

n1m12m11m

ccC
~

,

GGG

GGG

GGG

G �

�

����

�

�

=

�
�
�
�

�

	










�

�

=  

 

(2.17b) 

[ ] dD,sCGsCGC
~

bnmbn1b1mbc =++= �
 

 

(2.17c) 

 The matrix Tc is a symmetrical one i.e. TT
c=Tc. The general equations of (2.14) 

and (2.15) can be modified to a much simpler form to handle, (2.18). 

ivoi
T
cc DuXC

~
u,uC

~
GXXsT +=+=  (2.18) 

A similar set of equations can be obtained for the current mode filter using the general 

matrix set of (2.17). The general form for a current mode filter is shown in (2.19), 

icoi
T
v

T
c DiXC

~
i,iC

~
XGXsT +=+=  (2.19) 

where as before, the entries xi of the vector X denote the internal node voltages, and ii, io 

are the input and output currents, respectively. 

 The transfer functions, equation (2.20a) and (2.20b) of the general voltage and 

current mode type of Gm-C filters can be evaluated from (2.18) and (2.19). 
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From these equations it is also easy to verify the dual behavior of the voltage and 

current mode filters. Using the fact as long as a matrix is scalar, HT=H also (A-1)T= (AT)-1 

for any invertible matrix A, also Tc being symmetrical, (2.21) proves that Hv(s) = Hc(s).  
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(2.21) 

 

Since the two transfer function forms are equal, they can be represented as just H(s) with 

no subscript to denote the filter transfer function. By labeling the adjoint matrix of sTc-G 

as A
~

, as in (2.22), the general transfer function H(s) can be written as in (2.23). 

( ) ( ) ( ) ( )[ ]n
1j,iij

TT
cc sA

~
GsTadjGsTadjsA

~
=

=−=−=  
(2.22) 

( ) ( ) ( ) ( ) dsA
~

sCGc
GsTdet

1
sH ij

n

1j,i
bjmbji

c
++

−
= 

=  

(2.23) 

 With these general expressions, the transfer function of any particular, more 

specialized Gm-C topology can easily be computed. For instance, many filters have no 

input capacitors, an input signal distribution, and the output is taken directly from one of 

the internal nodes. Then cC
~

 =[Gmb1 · · · Gmbn ] and vC
~

=[0 · · · 0 1k 0 · · · 0] where the 

notation “1k” denotes a “1” at the kth position. In this case, Equation (2.23) reduces to 

(2.24). 

( ) ( ) ( )sA
~

G
GsTdet

1
sH ki

n

1i
mbi

c

=−

=  
(2.24) 

 As an example of the general Gm-C topology in Fig. 2.15, a LC ladder 

simulation for a third-order elliptic filter, Fig. 2.16, is presented below. The matrices Tc, 
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G,  cC
~

, vC
~

 and D for this circuit (internal nodes indexed from left to right) are as given 

in (2.25). 
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(2.25) 

The transfer function, H3, of the filter can be calculated using (2.24) with i=1 and k=3. 

Assuming for simplicity that all transconductances are equal, i.e. gmi =gm for i=1,2, .. 7, 

the determinant can be obtained as shown in (2.26). 

( ) ( ) ( )
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m4312

3
4341312c

g2sgCCC

sgC2CCCsCCCCCCCGsTdet

++++

+++++=−
 

(2.26) 

 

 

 
(a)     (b) 

Fig. 2.16. Third order Elliptic Gm-C filter (a) voltage mode and (b) current mode 

 

 

The adjoint vector can be derived to a simpler form as shown in (2.27).  

( ) 2
m

2
4231 gsCCsA

~ +=  (2.27) 

Now letting C2
x= C1C3+C1C4+C3C4 the transfer function H3(s) becomes, 
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The example illustrates the ease and elegance provided by the general approach 

presented in this section when calculating the transfer function of any Gm-C filter 

structure. 

 A general method to design any arbitrary linear OTA-C filter was presented in 

the previous section. This general flow can be used for modeling the non-linearities and 

also noise of any general OTA-C filter. Sections 2.2 and 2.3 focus more on the 

utilization of the general matrix method to derive the non-linearity and noise model for 

an OTA-C filter.  

 

2.2.2. Dynamics of Nonlinear OTA-C Filters 

 To proceed with the modeling of non-linearities, the general figure of 2.15 is 

modified and used in Fig. 2.17. The structure in Fig. 2.17 contains n internal nodes 

denoted as xi, i=1,...,n, n input transconductors Gbi, an output summer consisting of 

transconductors Gci, Go and a feedforward transconductor Gd, as well as a set of 

feedback and feedforward transconductors Gij. The transconductors used are assumed to 

be nonlinear blocks. All transconductors form active network, while input capacitors Cbi, 

i=1,...,n and capacitors Cij, 1≤i<j≤n form passive network.  The capacitors are assumed 

to be linear, since in most practical filters inherent nonlinearities of capacitors can be 

neglected in comparison to those of active elements. It is easily seen that any OTA-C 

filter is a particular case of the general structure in Fig. 2.17. Note also that n is not 

necessarily equal to the order of the filter transfer function. The connection between the 

number n of internal nodes, the order of the filter and its particular structure was 

investigated in detail in [50].  
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Fig. 2.17. Generalized structure of OTA-C filter 

 

 

An analytical description of the considered structure in the time domain can be 

derived. To derive the same, the following considerations are made: the voltage at the ith 

node xi can be denoted as by xi. Symbols ui, uo will denote the input and output voltages, 

respectively. These notations., also some more are used and introduced in Fig. 2.17.  

 According to the notations given in Fig. 2.18 the general structure of OTA-C 

filter in Fig. 2.17 can be described by the following system of integral equations,  

( ) ( ) ( ) ( ) n...2,1,0k,0xdi
c

1
tx k

t

0
k

kk
k =+ττ= �  

(2.29) 
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(2.30) 



  60   

( ) ( ) ( ) ( ) ( ) ( ) n...2,1,0k,0x0udi
c
1

txtu ki

t

0
bk

bk
ki =−+ττ=− �  

(2.31) 

 

( ) ( ) ( ) ( )( ) ( )( ) 
≠= =

=+=−+−
n

kl,1l
ibk

n

1l
lklbkklk n....2,1k,tuGtxGtititi  

(2.32) 

( ) ( )( ) ( )( )
�
�

�

�

�
�

�

�
+−= 

=

−
n

1l
idlcl

1
oo tuGtxGGtu  

(2.33) 

The following initial conditions can be assumed  

( ) ( ) 0iik0k u0un.....2,1k,x0x ===  (2.34) 

 

 

 
Fig. 2.18. Structure for notation representation 

 

 

It can be noted that Gkl, Gbk, Gcl, Gd and Go, k,l=1,2,...,n are in general nonlinear 

functions of their input variables. The system described by  (2.29)-(2.31), (2.34) is 

equivalent to the following system of differential equations (2.35)-(2.37), with the initial 

condition (2.34). 

( ) ( )
n....2,1k,

dt
tdx

Cti k
kkk ==  

(2.35) 
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( ) ( ) ( )
lk:n.....2,1l,k,

dt
tdx

dt
tdx

Cti lk
klkl <=�

�

�
�
�

� −=  
(2.36) 

( ) ( ) ( )
n.....2,1l,k,

dt
tdx

dt
tdu

Cti ki
bkbk =�

�

�
�
�

� −=  
(2.37) 

Inserting (2.35), (2.36) and (2.37) into (2.32) and denoting dttdxk )(  by )(' tx k  

the following is obtained, for k=1,2,...,n, 

( ) ( ) ( ) ( )
n n

lk l k kk k bk i k kl l bk i
l 1,l k l 1

C x '(t) x '(t) C x '(t) C u '(t) x '(t) G x (t) G u (t)
= ≠ =

− − + − − = +   (2.38) 

which can be rewritten as equation (2.39). 

( ) ( )
n n n

bk lk k lk l kl l bk i bk i
l 1 l 1,l k l 1

C C x '(t) C x '(t) G x (t) G u (t) C u '(t)
= = ≠ =

� �+ − = + +� �
� �

    
(2.39) 

To simplify the notation, in (2.39), the symbols Ckl (k>l) that denote the same elements 

as Clk are used.  

Defining the  vectors x(t) and x’(t) as (2.40), 

1

2

n

x (t)

x (t)
(t)

x (t)

� 	

 �

 �=

 �

 �
� �

x
�

, 

1

2

n

x '(t)

x '(t)
'(t)

x '(t)

� 	

 �

 �=

 �

 �
� �

x
�

,    

01

02
0

0n

x

x

x

� 	

 �

 �=

 �

 �
� �

x
�

 

 

(2.40) 

and matrix Tc as, (2.41), the system of expressions represented in (2.39), (2.33) and 

(2.34) can be reframed. This is shown in equation (2.42) and (2.43). 

n

b1 1j 12 1nj 1

n

12 b2 2 j 2nj 1
C

n

1n 2n bn njj 1

C C C C

C C C C
T

C C C C

=

=

=

� 	+ − −

 �

 �− + −

 �=

 �

 �

 �− − +
� �







�

�

� � � �

�

 

 

(2.41) 
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( )

( )

( )

( )
( )

( )

n

1l l
l 1

b1 i b1 i1 n

b2 i b2 i2 2l l
l 1C C

n n bn i bn i

nl l
l 1

G x (t)
G u (t) C u '(t)x '(t)

G u (t) C u '(t)x '(t) G x (t)
T x '(t) T

x '(t) G u (t) C u '(t)
G x (t)

=

=

=

� 	

 �

+� 	
 �� �� 	

 �
 �� �
 � +
 �
 �� �
 �= = + 
 �
 �� �
 �

 �
 �� �
 �� � 
 �+
 �� �� � � �


 �

 �� �







� �
�

 

 

(2.42) 

( ) ( )
n

1
o o cl l d i

l 1

u (t) G G x (t) G u (t)−

=

� �= − +� �
� �
 ,    ( ) 0x 0 x= ,  ( )i i0u 0 u=  

(2.43) 

Thus the general structure is represented in terms of differential equations, expressed in 

the matrix form as in (2.43).  

 Consider a special case, where all transconductors are linear, i.e. Gkl(y)=Gmkly, 

Gbk(y)=Gmbky, Gcl(y)=Gmcly, Gd(y)=Gmdy and Go(y)=Gmoy, k,l=1,2,...,n. The following 

matrices can be defined, 

m.11 m.1n

m.n1 m.nn

G G

G
G G

� 	

 �= 
 �

 �� �

�

� � �

�

,  [ ]1 nC c c= � , 

 

(2.44) 

T

m.b1 b1 m.bn bn

d d
B G C G C

dt dt
� 	= + +
 �� �

� , D d= , 
(2.45) 

with i mci moc G G= − , i=1,2,...,n  and md mod G G= − . Using the notation as prescribed by 

(2.44)-(2.45), the system of equations described by (2.44) and (2.45) can be rewritten in 

the time domain form as in (2.46), 

C i

o i

T x '(t) Gx(t) Bu (t)

u (t) Cx(t) Du (t)

= +
= +

,  ( ) 0x 0 x= ,  ( )i i0u 0 u=  
(2.46) 

or, in the domain of Laplace transform (with zero initial conditions) as in (2.47). 

C i

o i

sT X GX Bu

u CX Du

= +
= +

 
(2.47) 

in which X is the Laplace transform of the vector x. System (2.47) is nothing else but the 

matrix description of the general structure of a voltage-mode OTA-C filter introduced in 
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[50]. Thus, system (2.47) is a particular (linear) case of the general (nonlinear) system 

describing a filter circuit in Fig. 2.17.  

 Turning back to the general case note that under assumption of invertibility of the 

matrix CT , equation (2.42) can be reformulated to the one shown in (2.48). 

( )

( )

( )

( )
( )

( )

n

1l l
l 1

b1 i b1 i1 n

b2 i b2 i2 2l l1
l 1C

n n bn i bn i

nl l
l 1

G x (t)
G u (t) C u '(t)x '(t)

G u (t) C u '(t)x '(t) G x (t)
x '(t) T

x '(t) G u (t) C u '(t)
G x (t)

=

−
=

=

� �� 	
� �
 �
� �+� 	
 �� 	
� �
 �
 �
 � +� �
 �
 �
 �= = +� �
 �
 �
 �
� �
 �
 �
 �
� �
 �+
 �� � � �� �
 �
� �
 �� �� �







� �
�

 

 

 

(2.48) 

The above assumption is very natural. In particular, it is satisfied if every internal node 

of the filter has a grounded capacitor (this is the case for any canonical OTA-C 

structure). The problem of invertibility of matrix CT  was thoroughly addressed in [50], 

where the necessary and sufficient conditions for CT  to be invertible were given. 

 The vector on the right-hand side of (2.48) can be denoted  by ( ) ( )( ), xif u t t . 

Then, the differential system in question can be rewritten as 

( ) ( ) ( )( )ix 't f u t , x t=  (2.49) 

( ) 0x 0 x= , ( )i i0u 0 u=  (2.50) 

together with the initial conditions, (2.50). This is a classical Cauchy problem which can 

be easily solved numerically. 

The above model can be applied to calculate nonlinear distortion of any OTA-C 

filter for any given input signal. For example, for input signal of the form 

cos( )iu U tω= , after solving (2.49)-(2.50), the harmonics in the output signal can be 

calculated by evaluating the formula given in (2.51). 

( )
T / 2 2n t

j
T

n 0
T / 2

2
h u t e dt

T

π−

−

= � ,  n=1,2,...n 
(2.51) 
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where T is input signal period. Integral in (2.51) can be evaluated numerically. From 

which some of the distortion parameters can be calculated, e.g. HD3 and/or THD. In 

order to calculate other nonlinearity measures (2.49)-(2.50) has to be solved with 

different input excitation, e.g. to get IM3 we need two harmonic signals, and so on. 

In order to handle system (2.49), (2.50) one needs to know transfer 

characteristics of all filter transconductors, i.e. Gkl, Gbk, Gcl, Gd and Go, k,l=1,2,...,n, i.e. 

the nonlinear macromodels of those transconductors is required. Transfer characteristic 

of a nonlinear transconductor can be modeled using a power series expansion but in 

order to get better accuracy it is advisable to model transfer characteristic as a table of 

input voltages and corresponding output currents and apply interpolation for the point 

out of a table. In this implementation of the model spline interpolation was put to use.  

It should be emphasized that the method of evaluating nonlinear distortion 

described in this section is very fast and efficient. Unlike the approaches based on 

Volterra series representation ,[68], or harmonic injection method [69], it is not restricted 

to handle weak nonlinearities only. Also, since the presented formalism is based on the 

OTA-C filter model in Fig. 2.17, it is general enough to comprise all conceivable 

OTA-C filter structures. 

 

2.2.3. Noise Analysis in General OTA-C Filters 

 The literature contains several intuitive ideas on calculating noise, and attempts 

to solve noise problems for specific filters [70]-[73]. In contrast, this section provides 

complete, explicit, and easily-evaluated formulas based on a general approach to noise 

analysis, and in addition presents simple methods for the optimization of noise 

performances of arbitrary OTA-C filters, based on their matrix description as developed 

in Section 2.2.1 and 2.2.2. The derived expressions can be applied to OTA-C filters with 

any known architecture and of any degree, and they can be easily implemented and used 

in computer-aided analysis/optimization software. 
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Fig. 2.19. Noise representation in an OTA with an equivalent voltage source 

 

 

 Assuming ideal, that is, lossless and, therefore, noiseless capacitors, the output 

noise of any OTA-C filter is a combination of the noise contributions of all its 

transconductors. As shown in Fig. 2.19, the noise of a CMOS transconductor with value 

gm can be described by an equivalent input-referred noise-voltage source, vn, whose 

spectral density, Sn(f), can be modeled as [70], 

( ) t f
n

m

S S
S f

g f
= +  

(2.52) 

where the thermal noise component, St, and the flicker-noise component, Sf, depend on 

the transconductor topology and on biasing. It can be assumed that that noise sources 

associated with different OTAs are statistically independent.  

 The noise contribution in a CMOS circuit can be better understood using the 

example presented below. Fig. 2.20 shows the input stage of a traditional two stage 

OpAmp. Each transistor have been modeled using an equivalent voltage noise source. 

Voltage noise sources are used here since the low-frequency noise performance of this 

stage will be addressed. It is assumed that the transistors M1, M2 and M3, M4 are 

matched. From the theory of noise in CMOS devices presented, [70], the following set of 

equations can be derived.  

 Using the gain factors of the simple input stage, the output noise value seen at the 

output node can be written as shown in (2.53). 

( ) ( ) ( ) ( ) ( )2 22 2 2
no m1 o n1 m3 o n3V f 2 g R V f 2 g R V f= +  (2.53) 
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Vin+ M1
Vin-M2

M4
M3

Vno(output)
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Vn3 Vn4
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Fig. 2.20. A CMOS input stage with voltage noise sources 

 

 

 Equation (2.53) gives the noise component at the output node, where Vn1 and Vn3 

are the noise voltages of transistors M1 and M3 respectively. The output noise can be 

related back to an equivalent input noise value Vneq(f), by dividing it by the gain gm1Ro, 

which results in (2.54) 

( ) ( ) ( )
2

2 2 2 m3
neq n1 n3

m1

g
V f 2V f 2V f

g
� �

= + � �
� �

 
(2.54) 

 For the white noise portion of Vn1(f) and Vn3(f), the substitution of (2.55) can be 

taken as a general case. 

( )2
ni

mi

2 1
V f 4kT

3 g
� �� �= � �� �

� �� �
 

(2.55) 

For the 1/f noise component, flicker noise, which dominates at low frequencies, 

the general case for the noise spectral density of a CMOS transistor can be written as 

shown in equation (2.56), where K is dependant on device characteristics. 

( )2 i
ni

i i ox

K
V f

W L C f
=  

(2.56) 
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Fig. 2.21. Noise contributions of an individual filter transconductor to the output noise of 

the filter 

 

 

To obtain the output- (and/or input-) noise spectrum of the general OTA-C 

topology in Fig. 2.17 (for the purpose of noise evaluation the filter model in Fig. 2.17 is 

used with transconductor values equal to linear transconductance of respective OTA, e.g. 

Gm.ij=dGij(v)/dv at v=0) explicitly, the noise contribution of each individual 

transconductor to the output (and/or input) noise must be determined. This can be 

modeled as shown in Fig. 2.21. Let Gmx denote one of the filter transconductors (i.e. 

Gm.bi, Gm.ij, etc.), which is connected to one of the nodes, say xi (if the filter contains a 

non-trivial output summer then it has an additional - output – node, which will be 

denoted as x0). If the input-referred noise voltage of the noise source corresponding 

to Gmx, is labeled vx with spectral density Svx(f), the transconductor Gmx injects its noise 

current ix = vxGmx into Node xi. The spectral density Six(f) of this current is given by, 

equation (2.57). 

( ) ( )2
ix mxS f G S f= vx  (2.57) 

 The corresponding output noise voltage vox can be calculated as, 

ox x i mx i xv i H G H v= =  (2.58) 

where Hi is the current-to-voltage transfer function from Node xi to the output of the 

filter. The corresponding spectral density Svox(f) is given by (2.59). 

( ) ( ) ( ) ( ) ( )2 2 2
vox ix i mx vx iS f S f | H j2 f | G S f | H j2 f |= π = π  (2.59) 
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 Using expressions given in (2.37), it is easy to show that the transfer functions 

Hj(s), j=1,2,…,n are components of the 1×n vector Hcv defined as, 

( ) ( ) 1
cv CH s C sT G

−= −  (2.60) 

If a non-trivial output summer is present (cf. Fig. 2.17) there is a need for the 

current-to-voltage transfer function also, which can expressed as, 
1

0 moH G−=  (2.61) 

from the output node to itself. Thus, each filter transconductor injects its noise current 

with spectral density (2.57) into one of the internal nodes of the filter (or directly into the 

output node if the filter has a nontrivial output summer). This current is then converted 

into the output noise voltage according to (2.59). To calculate the total output noise 

voltage of the filter the assumption of statistical independence of transconductor-noise 

sources, can be used and all the corresponding noise spectra can simply be added. In 

general, the outputs of one input transconductor Gmbi, and n transconductors Gmij, 

j=1,…,n, are connected to each internal node xi. In the presence of a non-trivial output 

summer there is an additional output node, x0, with outputs of transconductors Gmj, j = 1, 

…, n, Gmd, and Gmo.  

The auxiliary matrices can be defined as, 
n

t t.ij i, j 1
S S

=
� 	= � � , 

n

f f .ij i, j 1
S S

=
� 	= � � , [ ]T

tb tb.1 tb.nS S S= � , [ ]T
fb fb.1 fb.nS S S= �  

[ ]tc tc.1 tc.nS S S= � ,    [ ]fc fc.1 fc.nS S S= �  

td tdS S= ,    fd fdS S= ,     to toS S= ,    fo foS S=  

 

(2.62) 

representing the thermal noise (subscript t) and flicker noise (subscript f) of 

transconductors Gmij, Gmbi, Gmci, Gmd, and Gmo, respectively. To simplify the approach 

some simple notations are introduced in (2.63). 
n

mij i, j 1G [| G |] == , T
mb1 mbnB [| G | | G |]= � , 

mc1 mcnC [| G | | G |]= � , mdD | G |= , moO | G |=  

 

(2.63) 
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 Denote further by “ � ” the Hadamard product [59] of two matrices, i.e., if 

, 1[ ]n
ij i jP p ==  and , 1[ ]n

ij i jQ q == , we have , 1[ ]n
ij ij i jP Q p q ==� , and let [ ]ˆ 1 1

T
I = �  be an n 

× 1 vector. The function ( )( )F P,Q,R x  can be defined as shown in (2.64), 

( )( ) ( )F P,Q,R x P Q 2 x P R= + π� 	� �� �  (2.64) 

where P, Q, and R are matrices of the same dimension and x is a real variable. It follows 

from (2.52) and (2.57), that the spectral densities, Si(ω), of the total noise current 

injected into the nodes xi, i = 1, …, n, can be expressed, using (2.64), as components of 

the current spectral-density vector S, given by 

( ) ( ) ( ) ( )( ) ( )( )T

1 n t f tb fb
ˆS S S F G,S ,S I F B,S ,Sω = ω ω = ω ⋅ + ω� 	� ��  (2.65) 

 Analogously, if there is a non-trivial output summer, the spectral density S0(ω) of 

the noise current injected into Node x0 is given by (2.66), 

( ) ( )( ) ( )( ) ( )( )0 tc fc td fd to fo
ˆS F C,S ,S I F D,S ,S F O,S ,Sω = ω ⋅ + ω + ω  (2.66) 

 The spectral density Sno(ω) of the total output-noise voltage vno can then be 

calculated as shown in (2.67). 

( ) ( ) ( ) ( )2 2
no cv 0 0S | H | S H Sω = ω ω + ω  (2.67) 

here ( ) ( ) ( )2| |cv cv cvH H j H jω ω ω= −� , with Hcv and H0 given by (2.60) and (2.61) 

respectively. In general, S0(ω) is a rational function of ω with numerator and 

denominator of order not larger than 2n+1. Equation (2.33), permits the output-noise 

spectrum of any OTA-C filter to be calculated; the output-noise voltage is then obtained 

by integrating (2.67) over a suitable frequency range. The equivalent input-noise 

spectrum Sni(ω) can be obtained by dividing (2.67) by the squared magnitude of a filter’s 

transfer function (from (2.37)) we have ( ) ( )CH s C sT G B D= − + ). If there is no output 

summer in the filter, this leads to simplified formulas because the determinant of sTC–G 

cancels. It is also worth noting that the matrix formulation makes implementing the 

presented expressions in a computer program particularly convenient, which permits the 

noise analysis of arbitrary OTA-C filters to be carried out automatically. 
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 In practice, frequently all filter transconductors are identical, that is, St.ij = St, Sf.ij 

= Sf, i, j = 1, …, n, Stb.i = Stc.i = St, Sfb.i = Sfc.i = Sf, i = 1, …, n, Std = Sto = St, Sfd = Sfo = Sf 

(cf. (2.62)), where St and Sf are the noise parameters of the transconductors. Then, (2.65) 

and (2.66) take the form, 

( ) ( ) ( )t f

2ˆ ˆS GI B S G GI B B S
πω = + + +

ω
� �  

(2.68) 

( ) ( ) ( )0 t f

2ˆ ˆS CI D O S C CI D D O O S
πω = + + + + +

ω
� � �  

(2.69) 

 Hence the approach presented in this thesis can be used to model the noise and 

non-linearity for any general order OTA-C filter. The following sections verifies the 

approach using some example circuits. 

 

2.2.4. Verification of the Nonlinearity and Noise Analysis Tool 

 In order to verify the accuracy of the proposed approach, comparisons between 

theoretical results and SPICE simulations have been carried out. The numerical results 

have been obtained using 4th order Adams-Bashforth’s [74] method to integrate 

differential equation (2.49) and three-point composite Newton-Cotes quadrature [74] to 

calculate coefficients hn in (2.51). 

For the first comparison  a simple differential-pair transconductor as in Fig. 2.22 

is considered. The circuit is implemented in standard 0.35µm AMS technology and 

simulated using SPICE. The OTA macromodel parameters extracted from the DC 

simulations are given by the general expression of the voltage to current (input/ output) 

relationship as shown in (2.70). 
3 5

out id m id m3 id m5 id

-4 -5 3 -5 5
id id id

i (v )=g v +g (v ) +g (v )

10 v - 4.2 10 (v ) -3.4 10 (v )  = × ×
 

(2.70) 

where vid in volts; accuracy of the series better than 0.1% for vid<0.75V. The 

transconductance of the differential pair was designed to be gm=100µA/V. The noise 

parameters from the noise simulations in SPICE were found to be  St=5.2⋅10-16 V⋅A/Hz 

and Sf=2.3⋅10-10 V2. 
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Fig. 2.22. Simple differential pair 

 

 

The OTA circuit in Fig. 2.22 was used to implement the 3rd order Butterworth 

low-pass filter in a leap-frog (LF) structure shown in Fig. 2.23 (actual filter was 

implemented in fully differential structure). The total capacitor elemental values are: 

C1=2.37pF, C2=2.11pF, C3=0.79pF. The OTAs in Fig. 2.22 was used as active elements 

of the filter. The 3dB frequency of the filter was designed to be 10MHz. Using the 

approach introduced in sections 2.2.3 and 2.2.4, the noise and non-linearity 

performances of the filter were simulated. The theoretical values predicted by the model 

were verified against those of the simulated ones.  The THD vs. Input signal Frequency 

(Fig. 2.24) THD vs. Input signal amplitude (Fig. 2.25) and the output noise spectrum 

were compared and plotted (Fig. 2.26). 
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Fig. 2.23. 3rd order Butterworth low pass filter (leap frog structure) 
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Fig. 2.24. THD vs. frequency for 3rd order low pass filter in Fig. 2.23 with 0.3V input 

amplitude: theoretical data (line), and simulation (points) 
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Fig. 2.25. THD vs. input signal amplitude for 3rd low pass filter in Fig. 2.23 with 5MHz 

sine wave: theoretical data (line), and simulation (points) 
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Fig. 2.26. Output noise spectrum vs. frequency for 3rd low pass filter in Fig. 2.23: 

theoretical data (line), and simulation (points) 

 

 

 From the above plots it can be verified that the simulated values are in 

accordance with those of the theoretically modeled values. This is a simple example 

using a simple differential pair to prove the concept. Example 2 is a more intense and 

complex structure and the comparisons also include the experimental measurements of 

the filter characteristics.  

To validate the approach more intensely a comparison between the theoretical 

results with the SPICE simulated ones and also experimental results were carried out. 

The second example to validate the approach is the design of a 5th order Bessel Low Pass 

filter with a 3dB frequency of 10MHz. A 5th order filter can be designed in several 

possible topologies. A simple permutation and combination result yields 50 possible 

structures, which includes cascade (a first order followed by two biquads, a biquad and a 

3rd order section etc.), leap-frog, follow the leader feedback and multi feedback loop. 

The best topology needs to be selected depending on the application. A particular 

structure might be very good with respect to its linearity performance, one structure for 

the noise etc. The modeling process proposed in this thesis can be used to determine the 

best topology of the OTA-C filter for a particular performance metric.  

 The OTA structure used for this example is shown in Fig. 2.27 [75]. The OTA is 

a  Pseudo Differential OTA with inherent common mode feedforward and feedback. The 

principle of source degeneration is used in this technique. It is based on a fully balanced 
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fully symmetric circuit design.  Source degeneration is used to increase the linearity of 

the OTA. Transistors M5 in the OTA operates in the triode region and these transistors 

introduces the source degeneration necessary to improve the linearity of the OTA. The 

bias voltage Vbias is used to tune the circuit. The biasing voltage controls the amount of 

source degeneration introduced. This controls the effective transconductance term and 

hence the frequency response.  
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CMFF

CMFB

In+ In-
Out+Out-

Vbias

M5 M5

Triode Region

 

Fig. 2.27. Fully balanced fully symmetric pseudo differential OTA∗ [75] 

 

 

 The transconductance terms (first order and the higher order terms), similar to the 

equation (2.70), can be extracted from the DC characteristics of the OTA. The DC 

characteristics, i.e. the Output current vs. Input voltage, can be used to determine the 

                                                 
∗ © 2003 IEEE. Reprinted, with permission, from ,“An enhanced adaptive Q tuning scheme for a 100MHz 
fully symmetric OTA based band pass filter”, P. Kallam, E. Sánchez-Sinencio and A. Karsilayan, IEEE J. 
Solid-State Circuits, vol. 38, pp. 585-593, 2003. 
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coefficients of the nonlinear terms, which includes the basic transconductance term (gm), 

and the higher order terms. The transconductance of the OTA designed is 345µA/V. All 

OTA used in the filter have the same value of transconductance. Table 2.3 gives the 

design parameters of the OTA used in this example. 

 

 

Table 2.3. Parameters for OTA Used in the 5th Order Bessel Filter [75] 

Parameter Value 

gm1 345 µA/V 

gm3 -9.084 µA/V3 

gm5 -0.44 µA/V5 

Sw 8.17x10-20 VA/Hz 

Sf 0 

(W/L)M1,M3 10.2/0.6 (µm) 

(W/L)M5 5/0.6 (µm) 

(W/L)M2 54/2 (µm) 

(W/L)M4,M6 27/2 (µm) 

Vbias 1 V 

VDD,-Vss 1.65 V 

Technology CMOS 0.5µm 

 

 

 The noise parameters St and Sf are determined from the SPICE simulations of the 

OTA in CADENCE. The noise parameters can be estimated from the input referred 

noise simulated result of the stand alone OTA using the formulae given in equations 

(2.71) and (2.72), 

1 N1 2 N2
t m

1 2

f S f S
S g V.A / Hz

f f
� �−= ×� �−� �

 
(2.71) 
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S S f f
S = , V

f f
−

−
 

(2.72) 

where f1 and f2 are two selected frequencies where the noise spectral densities SN  are 

measured. Appendix A describes the method of extracting the nonlinear higher order 

coefficients and also the noise parameters. 

 A MATLAB code was written based on the modeling tool. This was done to 

create an user friendly tool which can be handled easily. The software takes in the inputs 

as the DC characteristic of the OTA for some 100 points and the noise parameters. For 

this example the value of transconductance gm= 345µA/V and the values of St and Sf 

were 8.1705e-20 VA/Hz and 0 respectively. The value of Sf is taken to be 0, as the 3dB 

frequency is around 10MHz and the low frequency noise components due to the 1/f 

noise can be considered as negligible. Along with these the tool also takes the capacitor 

arrangement for the Bessel approximation and the T matrix for the given filter for all 50 

combinations. 

The modeling tool compares the performance of all 50 structures and gives the 

overall performance chart as shown in Fig. 2.28. The x-axis represents the structure 

number (1-24 includes all combinations of leap-frog, feedback structures like the follow 

the leader feedback, multi feedback structures, 25-50 the various cascade combinations). 

From Fig. 2.28 the optimum filter structure for better linearity and better noise 

performance is structure numbered 45, which is a form of the cascade structure where 

two biquads is followed by a first order section. The structures numbered 1-6, which are 

the leap frog implementations are the best structures for noise. Based on the results 

derived from Fig. 2.28, two structures of the 5th order low pass Bessel filter was 

implemented, the cascade filter (2:2:1, two cascade sections followed by a first order 

stage, Number 45) and the leap frog structure (Number 1). 
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Fig. 2.28. Output window of the modeling tool showing the performance of the various 

structures for THD and noise 

 

 

 
Fig. 2.29. Cascade structure for the 5th order Bessel filter (2:2:1) 
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 Fig. 2.29 shows the cascade implementation of the 5th order Bessel low pass filter 

whose 3dB frequency is 10MHz. Each active block is the OTA shown in Fig. 2.27. The 

capacitor elemental values are C1=2.79pF, C2=2.34pF, C3=5.11pF, C4=1.625pF and 

C5=2.98pF. These values are estimated based on the frequency response and also the 

Bessel approximation. The filter was designed in 0.5µm technology and also fabricated 

using AMI processes. The theoretical results of THD vs. frequency, input signal 

amplitude and noise vs. frequency are compared with those of the simulated and the 

experimental measurements made on Silicon.   

 Fig. 2.30 shows the set-up for the measurement of the filter transfer function. The 

Agilent 4395A (Spectrum/Network Analyzer) can be used as a network analyzer to 

measure the filter’s transfer function. Using the network analyzer the filters transfer 

function and also the group delay performance can be measured.  
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Fig. 2.30. Set-up for transfer function measurements 
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Fig. 2.31 Filter transfer function for the 5th order Bessel low pass filter –cascade 

structure using OTA shown in Fig. 2.27 [75] 

 

 

 Fig. 2.31 shows the transfer function of the 5th order Bessel filter built using the 

cascade topology (2:2:1) based on the OTA shown in Fig. 2.27. The 3dB frequency is 

around 12MHz. The corner frequency can be tuned to 10MHz using the Vbias voltage.  

 Fig. 2.32 shows the general set up to measure the IM3 products. To measure 

linearity experimentally a two-tone analysis is used. Two signals of equal amplitude but 

different frequencies are generated using the signal generators and are combined 

together using the combiner and are fed to the OTA based filter (5th order Bessel Filter). 

The output waveforms are plotted and from the third order intermodulation products 

terms the third order Harmonic Distortion (HD3) can be extracted. It is known that the 
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IM3 is thrice that of the third order harmonics. The higher order harmonics can be 

neglected for analysis. 
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Fig. 2.32. Set-up to measure intermodulation distortion using the spectrum analyzer 

 

 

 Fig. 2.33 shows one of the experimental results for the measurement of IM3 

(intermodulation products). The IM3 results for two equal tones at 10MHz and 11MHz 

with amplitudes of 0.5V is shown. The IM3 value measured is -53dB. The HD3 can be 

estimated from the IM3. The third harmonic distortion parameter is taken into 

consideration cause the measurement results gives an accurate value of the the third 

order intermodulation products and from which the HD3 can be estimated. 
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Fig. 2.33. Two tone measurement results for IM3 at 10MHz and 11MHz for a 0.5V input 

amplitude for the 5th order Bessel filter 

 

 

 Fig. 2.34 shows the HD3 vs. input signal amplitude for an input 10MHz sine 

wave. This frequency is around the corner frequency of the filter. The theoretical data 

produced from the modeling tool is compared against those of the simulated values 

(CADENCE is used for the simulations of the post layout design) and the experimental 

data produced from the measurement of the 5th order Bessel Filter.  

 The maximum error between the theoretical and measured value is around 25% 

which is around the maximum amplitude value. The maximum error between the 

theoretical and simulated value is around 9% when the amplitude is 0.5V. 
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Fig. 2.34. HD3 vs. input signal amplitude for filter in Fig.2. 29 with 10MHz sine wave: 

theoretical data (solid line), SPICE simulation (points), and experimental measurements 

(dashed line) 

 

 

 Fig. 2.35 shows that the theoretical model results predicted (solid line) matches 

very well with those of the simulated ones (points) and the experimental data (dashed 

line). The OTA used for the design of the filter is shown in Fig. 2.27.  
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Fig. 2.35. HD3 vs. input signal frequency for filter in Fig. 2.29. for an input signal 

amplitude of  0.25 V: theoretical (solid line), experimental (dashed line) 
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 Fig. 2.35 shows the HD3 vs. Frequency for an input signal amplitude of 0.25V. 

The theoretical results (solid line) matches those of the experimental results (dashed 

line) for most of the low frequency components. There is a slight variation in the results 

above the 3dB frequency (10MHz). The reason for this variation needs to be 

investigated. 
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Fig. 2.36. Output noise spectrum vs. frequency for filter in Fig. 2.29: theoretical data 

(solid line), and Spice simulation (points) 

 

 

 Fig. 2.36 shows the output noise spectrum for the filter. The theoretical data 

(solid lines) matches perfectly with those of the simulated results from the post-layout 

design. The post-layout design was used to compare cause the experimental data would 

be a complex one for the output noise spectrum vs. frequency. Fig. 2.37 shows the chip 

microphotograph of the 5th order Bessel filter in cascade topology. The capacitor bank is 

also shown. 
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Fig. 2.37. Micro photograph of the 5th order Bessel low pass filter (cascade) 

 

 

 The main advantages of this approach can be seen from two perspectives (1) The 

CAD person’s perspective and (2) The designer’s perspective. This approach can be 

used to do a very fast computation of various filter topologies irrespective of the order of 

the filter in one go. The various parameters like noise and non-linearity are all combined 

into one program. The other important parameters like power, area and the sensitivity 

analysis need to be done. They will serve as some of the trade-offs when choosing the 

best structure. This approach mainly focuses on the linearity and noise optimization. The 

same matrix description can also be used to do the sensitivity analysis, which is very 

well described in the literature [50]. A designer would consider all the trade-offs and 

also the best results for noise and linearity and choose the best structure. To prove the 

advantage of this approach a simple analysis of the best and worst case structures with 

respect to noise and linearity is summarized in Table 2.4. 
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Table 2.4. Performance Comparisons Among the Structures for the 5th Order 

Bessel Filter 

Parameter/ 

Structure 

Cascade (45) Leapfrog (1) Multiple 

Feedback(12) 

HD3 for 0.5Vin,amp at 

10MHz  

-49.37 dB 

 

-44.364 dB 

 

-41.8 dB 

 

Output Integrated 

Noise 

87.5µVrms 

 

91µVrms 

 

130µVrms 

 

 

 

 From the results presented in Table 2.4, this approach can be used to improve the 

performance by 8dB for the case of linearity improvement and also the noise 

performance can be improved by 32% approximately. The other factors like power, area, 

complexity of the design, amount of parasitics introduced, sensitivity of the circuit needs 

to be considered before the overall decision is made. For applications where the noise 

and linearity performances are the critical issues, this approach would serve as a very 

good tool to optimize the design. A specific case of optimization is explained in detail in 

the next section. 
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2.2.5. Performance Optimization of OTA-C Filters 

The nonlinear distortion and noise evaluation tools presented in Sections 2.2.2 

and 2.2.3 are well suited to be used in computer-aided design and optimization of 

OTA-C filters. The optimization methodology, which takes advantage of the matrix 

description of the OTA-C filter model in Fig. 2.17, is presented in this section. 

 Let P and Q be two diagonal n×n matrices with positive elements, i.e  

P=diag{p1,...,pn},  Q=diag{q1,...,qn} (2.73) 

also assume that the matrix T is diagonal (i.e. the filter contains only grounded 

capacitors). Then the transfer function formula (linear case) can be rewritten as shown in 

(2.74). 

( ) ( ) ( )
( )

1 11 1

1

H s C sT G B D CPP sT G Q QB D

CP sQTP QGP QB D

− −− −

−

= − + = − +

= − +
 

(2.74) 

The following matrices can be defined such that it facilitates the optimization theoretical 

derivation, 

T QTP, G QGP, C CP, B QB, D D= = = = =  (2.75) 

It is seen from (2.74) that the equivalence transformation of (2.75) leads to the 

matrices T , G , C , B  and D , and they define a new filter, which has the same 

topology and transfer function but different (re-scaled) element values, and, usually, 

different performance parameters.  

Note also that Q, P and T need not be diagonal, however, they cannot be arbitrary 

invertible matrices as well, because matrix T  obtained as a result of transformation 

(2.75) has to be symmetric, positively definite with positive diagonal and non-positive 

non-diagonal entries in order to define an OTA-C filter. In particular, if P and Q are 

diagonal but T is general then matrices P and Q have to satisfy the condition piqj=pjqi 

whenever i≠j and Tij≠0. For diagonal T, i.e. for the filter with only grounded capacitors 

the above condition is satisfied automatically so P and Q are independent. 
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The task is now to find the matrices P and Q so that the filter performance 

parameter(s) of interest is(are) optimized. A clear and definite optimization procedure is 

presented below. 

(1) Take an initial realization of the transfer function H(s) given by the set of matrices T, 

G, B, C and D. 

(2) Use the matrix elements of P and Q, i.e. p1,...,pn, q1,...,qn, as optimization variables 

and optimize the target function F=F(T,G,B,C,D;P,Q), which may be dynamic range, 

integrated noise, THD, etc. 

Usually, there are some design constraints such as the maximum value of total 

capacitance of the filter, maximum power consumption of the filter which depends on 

transconductance value, allowable capacitance ratio, i.e. the ratio of maximum to 

minimum capacitance values in the filter, and so on. Some or all of these constraints 

have to be taken into account in the optimization process. In general, constraints can be 

written as follows 

mj≤cj(T,G,B,C,D;P,Q)≤Mj, j=1,...,Nc (2.76) 

where Nc is the number of constraints, cj is the j constraint function (e.g. total 

capacitance of the filter) which is dependent on matrices describing the filter and 

optimization variables, while mj and Mj are minimum and maximum values of cj (which 

may be finite or infinite). 

The optimization itself can be carried out using any available numerical 

procedure embedded into the optimization system. Choice of the optimization procedure 

depends on the complexity of the problem and constraints. 

For the rest of this section  a representative example,  performance optimization 

of OTA-C filters in cascade realization, is presented. The problem is to find the optimal 

pole-zero pairing, optimal cascading sequence, and optimal gain distribution so that the 

parameter of interest is optimized. There is a rich literature ([76]-[81]) discussing that 

problem and its solutions (usually quite complex procedures which are impracticable for 

high-order filters, or just rules of thumb) in more or less general setting and usually for 

some specific performance parameters. In practice, the only way to find truly optimal 
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solution of the general problem is exhaustive search through all possible cascade 

sequencing and performing parameter optimization for each of them. Fortunately, using 

the procedures described in the previous sections the optimization process is affordable 

because these tools are very fast. 

For the sake of illustration, consider performance optimization of the 8th order 

Butterworth filter in cascade realization (Fig. 2.38) with biquads shown in Fig. 2.39. In 

the optimization process two degrees of freedom are assumed. The first one is biquad 

sequencing (which is equivalent to pole-zero pairing for Butterworth filter is an all-pole 

one). The second are biquad gains, which will be denoted as Ki, i=1,2,3,4. Gains are 

adjusted by changing transconductance gb of input transconductor; the value of 

transconductance gm=100µA/V is fixed; gb∈[70.7µA/V,141.4µA/V], which allows Ki to 

vary in the range [2-1/2,21/2] ([-3dB,+3dB]).  It is assumed that whole filter is set to unity 

gain, i.e. (K1+K2+K3+K4=1 V/V, 0dB if all Ki are in dB).  
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Fig. 2.38. Block diagram of 8th order cascade filter (Ki=Hi(0)) 
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Fig. 2.39. Fully differential biquad used in the filter of Fig. 2.38 

 

 

In terms of the general OTA-C filter model, the matrices corresponding to the 

filter in Fig. 2.38 are given in (2.77) and (2.78), where 02 is a 2*2 matrix. 
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(2.78) 

 The matrices T, C, B and D are defined in (2.79). 

T=diag{C11, C12, C21, C22, C31, C32, C41, C42} 

B=[gm  0  ...  0]T,  C=[0  ...  0  1],  D=0 

(2.79) 

where the first index of elements of matrix T refers to the biquad number (e.g. Ci1 is C1 

in biquad Hi and so on). The initial value of input tranconductance gb is equal to gm for 

each biquad, this is an assumption. Setting gains as above is equivalent to using the 

transforms (2.75) with P, Q as in equation (2.73) with q1=q2=K1, q3=q4=K1K2, 

q5=q6=K1K2K3, q7=q8=1, and pi=1/qi, i=1,...,8. Thus, this is a constrained optimization 

problem with three independent variables.  

Permutation of filter blocks is realized by permutation of corresponding elements 

of the matrix T. Original block sequencing: 1234 corresponds to original location of 

elements, i.e. {C11,C12,C21,C22,C31,C32,C41,C42}. Any other permutation, e.g. klpq is 

given by {Ck1,Ck2,Cl1,Cl2,Cp1,Cp2,Cq1,Cq2}. 

To elaborate the optimization process three variants of OTA topologies were 

considered for the filter design. Variant I with differential pair transconductors (Fig. 

2.40) implemented in standard 0.35µm CMOS process, variant II with linearized OTAs 

[75] (Fig. 2.41) implemented in 0.35µm technology, and variant III with linearized 

OTAs [78] (Fig. 2.42) implemented in 0.5µm. The  3dB cutoff frequency of the filter 

equals 8MHz for all variants. Capacitance values are: C11=0.51pF, C12=1.96pF, 

C21=0.60pF, C22=1.66pF, C31=0.90pF, C32=1.11pF, C41=2.56pF, C42=0.39pF. 

Optimization was carried out using the software written in C, implementing both 

nonlinearity and noise evaluation procedures of Sections 2.2.3 and 2.2.4, and numerical 

optimization routines. OTA nonlinearity was represented, for the purpose of solving 
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equation (2.49), by spline interpolation of its tabularized transfer function. Both 

nonlinearity and noise parameters of transconductors depend on linear transconductance, 

which was modeled using polynomial approximation of appropriate coefficients. 

 

 

 
Fig. 2.40. Variant I- simple differential pair 
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Fig. 2.41. Variant II – linearized OTA [75] 
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Fig. 2.42. Variant III- linearized OTA [78] 

 

 

Optimization was carried out three times, each time for different objective: noise 

(goal: minimization of input noise integrated over the 3dB bandwidth), linearity (goal: 

minimization of THD for input signal level 0.15Vpp for variant I (0.4Vpp for variant II, 

and 0.4Vpp for variant III) at frequency 1MHz) and dynamic range (goal: maximization 

of DR at THD=-40dB for variant I [-55dB for variant II & III] with input signal 

frequency 1MHz). The filter with biquad sequencing H1H2H3H4 and Ki=0dB, i=1,2,3,4, 

as the reference is treated as the reference. Table 2.5 shows target function values for the 

reference filter. Tables 2.6-2.8 show optimization results for the Filter in Fig. 2.38 in 

variant I (simple OTA), II (linearized OTA [75]), and III (linearized OTA [78]), 

respectively.  
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Table 2.5. Parameters for Reference Filter Combination H1H2H3H4  

(with All Gains Ki=0 dB) (as in Fig. 2.38)  

Target Parameter / 

Filter Realization 

Noise [µV] THD [dB] DR [dB] 

Variant I  432 [437] -31.5 [-32.4] 40.7 [41.1] 

Variant II [75] 705 [670] -56.8 [-57.8] 49.9 [51.0] 

Variant III [78] 1170 [1066] -46.5 [-46.4] 42.3 [42.9] 

 

 

 

Table 2.6. Optimization Results for the 8th Order Cascade Filter (in Fig. 2.38) Using 

Variant I OTA 

Optimal Configuration 

Biquad Gains [dB] Target 

Parameter 

Biquad 

Sequence 
K1 K2 K3 K4 

Value Improvement 

Over Ref. 

H1H2H3H4 

[dB] 

Noise [µV] H3H4H2H1 3.0 3.0 -3.0 -3.0 169 [172] 8.2 [8.1] 

THD [dB] H3H1H2H4 -3.0 -2.1 2.1 3.0 -37.7  [-38] 6.2 [5.6] 

DR [dB] H4H3H2H1 1.8 -1.4 -0.9 0.5 47.4  [47.5] 6.7 [6.4] 

Values in brackets are from simulations in CADENCE, outside brackets are from the theoretical model 

* Noise is the output integrated noise in the bandwidth of 8MHz 

** THD for 0.15Vpp input voltage at 1MHz for variant I and 0.4Vpp for variant II and III  

** Dynamic Range for THD of -40dB for variant I, -55dB for variants II, III 
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Table 2.7. Optimization Results for the 8th Order Cascade Filter (in Fig. 2.38) Using 

Variant II OTA [75] 

Optimal Configuration 

Biquad Gains [dB] Target 

Parameter 

Biquad 

Sequence 
K1 K2 K3 K4 

Value Improvement 

Over Ref. 

H1H2H3H4 

[dB] 

Noise [µV] H3H4H2H1 3.0 3.0 -3.0 -3.0 275 [342] 8.2 [5.8] 

THD [dB] H3H1H2H4 -1.7 -1.3 0.0 3.0 -60.5 [-59.8] 3.7 [2.0] 

DR [dB] H4H3H2H1 1.3 -1.1 -0.6 0.4 56.5 [56.0] 6.6 [5.0] 

 

 

Table 2.8. Optimization Results for the 8th Order Cascade Filter (in Fig. 2.38) Using 

Variant III OTA [78]  

Optimal Configuration 

Biquad Gains [dB] Target 

Parameter 

Biquad 

Sequence 
K1 K2 K3 K4 

Value Improvement 

Over Ref. 

H1H2H3H4 

[dB] 

Noise [µV] H3H4H2H1 3.0 3.0 -3.0 -3.0 458 [533] 8.1 [6.1] 

THD [dB] H3H1H2H4 -1.7 -1.3 0.0 3.0 -54.8 [-53.3] 8.3 [6.9] 

DR [dB] H4H3H2H1 2.4 -1.5 -1.0 0.1 48.9 [48.4] 6.6 [5.5] 
* Values in brackets are from simulations in CADENCE, outside brackets are from the theoretical model 

* Noise is the output integrated noise in the bandwidth of 8MHz 

** THD for 0.15Vpp input voltage at 1MHz for variant I and 0.4Vpp for variant II and III  

** Dynamic Range for THD of -40dB for variant I, -55dB for variants II, III 
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To give a better insight into the optimization process, the case of best dynamic 

range configuration for variant III (H4H3H2H1), has an output integrated noise of 632µV 

and the input voltage amplitude for the THD of -55dB is 0.167V. Though the noise and 

THD results compared to the best cases are less, the overall dynamic range of this 

configuration is the optimal one. This approach can be used to optimize any particular 

performance metric and also determine the other metrics.  

In all the cases, the process only involves optimal placement of the cascade 

blocks. Hence the overall area is maintained at the same value, cause it just involves 

changing the cascade configurations. No changes are incurred to the capacitors values or 

the transistor dimensions. The gain of each block is controlled by bias voltages and this 

could cause slight variations in the power consumption. This variation for this cascade 

filter design is not very significant. But in general power consumption should also be 

considered. 

There is a very good agreement between theoretical and transistor-level 

simulation results. It can be observed that optimal linearity, dynamic and noise 

performance is obtained for different biquad sequencing and gain distributions. Note 

also that optimal biquad sequencing does not depend on OTA used for filter 

implementation, which is not the case for gain distribution if target parameter involves 

linearity of the circuit. It should be emphasized that the optimization process including 

exhaustive search through all 24 biquad permutations and numerical optimization of 

target function involving multiple THD evaluations (note that in case of DR it is 

necessary to perform nested nonlinear optimization in order to find input signal level 

corresponding to required THD value) is fully automated and very fast. For example, 

transient analysis of the filter in Fig. 2.38 using OTA macromodeling and integration of 

equation (2.49) involves less then 0.04s of CPU time regardless filter variant vs. 16.2s 

(variant I), 17.2s (variant II), and 19s (variant III) for transistor-level simulation, with 

almost no loss of accuracy. 

 From a designer’s perspective, the optimal cascading sequence could yield a 

significant improvement in the target parameter. It is not necessary for all the sequences 
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to be designed manually in simulators like CADENCE. This approach gives a better 

view of the results expected. 

 

2.3. Conclusion  

 A framework for the modeling of non-linearities and noise in general OTA-C 

filters has been presented. Also a general framework for the performance optimization of 

continuous-time OTA-C filters has been presented based on matrix description of a 

general OTA-C filter model. In particular, a general description of OTA-C filters with 

nonlinear transconductors has been introduced. A nonlinear ordinary differential system 

that describes time evolution of output signal for an arbitrary OTA-C filter was 

formulated. The presented method allows carrying out an effective and fast transient 

analysis of any OTA-C filter using standard numerical methods and can be applied to 

determine the THD or other nonlinearity measures of filters containing nonlinear 

transconductors. On the other hand, universal expressions were derived that permit 

computing the filter noise. The model and all the formulas were implemented in a 

software package that allows calculating OTA-C filter nonlinearity, noise and dynamic 

range. Efficiency and accuracy of the approach were shown by comparing the results 

obtained using the theoretical models with simulation and experimental data. As an 

application, the optimal block sequencing and gain distribution for 8th order Butterworth 

filter in cascade realization was found. Comparison between the theoretical results and 

CADENCE simulation on transistor-level confirms high accuracy of the approach. 
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CHAPTER III 

A LINEARIZED CMOS OTA USING ACTIVE ERROR 

FEED-FORWARD TECHNIQUE* 

 

3.1. Motivation and Background  

High-frequency continuous-time filters have many applications in analog signal 

processing such as anti-aliasing and reconstruction filters for A/D and D/A converters 

and radio and video frequency filtering in communication receivers. In Chapter I, a brief 

exposure to the various applications of the continuous-time filters were given, covering 

the entire bandwidth from low frequency zone to the region of GHz range. For realizing 

fully-integrated, high-frequency continuous-time filters, operational transconductance 

amplifiers (OTA) have been receiving much attention because of their superior high 

frequency characteristics compared with OpAmps and their suitability for implementing 

by a standard CMOS technology. 

 The OTA-C integrators operate in open loop configuration unlike the OpAmp 

based integrators. This places large signal linearity restriction on the OTA around the 

unity gain frequencies. In case of the OpAmp based integrators, as they have large 

feedback gain over their operating frequencies, reducing the signal swings at the inputs. 

The major source of non-linearity in CMOS transconductance amplifiers is due to the 

voltage to current conversion at the inputs stage, as mentioned in chapters I and II.  

 In this chapter, a highly linear operational transconductance amplifier (OTA) 

based on an active-error feedforward linearization scheme which was proposed 

theoretically in [78] is verified experimentally. In the active-error feedforward 

                                                 
* © 2004 IEEE. Reprinted, with permission, from  “Linearized CMOS OTA Using Active-Error 
Feedforward Technique,” by S. Szczepanski, S. Koziel and E. Sánchez-Sinencio, Proceedings of the 
International Symposium on Circuits and Systems, ISCAS, May 2004, vol. 1, pp. 549-552. 
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technique, the error signal is generated using an additional differential pair 

transconductor and a linear resistor. Feedforward linearization is widely used to reduce 

nonlinear distortion in amplifiers [82]-[85]. The proposed technique gives effective 

linearization, allows us to implement the OTA circuit which has extremely low power 

consumption, extended linear range of operation, as well as good transconductance 

tuning capability. Moreover, the effective excess phase compensation can be easily 

applied, which makes the circuit suitable for high-frequency applications. 

 In this chapter another linearization technique based on complimentary input 

stage coupled with signal attenuation is introduced. This topology has a very good 

linearity performance when compared to the other topologies for a lesser power 

consumption. It can be used for base band applications like VDSL [86]-[87], ADSL etc.

  

3.1.1 Linearization Techniques 

 OTA-C filters based on transconductors working in open loop have the potential 

to operate at high frequencies, relative to the Active-RC filters based on OpAmp 

working in closed loop. However, the linear signal range of a transconductor is usually 

limited, also due to the open loop operation, which will consequently limit the dynamic 

range. 

Linearization techniques [85]-[99] have been developed to make the OTA able to 

handle input signals of the order of volts with nonlinearities of a fraction of one percent. 

In general, the drawbacks of linearization techniques are degradation of the frequency 

response of the OTA especially if many additional nodes are introduced, and the 

deterioration of the noise performance of the OTA especially if many additional devices 

are introduced. This is translated to payments in terms of higher power consumption and 

additional silicon area. It is very desirable that those drawbacks are minimized to get a 

net benefit from the linearization technique. 

A brief introduction to non-linearity and distortions were given in chapter I. The 

same approach can be put into use for a simple differential pair as shown in Fig. 3.1. The 

output differential current can be given as the difference between the individual drain 
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currents, I1 and I2 and their bias current is the summation of the two. This is shown in 

equation (3.1). 

21o III −= , 21DC III +=  (3.1) 

where I1 and I2 are given as in (3.2), 

 

 

Vin
- Vin

+

IDC

I2 I1

M2 M1

 
Fig. 3.1. Simple differential pair 
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(3.2) 

 From the circuit level point of view, the drain currents can be described in terms 

of the effective voltages (VGS –VT) as shown in equations (3.3a) and (3.3b). The effective 

differential voltage can also be determined using these equations. 

( ) ( )2 2
1 n ox GS1 T 2 n ox GS2 T n ox

1 W 1 W W
I C V V , I C V V , C

2 L 2 L L
� � � �= µ − = µ − β = µ� � � �
� � � �

 
(3.3a) 

1 2
GS1 T GS2 T

2I 2I
V V , V V= + = +

β β
 

(3.3b) 

It can be seen from Fig. 3.1 that the difference in their gate voltages is their differential 

input, vd.  
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GS1 GS2 in in dV V V V v+ −− = − =  (3.3c) 

 The differential voltage vd can be expressed as a function of the drain currents by 

substituting (3.3b) in (3.3c)  as shown in equation (3.4). 

( )d 1 2

2
v I I= −

β
 

(3.4) 

Drain currents I1 and I2 were represented in terms of the output current and the 

bias current in (3.2), using the same in (3.4), vd can be expressed as, 

DC o DC o
d

I I I I2
v

2 2 2 2

� �
= + − −� �� �β � �

 
(3.5) 

and the output current can be modified as shown in (3.6). 
1/ 22

d
o d DC

DC

v
I v I 1

4I
� �β= β −� �
� �

 
(3.6) 

 From the general description of a non-linear system, as introduced in chapter 1 

(1.4), the input output relation of a non-linear system, in this case output current vs. 

input differential voltage, can be expressed as shown in (3.7). 
3 5

o 1 d 3 d 5 dI v v v ....= α + α + α +  (3.7) 

Expanding Io is power series the coefficients can be correlated. The first order term α1 

( 1 DC mI gα β= = ) is the linear transconductance gm of the simple differential pair, and 

( )3 2 2

1 1 1
8 8 8

m m
DC

DC DSATGS T

g g
I

I VV V

βα β= = =
−

. Substituting α3 and α1 in the general 

expression of the third order harmonic (HD3=α3Vamp
2/4α1), where Vamp is the amplitude 

of the input signal. Thus the third order harmonic in terms of design equations becomes, 

( )

2 2
amp amp

3 2 2
DSATGS T

V V1 1
HD

32 32 VV V
= =

−
 

(3.8) 

The higher order harmonics in most cases are very small, that they are considered 

negligible. The main contributor to non-linear distortions is the third harmonic term. 

Thus all attempts of linearization techniques focuses on reducing this term. This is done 
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by either increasing the VDSAT, this has some basic trade-offs in terms of power, also 

limited supply voltages and limited swings. Another basic approach is to minimize the 

dependencies of the transconductance term on the input voltage. Some of the basic 

linearization techniques, and also the proposed techniques are mentioned below. 

 

3.1.1.1 Source Degeneration 

One of the most natural high-frequency linearization techniques often used is 

source degeneration, shown in Fig. 3.2. It can be shown that the small-signal 

transconductance is reduced by the factor (1+gmR) where gm is the transconductance of 

transistors M1 and n=gmR is the source degeneration factor. On the other hand, the third 

harmonic distortion improves relative to the case of a simple differential pair, as given in 

equation (3.9), by the factor (1+n)2. 

2
TGS

2

2
d

3
)VV()n1(32

v
HD

−+
=  

 

(3.9) 
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Fig. 3.2. Linearization using source degeneration 

 

 

3.1.1.2 Attenuation 

Another category of linearization techniques is attenuation. In this category, the 

input voltage is attenuated by a factor m, i.e., Vin,att=mVin (m<1). This will result in 
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reducing the transconductance by the same factor, i.e., gm,att=mgm, and improving the 

linearity by the factor m2. For an attenuation factor m, and using equation 3.8, the third 

order harmonic distortion can be derived as: 

2
TGS

2

2
d

3
)VV(m32

v
HD

−
=  

 

(3.10) 

There are many techniques in this category. One approach is to use a series of 

differential pairs, as shown in Fig. 3.3. This effectively split the voltage in the sections 

by m where m is the number of sections used. The major drawback of this approach is 

the degradation of the phase response with increasing the number of sections. For the 

case of two sections, the attenuation factor m is 2 and using equation (3.10), HD3 of Fig. 

3.3 can be written as shown in equation (3.11), 

2
TGS

2
d

3
)VV(128

v
HD

−
=  

 

(3.11) 
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Fig. 3.3. Linearization using series of differential pairs 

 

 

Another approach in this category is the use of floating gates [88], as shown in 

Fig. 3.4. Floating gates provide a natural capacitive divider for the input signal. Thus, the 

effective input ac voltage applied to the floating gate (FG) is reduced by the factor 
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k=(C1+C2)/C1, where C1 and C2 are the capacitances associated with the input signal and 

the bias voltage, respectively. Although floating gate techniques are very attractive for 

low voltage applications [88]; their usage in high frequency is limited due to the 

capacitive coupling elements involved. Also very good layout techniques are required to 

lay the capacitors out. Though this method improves the linearity, the noise performance 

of the floating gate transistor is deteriorated with respect to its conventional counterpart. 

The output refereed noise is the same, but the input refereed noise is increased by the 

factor k2. 

 

 

Vi

Vbias

Vi

Vbias

C1

C2

≡≡≡≡
FG

 
Fig. 3.4. Linearization using floating gates [88] 

 

 

A third approach in the attenuation category is using bulk driven transistors [89], 

as shown in Fig. 3.5. The transconductance of a transistor driven from the bulk rather 

than the gate is reduced by a factor γ, where γ is in the range of 0.2 and 0.4 i.e. bulk-

driven transconductance gmb is typically round 0.2–0.4 times of gm (3.12), but it is very 

process dependent. Shown in equation (3.12) is the transconductance of the bulk driven 

transistor. 

m
SBFB

o
mb g

V22
g ×

�
�

�

�

�
�

�

�

+φ
γ

=  
 

(3.12) 

where γ0 is the body effect parameter, ϕFB is the bulk Fermi potential, VSB is the bias 

voltage at the bulk and gm is the transconductance of the amplifier which is gate driven. 
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ViVbias

 
Fig. 3.5. Linearization using bulk driven transistor [89] 

 

 

Bulk-driven technique is also attractive for low voltage applications but it suffers 

from worse frequency response, with respect to the conventional gate drive case. The 

equivalent noise and area of a bulk driven transistor is also larger than a conventional 

gate drive transistor. It also suffers form potential latch up problems. 

 

 

Table 3.1. Attenuation Factors of Different Techniques 

Attenuation Technique Attenuation Factor (m) 

Series of differential pairs Number of sections used 

Floating gate [88] (C2+C1)/C1 

Bulk driven [89] 2.5 < (1/γ) < 5 

 

 

Attenuation factors of different techniques are shown in Table 3.1. It is obvious 

in all of the attenuation techniques mentioned above that the transconductance is reduced 

by the attenuation factor and hence need to be compensated at the expense of power 

consumption and/or silicon area. Note that more than one linearization technique can be 

combined together to achieve better linearity [85]. 

 

3.1.1.3 Combination of Techniques  

Some linearization techniques also involve a combination of some of the 

techniques mentioned above. For example, a linearization technique can include current 
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splitting and source degeneration to have an improved linearity performance. However 

the drawbacks of some of these combination methods is that they require more power to 

compensate for the other losses.  
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Fig. 3.6. Linearization technique using voltage division, source degeneration, cross 

coupling 

 

 

Techniques like cross coupling of differential input stages are also performed. 

The main idea behind cross coupling of input stages is the elimination of the third order 

harmonics which is the main contributor of the non-linear distortion. Linearization 

techniques, as shown in Fig. 3.6, utilizing source degeneration, attenuation technique 

like floating gates input, cross coupling for elimination of third order harmonics using a 

double differential pair, all in the same design are discussed in [90]. 



  105   

 The linearization techniques mentioned above holds good for both fully-

differential OTA and also pseudo-differential OTA. Following is an example of a 

pseudo-differential OTA. 

 

 

VSS=-1.65V

M5 M5

M3 M1 M1 M3

M4M6 M2 M2 M4 M6

VDD=1.65V

CMFF

CMFB
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Out+Out-

Vbias

M5 M5

Triode Region

 
Fig. 3.7. Fully balanced, fully symmetric pseudo-differential OTA [75] 

 

 

 The OTA shown in Fig. 3.7 is OTA is a pseudo differential OTA with inherent 

common mode feedforward and feedback [75]. The principle of source degeneration is 

used in this technique. It is based on a fully balanced fully symmetric circuit design.  

Source degeneration is used to increase the linearity of the OTA. Transistors M5 and M7 

in the above design operates in the triode region and these transistors introduces the 

source degeneration necessary to improve the linearity of the OTA. 
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3.1.1.4 Linearization Using Complimentary Differential Pairs 

 The OTA shown in Fig. 3.8 is a pseudo-differential OTA with a complimentary 

input stage [94]. The input stage has both the n type differential pair (M1), and the p type 

differential pair (M2). The OTA also has source degeneration established using 

transistors Mn and Mp. 

 

 

M1
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Mp
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Fig. 3.8. Complimentary differential pair OTA 

 

 

These transistors Mn and Mp are operating in the linear region and the amount of 

source degeneration can be adjusted using the bias voltages. The overall 

transconductance has a contribution from the n and the p differential input pairs 

respectively. The effect of source degeneration on the transconductance has been 

explained in the previous section. Thus the overall transconductance of this OTA can be 

derived as shown in (3.13), 

mpmn
m n mn n p mp p

n p

gg
G ; N g R , N g R

1 N 1 N
= + = =

+ +
 

(3.13) 

where Rn and Rp are the value of resistance offered by the transistors Mn and Mp in the 

linear region. The factor N is called the degeneration factor. The normal trade-off using 
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the approach of source degeneration is that the overall transconductance gets reduced 

and to maintain a higher gain more power is required and to maintain a linear 

performance N should be more. In this case of complimentary differential pair, the 

additional boast in the gm comes from the other pair, without having the need to spend 

more power. The effect on HD3 is shown in equation (3.14). 

( )
( ) ( )

( )
( ) ( )

22
mn pamp

3
n DS,satn mn p mp n

2 2

amp mp n

p DS,satp mn p mp n

g N 1v1 1
HD

32 N 1 V g N 1 g N 1

v g N 11 1
32 N 1 V g N 1 g N 1

+� �� �
= +� �� � � �+ + + +� � � �

� � � � +
� � � �� � � �+ + + +� � � �

 

 

(3.14) 

 This approach reduces this term to a greater extent and causes a highly linear 

system. Using this approach along with the attenuation technique, a particular design of 

an OTA is introduced for VDSL filter applications. 

 

3.2. A Highly Linear OTA-C Based Filter for VDSL Applications 

 This section introduces a highly linear OTA topology for a 3rd order filter used in 

VDSL applications [87]. VDSL applications demand very high linearity performance 

and also the noise performance should be very good. Many OTA-C based filters are 

explored in the literature for this application. In this approach a highly linear OTA is 

introduced. The linearization techniques involved in this approach is a combination of 

source degeneration, attenuation of the input and this is all done using a complimentary 

differential pair. The effect on the third harmonic, HD3, was already explained in 

equations (3.14) and results from Table 3.1. This method enables to achieve linearity to a 

higher level. It reduced the third harmonic value by a greater fraction. In Order to 

achieve this and also a reasonable gain, enough power needs to be spent.  

 The filter used for this application using the above mentioned approach is shown 

in Fig. 3.9.  
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Fig. 3.9. 3rd order filter for VDSL applications 

 

 

The active block mentioned in Fig. 3.9 is termed as amplifier. It is an OTA with a 

resistive load, hence the output is a voltage. The signal attenuation at the input can be 

achieved by splitting the capacitor C2 into C2
’ and C2

” and the ratio between these 

capacitors decide the amount of attenuation required. The second order section of the 

filter with capacitive division at the input is shown in Fig. 3.10. 

 The active block used in this design is shown in Fig. 3.11. A low gain highly 

amplifier is designed for the VDSL filter. The amplifier has a complimentary input 

differential pair. Fig. 3.11 shows the transistor level implementation of the amplifier. 

The input stage includes a complimentary input differential pairs (M1 and M2). 

Resistors Rn and Rp provide the source degeneration for M1 and M2 respectively. Mb 

and Mp1 are the current sources for the input differential pair and transistor pair Mp2 

acts as the by-pass path for the extra current. If a resistive load is connected at the output 

node with the other terminal connected to ground, the need for a common mode is also 

not required. This topology of the low gain amplifier is used in the design. 
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Fig. 3.10. Signal attenuation at the input of the amplifier 
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Fig. 3.11. Linear OTA for the VDSL filter 

(Based on the research work of Arun Ramachandran, Dr. Antonio Torralba of Seville, Spain, Dr. Jose-

Silva Martinez and Dr. Edgar Sánchez-Sinencio of Texas A&M University, College Station.) 
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The expressions for the overall gm and the HD3 are already explained in the 

previous section. Since the input signal attenuation is performed using a capacitor, which 

is also involved in the filter’s characteristic performance, the attenuation ratio is 

compensated using the low gain of the amplifier. i.e. if the attenuation ratio at the input 

is 2, the amplifier is designed to have a gain of 2 (6dB), such that the overall gain is still 

1, as per the filter requirements. Using equation (3.13), the gain of the amplifier can be 

given as shown in (3.15), where RL is the load resistors connected between the output 

nodes and ground on the other end. 

m LGain G R=  (3.15) 

 To explain the performance of this amplifier in the filter structure, the specific 

application is taken for consideration. This filter shown in Fig. 3.9 is for the application 

of a VDSL front end block. The filter approximation used for the design of the filter is a 

Butterworth approximation. The Chebyshev approximation also has a magnitude 

response similar to that of the Butterworth approximation and has a ripple in the pass 

band, but the capacitors values to implement a Chebyshev filter is quite large when 

compared to those for the Butterworth implementation.  

 In Fig. 3.9, the first block is a first order low pass RC filter structure. The 

analysis of the filter design and the amplifier design for the time being includes the 

second order block comprised of the resistors R2, R3, capacitors C2, C3 and the amplifier. 

This second order block is the most important block as it decides the shape of the noise 

curve and also the filter characteristic curves. 

 

3.2.1 Biquad Section  

 The biquad section comprises of the resistors R2, R3, capacitors C2, C3 and the 

amplifier. The biquad section of the filter is a unity-gain section. To determine the 

values of the resistors and capacitors equation (3.16) and (3.17) are used. For this the 

resistor and capacitor values are set as ratios of m and n respectively.  

2 2

2 3

R R,R mR

C C,C nC

= =
= =

 
(3.16) 
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c

1 mn
F : Q

m 1RC mn
= =

+
 

(3.17) 

To implement a Butterworth filter with a 3dB frequency of 12MHz and a Q of 1, 

the values of m and n are chosen to be 2 and 4 respectively (Q=0.942). The values of 

resistors and capacitors are R2 is 1.5KΩ and C2=3.12pF.  

 

3.2.2 Simulation Results  

 The performance of this OTA can be verified from simulation results from 

CADENCE. Since this design is not yet fabricated, the simulation results are mentioned 

below.  The stand alone OTA and the filter were designed in CMOS 0.35µm technology. 

The gain of the amplifier was simulated to be 6dB. The Inter modulation product terms 

(IM3) which measures the linear behavior of the OTA was found to be -72dB for an 

input signal with a differential peak-to-peak value of 2V at 10MHz and 11MHz. From 

this term the HD3 can be estimated to be around -81dB. It can be observed that the above 

mentioned approach provides a very highly linear circuit for maximum voltage swing at 

the input. The power supply is ±1.65V. The input referred noise spectral density is 

around 33nV/�Hz. The total power consumed is around 19mW. Thus for a lower power 

consumption, a highly linear circuit can be designed. The simulated results of the OTA 

and the filter are tabulated in Tables 3.2 and 3.3. 

The overall gain of the amplifier is 0dB and the 3dB frequency of the filter is at 

12MHz. The frequency response is in accordance with the filter specifications. The 

maximum input differential signal is 2Vpp. An input at 1MHz was given to verify the 

output swing of the filter. To measure the linearity of the filter, two tones were given as 

inputs and the IM3 was measured from the output spectrum. 
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Table 3.2. Amplifier Simulation Results 

Parameter Simulated Value 

DC Gain 6dB 

Input Referred Noise Density 33nV/sqrt(Hz) 

IM3 (From Two Tone Test: Vin,pp=2Vpp 

at 10MHz and 11MHz 

-71.33dB 

THD (Estimated from IM3) -80 dB  

Power Consumed 19mW 

 

 

 From the output spectrum of the filter for a two tone given at 9MHz and 10MHz, 

the IM3 is estimated to be around -64.5dB. Time domain measurement of the linearity 

was also done for two tones at 4MHz and 5MHz and from the output spectrum the IM3 is 

around -65.5dB (THD= -74.5dB). The desired level is around -75dB. 

 

 

Table 3.3. Filter  Simulation Results 

Parameter Simulated Value 

DC Gain 0dB 

3dB Frequency 12MHz 

Input Referred Noise Density 33nV/sqrt(Hz) and a maximum of 

78nV/sqrt(Hz) around 12MHz 

IM3 (From Two Tone Test: Vinpp=2Vpp 

at 10MHz and 11MHz 

-64.5B 

IM3 (From Two Tone Test: Vinpp=2Vpp 

at 4MHz and 5MHz 

-65.5dB 

THD (Estimated from IM3) -74dB 

Power Consumed 19mW 
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  The input referred noise spectral density is around 33nV/sqrt(Hz). However the 

noise density takes the shape due to the resistors and capacitors in the filter structure. 

This was verified for the general case of Sallen and Key architectures. The main 

contribution was from the current source transistors. The value of Gm of the current 

source transistors needs to be reduced to reduce the slope of this curve and at the same 

time without affecting the linearity of the filter. 

 

  

 
Fig. 3.12.3rd order Butterworth filter’s magnitude response 

 

 

Fig. 3.12, 3.13 and 3.14 shows the simulated results for the filter’s magnitude 

performance, two tone tests at 10MHz and 11MHz for a 2Vpp input signal and the input 

referred noise spectral density. 
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Fig. 3.13.Two tone analysis results for IM3 simulation for two equal tones of 1Vpp at 

10MHz and 11MHz for the 3rd order filter 

 

 

 
Fig. 3.14. Input referred noise spectral density for the 3rd order filter 
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 The increase in the input referred noise spectral density is due the inherent 

structure of the Sallen and key low gain amplifier based filter structures. The same can 

also be verified using sensitivity analysis of the structure, which is not the focus of this 

section.  

 Most of the filter blocks discussed in literature ([100]-[101]), for VDSL/ADSL 

applications have considered the filter as an integral part of the analog front end for the 

system. Table 3.4 gives a comparison of some of works already published with the 

results of the filter described in the above section.  

 

 

Table 3.4. Comparison Of VDSL Results 

Reference/ 

Parameter 

CICC [87] JSSC [100] ISSCC [101] This Work 

Technology 0.35µm + 

0.5µm 

0.13µm 0.13µm + 

0.5µm 

0.35µm 

Power/Pole* 87.5mW 37.5mW 266mW 6.4mW 

Input Integrated 

Noise 

100nV/�Hz 22nV/�Hz 100nV/�Hz 33nV/�Hz 

Supply Voltage - 2.5 V 3.3 V 3.3 V 

Input Signal Swing - 1.6V - 2 V 

Filter Order/Type 4th , Elliptic  

Low Pass 

2nd, Butterworth 

Low Pass 

3rd Low Pass 3rd, Butterworth 

Low Pass 

* Power is the overall power/pole of the channel in the case of all references and the stand alone 

filter for this work 

  

 

3.2.3 Summary  

 A new topology of a highly linear OTA was introduced and the extension to its 

application in the case of a VDSL front end analog filter was also explained. The circuit 
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has a very highly linear characteristic, when the price is paid off in terms of the noise 

shape. The power consumed is also around 20mW, which is not very high to achieve a 

linearity level of -75dB. This topology can be used in applications whose noise 

performance is not very highly demanding. The structure needs to be fabricated to also 

analyze the performance in Silicon. 

 In the next section a new linear topology of OTA based on Active-Error 

Feedforward technique is introduced and the performance is verified using experimental 

measurements. 

 

3.3. Proposed Highly Linear OTA  

 In this section, a highly linear operational transconductance amplifier (OTA) 

based on an active-error feedforward linearization scheme [78] is proposed. The error 

signal is generated using an additional differential pair transconductor and a linear 

resistor. Feedforward linearization is widely used to reduce nonlinear distortion in 

amplifiers. The proposed technique gives effective linearization, allows the 

implementation of  the OTA circuit which has extremely low power consumption, 

extended linear range of operation, as well as good transconductance tuning capability. 

Moreover, the effective excess phase compensation can be easily applied, which makes 

the circuit suitable for high-frequency applications. 

 

3.3.1 Feed-Forward Linearization  

 From the general description of a non-linear system, as introduced in chapter I 

(1.4) and (3.7), the input output relation of a non-linear system, in the case output for a 

simple transconductor (a general case, not necessarily differential one), the output 

current vs. input voltage, can be expressed as a power series expansion as shown in 

(3.18). 

( )( ) ( ) ( ) ( ) ( ) ( )2 3 n
G in 1 in 2 in 3 in n in in

n 1

I v t g v t g v t v t .... g v t G v
∞

=
= + + α + = =  

(3.18) 
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where vin is the differential input voltage of the transconductor. By definition, coefficient 

g1 is the linear transconductance gm of the amplifier. For a differential input stage the 

even order terms vanish and only the odd terms of the power series exist.  

 Fig. 3.15 shows the concept of transconductance amplifier linearization based on 

active-error feedforward method.  
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Fig. 3.15. Three block feed-forward transconductance amplifier 

 

 

 All amplifiers G1, G2, G3, modeled as in (3.18), are assumed to be identical. 

Moreover, it is assumed that resistor R in Fig. 3.15 is linear and equal to 1/gm. In 

practice, e.g. in integrated circuit implementations some technologies offer high resistive 

poly which can be used to realize resistor R.  

 Using (3.18), the output current of the overall OTA, including the three 

intermediate OTA stages, shown in Fig. 3.15, can be written as, 

( ) ( ) ( ) ( )n n

out n in n in R
n 1 n 1

i t g v t g v t v t
∞ ∞

= =
= + −� 	 � 	� � � �   

(3.19) 

where vR(t) can be expressed using the fact that the first term g1 is the transconductance 

gm of the OTA and the value of R=1/gm. 

( ) ( ) n1
R 1 n in

n 1

v t g g v t
∞

−

=
= � 	� �  

(3.20) 



  118   

This means that the voltage at the input of the transconductor G3 (working as an error 

amplifier) equals, 

( ) ( ) ( ) n1
in R 1 n in

n 2

v t v t g g v t
∞

−

=
− = − � 	� �  

(3.21) 

From (3.19), (3.20) and (3.21), the output current can be written as, 

( ) ( ) ( )
n

n k1
out n in n 1 k in

n 1 n 1 k 2

i t g v t g g g v t
∞ ∞ ∞

−

= = =

� 	= + −� 	 � 	� � � �
 �
� �

    
(3.22) 

Normally, vin(t)-vR(t) is much smaller than the input voltage of transconductors 

G1 and G2, which allows us to neglect the higher order terms in the output current of G3. 

This leads to the approximation of (3.22), which shows the perfect cancellation of 

nonlinearities of the overall transconductance amplifier in Fig. 3.15. 

( ) ( ) ( ) ( )n n

out n in n in 1 in
n 1 n 2

i t g v t g v t g v t
∞ ∞

= =
= − =� 	 � 	� � � �   

(3.23) 

This approach leads to a perfectly linear system, in the theoretical sense. Second 

order and other process variations needs to be included which might hamper the overall 

performance.  

 

3.3.2 Analysis of Linearity Performance  

 Consider a simple CMOS differential pair transconductor shown in Fig. 3.16. It 

can be shown, using square-law MOS transistor modeling ([91]) that its normalized 

transfer characteristic around zero is, 

( ) 2
G SSi x 2I x 1 x= −  (3.24) 

where x is a normalized input voltage defined as x=vin/2(VGS-VT), with vin being a 

differential input voltage, VGS and VT - gate-source DC voltage and threshold voltage, 

respectively; ISS is the biasing tail current of the differential pair. For small Vin, x<<1 

(3.24), can be approximated by equation (3.25). 

 

 



  119   

ISS

Vin

M2M1

Current Mirror

+

-

iG

 
Fig. 3.16. Simple CMOS differential pair transconductor 

 

 

( ) ( )2
G SSi x 2I x 1 0.5x= −  (3.25) 

 For a sinusoidal input like x(t)=Acos(ωt), the system described by (3.24) yields, 

( ) ( )3 3
G SSi x 2I A 0.375A cos t 0.125A cos3 t� 	= − ω − ω� �  (3.26) 

thus, the third order harmonic term (HD3) can be approximated to 0.125A2/(1-0.375A2) 

or just 0.125A2.  

 Using the theoretical derivation of (3.22), for the active-error feedforward 

technique, for the same input, the output current can be derived as shown in (3.27). 

( ) ( )93 9 3
G SS SS SS SSi x 2I x 2 I x 2I A cos t 2 I A cos t− −= − = ω − ω  (3.27) 

which can further be reduced to (3.28). In this case the third harmonic is HD3=0.02A9.  

( ) 9 9
G SS 12 12

126 84
i x 2I A A cos t A cos3 t

2 2
� 	� �= − ω − ω +� �
 �
� �� �

�  
(3.28) 

 Note that linearized circuit has not only third harmonic component but also the 

5th, 7th  and the 9th harmonics. However, for small values of A, they are negligible. For 

A=0.1 the following are the values of the third harmonics: HD3=1.25x10-4 (original 

circuit- simple differential pair) and HD3=2.05x10-11(linearized circuit). For  A=0.2 

HD3=1.0x10-3(original circuit), HD3=1.05x10-8 (linearized circuit).  
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 One can calculate THD for both the simple differential pair and linearized circuit 

assuming the transfer characteristic as in (3.24), for all transconductors (in particular, 

without neglecting the higher order terms in the output current of G3 as in (3.25)). 

 

3.3.3 Second Order Effects 

 Since the OTA’s output is current, one of the most important second order effect 

would be that of the mobility degradation. The influence of mobility degradation on 

linearity of the differential pair transconductor in Fig. 3.16 linearized using the active-

error feedforward method, (i.e. assuming the simple differential pair as the basic block G 

in Fig. 3.15), is investigated below. 

 The square-law MOS model in saturation including mobility reduction effect 

[91] is shown in equation (3.29), 

( )
( )

2
GS T

D
GS T

k V V
I

1 V V
−

=
+ θ −

 
(3.29) 

where ID is the drain current, k - transconductance parameter and θ- the mobility 

reduction coefficient. Using (3.29) and assuming that ( )0.5 GS TV Vθ θ= −  is small, the 

transfer characteristic of the circuit in Fig. 3.16 can be approximated as, 

( ) ( )3 3
G SSi x 2I c x 0.5cc xθ ≅ −  (3.30) 

where c and c are parameters which are used for simplification 

( ( ) ( ) ( ) 1/ 2
1 2 / 1 2 2 , 1 2c cθ θ θ θ

−
= + + + = + ). It can be observed that nonzero θ , 

actually reduces small signal transconductance by factor c, and also influences linearity 

of the circuit. In particular 3 3
3 0.125HD cc A= . The linearity is reduced by a factor of 

3cc in comparison to the case without mobility degradation. While applying to the circuit 

with the active-error feedforward scheme,  

( ) ( )3 4 12 9
out SS SSi x 2I c x 2 I c c xθ −≅ −  (3.31) 
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Observe that small signal transconductance is reduced again by factor c. The 

third harmonic is now HD3=0.02 4 12 9c c A , so it is reduced by factor ( )43cc  in 

comparison to the case without mobility degradation. 

 If the parasitics are taken into consideration such as input and output 

capacitances and output conductances of transconductors, the circuit in Fig. 3.15 

becomes a two-zero and two-pole system. The first zero can be used to compensate an 

excess phase which arises due to other second order poles (if necessary this zero can be 

moved down in the frequency scale by adding an additional capacitor between the output 

of transconductor G2 and the output of the circuit). The addition of the capacitor is 

explained in the transistor level diagram representation of the circuit. 

 

3.3.4 Linearized OTA Circuit Architecture 
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Fig. 3.17. Linearized CMOS OTA based on active-error feedforward technique [78] 
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 Fig. 3.17. shows a circuit implementation of Fig. 3.15. The common mode 

feedback circuit (CMFB) is shown separately in the following sections. Note that the 

circuit in Fig. 3.17 is a fully differential OTA. Thus, it is a slight modification of the 

concept presented in Fig. 3.15. The pair M1,M2 implements two-output counterpart of 

transconductor G1 Transistors M3, M4 implement the counterpart of transconductor G2 

loaded by resistors R (R= 1/2gm). Differential pairs M5,M6 and M7,M8 with current sinks 

M12 and M14, respectively, realize error amplifiers corresponding to G3.  Two differential 

pairs are necessary to implement the error amplifier cause the implementation is a fully 

differential version. The ratio between transistor dimensions of M11, M12, M14 and M13 is 

1:2, cause M13 is the current sinks for two input differential pairs. The transconductors 

have common current sources realized by transistors M15-17,21,22 and M18-20,23,24 . Note 

that in order to change the transconductance of the circuit in Fig. 3.17, the bias current 

Ibias and resistor 1/2gm have to be adjusted simultaneously. This is explained in more 

detail in the tuning section. 

 

3.3.5 Common Mode Feedback Circuits 

 Since the OTA implementation is a fully differential version and not pseudo 

differential, complex common mode feedback methods are not used. Fig. 3.18 and 3.19 

shows the common mode circuits for the common mode voltages VCMFB1 and VCMFB2. 

The circuit in Fig. 3.18 is the output common mode feedback circuit, where the 

differential output common mode voltages are set to the input common mode level, 

which is ground in this case. Ibias2 is the biasing current source for the common mode 

block. The common mode signal is fed to the OTA through the gates of transistors M22 

and M24. Fig. 3.19 shows the common mode feedback circuit for the resistor block in the 

overall OTA. The detected common mode signal VCMR in between the two resistors is 

compared with ground and the common mode feedback signal is fed to the gates of 

transistors M9 and M10.  
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Fig. 3.18. Output common mode feedback circuit (CMFB1) 
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Fig. 3.19. Common mode feedback for the resistor biasing circuit (CMFB2) 

 

 

3.3.6 Tuning of the OTA 

 The OTA also has a higher tuning capability. In order to perform frequency 

tuning of the filter using this OTA, the transconductance gm of the filter can be tuned to 

larger range. The tuning control for this OTA is the biasing current Ibias. By increasing or 
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decreasing the amount of current supplied to the input differential pairs, the gm of each 

blocks can be increased or decreased respectively. However to maintain the linear 

performance of the OTA, the resistance R(R=1/gm) should also be changed 

simultaneously in order to have perfect cancellations of the non-linear higher order 

terms. The selection of the resistor tuning block is very critical in this OTA design. One 

of the simplest methods of tuning the resistors is explained below.  
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Fig. 3.20. Tuning circuitry for the OTA 

 

 

 In the tuning circuitry shown in Fig. 3.20, all the P type transistors act as 

switches, whose control voltages are set by S1-4. The maximum resistance that can be got 

from this circuit is R1+R2+R3+R4. The minimum is just the on switch resistance of all 

the 4 switches. The transistors acting as switches have an “ON” resistance given by the 

triode region operations of the transistors. 

( )( )ON

n ox GS T

1
R

WC V VL
=

µ −
 

(3.32) 

Thus the value of resistances can be tuned in a larger range and this value needs to be 

equal to 1/gm. Thus the tuning range for the gm is quite large. Fig. 3.21 shows the tuning 

range in terms of the transconductances and the biasing currents for this tuning circuit 

implementation.   
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Fig. 3.21. Gm tuning from 70µA/V-140µA/V,of the OTA, using the biasing current 

 

 

 The flatness of the gm values  in all cases (70µA/V < gm < 140µA/V) for a larger 

input voltage range indicates the linearity performance of the proposed OTA. To achieve 

better linearity the Ibias needs to be increased, cause the input range for higher bias 

currents is greater where the transconductance term is absolutely flat. 

 Tuning, mentioned above is achieved using a resistor bank and also switches. 

The resistors are passive ones and are laid out in Silicon using polysilicon covered by a 

resistor layer. The value of resistance obtained can vary due to process variations. The 

OTA’s performance needs to be verified for the variations in the value of the resistors. 

For this the variations resistor values and its effect on the harmonic distortion is 

analyzed below. In order to analyze this, the HD3 from the two tone measurement of the 

tunable OTA, using equal tones of 0.4V amplitudes at 9MHz and 10MHz can be 

measured for various % variations of the resistor values. Fig. 3.22 shows the effect of the 

% variation in the resistor values on the HD3. 
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Fig. 3.22. Variations in HD3 vs. % variations of the resistor values 

 

 

 From Fig. 3.22 the maximum variations in the third order harmonic distortion 

level for a 10% variation in the resistor value is around 5dB. 

 

3.3.7 Measurement Results 

 The measurement results for the proposed OTA fabricated using CMOS 0.35µm 

process are presented below. The OTA is used to build a second order filter, having the 

same OTA at the output as a buffer. The biquad occupies 300µm*500µm. The power 

supply is ±1.25V. Fig. 3.23 shows the chip micrograph. 
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Fig. 3.23. Chip micrograph of the biquad filter along with the buffer OTA 
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Fig. 3.24. Set-up to measure intermodulation distortion (IM3, IM5) 
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 Fig. 3.24 shows the general set up to measure the IM3 products. To measure 

linearity experimentally a two-tone analysis is used. Two signals of equal amplitude but 

different frequencies are generated using the signal generators and are combined 

together using the combiner and are fed to the Feedforward OTA based filter (FFOTA 

Based Filter). The output waveforms are plotted and from the third order 

intermodulation products terms the third order harmonic distortion (HD3) can be 

extracted. It is known that the IM3 is thrice that of the third order harmonics. The higher 

order harmonics can be neglected for analysis. 

 Fig. 3.25 shows the set-up for the measurement of the filter transfer function. The 

Agilent 4395A (Spectrum/Network Analyzer) can also be used as a network analyzer to 

measure the filter’s transfer function. 
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Fig. 3.25. Set-up for transfer function measurements 
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 The feedforward OTA is used to build a second order low pass Butterworth filter 

whose 3dB frequency is 10MHz. Fig. 3.26 shows the filter’s transfer function.  

 

 

 
Fig. 3.26. Biquad filter transfer characteristic- magnitude response 

 

 

 Fig. 3.26 shows the filter’s transfer characteristics. Taking into account for the 

buffer’s gain, the overall small signal gain of the filter is 0dB and the gain at 10MHz, 

which is around the corner frequency is -3.21dB. The filter has a 3dB frequency around 

10MHz. 

 Fig. 3.27 shows the two tone measurement results for the filter with two tones at 

10MHz and 11MHz, for an input  signal of 1.2Vpp at the maximum. The OTA has a 

very flat gm performance up to ±0.6V input voltage, hence the linearity of the filter  built 

using this OTA, is tested at the maximum voltage swing. The swing is limited by the 



  130   

power supply which is  ±1.25V. The IM3 measured from the two tones at 10MHz and 

11MHz is around -38dB and  for two equal tones of 0.5V at 6MHz and 7MHz is -42dB. 

 

 

 
Fig. 3.27. IM3 measurement for two equal tones of 0.6V at 10MHz and 11MHz  

 

 

 For the above mentioned measurement results, the resistor value used at the 

output of the buffer was 25Ω. This resulted in the value of the fundamental and the 

harmonics to be very low. In order to have a significant output signal, resistor values of 

2KΩ was used. Fig. 3.28 and 3.29 shows the filter’s magnitude response and the two 

tone measurement results for the filter with an output buffer of 2KΩ. This value of 

resistor along with the parasitic capacitances due to packaging shifted the corner 
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frequency, 3dB frequency to 8.2MHz. Hence for the measurement of the 

intermodulation products, two equal tones of 0.6V input amplitude at 6MHz and 7MHz 

were used as the input. 

 

 

 

Fig. 3.28. Biquad filter’s magnitude response for a 2KΩ resistor at the output of the 

buffer 

 

 

Fig. 3.30 shows the experimental measurement of the variation of the HD3 with 

respect to the input voltage amplitude for the filter at 10MHz. The variation of the third 

order harmonic term gives a good picture of the linearity performance of the OTA based 

filter. 
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Fig. 3.29. Two tone measurement results for two equal tones of 0.5V amplitude at 6MHz 

and 7MHz for the biquad filter with 2KΩ at the output of buffer 

 

 

 The excess phase of the feedforward OTA is less 1o , it is around 0.7o. The excess 

phase can further be improved using an additional capacitor compensation across the 

drains of transistors M3,4 and M1,2. The CMRR, PSRR+ and PSRR- of the biquad filter at 

10MHz is around 80dB, 60.7dB and 42.21dB respectively. The power consumed by the 

single OTA is less than 1mW (≅ 0.94mW). The power consumed by the biquad filter 

along with the buffer OTA is 4.8mW. The power supply is ±1.25V. The bias current is 

set to 40µA. The total output noise generated in the bandwidth from 0 to 10MHz is 
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about 98µVrms. This corresponds to 72.6dB of dynamic range for  the maximum input 

differential voltage of 1.2Vpp at 10MHz. 
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Fig. 3.30. HD3 vs. input amplitude for an input signal at 10MHz for the biquad filter 

 

 

 Table 3.5 summarizes the performance of the filter. This research work is based 

on creating a new mechanism for improving the linearity of the OTA structure. For this 

case, a simple differential pair was taken as the reference OTA and using the active error 

feedforward technique the linearity of the simple differential pair was improved. If a 

differential pair, with know linearization techniques like source degeneration and/or 

signal attenuation using floating gates and cross coupling is used as the basic building 

OTA for the active-error feedforward technique, the performance of the overall OTA 

would be increased manifold.  
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Table 3.5. Filter Performance Parameters  

Parameter Measured Value 

Filter Order & Type  2nd Butterworth Low Pass 

F3dB  10MHz (25Ω At Buffer O/P) 8.2MHz (2KΩ) 

IM3 & Max. Vin,pp  -38 dB for 1.2Vpp at 10MHz 

 -42 dB for 1Vpp at 7MHz 

Output Integrated Noise from 0-10MHz  98 µVrms 

gm Tuning Range  70µA/V < gm < 150µA/V 

SNR @ 1Vpp Input  71.15dB 

SNDR @1Vpp Input for a THD of 

-50dB 

 46.5 dB 

Power Supply  ± 1.25V 

Power Consumed  4.8mW 

Power Per Pole  2.4mW 

Area  300µm*500µm 

Technology  CMOS 0.35µm 

 

 

 The performance of this OTA based filter is significantly better than using a 

simple differential pair based OTA. However the performance of this circuit when 

compared to the more complex schemes of linearization is not very significant, as the 

distortion ratio needs to be improved. The noise performance is very good however this 

when combined with the distortion ratio, reduces the SNDR of the filter. The main 

advantage of the technique is the savings in terms of power and area. Table 3.6 gives a 

comparison of the performance of this OTA based filter with some of the published 

works from the literature. 

 



  135   

Table 3.6. Comparison of This Work with Published Material 

Reference Technology Supply 

Voltage 

IM3 @ Vin 

@Frequency 

 

Power 

JSSC 1991 

[85] 

CMOS 3 µm 5 V -50 dB 

2.4 Vpp 

1 MHz 

9mW 

p/pole 

 

JSSC 1993 

[97] 

BiCMOS 2 µm 10 V -65 dB 

5 Vpp 

4 MHz 

157mW 

p/pole 

 

CICC 1996 

[98] 

CMOS 0.8 µm 5 V -61 dB 

4 Vpp 

0.6  MHz 

5mW 

p/pole 

 

JSSC 1997 

[99] 

CMOS 0.5 µm 3.3 V -45 dB 

1 Vpp 

4 MHz 

4mW 

p/pole 

 

CICC 

[90] 

CMOS 0.35 µm 

 

3.3 V <-65 dB 

1.3 Vpp 

20 MHz 

26mW 

p/pole 

 

This Work CMOS 0.35 µm 

 

2.5 V -42 dB 

1 Vpp 

7 MHz 

2.4mW 

p/pole 

 

 

 

3.4. Conclusion 

 An effective linearization method based on the active-error feedforward concept 

has been developed for realizing a very linear CMOS OTA. The complete linearized 

OTA in differential-input two-output structure has been designed and fabricated using 
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the 0.35µm process. For a power supply of  ±1.25V, total harmonic distortion for a 

1MHz sinusoidal signal at 0.4Vpp is less than -72dB and the IM3 for a maximum 

differential voltage swing of 1.2Vpp at 10MHz is -50dB (HD3 = -59dB) and the same for 

simple differential pair is -35dB and around -10 to -15dB respectively. The circuit has 

very low power consumption, which is less than 1mW for bias current equal to 40µA. 

The obtained simulation results confirm that the linearity of the overall transconductance 

element is significantly improved in comparison to the reference circuit (i.e. simple 

differential pair transconductor).  

 

 

 
Fig. 3.31. Transconductance vs. input voltage (a) simple differential pair, (b) with 

linearization 

 

 

Fig. 3.31 is the pictorial representation of the gain of this OTA. A significant 

increase of the linear input voltage range for the linearized circuit (>300%) was 

observed. 

 The OTA topology designed using the active-error feedforward technique was 

also used as the active building block in the design of a second order low pass filter with 

a 3dB frequency of 10MHz. The measured IM3 of the filter is around -45dB over the 

entire pass band (1-10MHz) for a maximum input signal of 1.2Vpp. The active area of 
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the filter is 300µm*500µm (0.15µm2). The filter design operates with a  power supply of 

± 1.25V. A SNR of 61.5dB was achieved for a maximum input signal sinusoid of 

1.2Vpp at10MHz. The measured results assure the good performance of the proposed 

transconductance linearization technique. 

 A new topology of a highly linear OTA was introduced and the extension to its 

application in the case of a VDSL front end analog filter was also explained. The circuit 

has a very highly linear characteristic, when the price is paid off in terms of the noise 

shape. The power consumed is also around 20mW, which is not very high to achieve a 

linearity level of -75dB. This topology can be used in applications whose noise 

performance is not very highly demanding.  
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CHAPTER IV 

CONCLUSION 

 

In this thesis, the design issues continuous-time OTA-C based integrated filters have 

been examined. What mainly limit the performance of an analog filter are the non-

idealities of the used building blocks and the circuit architecture, like the non-linearity, 

noise etc. A general description of non-linearity and noise modeling of OTA was 

presented. 

  A framework for performance optimization of continuous-time OTA-C filters 

was presented based on matrix description of a general OTA-C filter model. In 

particular, a general description of OTA-C filters with nonlinear transconductors was 

introduced. A nonlinear ordinary differential system that describes time evolution of 

output signal for an arbitrary OTA-C filter was formulated. The presented method allows 

carrying out an effective and fast transient analysis of any OTA-C filter using standard 

numerical methods and can be applied to determine the THD or other nonlinearity 

measures of filters containing nonlinear transconductors. On the other hand, universal 

expressions are derived that permit computing the filter noise. As an application, the 

optimal block sequencing and gain distribution for 8th order Butterworth filter in 

cascade realization was presented.  

Two novel techniques to improve the linearity of OTA used in continuous time 

OTA-C filters were introduced. On the circuit level, new building blocks have been 

introduced.  

A low gain highly linear filter for VDSL applications was introduced. The 

proposed design has a greater linearity performance, however the noise performance is 

affected by the loop gain of the amplifier. 

A new topology of OTA based on active-error feedforward technique to improve 

the linearity of the OTA with minimum power consumption was also introduced. The 
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proposed architecture is shown to have significant area and power savings compared to 

the recently reported structures in the literature. 
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APPENDIX A 

THE MODELING TOOL-MANUAL 

 

1. Introduction  

A brief manual mentioning the various steps to be taken to run the modeling tool is 

given in this section. The steps include, determining the various inputs for the tool like 

the non-linear parameters, noise parameters and the other filter specifications. A specific 

example of the tool, the non-linearity and noise analysis of a 5th order Bessel filter, is 

mentioned in this section. 

 

2. Non-Linearity Parameter Extraction 

 The general input-output relation of a non-linear system can be described by 

equation (A.1). 

....)t(xa)t(xa)t(xa)t(xa)t(xaa)t(y 5
5

4
4

3
3

2
210 ++++++=  (A.1) 

where a1 is the linear term and the other coefficients ai (i >2) are the higher order non-

linear coefficients. The extraction process involves the determination of these higher 

order terms. This will give a picture of the non-linear behavior of the system.  

 The main focus of this research is to model the OTA’s for its non-linearity and 

noise performance. The OTA is differential in nature. The main advantage of the 

differential system is that the even order harmonics are eliminated ideally, i.e. the even 

order coefficients a2, a4 etc are all ideally equal to 0. However in actual circuit design, 

these terms are not equal to 0 but are very small and negligible. It is very essential to 

determine all the terms. For an OTA the first order term a1 is defined as the linear 

transconductance of the OTA (gm).  

 To extract these terms, the conventional way is to use the simulator tools like 

CADENCE, where the input-output DC characteristic is taken and differentiated each 
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time and the value for x=0 is estimated and thus these terms can be extracted. The 

method of using  CADENCE for the same is explained below.  

 The DC characteristic of an OTA, giving the non-linear relation between the 

input differential voltage and the output current can be given as in (A.2). 

...vgvgvgvgvgi 5
d5

4
d4

3
d3

2
d2d1out +++++=  (A.2) 

where as mentioned before, g2, g4 are very small (negligible). The DC characteristic for 

the OTA mentioned in chapter II [75] is shown in Fig. A.1. 

 

 

 
Fig. A.1. Non-linear DC characteristic: input-output relation for the OTA [75] 

 

 

 From the DC characteristic, the higher order coefficients can be determined by 

differentiating the response, which is characterized by (A.2) and equating the term to the 

point where vd=0. 
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 Equation set (A.3) gives the exact relation for all the coefficients with respect to 

the DC characteristic.  
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(A.3) 

Fig. A.2, A.3 shows the extraction of these parameters based on equation (A.3), using 

CADENCE. 

 

 

 
Fig. A.2. Extraction of g1 from the nonlinear DC characteristic of the OTA [75] 
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Fig. A.3. Extraction of g3 from the nonlinear DC characteristic of the OTA [75] 

 

 

 The process of extraction of these parameters using the modeling tool is by using 

a simpler approach of curve fitting. From the DC characteristic of the OTA, N pairs of 

points (vk,ik) are taken and using the least mean square approach the coefficients are 

extracted. An approximation function, given by equation (A.4), is used. 

( ) 
=

=
N

0i

i
iniin vgvG  

(A.4) 

 The parameters are extracted by minimizing the error function given by equation 

(A.5). 
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The parameters extracted using CADENCE and also the modeling tool are 

compared in Table A.1. From the % error it can be concluded that the modeling tool’s 

approach of extracting the nonlinear parameters is a very accurate. 

 

 

Table A.1. Nonlinear Parameters Extraction 

Nonlinear 

Coefficients 

Transistor Level 

 

This Approach 

(LMS) 

% Error 

g1(µA/V) 142.65 142.71 0.042 

g3(µA/V3) -5.568 -5.572 0.071 

g5(µA/V5) -16.95 -17.08 0.77 

* g2 and g4 are small enough to be considered negligible 

 

 

 These higher order coefficients also vary with biasing conditions. A brief 

description is given on the variations of these higher order coefficients based on the 

biasing condition. The OTA used for this example is the OTA discussed in chapter II 

[75]. To control the amount of source degeneration there is a biasing voltage Vbias which 

is fed to the gate of the transistors which operates in the triode region. By varying this 

voltage, the variations in these coefficients can be analyzed.  

 Fig. A.4 and A.5 shows the variation of the coefficients g1 and g3 with respect to 

the bias voltage. Fig. A.4 also shows how the transconductance of the OTA can be 

increased or varied using the bias voltage.  

 

 



  158   

0
50

100
150
200
250
300
350
400

-0.2 0 0.2 0.4 0.6 0.8 1

Vbias [V]

g1
 [u

A
/V

]

 
Fig. A.4. Variation of g1 with respect to Vbias for  the linear OTA [75] 
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Fig. A.5. Variation of g3 with respect to Vbias for  the linear OTA [75] 

 

 

3. Noise Parameter Extraction 

 The noise parameters required by the tool for modeling the noise of the whole 

filter are the two parameters Sw and Sf  which is given by expression (A.6).  
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 The terms Sn1 and Sn2 are the values of the noise spectral density at frequencies f1 

and f2 respectively. The noise simulation can be performed in simulator tools like 

CADENCE and from the input squared noise response, the values of (Sn1,f1) and (Sn2,f2) 

can be extracted. The term g1 is the linear transconductance of the OTA used. For this 

filter the corner frequency is around 10MHz and the flicker noise components are not 

very critical, hence the value of Sf can be taken as 0. Fig. A.6 shows the noise simulation 

window from CADENCE. The value of Sw estimated using this extraction is 8.17x10-20 

VA/Hz. 

 

 

 
Fig. A.6. Noise simulation in CADENCE to extract the noise parameters 
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 The procedure to estimate the non-linear parameters and the noise parameters for 

any OTA to be modeled was described in the above sections. For the tool to model the 

non-linearity and noise performance for any filter, the next set of information required is 

the basic specifications of the filter, like the corner frequency, signal amplitude for the 

estimation of THD, HD3 etc, also the various possible topologies. 

 To describe the various topologies, the matrix description of the topologies is 

required along with the values of the capacitors for the topologies. The matrix 

description of any Gm-C filter was explained in chapter II. Using the information, the 

matrix description for the a particular case is considered.  

To design a 5th order Bessel low pass filter based on Gm-C structures, there are 

50 different topologies which includes the various cascade topologies, leapfrog and also 

multiple feedback ones. The matrix description of each of these structures needs to be 

evaluated and put as a separate input file for the tool. Fig. A.7 shows the cascade 

structure (2:2:1) which is designed using two biquads followed by a first order structure. 

 

 

 
Fig. A.7. Cascade implementation of the 5th order Bessel filter using OTA [75] 

 

 

The matrix description of this cascade implementation is shown in expression 

(A.7). The normalized capacitor values for this structure are 0.256, 0.215, 0.470, 0.150, 

0.274.  
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 1- 1 0 00
 0     1- 1 00
 0     1- 0  1  0
 0 0 0 1- 1
 0 0 0 1- 0

 

 

(A.7) 

A GUI version of the tool was created using MATLAB which has some options 

for the user. The directory where the tool is executed should have the files containing all 

the matrices for the various topologies, their corresponding normalized capacitor values 

and an input file which has the DC characteristics along with the noise parameters Sw 

and Sf. A typical input menu would look like Fig. A.8. 

 

 

 
Fig. A.8. Input menu of the modeling tool 
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 The input takes in the basic specifications of the filter. The input nonlinearity and 

noise parameter file (DC_Char_OTA.txt), the corner frequency of the filter, the signal 

amplitude to perform the THD analysis etc. The output files are stored in a text file 

under an extension of .txt. Fig. A.9 shows the result of the preliminary analysis. 

 

 

 
Fig. A.9. THD and noise results for all the 50 structures of the 5th order filter 

 

 

 Fig. A.9 shows the comparison result of non-linearity and noise performance of 

all the 50 possible structures for the 5th order filter. The most optimum structure can be 

determined using this window and the tool can be used to also study the particular 

structure in detail. To study a particular structure in detail more inputs are required. Fig. 

A.10 shows the second input menu. 



  163 

 

 
Fig. A.10. Input menu to analyze a particular structure 

 

 

 The cascade structure is structure numbered 45. Hence in the second input menu 

structure number is entered as 45 and the other details are also entered. The tool can also 

be used to estimate the SNR for a particular level of THD. This is done by estimating the 

input amplitude for a particular THD specification and accordingly the noise is also 



  164 

 

estimated and the SNR is calculated. The output window of the this step is shown in Fig. 

A.11. The window also has a slide bar which can be used to estimate the SNR for 

various cases of THD. 

 

 

 
Fig. A.11. Output window for a single structure analysis 

 

 

 The output window has the variation of THD with respect to the input amplitude, 

variations of the HD3 with respect to the input frequency and also the input referred and 

output referred noise. The output files can also be used for other analysis. 
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APPENDIX B 

LIMITATIONS OF TUNING RANGE IN OTA 

 

 Many continuous-time systems, such as active filters and continuous-time 

sigma–delta analog–digital converters (ADCs), often require a reasonably precise cutoff 

frequency or RC time constant. Unfortunately, current CMOS technologies usually have 

large process variations, which could result in up to a 50% RC time constant uncertainty. 

To avoid using precise external passive components, an on-chip auto tuning circuit 

becomes a necessity [102]. 

 The process of establishing an on-chip tuning scheme involves the tuning process 

of certain critical parameters of the Active-RC or Gm-C based circuits. There are two 

possible ways to tune the RC time constant, (1) active and (2) passive components 

tuning. The active components tuning involves a continuous tuning scheme which can be 

implemented by changing the transconductance gm in an operational transconductance 

amplifier (OTA). In the passive components tuning, on the other hand, C or R is adjusted 

within a set of discrete values [103].  

 The main focus of this section would be the limitation on the active tuning 

process in the case of OTAs. It is essential to estimate the limit of tuning the 

transconductance of any OTA. The active tuning process involves tuning the 

transconductance parameter which will be directly reflected on the frequency response 

of the OTA, as the bandwidth is dependant directly on the transconductance value. 

 Taking the case of the simple differential pair as shown in Fig. B.1, the 

transconductance of the input differential pair, in saturation region can be described by 

equation (B.1), neglecting the second order effects. 
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where ID is the drain current through the transistors M1 and M2 (ID=Ibias=Itail/2) and Veff is 

the effective voltage of transistor M1/M2. 
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Fig. B.1. Simple differential pair with a tail current source 

 

 

 The transconductance can also be written as shown in equation (B.2), 
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(B.2) 

To tune the OTA using an on-chip active tuning scheme, the only parameter that is 

available to the user is the drain current. The dimensions of the transistors can be 

changed on chip. To tune the gm of the input pair, the drain current can be varied by 

tuning the tail current source or by introducing another block which will control the 

transconductance term, i.e. source degeneration. 

 Fig. B.2 shows the two tuning implementations. Fig. B.2a shows the tuning of 

the transconductance by varying the tail current, which is achieved by adjusting the gate 

control voltage of transistor M3. The gate control voltage Vcntr controls the tail current of 

the differential pair. To determine the limiting factors in this tuning process, the 

expression for the transconductance term, based on the square model, should be related 
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to the control voltage. This relation can be derived using expressions (B.3), (B.4), (B.5). 

The second order effects like channel length modulation effect is considered for the 

transistor M3 which defines the drain current. 
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Fig. B.2. OTA gm-tuning (a) tail current adjustment (b) source degeneration 
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 As can be seen from expression (B.5), the factor that controls the variations of 

the transconductance parameter is the control voltage. This control voltage cannot be 

increased beyond a particular limit, because above a particular value the transistor will 

leave the saturation region and would no longer follow the square law model. Thus for 
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this method of tuning the OTA, the limitation factor is the control voltage. From the 

explanation given in Appendix A, Fig. B.3. shows the variation of gm using the bias 

voltage for the OTA used in chapter II [75]. 
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Fig. B.3 Variation of gm with respect to Vbias for  the linear OTA [75] 

 

 

 From Fig. B.3 it can be observed that even in the case of a very linear OTA, the 

maximum tuning range in the gm, is twice the value compared to the value of gm around 

0 V (6dB variation in the gm level). 

 Fig. B.2b shows another tuning approach [103] which is based on controlling the 

transconductance parameter by means of source degeneration. The OTA small-signal 

transconductance is tuned by adjusting the gate voltage of transistor M3, which operates 

in the triode region. For large source degeneration factors, the OTA transconductance is 

dominated by the conductance of M3 and can be expressed as shown in expression (B.6), 

[104], 
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where RM3 is the equivalent source degeneration introduced by the transistor M3 

operating in the triode region.  

 In both the mentioned techniques, the overall gm is dependent upon the input 

signal common mode voltage, which limits the linearity of the OTA. In the practical 

circuit design, the gm is often optimized to achieve the required linearity. To achieve a 

larger gm means to increase the drain current and this could possibly reduce the output 

voltage swing. These factors are dependant on each other. In most practical cases the 

maximum limit for tuning the value of transconductance is just twice its initial value. 

This variation doesn’t affect the linearity much and also the output voltage swing. Thus 

most of the tuning schemes exhibit the maximum variation of gm to be twice its value. 

 In CMOS transconductors, large tunability needed to correct for temperature and 

process variations gives a significant reduction in voltage swings at low supply voltages 

and consequently dynamic range reduction. The new technologies optimized for digital 

applications are impaired by second order effects like velocity saturation and mobility 

reduction. Most of the concepts used in the past cannot be used anymore. New 

transconductor concepts which do not rely upon the ideal square law of a MOST, are 

needed. Another issue is to achieve large tunability without conflicting with the large 

swing requirement. 
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